id
stringlengths 14
16
| text
stringlengths 20
3.26k
| source
stringlengths 65
181
|
---|---|---|
9ea4603c1806-2 | exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed(texts: List[str], *, input_type: Optional[str] = None) → List[List[float]][source]¶
Parameters
texts (List[str]) –
input_type (Optional[str]) –
Return type
List[List[float]]
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of document texts.
Parameters
texts (List[str]) – The list of texts to embed.
Returns | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.cohere.CohereEmbeddings.html |
9ea4603c1806-3 | Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Call out to Cohere’s embedding endpoint.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
embed_with_retry(**kwargs: Any) → Any[source]¶
Use tenacity to retry the embed call.
Parameters
kwargs (Any) –
Return type
Any
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.cohere.CohereEmbeddings.html |
9ea4603c1806-4 | encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.cohere.CohereEmbeddings.html |
9ea4603c1806-5 | Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using CohereEmbeddings¶
Cohere reranker | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.cohere.CohereEmbeddings.html |
e2bc84fcfaca-0 | langchain_google_vertexai.embeddings.GoogleEmbeddingModelVersion¶
class langchain_google_vertexai.embeddings.GoogleEmbeddingModelVersion(value)[source]¶
An enumeration.
EMBEDDINGS_JUNE_2023 = '1'¶
EMBEDDINGS_NOV_2023 = '2'¶
EMBEDDINGS_DEC_2023 = '3'¶
EMBEDDINGS_MAY_2024 = '4'¶
task_type_supported¶
Checks if the model generation supports task type.
output_dimensionality_supported¶
Checks if the model generation supports output dimensionality. | https://api.python.langchain.com/en/latest/embeddings/langchain_google_vertexai.embeddings.GoogleEmbeddingModelVersion.html |
5e499bfd8572-0 | langchain_elasticsearch.embeddings.ElasticsearchEmbeddings¶
class langchain_elasticsearch.embeddings.ElasticsearchEmbeddings(client: MlClient, model_id: str, *, input_field: str = 'text_field')[source]¶
Elasticsearch embedding models.
This class provides an interface to generate embeddings using a model deployed
in an Elasticsearch cluster. It requires an Elasticsearch connection object
and the model_id of the model deployed in the cluster.
In Elasticsearch you need to have an embedding model loaded and deployed.
- https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html
- https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html
Initialize the ElasticsearchEmbeddings instance.
Parameters
client (MlClient) – An Elasticsearch ML client object.
model_id (str) – The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str) – The name of the key for the input text field in the
document. Defaults to ‘text_field’.
Methods
__init__(client, model_id, *[, input_field])
Initialize the ElasticsearchEmbeddings instance.
aembed_documents(texts)
Asynchronous Embed search docs.
aembed_query(text)
Asynchronous Embed query text.
embed_documents(texts)
Generate embeddings for a list of documents.
embed_query(text)
Generate an embedding for a single query text.
from_credentials(model_id, *[, es_cloud_id, ...])
Instantiate embeddings from Elasticsearch credentials.
from_es_connection(model_id, es_connection)
Instantiate embeddings from an existing Elasticsearch connection.
__init__(client: MlClient, model_id: str, *, input_field: str = 'text_field')[source]¶
Initialize the ElasticsearchEmbeddings instance.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_elasticsearch.embeddings.ElasticsearchEmbeddings.html |
5e499bfd8572-1 | Initialize the ElasticsearchEmbeddings instance.
Parameters
client (MlClient) – An Elasticsearch ML client object.
model_id (str) – The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str) – The name of the key for the input text field in the
document. Defaults to ‘text_field’.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
embed_documents(texts: List[str]) → List[List[float]][source]¶
Generate embeddings for a list of documents.
Parameters
texts (List[str]) – A list of document text strings to generate embeddings
for.
Returns
A list of embeddings, one for each document in the inputlist.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Generate an embedding for a single query text.
Parameters
text (str) – The query text to generate an embedding for.
Returns
The embedding for the input query text.
Return type
List[float]
classmethod from_credentials(model_id: str, *, es_cloud_id: Optional[str] = None, es_api_key: Optional[str] = None, input_field: str = 'text_field') → ElasticsearchEmbeddings[source]¶
Instantiate embeddings from Elasticsearch credentials.
Parameters
model_id (str) – The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str) – The name of the key for the input text field in the
document. Defaults to ‘text_field’. | https://api.python.langchain.com/en/latest/embeddings/langchain_elasticsearch.embeddings.ElasticsearchEmbeddings.html |
5e499bfd8572-2 | document. Defaults to ‘text_field’.
es_cloud_id (Optional[str]) – (str, optional): The Elasticsearch cloud ID to connect to.
es_user – (str, optional): Elasticsearch username.
es_password – (str, optional): Elasticsearch password.
es_api_key (Optional[str]) –
Return type
ElasticsearchEmbeddings
Example
from langchain_elasticserach.embeddings import ElasticsearchEmbeddings
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
# Credentials can be passed in two ways. Either set the env vars
# ES_CLOUD_ID, ES_USER, ES_PASSWORD and they will be automatically
# pulled in, or pass them in directly as kwargs.
embeddings = ElasticsearchEmbeddings.from_credentials(
model_id,
input_field=input_field,
# es_cloud_id="foo",
# es_user="bar",
# es_password="baz",
)
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
embeddings_generator.embed_documents(documents)
classmethod from_es_connection(model_id: str, es_connection: Elasticsearch, input_field: str = 'text_field') → ElasticsearchEmbeddings[source]¶
Instantiate embeddings from an existing Elasticsearch connection.
This method provides a way to create an instance of the ElasticsearchEmbeddings
class using an existing Elasticsearch connection. The connection object is used
to create an MlClient, which is then used to initialize the
ElasticsearchEmbeddings instance.
Args:
model_id (str): The model_id of the model deployed in the Elasticsearch cluster.
es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch | https://api.python.langchain.com/en/latest/embeddings/langchain_elasticsearch.embeddings.ElasticsearchEmbeddings.html |
5e499bfd8572-3 | es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch
connection object. input_field (str, optional): The name of the key for the
input text field in the document. Defaults to ‘text_field’.
Returns:
ElasticsearchEmbeddings: An instance of the ElasticsearchEmbeddings class.
Example
from elasticsearch import Elasticsearch
from langchain_elasticsearch.embeddings import ElasticsearchEmbeddings
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
# Create Elasticsearch connection
es_connection = Elasticsearch(
hosts=["localhost:9200"], http_auth=("user", "password")
)
# Instantiate ElasticsearchEmbeddings using the existing connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
input_field=input_field,
)
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
embeddings_generator.embed_documents(documents)
Parameters
model_id (str) –
es_connection (Elasticsearch) –
input_field (str) –
Return type
ElasticsearchEmbeddings | https://api.python.langchain.com/en/latest/embeddings/langchain_elasticsearch.embeddings.ElasticsearchEmbeddings.html |
d845c8c8580d-0 | langchain_community.embeddings.fastembed.FastEmbedEmbeddings¶
class langchain_community.embeddings.fastembed.FastEmbedEmbeddings[source]¶
Bases: BaseModel, Embeddings
Qdrant FastEmbedding models.
FastEmbed is a lightweight, fast, Python library built for embedding generation.
See more documentation at:
* https://github.com/qdrant/fastembed/
* https://qdrant.github.io/fastembed/
To use this class, you must install the fastembed Python package.
pip install fastembed
.. rubric:: Example
from langchain_community.embeddings import FastEmbedEmbeddings
fastembed = FastEmbedEmbeddings()
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param cache_dir: Optional[str] = None¶
The path to the cache directory.
Defaults to local_cache in the parent directory
param doc_embed_type: Literal['default', 'passage'] = 'default'¶
Type of embedding to use for documents
The available options are: “default” and “passage”
param max_length: int = 512¶
The maximum number of tokens. Defaults to 512.
Unknown behavior for values > 512.
param model_name: str = 'BAAI/bge-small-en-v1.5'¶
Name of the FastEmbedding model to use
Defaults to “BAAI/bge-small-en-v1.5”
Find the list of supported models at
https://qdrant.github.io/fastembed/examples/Supported_Models/
param threads: Optional[int] = None¶
The number of threads single onnxruntime session can use.
Defaults to None
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.fastembed.FastEmbedEmbeddings.html |
d845c8c8580d-1 | Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.fastembed.FastEmbedEmbeddings.html |
d845c8c8580d-2 | self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Generate embeddings for documents using FastEmbed.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Generate query embeddings using FastEmbed.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.fastembed.FastEmbedEmbeddings.html |
d845c8c8580d-3 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.fastembed.FastEmbedEmbeddings.html |
d845c8c8580d-4 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using FastEmbedEmbeddings¶
FastEmbed by Qdrant | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.fastembed.FastEmbedEmbeddings.html |
eae9c5aa5411-0 | langchain_community.embeddings.infinity.InfinityEmbeddings¶
class langchain_community.embeddings.infinity.InfinityEmbeddings[source]¶
Bases: BaseModel, Embeddings
Self-hosted embedding models for infinity package.
See https://github.com/michaelfeil/infinity
This also works for text-embeddings-inference and other
self-hosted openai-compatible servers.
Infinity is a package to interact with Embedding Models on https://github.com/michaelfeil/infinity
Example
from langchain_community.embeddings import InfinityEmbeddings
InfinityEmbeddings(
model="BAAI/bge-small",
infinity_api_url="http://localhost:7997",
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param client: Any = None¶
Infinity client.
param infinity_api_url: str = 'http://localhost:7997'¶
Endpoint URL to use.
param model: str [Required]¶
Underlying Infinity model id.
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Async call out to Infinity’s embedding endpoint.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Async call out to Infinity’s embedding endpoint.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.infinity.InfinityEmbeddings.html |
eae9c5aa5411-1 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.infinity.InfinityEmbeddings.html |
eae9c5aa5411-2 | include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Call out to Infinity’s embedding endpoint.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Call out to Infinity’s embedding endpoint.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.infinity.InfinityEmbeddings.html |
eae9c5aa5411-3 | include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.infinity.InfinityEmbeddings.html |
eae9c5aa5411-4 | ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using InfinityEmbeddings¶
Infinity | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.infinity.InfinityEmbeddings.html |
a6c86d156db4-0 | langchain_community.embeddings.clarifai.ClarifaiEmbeddings¶
class langchain_community.embeddings.clarifai.ClarifaiEmbeddings[source]¶
Bases: BaseModel, Embeddings
Clarifai embedding models.
To use, you should have the clarifai python package installed, and the
environment variable CLARIFAI_PAT set with your personal access token or pass it
as a named parameter to the constructor.
Example
from langchain_community.embeddings import ClarifaiEmbeddings
clarifai = ClarifaiEmbeddings(user_id=USER_ID,
app_id=APP_ID,
model_id=MODEL_ID)
(or)
Example_URL = "https://clarifai.com/clarifai/main/models/BAAI-bge-base-en-v15"
clarifai = ClarifaiEmbeddings(model_url=EXAMPLE_URL)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_base: str = 'https://api.clarifai.com'¶
param app_id: Optional[str] = None¶
Clarifai application id to use.
param model_id: Optional[str] = None¶
Model id to use.
param model_url: Optional[str] = None¶
Model url to use.
param model_version_id: Optional[str] = None¶
Model version id to use.
param pat: Optional[str] = None¶
Clarifai personal access token to use.
param token: Optional[str] = None¶
Clarifai session token to use.
param user_id: Optional[str] = None¶
Clarifai user id to use.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.clarifai.ClarifaiEmbeddings.html |
a6c86d156db4-1 | Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.clarifai.ClarifaiEmbeddings.html |
a6c86d156db4-2 | self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Call out to Clarifai’s embedding models.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Call out to Clarifai’s embedding models.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.clarifai.ClarifaiEmbeddings.html |
a6c86d156db4-3 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.clarifai.ClarifaiEmbeddings.html |
a6c86d156db4-4 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using ClarifaiEmbeddings¶
Clarifai | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.clarifai.ClarifaiEmbeddings.html |
2be0cdced785-0 | langchain_community.embeddings.localai.LocalAIEmbeddings¶
class langchain_community.embeddings.localai.LocalAIEmbeddings[source]¶
Bases: BaseModel, Embeddings
LocalAI embedding models.
Since LocalAI and OpenAI have 1:1 compatibility between APIs, this class
uses the openai Python package’s openai.Embedding as its client.
Thus, you should have the openai python package installed, and defeat
the environment variable OPENAI_API_KEY by setting to a random string.
You also need to specify OPENAI_API_BASE to point to your LocalAI
service endpoint.
Example
from langchain_community.embeddings import LocalAIEmbeddings
openai = LocalAIEmbeddings(
openai_api_key="random-string",
openai_api_base="http://localhost:8080"
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_special: Union[Literal['all'], Set[str]] = {}¶
param chunk_size: int = 1000¶
Maximum number of texts to embed in each batch
param deployment: str = 'text-embedding-ada-002'¶
param disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all'¶
param embedding_ctx_length: int = 8191¶
The maximum number of tokens to embed at once.
param headers: Any = None¶
param max_retries: int = 6¶
Maximum number of retries to make when generating.
param model: str = 'text-embedding-ada-002'¶
param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
param openai_api_base: Optional[str] = None¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.localai.LocalAIEmbeddings.html |
2be0cdced785-1 | param openai_api_base: Optional[str] = None¶
param openai_api_key: Optional[str] = None¶
param openai_api_version: Optional[str] = None¶
param openai_organization: Optional[str] = None¶
param openai_proxy: Optional[str] = None¶
param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶
Timeout in seconds for the LocalAI request.
param show_progress_bar: bool = False¶
Whether to show a progress bar when embedding.
async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶
Call out to LocalAI’s embedding endpoint async for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Call out to LocalAI’s embedding endpoint async for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.localai.LocalAIEmbeddings.html |
2be0cdced785-2 | values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.localai.LocalAIEmbeddings.html |
2be0cdced785-3 | exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶
Call out to LocalAI’s embedding endpoint for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Call out to LocalAI’s embedding endpoint for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.localai.LocalAIEmbeddings.html |
2be0cdced785-4 | include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.localai.LocalAIEmbeddings.html |
2be0cdced785-5 | ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using LocalAIEmbeddings¶
LocalAI | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.localai.LocalAIEmbeddings.html |
79b4f6bf2f05-0 | langchain_community.embeddings.openai.OpenAIEmbeddings¶
class langchain_community.embeddings.openai.OpenAIEmbeddings[source]¶
Bases: BaseModel, Embeddings
[Deprecated] OpenAI embedding models.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key or pass it
as a named parameter to the constructor.
Example
from langchain_community.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
The OPENAI_API_TYPE must be set to ‘azure’ and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
from langchain_community.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
deployment="your-embeddings-deployment-name",
model="your-embeddings-model-name",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_type="azure",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
Notes
Deprecated since version 0.0.9. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-1 | Notes
Deprecated since version 0.0.9.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_special: Union[Literal['all'], Set[str]] = {}¶
param chunk_size: int = 1000¶
Maximum number of texts to embed in each batch
param default_headers: Optional[Mapping[str, str]] = None¶
param default_query: Optional[Mapping[str, object]] = None¶
param deployment: Optional[str] = 'text-embedding-ada-002'¶
param disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all'¶
param embedding_ctx_length: int = 8191¶
The maximum number of tokens to embed at once.
param headers: Any = None¶
param http_client: Optional[Any] = None¶
Optional httpx.Client.
param max_retries: int = 2¶
Maximum number of retries to make when generating.
param model: str = 'text-embedding-ada-002'¶
param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
param openai_api_base: Optional[str] = None (alias 'base_url')¶
Base URL path for API requests, leave blank if not using a proxy or service
emulator.
param openai_api_key: Optional[str] = None (alias 'api_key')¶
Automatically inferred from env var OPENAI_API_KEY if not provided.
param openai_api_type: Optional[str] = None¶
param openai_api_version: Optional[str] = None (alias 'api_version')¶
Automatically inferred from env var OPENAI_API_VERSION if not provided. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-2 | Automatically inferred from env var OPENAI_API_VERSION if not provided.
param openai_organization: Optional[str] = None (alias 'organization')¶
Automatically inferred from env var OPENAI_ORG_ID if not provided.
param openai_proxy: Optional[str] = None¶
param request_timeout: Optional[Union[float, Tuple[float, float], Any]] = None (alias 'timeout')¶
Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
None.
param retry_max_seconds: int = 20¶
Max number of seconds to wait between retries
param retry_min_seconds: int = 4¶
Min number of seconds to wait between retries
param show_progress_bar: bool = False¶
Whether to show a progress bar when embedding.
param skip_empty: bool = False¶
Whether to skip empty strings when embedding or raise an error.
Defaults to not skipping.
param tiktoken_enabled: bool = True¶
Set this to False for non-OpenAI implementations of the embeddings API, e.g.
the –extensions openai extension for text-generation-webui
param tiktoken_model_name: Optional[str] = None¶
The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-3 | when tiktoken is called, you can specify a model name to use here.
async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶
Call out to OpenAI’s embedding endpoint async for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Call out to OpenAI’s embedding endpoint async for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-4 | exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶
Call out to OpenAI’s embedding endpoint for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-5 | Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Call out to OpenAI’s embedding endpoint for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-6 | dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-7 | Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using OpenAIEmbeddings¶
Activeloop Deep Lake
Activeloop Deep Memory
Alibaba Cloud OpenSearch
Amazon Document DB
AnalyticDB
Apache Cassandra
Apache Doris
Astra DB
Astra DB (Cassandra)
Azure AI Search
Azure Cosmos DB
Azure OpenAI
Build a Query Analysis System
Build a Question/Answering system over SQL data
Build a Retrieval Augmented Generation (RAG) App
Build an Agent
Caching
Cassandra
China Mobile ECloud ElasticSearch VectorSearch
Chroma
ClickHouse
Confident
Conversational RAG
Couchbase
Databricks Vector Search
Deep Lake
DingoDB
DocArray
DocArray HnswSearch
DocArray InMemorySearch
Docugami
Document Comparison
DuckDB
Elasticsearch
Epsilla
Faiss
Faiss (Async)
FlashRank reranker
Fleet AI Context
Hippo
Hologres
How deal with high cardinality categoricals when doing query analysis
How to add chat history
How to add retrieval to chatbots
How to add scores to retriever results
How to add values to a chain’s state
How to best prompt for Graph-RAG
How to better prompt when doing SQL question-answering
How to combine results from multiple retrievers
How to create and query vector stores
How to deal with large databases when doing SQL question-answering
How to do “self-querying” retrieval
How to do per-user retrieval
How to do retrieval with contextual compression
How to get a RAG application to add citations
How to get your RAG application to return sources
How to handle cases where no queries are generated | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-8 | How to handle cases where no queries are generated
How to handle long text when doing extraction
How to handle multiple queries when doing query analysis
How to handle multiple retrievers when doing query analysis
How to inspect runnables
How to invoke runnables in parallel
How to load PDFs
How to pass through arguments from one step to the next
How to retrieve using multiple vectors per document
How to route between sub-chains
How to select examples by maximal marginal relevance (MMR)
How to select examples by similarity
How to split text based on semantic similarity
How to stream results from your RAG application
How to stream runnables
How to use a time-weighted vector store retriever
How to use a vectorstore as a retriever
How to use few shot examples
How to use few shot examples in chat models
How to use the LangChain indexing API
How to use the MultiQueryRetriever
How to use the Parent Document Retriever
Hybrid Search
Jaguar Vector Database
JaguarDB Vector Database
Javelin AI Gateway
KDB.AI
Kinetica Vectorstore API
Kinetica Vectorstore based Retriever
LLMLingua Document Compressor
LOTR (Merger Retriever)
LanceDB
Lantern
Meilisearch
Milvus
Milvus Hybrid Search
Model caches
Momento Vector Index (MVI)
MongoDB Atlas
MyScale
Neo4j Vector Index
OpenAI
OpenSearch
PGVector (Postgres)
Pinecone
Pinecone Hybrid Search
Postgres Embedding
Psychic
Qdrant
RAGatouille
RankLLM Reranker
RePhraseQuery
Redis
Rockset
SAP HANA Cloud Vector Engine
SVM
SingleStoreDB
StarRocks
Supabase (Postgres) | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
79b4f6bf2f05-9 | SVM
SingleStoreDB
StarRocks
Supabase (Postgres)
Tencent Cloud VectorDB
Text embedding models
TiDB Vector
Tigris
Timescale Vector (Postgres)
Timescale Vector (Postgres)
Typesense
USearch
UpTrain
Upstash Vector
Vector stores and retrievers
Weaviate
Xata
Yellowbrick
YouTube audio
Zilliz
kNN
scikit-learn
viking DB | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html |
5d2d68acb474-0 | langchain_community.embeddings.deepinfra.DeepInfraEmbeddings¶
class langchain_community.embeddings.deepinfra.DeepInfraEmbeddings[source]¶
Bases: BaseModel, Embeddings
Deep Infra’s embedding inference service.
To use, you should have the
environment variable DEEPINFRA_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
There are multiple embeddings models available,
see https://deepinfra.com/models?type=embeddings.
Example
from langchain_community.embeddings import DeepInfraEmbeddings
deepinfra_emb = DeepInfraEmbeddings(
model_id="sentence-transformers/clip-ViT-B-32",
deepinfra_api_token="my-api-key"
)
r1 = deepinfra_emb.embed_documents(
[
"Alpha is the first letter of Greek alphabet",
"Beta is the second letter of Greek alphabet",
]
)
r2 = deepinfra_emb.embed_query(
"What is the second letter of Greek alphabet"
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param batch_size: int = 1024¶
Batch size for embedding requests.
param deepinfra_api_token: Optional[str] = None¶
API token for Deep Infra. If not provided, the token is
fetched from the environment variable ‘DEEPINFRA_API_TOKEN’.
param embed_instruction: str = 'passage: '¶
Instruction used to embed documents.
param model_id: str = 'sentence-transformers/clip-ViT-B-32'¶
Embeddings model to use.
param model_kwargs: Optional[dict] = None¶
Other model keyword args
param normalize: bool = False¶
whether to normalize the computed embeddings | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.deepinfra.DeepInfraEmbeddings.html |
5d2d68acb474-1 | Other model keyword args
param normalize: bool = False¶
whether to normalize the computed embeddings
param query_instruction: str = 'query: '¶
Instruction used to embed the query.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.deepinfra.DeepInfraEmbeddings.html |
5d2d68acb474-2 | the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed documents using a Deep Infra deployed embedding model.
For larger batches, the input list of texts is chunked into smaller
batches to avoid exceeding the maximum request size.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed a query using a Deep Infra deployed embedding model.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.deepinfra.DeepInfraEmbeddings.html |
5d2d68acb474-3 | List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.deepinfra.DeepInfraEmbeddings.html |
5d2d68acb474-4 | Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using DeepInfraEmbeddings¶
DeepInfra | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.deepinfra.DeepInfraEmbeddings.html |
93ab5a9f31c9-0 | langchain_community.embeddings.localai.embed_with_retry¶
langchain_community.embeddings.localai.embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) → Any[source]¶
Use tenacity to retry the embedding call.
Parameters
embeddings (LocalAIEmbeddings) –
kwargs (Any) –
Return type
Any | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.localai.embed_with_retry.html |
a13e92e400e6-0 | langchain_community.embeddings.huggingface.HuggingFaceEmbeddings¶
class langchain_community.embeddings.huggingface.HuggingFaceEmbeddings[source]¶
Bases: BaseModel, Embeddings
[Deprecated] HuggingFace sentence_transformers embedding models.
To use, you should have the sentence_transformers python package installed.
Example
from langchain_community.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
Notes
Deprecated since version 0.2.2.
Initialize the sentence_transformer.
param cache_folder: Optional[str] = None¶
Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.
param encode_kwargs: Dict[str, Any] [Optional]¶
Keyword arguments to pass when calling the encode method of the Sentence
Transformer model, such as prompt_name, prompt, batch_size, precision,
normalize_embeddings, and more.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode
param model_kwargs: Dict[str, Any] [Optional]¶
Keyword arguments to pass to the Sentence Transformer model, such as device,
prompts, default_prompt_name, revision, trust_remote_code, or token.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer
param model_name: str = 'sentence-transformers/all-mpnet-base-v2'¶
Model name to use.
param multi_process: bool = False¶
Run encode() on multiple GPUs. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceEmbeddings.html |
a13e92e400e6-1 | param multi_process: bool = False¶
Run encode() on multiple GPUs.
param show_progress: bool = False¶
Whether to show a progress bar.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceEmbeddings.html |
a13e92e400e6-2 | the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Compute doc embeddings using a HuggingFace transformer model.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Compute query embeddings using a HuggingFace transformer model.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceEmbeddings.html |
a13e92e400e6-3 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceEmbeddings.html |
a13e92e400e6-4 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using HuggingFaceEmbeddings¶
Aerospike
Annoy
Cross Encoder Reranker
Faiss
Faiss (Async)
How to reorder retrieved results to mitigate the “lost in the middle” effect
Hugging Face
Infinispan
Intel’s Visual Data Management System (VDMS)
LOTR (Merger Retriever)
Oracle AI Vector Search: Vector Store
ScaNN
SemaDB
Sentence Transformers on Hugging Face
Snowflake | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceEmbeddings.html |
a13e92e400e6-5 | ScaNN
SemaDB
Sentence Transformers on Hugging Face
Snowflake
SurrealDB
Text embedding models
TileDB
VDMS
Vald
Vearch
self-query-qdrant | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.huggingface.HuggingFaceEmbeddings.html |
1f926823b70d-0 | langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings¶
class langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings[source]¶
Bases: BaseModel, Embeddings
Embeddings by spaCy models.
model_name¶
Name of a spaCy model.
Type
str
nlp¶
The spaCy model loaded into memory.
Type
Any
embed_documents(texts
List[str]) -> List[List[float]]:
Generates embeddings for a list of documents.
embed_query(text
str) -> List[float]:
Generates an embedding for a single piece of text.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param model_name: str = 'en_core_web_sm'¶
param nlp: Optional[Any] = None¶
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Asynchronously generates embeddings for a list of documents.
This method is not implemented and raises a NotImplementedError.
Parameters
texts (List[str]) – The documents to generate embeddings for.
Raises
NotImplementedError – This method is not implemented.
Return type
List[List[float]]
async aembed_query(text: str) → List[float][source]¶
Asynchronously generates an embedding for a single piece of text.
This method is not implemented and raises a NotImplementedError.
Parameters
text (str) – The text to generate an embedding for.
Raises
NotImplementedError – This method is not implemented.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings.html |
1f926823b70d-1 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings.html |
1f926823b70d-2 | include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Generates embeddings for a list of documents.
Parameters
texts (List[str]) – The documents to generate embeddings for.
Returns
A list of embeddings, one for each document.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Generates an embedding for a single piece of text.
Parameters
text (str) – The text to generate an embedding for.
Returns
The embedding for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings.html |
1f926823b70d-3 | Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings.html |
1f926823b70d-4 | ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using SpacyEmbeddings¶
SpaCy
spaCy | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings.html |
f90032a4c2fc-0 | langchain_community.embeddings.xinference.XinferenceEmbeddings¶
class langchain_community.embeddings.xinference.XinferenceEmbeddings(server_url: Optional[str] = None, model_uid: Optional[str] = None)[source]¶
Xinference embedding models.
To use, you should have the xinference library installed:
pip install xinference
If you’re simply using the services provided by Xinference, you can utilize the xinference_client package:
pip install xinference_client
Check out: https://github.com/xorbitsai/inference
To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers.
Example
To start a local instance of Xinference, run
$ xinference
You can also deploy Xinference in a distributed cluster. Here are the steps:
Starting the supervisor:
$ xinference-supervisor
If you’re simply using the services provided by Xinference, you can utilize the xinference_client package:
pip install xinference_client
Starting the worker:
$ xinference-worker
Then, launch a model using command line interface (CLI).
Example:
$ xinference launch -n orca -s 3 -q q4_0
It will return a model UID. Then you can use Xinference Embedding with LangChain.
Example:
from langchain_community.embeddings import XinferenceEmbeddings
xinference = XinferenceEmbeddings(
server_url="http://0.0.0.0:9997",
model_uid = {model_uid} # replace model_uid with the model UID return from launching the model
)
Attributes
client
server_url
URL of the xinference server
model_uid
UID of the launched model
Methods
__init__([server_url, model_uid])
aembed_documents(texts) | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.xinference.XinferenceEmbeddings.html |
f90032a4c2fc-1 | __init__([server_url, model_uid])
aembed_documents(texts)
Asynchronous Embed search docs.
aembed_query(text)
Asynchronous Embed query text.
embed_documents(texts)
Embed a list of documents using Xinference.
embed_query(text)
Embed a query of documents using Xinference.
Parameters
server_url (Optional[str]) –
model_uid (Optional[str]) –
__init__(server_url: Optional[str] = None, model_uid: Optional[str] = None)[source]¶
Parameters
server_url (Optional[str]) –
model_uid (Optional[str]) –
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed a list of documents using Xinference.
:param texts: The list of texts to embed.
Returns
List of embeddings, one for each text.
Parameters
texts (List[str]) –
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Embed a query of documents using Xinference.
:param text: The text to embed.
Returns
Embeddings for the text.
Parameters
text (str) –
Return type
List[float]
Examples using XinferenceEmbeddings¶
Xorbits inference (Xinference) | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.xinference.XinferenceEmbeddings.html |
54ef44936e1f-0 | langchain_community.embeddings.embaas.EmbaasEmbeddings¶
class langchain_community.embeddings.embaas.EmbaasEmbeddings[source]¶
Bases: BaseModel, Embeddings
Embaas’s embedding service.
To use, you should have the
environment variable EMBAAS_API_KEY set with your API key, or pass
it as a named parameter to the constructor.
Example
# initialize with default model and instruction
from langchain_community.embeddings import EmbaasEmbeddings
emb = EmbaasEmbeddings()
# initialize with custom model and instruction
from langchain_community.embeddings import EmbaasEmbeddings
emb_model = "instructor-large"
emb_inst = "Represent the Wikipedia document for retrieval"
emb = EmbaasEmbeddings(
model=emb_model,
instruction=emb_inst
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_url: str = 'https://api.embaas.io/v1/embeddings/'¶
The URL for the embaas embeddings API.
param embaas_api_key: Optional[SecretStr] = None¶
max number of retries for requests
Constraints
type = string
writeOnly = True
format = password
param instruction: Optional[str] = None¶
Instruction used for domain-specific embeddings.
param max_retries: Optional[int] = 3¶
request timeout in seconds
param model: str = 'e5-large-v2'¶
The model used for embeddings.
param timeout: Optional[int] = 30¶
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]] | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.embaas.EmbaasEmbeddings.html |
54ef44936e1f-1 | Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.embaas.EmbaasEmbeddings.html |
54ef44936e1f-2 | self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Get embeddings for a list of texts.
Parameters
texts (List[str]) – The list of texts to get embeddings for.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Get embeddings for a single text.
Parameters
text (str) – The text to get embeddings for.
Returns
List of embeddings.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.embaas.EmbaasEmbeddings.html |
54ef44936e1f-3 | Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.embaas.EmbaasEmbeddings.html |
54ef44936e1f-4 | Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using EmbaasEmbeddings¶
Embaas | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.embaas.EmbaasEmbeddings.html |
5e511fd55948-0 | langchain_community.embeddings.sparkllm.AssembleHeaderException¶
class langchain_community.embeddings.sparkllm.AssembleHeaderException(msg: str)[source]¶
Exception raised for errors in the header assembly.
Parameters
msg (str) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.sparkllm.AssembleHeaderException.html |
e8dfeba92474-0 | langchain_community.embeddings.oracleai.OracleEmbeddings¶
class langchain_community.embeddings.oracleai.OracleEmbeddings[source]¶
Bases: BaseModel, Embeddings
Get Embeddings
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param conn: Any = None¶
Embedding Parameters
param params: Dict[str, Any] [Required]¶
Proxy
param proxy: Optional[str] = None¶
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.oracleai.OracleEmbeddings.html |
e8dfeba92474-1 | exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Compute doc embeddings using an OracleEmbeddings.
:param texts: The list of texts to embed.
Returns
List of embeddings, one for each input text.
Parameters
texts (List[str]) –
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Compute query embedding using an OracleEmbeddings.
:param text: The text to embed. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.oracleai.OracleEmbeddings.html |
e8dfeba92474-2 | Compute query embedding using an OracleEmbeddings.
:param text: The text to embed.
Returns
Embedding for the text.
Parameters
text (str) –
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
static load_onnx_model(conn: Connection, dir: str, onnx_file: str, model_name: str) → None[source]¶
Load an ONNX model to Oracle Database.
:param conn: Oracle Connection,
:param dir: Oracle Directory, | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.oracleai.OracleEmbeddings.html |
e8dfeba92474-3 | :param conn: Oracle Connection,
:param dir: Oracle Directory,
:param onnx_file: ONNX file name,
:param model_name: Name of the model.
Parameters
conn (Connection) –
dir (str) –
onnx_file (str) –
model_name (str) –
Return type
None
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.oracleai.OracleEmbeddings.html |
e8dfeba92474-4 | dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using OracleEmbeddings¶
Oracle AI Vector Search: Generate Embeddings
OracleAI Vector Search | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.oracleai.OracleEmbeddings.html |
a0cf7333d9fc-0 | langchain_community.embeddings.embaas.EmbaasEmbeddingsPayload¶
class langchain_community.embeddings.embaas.EmbaasEmbeddingsPayload[source]¶
Payload for the Embaas embeddings API.
Attributes
model
texts
instruction
Methods
__init__(*args, **kwargs)
clear()
copy()
fromkeys([value])
Create a new dictionary with keys from iterable and values set to value.
get(key[, default])
Return the value for key if key is in the dictionary, else default.
items()
keys()
pop(k[,d])
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem()
Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])
Insert key with a value of default if key is not in the dictionary.
update([E, ]**F)
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values()
__init__(*args, **kwargs)¶
clear() → None. Remove all items from D.¶
copy() → a shallow copy of D¶
fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
items() → a set-like object providing a view on D's items¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.embaas.EmbaasEmbeddingsPayload.html |
a0cf7333d9fc-1 | items() → a set-like object providing a view on D's items¶
keys() → a set-like object providing a view on D's keys¶
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
If the key is not found, return the default if given; otherwise,
raise a KeyError.
popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update([E, ]**F) → None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values() → an object providing a view on D's values¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.embaas.EmbaasEmbeddingsPayload.html |
1827ad36fb6b-0 | langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings¶
class langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings[source]¶
Bases: OpenVINOEmbeddings
OpenVNO BGE embedding models.
Bge Example:from langchain_community.embeddings import OpenVINOBgeEmbeddings
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'CPU'}
encode_kwargs = {'normalize_embeddings': True}
ov = OpenVINOBgeEmbeddings(
model_name_or_path=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
Initialize the sentence_transformer.
param embed_instruction: str = ''¶
Instruction to use for embedding document.
param encode_kwargs: Dict[str, Any] [Optional]¶
Keyword arguments to pass when calling the encode method of the model.
param model_kwargs: Dict[str, Any] [Optional]¶
Keyword arguments to pass to the model.
param model_name_or_path: str [Required]¶
HuggingFace model id.
param ov_model: Any = None¶
OpenVINO model object.
param query_instruction: str = 'Represent this question for searching relevant passages: '¶
Instruction to use for embedding query.
param show_progress: bool = False¶
Whether to show a progress bar.
param tokenizer: Any = None¶
Tokenizer for embedding model.
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float] | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings.html |
1827ad36fb6b-1 | Parameters
text (str) –
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings.html |
1827ad36fb6b-2 | self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str]) → List[List[float]][source]¶
Compute doc embeddings using a HuggingFace transformer model.
Parameters
texts (List[str]) – The list of texts to embed.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float][source]¶
Compute query embeddings using a HuggingFace transformer model.
Parameters
text (str) – The text to embed.
Returns
Embeddings for the text.
Return type
List[float]
encode(sentences: Any, batch_size: int = 4, show_progress_bar: bool = False, convert_to_numpy: bool = True, convert_to_tensor: bool = False, mean_pooling: bool = False, normalize_embeddings: bool = True) → Any¶
Computes sentence embeddings.
Parameters | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings.html |
1827ad36fb6b-3 | Computes sentence embeddings.
Parameters
sentences (Any) – the sentences to embed.
batch_size (int) – the batch size used for the computation.
show_progress_bar (bool) – Whether to output a progress bar.
convert_to_numpy (bool) – Whether the output should be a list of numpy vectors.
convert_to_tensor (bool) – Whether the output should be one large tensor.
mean_pooling (bool) – Whether to pool returned vectors.
normalize_embeddings (bool) – Whether to normalize returned vectors.
Returns
By default, a 2d numpy array with shape [num_inputs, output_dimension].
Return type
Any
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings.html |
1827ad36fb6b-4 | exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
save_model(model_path: str) → bool¶
Parameters
model_path (str) –
Return type
bool
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings.html |
1827ad36fb6b-5 | dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
Examples using OpenVINOBgeEmbeddings¶
OpenVINO | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openvino.OpenVINOBgeEmbeddings.html |
c8477a6c19b1-0 | langchain_community.embeddings.self_hosted_hugging_face.load_embedding_model¶
langchain_community.embeddings.self_hosted_hugging_face.load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) → Any[source]¶
Load the embedding model.
Parameters
model_id (str) –
instruct (bool) –
device (int) –
Return type
Any | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.load_embedding_model.html |
4f8884e6a26b-0 | langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings¶
class langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings[source]¶
Bases: OpenAIEmbeddings
OctoAI Compute Service embedding models.
See https://octo.ai/ for information about OctoAI.
To use, you should have the openai python package installed and the
environment variable OCTOAI_API_TOKEN set with your API token.
Alternatively, you can use the octoai_api_token keyword argument.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_special: Union[Literal['all'], Set[str]] = {}¶
param chunk_size: int = 1000¶
Maximum number of texts to embed in each batch
param default_headers: Union[Mapping[str, str], None] = None¶
param default_query: Union[Mapping[str, object], None] = None¶
param deployment: Optional[str] = 'text-embedding-ada-002'¶
param disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all'¶
param embedding_ctx_length: int = 8191¶
The maximum number of tokens to embed at once.
param endpoint_url: str = 'https://text.octoai.run/v1/'¶
Base URL path for API requests.
param headers: Any = None¶
param http_client: Union[Any, None] = None¶
Optional httpx.Client.
param max_retries: int = 2¶
Maximum number of retries to make when generating.
param model: str = 'thenlper/gte-large'¶
Model name to use.
param model_kwargs: Dict[str, Any] [Optional]¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings.html |
4f8884e6a26b-1 | Model name to use.
param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
param octoai_api_token: SecretStr = None¶
OctoAI Endpoints API keys.
Constraints
type = string
writeOnly = True
format = password
param openai_api_base: Optional[str] = None (alias 'base_url')¶
Base URL path for API requests, leave blank if not using a proxy or service
emulator.
param openai_api_key: Optional[str] = None (alias 'api_key')¶
Automatically inferred from env var OPENAI_API_KEY if not provided.
param openai_api_type: Optional[str] = None¶
param openai_api_version: Optional[str] = None (alias 'api_version')¶
Automatically inferred from env var OPENAI_API_VERSION if not provided.
param openai_organization: Optional[str] = None (alias 'organization')¶
Automatically inferred from env var OPENAI_ORG_ID if not provided.
param openai_proxy: Optional[str] = None¶
param request_timeout: Optional[Union[float, Tuple[float, float], Any]] = None (alias 'timeout')¶
Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
None.
param retry_max_seconds: int = 20¶
Max number of seconds to wait between retries
param retry_min_seconds: int = 4¶
Min number of seconds to wait between retries
param show_progress_bar: bool = False¶
Whether to show a progress bar when embedding.
param skip_empty: bool = False¶
Whether to skip empty strings when embedding or raise an error.
Defaults to not skipping.
param tiktoken_enabled: bool = False¶
Set this to False for non-OpenAI implementations of the embeddings API | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings.html |
4f8884e6a26b-2 | Set this to False for non-OpenAI implementations of the embeddings API
param tiktoken_model_name: Optional[str] = None¶
The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here.
async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]]¶
Call out to OpenAI’s embedding endpoint async for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Call out to OpenAI’s embedding endpoint async for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings.html |
4f8884e6a26b-3 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings.html |
4f8884e6a26b-4 | include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
embed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]]¶
Call out to OpenAI’s embedding endpoint for embedding search docs.
Parameters
texts (List[str]) – The list of texts to embed.
chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
Return type
List[List[float]]
embed_query(text: str) → List[float]¶
Call out to OpenAI’s embedding endpoint for embedding query text.
Parameters
text (str) – The text to embed.
Returns
Embedding for the text.
Return type
List[float]
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict(). | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings.html |
4f8884e6a26b-5 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings.html |
4f8884e6a26b-6 | Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
property lc_secrets: Dict[str, str]¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.octoai_embeddings.OctoAIEmbeddings.html |
6b7f726a0106-0 | langchain_community.embeddings.nemo.is_endpoint_live¶
langchain_community.embeddings.nemo.is_endpoint_live(url: str, headers: Optional[dict], payload: Any) → bool[source]¶
Check if an endpoint is live by sending a GET request to the specified URL.
Parameters
url (str) – The URL of the endpoint to check.
headers (Optional[dict]) –
payload (Any) –
Returns
True if the endpoint is live (status code 200), False otherwise.
Return type
bool
Raises
Exception – If the endpoint returns a non-successful status code or if there is
an error querying the endpoint. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.nemo.is_endpoint_live.html |
672993f4c727-0 | langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings¶
class langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings[source]¶
Bases: SelfHostedEmbeddings
HuggingFace embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the runhouse python package installed.
Example
from langchain_community.embeddings import SelfHostedHuggingFaceEmbeddings
import runhouse as rh
model_id = "sentence-transformers/all-mpnet-base-v2"
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceEmbeddings(model_id=model_id, hardware=gpu)
Initialize the remote inference function.
param allow_dangerous_deserialization: bool = False¶
Allow deserialization using pickle which can be dangerous if
loading compromised data.
param cache: Union[BaseCache, bool, None] = None¶
Whether to cache the response.
If true, will use the global cache.
If false, will not use a cache
If None, will use the global cache if it’s set, otherwise no cache.
If instance of BaseCache, will use the provided cache.
Caching is not currently supported for streaming methods of models.
param callback_manager: Optional[BaseCallbackManager] = None¶
[DEPRECATED]
param callbacks: Callbacks = None¶
Callbacks to add to the run trace.
param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None¶ | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-1 | param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None¶
Optional encoder to use for counting tokens.
param hardware: Any = None¶
Remote hardware to send the inference function to.
param inference_fn: Callable = <function _embed_documents>¶
Inference function to extract the embeddings.
param inference_kwargs: Any = None¶
Any kwargs to pass to the model’s inference function.
param load_fn_kwargs: Optional[dict] = None¶
Keyword arguments to pass to the model load function.
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param model_id: str = 'sentence-transformers/all-mpnet-base-v2'¶
Model name to use.
param model_load_fn: Callable = <function load_embedding_model>¶
Function to load the model remotely on the server.
param model_reqs: List[str] = ['./', 'sentence_transformers', 'torch']¶
Requirements to install on hardware to inference the model.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
[Deprecated] Check Cache and run the LLM on the given prompt and input.
Notes
Deprecated since version langchain-core==0.1.7: Use invoke instead.
Parameters
prompt (str) –
stop (Optional[List[str]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-2 | callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
kwargs (Any) –
Return type
str
async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Any) –
Return type
List[str]
async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-3 | return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
async aembed_documents(texts: List[str]) → List[List[float]]¶
Asynchronous Embed search docs.
Parameters
texts (List[str]) –
Return type
List[List[float]]
async aembed_query(text: str) → List[float]¶
Asynchronous Embed query text.
Parameters
text (str) –
Return type
List[float]
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts (List[str]) – List of string prompts.
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-4 | first occurrence of any of these substrings.
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
tags (Optional[Union[List[str], List[List[str]]]]) –
metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) –
run_name (Optional[Union[str, List[str]]]) –
run_id (Optional[Union[UUID, List[Optional[UUID]]]]) –
**kwargs –
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
Return type
LLMResult
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-5 | converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
Return type
LLMResult
async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
Parameters
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) –
config (Optional[RunnableConfig]) –
stop (Optional[List[str]]) –
kwargs (Any) –
Return type
str
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
[Deprecated]
Notes | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-6 | [Deprecated]
Notes
Deprecated since version langchain-core==0.1.7: Use ainvoke instead.
Parameters
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
Return type
str
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
[Deprecated]
Notes
Deprecated since version langchain-core==0.1.7: Use ainvoke instead.
Parameters
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
Return type
BaseMessage
assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶
Assigns new fields to the dict output of this runnable.
Returns a new runnable.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}} | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-7 | {'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.schema()) #
{'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters
kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
Return type
RunnableSerializable[Any, Any]
async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) –
config (Optional[RunnableConfig]) –
stop (Optional[List[str]]) –
kwargs (Any) –
Return type
AsyncIterator[str] | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-8 | kwargs (Any) –
Return type
AsyncIterator[str]
astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶
[Beta] Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the runnable, including StreamEvents from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.
run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event.
A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.
parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list.
The order of the parent IDs is from the root to the immediate parent.
Only available for v2 version of the API. The v1 version of the API
will return an empty list.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-9 | Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
Here are declarations associated with the events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str: | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-10 | format_docs:
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
event async for event in chain.astream_events("hello", version="v2")
]
# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Parameters
input (Any) – The input to the runnable. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-11 | },
]
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1.
Users should use v2.
v1 is for backwards compatibility and will be deprecated
in 0.4.0.
No default will be assigned until the API is stabilized.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the runnable.
These will be passed to astream_log as this implementation
of astream_events is built on top of astream_log.
Returns
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
672993f4c727-12 | An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
diff (bool) – Whether to yield diffs between each step, or the current state.
with_streamed_output_list (bool) – Whether to yield the streamed_output list.
include_names (Optional[Sequence[str]]) – Only include logs with these names.
include_types (Optional[Sequence[str]]) – Only include logs with these types.
include_tags (Optional[Sequence[str]]) – Only include logs with these tags.
exclude_names (Optional[Sequence[str]]) – Exclude logs with these names.
exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. | https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.