id
stringlengths 14
16
| text
stringlengths 20
3.26k
| source
stringlengths 65
181
|
---|---|---|
fb69c409c28a-0 | langchain_community.embeddings.infinity.TinyAsyncOpenAIInfinityEmbeddingClient¶
class langchain_community.embeddings.infinity.TinyAsyncOpenAIInfinityEmbeddingClient(host: str = 'http://localhost:7797/v1', aiosession: Optional[ClientSession] = None)[source]¶
Helper tool to embed Infinity.
It is not a part of Langchain’s stable API,
direct use discouraged.
Example
mini_client = TinyAsyncInfinityEmbeddingClient(
)
embeds = mini_client.embed(
model="BAAI/bge-small",
text=["doc1", "doc2"]
)
# or
embeds = await mini_client.aembed(
model="BAAI/bge-small",
text=["doc1", "doc2"]
)
Methods
__init__([host, aiosession])
aembed(model, texts)
call the embedding of model, async method
embed(model, texts)
call the embedding of model
Parameters
host (str) –
aiosession (Optional[ClientSession]) –
__init__(host: str = 'http://localhost:7797/v1', aiosession: Optional[ClientSession] = None) → None[source]¶
Parameters
host (str) –
aiosession (Optional[ClientSession]) –
Return type
None
async aembed(model: str, texts: List[str]) → List[List[float]][source]¶
call the embedding of model, async method
Parameters
model (str) – to embedding model
texts (List[str]) – List of sentences to embed.
Returns
List of vectors for each sentence
Return type
List[List[float]]
embed(model: str, texts: List[str]) → List[List[float]][source]¶
call the embedding of model
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.infinity.TinyAsyncOpenAIInfinityEmbeddingClient.html |
fb69c409c28a-1 | call the embedding of model
Parameters
model (str) – to embedding model
texts (List[str]) – List of sentences to embed.
Returns
List of vectors for each sentence
Return type
List[List[float]] | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.infinity.TinyAsyncOpenAIInfinityEmbeddingClient.html |
ea968102603d-0 | langchain_community.embeddings.localai.async_embed_with_retry¶
async langchain_community.embeddings.localai.async_embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) → Any[source]¶
Use tenacity to retry the embedding call.
Parameters
embeddings (LocalAIEmbeddings) –
kwargs (Any) –
Return type
Any | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.localai.async_embed_with_retry.html |
7f04873dee77-0 | langchain_community.embeddings.jina.get_bytes_str¶
langchain_community.embeddings.jina.get_bytes_str(file_path: str) → str[source]¶
Parameters
file_path (str) –
Return type
str | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.jina.get_bytes_str.html |
8e2f15364485-0 | langchain_community.embeddings.ollama.OllamaEmbeddings¶
class langchain_community.embeddings.ollama.OllamaEmbeddings[source]¶
Bases: BaseModel, Embeddings
Ollama locally runs large language models.
To use, follow the instructions at https://ollama.ai/.
Example
from langchain_community.embeddings import OllamaEmbeddings
ollama_emb = OllamaEmbeddings(
model="llama:7b",
)
r1 = ollama_emb.embed_documents(
[
"Alpha is the first letter of Greek alphabet",
"Beta is the second letter of Greek alphabet",
]
)
r2 = ollama_emb.embed_query(
"What is the second letter of Greek alphabet"
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param base_url: str = 'http://localhost:11434'¶
Base url the model is hosted under.
param embed_instruction: str = 'passage: '¶
Instruction used to embed documents.
param headers: Optional[dict] = None¶
Additional headers to pass to endpoint (e.g. Authorization, Referer).
This is useful when Ollama is hosted on cloud services that require
tokens for authentication.
param mirostat: Optional[int] = None¶
Enable Mirostat sampling for controlling perplexity.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
param mirostat_eta: Optional[float] = None¶
Influences how quickly the algorithm responds to feedback
from the generated text. A lower learning rate will result in
slower adjustments, while a higher learning rate will make | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ollama.OllamaEmbeddings.html |
8e2f15364485-1 | slower adjustments, while a higher learning rate will make
the algorithm more responsive. (Default: 0.1)
param mirostat_tau: Optional[float] = None¶
Controls the balance between coherence and diversity
of the output. A lower value will result in more focused and
coherent text. (Default: 5.0)
param model: str = 'llama2'¶
Model name to use.
param model_kwargs: Optional[dict] = None¶
Other model keyword args
param num_ctx: Optional[int] = None¶
Sets the size of the context window used to generate the
next token. (Default: 2048)
param num_gpu: Optional[int] = None¶
The number of GPUs to use. On macOS it defaults to 1 to
enable metal support, 0 to disable.
param num_thread: Optional[int] = None¶
Sets the number of threads to use during computation.
By default, Ollama will detect this for optimal performance.
It is recommended to set this value to the number of physical
CPU cores your system has (as opposed to the logical number of cores).
param query_instruction: str = 'query: '¶
Instruction used to embed the query.
param repeat_last_n: Optional[int] = None¶
Sets how far back for the model to look back to prevent
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)
param repeat_penalty: Optional[float] = None¶
Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
will penalize repetitions more strongly, while a lower value (e.g., 0.9)
will be more lenient. (Default: 1.1)
param show_progress: bool = False¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ollama.OllamaEmbeddings.html |
8e2f15364485-2 | param show_progress: bool = False¶
Whether to show a tqdm progress bar. Must have tqdm installed.
param stop: Optional[List[str]] = None¶
Sets the stop tokens to use.
param temperature: Optional[float] = None¶
The temperature of the model. Increasing the temperature will
make the model answer more creatively. (Default: 0.8)
param tfs_z: Optional[float] = None¶
Tail free sampling is used to reduce the impact of less probable
tokens from the output. A higher value (e.g., 2.0) will reduce the
impact more, while a value of 1.0 disables this setting. (default: 1)
param top_k: Optional[int] = None¶
Reduces the probability of generating nonsense. A higher value (e.g. 100)
will give more diverse answers, while a lower value (e.g. 10)
will be more conservative. (Default: 40)
param top_p: Optional[float] = None¶
Works together with top-k. A higher value (e.g., 0.95) will lead
to more diverse text, while a lower value (e.g., 0.5) will
generate more focused and conservative text. (Default: 0.9)
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ollama.OllamaEmbeddings.html |
8e2f15364485-3 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ollama.OllamaEmbeddings.html |
8e2f15364485-4 | include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed documents using an Ollama deployed embedding model.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed a query using a Ollama deployed embedding model.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ollama.OllamaEmbeddings.html |
8e2f15364485-5 | Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ollama.OllamaEmbeddings.html |
8e2f15364485-6 | ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using OllamaEmbeddings¶
Ollama | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.ollama.OllamaEmbeddings.html |
385b5f5fc9fe-0 | langchain_core.embeddings.fake.DeterministicFakeEmbedding¶
class langchain_core.embeddings.fake.DeterministicFakeEmbedding[source]¶
Bases: Embeddings, BaseModel
Fake embedding model that always returns
the same embedding vector for the same text.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param size: int [Required]¶
The size of the embedding vector.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model | https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.fake.DeterministicFakeEmbedding.html |
385b5f5fc9fe-1 | exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.fake.DeterministicFakeEmbedding.html |
385b5f5fc9fe-2 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.fake.DeterministicFakeEmbedding.html |
385b5f5fc9fe-3 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using DeterministicFakeEmbedding¶
Elasticsearch | https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.fake.DeterministicFakeEmbedding.html |
8c6eb8d6a2af-0 | langchain_community.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings¶
class langchain_community.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings[source]¶
Bases: BaseModel, Embeddings
Embed texts using the HuggingFace API.
Requires a HuggingFace Inference API key and a model name.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_headers: Dict[str, str] = {}¶
Pass additional headers to the requests library if needed.
param api_key: SecretStr [Required]¶
Your API key for the HuggingFace Inference API.
Constraints
type = string
writeOnly = True
format = password
param api_url: Optional[str] = None¶
Custom inference endpoint url. None for using default public url.
param model_name: str = 'sentence-transformers/all-MiniLM-L6-v2'¶
The name of the model to use for text embeddings.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings.html |
8c6eb8d6a2af-1 | Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings.html |
8c6eb8d6a2af-2 | by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Get the embeddings for a list of texts.
Parameters
texts (Documents) – A list of texts to get embeddings for.
Returns
Embedded texts as List[List[float]], where each inner List[float]corresponds to a single input text.
Return type
List[List[float]]
Example
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key="your_api_key",
model_name="sentence-transformers/all-MiniLM-l6-v2"
)
texts = ["Hello, world!", "How are you?"]
hf_embeddings.embed_documents(texts)
embed_query(text: str) → List[float][source]¶
Compute query embeddings using a HuggingFace transformer model.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings.html |
8c6eb8d6a2af-3 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings.html |
8c6eb8d6a2af-4 | Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using HuggingFaceInferenceAPIEmbeddings¶
Hugging Face | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings.html |
c9a76199382f-0 | langchain_community.embeddings.llamacpp.LlamaCppEmbeddings¶
class langchain_community.embeddings.llamacpp.LlamaCppEmbeddings[source]¶
Bases: BaseModel, Embeddings
llama.cpp embedding models.
To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor.
Check out: https://github.com/abetlen/llama-cpp-python
Example
from langchain_community.embeddings import LlamaCppEmbeddings
llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param f16_kv: bool = False¶
Use half-precision for key/value cache.
param logits_all: bool = False¶
Return logits for all tokens, not just the last token.
param model_path: str [Required]¶
param n_batch: Optional[int] = 512¶
Number of tokens to process in parallel.
Should be a number between 1 and n_ctx.
param n_ctx: int = 512¶
Token context window.
param n_gpu_layers: Optional[int] = None¶
Number of layers to be loaded into gpu memory. Default None.
param n_parts: int = -1¶
Number of parts to split the model into.
If -1, the number of parts is automatically determined.
param n_threads: Optional[int] = None¶
Number of threads to use. If None, the number
of threads is automatically determined.
param seed: int = -1¶
Seed. If -1, a random seed is used.
param use_mlock: bool = False¶
Force system to keep model in RAM.
param verbose: bool = True¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.llamacpp.LlamaCppEmbeddings.html |
c9a76199382f-1 | Force system to keep model in RAM.
param verbose: bool = True¶
Print verbose output to stderr.
param vocab_only: bool = False¶
Only load the vocabulary, no weights.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.llamacpp.LlamaCppEmbeddings.html |
c9a76199382f-2 | the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of documents using the Llama model.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed a query using the Llama model.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.llamacpp.LlamaCppEmbeddings.html |
c9a76199382f-3 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.llamacpp.LlamaCppEmbeddings.html |
c9a76199382f-4 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using LlamaCppEmbeddings¶
Llama-cpp
Llama.cpp | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.llamacpp.LlamaCppEmbeddings.html |
23a0c09d2f81-0 | langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings¶
class langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings[source]¶
Bases: OpenAIEmbeddings
[Deprecated] Azure OpenAI Embeddings API.
Notes
Deprecated since version 0.0.9.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_special: Union[Literal['all'], Set[str]] = {}¶
param azure_ad_token: Union[str, None] = None¶
Your Azure Active Directory token.
Automatically inferred from env var AZURE_OPENAI_AD_TOKEN if not provided.
For more:
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
param azure_ad_token_provider: Union[Callable[[], str], None] = None¶
A function that returns an Azure Active Directory token.
Will be invoked on every request.
param azure_endpoint: Union[str, None] = None¶
Your Azure endpoint, including the resource.
Automatically inferred from env var AZURE_OPENAI_ENDPOINT if not provided.
Example: https://example-resource.azure.openai.com/
param chunk_size: int = 1000¶
Maximum number of texts to embed in each batch
param default_headers: Union[Mapping[str, str], None] = None¶
param default_query: Union[Mapping[str, object], None] = None¶
param deployment: Optional[str] = None (alias 'azure_deployment')¶
A model deployment.
If given sets the base client URL to include /deployments/{azure_deployment}.
Note: this means you won’t be able to use non-deployment endpoints.
param disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all'¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings.html |
23a0c09d2f81-1 | param embedding_ctx_length: int = 8191¶
The maximum number of tokens to embed at once.
param headers: Any = None¶
param http_client: Union[Any, None] = None¶
Optional httpx.Client.
param max_retries: int = 2¶
Maximum number of retries to make when generating.
param model: str = 'text-embedding-ada-002'¶
param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
param openai_api_base: Optional[str] = None (alias 'base_url')¶
Base URL path for API requests, leave blank if not using a proxy or service
emulator.
param openai_api_key: Union[str, None] = None (alias 'api_key')¶
Automatically inferred from env var AZURE_OPENAI_API_KEY if not provided.
param openai_api_type: Optional[str] = None¶
param openai_api_version: Optional[str] = None (alias 'api_version')¶
Automatically inferred from env var OPENAI_API_VERSION if not provided.
param openai_organization: Optional[str] = None (alias 'organization')¶
Automatically inferred from env var OPENAI_ORG_ID if not provided.
param openai_proxy: Optional[str] = None¶
param request_timeout: Optional[Union[float, Tuple[float, float], Any]] = None (alias 'timeout')¶
Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
None.
param retry_max_seconds: int = 20¶
Max number of seconds to wait between retries
param retry_min_seconds: int = 4¶
Min number of seconds to wait between retries
param show_progress_bar: bool = False¶
Whether to show a progress bar when embedding.
param skip_empty: bool = False¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings.html |
23a0c09d2f81-2 | Whether to show a progress bar when embedding.
param skip_empty: bool = False¶
Whether to skip empty strings when embedding or raise an error.
Defaults to not skipping.
param tiktoken_enabled: bool = True¶
Set this to False for non-OpenAI implementations of the embeddings API, e.g.
the –extensions openai extension for text-generation-webui
param tiktoken_model_name: Optional[str] = None¶
The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here.
param validate_base_url: bool = True¶
async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]]¶
Call out to OpenAI’s embedding endpoint async for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Call out to OpenAI’s embedding endpoint async for embedding query text.
Parameters
text (str) – The text to embed.
Returns | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings.html |
23a0c09d2f81-3 | Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings.html |
23a0c09d2f81-4 | self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]]¶
Call out to OpenAI’s embedding endpoint for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float]¶
Call out to OpenAI’s embedding endpoint for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings.html |
23a0c09d2f81-5 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings.html |
23a0c09d2f81-6 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using AzureOpenAIEmbeddings¶
Azure AI Search
Azure OpenAI
Microsoft | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings.html |
b760e402a8c7-0 | langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings¶
class langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings[source]¶
Bases: BaseModel, Embeddings
Google Generative AI Embeddings.
To use, you must have either:
The GOOGLE_API_KEY` environment variable set with your API key, or
Pass your API key using the google_api_key kwarg to the ChatGoogle
constructor.
Example
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("What's our Q1 revenue?")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param client_options: Optional[Dict] = None¶
A dictionary of client options to pass to the Google API client, such as api_endpoint.
param credentials: Any = None¶
The default custom credentials (google.auth.credentials.Credentials) to use when making API calls. If not provided, credentials will be ascertained from the GOOGLE_API_KEY envvar
param google_api_key: Optional[SecretStr] = None¶
The Google API key to use. If not provided, the GOOGLE_API_KEY environment variable will be used.
Constraints
type = string
writeOnly = True
format = password
param model: str [Required]¶
The name of the embedding model to use. Example: models/embedding-001
param request_options: Optional[Dict] = None¶
A dictionary of request options to pass to the Google API client.Example: {‘timeout’: 10}
param task_type: Optional[str] = None¶
The task type. Valid options include: task_type_unspecified, retrieval_query, retrieval_document, semantic_similarity, classification, and clustering | https://api.python.langchain.com/en/latest/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html |
b760e402a8c7-1 | param transport: Optional[str] = None¶
A string, one of: [rest, grpc, grpc_asyncio].
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model | https://api.python.langchain.com/en/latest/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html |
b760e402a8c7-2 | deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str], *, batch_size: int = 100, task_type: Optional[str] = None, titles: Optional[List[str]] = None, output_dimensionality: Optional[int] = None) → List[List[float]][source]¶
Embed a list of strings. Google Generative AI currently
sets a max batch size of 100 strings.
Parameters
texts (List[str]) – List[str] The list of strings to embed.
batch_size (int) – [int] The batch size of embeddings to send to the model
task_type (Optional[str]) – task_type (https://ai.google.dev/api/rest/v1/TaskType)
titles (Optional[List[str]]) – An optional list of titles for texts provided. | https://api.python.langchain.com/en/latest/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html |
b760e402a8c7-3 | titles (Optional[List[str]]) – An optional list of titles for texts provided.
RETRIEVAL_DOCUMENT. (Only applicable when TaskType is) –
output_dimensionality (Optional[int]) – Optional reduced dimension for the output embedding.
https – //ai.google.dev/api/rest/v1/models/batchEmbedContents#EmbedContentRequest
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str, task_type: Optional[str] = None, title: Optional[str] = None, output_dimensionality: Optional[int] = None) → List[float][source]¶
Embed a text.
Parameters
text (str) – The text to embed.
task_type (Optional[str]) – task_type (https://ai.google.dev/api/rest/v1/TaskType)
title (Optional[str]) – An optional title for the text.
RETRIEVAL_DOCUMENT. (Only applicable when TaskType is) –
output_dimensionality (Optional[int]) – Optional reduced dimension for the output embedding.
https – //ai.google.dev/api/rest/v1/models/batchEmbedContents#EmbedContentRequest
Returns
Embedding for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html |
b760e402a8c7-4 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) – | https://api.python.langchain.com/en/latest/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html |
b760e402a8c7-5 | Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using GoogleGenerativeAIEmbeddings¶
Google
Google Generative AI Embeddings | https://api.python.langchain.com/en/latest/embeddings/langchain_google_genai.embeddings.GoogleGenerativeAIEmbeddings.html |
43d4203af5c7-0 | langchain_community.embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient¶
class langchain_community.embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient(*args, **kwargs)[source]¶
Deprecated, TinyAsyncGradientEmbeddingClient was removed.
This class is just for backwards compatibility with older versions
of langchain_community.
It might be entirely removed in the future.
Methods
__init__(*args, **kwargs)
__init__(*args, **kwargs) → None[source]¶
Return type
None | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient.html |
7fd8e4bae80d-0 | langchain_openai.embeddings.base.OpenAIEmbeddings¶
class langchain_openai.embeddings.base.OpenAIEmbeddings[source]¶
Bases: BaseModel, Embeddings
OpenAI embedding models.
To use, you should have the
environment variable OPENAI_API_KEY set with your API key or pass it
as a named parameter to the constructor.
In order to use the library with Microsoft Azure endpoints, use
AzureOpenAIEmbeddings.
Example
from langchain_openai import OpenAIEmbeddings
model = OpenAIEmbeddings(model="text-embedding-3-large")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_special: Optional[Union[Literal['all'], Set[str]]] = None¶
param check_embedding_ctx_length: bool = True¶
Whether to check the token length of inputs and automatically split inputs
longer than embedding_ctx_length.
param chunk_size: int = 1000¶
Maximum number of texts to embed in each batch
param default_headers: Optional[Mapping[str, str]] = None¶
param default_query: Optional[Mapping[str, object]] = None¶
param deployment: Optional[str] = 'text-embedding-ada-002'¶
param dimensions: Optional[int] = None¶
The number of dimensions the resulting output embeddings should have.
Only supported in text-embedding-3 and later models.
param disallowed_special: Optional[Union[Literal['all'], Set[str], Sequence[str]]] = None¶
param embedding_ctx_length: int = 8191¶
The maximum number of tokens to embed at once.
param headers: Any = None¶
param http_async_client: Optional[Any] = None¶
Optional httpx.AsyncClient. Only used for async invocations. Must specify | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7fd8e4bae80d-1 | Optional httpx.AsyncClient. Only used for async invocations. Must specify
http_client as well if you’d like a custom client for sync invocations.
param http_client: Optional[Any] = None¶
Optional httpx.Client. Only used for sync invocations. Must specify
http_async_client as well if you’d like a custom client for async invocations.
param max_retries: int = 2¶
Maximum number of retries to make when generating.
param model: str = 'text-embedding-ada-002'¶
param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
param openai_api_base: Optional[str] = None (alias 'base_url')¶
Base URL path for API requests, leave blank if not using a proxy or service
emulator.
param openai_api_key: Optional[SecretStr] = None (alias 'api_key')¶
Automatically inferred from env var OPENAI_API_KEY if not provided.
Constraints
type = string
writeOnly = True
format = password
param openai_api_type: Optional[str] = None¶
param openai_api_version: Optional[str] = None (alias 'api_version')¶
Automatically inferred from env var OPENAI_API_VERSION if not provided.
param openai_organization: Optional[str] = None (alias 'organization')¶
Automatically inferred from env var OPENAI_ORG_ID if not provided.
param openai_proxy: Optional[str] = None¶
param request_timeout: Optional[Union[float, Tuple[float, float], Any]] = None (alias 'timeout')¶
Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
None.
param retry_max_seconds: int = 20¶
Max number of seconds to wait between retries | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7fd8e4bae80d-2 | param retry_max_seconds: int = 20¶
Max number of seconds to wait between retries
param retry_min_seconds: int = 4¶
Min number of seconds to wait between retries
param show_progress_bar: bool = False¶
Whether to show a progress bar when embedding.
param skip_empty: bool = False¶
Whether to skip empty strings when embedding or raise an error.
Defaults to not skipping.
param tiktoken_enabled: bool = True¶
Set this to False for non-OpenAI implementations of the embeddings API, e.g.
the –extensions openai extension for text-generation-webui
param tiktoken_model_name: Optional[str] = None¶
The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here.
async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶
Call out to OpenAI’s embedding endpoint async for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]] | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7fd8e4bae80d-3 | Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Call out to OpenAI’s embedding endpoint async for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7fd8e4bae80d-4 | self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶
Call out to OpenAI’s embedding endpoint for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Call out to OpenAI’s embedding endpoint for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7fd8e4bae80d-5 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7fd8e4bae80d-6 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using OpenAIEmbeddings¶
Activeloop Deep Lake
Activeloop Deep Memory
Alibaba Cloud OpenSearch
Amazon Document DB
AnalyticDB
Apache Cassandra
Apache Doris
Astra DB
Astra DB (Cassandra)
Azure AI Search
Azure Cosmos DB
Azure OpenAI
Build a Query Analysis System
Build a Question/Answering system over SQL data
Build a Retrieval Augmented Generation (RAG) App
Build an Agent
Caching
Cassandra | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7fd8e4bae80d-7 | Build an Agent
Caching
Cassandra
China Mobile ECloud ElasticSearch VectorSearch
Chroma
ClickHouse
Confident
Conversational RAG
Couchbase
Databricks Vector Search
Deep Lake
DingoDB
DocArray
DocArray HnswSearch
DocArray InMemorySearch
Docugami
Document Comparison
DuckDB
Elasticsearch
Epsilla
Faiss
Faiss (Async)
FlashRank reranker
Fleet AI Context
Hippo
Hologres
How deal with high cardinality categoricals when doing query analysis
How to add chat history
How to add retrieval to chatbots
How to add scores to retriever results
How to add values to a chain’s state
How to best prompt for Graph-RAG
How to better prompt when doing SQL question-answering
How to combine results from multiple retrievers
How to create and query vector stores
How to deal with large databases when doing SQL question-answering
How to do “self-querying” retrieval
How to do per-user retrieval
How to do retrieval with contextual compression
How to get a RAG application to add citations
How to get your RAG application to return sources
How to handle cases where no queries are generated
How to handle long text when doing extraction
How to handle multiple queries when doing query analysis
How to handle multiple retrievers when doing query analysis
How to inspect runnables
How to invoke runnables in parallel
How to load PDFs
How to pass through arguments from one step to the next
How to retrieve using multiple vectors per document
How to route between sub-chains
How to select examples by maximal marginal relevance (MMR)
How to select examples by similarity
How to split text based on semantic similarity
How to stream results from your RAG application
How to stream runnables | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7fd8e4bae80d-8 | How to stream results from your RAG application
How to stream runnables
How to use a time-weighted vector store retriever
How to use a vectorstore as a retriever
How to use few shot examples
How to use few shot examples in chat models
How to use the LangChain indexing API
How to use the MultiQueryRetriever
How to use the Parent Document Retriever
Hybrid Search
Jaguar Vector Database
JaguarDB Vector Database
Javelin AI Gateway
KDB.AI
Kinetica Vectorstore API
Kinetica Vectorstore based Retriever
LLMLingua Document Compressor
LOTR (Merger Retriever)
LanceDB
Lantern
Meilisearch
Milvus
Milvus Hybrid Search
Model caches
Momento Vector Index (MVI)
MongoDB Atlas
MyScale
Neo4j Vector Index
OpenAI
OpenSearch
PGVector (Postgres)
Pinecone
Pinecone Hybrid Search
Postgres Embedding
Psychic
Qdrant
RAGatouille
RankLLM Reranker
RePhraseQuery
Redis
Rockset
SAP HANA Cloud Vector Engine
SVM
SingleStoreDB
StarRocks
Supabase (Postgres)
Tencent Cloud VectorDB
Text embedding models
TiDB Vector
Tigris
Timescale Vector (Postgres)
Timescale Vector (Postgres)
Typesense
USearch
UpTrain
Upstash Vector
Vector stores and retrievers
Weaviate
Xata
Yellowbrick
YouTube audio
Zilliz
kNN
scikit-learn
viking DB | https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html |
7deb7ca003fc-0 | langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint¶
class langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint[source]¶
Bases: BaseModel, Embeddings
Baidu Qianfan Embeddings embedding models.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param chunk_size: int = 16¶
Chunk size when multiple texts are input
param client: Any = None¶
Qianfan client
param endpoint: str = ''¶
Endpoint of the Qianfan Embedding, required if custom model used.
param init_kwargs: Dict[str, Any] [Optional]¶
init kwargs for qianfan client init, such as query_per_second which is
associated with qianfan resource object to limit QPS
param model: str = 'Embedding-V1'¶
Model name
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
for now, we support Embedding-V1 and
- Embedding-V1 (默认模型)
- bge-large-en
- bge-large-zh
preset models are mapping to an endpoint.
model will be ignored if endpoint is set
param model_kwargs: Dict[str, Any] [Optional]¶
extra params for model invoke using with do.
param qianfan_ak: Optional[str] = None¶
Qianfan application apikey
param qianfan_sk: Optional[str] = None¶
Qianfan application secretkey
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]] | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint.html |
7deb7ca003fc-1 | Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint.html |
7deb7ca003fc-2 | self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embeds a list of text documents using the AutoVOT algorithm.
Parameters
texts (List[str]) – A list of text documents to embed.
Returns
A list of embeddings for each document in the input list.Each embedding is represented as a list of float values.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint.html |
7deb7ca003fc-3 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint.html |
7deb7ca003fc-4 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using QianfanEmbeddingsEndpoint¶
Baidu
Baidu Cloud ElasticSearch VectorSearch
Baidu Qianfan
ERNIE | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint.html |
56b2593f08f0-0 | langchain_core.embeddings.fake.FakeEmbeddings¶
class langchain_core.embeddings.fake.FakeEmbeddings[source]¶
Bases: Embeddings, BaseModel
Fake embedding model.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param size: int [Required]¶
The size of the embedding vector.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model | https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.fake.FakeEmbeddings.html |
56b2593f08f0-1 | exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.fake.FakeEmbeddings.html |
56b2593f08f0-2 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.fake.FakeEmbeddings.html |
56b2593f08f0-3 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using FakeEmbeddings¶
Baidu VectorDB
DocArray
Fake Embeddings
Google Memorystore for Redis
PGVecto.rs
Relyt
Tair
Tencent Cloud VectorDB
Vectara
Vectara | https://api.python.langchain.com/en/latest/embeddings/langchain_core.embeddings.fake.FakeEmbeddings.html |
3899829cbc59-0 | langchain_community.embeddings.gpt4all.GPT4AllEmbeddings¶
class langchain_community.embeddings.gpt4all.GPT4AllEmbeddings[source]¶
Bases: BaseModel, Embeddings
GPT4All embedding models.
To use, you should have the gpt4all python package installed
Example
from langchain_community.embeddings import GPT4AllEmbeddings
model_name = "all-MiniLM-L6-v2.gguf2.f16.gguf"
gpt4all_kwargs = {'allow_download': 'True'}
embeddings = GPT4AllEmbeddings(
model_name=model_name,
gpt4all_kwargs=gpt4all_kwargs
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param device: Optional[str] = 'cpu'¶
param gpt4all_kwargs: Optional[dict] = {}¶
param model_name: str [Required]¶
param n_threads: Optional[int] = None¶
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.gpt4all.GPT4AllEmbeddings.html |
3899829cbc59-1 | Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.gpt4all.GPT4AllEmbeddings.html |
3899829cbc59-2 | by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of documents using GPT4All.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed a query using GPT4All.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.gpt4all.GPT4AllEmbeddings.html |
3899829cbc59-3 | by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.gpt4all.GPT4AllEmbeddings.html |
3899829cbc59-4 | dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using GPT4AllEmbeddings¶
Build a Local RAG Application
GPT4All
ManticoreSearch VectorStore | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.gpt4all.GPT4AllEmbeddings.html |
6e633609e2a9-0 | langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings¶
class langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings[source]¶
Bases: BaseModel, Embeddings
[Deprecated] HuggingFaceHub embedding models.
To use, you should have the huggingface_hub python package installed, and the
environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Example
from langchain_community.embeddings import HuggingFaceHubEmbeddings
model = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
model=model,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
Notes
Deprecated since version 0.2.2.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param huggingfacehub_api_token: Optional[str] = None¶
param model: Optional[str] = None¶
Model name to use.
param model_kwargs: Optional[dict] = None¶
Keyword arguments to pass to the model.
param repo_id: Optional[str] = None¶
Huggingfacehub repository id, for backward compatibility.
param task: Optional[str] = 'feature-extraction'¶
Task to call the model with.
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Async Call to HuggingFaceHub’s embedding endpoint for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html |
6e633609e2a9-1 | async aembed_query(text: str) → List[float][source]¶
Async Call to HuggingFaceHub’s embedding endpoint for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html |
6e633609e2a9-2 | self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Call out to HuggingFaceHub’s embedding endpoint for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Call out to HuggingFaceHub’s embedding endpoint for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html |
6e633609e2a9-3 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html |
6e633609e2a9-4 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using HuggingFaceHubEmbeddings¶
Hugging Face | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html |
322aeac84984-0 | langchain_community.embeddings.google_palm.GooglePalmEmbeddings¶
class langchain_community.embeddings.google_palm.GooglePalmEmbeddings[source]¶
Bases: BaseModel, Embeddings
Google’s PaLM Embeddings APIs.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param client: Any = None¶
param google_api_key: Optional[str] = None¶
param model_name: str = 'models/embedding-gecko-001'¶
Model name to use.
param show_progress_bar: bool = False¶
Whether to show a tqdm progress bar. Must have tqdm installed.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.google_palm.GooglePalmEmbeddings.html |
322aeac84984-1 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed query text. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.google_palm.GooglePalmEmbeddings.html |
322aeac84984-2 | embed_query(text: str) → List[float][source]¶
Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.google_palm.GooglePalmEmbeddings.html |
322aeac84984-3 | content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.google_palm.GooglePalmEmbeddings.html |
c34bc38b388a-0 | langchain_community.embeddings.sparkllm.SparkLLMTextEmbeddings¶
class langchain_community.embeddings.sparkllm.SparkLLMTextEmbeddings[source]¶
Bases: BaseModel, Embeddings
SparkLLM Text Embedding models.
To use, you should have the environment variable “SPARK_APP_ID”,”SPARK_API_KEY”
and “SPARK_API_SECRET” set your APP_ID, API_KEY and API_SECRET or pass it
as a name parameter to the constructor.
Example
from langchain_community.embeddings import SparkLLMTextEmbeddings
embeddings = SparkLLMTextEmbeddings(
spark_app_id="your-app-id",
spark_api_key="your-api-key",
spark_api_secret="your-api-secret"
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param base_url: str = 'https://emb-cn-huabei-1.xf-yun.com/'¶
Base URL path for API requests
param domain: Literal['para', 'query'] = 'para'¶
This parameter is used for which Embedding this time belongs to.
If “para”(default), it belongs to document Embedding.
If “query”, it belongs to query Embedding.
param spark_api_key: Optional[SecretStr] = None (alias 'api_key')¶
Automatically inferred from env var SPARK_API_KEY if not provided.
Constraints
type = string
writeOnly = True
format = password
param spark_api_secret: Optional[SecretStr] = None (alias 'api_secret')¶
Automatically inferred from env var SPARK_API_SECRET if not provided.
Constraints
type = string
writeOnly = True | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.sparkllm.SparkLLMTextEmbeddings.html |
c34bc38b388a-1 | Constraints
type = string
writeOnly = True
format = password
param spark_app_id: Optional[SecretStr] = None (alias 'app_id')¶
Automatically inferred from env var SPARK_APP_ID if not provided.
Constraints
type = string
writeOnly = True
format = password
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.sparkllm.SparkLLMTextEmbeddings.html |
c34bc38b388a-2 | update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → Optional[List[List[float]]][source]¶
Public method to get embeddings for a list of documents.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
A list of embeddings, one for each text, or None if an error occurs.
Return type
Optional[List[List[float]]]
embed_query(text: str) → Optional[List[float]][source]¶
Public method to get embedding for a single query text.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text, or None if an error occurs. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.sparkllm.SparkLLMTextEmbeddings.html |
c34bc38b388a-3 | Returns
Embeddings for the text, or None if an error occurs.
Return type
Optional[List[float]]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.sparkllm.SparkLLMTextEmbeddings.html |
c34bc38b388a-4 | encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using SparkLLMTextEmbeddings¶
SparkLLM Text Embeddings | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.sparkllm.SparkLLMTextEmbeddings.html |
d61bb027ccc9-0 | langchain_community.embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings¶
class langchain_community.embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings[source]¶
Bases: Embeddings, BaseModel
MLflow AI Gateway embeddings.
To use, you should have the mlflow[gateway] python package installed.
For more information, see https://mlflow.org/docs/latest/gateway/index.html.
Example
from langchain_community.embeddings import MlflowAIGatewayEmbeddings
embeddings = MlflowAIGatewayEmbeddings(
gateway_uri="<your-mlflow-ai-gateway-uri>",
route="<your-mlflow-ai-gateway-embeddings-route>"
)
param gateway_uri: Optional[str] = None¶
The URI for the MLflow AI Gateway API.
param route: str [Required]¶
The route to use for the MLflow AI Gateway API.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings.html |
d61bb027ccc9-1 | values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings.html |
d61bb027ccc9-2 | exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings.html |
d61bb027ccc9-3 | dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings.html |
d61bb027ccc9-4 | Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using MlflowAIGatewayEmbeddings¶
MLflow AI Gateway | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings.html |
10a1d108c06e-0 | langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings¶
class langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings[source]¶
Bases: BaseModel, Embeddings
HuggingFace sentence_transformers embedding models.
To use, you should have the sentence_transformers python package installed.
Example
from langchain_huggingface import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
Initialize the sentence_transformer.
param cache_folder: Optional[str] = None¶
Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.
param encode_kwargs: Dict[str, Any] [Optional]¶
Keyword arguments to pass when calling the encode method of the Sentence
Transformer model, such as prompt_name, prompt, batch_size, precision,
normalize_embeddings, and more.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode
param model_kwargs: Dict[str, Any] [Optional]¶
Keyword arguments to pass to the Sentence Transformer model, such as device,
prompts, default_prompt_name, revision, trust_remote_code, or token.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer
param model_name: str = 'sentence-transformers/all-mpnet-base-v2'¶
Model name to use.
param multi_process: bool = False¶
Run encode() on multiple GPUs.
param show_progress: bool = False¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings.html |
10a1d108c06e-1 | Run encode() on multiple GPUs.
param show_progress: bool = False¶
Whether to show a progress bar.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model | https://api.python.langchain.com/en/latest/embeddings/langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings.html |
10a1d108c06e-2 | deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Compute doc embeddings using a HuggingFace transformer model.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Compute query embeddings using a HuggingFace transformer model.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings.html |
10a1d108c06e-3 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings.html |
10a1d108c06e-4 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using HuggingFaceEmbeddings¶
Aerospike
Annoy
Cross Encoder Reranker
Faiss
Faiss (Async)
How to reorder retrieved results to mitigate the “lost in the middle” effect
Hugging Face
Infinispan
Intel’s Visual Data Management System (VDMS)
LOTR (Merger Retriever)
Oracle AI Vector Search: Vector Store
ScaNN
SemaDB
Sentence Transformers on Hugging Face
Snowflake | https://api.python.langchain.com/en/latest/embeddings/langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings.html |
10a1d108c06e-5 | ScaNN
SemaDB
Sentence Transformers on Hugging Face
Snowflake
SurrealDB
Text embedding models
TileDB
VDMS
Vald
Vearch
self-query-qdrant | https://api.python.langchain.com/en/latest/embeddings/langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings.html |
298d870a3b56-0 | langchain_voyageai.embeddings.VoyageAIEmbeddings¶
class langchain_voyageai.embeddings.VoyageAIEmbeddings[source]¶
Bases: BaseModel, Embeddings
VoyageAIEmbeddings embedding model.
Example
from langchain_voyageai import VoyageAIEmbeddings
model = VoyageAIEmbeddings()
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param batch_size: int [Required]¶
param model: str [Required]¶
param show_progress_bar: bool = False¶
param truncation: Optional[bool] = None¶
param voyage_api_key: Optional[SecretStr] = None¶
Constraints
type = string
writeOnly = True
format = password
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_voyageai.embeddings.VoyageAIEmbeddings.html |
298d870a3b56-1 | values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) – | https://api.python.langchain.com/en/latest/embeddings/langchain_voyageai.embeddings.VoyageAIEmbeddings.html |
298d870a3b56-2 | exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode | https://api.python.langchain.com/en/latest/embeddings/langchain_voyageai.embeddings.VoyageAIEmbeddings.html |
298d870a3b56-3 | dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_voyageai.embeddings.VoyageAIEmbeddings.html |
298d870a3b56-4 | Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_voyageai.embeddings.VoyageAIEmbeddings.html |
ea273ddd90b9-0 | langchain_community.embeddings.bedrock.BedrockEmbeddings¶
class langchain_community.embeddings.bedrock.BedrockEmbeddings[source]¶
Bases: BaseModel, Embeddings
Bedrock embedding models.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Bedrock service.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param client: Any = None¶
Bedrock client.
param credentials_profile_name: Optional[str] = None¶
The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
param endpoint_url: Optional[str] = None¶
Needed if you don’t want to default to us-east-1 endpoint
param model_id: str = 'amazon.titan-embed-text-v1'¶
Id of the model to call, e.g., amazon.titan-embed-text-v1, this is
equivalent to the modelId property in the list-foundation-models api
param model_kwargs: Optional[Dict] = None¶
Keyword arguments to pass to the model.
param normalize: bool = False¶
Whether the embeddings should be normalized to unit vectors
param region_name: Optional[str] = None¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.bedrock.BedrockEmbeddings.html |
ea273ddd90b9-1 | param region_name: Optional[str] = None¶
The aws region e.g., us-west-2. Fallsback to AWS_DEFAULT_REGION env variable
or region specified in ~/.aws/config in case it is not provided here.
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Asynchronous compute doc embeddings using a Bedrock model.
Parameters
texts (List[str]) – The list of texts to embed
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Asynchronous compute query embeddings using a Bedrock model.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.bedrock.BedrockEmbeddings.html |
ea273ddd90b9-2 | exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Compute doc embeddings using a Bedrock model.
Parameters
texts (List[str]) – The list of texts to embed
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Compute query embeddings using a Bedrock model.
Parameters
text (str) – The text to embed.
Returns | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.bedrock.BedrockEmbeddings.html |
ea273ddd90b9-3 | Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.bedrock.BedrockEmbeddings.html |
ea273ddd90b9-4 | encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using BedrockEmbeddings¶
AWS
Bedrock | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.bedrock.BedrockEmbeddings.html |
2142699db0b1-0 | langchain_mistralai.embeddings.DummyTokenizer¶
class langchain_mistralai.embeddings.DummyTokenizer[source]¶
Dummy tokenizer for when tokenizer cannot be accessed (e.g., via Huggingface)
Methods
__init__()
encode_batch(texts)
__init__()¶
encode_batch(texts: List[str]) → List[List[str]][source]¶
Parameters
texts (List[str]) –
Return type
List[List[str]] | https://api.python.langchain.com/en/latest/embeddings/langchain_mistralai.embeddings.DummyTokenizer.html |
9ea4603c1806-0 | langchain_community.embeddings.cohere.CohereEmbeddings¶
class langchain_community.embeddings.cohere.CohereEmbeddings[source]¶
Bases: BaseModel, Embeddings
[Deprecated] Cohere embedding models.
To use, you should have the cohere python package installed, and the
environment variable COHERE_API_KEY set with your API key or pass it
as a named parameter to the constructor.
Example
from langchain_community.embeddings import CohereEmbeddings
cohere = CohereEmbeddings(
model="embed-english-light-v3.0",
cohere_api_key="my-api-key"
)
Notes
Deprecated since version 0.0.30.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param async_client: Any = None¶
Cohere async client.
param client: Any = None¶
Cohere client.
param cohere_api_key: Optional[str] = None¶
param max_retries: int = 3¶
Maximum number of retries to make when generating.
param model: str = 'embed-english-v2.0'¶
Model name to use.
param request_timeout: Optional[float] = None¶
Timeout in seconds for the Cohere API request.
param truncate: Optional[str] = None¶
Truncate embeddings that are too long from start or end (“NONE”|”START”|”END”)
param user_agent: str = 'langchain'¶
Identifier for the application making the request.
async aembed(texts: List[str], *, input_type: Optional[str] = None) → List[List[float]][source]¶
Parameters
texts (List[str]) –
input_type (Optional[str]) –
Return type
List[List[float]] | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.cohere.CohereEmbeddings.html |
9ea4603c1806-1 | input_type (Optional[str]) –
Return type
List[List[float]]
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Async call out to Cohere’s embedding endpoint.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Async call out to Cohere’s embedding endpoint.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
aembed_with_retry(**kwargs: Any) → Any[source]¶
Use tenacity to retry the embed call.
Parameters
kwargs (Any) –
Return type
Any
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.cohere.CohereEmbeddings.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.