metadata
language:
- en
license: cc-by-4.0
size_categories:
- 1K<n<10K
task_categories:
- question-answering
- visual-question-answering
- multiple-choice
pretty_name: MMSI-Bench
dataset_info:
features:
- name: id
dtype: int64
- name: images
sequence: image
- name: question_type
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: thought
dtype: string
splits:
- name: test
num_examples: 1000
configs:
- config_name: default
data_files:
- split: test
path: MMSI_Bench.parquet
MMSI-Bench
This repo contains evaluation code for the paper "MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence"
π Homepage | π€ Dataset | π Paper | π» Code | π arXiv
πNews
π₯[2025-06-18]: MMSI-Bench has been supported in the LMMs-Eval repository.
β¨[2025-06-11]: MMSI-Bench was used for evaluation in the experiments of VILASR.
π₯[2025-06-9]: MMSI-Bench has been supported in the VLMEvalKit repository.
π₯[2025-05-30]: We released the ArXiv paper.
Load Dataset
from datasets import load_dataset
mmsi_bench = load_dataset("RunsenXu/MMSI-Bench")
print(mmsi_bench)
After downloading the parquet file, read each record, decode images from binary, and save them as JPG files.
import pandas as pd
import os
df = pd.read_parquet('MMSI_Bench.parquet')
output_dir = './images'
os.makedirs(output_dir, exist_ok=True)
for idx, row in df.iterrows():
id_val = row['id']
images = row['images']
question_type = row['question_type']
question = row['question']
answer = row['answer']
thought = row['thought']
image_paths = []
if images is not None:
for n, img_data in enumerate(images):
image_path = f"{output_dir}/{id_val}_{n}.jpg"
with open(image_path, "wb") as f:
f.write(img_data)
image_paths.append(image_path)
else:
image_paths = []
print(f"id: {id_val}")
print(f"images: {image_paths}")
print(f"question_type: {question_type}")
print(f"question: {question}")
print(f"answer: {answer}")
print(f"thought: {thought}")
print("-" * 50)
Evaluation
Please refer to the evaluation guidelines of VLMEvalKit
π MMSI-Bench Leaderboard
Model | Avg. (%) | Type |
---|---|---|
π₯ Human Level | 97.2 | Baseline |
π₯ o3 | 41.0 | Proprietary |
π₯ GPT-4.5 | 40.3 | Proprietary |
Gemini-2.5-Pro--Thinking | 37.0 | Proprietary |
Gemini-2.5-Pro | 36.9 | Proprietary |
Doubao-1.5-pro | 33.0 | Proprietary |
GPT-4.1 | 30.9 | Proprietary |
Qwen2.5-VL-72B | 30.7 | Open-source |
NVILA-15B | 30.5 | Open-source |
GPT-4o | 30.3 | Proprietary |
Claude-3.7-Sonnet--Thinking | 30.2 | Proprietary |
Seed1.5-VL | 29.7 | Proprietary |
InternVL2.5-2B | 29.0 | Open-source |
InternVL2.5-8B | 28.7 | Open-source |
DeepSeek-VL2-Small | 28.6 | Open-source |
InternVL3-78B | 28.5 | Open-source |
InternVL2.5-78B | 28.5 | Open-source |
LLaVA-OneVision-72B | 28.4 | Open-source |
NVILA-8B | 28.1 | Open-source |
InternVL2.5-26B | 28.0 | Open-source |
DeepSeek-VL2 | 27.1 | Open-source |
InternVL3-1B | 27.0 | Open-source |
InternVL3-9B | 26.7 | Open-source |
Qwen2.5-VL-3B | 26.5 | Open-source |
InternVL2.5-1B | 26.1 | Open-source |
InternVL2.5-4B | 26.3 | Open-source |
Qwen2.5-VL-7B | 25.9 | Open-source |
InternVL3-8B | 25.7 | Open-source |
Llama-3.2-11B-Vision | 25.4 | Open-source |
InternVL3-2B | 25.3 | Open-source |
π Random Guessing | 25.0 | Baseline |
LLaVA-OneVision-7B | 24.5 | Open-source |
DeepSeek-VL2-Tiny | 24.0 | Open-source |
Blind GPT-4o | 22.7 | Baseline |
Acknowledgment
MMSI-Bench makes use of data from existing image datasets: ScanNet, nuScenes, Matterport3D, Ego4D, AgiBot-World, DTU, DAVIS-2017 ,and Waymo. We thank these teams for their open-source contributions.
Contact
- Sihan Yang: [email protected]
- Runsen Xu: [email protected]
Citation
@article{yang2025mmsi,
title={MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence},
author={Yang, Sihan and Xu, Runsen and Xie, Yiman and Yang, Sizhe and Li, Mo and Lin, Jingli and Zhu, Chenming and Chen, Xiaochen and Duan, Haodong and Yue, Xiangyu and Lin, Dahua and Wang, Tai and Pang, Jiangmiao},
journal={arXiv preprint arXiv:2505.23764},
year={2025}
}