metadata
tags:
- ocr
- arabic
- document-understanding
- structure-preservation
- computer-vision
pretty_name: Misraj-DocOCR
license: apache-2.0
Misraj-DocOCR: An Arabic Document OCR Benchmark📄
Dataset: Misraj/Misraj-DocOCR
Domain: Arabic Document OCR (text + structure)
Size: 400 expertly verified pages (real + synthetic)
Use cases: OCR, Document Understanding, Markdown/HTML structure preservation
Status: Public 🤝
✨ Overview
Misraj-DocOCR is a curated, expert-verified benchmark for Arabic document OCR with an emphasis on structure preservation (Markdown/HTML tables, lists, footnotes, math, watermarks, multi-column, marginalia, etc.). Each page includes high-quality ground truth designed to evaluate both text fidelity and layout/structure fidelity.
- Diverse content: books, reports, forms, scholarly pages, and complex layouts.
- Expert-verified ground truth: human-reviewed for text and structure.
- Open & reproducible: intended for fair comparisons and reliable benchmarking.
📦 Data format
Each example typically includes:
uuid
: id of sampleimage
: page image (PIL-compatible)markdown
: target transcription with structure
🔌 Loading
from datasets import load_dataset
ds = load_dataset("Misraj/Misraj-DocOCR")
split = ds["train"] # or another available split
ex = split[0]
img = ex["image"] # PIL.Image
gt = ex.get("markdown") or ex.get("text")
print(gt[:400])
# img.show() # uncomment in a local environment
🧪 Metrics
We report both text and structure metrics:
- Text: WER ↓, CER ↓, BLEU ↑, ChrF ↑
- Structure: TEDS ↑, MARS ↑ (Markdown/HTML structure fidelity)
🏆 Leaderboard (Misraj-DocOCR)
Best values are bold, second-best are underlined.
Model | WER ↓ | CER ↓ | BLEU ↑ | CHRF ↑ | TEDS ↑ | MARS ↑ |
---|---|---|---|---|---|---|
Baseer (ours) | 0.25 | 0.53 | 76.18 | 87.77 | 66 | 76.885 |
Gemini-2.5-pro | 0.37 | 0.31 | 77.92 | 89.55 | 52 | 70.775 |
Azure AI Document Intelligence[^azure] | 0.44 | 0.27 | 62.04 | 82.49 | 42 | 62.245 |
Dots.ocr | 0.50 | 0.40 | 58.16 | 78.41 | 40 | 59.205 |
Nanonets | 0.71 | 0.55 | 42.22 | 67.89 | 37 | 52.445 |
Qari | 0.76 | 0.64 | 38.59 | 64.50 | 21 | 42.750 |
Qwen2.5-VL-32B | 0.76 | 0.59 | 37.62 | 62.64 | 41 | 51.820 |
GPT-5 | 0.86 | 0.62 | 40.67 | 61.6 | 48 | 54.8 |
Qwen2.5-VL-3B-Instruct | 0.87 | 0.71 | 25.39 | 53.42 | 27 | 40.210 |
Qwen2.5-VL-7B | 0.92 | 0.77 | 31.57 | 54.70 | 27 | 40.850 |
Gemma3-12B | 0.96 | 0.80 | 19.75 | 44.53 | 33 | 38.765 |
Gemma3-4B | 1.01 | 0.85 | 9.57 | 31.39 | 28 | 29.695 |
GPT-4o-mini | 1.36 | 1.10 | 22.63 | 47.04 | 26 | 36.52 |
AIN | 1.23 | 1.11 | 1.25 | 2.24 | 21 | 11.620 |
Aya-vision | 1.41 | 1.07 | 2.91 | 9.81 | 26 | 17.905 |
Highlights:
- Baseer (ours) leads on WER, TEDS, and MARS → strong text & structure fidelity.
- Gemini-2.5-pro tops BLEU/ChrF; Azure AI Document Intelligence attains lowest CER.
📚 How to cite
If you use Misraj-DocOCR, please cite:
@misc{hennara2025baseervisionlanguagemodelarabic,
title={Baseer: A Vision-Language Model for Arabic Document-to-Markdown OCR},
author={Khalil Hennara and Muhammad Hreden and Mohamed Motasim Hamed and Ahmad Bastati and Zeina Aldallal and Sara Chrouf and Safwan AlModhayan},
year={2025},
eprint={2509.18174},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.18174},
}