|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- visual-question-answering |
|
- video-classification |
|
language: |
|
- en |
|
viewer: false |
|
configs: |
|
- config_name: splits |
|
data_files: |
|
- split: eval |
|
path: |
|
- "video_tasks" |
|
- "image_tasks" |
|
--- |
|
|
|
# MMEB-V2 (Massive Multimodal Embedding Benchmark) |
|
|
|
Building upon on our original [**MMEB**](https://arxiv.org/abs/2410.05160), **MMEB-V2** expands the evaluation scope to include five new tasks: four video-based tasks — Video Retrieval, Moment Retrieval, Video Classification, and Video Question Answering — and one task focused on visual documents, Visual Document Retrieval. This comprehensive suite enables robust evaluation of multimodal embedding models across static, temporal, and structured visual data settings. |
|
|
|
**This Hugging Face repository contains only the raw image and video files used in MMEB-V2, which need to be downloaded in advance.** |
|
The test data for each task in MMEB-V2 is available [here](https://huggingface.co/VLM2Vec) and will be automatically downloaded and used by our code. More details on how to set it up are provided in the following sections. |
|
|
|
|[**Github**](https://github.com/TIGER-AI-Lab/VLM2Vec) | [**🏆Leaderboard**](https://huggingface.co/spaces/TIGER-Lab/MMEB) | [**📖MMEB-V2/VLM2Vec-V2 Paper (TBA)**](https://arxiv.org/abs/2410.05160) | | [**📖MMEB-V1/VLM2Vec-V1 Paper**](https://arxiv.org/abs/2410.05160) | |
|
|
|
|
|
## 🚀 What's New |
|
- **\[2025.05\]** Initial release of MMEB-V2. |
|
|
|
|
|
## Dataset Overview |
|
|
|
We present an overview of the MMEB-V2 dataset below: |
|
<img width="900" alt="abs" src="overview.png"> |
|
|
|
|
|
## Dataset Structure |
|
|
|
The directory structure of this Hugging Face repository is shown below. |
|
For video tasks, we provide both sampled frames and raw videos (the latter will be released later). For image tasks, we provide the raw images. |
|
Files from each meta-task are zipped together, resulting in six files. For example, ``video_cls.tar.gz`` contains the sampled frames for the video classification task. |
|
|
|
``` |
|
|
|
→ video-tasks/ |
|
├── frames/ |
|
│ ├── video_cls.tar.gz |
|
│ ├── video_qa.tar.gz |
|
│ ├── video_ret.tar.gz |
|
│ └── video_mret.tar.gz |
|
├── raw videos/ (To be released) |
|
|
|
→ image-tasks/ |
|
├── mmeb_v1.tar.gz |
|
└── visdoc.tar.gz |
|
|
|
``` |
|
|
|
After downloading and unzipping these files locally, you can organize them as shown below. (You may choose to use ``Git LFS`` or ``wget`` for downloading.) |
|
Then, simply specify the correct file path in the configuration file used by your code. |
|
|
|
``` |
|
|
|
→ MMEB |
|
├── video-tasks/ |
|
│ └── frames/ |
|
│ ├── video_cls/ |
|
│ │ ├── UCF101/ |
|
│ │ │ └── video_1/ # video ID |
|
│ │ │ ├── frame1.png # frame from video_1 |
|
│ │ │ ├── frame2.png |
|
│ │ │ └── ... |
|
│ │ ├── HMDB51/ |
|
│ │ ├── Breakfast/ |
|
│ │ └── ... # other datasets from video classification category |
|
│ ├── video_qa/ |
|
│ │ └── ... # video QA datasets |
|
│ ├── video_ret/ |
|
│ │ └── ... # video retrieval datasets |
|
│ └── video_mret/ |
|
│ └── ... # moment retrieval datasets |
|
├── image-tasks/ |
|
│ ├── mmeb_v1/ |
|
│ │ ├── OK-VQA/ |
|
│ │ │ ├── image1.png |
|
│ │ │ ├── image2.png |
|
│ │ │ └── ... |
|
│ │ ├── ImageNet-1K/ |
|
│ │ └── ... # other datasets from MMEB-V1 category |
|
│ └── visdoc/ |
|
│ └── ... # visual document retrieval datasets |
|
|
|
|
|
``` |