id
stringlengths
14
16
text
stringlengths
20
3.26k
source
stringlengths
65
181
be4901f61e07-19
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶ Create outputs from response. Parameters llm_result (LLMResult) – Return type List[Dict[str, Any]] dict(**kwargs: Any) → Dict¶ Dictionary representation of chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters **kwargs (Any) – Keyword arguments passed to default pydantic.BaseModel.dict method. Returns A dictionary representation of the chain. Return type Dict Example chain.dict(exclude_unset=True) # -> {"_type": "foo", "verbose": False, ...} classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶ Get the response parser. Parameters llm (BaseLanguageModel) – verbose (bool) – Return type LLMChain classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶ Create LLMChain from LLM and template. Parameters llm (BaseLanguageModel) – template (str) – Return type LLMChain generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-20
Generate LLM result from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[CallbackManagerForChainRun]) – Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-21
methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Transform a single input into an output. Override to implement. Parameters input (Dict[str, Any]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. kwargs (Any) – Returns The output of the runnable. Return type Dict[str, Any] classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-22
Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-23
def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-24
json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one)
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-25
return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass to LLMChain **kwargs (Any) – Keys to pass to prompt template. Returns Completion from LLM. Return type str Example completion = llm.predict(adjective="funny") predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶ Call predict and then parse the results. Parameters callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – kwargs (Any) – Return type Union[str, List[str], Dict[str, Any]] prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-26
Prepare chain inputs, including adding inputs from memory. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. Return type Dict[str, str] prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs (Dict[str, str]) – Dictionary of chain inputs, including any inputs added by chain memory. outputs (Dict[str, str]) – Dictionary of initial chain outputs. return_only_outputs (bool) – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. Return type Dict[str, str] prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[CallbackManagerForChainRun]) – Return type Tuple[List[PromptValue], Optional[List[str]]] run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ [Deprecated] Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-27
The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args (Any) – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs (Any) – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. metadata (Optional[Dict[str, Any]]) – **kwargs – Returns The chain output. Return type Any Example # Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..." Notes Deprecated since version langchain==0.1.0: Use invoke instead. save(file_path: Union[Path, str]) → None¶ Save the chain.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-28
save(file_path: Union[Path, str]) → None¶ Save the chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters file_path (Union[Path, str]) – Path to file to save the chain to. Return type None Example chain.save(file_path="path/chain.yaml") classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-29
input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model with_alisteners(*, on_start: Optional[AsyncListener] = None, on_end: Optional[AsyncListener] = None, on_error: Optional[AsyncListener] = None) → Runnable[Input, Output]¶ Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable. on_start: Asynchronously called before the runnable starts running. on_end: Asynchronously called after the runnable finishes running. on_error: Asynchronously called if the runnable throws an error. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[AsyncListener]) – on_end (Optional[AsyncListener]) – on_error (Optional[AsyncListener]) – Return type Runnable[Input, Output] with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-30
kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-31
Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep : int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2) Parameters on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-32
on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert (count == 2) Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
be4901f61e07-33
output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: Type[Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
19f2a0535297-0
langchain_experimental.autonomous_agents.autogpt.prompt_generator.PromptGenerator¶ class langchain_experimental.autonomous_agents.autogpt.prompt_generator.PromptGenerator[source]¶ Generator of custom prompt strings. Does this based on constraints, commands, resources, and performance evaluations. Initialize the PromptGenerator object. Starts with empty lists of constraints, commands, resources, and performance evaluations. Methods __init__() Initialize the PromptGenerator object. add_constraint(constraint) Add a constraint to the constraints list. add_performance_evaluation(evaluation) Add a performance evaluation item to the performance_evaluation list. add_resource(resource) Add a resource to the resources list. add_tool(tool) generate_prompt_string() Generate a prompt string. __init__() → None[source]¶ Initialize the PromptGenerator object. Starts with empty lists of constraints, commands, resources, and performance evaluations. Return type None add_constraint(constraint: str) → None[source]¶ Add a constraint to the constraints list. Parameters constraint (str) – The constraint to be added. Return type None add_performance_evaluation(evaluation: str) → None[source]¶ Add a performance evaluation item to the performance_evaluation list. Parameters evaluation (str) – The evaluation item to be added. Return type None add_resource(resource: str) → None[source]¶ Add a resource to the resources list. Parameters resource (str) – The resource to be added. Return type None add_tool(tool: BaseTool) → None[source]¶ Parameters tool (BaseTool) – Return type None generate_prompt_string() → str[source]¶ Generate a prompt string. Returns The generated prompt string. Return type str
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt_generator.PromptGenerator.html
b9eff7b86a17-0
langchain_google_community.vertex_rank.VertexAIRank¶ class langchain_google_community.vertex_rank.VertexAIRank[source]¶ Bases: BaseDocumentCompressor Initializes the Vertex AI Ranker with configurable parameters. Inherits from BaseDocumentCompressor for document processing and validation features, respectively. project_id¶ Google Cloud project ID Type str location_id¶ Location ID for the ranking service. Type str ranking_config¶ Required. The name of the rank service config, such as default_config. It is set to default_config by default if unspecified. Type str model¶ The identifier of the model to use. It is one of: semantic-ranker-512@latest: Semantic ranking model with maximum input token size 512. It is set to semantic-ranker-512@latest by default if unspecified. Type str top_n¶ The number of results to return. If this is unset or no bigger than zero, returns all results. Type int ignore_record_details_in_response¶ If true, the response will contain only record ID and score. By default, it is false, the response will contain record details. Type bool id_field¶ Specifies a unique document metadata field Type Optional[str] to use as an id. title_field¶ Specifies the document metadata field Type Optional[str] to use as title. credentials¶ Google Cloud credentials object. Type Optional[Credentials] credentials_path¶ Path to the Google Cloud service Type Optional[str] account credentials file. Constructor for VertexAIRanker, allowing for specification of ranking configuration and initialization of Google Cloud services. The parameters accepted are the same as the attributes listed above. param client: Any = None¶ param credentials: Optional[Credentials] = None¶
https://api.python.langchain.com/en/latest/vertex_rank/langchain_google_community.vertex_rank.VertexAIRank.html
b9eff7b86a17-1
param client: Any = None¶ param credentials: Optional[Credentials] = None¶ param credentials_path: Optional[str] = None¶ param id_field: Optional[str] = None¶ param ignore_record_details_in_response: bool = False¶ param location_id: str = 'global'¶ param model: str = 'semantic-ranker-512@latest'¶ param project_id: str = None¶ param ranking_config: str = 'default_config'¶ param title_field: Optional[str] = None¶ param top_n: int = 10¶ async acompress_documents(documents: Sequence[Document], query: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Document]¶ Compress retrieved documents given the query context. Parameters documents (Sequence[Document]) – query (str) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Return type Sequence[Document] compress_documents(documents: Sequence[Document], query: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Document][source]¶ Compresses documents using Vertex AI’s rerank API. Parameters documents (Sequence[Document]) – List of Document instances to compress. query (str) – Query string to use for compressing the documents. callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to execute during compression (not used here). Returns A list of Document instances, compressed. Return type Sequence[Document] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
https://api.python.langchain.com/en/latest/vertex_rank/langchain_google_community.vertex_rank.VertexAIRank.html
b9eff7b86a17-2
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
https://api.python.langchain.com/en/latest/vertex_rank/langchain_google_community.vertex_rank.VertexAIRank.html
b9eff7b86a17-3
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode
https://api.python.langchain.com/en/latest/vertex_rank/langchain_google_community.vertex_rank.VertexAIRank.html
b9eff7b86a17-4
dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters
https://api.python.langchain.com/en/latest/vertex_rank/langchain_google_community.vertex_rank.VertexAIRank.html
b9eff7b86a17-5
Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model
https://api.python.langchain.com/en/latest/vertex_rank/langchain_google_community.vertex_rank.VertexAIRank.html
c5316bb1aca0-0
langchain_robocorp.toolkits.RunDetailsCallbackHandler¶ class langchain_robocorp.toolkits.RunDetailsCallbackHandler(run_details: dict)[source]¶ Callback handler to add run details to the run. Initialize the callback handler. Parameters run_details (dict) – Run details. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(run_details) Initialize the callback handler. on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any.
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.RunDetailsCallbackHandler.html
c5316bb1aca0-1
on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. __init__(run_details: dict) → None[source]¶ Initialize the callback handler. Parameters run_details (dict) – Run details. Return type None on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.RunDetailsCallbackHandler.html
c5316bb1aca0-2
Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.RunDetailsCallbackHandler.html
c5316bb1aca0-3
kwargs (Any) – Return type Any on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM ends running. Parameters response (LLMResult) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) –
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.RunDetailsCallbackHandler.html
c5316bb1aca0-4
parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.RunDetailsCallbackHandler.html
c5316bb1aca0-5
Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.RunDetailsCallbackHandler.html
c5316bb1aca0-6
Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.RunDetailsCallbackHandler.html
dc11471acf73-0
langchain_robocorp.toolkits.ActionServerToolkit¶ class langchain_robocorp.toolkits.ActionServerToolkit[source]¶ Bases: BaseModel Toolkit exposing Robocorp Action Server provided actions as individual tools. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_headers: dict [Optional]¶ Additional headers to be passed to the Action Server param api_key: str = ''¶ Action Server request API key param report_trace: bool = False¶ Enable reporting Langsmith trace to Action Server runs param url: str [Required]¶ Action Server URL classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerToolkit.html
dc11471acf73-1
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model get_tools(llm: Optional[BaseChatModel] = None, callback_manager: Optional[CallbackManager] = None) → List[BaseTool][source]¶ Get Action Server actions as a toolkit Parameters llm (Optional[BaseChatModel]) – Optionally pass a model to return single input tools callback_manager (Optional[CallbackManager]) – Callback manager to be passed to tools Return type List[BaseTool]
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerToolkit.html
dc11471acf73-2
Return type List[BaseTool] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerToolkit.html
dc11471acf73-3
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerToolkit.html
ed24743d6d42-0
langchain_robocorp.toolkits.ActionServerRequestTool¶ class langchain_robocorp.toolkits.ActionServerRequestTool[source]¶ Bases: BaseTool Requests POST tool with LLM-instructed extraction of truncated responses. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param action_request: Callable[[str], str] [Required]¶ Action request execution param args_schema: Optional[Type[BaseModel]] = None¶ Pydantic model class to validate and parse the tool’s input arguments. param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated. Please use callbacks instead. param callbacks: Callbacks = None¶ Callbacks to be called during tool execution. param description: str = 'Useful to make requests to Action Server API'¶ Tool description. param endpoint: str [Required]¶ “Action API endpoint param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶ Handle the content of the ToolException thrown. param handle_validation_error: Optional[Union[bool, str, Callable[[ValidationError], str]]] = False¶ Handle the content of the ValidationError thrown. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the tool. Defaults to None This metadata will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case. param return_direct: bool = False¶ Whether to return the tool’s output directly. Setting this to True means that after the tool is called, the AgentExecutor will stop looping. param tags: Optional[List[str]] = None¶
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-1
param tags: Optional[List[str]] = None¶ Optional list of tags associated with the tool. Defaults to None These tags will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case. param verbose: bool = False¶ Whether to log the tool’s progress. __call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶ [Deprecated] Make tool callable. Notes Deprecated since version langchain-core==0.1.47: Use invoke instead. Parameters tool_input (str) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Return type str async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-2
Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Union[str, Dict]) – config (Optional[RunnableConfig]) – kwargs (Any) – Return type Any async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ Run the tool asynchronously. Parameters tool_input (Union[str, Dict]) – verbose (Optional[bool]) – start_color (Optional[str]) – color (Optional[str]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) –
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-3
metadata (Optional[Dict[str, Any]]) – run_name (Optional[str]) – run_id (Optional[UUID]) – config (Optional[RunnableConfig]) – kwargs (Any) – Return type Any assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-4
Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-5
parent runnable is assigned its own unique ID. parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. ATTENTION This reference table is for the V2 version of the schema. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} AIMessageChunk(content=”hello world”) on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”}
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-6
some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_end [retriever name] {“query”: “hello”} [Document(…), ..] on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {},
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-7
"event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-8
of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-9
exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete.
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-10
Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-11
Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields(
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-12
model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-13
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ The tool’s input schema. Parameters
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-14
The tool’s input schema. Parameters config (Optional[RunnableConfig]) – Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ Transform a single input into an output. Override to implement. Parameters input (Union[str, Dict]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable.
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-15
config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. kwargs (Any) – Returns The output of the runnable. Return type Any classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes.
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-16
A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-17
Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any]
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-18
Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other]
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-19
name (Optional[str]) – Return type RunnableSerializable[Input, Other] run(tool_input: Union[str, Dict[str, Any]], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ Run the tool. Parameters tool_input (Union[str, Dict[str, Any]]) – verbose (Optional[bool]) – start_color (Optional[str]) – color (Optional[str]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – run_name (Optional[str]) – run_id (Optional[UUID]) – config (Optional[RunnableConfig]) – kwargs (Any) – Return type Any classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-20
dumps_kwargs (Any) – Return type unicode stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model with_alisteners(*, on_start: Optional[AsyncListener] = None, on_end: Optional[AsyncListener] = None, on_error: Optional[AsyncListener] = None) → Runnable[Input, Output]¶ Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-21
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable. on_start: Asynchronously called before the runnable starts running. on_end: Asynchronously called after the runnable finishes running. on_error: Asynchronously called if the runnable throws an error. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[AsyncListener]) – on_end (Optional[AsyncListener]) – on_error (Optional[AsyncListener]) – Return type Runnable[Input, Output] with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-22
) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-23
from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep : int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2) Parameters on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert (count == 2) Parameters
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-24
except ValueError: pass assert (count == 2) Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: Type[Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[Output]¶ The type of output this runnable produces specified as a type annotation. property args: dict¶ property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property is_single_input: bool¶ Whether the tool only accepts a single input. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[BaseModel]¶
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
ed24743d6d42-25
property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ActionServerRequestTool.html
6c333f7c273b-0
langchain_robocorp.toolkits.ToolInputSchema¶ class langchain_robocorp.toolkits.ToolInputSchema[source]¶ Bases: BaseModel Tool input schema. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param question: str [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ToolInputSchema.html
6c333f7c273b-1
self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ToolInputSchema.html
6c333f7c273b-2
Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ToolInputSchema.html
6c333f7c273b-3
ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ToolInputSchema.html
0925bab0498e-0
langchain_robocorp.toolkits.ToolArgs¶ class langchain_robocorp.toolkits.ToolArgs[source]¶ Tool arguments. name: str¶ description: str¶ callback_manager: CallbackManager¶
https://api.python.langchain.com/en/latest/toolkits/langchain_robocorp.toolkits.ToolArgs.html
b611094d3027-0
langchain_community.embeddings.tensorflow_hub.TensorflowHubEmbeddings¶ class langchain_community.embeddings.tensorflow_hub.TensorflowHubEmbeddings[source]¶ Bases: BaseModel, Embeddings TensorflowHub embedding models. To use, you should have the tensorflow_text python package installed. Example from langchain_community.embeddings import TensorflowHubEmbeddings url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" tf = TensorflowHubEmbeddings(model_url=url) Initialize the tensorflow_hub and tensorflow_text. param model_url: str = 'https://tfhub.dev/google/universal-sentence-encoder-multilingual/3'¶ Model name to use. async aembed_documents(texts: List[str]) → List[List[float]]¶ Asynchronous Embed search docs. Parameters texts (List[str]) – Return type List[List[float]] async aembed_query(text: str) → List[float]¶ Asynchronous Embed query text. Parameters text (str) – Return type List[float] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.tensorflow_hub.TensorflowHubEmbeddings.html
b611094d3027-1
Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny embed_documents(texts: List[str]) → List[List[float]][source]¶ Compute doc embeddings using a TensorflowHub embedding model. Parameters texts (List[str]) – The list of texts to embed. Returns List of embeddings, one for each text. Return type
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.tensorflow_hub.TensorflowHubEmbeddings.html
b611094d3027-2
Returns List of embeddings, one for each text. Return type List[List[float]] embed_query(text: str) → List[float][source]¶ Compute query embeddings using a TensorflowHub embedding model. Parameters text (str) – The text to embed. Returns Embeddings for the text. Return type List[float] classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.tensorflow_hub.TensorflowHubEmbeddings.html
b611094d3027-3
dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.tensorflow_hub.TensorflowHubEmbeddings.html
b611094d3027-4
Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model Examples using TensorflowHubEmbeddings¶ TensorFlow Hub
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.tensorflow_hub.TensorflowHubEmbeddings.html
08d2515375ef-0
langchain_community.embeddings.solar.embed_with_retry¶ langchain_community.embeddings.solar.embed_with_retry(embeddings: SolarEmbeddings, *args: Any, **kwargs: Any) → Any[source]¶ Use tenacity to retry the completion call. Parameters embeddings (SolarEmbeddings) – args (Any) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.solar.embed_with_retry.html
1fe08917acea-0
langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings¶ class langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings[source]¶ Bases: BaseModel, Embeddings Client to NVIDIA embeddings models. Fields: - model: str, the name of the model to use - truncate: “NONE”, “START”, “END”, truncate input text if it exceeds the model’s maximum token length. Default is “NONE”, which raises an error if an input is too long. Create a new NVIDIAEmbeddings embedder. This class provides access to a NVIDIA NIM for embedding. By default, it connects to a hosted NIM, but can be configured to connect to a local NIM using the base_url parameter. An API key is required to connect to the hosted NIM. Parameters model (str) – The model to use for embedding. nvidia_api_key (str) – The API key to use for connecting to the hosted NIM. api_key (str) – Alternative to nvidia_api_key. base_url (str) – The base URL of the NIM to connect to. trucate (str) – “NONE”, “START”, “END”, truncate input text if it exceeds the model’s context length. Default is “NONE”, which raises an error if an input is too long. API Key: - The recommended way to provide the API key is through the NVIDIA_API_KEY environment variable. param base_url: str = 'https://integrate.api.nvidia.com/v1'¶ Base url for model listing an invocation param max_batch_size: int = 50¶ param model: str = 'NV-Embed-QA'¶ Name of the model to invoke param model_type: Optional[Literal['passage', 'query']] = None¶
https://api.python.langchain.com/en/latest/embeddings/langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings.html
1fe08917acea-1
param model_type: Optional[Literal['passage', 'query']] = None¶ (DEPRECATED) The type of text to be embedded. param truncate: Literal['NONE', 'START', 'END'] = 'NONE'¶ Truncate input text if it exceeds the model’s maximum token length. Default is ‘NONE’, which raises an error if an input is too long. async aembed_documents(texts: List[str]) → List[List[float]]¶ Asynchronous Embed search docs. Parameters texts (List[str]) – Return type List[List[float]] async aembed_query(text: str) → List[float]¶ Asynchronous Embed query text. Parameters text (str) – Return type List[float] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
https://api.python.langchain.com/en/latest/embeddings/langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings.html
1fe08917acea-2
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny embed_documents(texts: List[str]) → List[List[float]][source]¶ Input pathway for document embeddings. Parameters texts (List[str]) – Return type List[List[float]] embed_query(text: str) → List[float][source]¶ Input pathway for query embeddings. Parameters text (str) – Return type List[float] classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod get_available_models(**kwargs: Any) → List[Model][source]¶
https://api.python.langchain.com/en/latest/embeddings/langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings.html
1fe08917acea-3
Model classmethod get_available_models(**kwargs: Any) → List[Model][source]¶ Get a list of available models that work with NVIDIAEmbeddings. Parameters kwargs (Any) – Return type List[Model] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) –
https://api.python.langchain.com/en/latest/embeddings/langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings.html
1fe08917acea-4
encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model property available_models: List[Model]¶ Get a list of available models that work with NVIDIAEmbeddings.
https://api.python.langchain.com/en/latest/embeddings/langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings.html
4fa9aba23fde-0
langchain_community.embeddings.laser.LaserEmbeddings¶ class langchain_community.embeddings.laser.LaserEmbeddings[source]¶ Bases: BaseModel, Embeddings LASER Language-Agnostic SEntence Representations. LASER is a Python library developed by the Meta AI Research team and used for creating multilingual sentence embeddings for over 147 languages as of 2/25/2024 See more documentation at: * https://github.com/facebookresearch/LASER/ * https://github.com/facebookresearch/LASER/tree/main/laser_encoders * https://arxiv.org/abs/2205.12654 To use this class, you must install the laser_encoders Python package. pip install laser_encoders .. rubric:: Example from laser_encoders import LaserEncoderPipeline encoder = LaserEncoderPipeline(lang=”eng_Latn”) embeddings = encoder.encode_sentences([“Hello”, “World”]) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param lang: Optional[str] = None¶ The language or language code you’d like to use If empty, this implementation will default to using a multilingual earlier LASER encoder model (called laser2) Find the list of supported languages at https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200 async aembed_documents(texts: List[str]) → List[List[float]]¶ Asynchronous Embed search docs. Parameters texts (List[str]) – Return type List[List[float]] async aembed_query(text: str) → List[float]¶ Asynchronous Embed query text. Parameters text (str) – Return type List[float]
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html
4fa9aba23fde-1
Parameters text (str) – Return type List[float] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html
4fa9aba23fde-2
self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny embed_documents(texts: List[str]) → List[List[float]][source]¶ Generate embeddings for documents using LASER. Parameters texts (List[str]) – The list of texts to embed. Returns List of embeddings, one for each text. Return type List[List[float]] embed_query(text: str) → List[float][source]¶ Generate single query text embeddings using LASER. Parameters text (str) – The text to embed. Returns Embeddings for the text. Return type List[float] classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html
4fa9aba23fde-3
Parameters obj (Any) – Return type Model json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html
4fa9aba23fde-4
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model Examples using LaserEmbeddings¶ Facebook - Meta LASER Language-Agnostic SEntence Representations Embeddings by Meta AI
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html
e87e1aa1508d-0
langchain_community.embeddings.yandex.YandexGPTEmbeddings¶ class langchain_community.embeddings.yandex.YandexGPTEmbeddings[source]¶ Bases: BaseModel, Embeddings YandexGPT Embeddings models. To use, you should have the yandexcloud python package installed. There are two authentication options for the service account with the ai.languageModels.user role: You can specify the token in a constructor parameter iam_token or in an environment variable YC_IAM_TOKEN. - You can specify the key in a constructor parameter api_key or in an environment variable YC_API_KEY. To use the default model specify the folder ID in a parameter folder_id or in an environment variable YC_FOLDER_ID. Example from langchain_community.embeddings.yandex import YandexGPTEmbeddings embeddings = YandexGPTEmbeddings(iam_token="t1.9eu...", folder_id=<folder-id>) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_key: SecretStr = ''¶ Yandex Cloud Api Key for service account with the ai.languageModels.user role Constraints type = string writeOnly = True format = password param disable_request_logging: bool = False¶ YandexGPT API logs all request data by default. If you provide personal data, confidential information, disable logging. param doc_model_name: str = 'text-search-doc'¶ Doc model name to use. param doc_model_uri: str = ''¶ Doc model uri to use. param folder_id: str = ''¶ Yandex Cloud folder ID param iam_token: SecretStr = ''¶ Yandex Cloud IAM token for service account with the ai.languageModels.user role Constraints type = string
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.yandex.YandexGPTEmbeddings.html
e87e1aa1508d-1
with the ai.languageModels.user role Constraints type = string writeOnly = True format = password param max_retries: int = 6¶ Maximum number of retries to make when generating. param model_name: str = 'text-search-query' (alias 'query_model_name')¶ Query model name to use. param model_uri: str = '' (alias 'query_model_uri')¶ Query model uri to use. param model_version: str = 'latest'¶ Model version to use. param sleep_interval: float = 0.0¶ Delay between API requests param url: str = 'llm.api.cloud.yandex.net:443'¶ The url of the API. async aembed_documents(texts: List[str]) → List[List[float]]¶ Asynchronous Embed search docs. Parameters texts (List[str]) – Return type List[List[float]] async aembed_query(text: str) → List[float]¶ Asynchronous Embed query text. Parameters text (str) – Return type List[float] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.yandex.YandexGPTEmbeddings.html
e87e1aa1508d-2
Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed documents using a YandexGPT embeddings models. Parameters texts (List[str]) – The list of texts to embed. Returns List of embeddings, one for each text. Return type
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.yandex.YandexGPTEmbeddings.html
e87e1aa1508d-3
Returns List of embeddings, one for each text. Return type List[List[float]] embed_query(text: str) → List[float][source]¶ Embed a query using a YandexGPT embeddings models. Parameters text (str) – The text to embed. Returns Embeddings for the text. Return type List[float] classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.yandex.YandexGPTEmbeddings.html
e87e1aa1508d-4
dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.yandex.YandexGPTEmbeddings.html
e87e1aa1508d-5
Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model Examples using YandexGPTEmbeddings¶ YandexGPT
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.yandex.YandexGPTEmbeddings.html
2bb449468342-0
langchain_community.embeddings.ernie.ErnieEmbeddings¶ class langchain_community.embeddings.ernie.ErnieEmbeddings[source]¶ Bases: BaseModel, Embeddings [Deprecated] Ernie Embeddings V1 embedding models. Notes Deprecated since version 0.0.13: Use langchain_community.embeddings.QianfanEmbeddingsEndpoint instead. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param access_token: Optional[str] = None¶ param chunk_size: int = 16¶ param ernie_api_base: Optional[str] = None¶ param ernie_client_id: Optional[str] = None¶ param ernie_client_secret: Optional[str] = None¶ async aembed_documents(texts: List[str]) → List[List[float]][source]¶ Asynchronous Embed search docs. Parameters texts (List[str]) – The list of texts to embed Returns List of embeddings, one for each text. Return type List[List[float]] async aembed_query(text: str) → List[float][source]¶ Asynchronous Embed query text. Parameters text (str) – The text to embed. Returns Embeddings for the text. Return type List[float] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ernie.ErnieEmbeddings.html
2bb449468342-1
values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) –
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ernie.ErnieEmbeddings.html
2bb449468342-2
exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed search docs. Parameters texts (List[str]) – The list of texts to embed Returns List of embeddings, one for each text. Return type List[List[float]] embed_query(text: str) → List[float][source]¶ Embed query text. Parameters text (str) – The text to embed. Returns Embeddings for the text. Return type List[float] classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) –
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ernie.ErnieEmbeddings.html
2bb449468342-3
exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ernie.ErnieEmbeddings.html
2bb449468342-4
Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model Examples using ErnieEmbeddings¶ ERNIE
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ernie.ErnieEmbeddings.html
afd562a44c33-0
langchain_community.embeddings.awa.AwaEmbeddings¶ class langchain_community.embeddings.awa.AwaEmbeddings[source]¶ Bases: BaseModel, Embeddings Embedding documents and queries with Awa DB. client¶ The AwaEmbedding client. model¶ The name of the model used for embedding. Default is “all-mpnet-base-v2”. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param model: str = 'all-mpnet-base-v2'¶ async aembed_documents(texts: List[str]) → List[List[float]]¶ Asynchronous Embed search docs. Parameters texts (List[str]) – Return type List[List[float]] async aembed_query(text: str) → List[float]¶ Asynchronous Embed query text. Parameters text (str) – Return type List[float] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.awa.AwaEmbeddings.html
afd562a44c33-1
Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed a list of documents using AwaEmbedding. Parameters texts (List[str]) – The list of texts need to be embedded Returns List of embeddings, one for each text.
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.awa.AwaEmbeddings.html
afd562a44c33-2
Returns List of embeddings, one for each text. Return type List[List[float]] embed_query(text: str) → List[float][source]¶ Compute query embeddings using AwaEmbedding. Parameters text (str) – The text to embed. Returns Embeddings for the text. Return type List[float] classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.awa.AwaEmbeddings.html
afd562a44c33-3
dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode set_model(model_name: str) → None[source]¶ Set the model used for embedding. The default model used is all-mpnet-base-v2 Parameters model_name (str) – A string which represents the name of model. Return type None
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.awa.AwaEmbeddings.html
afd562a44c33-4
Return type None classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model Examples using AwaEmbeddings¶ AwaDB
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.awa.AwaEmbeddings.html
edb5a5180289-0
langchain_core.embeddings.embeddings.Embeddings¶ class langchain_core.embeddings.embeddings.Embeddings[source]¶ Interface for embedding models. Methods __init__() aembed_documents(texts) Asynchronous Embed search docs. aembed_query(text) Asynchronous Embed query text. embed_documents(texts) Embed search docs. embed_query(text) Embed query text. __init__()¶ async aembed_documents(texts: List[str]) → List[List[float]][source]¶ Asynchronous Embed search docs. Parameters texts (List[str]) – Return type List[List[float]] async aembed_query(text: str) → List[float][source]¶ Asynchronous Embed query text. Parameters text (str) – Return type List[float] abstract embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed search docs. Parameters texts (List[str]) – Return type List[List[float]] abstract embed_query(text: str) → List[float][source]¶ Embed query text. Parameters text (str) – Return type List[float] Examples using Embeddings¶ Elasticsearch Infinispan
https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.embeddings.Embeddings.html
70abc908f9ed-0
langchain_community.embeddings.openvino.OpenVINOEmbeddings¶ class langchain_community.embeddings.openvino.OpenVINOEmbeddings[source]¶ Bases: BaseModel, Embeddings OpenVINO embedding models. Example from langchain_community.embeddings import OpenVINOEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'CPU'} encode_kwargs = {'normalize_embeddings': True} ov = OpenVINOEmbeddings( model_name_or_path=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) Initialize the sentence_transformer. param encode_kwargs: Dict[str, Any] [Optional]¶ Keyword arguments to pass when calling the encode method of the model. param model_kwargs: Dict[str, Any] [Optional]¶ Keyword arguments to pass to the model. param model_name_or_path: str [Required]¶ HuggingFace model id. param ov_model: Any = None¶ OpenVINO model object. param show_progress: bool = False¶ Whether to show a progress bar. param tokenizer: Any = None¶ Tokenizer for embedding model. async aembed_documents(texts: List[str]) → List[List[float]]¶ Asynchronous Embed search docs. Parameters texts (List[str]) – Return type List[List[float]] async aembed_query(text: str) → List[float]¶ Asynchronous Embed query text. Parameters text (str) – Return type List[float] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOEmbeddings.html
70abc908f9ed-1
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOEmbeddings.html
70abc908f9ed-2
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny embed_documents(texts: List[str]) → List[List[float]][source]¶ Compute doc embeddings using a HuggingFace transformer model. Parameters texts (List[str]) – The list of texts to embed. Returns List of embeddings, one for each text. Return type List[List[float]] embed_query(text: str) → List[float][source]¶ Compute query embeddings using a HuggingFace transformer model. Parameters text (str) – The text to embed. Returns Embeddings for the text. Return type List[float] encode(sentences: Any, batch_size: int = 4, show_progress_bar: bool = False, convert_to_numpy: bool = True, convert_to_tensor: bool = False, mean_pooling: bool = False, normalize_embeddings: bool = True) → Any[source]¶ Computes sentence embeddings. Parameters sentences (Any) – the sentences to embed. batch_size (int) – the batch size used for the computation. show_progress_bar (bool) – Whether to output a progress bar. convert_to_numpy (bool) – Whether the output should be a list of numpy vectors. convert_to_tensor (bool) – Whether the output should be one large tensor. mean_pooling (bool) – Whether to pool returned vectors. normalize_embeddings (bool) – Whether to normalize returned vectors. Returns By default, a 2d numpy array with shape [num_inputs, output_dimension].
https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOEmbeddings.html