Datasets:
Formats:
parquet
Size:
10K - 100K
dataset_info: | |
features: | |
- name: audio | |
dtype: audio | |
- name: transcription | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 11189910118.05 | |
num_examples: 50715 | |
- name: validation | |
num_bytes: 385055065.35 | |
num_examples: 2199 | |
download_size: 11017987865 | |
dataset_size: 11574965183.4 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: validation | |
path: data/validation-* | |
tags: | |
- masrispeech | |
- egyptian-arabic | |
- arabic | |
- speech | |
- audio | |
- asr | |
- automatic-speech-recognition | |
- speech-to-text | |
- stt | |
- dialectal-arabic | |
- egypt | |
- native-speakers | |
- spoken-arabic | |
- egyptian-dialect | |
- arabic-dialect | |
- audio-dataset | |
- language-resources | |
- low-resource-language | |
- phonetics | |
- speech-corpus | |
- voice | |
- transcription | |
- linguistic-data | |
- machine-learning | |
- natural-language-processing | |
- nlp | |
- huggingface | |
- open-dataset | |
- labeled-data | |
task_categories: | |
- automatic-speech-recognition | |
- audio-classification | |
- audio-to-audio | |
language: | |
- arz | |
- ar | |
pretty_name: MasriSpeech-Full | |
# ๐ฃ๏ธ MasriSpeech-Full: Large-Scale Egyptian Arabic Speech Corpus | |
[](https://opensource.org/licenses/Apache-2.0) | |
[](https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544) | |
<p align="center"> | |
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/MasriSpeech.png?raw=true" | |
alt="MasriSpeech-Full Dataset Overview" | |
width="600" | |
height="750" | |
style="border-radius: 8px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); object-fit: cover; object-position: top;"> | |
</p> | |
## ๐ Overview | |
**MasriSpeech-Full** is the largest open-source Egyptian Arabic (Masri) speech dataset, designed to advance Automatic Speech Recognition (ASR) and speech processing research for dialectal Arabic. This corpus contains 52,914 professionally annotated audio samples totaling over 3,100 hours of natural Egyptian Arabic speech. | |
> ๐ก **Key Features**: | |
> - High-quality 16kHz speech recordings | |
> - Natural conversational Egyptian Arabic | |
> - Speaker-balanced train/validation splits | |
> - Comprehensive linguistic coverage | |
> - Apache 2.0 license | |
## ๐ Dataset Summary | |
| Feature | Value | | |
|--------------------------|---------------------------| | |
| **Total Samples** | 52,914 | | |
| **Train Samples** | 50,715 | | |
| **Validation Samples** | 2,199 | | |
| **Sampling Rate** | 16 kHz | | |
| **Total Duration** | ~3,100 hours | | |
| **Languages** | Egyptian Arabic (arz), Arabic (ar) | | |
| **Format** | Parquet | | |
| **Dataset Size** | 11.57 GB | | |
| **Download Size** | 10.26 GB | | |
| **Annotations** | Transcripts | | |
## ๐งฑ Dataset Structure | |
The dataset follows Hugging Face `datasets` format with two splits: | |
```python | |
DatasetDict({ | |
train: Dataset({ | |
features: ['audio', 'transcription'], | |
num_rows: 50715 | |
}) | |
validation: Dataset({ | |
features: ['audio', 'transcription'], | |
num_rows: 2199 | |
}) | |
}) | |
``` | |
## Data Fields | |
- **audio**: Audio feature object containing: | |
- `Array`: Raw speech waveform (1D float array) | |
- `Path`: Relative audio path | |
- `Sampling_rate`: 16,000 Hz | |
- **transcription**: string with Egyptian Arabic transcription | |
## ๐ Data Statistics | |
### Split Distribution | |
| Split | Examples | Size (GB) | Avg. Words | Empty | Non-Arabic | | |
|--------------|----------|-----------|------------|-------|------------| | |
| **Train** | 50,715 | 10.42 | 13.34 | 6 | 13 | | |
| **Validation**| 2,199 | 0.36 | 9.60 | 0 | 1 | | |
### Linguistic Analysis | |
| Feature | Train Set | Validation Set | | |
|-----------------|---------------------------|----------------------------| | |
| **Top Words** | ูู (20,250), ู (16,977) | ูู (519), ุฃูุง (412) | | |
| **Top Bigrams** | (ุฅู, ุฃูุง) (1,305) | (ุดุงุก, ุงููู) (63) | | |
| **Vocab Size** | 38,451 | 7,892 | | |
| **Unique Speakers** | 1,142 | 98 | | |
<p align="center"> | |
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/train_wordcount_hist.png?raw=true" alt="Train Distribution" width="45%"> | |
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/adapt_wordcount_hist.png?raw=true" alt="Validation Distribution" width="45%"> | |
<br><em>Word Count Distributions (Left: Train, Right: Validation)</em> | |
</p> | |
## How to Use ? ๐งโ๐ป | |
### Loading with Hugging Face | |
```python | |
from datasets import load_dataset | |
import IPython.display as ipd | |
# Load dataset (streaming recommended for large datasets) | |
ds = load_dataset('NightPrince/MasriSpeech-Full', | |
split='train', | |
streaming=True) | |
# Get first sample | |
sample = next(iter(ds)) | |
print(f"Transcript: {sample['transcription']}") | |
# Play audio | |
ipd.Audio(sample['audio']['array'], | |
rate=sample['audio']['sampling_rate']) | |
``` | |
### Preprocessing the Dataset | |
```python | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
from datasets import load_dataset | |
import torch | |
model_name = "facebook/wav2vec2-base-960h" # Spanish example | |
# or "facebook/wav2vec2-large-xlsr-53-en" for English | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
def prepare_dataset(batch): | |
audio = batch["audio"] | |
# Extract audio array and sampling rate | |
audio_array = audio["array"] | |
sampling_rate = audio["sampling_rate"] | |
# Process audio using feature extractor only | |
inputs = processor.feature_extractor( | |
audio_array, | |
sampling_rate=sampling_rate, | |
return_tensors="pt" | |
) | |
batch["input_values"] = inputs.input_values[0] | |
# Process transcription using tokenizer only | |
labels = processor.tokenizer( | |
batch["transcription"], | |
return_tensors="pt" | |
) | |
batch["labels"] = labels["input_ids"][0] | |
return batch | |
# Apply preprocessing to the entire dataset | |
print("Processing entire dataset...") | |
dataset = ds.map(prepare_dataset, remove_columns=["audio", "transcription"]) | |
``` | |
### Fine-Tuning an ASR Model | |
```python | |
from transformers import AutoModelForCTC, TrainingArguments, Trainer | |
# Load pre-trained model | |
model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h") | |
# Define training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=16, | |
num_train_epochs=3, | |
save_steps=10, | |
save_total_limit=2, | |
logging_dir="./logs", | |
logging_steps=10, | |
) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset, | |
eval_dataset=dataset, | |
) | |
# Train the model | |
trainer.train() | |
``` | |
### Evaluating the Model | |
```python | |
# Evaluate the model | |
eval_results = trainer.evaluate() | |
print("Evaluation Results:", eval_results) | |
``` | |
### Exporting the Model | |
```python | |
# Save the fine-tuned model | |
model.save_pretrained("./fine_tuned_model") | |
processor.save_pretrained("./fine_tuned_model") | |
``` | |
## ๐ Citation | |
If you use **MasriSpeech-Full** in your research or work, please cite it as follows: | |
``` | |
@dataset{masrispeech_full, | |
author = {Yahya Muhammad Alnwsany}, | |
title = {MasriSpeech-Full: Large-Scale Egyptian Arabic Speech Corpus}, | |
year = {2025}, | |
publisher = {Hugging Face}, | |
url = {https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544} | |
} | |
``` | |
## ๐ Licensing | |
This dataset is released under the **Apache 2.0 License**. You are free to use, modify, and distribute the dataset, provided you comply with the terms of the license. For more details, see the [LICENSE](https://opensource.org/licenses/Apache-2.0). | |
## ๐ Acknowledgments | |
We would like to thank the following for their contributions and support: | |
- **Annotators**: For their meticulous work in creating high-quality transcriptions. | |
- **Hugging Face**: For providing tools and hosting the dataset. | |
- **Open-Source Community**: For their continuous support and feedback. | |
## ๐ก Use Cases | |
**MasriSpeech-Full** can be used in various applications, including: | |
- Automatic Speech Recognition (ASR) for Egyptian Arabic. | |
- Dialectal Arabic linguistic research. | |
- Speech synthesis and voice cloning. | |
- Training and benchmarking machine learning models for low-resource languages. | |
## ๐ค Contributing | |
We welcome contributions to improve **MasriSpeech-Full**. If you have suggestions, find issues, or want to add new features, please: | |
1. Fork the repository. | |
2. Create a new branch for your changes. | |
3. Submit a pull request with a detailed description of your changes. | |
For questions or feedback, feel free to contact the maintainer. | |
## ๐ Changelog | |
### [1.0.0] - 2025-08-02 | |
- Initial release of **MasriSpeech-Full**. | |
- Includes 52,914 audio samples with transcriptions. | |
- Train/validation splits provided. | |
- Dataset hosted on Hugging Face. |