metadata
license: cc-by-nc-4.0
language:
- en
size_categories:
- n<1K
sfia-9-chunks Dataset
Overview
The sfia-9-chunks
dataset is a derived dataset from sfia-9-scraped
. It uses sentence embeddings and hierarchical clustering to split each SFIA-9 document into coherent semantic chunks. This chunking facilitates more efficient downstream tasks like semantic search, question answering, and topic modeling.
Chunking Methodology
We employ the following procedure to generate chunks:
from sentence_transformers import SentenceTransformer
from sklearn.cluster import AgglomerativeClustering
MODEL_NAME = "all-MiniLM-L12-v2"
def get_chunks(document: str) -> list[str]:
model = SentenceTransformer(MODEL_NAME)
sentences = document.split(". ")
embs = model.encode(sentences)
clustering = AgglomerativeClustering(n_clusters=None, distance_threshold=1.0).fit(
embs
)
chunks = []
for label in set(clustering.labels_):
group = [
sentences[i]
for i in range(len(sentences))
if clustering.labels_[i] == label
]
chunks.append(". ".join(group))
return chunks
- Model:
all-MiniLM-L12-v2
for efficient sentence embeddings. - Clustering: Agglomerative clustering with a distance threshold of
1.0
to dynamically determine the number of semantic groups.
Dataset Structure
This dataset consists of a flat list of semantic text chunks derived from the SFIA-9 documents. When loaded, each example is an object with a single field:
chunks
(string
): One coherent semantic chunk extracted via hierarchical clustering.
Usage Example
from datasets import load_dataset
dataset = load_dataset("Programmer-RD-AI/sfia-9-chunks")
for example in dataset:
print(example["chunks"])
License
This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. You can view the full license at: https://creativecommons.org/licenses/by/4.0/
Citation
If you use this dataset in your research, please cite:
@misc{ranuga_disansa_gamage_2025,
author = {Ranuga Disansa Gamage},
title = {sfia-9-chunks (Revision 035dc41)},
year = 2025,
url = {https://huggingface.co/datasets/Programmer-RD-AI/sfia-9-chunks},
doi = {10.57967/hf/5747},
publisher = {Hugging Face}
}