Convert dataset to Parquet (#4)
Browse files- Convert dataset to Parquet (29180d9025a08ff69fd08a4fcdddb5b079c740a1)
- Add 'chemprot_shared_task_eval_source' config data files (c5057eca651c41d17959613cb15620a1417ddcde)
- Add 'chemprot_bigbio_kb' config data files (53e5a3d7a9cc2ebe56d982a4c10116c6e7df39a1)
- Delete loading script auxiliary file (2495bdeac0c2f93da48952892d06147dad9ce2b3)
- Delete loading script (3c448eb0fb55220ab2e804c0e681050175ad7a53)
- Delete data file (fe210651ce27c52293682501bcc0423e8dd03143)
- README.md +206 -6
- bigbiohub.py +0 -592
- chemprot.py +0 -446
- ChemProt_Corpus.zip → chemprot_bigbio_kb/sample-00000-of-00001.parquet +2 -2
- chemprot_bigbio_kb/test-00000-of-00001.parquet +3 -0
- chemprot_bigbio_kb/train-00000-of-00001.parquet +3 -0
- chemprot_bigbio_kb/validation-00000-of-00001.parquet +3 -0
- chemprot_full_source/sample-00000-of-00001.parquet +3 -0
- chemprot_full_source/test-00000-of-00001.parquet +3 -0
- chemprot_full_source/train-00000-of-00001.parquet +3 -0
- chemprot_full_source/validation-00000-of-00001.parquet +3 -0
- chemprot_shared_task_eval_source/sample-00000-of-00001.parquet +3 -0
- chemprot_shared_task_eval_source/test-00000-of-00001.parquet +3 -0
- chemprot_shared_task_eval_source/train-00000-of-00001.parquet +3 -0
- chemprot_shared_task_eval_source/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -1,19 +1,219 @@
|
|
1 |
-
|
2 |
---
|
3 |
-
language:
|
4 |
- en
|
5 |
-
bigbio_language:
|
6 |
- English
|
7 |
license: other
|
8 |
multilinguality: monolingual
|
9 |
bigbio_license_shortname: PUBLIC_DOMAIN_MARK_1p0
|
10 |
pretty_name: ChemProt
|
11 |
homepage: https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/
|
12 |
-
bigbio_pubmed:
|
13 |
-
bigbio_public:
|
14 |
-
bigbio_tasks:
|
15 |
- RELATION_EXTRACTION
|
16 |
- NAMED_ENTITY_RECOGNITION
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
---
|
18 |
|
19 |
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
- en
|
4 |
+
bigbio_language:
|
5 |
- English
|
6 |
license: other
|
7 |
multilinguality: monolingual
|
8 |
bigbio_license_shortname: PUBLIC_DOMAIN_MARK_1p0
|
9 |
pretty_name: ChemProt
|
10 |
homepage: https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/
|
11 |
+
bigbio_pubmed: true
|
12 |
+
bigbio_public: true
|
13 |
+
bigbio_tasks:
|
14 |
- RELATION_EXTRACTION
|
15 |
- NAMED_ENTITY_RECOGNITION
|
16 |
+
dataset_info:
|
17 |
+
- config_name: chemprot_bigbio_kb
|
18 |
+
features:
|
19 |
+
- name: id
|
20 |
+
dtype: string
|
21 |
+
- name: document_id
|
22 |
+
dtype: string
|
23 |
+
- name: passages
|
24 |
+
list:
|
25 |
+
- name: id
|
26 |
+
dtype: string
|
27 |
+
- name: type
|
28 |
+
dtype: string
|
29 |
+
- name: text
|
30 |
+
sequence: string
|
31 |
+
- name: offsets
|
32 |
+
sequence:
|
33 |
+
list: int32
|
34 |
+
- name: entities
|
35 |
+
list:
|
36 |
+
- name: id
|
37 |
+
dtype: string
|
38 |
+
- name: type
|
39 |
+
dtype: string
|
40 |
+
- name: text
|
41 |
+
sequence: string
|
42 |
+
- name: offsets
|
43 |
+
sequence:
|
44 |
+
list: int32
|
45 |
+
- name: normalized
|
46 |
+
list:
|
47 |
+
- name: db_name
|
48 |
+
dtype: string
|
49 |
+
- name: db_id
|
50 |
+
dtype: string
|
51 |
+
- name: events
|
52 |
+
list:
|
53 |
+
- name: id
|
54 |
+
dtype: string
|
55 |
+
- name: type
|
56 |
+
dtype: string
|
57 |
+
- name: trigger
|
58 |
+
struct:
|
59 |
+
- name: text
|
60 |
+
sequence: string
|
61 |
+
- name: offsets
|
62 |
+
sequence:
|
63 |
+
list: int32
|
64 |
+
- name: arguments
|
65 |
+
list:
|
66 |
+
- name: role
|
67 |
+
dtype: string
|
68 |
+
- name: ref_id
|
69 |
+
dtype: string
|
70 |
+
- name: coreferences
|
71 |
+
list:
|
72 |
+
- name: id
|
73 |
+
dtype: string
|
74 |
+
- name: entity_ids
|
75 |
+
sequence: string
|
76 |
+
- name: relations
|
77 |
+
list:
|
78 |
+
- name: id
|
79 |
+
dtype: string
|
80 |
+
- name: type
|
81 |
+
dtype: string
|
82 |
+
- name: arg1_id
|
83 |
+
dtype: string
|
84 |
+
- name: arg2_id
|
85 |
+
dtype: string
|
86 |
+
- name: normalized
|
87 |
+
list:
|
88 |
+
- name: db_name
|
89 |
+
dtype: string
|
90 |
+
- name: db_id
|
91 |
+
dtype: string
|
92 |
+
splits:
|
93 |
+
- name: sample
|
94 |
+
num_bytes: 174378
|
95 |
+
num_examples: 50
|
96 |
+
- name: train
|
97 |
+
num_bytes: 3509825
|
98 |
+
num_examples: 1020
|
99 |
+
- name: test
|
100 |
+
num_bytes: 2838045
|
101 |
+
num_examples: 800
|
102 |
+
- name: validation
|
103 |
+
num_bytes: 2098255
|
104 |
+
num_examples: 612
|
105 |
+
download_size: 3644874
|
106 |
+
dataset_size: 8620503
|
107 |
+
- config_name: chemprot_full_source
|
108 |
+
features:
|
109 |
+
- name: pmid
|
110 |
+
dtype: string
|
111 |
+
- name: text
|
112 |
+
dtype: string
|
113 |
+
- name: entities
|
114 |
+
sequence:
|
115 |
+
- name: id
|
116 |
+
dtype: string
|
117 |
+
- name: type
|
118 |
+
dtype: string
|
119 |
+
- name: text
|
120 |
+
dtype: string
|
121 |
+
- name: offsets
|
122 |
+
sequence: int64
|
123 |
+
- name: relations
|
124 |
+
sequence:
|
125 |
+
- name: type
|
126 |
+
dtype: string
|
127 |
+
- name: arg1
|
128 |
+
dtype: string
|
129 |
+
- name: arg2
|
130 |
+
dtype: string
|
131 |
+
splits:
|
132 |
+
- name: sample
|
133 |
+
num_bytes: 159878
|
134 |
+
num_examples: 50
|
135 |
+
- name: train
|
136 |
+
num_bytes: 3161241
|
137 |
+
num_examples: 1020
|
138 |
+
- name: test
|
139 |
+
num_bytes: 2550891
|
140 |
+
num_examples: 800
|
141 |
+
- name: validation
|
142 |
+
num_bytes: 1902042
|
143 |
+
num_examples: 612
|
144 |
+
download_size: 2938603
|
145 |
+
dataset_size: 7774052
|
146 |
+
- config_name: chemprot_shared_task_eval_source
|
147 |
+
features:
|
148 |
+
- name: pmid
|
149 |
+
dtype: string
|
150 |
+
- name: text
|
151 |
+
dtype: string
|
152 |
+
- name: entities
|
153 |
+
sequence:
|
154 |
+
- name: id
|
155 |
+
dtype: string
|
156 |
+
- name: type
|
157 |
+
dtype: string
|
158 |
+
- name: text
|
159 |
+
dtype: string
|
160 |
+
- name: offsets
|
161 |
+
sequence: int64
|
162 |
+
- name: relations
|
163 |
+
sequence:
|
164 |
+
- name: type
|
165 |
+
dtype: string
|
166 |
+
- name: arg1
|
167 |
+
dtype: string
|
168 |
+
- name: arg2
|
169 |
+
dtype: string
|
170 |
+
splits:
|
171 |
+
- name: sample
|
172 |
+
num_bytes: 157609
|
173 |
+
num_examples: 50
|
174 |
+
- name: train
|
175 |
+
num_bytes: 3109953
|
176 |
+
num_examples: 1020
|
177 |
+
- name: test
|
178 |
+
num_bytes: 2499388
|
179 |
+
num_examples: 800
|
180 |
+
- name: validation
|
181 |
+
num_bytes: 1876378
|
182 |
+
num_examples: 612
|
183 |
+
download_size: 2924370
|
184 |
+
dataset_size: 7643328
|
185 |
+
configs:
|
186 |
+
- config_name: chemprot_bigbio_kb
|
187 |
+
data_files:
|
188 |
+
- split: sample
|
189 |
+
path: chemprot_bigbio_kb/sample-*
|
190 |
+
- split: train
|
191 |
+
path: chemprot_bigbio_kb/train-*
|
192 |
+
- split: test
|
193 |
+
path: chemprot_bigbio_kb/test-*
|
194 |
+
- split: validation
|
195 |
+
path: chemprot_bigbio_kb/validation-*
|
196 |
+
- config_name: chemprot_full_source
|
197 |
+
data_files:
|
198 |
+
- split: sample
|
199 |
+
path: chemprot_full_source/sample-*
|
200 |
+
- split: train
|
201 |
+
path: chemprot_full_source/train-*
|
202 |
+
- split: test
|
203 |
+
path: chemprot_full_source/test-*
|
204 |
+
- split: validation
|
205 |
+
path: chemprot_full_source/validation-*
|
206 |
+
default: true
|
207 |
+
- config_name: chemprot_shared_task_eval_source
|
208 |
+
data_files:
|
209 |
+
- split: sample
|
210 |
+
path: chemprot_shared_task_eval_source/sample-*
|
211 |
+
- split: train
|
212 |
+
path: chemprot_shared_task_eval_source/train-*
|
213 |
+
- split: test
|
214 |
+
path: chemprot_shared_task_eval_source/test-*
|
215 |
+
- split: validation
|
216 |
+
path: chemprot_shared_task_eval_source/validation-*
|
217 |
---
|
218 |
|
219 |
|
bigbiohub.py
DELETED
@@ -1,592 +0,0 @@
|
|
1 |
-
from collections import defaultdict
|
2 |
-
from dataclasses import dataclass
|
3 |
-
from enum import Enum
|
4 |
-
import logging
|
5 |
-
from pathlib import Path
|
6 |
-
from types import SimpleNamespace
|
7 |
-
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
|
8 |
-
|
9 |
-
import datasets
|
10 |
-
|
11 |
-
if TYPE_CHECKING:
|
12 |
-
import bioc
|
13 |
-
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
|
16 |
-
|
17 |
-
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
18 |
-
|
19 |
-
|
20 |
-
@dataclass
|
21 |
-
class BigBioConfig(datasets.BuilderConfig):
|
22 |
-
"""BuilderConfig for BigBio."""
|
23 |
-
|
24 |
-
name: str = None
|
25 |
-
version: datasets.Version = None
|
26 |
-
description: str = None
|
27 |
-
schema: str = None
|
28 |
-
subset_id: str = None
|
29 |
-
|
30 |
-
|
31 |
-
class Tasks(Enum):
|
32 |
-
NAMED_ENTITY_RECOGNITION = "NER"
|
33 |
-
NAMED_ENTITY_DISAMBIGUATION = "NED"
|
34 |
-
EVENT_EXTRACTION = "EE"
|
35 |
-
RELATION_EXTRACTION = "RE"
|
36 |
-
COREFERENCE_RESOLUTION = "COREF"
|
37 |
-
QUESTION_ANSWERING = "QA"
|
38 |
-
TEXTUAL_ENTAILMENT = "TE"
|
39 |
-
SEMANTIC_SIMILARITY = "STS"
|
40 |
-
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
|
41 |
-
PARAPHRASING = "PARA"
|
42 |
-
TRANSLATION = "TRANSL"
|
43 |
-
SUMMARIZATION = "SUM"
|
44 |
-
TEXT_CLASSIFICATION = "TXTCLASS"
|
45 |
-
|
46 |
-
|
47 |
-
entailment_features = datasets.Features(
|
48 |
-
{
|
49 |
-
"id": datasets.Value("string"),
|
50 |
-
"premise": datasets.Value("string"),
|
51 |
-
"hypothesis": datasets.Value("string"),
|
52 |
-
"label": datasets.Value("string"),
|
53 |
-
}
|
54 |
-
)
|
55 |
-
|
56 |
-
pairs_features = datasets.Features(
|
57 |
-
{
|
58 |
-
"id": datasets.Value("string"),
|
59 |
-
"document_id": datasets.Value("string"),
|
60 |
-
"text_1": datasets.Value("string"),
|
61 |
-
"text_2": datasets.Value("string"),
|
62 |
-
"label": datasets.Value("string"),
|
63 |
-
}
|
64 |
-
)
|
65 |
-
|
66 |
-
qa_features = datasets.Features(
|
67 |
-
{
|
68 |
-
"id": datasets.Value("string"),
|
69 |
-
"question_id": datasets.Value("string"),
|
70 |
-
"document_id": datasets.Value("string"),
|
71 |
-
"question": datasets.Value("string"),
|
72 |
-
"type": datasets.Value("string"),
|
73 |
-
"choices": [datasets.Value("string")],
|
74 |
-
"context": datasets.Value("string"),
|
75 |
-
"answer": datasets.Sequence(datasets.Value("string")),
|
76 |
-
}
|
77 |
-
)
|
78 |
-
|
79 |
-
text_features = datasets.Features(
|
80 |
-
{
|
81 |
-
"id": datasets.Value("string"),
|
82 |
-
"document_id": datasets.Value("string"),
|
83 |
-
"text": datasets.Value("string"),
|
84 |
-
"labels": [datasets.Value("string")],
|
85 |
-
}
|
86 |
-
)
|
87 |
-
|
88 |
-
text2text_features = datasets.Features(
|
89 |
-
{
|
90 |
-
"id": datasets.Value("string"),
|
91 |
-
"document_id": datasets.Value("string"),
|
92 |
-
"text_1": datasets.Value("string"),
|
93 |
-
"text_2": datasets.Value("string"),
|
94 |
-
"text_1_name": datasets.Value("string"),
|
95 |
-
"text_2_name": datasets.Value("string"),
|
96 |
-
}
|
97 |
-
)
|
98 |
-
|
99 |
-
kb_features = datasets.Features(
|
100 |
-
{
|
101 |
-
"id": datasets.Value("string"),
|
102 |
-
"document_id": datasets.Value("string"),
|
103 |
-
"passages": [
|
104 |
-
{
|
105 |
-
"id": datasets.Value("string"),
|
106 |
-
"type": datasets.Value("string"),
|
107 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
108 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
109 |
-
}
|
110 |
-
],
|
111 |
-
"entities": [
|
112 |
-
{
|
113 |
-
"id": datasets.Value("string"),
|
114 |
-
"type": datasets.Value("string"),
|
115 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
116 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
117 |
-
"normalized": [
|
118 |
-
{
|
119 |
-
"db_name": datasets.Value("string"),
|
120 |
-
"db_id": datasets.Value("string"),
|
121 |
-
}
|
122 |
-
],
|
123 |
-
}
|
124 |
-
],
|
125 |
-
"events": [
|
126 |
-
{
|
127 |
-
"id": datasets.Value("string"),
|
128 |
-
"type": datasets.Value("string"),
|
129 |
-
# refers to the text_bound_annotation of the trigger
|
130 |
-
"trigger": {
|
131 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
132 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
133 |
-
},
|
134 |
-
"arguments": [
|
135 |
-
{
|
136 |
-
"role": datasets.Value("string"),
|
137 |
-
"ref_id": datasets.Value("string"),
|
138 |
-
}
|
139 |
-
],
|
140 |
-
}
|
141 |
-
],
|
142 |
-
"coreferences": [
|
143 |
-
{
|
144 |
-
"id": datasets.Value("string"),
|
145 |
-
"entity_ids": datasets.Sequence(datasets.Value("string")),
|
146 |
-
}
|
147 |
-
],
|
148 |
-
"relations": [
|
149 |
-
{
|
150 |
-
"id": datasets.Value("string"),
|
151 |
-
"type": datasets.Value("string"),
|
152 |
-
"arg1_id": datasets.Value("string"),
|
153 |
-
"arg2_id": datasets.Value("string"),
|
154 |
-
"normalized": [
|
155 |
-
{
|
156 |
-
"db_name": datasets.Value("string"),
|
157 |
-
"db_id": datasets.Value("string"),
|
158 |
-
}
|
159 |
-
],
|
160 |
-
}
|
161 |
-
],
|
162 |
-
}
|
163 |
-
)
|
164 |
-
|
165 |
-
|
166 |
-
TASK_TO_SCHEMA = {
|
167 |
-
Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
|
168 |
-
Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
|
169 |
-
Tasks.EVENT_EXTRACTION.name: "KB",
|
170 |
-
Tasks.RELATION_EXTRACTION.name: "KB",
|
171 |
-
Tasks.COREFERENCE_RESOLUTION.name: "KB",
|
172 |
-
Tasks.QUESTION_ANSWERING.name: "QA",
|
173 |
-
Tasks.TEXTUAL_ENTAILMENT.name: "TE",
|
174 |
-
Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
|
175 |
-
Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
|
176 |
-
Tasks.PARAPHRASING.name: "T2T",
|
177 |
-
Tasks.TRANSLATION.name: "T2T",
|
178 |
-
Tasks.SUMMARIZATION.name: "T2T",
|
179 |
-
Tasks.TEXT_CLASSIFICATION.name: "TEXT",
|
180 |
-
}
|
181 |
-
|
182 |
-
SCHEMA_TO_TASKS = defaultdict(set)
|
183 |
-
for task, schema in TASK_TO_SCHEMA.items():
|
184 |
-
SCHEMA_TO_TASKS[schema].add(task)
|
185 |
-
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
|
186 |
-
|
187 |
-
VALID_TASKS = set(TASK_TO_SCHEMA.keys())
|
188 |
-
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
|
189 |
-
|
190 |
-
SCHEMA_TO_FEATURES = {
|
191 |
-
"KB": kb_features,
|
192 |
-
"QA": qa_features,
|
193 |
-
"TE": entailment_features,
|
194 |
-
"T2T": text2text_features,
|
195 |
-
"TEXT": text_features,
|
196 |
-
"PAIRS": pairs_features,
|
197 |
-
}
|
198 |
-
|
199 |
-
|
200 |
-
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
|
201 |
-
|
202 |
-
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
|
203 |
-
|
204 |
-
text = ann.text
|
205 |
-
|
206 |
-
if len(offsets) > 1:
|
207 |
-
i = 0
|
208 |
-
texts = []
|
209 |
-
for start, end in offsets:
|
210 |
-
chunk_len = end - start
|
211 |
-
texts.append(text[i : chunk_len + i])
|
212 |
-
i += chunk_len
|
213 |
-
while i < len(text) and text[i] == " ":
|
214 |
-
i += 1
|
215 |
-
else:
|
216 |
-
texts = [text]
|
217 |
-
|
218 |
-
return offsets, texts
|
219 |
-
|
220 |
-
|
221 |
-
def remove_prefix(a: str, prefix: str) -> str:
|
222 |
-
if a.startswith(prefix):
|
223 |
-
a = a[len(prefix) :]
|
224 |
-
return a
|
225 |
-
|
226 |
-
|
227 |
-
def parse_brat_file(
|
228 |
-
txt_file: Path,
|
229 |
-
annotation_file_suffixes: List[str] = None,
|
230 |
-
parse_notes: bool = False,
|
231 |
-
) -> Dict:
|
232 |
-
"""
|
233 |
-
Parse a brat file into the schema defined below.
|
234 |
-
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
|
235 |
-
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
|
236 |
-
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
|
237 |
-
Will include annotator notes, when `parse_notes == True`.
|
238 |
-
brat_features = datasets.Features(
|
239 |
-
{
|
240 |
-
"id": datasets.Value("string"),
|
241 |
-
"document_id": datasets.Value("string"),
|
242 |
-
"text": datasets.Value("string"),
|
243 |
-
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
244 |
-
{
|
245 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
246 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
247 |
-
"type": datasets.Value("string"),
|
248 |
-
"id": datasets.Value("string"),
|
249 |
-
}
|
250 |
-
],
|
251 |
-
"events": [ # E line in brat
|
252 |
-
{
|
253 |
-
"trigger": datasets.Value(
|
254 |
-
"string"
|
255 |
-
), # refers to the text_bound_annotation of the trigger,
|
256 |
-
"id": datasets.Value("string"),
|
257 |
-
"type": datasets.Value("string"),
|
258 |
-
"arguments": datasets.Sequence(
|
259 |
-
{
|
260 |
-
"role": datasets.Value("string"),
|
261 |
-
"ref_id": datasets.Value("string"),
|
262 |
-
}
|
263 |
-
),
|
264 |
-
}
|
265 |
-
],
|
266 |
-
"relations": [ # R line in brat
|
267 |
-
{
|
268 |
-
"id": datasets.Value("string"),
|
269 |
-
"head": {
|
270 |
-
"ref_id": datasets.Value("string"),
|
271 |
-
"role": datasets.Value("string"),
|
272 |
-
},
|
273 |
-
"tail": {
|
274 |
-
"ref_id": datasets.Value("string"),
|
275 |
-
"role": datasets.Value("string"),
|
276 |
-
},
|
277 |
-
"type": datasets.Value("string"),
|
278 |
-
}
|
279 |
-
],
|
280 |
-
"equivalences": [ # Equiv line in brat
|
281 |
-
{
|
282 |
-
"id": datasets.Value("string"),
|
283 |
-
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
284 |
-
}
|
285 |
-
],
|
286 |
-
"attributes": [ # M or A lines in brat
|
287 |
-
{
|
288 |
-
"id": datasets.Value("string"),
|
289 |
-
"type": datasets.Value("string"),
|
290 |
-
"ref_id": datasets.Value("string"),
|
291 |
-
"value": datasets.Value("string"),
|
292 |
-
}
|
293 |
-
],
|
294 |
-
"normalizations": [ # N lines in brat
|
295 |
-
{
|
296 |
-
"id": datasets.Value("string"),
|
297 |
-
"type": datasets.Value("string"),
|
298 |
-
"ref_id": datasets.Value("string"),
|
299 |
-
"resource_name": datasets.Value(
|
300 |
-
"string"
|
301 |
-
), # Name of the resource, e.g. "Wikipedia"
|
302 |
-
"cuid": datasets.Value(
|
303 |
-
"string"
|
304 |
-
), # ID in the resource, e.g. 534366
|
305 |
-
"text": datasets.Value(
|
306 |
-
"string"
|
307 |
-
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
308 |
-
}
|
309 |
-
],
|
310 |
-
### OPTIONAL: Only included when `parse_notes == True`
|
311 |
-
"notes": [ # # lines in brat
|
312 |
-
{
|
313 |
-
"id": datasets.Value("string"),
|
314 |
-
"type": datasets.Value("string"),
|
315 |
-
"ref_id": datasets.Value("string"),
|
316 |
-
"text": datasets.Value("string"),
|
317 |
-
}
|
318 |
-
],
|
319 |
-
},
|
320 |
-
)
|
321 |
-
"""
|
322 |
-
|
323 |
-
example = {}
|
324 |
-
example["document_id"] = txt_file.with_suffix("").name
|
325 |
-
with txt_file.open() as f:
|
326 |
-
example["text"] = f.read()
|
327 |
-
|
328 |
-
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
329 |
-
# for event extraction
|
330 |
-
if annotation_file_suffixes is None:
|
331 |
-
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
332 |
-
|
333 |
-
if len(annotation_file_suffixes) == 0:
|
334 |
-
raise AssertionError(
|
335 |
-
"At least one suffix for the to-be-read annotation files should be given!"
|
336 |
-
)
|
337 |
-
|
338 |
-
ann_lines = []
|
339 |
-
for suffix in annotation_file_suffixes:
|
340 |
-
annotation_file = txt_file.with_suffix(suffix)
|
341 |
-
try:
|
342 |
-
with annotation_file.open() as f:
|
343 |
-
ann_lines.extend(f.readlines())
|
344 |
-
except Exception:
|
345 |
-
continue
|
346 |
-
|
347 |
-
example["text_bound_annotations"] = []
|
348 |
-
example["events"] = []
|
349 |
-
example["relations"] = []
|
350 |
-
example["equivalences"] = []
|
351 |
-
example["attributes"] = []
|
352 |
-
example["normalizations"] = []
|
353 |
-
|
354 |
-
if parse_notes:
|
355 |
-
example["notes"] = []
|
356 |
-
|
357 |
-
for line in ann_lines:
|
358 |
-
line = line.strip()
|
359 |
-
if not line:
|
360 |
-
continue
|
361 |
-
|
362 |
-
if line.startswith("T"): # Text bound
|
363 |
-
ann = {}
|
364 |
-
fields = line.split("\t")
|
365 |
-
|
366 |
-
ann["id"] = fields[0]
|
367 |
-
ann["type"] = fields[1].split()[0]
|
368 |
-
ann["offsets"] = []
|
369 |
-
span_str = remove_prefix(fields[1], (ann["type"] + " "))
|
370 |
-
text = fields[2]
|
371 |
-
for span in span_str.split(";"):
|
372 |
-
start, end = span.split()
|
373 |
-
ann["offsets"].append([int(start), int(end)])
|
374 |
-
|
375 |
-
# Heuristically split text of discontiguous entities into chunks
|
376 |
-
ann["text"] = []
|
377 |
-
if len(ann["offsets"]) > 1:
|
378 |
-
i = 0
|
379 |
-
for start, end in ann["offsets"]:
|
380 |
-
chunk_len = end - start
|
381 |
-
ann["text"].append(text[i : chunk_len + i])
|
382 |
-
i += chunk_len
|
383 |
-
while i < len(text) and text[i] == " ":
|
384 |
-
i += 1
|
385 |
-
else:
|
386 |
-
ann["text"] = [text]
|
387 |
-
|
388 |
-
example["text_bound_annotations"].append(ann)
|
389 |
-
|
390 |
-
elif line.startswith("E"):
|
391 |
-
ann = {}
|
392 |
-
fields = line.split("\t")
|
393 |
-
|
394 |
-
ann["id"] = fields[0]
|
395 |
-
|
396 |
-
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
397 |
-
|
398 |
-
ann["arguments"] = []
|
399 |
-
for role_ref_id in fields[1].split()[1:]:
|
400 |
-
argument = {
|
401 |
-
"role": (role_ref_id.split(":"))[0],
|
402 |
-
"ref_id": (role_ref_id.split(":"))[1],
|
403 |
-
}
|
404 |
-
ann["arguments"].append(argument)
|
405 |
-
|
406 |
-
example["events"].append(ann)
|
407 |
-
|
408 |
-
elif line.startswith("R"):
|
409 |
-
ann = {}
|
410 |
-
fields = line.split("\t")
|
411 |
-
|
412 |
-
ann["id"] = fields[0]
|
413 |
-
ann["type"] = fields[1].split()[0]
|
414 |
-
|
415 |
-
ann["head"] = {
|
416 |
-
"role": fields[1].split()[1].split(":")[0],
|
417 |
-
"ref_id": fields[1].split()[1].split(":")[1],
|
418 |
-
}
|
419 |
-
ann["tail"] = {
|
420 |
-
"role": fields[1].split()[2].split(":")[0],
|
421 |
-
"ref_id": fields[1].split()[2].split(":")[1],
|
422 |
-
}
|
423 |
-
|
424 |
-
example["relations"].append(ann)
|
425 |
-
|
426 |
-
# '*' seems to be the legacy way to mark equivalences,
|
427 |
-
# but I couldn't find any info on the current way
|
428 |
-
# this might have to be adapted dependent on the brat version
|
429 |
-
# of the annotation
|
430 |
-
elif line.startswith("*"):
|
431 |
-
ann = {}
|
432 |
-
fields = line.split("\t")
|
433 |
-
|
434 |
-
ann["id"] = fields[0]
|
435 |
-
ann["ref_ids"] = fields[1].split()[1:]
|
436 |
-
|
437 |
-
example["equivalences"].append(ann)
|
438 |
-
|
439 |
-
elif line.startswith("A") or line.startswith("M"):
|
440 |
-
ann = {}
|
441 |
-
fields = line.split("\t")
|
442 |
-
|
443 |
-
ann["id"] = fields[0]
|
444 |
-
|
445 |
-
info = fields[1].split()
|
446 |
-
ann["type"] = info[0]
|
447 |
-
ann["ref_id"] = info[1]
|
448 |
-
|
449 |
-
if len(info) > 2:
|
450 |
-
ann["value"] = info[2]
|
451 |
-
else:
|
452 |
-
ann["value"] = ""
|
453 |
-
|
454 |
-
example["attributes"].append(ann)
|
455 |
-
|
456 |
-
elif line.startswith("N"):
|
457 |
-
ann = {}
|
458 |
-
fields = line.split("\t")
|
459 |
-
|
460 |
-
ann["id"] = fields[0]
|
461 |
-
ann["text"] = fields[2]
|
462 |
-
|
463 |
-
info = fields[1].split()
|
464 |
-
|
465 |
-
ann["type"] = info[0]
|
466 |
-
ann["ref_id"] = info[1]
|
467 |
-
ann["resource_name"] = info[2].split(":")[0]
|
468 |
-
ann["cuid"] = info[2].split(":")[1]
|
469 |
-
example["normalizations"].append(ann)
|
470 |
-
|
471 |
-
elif parse_notes and line.startswith("#"):
|
472 |
-
ann = {}
|
473 |
-
fields = line.split("\t")
|
474 |
-
|
475 |
-
ann["id"] = fields[0]
|
476 |
-
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
|
477 |
-
|
478 |
-
info = fields[1].split()
|
479 |
-
|
480 |
-
ann["type"] = info[0]
|
481 |
-
ann["ref_id"] = info[1]
|
482 |
-
example["notes"].append(ann)
|
483 |
-
|
484 |
-
return example
|
485 |
-
|
486 |
-
|
487 |
-
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
|
488 |
-
"""
|
489 |
-
Transform a brat parse (conforming to the standard brat schema) obtained with
|
490 |
-
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
|
491 |
-
:param brat_parse:
|
492 |
-
"""
|
493 |
-
|
494 |
-
unified_example = {}
|
495 |
-
|
496 |
-
# Prefix all ids with document id to ensure global uniqueness,
|
497 |
-
# because brat ids are only unique within their document
|
498 |
-
id_prefix = brat_parse["document_id"] + "_"
|
499 |
-
|
500 |
-
# identical
|
501 |
-
unified_example["document_id"] = brat_parse["document_id"]
|
502 |
-
unified_example["passages"] = [
|
503 |
-
{
|
504 |
-
"id": id_prefix + "_text",
|
505 |
-
"type": "abstract",
|
506 |
-
"text": [brat_parse["text"]],
|
507 |
-
"offsets": [[0, len(brat_parse["text"])]],
|
508 |
-
}
|
509 |
-
]
|
510 |
-
|
511 |
-
# get normalizations
|
512 |
-
ref_id_to_normalizations = defaultdict(list)
|
513 |
-
for normalization in brat_parse["normalizations"]:
|
514 |
-
ref_id_to_normalizations[normalization["ref_id"]].append(
|
515 |
-
{
|
516 |
-
"db_name": normalization["resource_name"],
|
517 |
-
"db_id": normalization["cuid"],
|
518 |
-
}
|
519 |
-
)
|
520 |
-
|
521 |
-
# separate entities and event triggers
|
522 |
-
unified_example["events"] = []
|
523 |
-
non_event_ann = brat_parse["text_bound_annotations"].copy()
|
524 |
-
for event in brat_parse["events"]:
|
525 |
-
event = event.copy()
|
526 |
-
event["id"] = id_prefix + event["id"]
|
527 |
-
trigger = next(
|
528 |
-
tr
|
529 |
-
for tr in brat_parse["text_bound_annotations"]
|
530 |
-
if tr["id"] == event["trigger"]
|
531 |
-
)
|
532 |
-
if trigger in non_event_ann:
|
533 |
-
non_event_ann.remove(trigger)
|
534 |
-
event["trigger"] = {
|
535 |
-
"text": trigger["text"].copy(),
|
536 |
-
"offsets": trigger["offsets"].copy(),
|
537 |
-
}
|
538 |
-
for argument in event["arguments"]:
|
539 |
-
argument["ref_id"] = id_prefix + argument["ref_id"]
|
540 |
-
|
541 |
-
unified_example["events"].append(event)
|
542 |
-
|
543 |
-
unified_example["entities"] = []
|
544 |
-
anno_ids = [ref_id["id"] for ref_id in non_event_ann]
|
545 |
-
for ann in non_event_ann:
|
546 |
-
entity_ann = ann.copy()
|
547 |
-
entity_ann["id"] = id_prefix + entity_ann["id"]
|
548 |
-
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
|
549 |
-
unified_example["entities"].append(entity_ann)
|
550 |
-
|
551 |
-
# massage relations
|
552 |
-
unified_example["relations"] = []
|
553 |
-
skipped_relations = set()
|
554 |
-
for ann in brat_parse["relations"]:
|
555 |
-
if (
|
556 |
-
ann["head"]["ref_id"] not in anno_ids
|
557 |
-
or ann["tail"]["ref_id"] not in anno_ids
|
558 |
-
):
|
559 |
-
skipped_relations.add(ann["id"])
|
560 |
-
continue
|
561 |
-
unified_example["relations"].append(
|
562 |
-
{
|
563 |
-
"arg1_id": id_prefix + ann["head"]["ref_id"],
|
564 |
-
"arg2_id": id_prefix + ann["tail"]["ref_id"],
|
565 |
-
"id": id_prefix + ann["id"],
|
566 |
-
"type": ann["type"],
|
567 |
-
"normalized": [],
|
568 |
-
}
|
569 |
-
)
|
570 |
-
if len(skipped_relations) > 0:
|
571 |
-
example_id = brat_parse["document_id"]
|
572 |
-
logger.info(
|
573 |
-
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
|
574 |
-
f" Skip (for now): "
|
575 |
-
f"{list(skipped_relations)}"
|
576 |
-
)
|
577 |
-
|
578 |
-
# get coreferences
|
579 |
-
unified_example["coreferences"] = []
|
580 |
-
for i, ann in enumerate(brat_parse["equivalences"], start=1):
|
581 |
-
is_entity_cluster = True
|
582 |
-
for ref_id in ann["ref_ids"]:
|
583 |
-
if not ref_id.startswith("T"): # not textbound -> no entity
|
584 |
-
is_entity_cluster = False
|
585 |
-
elif ref_id not in anno_ids: # event trigger -> no entity
|
586 |
-
is_entity_cluster = False
|
587 |
-
if is_entity_cluster:
|
588 |
-
entity_ids = [id_prefix + i for i in ann["ref_ids"]]
|
589 |
-
unified_example["coreferences"].append(
|
590 |
-
{"id": id_prefix + str(i), "entity_ids": entity_ids}
|
591 |
-
)
|
592 |
-
return unified_example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chemprot.py
DELETED
@@ -1,446 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""
|
16 |
-
The BioCreative VI Chemical-Protein interaction dataset identifies entities of
|
17 |
-
chemicals and proteins and their likely relation to one other. Compounds are
|
18 |
-
generally agonists (activators) or antagonists (inhibitors) of proteins. The
|
19 |
-
script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb)
|
20 |
-
AND/OR source (default) schema
|
21 |
-
"""
|
22 |
-
import os
|
23 |
-
from typing import Dict, Tuple
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
from .bigbiohub import kb_features
|
28 |
-
from .bigbiohub import BigBioConfig
|
29 |
-
from .bigbiohub import Tasks
|
30 |
-
|
31 |
-
_LANGUAGES = ['English']
|
32 |
-
_PUBMED = True
|
33 |
-
_LOCAL = False
|
34 |
-
_CITATION = """\
|
35 |
-
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
|
36 |
-
author = {Krallinger, M., Rabal, O., Lourenço, A.},
|
37 |
-
title = {Overview of the BioCreative VI chemical-protein interaction Track},
|
38 |
-
journal = {Proceedings of the BioCreative VI Workshop,},
|
39 |
-
volume = {141-146},
|
40 |
-
year = {2017},
|
41 |
-
url = {https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/},
|
42 |
-
doi = {},
|
43 |
-
biburl = {},
|
44 |
-
bibsource = {}
|
45 |
-
}
|
46 |
-
"""
|
47 |
-
_DESCRIPTION = """\
|
48 |
-
The BioCreative VI Chemical-Protein interaction dataset identifies entities of
|
49 |
-
chemicals and proteins and their likely relation to one other. Compounds are
|
50 |
-
generally agonists (activators) or antagonists (inhibitors) of proteins.
|
51 |
-
"""
|
52 |
-
|
53 |
-
_DATASETNAME = "chemprot"
|
54 |
-
_DISPLAYNAME = "ChemProt"
|
55 |
-
|
56 |
-
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/"
|
57 |
-
|
58 |
-
_LICENSE = 'Public Domain Mark 1.0'
|
59 |
-
|
60 |
-
_URLs = {
|
61 |
-
"source": "https://huggingface.co/datasets/bigbio/chemprot/resolve/main/ChemProt_Corpus.zip",
|
62 |
-
"bigbio_kb": "https://huggingface.co/datasets/bigbio/chemprot/resolve/main/ChemProt_Corpus.zip",
|
63 |
-
}
|
64 |
-
|
65 |
-
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION, Tasks.NAMED_ENTITY_RECOGNITION]
|
66 |
-
_SOURCE_VERSION = "1.0.0"
|
67 |
-
_BIGBIO_VERSION = "1.0.0"
|
68 |
-
|
69 |
-
|
70 |
-
# Chemprot specific variables
|
71 |
-
# NOTE: There are 3 examples (2 in dev, 1 in training) with CPR:0
|
72 |
-
_GROUP_LABELS = {
|
73 |
-
"CPR:0": "Undefined",
|
74 |
-
"CPR:1": "Part_of",
|
75 |
-
"CPR:2": "Regulator",
|
76 |
-
"CPR:3": "Upregulator",
|
77 |
-
"CPR:4": "Downregulator",
|
78 |
-
"CPR:5": "Agonist",
|
79 |
-
"CPR:6": "Antagonist",
|
80 |
-
"CPR:7": "Modulator",
|
81 |
-
"CPR:8": "Cofactor",
|
82 |
-
"CPR:9": "Substrate",
|
83 |
-
"CPR:10": "Not",
|
84 |
-
}
|
85 |
-
|
86 |
-
|
87 |
-
class ChemprotDataset(datasets.GeneratorBasedBuilder):
|
88 |
-
"""BioCreative VI Chemical-Protein Interaction Task."""
|
89 |
-
|
90 |
-
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
91 |
-
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
92 |
-
|
93 |
-
BUILDER_CONFIGS = [
|
94 |
-
BigBioConfig(
|
95 |
-
name="chemprot_full_source",
|
96 |
-
version=SOURCE_VERSION,
|
97 |
-
description="chemprot source schema",
|
98 |
-
schema="source",
|
99 |
-
subset_id="chemprot_full",
|
100 |
-
),
|
101 |
-
BigBioConfig(
|
102 |
-
name="chemprot_shared_task_eval_source",
|
103 |
-
version=SOURCE_VERSION,
|
104 |
-
description="chemprot source schema with only the relation types that were used in the shared task evaluation",
|
105 |
-
schema="source",
|
106 |
-
subset_id="chemprot_shared_task_eval",
|
107 |
-
),
|
108 |
-
BigBioConfig(
|
109 |
-
name="chemprot_bigbio_kb",
|
110 |
-
version=BIGBIO_VERSION,
|
111 |
-
description="chemprot BigBio schema",
|
112 |
-
schema="bigbio_kb",
|
113 |
-
subset_id="chemprot",
|
114 |
-
),
|
115 |
-
]
|
116 |
-
|
117 |
-
DEFAULT_CONFIG_NAME = "chemprot_full_source"
|
118 |
-
|
119 |
-
def _info(self):
|
120 |
-
|
121 |
-
if self.config.schema == "source":
|
122 |
-
features = datasets.Features(
|
123 |
-
{
|
124 |
-
"pmid": datasets.Value("string"),
|
125 |
-
"text": datasets.Value("string"),
|
126 |
-
"entities": datasets.Sequence(
|
127 |
-
{
|
128 |
-
"id": datasets.Value("string"),
|
129 |
-
"type": datasets.Value("string"),
|
130 |
-
"text": datasets.Value("string"),
|
131 |
-
"offsets": datasets.Sequence(datasets.Value("int64")),
|
132 |
-
}
|
133 |
-
),
|
134 |
-
"relations": datasets.Sequence(
|
135 |
-
{
|
136 |
-
"type": datasets.Value("string"),
|
137 |
-
"arg1": datasets.Value("string"),
|
138 |
-
"arg2": datasets.Value("string"),
|
139 |
-
}
|
140 |
-
),
|
141 |
-
}
|
142 |
-
)
|
143 |
-
|
144 |
-
elif self.config.schema == "bigbio_kb":
|
145 |
-
features = kb_features
|
146 |
-
|
147 |
-
return datasets.DatasetInfo(
|
148 |
-
description=_DESCRIPTION,
|
149 |
-
features=features,
|
150 |
-
homepage=_HOMEPAGE,
|
151 |
-
license=str(_LICENSE),
|
152 |
-
citation=_CITATION,
|
153 |
-
)
|
154 |
-
|
155 |
-
def _split_generators(self, dl_manager):
|
156 |
-
"""Returns SplitGenerators."""
|
157 |
-
my_urls = _URLs[self.config.schema]
|
158 |
-
data_dir = dl_manager.download_and_extract(my_urls)
|
159 |
-
|
160 |
-
# Extract each of the individual folders
|
161 |
-
# NOTE: omitting "extract" call cause it uses a new folder
|
162 |
-
train_path = dl_manager.extract(
|
163 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_training.zip")
|
164 |
-
)
|
165 |
-
test_path = dl_manager.extract(
|
166 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_test_gs.zip")
|
167 |
-
)
|
168 |
-
dev_path = dl_manager.extract(
|
169 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_development.zip")
|
170 |
-
)
|
171 |
-
sample_path = dl_manager.extract(
|
172 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_sample.zip")
|
173 |
-
)
|
174 |
-
|
175 |
-
return [
|
176 |
-
datasets.SplitGenerator(
|
177 |
-
name="sample", # should be a named split : /
|
178 |
-
gen_kwargs={
|
179 |
-
"filepath": os.path.join(sample_path, "chemprot_sample"),
|
180 |
-
"abstract_file": "chemprot_sample_abstracts.tsv",
|
181 |
-
"entity_file": "chemprot_sample_entities.tsv",
|
182 |
-
"relation_file": "chemprot_sample_relations.tsv",
|
183 |
-
"gold_standard_file": "chemprot_sample_gold_standard.tsv",
|
184 |
-
"split": "sample",
|
185 |
-
},
|
186 |
-
),
|
187 |
-
datasets.SplitGenerator(
|
188 |
-
name=datasets.Split.TRAIN,
|
189 |
-
gen_kwargs={
|
190 |
-
"filepath": os.path.join(train_path, "chemprot_training"),
|
191 |
-
"abstract_file": "chemprot_training_abstracts.tsv",
|
192 |
-
"entity_file": "chemprot_training_entities.tsv",
|
193 |
-
"relation_file": "chemprot_training_relations.tsv",
|
194 |
-
"gold_standard_file": "chemprot_training_gold_standard.tsv",
|
195 |
-
"split": "train",
|
196 |
-
},
|
197 |
-
),
|
198 |
-
datasets.SplitGenerator(
|
199 |
-
name=datasets.Split.TEST,
|
200 |
-
gen_kwargs={
|
201 |
-
"filepath": os.path.join(test_path, "chemprot_test_gs"),
|
202 |
-
"abstract_file": "chemprot_test_abstracts_gs.tsv",
|
203 |
-
"entity_file": "chemprot_test_entities_gs.tsv",
|
204 |
-
"relation_file": "chemprot_test_relations_gs.tsv",
|
205 |
-
"gold_standard_file": "chemprot_test_gold_standard.tsv",
|
206 |
-
"split": "test",
|
207 |
-
},
|
208 |
-
),
|
209 |
-
datasets.SplitGenerator(
|
210 |
-
name=datasets.Split.VALIDATION,
|
211 |
-
gen_kwargs={
|
212 |
-
"filepath": os.path.join(dev_path, "chemprot_development"),
|
213 |
-
"abstract_file": "chemprot_development_abstracts.tsv",
|
214 |
-
"entity_file": "chemprot_development_entities.tsv",
|
215 |
-
"relation_file": "chemprot_development_relations.tsv",
|
216 |
-
"gold_standard_file": "chemprot_development_gold_standard.tsv",
|
217 |
-
"split": "dev",
|
218 |
-
},
|
219 |
-
),
|
220 |
-
]
|
221 |
-
|
222 |
-
def _generate_examples(
|
223 |
-
self,
|
224 |
-
filepath,
|
225 |
-
abstract_file,
|
226 |
-
entity_file,
|
227 |
-
relation_file,
|
228 |
-
gold_standard_file,
|
229 |
-
split,
|
230 |
-
):
|
231 |
-
"""Yields examples as (key, example) tuples."""
|
232 |
-
if self.config.schema == "source":
|
233 |
-
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
|
234 |
-
|
235 |
-
entities, entity_id = self._get_entities(
|
236 |
-
os.path.join(filepath, entity_file)
|
237 |
-
)
|
238 |
-
|
239 |
-
if self.config.subset_id == "chemprot_full":
|
240 |
-
relations = self._get_relations(os.path.join(filepath, relation_file))
|
241 |
-
elif self.config.subset_id == "chemprot_shared_task_eval":
|
242 |
-
relations = self._get_relations_gs(
|
243 |
-
os.path.join(filepath, gold_standard_file)
|
244 |
-
)
|
245 |
-
else:
|
246 |
-
raise ValueError(self.config)
|
247 |
-
|
248 |
-
for id_, pmid in enumerate(abstracts.keys()):
|
249 |
-
yield id_, {
|
250 |
-
"pmid": pmid,
|
251 |
-
"text": abstracts[pmid],
|
252 |
-
"entities": entities[pmid],
|
253 |
-
"relations": relations.get(pmid, []),
|
254 |
-
}
|
255 |
-
|
256 |
-
elif self.config.schema == "bigbio_kb":
|
257 |
-
|
258 |
-
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
|
259 |
-
entities, entity_id = self._get_entities(
|
260 |
-
os.path.join(filepath, entity_file)
|
261 |
-
)
|
262 |
-
relations = self._get_relations(
|
263 |
-
os.path.join(filepath, relation_file), is_mapped=True
|
264 |
-
)
|
265 |
-
|
266 |
-
uid = 0
|
267 |
-
for id_, pmid in enumerate(abstracts.keys()):
|
268 |
-
data = {
|
269 |
-
"id": str(uid),
|
270 |
-
"document_id": str(pmid),
|
271 |
-
"passages": [],
|
272 |
-
"entities": [],
|
273 |
-
"relations": [],
|
274 |
-
"events": [],
|
275 |
-
"coreferences": [],
|
276 |
-
}
|
277 |
-
uid += 1
|
278 |
-
|
279 |
-
data["passages"] = [
|
280 |
-
{
|
281 |
-
"id": str(uid),
|
282 |
-
"type": "title and abstract",
|
283 |
-
"text": [abstracts[pmid]],
|
284 |
-
"offsets": [[0, len(abstracts[pmid])]],
|
285 |
-
}
|
286 |
-
]
|
287 |
-
uid += 1
|
288 |
-
|
289 |
-
entity_to_id = {}
|
290 |
-
for entity in entities[pmid]:
|
291 |
-
_text = entity["text"]
|
292 |
-
entity.update({"text": [_text]})
|
293 |
-
entity_to_id[entity["id"]] = str(uid)
|
294 |
-
entity.update({"id": str(uid)})
|
295 |
-
_offsets = entity["offsets"]
|
296 |
-
entity.update({"offsets": [_offsets]})
|
297 |
-
entity["normalized"] = []
|
298 |
-
data["entities"].append(entity)
|
299 |
-
uid += 1
|
300 |
-
|
301 |
-
for relation in relations.get(pmid, []):
|
302 |
-
relation["arg1_id"] = entity_to_id[relation.pop("arg1")]
|
303 |
-
relation["arg2_id"] = entity_to_id[relation.pop("arg2")]
|
304 |
-
relation.update({"id": str(uid)})
|
305 |
-
relation["normalized"] = []
|
306 |
-
data["relations"].append(relation)
|
307 |
-
uid += 1
|
308 |
-
|
309 |
-
yield id_, data
|
310 |
-
|
311 |
-
@staticmethod
|
312 |
-
def _get_abstract(abs_filename: str) -> Dict[str, str]:
|
313 |
-
"""
|
314 |
-
For each document in PubMed ID (PMID) in the ChemProt abstract data file, return the abstract. Data is tab-separated.
|
315 |
-
|
316 |
-
:param filename: `*_abstracts.tsv from ChemProt
|
317 |
-
|
318 |
-
:returns Dictionary with PMID keys and abstract text as values.
|
319 |
-
"""
|
320 |
-
with open(abs_filename, "r") as f:
|
321 |
-
contents = [i.strip() for i in f.readlines()]
|
322 |
-
|
323 |
-
# PMID is the first column, Abstract is last
|
324 |
-
return {
|
325 |
-
doc.split("\t")[0]: "\n".join(doc.split("\t")[1:]) for doc in contents
|
326 |
-
} # Includes title as line 1
|
327 |
-
|
328 |
-
@staticmethod
|
329 |
-
def _get_entities(ents_filename: str) -> Tuple[Dict[str, str]]:
|
330 |
-
"""
|
331 |
-
For each document in the corpus, return entity annotations per PMID.
|
332 |
-
Each column in the entity file is as follows:
|
333 |
-
(1) PMID
|
334 |
-
(2) Entity Number
|
335 |
-
(3) Entity Type (Chemical, Gene-Y, Gene-N)
|
336 |
-
(4) Start index
|
337 |
-
(5) End index
|
338 |
-
(6) Actual text of entity
|
339 |
-
|
340 |
-
:param ents_filename: `_*entities.tsv` file from ChemProt
|
341 |
-
|
342 |
-
:returns: Dictionary with PMID keys and entity annotations.
|
343 |
-
"""
|
344 |
-
with open(ents_filename, "r") as f:
|
345 |
-
contents = [i.strip() for i in f.readlines()]
|
346 |
-
|
347 |
-
entities = {}
|
348 |
-
entity_id = {}
|
349 |
-
|
350 |
-
for line in contents:
|
351 |
-
|
352 |
-
pmid, idx, label, start_offset, end_offset, name = line.split("\t")
|
353 |
-
|
354 |
-
# Populate entity dictionary
|
355 |
-
if pmid not in entities:
|
356 |
-
entities[pmid] = []
|
357 |
-
|
358 |
-
ann = {
|
359 |
-
"offsets": [int(start_offset), int(end_offset)],
|
360 |
-
"text": name,
|
361 |
-
"type": label,
|
362 |
-
"id": idx,
|
363 |
-
}
|
364 |
-
|
365 |
-
entities[pmid].append(ann)
|
366 |
-
|
367 |
-
# Populate entity mapping
|
368 |
-
entity_id.update({idx: name})
|
369 |
-
|
370 |
-
return entities, entity_id
|
371 |
-
|
372 |
-
@staticmethod
|
373 |
-
def _get_relations(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
|
374 |
-
"""For each document in the ChemProt corpus, create an annotation for all relationships.
|
375 |
-
|
376 |
-
:param is_mapped: Whether to convert into NL the relation tags. Default is OFF
|
377 |
-
"""
|
378 |
-
with open(rel_filename, "r") as f:
|
379 |
-
contents = [i.strip() for i in f.readlines()]
|
380 |
-
|
381 |
-
relations = {}
|
382 |
-
|
383 |
-
for line in contents:
|
384 |
-
pmid, label, _, _, arg1, arg2 = line.split("\t")
|
385 |
-
arg1 = arg1.split("Arg1:")[-1]
|
386 |
-
arg2 = arg2.split("Arg2:")[-1]
|
387 |
-
|
388 |
-
if pmid not in relations:
|
389 |
-
relations[pmid] = []
|
390 |
-
|
391 |
-
if is_mapped:
|
392 |
-
label = _GROUP_LABELS[label]
|
393 |
-
|
394 |
-
ann = {
|
395 |
-
"type": label,
|
396 |
-
"arg1": arg1,
|
397 |
-
"arg2": arg2,
|
398 |
-
}
|
399 |
-
|
400 |
-
relations[pmid].append(ann)
|
401 |
-
|
402 |
-
return relations
|
403 |
-
|
404 |
-
@staticmethod
|
405 |
-
def _get_relations_gs(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
|
406 |
-
"""
|
407 |
-
For each document in the ChemProt corpus, create an annotation for the gold-standard relationships.
|
408 |
-
|
409 |
-
The columns include:
|
410 |
-
(1) PMID
|
411 |
-
(2) Relationship Label (CPR)
|
412 |
-
(3) Used in shared task
|
413 |
-
(3) Interactor Argument 1 Entity Identifier
|
414 |
-
(4) Interactor Argument 2 Entity Identifier
|
415 |
-
|
416 |
-
Gold standard includes CPRs 3-9. Relationships are always Gene + Protein.
|
417 |
-
Unlike entities, there is no counter, hence once must be made
|
418 |
-
|
419 |
-
:param rel_filename: Gold standard file name
|
420 |
-
:param ent_dict: Entity Identifier to text
|
421 |
-
"""
|
422 |
-
with open(rel_filename, "r") as f:
|
423 |
-
contents = [i.strip() for i in f.readlines()]
|
424 |
-
|
425 |
-
relations = {}
|
426 |
-
|
427 |
-
for line in contents:
|
428 |
-
pmid, label, arg1, arg2 = line.split("\t")
|
429 |
-
arg1 = arg1.split("Arg1:")[-1]
|
430 |
-
arg2 = arg2.split("Arg2:")[-1]
|
431 |
-
|
432 |
-
if pmid not in relations:
|
433 |
-
relations[pmid] = []
|
434 |
-
|
435 |
-
if is_mapped:
|
436 |
-
label = _GROUP_LABELS[label]
|
437 |
-
|
438 |
-
ann = {
|
439 |
-
"type": label,
|
440 |
-
"arg1": arg1,
|
441 |
-
"arg2": arg2,
|
442 |
-
}
|
443 |
-
|
444 |
-
relations[pmid].append(ann)
|
445 |
-
|
446 |
-
return relations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ChemProt_Corpus.zip → chemprot_bigbio_kb/sample-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9e6475f44050d56ad4bb9801c544d890fac6bdd2e2da2396b2bdfe6a4aedbb7
|
3 |
+
size 97134
|
chemprot_bigbio_kb/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cb0525070e1f54da1e40ef37553792ac5fabe5fa9832ecb2bda09d591131669
|
3 |
+
size 1181109
|
chemprot_bigbio_kb/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:248ff5f162e86e640334300cd45a9ee472581b9ef22bc05e553bea1f1b278dff
|
3 |
+
size 1476494
|
chemprot_bigbio_kb/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc9d9301f143aabdeb32410c95bca10325f782f9ca74c516e7747c5a25cbd98e
|
3 |
+
size 890137
|
chemprot_full_source/sample-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42da035f9eb47e798d594532f6837ff68710914a1b56a9ab1126e1965e06c1dd
|
3 |
+
size 77284
|
chemprot_full_source/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90bc2b91e95cd9208751389ff16c3892bd113fa32c45c1188dcc16e4be7de0f3
|
3 |
+
size 945944
|
chemprot_full_source/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40559ad52a20dc6b8d061f8f542daafaecf7b8fb14a8d18253bf52b4c2e8d9c6
|
3 |
+
size 1192129
|
chemprot_full_source/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d07a367ae932f918310b63f267e7136f6564c6a1826cfdb9efdd9e2200999c8
|
3 |
+
size 723246
|
chemprot_shared_task_eval_source/sample-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:936eba9332ffa6c086f37386fb6922879716e513afa8362c357a50171607dcbc
|
3 |
+
size 76938
|
chemprot_shared_task_eval_source/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1cbe5bcd04d03fdf9b40f1cac5a5326b5e40607f1c9ef5a85378461c53045ec
|
3 |
+
size 940460
|
chemprot_shared_task_eval_source/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82868b082981b7d73ae5436668e3cfdb18d147b2608c691d374f4f06fe5ed68b
|
3 |
+
size 1186849
|
chemprot_shared_task_eval_source/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c558d0bd6eceae7127b104f66d7e39e41b68d9970d597aa65d4be7a5baab580
|
3 |
+
size 720123
|