datasetId
large_stringlengths
6
107
author
large_stringlengths
3
34
last_modified
large_stringdate
2021-05-20 00:57:22
2025-05-05 20:13:58
downloads
int64
0
4.28M
likes
int64
0
7.74k
tags
large listlengths
1
2.03k
task_categories
large listlengths
0
16
createdAt
large_stringdate
2022-03-02 23:29:22
2025-05-05 20:10:54
trending_score
float64
1
39
card
large_stringlengths
31
1M
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-old-prm-indices_30720_38400
kaiwenw
2025-05-05T18:56:21Z
0
0
[ "region:us" ]
[]
2025-05-05T18:56:08Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: string - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1120119801 num_examples: 7680 download_size: 265485450 dataset_size: 1120119801 configs: - config_name: default data_files: - split: train path: data/train-* ---
Aman6u5/bucket
Aman6u5
2025-05-05T12:54:48Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-05T11:12:57Z
null
--- license: apache-2.0 ---
herwoww/MultiDiac
herwoww
2025-05-05T09:45:55Z
0
0
[ "region:us" ]
[]
2025-05-05T09:41:16Z
null
--- configs: - config_name: yor data_files: - split: train path: yor_train.csv # - split: test # path: yor_test.csv - split: dev path: yor_dev.csv # - config_name: ara # data_files: # - split: test # path: ara_test.csv ---
dgambettaphd/D_llm2_gen10_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-05-05T08:58:53Z
0
0
[ "region:us" ]
[]
2025-05-05T08:58:25Z
null
--- dataset_info: features: - name: id_doc dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 14923305 num_examples: 26000 download_size: 8995691 dataset_size: 14923305 configs: - config_name: default data_files: - split: train path: data/train-* ---
Denhotech/denes_data
Denhotech
2025-05-05T07:07:32Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T06:56:15Z
null
--- dataset_info: features: - name: Name dtype: string - name: Age dtype: int64 - name: City dtype: string - name: Score dtype: float64 splits: - name: train num_bytes: 734 num_examples: 20 download_size: 2104 dataset_size: 734 configs: - config_name: default data_files: - split: train path: data/train-* ---
Yuyeong/rw_roman-empire_node2vec_1_mask_public
Yuyeong
2025-05-05T06:59:25Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T06:50:27Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' '7': '7' '8': '8' '9': '9' '10': '10' '11': '11' '12': '12' '13': '13' '14': '14' '15': '15' '16': '16' '17': '17' - name: group_idx dtype: int64 - name: node_idx dtype: int64 splits: - name: train num_bytes: 3825069706.0214458 num_examples: 2264100 - name: validation num_bytes: 3606793567.150384 num_examples: 2134900 - name: test num_bytes: 3602232068.8922424 num_examples: 2132200 download_size: 3312737632 dataset_size: 11034095342.064072 --- # Dataset Card for "rw_roman-empire_node2vec_1_mask_public" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Rakuto/DailyTalkContiguous-ja
Rakuto
2025-05-05T04:51:27Z
0
0
[ "task_categories:automatic-speech-recognition", "language:ja", "license:cc-by-sa-4.0", "arxiv:2207.01063", "region:us" ]
[ "automatic-speech-recognition" ]
2025-05-04T16:37:39Z
null
--- license: cc-by-sa-4.0 task_categories: - automatic-speech-recognition language: - ja --- # DailyTalkContiguous-ja: Spoken Dialogue Dataset in Japanese DailyTalkContiguous-ja is a synthetic multi-turn Japanese conversational speech dataset in which [DailyTalk](https://arxiv.org/abs/2207.01063) [Keon Lee etal., 2022] translated by [Gemma-3-27B](https://huggingface.co/google/gemma-3-27b-it) and speech data is synthesized by TTS engine [Zyphra/Zonos-v0.1-transformer](https://github.com/Zyphra/Zonos). For each speaker in covnersation, different voice is randomly asssigned from voice dataset with five voices in total. As like with [kyutai/DailyTalkContiguous](https://huggingface.co/datasets/kyutai/DailyTalkContiguous), rather than having separate files for each speaker's turn, this uses a stereo file for each conversation. The two speakers in a conversation are put separately on the left and right channels. **Dataset size**: 25 hours speech with 2.5k conversation
Eluza133/A12d12s12
Eluza133
2025-05-05T04:02:26Z
2,965
0
[ "license:apache-2.0", "size_categories:n<1K", "modality:image", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-02-27T15:03:01Z
null
--- license: apache-2.0 ---
aiwithvarun7/theekkathir-text-dataset
aiwithvarun7
2025-05-05T02:23:26Z
3,388
1
[ "task_categories:text-generation", "language:ta", "license:cc-by-nc-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation" ]
2024-11-02T17:48:43Z
null
--- license: cc-by-nc-4.0 dataset_info: features: - name: தேதி dtype: string - name: தலைப்பு dtype: string - name: செய்தி-வகை dtype: string - name: எழுத்தாளர் dtype: string - name: இணைப்பு dtype: string - name: மொழி dtype: string - name: குறிமுறை தரநிலை dtype: string - name: உள்ளடக்கம் dtype: string - name: சேகரிக்கப்பட்ட தேதி dtype: string configs: - config_name: sample parquets data_files: TheekkathirDataset/parquets/*.parquet language: - ta task_categories: - text-generation size_categories: - 100K<n<1M --- <h1 align="center"><b>theekkathir-text-dataset <-> தீக்கதிர் தரவுத்தொகுப்பு</b></h1> <p align="center"> <img src="https://github.com/user-attachments/assets/3731edf1-70b9-4e0a-98c1-6b89c4e03395" /> </p> --- <a href="https://github.com/vishnumur777/theekkathir-text-dataset/tree/main"> <p align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/64d848ce620c17bfa092e051/4ySVV0-jiAT_P3iIde0ei.png" alt="hugging face group" width="500px" height="700px"/> </p> </a> <h2 align="center">Click above button to view GitHub Repository</h2> <h3>இலக்கு:</h3> இந்த திட்டத்தின் இலக்கு தீக்கதிர் இதழின் செய்தி கட்டுரைகளை தரவுத்தொகுப்பாக மாற்றுவதாகும், இது இயற்கை மொழி பதிவு (NLP) மற்றும் LLM ஆராய்ச்சி நோக்கங்களுக்கு பயன்படுத்தப்படலாம். <h3>Goal:</h3> The goal of the project is to convert news articles from theekkathir magazine into dataset, which can be used for Natural Language Processing (NLP) and LLM research purposes # Columns in .parquet - வெளியிட்ட தேதி (Released Date) - தலைப்பு (Title) - செய்தி வகை (Categories) - எழுத்தாளர் (Author) - மொழி (Language) - குறிமுறைத் தரநிலை (Character Encoding) - உள்ளடக்கம் (Content) - சேகரிக்கப்பட்ட தேதி (Scraped Date) ### You can also get [texts](https://huggingface.co/datasets/aiwithvarun7/theekkathir-text-dataset/tree/main/TheekkathirDataset/texts) apart from parquet files. # How to Contribute If you want to contribute to this project, Contact me via [LinkedIn](https://linkedin.com/in/varun-muralidhar) - If possible, write CONTRIBUTING.md and make Pull Request here. - Able to Read and Write Tamil. - Follow [Medium](https://medium.com/@VARUNMURALIDHAR), For detailed documentation and I will update on any contribution. - Raise issues and PR, if possible. # எவ்வாறு பங்களிக்கலாம் இந்த திட்டத்திற்கு பங்களிக்க விரும்பினால், [LinkedIn](https://linkedin.com/in/varun-muralidhar) மூலம் என்னை தொடர்பு கொள்ளவும். - தமிழ் மொழியை படிக்க, எழுத தெரிய வேண்டும். - சாத்தியமானால், CONTRIBUTING.md எழுதி இங்கு Pull Request செய்யவும். - விரிவான ஆவணங்களுக்காக [Medium](https://medium.com/@VARUNMURALIDHAR) பின்தொடரவும். நான் எந்தவொரு பங்களிப்பையும் புதுப்பிக்கிறேன். - சாத்தியமானால், பிரச்சினைகளையும் PR (Pull Request) யையும் உயர்த்தவும்.
THU-ATOM/DrugCLIP_data
THU-ATOM
2025-05-05T02:12:28Z
100
0
[ "license:cc-by-4.0", "region:us" ]
[]
2024-08-29T06:36:29Z
null
--- license: cc-by-4.0 --- --- license: cc-by-4.0 --- # 🧬 DrugCLIP data repository This repository hosts benchmark datasets, pre-computed molecular embeddings, pretrained model weights, and supporting files used in the **DrugCLIP** project. It also includes data and models used for **wet lab validation experiments**. --- ## 📁 Repository Contents ### 1. `DUD-E.zip` - Full dataset for the **DUD-E benchmark**. - Includes ligand and target files for all targets. --- ### 2. `LIT-PCBA.zip` - Full dataset for the **LIT-PCBA benchmark**. - Includes ligand and target files for all targets. --- ### 3. `encoded_mol_embs.zip` - Pre-encoded molecular embeddings from the **ChemDiv** compound library. - Each `.pkl` file contains: - `name_list`: `[hitid, SMILES]` - `embedding_list`: list of **128-dimensional** vectors - Versions included: - **8-fold** version of the full ChemDiv library - **6-fold** version of the full ChemDiv library - **6-fold** version of a filtered ChemDiv library --- ### 4. `benchmark_weights.zip` Contains **pretrained model weights** for **benchmark experiments** on the DUD-E and LIT-PCBA datasets using various ligand and target filtering strategies. #### 🔬 DUD-E: Ligand Filtering Strategies | Filename | Description | |----------------------|-------------| | `dude_ecfp_90.pt` | Trained by removing ligands with **ECFP4 similarity > 0.9**. | | `dude_ecfp_60.pt` | Trained by removing ligands with **ECFP4 similarity > 0.6**. | | `dude_ecfp_30.pt` | Trained by removing ligands with **ECFP4 similarity > 0.3**. | | `dude_scaffold.pt` | Trained by removing ligands sharing **scaffolds** with test set. | #### 🧬 DUD-E: Target Filtering Strategies | Filename | Description | |------------------------|-------------| | `dude_identity_90.pt` | Removed targets with **MMseqs2 identity > 0.9**. | | `dude_identity_60.pt` | Removed targets with **MMseqs2 identity > 0.6**. | | `dude_identity_30.pt` | Removed targets with **MMseqs2 identity > 0.3**. | | `dude_identity_0.pt` | Removed targets based on **HMMER sequence identity**. | #### 🧪 LIT-PCBA: Target Filtering Strategy | Filename | Description | |-------------------------|-------------| | `litpcba_identity_90.pt`| Removed targets with **MMseqs2 identity > 0.9**. | --- ### 5. `model_weights.zip` Contains model weights trained specifically for **wet lab experiments**. These models were trained using: - **6-fold** data splits - **8-fold** data splits Used to predict compounds validated in real-world assays for the following targets: - `5HT2a` - `NET` - `Trip12` --- ### 6. `WetLab_PDBs_and_LMDBs` Target data used for wet lab validation experiments: - **LMDB files**: For DrugCLIP screening Includes data for: - `5HT2a` - `NET` - `Trip12` --- ### 7. `benchmark_throughput` Files for reproducing throughput benchmark results.
john-1111/x_dataset_060792
john-1111
2025-05-05T01:29:48Z
273
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-25T07:15:47Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** john-1111/x_dataset_060792 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5GKGMoTKZRasLaJevQBAEDksBj7RGDgvVb9zqkY3ygXtx3bo ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{john-11112025datauniversex_dataset_060792, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={john-1111}, year={2025}, url={https://huggingface.co/datasets/john-1111/x_dataset_060792}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 3197762 - **Date Range:** 2025-01-02T00:00:00Z to 2025-04-25T00:00:00Z - **Last Updated:** 2025-05-05T01:29:48Z ### Data Distribution - Tweets with hashtags: 5.04% - Tweets without hashtags: 94.96% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 1261593 | 88.67% | | 2 | #granhermano | 10301 | 0.72% | | 3 | #riyadh | 9374 | 0.66% | | 4 | #箱根駅伝 | 8147 | 0.57% | | 5 | #thameposeriesep9 | 7605 | 0.53% | | 6 | #tiktok | 6765 | 0.48% | | 7 | #ad | 5367 | 0.38% | | 8 | #zelena | 4878 | 0.34% | | 9 | #smackdown | 4844 | 0.34% | | 10 | #कबीर_परमेश्वर_निर्वाण_दिवस | 4843 | 0.34% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-25T07:14:13Z | 414446 | 414446 | | 2025-01-25T07:14:44Z | 453526 | 867972 | | 2025-01-25T07:15:15Z | 453526 | 1321498 | | 2025-01-25T07:15:45Z | 453526 | 1775024 | | 2025-01-25T07:16:15Z | 453526 | 2228550 | | 2025-02-18T03:38:58Z | 471834 | 2700384 | | 2025-05-05T01:29:48Z | 497378 | 3197762 |
rainbowbridge/x_dataset_57071
rainbowbridge
2025-05-05T01:11:58Z
1,300
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-27T00:25:54Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** rainbowbridge/x_dataset_57071 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5F2S4Xnn1UqWXhWmdu1kgfeu1ZpFoQEYbxF8oCNpRHnMZNar ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{rainbowbridge2025datauniversex_dataset_57071, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={rainbowbridge}, year={2025}, url={https://huggingface.co/datasets/rainbowbridge/x_dataset_57071}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 46728701 - **Date Range:** 2025-01-21T00:00:00Z to 2025-02-09T00:00:00Z - **Last Updated:** 2025-02-18T18:45:20Z ### Data Distribution - Tweets with hashtags: 43.62% - Tweets without hashtags: 56.38% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 26346933 | 56.38% | | 2 | #riyadh | 326612 | 0.70% | | 3 | #zelena | 248547 | 0.53% | | 4 | #tiktok | 199186 | 0.43% | | 5 | #bbb25 | 123042 | 0.26% | | 6 | #ad | 115507 | 0.25% | | 7 | #granhermano | 68204 | 0.15% | | 8 | #jhope_at_galadespiècesjaunes | 67706 | 0.14% | | 9 | #bbmzansi | 63947 | 0.14% | | 10 | #pr | 61448 | 0.13% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-27T00:26:55Z | 3588990 | 3588990 | | 2025-01-30T12:29:25Z | 8527338 | 12116328 | | 2025-02-03T00:32:41Z | 9724909 | 21841237 | | 2025-02-06T12:35:39Z | 7123646 | 28964883 | | 2025-02-10T00:39:12Z | 9349448 | 38314331 | | 2025-02-13T12:43:01Z | 6970444 | 45284775 | | 2025-02-18T03:44:05Z | 636505 | 45921280 | | 2025-02-18T18:45:20Z | 807421 | 46728701 |
marry-1111/x_dataset_0502178
marry-1111
2025-05-05T01:07:56Z
316
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-25T07:14:45Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** marry-1111/x_dataset_0502178 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5HmfhkSP5knw1QcrE8udotNj1C9JD2rriUKtWT7DmigBdr8A ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{marry-11112025datauniversex_dataset_0502178, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={marry-1111}, year={2025}, url={https://huggingface.co/datasets/marry-1111/x_dataset_0502178}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 3234371 - **Date Range:** 2025-01-02T00:00:00Z to 2025-04-25T00:00:00Z - **Last Updated:** 2025-05-05T01:07:55Z ### Data Distribution - Tweets with hashtags: 4.32% - Tweets without hashtags: 95.68% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 1261593 | 90.03% | | 2 | #granhermano | 10301 | 0.74% | | 3 | #箱根駅伝 | 8147 | 0.58% | | 4 | #thameposeriesep9 | 7605 | 0.54% | | 5 | #tiktok | 5032 | 0.36% | | 6 | #zelena | 4878 | 0.35% | | 7 | #smackdown | 4844 | 0.35% | | 8 | #कबीर_परमेश्वर_निर्वाण_दिवस | 4843 | 0.35% | | 9 | #ad | 3533 | 0.25% | | 10 | #delhielectionresults | 3476 | 0.25% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-25T07:13:13Z | 454010 | 454010 | | 2025-01-25T07:13:46Z | 471976 | 925986 | | 2025-01-25T07:14:15Z | 453526 | 1379512 | | 2025-01-25T07:14:44Z | 453526 | 1833038 | | 2025-01-25T07:15:13Z | 453526 | 2286564 | | 2025-02-18T03:39:05Z | 471834 | 2758398 | | 2025-05-05T01:07:55Z | 475973 | 3234371 |
robert-1111/x_dataset_040752
robert-1111
2025-05-05T00:55:52Z
165
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-25T07:11:28Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** robert-1111/x_dataset_040752 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5Gq8xaWKd8cNHFkD8Mt38BjL1dzBGi8ZhdfMskmv3v2H5hLC ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{robert-11112025datauniversex_dataset_040752, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={robert-1111}, year={2025}, url={https://huggingface.co/datasets/robert-1111/x_dataset_040752}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 2636450 - **Date Range:** 2025-01-02T00:00:00Z to 2025-04-25T00:00:00Z - **Last Updated:** 2025-05-05T00:55:52Z ### Data Distribution - Tweets with hashtags: 5.36% - Tweets without hashtags: 94.64% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 1251882 | 89.86% | | 2 | #箱根駅伝 | 8147 | 0.58% | | 3 | #thameposeriesep9 | 7605 | 0.55% | | 4 | #riyadh | 7255 | 0.52% | | 5 | #tiktok | 6802 | 0.49% | | 6 | #nfldraft2025 | 6802 | 0.49% | | 7 | #ad | 5266 | 0.38% | | 8 | #zelena | 4878 | 0.35% | | 9 | #smackdown | 4844 | 0.35% | | 10 | #कबीर_परमेश्वर_निर्वाण_दिवस | 4843 | 0.35% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-25T07:10:27Z | 414446 | 414446 | | 2025-01-25T07:10:56Z | 414446 | 828892 | | 2025-01-25T07:11:27Z | 414446 | 1243338 | | 2025-01-25T07:11:56Z | 453526 | 1696864 | | 2025-02-18T03:38:23Z | 471834 | 2168698 | | 2025-05-05T00:55:52Z | 467752 | 2636450 |
semran1/calibration_test
semran1
2025-05-05T00:48:33Z
0
0
[ "region:us" ]
[]
2025-05-05T00:48:21Z
null
--- dataset_info: features: - name: text dtype: string - name: cc-path dtype: string - name: domain dtype: string - name: lang dtype: string - name: lang_score dtype: float64 - name: timestamp dtype: string - name: url dtype: string - name: math_score dtype: float64 - name: type dtype: string splits: - name: train num_bytes: 205426140.0 num_examples: 50000 download_size: 106854338 dataset_size: 205426140.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ieuniversity/group_7_submission
ieuniversity
2025-05-05T00:11:00Z
403
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-19T13:43:26Z
null
--- dataset_info: features: - name: ID dtype: int64 - name: CLASE dtype: string splits: - name: train num_bytes: 580197 num_examples: 25808 download_size: 176229 dataset_size: 580197 configs: - config_name: default data_files: - split: train path: data/train-* ---
sophiayk20/repetition-one-speaker
sophiayk20
2025-05-04T23:31:47Z
0
0
[ "region:us" ]
[]
2025-05-04T23:27:58Z
null
--- dataset_info: features: - name: id dtype: string - name: dialogue dtype: string - name: disfluent_dialogue dtype: string - name: summary dtype: string splits: - name: ATAS num_bytes: 2373554 num_examples: 1500 - name: ATOS num_bytes: 2373554 num_examples: 1500 - name: OTAS num_bytes: 2666795 num_examples: 1500 - name: OTOS num_bytes: 2666795 num_examples: 1500 download_size: 2126064 dataset_size: 10080698 configs: - config_name: default data_files: - split: ATAS path: data/ATAS-* - split: ATOS path: data/ATOS-* - split: OTAS path: data/OTAS-* - split: OTOS path: data/OTOS-* ---
sortl005/Superconductor
sortl005
2025-05-04T23:30:39Z
0
0
[ "region:us" ]
[]
2025-05-04T23:30:29Z
null
--- dataset_info: features: - name: x sequence: float64 - name: y dtype: float64 splits: - name: train num_bytes: 10716300 num_examples: 15309 download_size: 290587 dataset_size: 10716300 configs: - config_name: default data_files: - split: train path: data/train-* ---
marcuscedricridia/OpenMathInstruct-2-sampled-balanced
marcuscedricridia
2025-05-04T23:28:57Z
0
0
[ "region:us" ]
[]
2025-05-04T23:28:02Z
null
--- dataset_info: features: - name: problem dtype: string - name: generated_solution dtype: string - name: problem_source dtype: string splits: - name: train num_bytes: 1103869.0114952696 num_examples: 1000 download_size: 450651 dataset_size: 1103869.0114952696 configs: - config_name: default data_files: - split: train path: data/train-* ---
momo1942/x_dataset_19124
momo1942
2025-05-04T23:21:24Z
1,239
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-27T06:34:57Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** momo1942/x_dataset_19124 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5FvdP3P4KfWBM4YSPM5SaL5eGThA6g2NUwvPzMeCq6WRY9TD ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{momo19422025datauniversex_dataset_19124, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={momo1942}, year={2025}, url={https://huggingface.co/datasets/momo1942/x_dataset_19124}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 58904296 - **Date Range:** 2025-01-21T00:00:00Z to 2025-02-12T00:00:00Z - **Last Updated:** 2025-02-18T19:00:41Z ### Data Distribution - Tweets with hashtags: 42.09% - Tweets without hashtags: 57.91% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 34109059 | 57.91% | | 2 | #riyadh | 360800 | 0.61% | | 3 | #zelena | 305824 | 0.52% | | 4 | #tiktok | 239491 | 0.41% | | 5 | #bbb25 | 173195 | 0.29% | | 6 | #ad | 137871 | 0.23% | | 7 | #granhermano | 94348 | 0.16% | | 8 | #bbmzansi | 80293 | 0.14% | | 9 | #jhope_at_galadespiècesjaunes | 74039 | 0.13% | | 10 | #pr | 72837 | 0.12% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-27T06:36:14Z | 4698495 | 4698495 | | 2025-01-30T18:39:09Z | 9621596 | 14320091 | | 2025-02-03T06:43:27Z | 12152156 | 26472247 | | 2025-02-06T18:48:17Z | 12216961 | 38689208 | | 2025-02-10T06:51:17Z | 6273827 | 44963035 | | 2025-02-13T18:56:05Z | 12477634 | 57440669 | | 2025-02-18T03:59:19Z | 829865 | 58270534 | | 2025-02-18T19:00:41Z | 633762 | 58904296 |
asafxrev/so100_jenga_box_simple
asafxrev
2025-05-04T22:39:48Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-05-04T22:39:45Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 5, "total_frames": 1711, "total_tasks": 1, "total_videos": 5, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:5" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.follower_cam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
mehmet0001/github-commits-dataset
mehmet0001
2025-05-04T21:23:38Z
0
0
[ "region:us" ]
[]
2025-05-04T21:23:18Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 1325874280 num_examples: 91646 download_size: 393630553 dataset_size: 1325874280 configs: - config_name: default data_files: - split: train path: data/train-* ---
MBZUAI-IFM/riddlesenseplusplus
MBZUAI-IFM
2025-05-04T20:52:38Z
0
0
[ "region:us" ]
[]
2025-05-04T20:52:36Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: metadata dtype: string - name: dataset_source dtype: string splits: - name: train num_bytes: 13981243 num_examples: 3508 download_size: 6754856 dataset_size: 13981243 configs: - config_name: default data_files: - split: train path: data/train-* ---
xbilek25/train_hall_absorb_0.7_14400_18000
xbilek25
2025-05-04T20:48:22Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T16:38:08Z
null
--- dataset_info: features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string splits: - name: train num_bytes: 719853524.0 num_examples: 3600 download_size: 564525641 dataset_size: 719853524.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.0_alpha_0.2_num-company_2_dataset_1_for_gen_11_v2
HungVu2003
2025-05-04T20:33:24Z
0
0
[ "region:us" ]
[]
2025-05-04T20:33:22Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3159133 num_examples: 13750 download_size: 992842 dataset_size: 3159133 configs: - config_name: default data_files: - split: train path: data/train-* ---
doublesizebed/process_dataset_mini
doublesizebed
2025-05-04T19:04:53Z
3
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T19:06:38Z
null
--- dataset_info: features: - name: audio_filename dtype: string - name: prompt dtype: string - name: transcription dtype: string - name: gender dtype: string - name: audio_filepath dtype: audio - name: utterance_pitch_mean dtype: float64 - name: utterance_pitch_std dtype: float64 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speech_duration dtype: float64 - name: speaking_rate dtype: float64 - name: phonemes dtype: string splits: - name: train num_bytes: 1076070425.0 num_examples: 20000 download_size: 1073280024 dataset_size: 1076070425.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
BasedLukas/so101_test_2
BasedLukas
2025-05-04T18:55:36Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-05-04T18:55:26Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 2, "total_frames": 896, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
RafaelJaime/sas_opposition_exam_data
RafaelJaime
2025-05-04T17:48:04Z
376
0
[ "language:es", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "medical" ]
[]
2025-03-21T14:57:39Z
null
--- dataset_info: features: - name: statement dtype: string - name: answers sequence: string - name: correct_answer dtype: string - name: theme dtype: string - name: version dtype: string splits: - name: train num_bytes: 5128074 num_examples: 10712 download_size: 2407181 dataset_size: 5128074 configs: - config_name: default data_files: - split: train path: data/train-* license: apache-2.0 language: - es tags: - medical --- # SAS Opposition Exam Dataset This dataset contains questions and answers from all the exams of the SAS (Servicio Andaluz de Salud) public job offers. The questions and answers are sourced from the official webpage of the Andalusian Health Service [here](https://www.sspa.juntadeandalucia.es/servicioandaluzdesalud/profesionales/ofertas-de-empleo/oferta-de-empleo-publico-puestos-base/oep-extraordinaria-decreto-ley-122022-centros-sas/cuadro-de-evolucion-concurso-oposicion-centros-sas). ## Dataset Information - **Statement**: The question in the exam. - **Answers**: The possible answers for the question. - **Real Answer**: The correct answer for the question. - **Theme**: The topic or subject of the question. ### Dataset Creation Script The script used to create this dataset can be found at: [generation_script.py](https://huggingface.co/datasets/RafaelJaime/sas_opposition_exam_data/blob/main/generation_script.py).
zenml/llmops-database
zenml
2025-05-04T17:25:45Z
441
18
[ "task_categories:feature-extraction", "task_categories:summarization", "task_categories:text-classification", "task_categories:text-generation", "task_ids:news-articles-summarization", "task_ids:news-articles-headline-generation", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:topic-classification", "task_ids:language-modeling", "annotations_creators:machine-generated", "language_creators:found", "multilinguality:monolingual", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "llmops", "mlops", "llms", "production", "devops", "use-case", "case-study" ]
[ "feature-extraction", "summarization", "text-classification", "text-generation" ]
2024-12-04T13:27:02Z
null
--- annotations_creators: - machine-generated language: - en language_creators: - found license: - apache-2.0 multilinguality: - monolingual pretty_name: LLMOps Database size_categories: - n<1K source_datasets: [] tags: - llmops - mlops - llms - production - devops - use-case - case-study task_categories: - feature-extraction - summarization - text-classification - text-generation task_ids: - news-articles-summarization - news-articles-headline-generation - multi-class-classification - multi-label-classification - topic-classification - language-modeling configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: created_at dtype: string - name: title dtype: string - name: industry dtype: string - name: year dtype: int64 - name: source_url dtype: string - name: company dtype: string - name: application_tags dtype: string - name: tools_tags dtype: string - name: extra_tags dtype: string - name: techniques_tags dtype: string - name: short_summary dtype: string - name: full_summary dtype: string splits: - name: train num_bytes: 4088062 num_examples: 665 download_size: 1910660 dataset_size: 4088062 --- # The ZenML LLMOps Database ![Web browser browsing the LLMOps Database](.assets/zenml-llmops-database-banner.gif) ## Dataset Description - **Browse dataset:** https://www.zenml.io/llmops-database - **Launch blog post:** https://www.zenml.io/blog/demystifying-llmops-a-practical-database-of-real-world-generative-ai-implementations - **Point of Contact:** llmopsdatabase at zenml.io To learn more about ZenML and our open-source MLOps framework, visit [zenml.io](https://zenml.io). ### Dataset Summary The LLMOps Database is a comprehensive collection of over 500 real-world generative AI implementations that showcases how organizations are successfully deploying Large Language Models (LLMs) in production. The case studies have been carefully curated to focus on technical depth and practical problem-solving, with an emphasis on implementation details rather than marketing content. The database aims to bridge the gap between theoretical discussions and practical deployments, providing valuable insights for technical teams looking to implement LLMs in production. The LLMOps Database is maintained by the [ZenML](https://zenml.io) team. The dataset is duplicated here on Hugging Face for those who would prefer to access the data offline and/or browse it programmatically. [![The LLMOps Database is maintained by the ZenML core team](.assets/maintained-by-zenml.png)](https://zenml.io) ### Usage Notes - The full dataset is a Hugging Face `Dataset` which contains all the summaries and metadata. Use this as you would any other Hugging Face `Dataset`. All the entries are presented in a single split. - Separately, the case studies are also presented as individual markdown files inside this repository within the `markdown_data` folder. To browse and use these locally you'll need to clone the repository. - These markdown files have been concatenated into a single `.txt` file for your convenience which is `all_data_single_file.txt` at the root of this repository. You might want to play around with uploading this file into [NotebookLM](https://notebooklm.google.com/), for example, or into a model like Google's Gemini Pro which you can then use to in a chat interface. Note that you'll have to use a model that can handle a very large context window since as of currently writing this file contains around 200,000 words. ### Supported Tasks and Leaderboards This dataset does not have any specific associated leaderboards or tasks. It is primarily intended as a resource for learning about real-world LLM deployments and the challenges and solutions involved. ### Languages The case studies in the LLMOps database are exclusively in English. ## Dataset Structure ### Data Instances A typical data instance in the LLMOps database includes the following fields: ```json { "created_at": "2024-12-03T13:19:00.000Z", "title": "Scaling AI Image Animation System with Optimized Latency and Traffic Management", "industry": "Tech", "year": 2024, "source_url": "https://engineering.fb.com/2024/08/14/production-engineering/how-meta-animates-ai-generated-images-at-scale/", "company": "meta", "application_tags": "realtime_application,high_stakes_application", "tools_tags": "pytorch,monitoring,load_balancing,scaling,reliability,scalability", "extra_tags": "pytorch,deployment,optimization,scaling,gpu,load balancing,traffic management,latency optimization,model distillation,inference", "techniques_tags": "model_optimization,latency_optimization,cost_optimization,error_handling,fallback_strategies", "short_summary": "Meta developed and deployed an AI-powered image animation feature that needed to serve billions of users efficiently. They tackled this challenge through a comprehensive optimization strategy including floating-point precision reduction, temporal-attention improvements, DPM-Solver implementation, and innovative distillation techniques. The system was further enhanced with sophisticated traffic management and load balancing solutions, resulting in a highly efficient, globally scalable service with minimal latency and failure rates.", "full_summary": "# Meta: Scaling AI Image Animation System with Optimized Latency and Traffic Management (2024)\n\nhttps://engineering.fb.com/2024/08/14/production-engineering/how-meta-animates-ai-generated-images-at-scale/\n\n..." } ``` The `full_summary` field contains a detailed writeup of the case study, which is truncated here for brevity. ### Data Fields Each case study includes the following fields: - `created_at`: Timestamp of when the entry was created - `title`: Title of the case study - `industry`: Industry or domain the case study belongs to - `year`: Year the case study was published or the work was done - `source_url`: URL to the original source of the case study - `company`: Company or organization that conducted the work - `application_tags`: Tags related to the application or use case - `tools_tags`: Tags for the specific tools or technologies used - `extra_tags`: Additional relevant tags - `techniques_tags`: Tags for the techniques or approaches applied - `short_summary`: Brief summary of the case study - `full_summary`: Detailed writeup of the case study ### Data Splits The LLMOps database currently contains a single collection of >500 case studies, with no defined splits like train/validation/test sets. ## Dataset Creation ### Curation Rationale The LLMOps Database was created to provide practical, implementation-focused insights into deploying LLMs in production environments. While theoretical discussions about LLMs are abundant, technical teams need concrete information to guide their deployment decisions. By curating and summarizing real-world case studies, the database aims to advance the shared understanding of open-source LLMOps solutions and best practices. ### Source Data #### Initial Data Collection and Normalization The case studies in the LLMOps Database have been hand-curated by following relevant discussions on Twitter and Discord channels. [Exa.ai](https://exa.ai) was also used to perform embeddings-based similarity search to find additional relevant sources. The criteria for inclusion focused on technical depth and practical applicability, with an emphasis on detailed implementations, architectural decisions, and real challenges faced by engineering teams. The original source content was either the full text of a blog post or the transcript of a YouTube video. This content was then summarized using the Claude Sonnet 3.5 model from Anthropic. The metadata for each case study was also extracted using the [`instructor`](https://github.com/jxnl/instructor) library. #### Who are the source language producers? The original case study writeups were authored by the engineering teams or technical writers at the respective companies. The summarized versions in the LLMOps Database were generated by Anthropic's Claude Sonnet 3.6 model. ### Personal and Sensitive Information The LLMOps Database does not contain any personal information, sensitive data, or identity characteristics. ## Considerations for Using the Data ### Social Impact of Dataset The LLMOps Database is intended to have a positive impact by enabling technical teams to learn from real-world examples of LLM deployments. By providing practical insights and solutions, the dataset aims to make these powerful technologies more accessible and reliable for production use. However, as with any technology, there are potential risks such as the misuse of LLMs or unintended consequences from their deployment. Users of the dataset should carefully consider the ethical implications and potential impacts of their LLM applications. ### Discussion of Biases One potential limitation of the dataset is that it would have been preferable to include the original source text or full video transcripts along with the summaries. However, this was not done to avoid potential copyright or ownership issues. If users wish to access the original source content, they will need to download it themselves. ### Other Known Limitations No other known limitations. ## Additional Information ### Dataset Curators The LLMOps Database was curated by the ZenML team. [ZenML](https://zenml.io) maintains an open-source MLOps framework, and as part of their work, they engage with many people doing MLOps and LLMOps. The team gathered these sources to better understand the space and provide a useful resource for others. ### Licensing Information The LLMOps Database is shared under the Apache License.
HungVu2003/opt-350m_beta_0.5_alpha_0.8_num-company_3_dataset_1_for_gen_1
HungVu2003
2025-05-04T17:01:05Z
0
0
[ "region:us" ]
[]
2025-05-04T17:01:03Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 1903153 num_examples: 12498 download_size: 1090827 dataset_size: 1903153 configs: - config_name: default data_files: - split: train path: data/train-* ---
5CD-AI/Viet-qvq-r1
5CD-AI
2025-05-04T16:33:42Z
140
3
[ "task_categories:question-answering", "language:vi", "language:en", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2025-04-25T03:43:39Z
null
--- dataset_info: features: - name: uid dtype: int64 - name: subset dtype: string - name: id dtype: string - name: image dtype: image - name: conversations sequence: - name: role dtype: string - name: content dtype: string - name: source dtype: string - name: vi_conversations sequence: - name: role dtype: string - name: content dtype: string splits: - name: train num_bytes: 7252068072.656 num_examples: 78082 download_size: 6093271009 dataset_size: 7252068072.656 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - question-answering language: - vi - en pretty_name: viet-qvq-r1 --- ### Description This dataset is a Vietnamese translation of the [ahmedheakl/qvq-r1](https://huggingface.co/datasets/ahmedheakl/qvq-r1), intended for training and evaluating multimodal Vision–Language Models (VLMs) on **visual reasoning** tasks involving document-style images such as receipts, forms, invoices., Each example includes: - An input image containing text (typically scanned documents), - A conversation simulating a user question and an assistant’s step-by-step reasoning leading to the answer, - A Vietnamese version of the full conversation. The Vietnamese translations were automatically generated using the Grok model, with careful preservation of both the question intent and the reasoning process. This subset contains approximately **78,000 examples**. --- ### Dataset Structure Each record contains the following main fields: | Field | Type | Description | |--------------------|----------|-----------------------------------------------------------------------------| | `image` | `image` | The input image, typically a document or receipt. | | `conversations` | `string` | A dialogue between user and assistant, with detailed step-by-step reasoning.| | `vi_conversations` | `string` | Vietnamese translation of the `conversations` field. |
mteb/medrxiv-clustering-p2p
mteb
2025-05-04T16:28:25Z
637
2
[ "task_categories:text-classification", "annotations_creators:derived", "multilinguality:monolingual", "source_datasets:mteb/medrxiv-clustering-p2p", "language:eng", "license:other", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2022-05-11T06:56:44Z
null
--- annotations_creators: - derived language: - eng license: other multilinguality: monolingual source_datasets: - mteb/medrxiv-clustering-p2p task_categories: - text-classification task_ids: [] tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MedrxivClusteringP2P.v2</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> Clustering of titles+abstract from medrxiv across 51 categories. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Academic, Medical, Written | | Reference | https://api.medrxiv.org/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["MedrxivClusteringP2P.v2"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("MedrxivClusteringP2P.v2") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 37500, "number_of_characters": 74294927, "min_text_length": 148, "average_text_length": 1981.1980533333333, "max_text_length": 38759, "min_labels_per_text": 6, "average_labels_per_text": 1.0, "max_labels_per_text": 8830, "unique_labels": 51, "labels": { "epidemiology": { "count": 6656 }, "public and global health": { "count": 3595 }, "oncology": { "count": 845 }, "allergy and immunology": { "count": 464 }, "orthopedics": { "count": 104 }, "health informatics": { "count": 1107 }, "occupational and environmental health": { "count": 415 }, "infectious diseases": { "count": 8830 }, "genetic and genomic medicine": { "count": 1918 }, "health policy": { "count": 527 }, "gastroenterology": { "count": 343 }, "radiology and imaging": { "count": 541 }, "pain medicine": { "count": 121 }, "neurology": { "count": 1773 }, "primary care research": { "count": 232 }, "rheumatology": { "count": 189 }, "endocrinology": { "count": 419 }, "hematology": { "count": 202 }, "addiction medicine": { "count": 178 }, "pediatrics": { "count": 589 }, "cardiovascular medicine": { "count": 855 }, "obstetrics and gynecology": { "count": 373 }, "health systems and quality improvement": { "count": 491 }, "nephrology": { "count": 241 }, "respiratory medicine": { "count": 482 }, "geriatric medicine": { "count": 169 }, "dentistry and oral medicine": { "count": 159 }, "psychiatry and clinical psychology": { "count": 1781 }, "nutrition": { "count": 240 }, "intensive care and critical care medicine": { "count": 368 }, "rehabilitation medicine and physical therapy": { "count": 322 }, "otolaryngology": { "count": 166 }, "nursing": { "count": 93 }, "transplantation": { "count": 118 }, "health economics": { "count": 327 }, "sports medicine": { "count": 180 }, "hiv aids": { "count": 363 }, "dermatology": { "count": 98 }, "pathology": { "count": 223 }, "emergency medicine": { "count": 191 }, "pharmacology and therapeutics": { "count": 221 }, "ophthalmology": { "count": 220 }, "medical ethics": { "count": 46 }, "palliative medicine": { "count": 45 }, "sexual and reproductive health": { "count": 156 }, "medical education": { "count": 203 }, "surgery": { "count": 162 }, "urology": { "count": 65 }, "anesthesia": { "count": 72 }, "toxicology": { "count": 16 }, "forensic medicine": { "count": 6 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/sickr-sts
mteb
2025-05-04T16:26:42Z
15,274
4
[ "task_categories:sentence-similarity", "task_ids:semantic-similarity-scoring", "task_ids:natural-language-inference", "annotations_creators:human-annotated", "multilinguality:monolingual", "language:eng", "license:cc-by-nc-sa-3.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "sentence-similarity" ]
2022-04-19T14:28:03Z
null
--- annotations_creators: - human-annotated language: - eng license: cc-by-nc-sa-3.0 multilinguality: monolingual task_categories: - sentence-similarity task_ids: - semantic-similarity-scoring - natural-language-inference tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">SICK-R</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> Semantic Textual Similarity SICK-R dataset | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Web, Written | | Reference | https://aclanthology.org/L14-1314/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["SICK-R"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{marelli-etal-2014-sick, abstract = {Shared and internationally recognized benchmarks are fundamental for the development of any computational system. We aim to help the research community working on compositional distributional semantic models (CDSMs) by providing SICK (Sentences Involving Compositional Knowldedge), a large size English benchmark tailored for them. SICK consists of about 10,000 English sentence pairs that include many examples of the lexical, syntactic and semantic phenomena that CDSMs are expected to account for, but do not require dealing with other aspects of existing sentential data sets (idiomatic multiword expressions, named entities, telegraphic language) that are not within the scope of CDSMs. By means of crowdsourcing techniques, each pair was annotated for two crucial semantic tasks: relatedness in meaning (with a 5-point rating scale as gold score) and entailment relation between the two elements (with three possible gold labels: entailment, contradiction, and neutral). The SICK data set was used in SemEval-2014 Task 1, and it freely available for research purposes.}, address = {Reykjavik, Iceland}, author = {Marelli, Marco and Menini, Stefano and Baroni, Marco and Bentivogli, Luisa and Bernardi, Raffaella and Zamparelli, Roberto}, booktitle = {Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)}, editor = {Calzolari, Nicoletta and Choukri, Khalid and Declerck, Thierry and Loftsson, Hrafn and Maegaard, Bente and Mariani, Joseph and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios}, month = may, pages = {216--223}, publisher = {European Language Resources Association (ELRA)}, title = {A {SICK} cure for the evaluation of compositional distributional semantic models}, url = {http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf}, year = {2014}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("SICK-R") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 9927, "number_of_characters": 915617, "unique_pairs": 9842, "min_sentence1_length": 15, "average_sentence1_len": 46.602196031026494, "max_sentence1_length": 151, "unique_sentence1": 5014, "min_sentence2_length": 14, "average_sentence2_len": 45.63281958295558, "max_sentence2_length": 151, "unique_sentence2": 4946, "min_score": 1.0, "avg_score": 3.5291492898156607, "max_score": 5.0 } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
yashparalkar0/codePM
yashparalkar0
2025-05-04T16:20:43Z
0
0
[ "task_categories:text2text-generation", "region:us", "code" ]
[ "text2text-generation" ]
2025-05-04T16:17:32Z
null
--- task_categories: - text2text-generation tags: - code pretty_name: f ---
harpreetmann/go_emotions_max_500_string_chat
harpreetmann
2025-05-04T16:14:55Z
0
0
[ "region:us" ]
[]
2025-05-04T16:14:49Z
null
--- dataset_info: features: - name: input dtype: string - name: output dtype: string - name: id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 27852466 num_examples: 43409 - name: test num_bytes: 3488513 num_examples: 5427 - name: validation num_bytes: 3487936 num_examples: 5426 - name: discarded num_bytes: 3483 num_examples: 1 download_size: 8204171 dataset_size: 34832398 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* - split: discarded path: data/discarded-* ---
mteb/WikipediaRerankingMultilingual
mteb
2025-05-04T16:12:04Z
617
0
[ "task_categories:text-ranking", "annotations_creators:LM-generated and reviewed", "multilinguality:multilingual", "language:ben", "language:bul", "language:ces", "language:dan", "language:deu", "language:eng", "language:fas", "language:fin", "language:hin", "language:ita", "language:nld", "language:nor", "language:por", "language:ron", "language:srp", "language:swe", "license:cc-by-sa-3.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-ranking" ]
2025-02-19T09:28:42Z
null
--- annotations_creators: - LM-generated and reviewed language: - ben - bul - ces - dan - deu - eng - fas - fin - hin - ita - nld - nor - por - ron - srp - swe license: cc-by-sa-3.0 multilinguality: multilingual task_categories: - text-ranking task_ids: [] dataset_info: - config_name: bg-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 9604308 num_examples: 13500 download_size: 4593991 dataset_size: 9604308 - config_name: bg-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: bg-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 197625 num_examples: 1500 download_size: 96857 dataset_size: 197625 - config_name: bg-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: bn-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 14497846 num_examples: 13500 download_size: 5486517 dataset_size: 14497846 - config_name: bn-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: bn-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 222824 num_examples: 1500 download_size: 95032 dataset_size: 222824 - config_name: bn-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: cs-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 6098076 num_examples: 13500 download_size: 3914545 dataset_size: 6098076 - config_name: cs-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: cs-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 124465 num_examples: 1500 download_size: 82189 dataset_size: 124465 - config_name: cs-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: da-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 5309400 num_examples: 13500 download_size: 3172960 dataset_size: 5309400 - config_name: da-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: da-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 118643 num_examples: 1500 download_size: 73789 dataset_size: 118643 - config_name: da-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: de-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 6019751 num_examples: 13500 download_size: 3594010 dataset_size: 6019751 - config_name: de-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: de-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 138167 num_examples: 1500 download_size: 88032 dataset_size: 138167 - config_name: de-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: en-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 6671388 num_examples: 13500 download_size: 3961948 dataset_size: 6671388 - config_name: en-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: en-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 134536 num_examples: 1500 download_size: 83004 dataset_size: 134536 - config_name: en-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: fa-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 8973566 num_examples: 13500 download_size: 4213163 dataset_size: 8973566 - config_name: fa-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: fa-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 167018 num_examples: 1500 download_size: 85233 dataset_size: 167018 - config_name: fa-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: fi-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 5866641 num_examples: 13500 download_size: 3485556 dataset_size: 5866641 - config_name: fi-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: fi-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 117859 num_examples: 1500 download_size: 74406 dataset_size: 117859 - config_name: fi-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: hi-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 14696552 num_examples: 13500 download_size: 5583513 dataset_size: 14696552 - config_name: hi-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: hi-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 229970 num_examples: 1500 download_size: 98256 dataset_size: 229970 - config_name: hi-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: it-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 5899305 num_examples: 13500 download_size: 3566485 dataset_size: 5899305 - config_name: it-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: it-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 137965 num_examples: 1500 download_size: 84180 dataset_size: 137965 - config_name: it-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: nl-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 5628451 num_examples: 13500 download_size: 3254369 dataset_size: 5628451 - config_name: nl-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: nl-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 130098 num_examples: 1500 download_size: 79310 dataset_size: 130098 - config_name: nl-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: no-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 5603404 num_examples: 13500 download_size: 3361788 dataset_size: 5603404 - config_name: no-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: no-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 116210 num_examples: 1500 download_size: 72568 dataset_size: 116210 - config_name: no-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: pt-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 6078548 num_examples: 13500 download_size: 3644877 dataset_size: 6078548 - config_name: pt-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: pt-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 132902 num_examples: 1500 download_size: 82274 dataset_size: 132902 - config_name: pt-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: ro-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 5487340 num_examples: 13500 download_size: 3314140 dataset_size: 5487340 - config_name: ro-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: ro-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 128853 num_examples: 1500 download_size: 80958 dataset_size: 128853 - config_name: ro-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: sr-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 9362172 num_examples: 13500 download_size: 4727113 dataset_size: 9362172 - config_name: sr-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: sr-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 173594 num_examples: 1500 download_size: 95366 dataset_size: 173594 - config_name: sr-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 - config_name: sv-corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 5727305 num_examples: 13500 download_size: 3383922 dataset_size: 5727305 - config_name: sv-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 778020 num_examples: 13500 download_size: 101652 dataset_size: 778020 - config_name: sv-queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 121800 num_examples: 1500 download_size: 77079 dataset_size: 121800 - config_name: sv-top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 468900 num_examples: 1500 download_size: 97689 dataset_size: 468900 configs: - config_name: bg-corpus data_files: - split: test path: bg-corpus/test-* - config_name: bg-qrels data_files: - split: test path: bg-qrels/test-* - config_name: bg-queries data_files: - split: test path: bg-queries/test-* - config_name: bg-top_ranked data_files: - split: test path: bg-top_ranked/test-* - config_name: bn-corpus data_files: - split: test path: bn-corpus/test-* - config_name: bn-qrels data_files: - split: test path: bn-qrels/test-* - config_name: bn-queries data_files: - split: test path: bn-queries/test-* - config_name: bn-top_ranked data_files: - split: test path: bn-top_ranked/test-* - config_name: cs-corpus data_files: - split: test path: cs-corpus/test-* - config_name: cs-qrels data_files: - split: test path: cs-qrels/test-* - config_name: cs-queries data_files: - split: test path: cs-queries/test-* - config_name: cs-top_ranked data_files: - split: test path: cs-top_ranked/test-* - config_name: da-corpus data_files: - split: test path: da-corpus/test-* - config_name: da-qrels data_files: - split: test path: da-qrels/test-* - config_name: da-queries data_files: - split: test path: da-queries/test-* - config_name: da-top_ranked data_files: - split: test path: da-top_ranked/test-* - config_name: de-corpus data_files: - split: test path: de-corpus/test-* - config_name: de-qrels data_files: - split: test path: de-qrels/test-* - config_name: de-queries data_files: - split: test path: de-queries/test-* - config_name: de-top_ranked data_files: - split: test path: de-top_ranked/test-* - config_name: en-corpus data_files: - split: test path: en-corpus/test-* - config_name: en-qrels data_files: - split: test path: en-qrels/test-* - config_name: en-queries data_files: - split: test path: en-queries/test-* - config_name: en-top_ranked data_files: - split: test path: en-top_ranked/test-* - config_name: fa-corpus data_files: - split: test path: fa-corpus/test-* - config_name: fa-qrels data_files: - split: test path: fa-qrels/test-* - config_name: fa-queries data_files: - split: test path: fa-queries/test-* - config_name: fa-top_ranked data_files: - split: test path: fa-top_ranked/test-* - config_name: fi-corpus data_files: - split: test path: fi-corpus/test-* - config_name: fi-qrels data_files: - split: test path: fi-qrels/test-* - config_name: fi-queries data_files: - split: test path: fi-queries/test-* - config_name: fi-top_ranked data_files: - split: test path: fi-top_ranked/test-* - config_name: hi-corpus data_files: - split: test path: hi-corpus/test-* - config_name: hi-qrels data_files: - split: test path: hi-qrels/test-* - config_name: hi-queries data_files: - split: test path: hi-queries/test-* - config_name: hi-top_ranked data_files: - split: test path: hi-top_ranked/test-* - config_name: it-corpus data_files: - split: test path: it-corpus/test-* - config_name: it-qrels data_files: - split: test path: it-qrels/test-* - config_name: it-queries data_files: - split: test path: it-queries/test-* - config_name: it-top_ranked data_files: - split: test path: it-top_ranked/test-* - config_name: nl-corpus data_files: - split: test path: nl-corpus/test-* - config_name: nl-qrels data_files: - split: test path: nl-qrels/test-* - config_name: nl-queries data_files: - split: test path: nl-queries/test-* - config_name: nl-top_ranked data_files: - split: test path: nl-top_ranked/test-* - config_name: no-corpus data_files: - split: test path: no-corpus/test-* - config_name: no-qrels data_files: - split: test path: no-qrels/test-* - config_name: no-queries data_files: - split: test path: no-queries/test-* - config_name: no-top_ranked data_files: - split: test path: no-top_ranked/test-* - config_name: pt-corpus data_files: - split: test path: pt-corpus/test-* - config_name: pt-qrels data_files: - split: test path: pt-qrels/test-* - config_name: pt-queries data_files: - split: test path: pt-queries/test-* - config_name: pt-top_ranked data_files: - split: test path: pt-top_ranked/test-* - config_name: ro-corpus data_files: - split: test path: ro-corpus/test-* - config_name: ro-qrels data_files: - split: test path: ro-qrels/test-* - config_name: ro-queries data_files: - split: test path: ro-queries/test-* - config_name: ro-top_ranked data_files: - split: test path: ro-top_ranked/test-* - config_name: sr-corpus data_files: - split: test path: sr-corpus/test-* - config_name: sr-qrels data_files: - split: test path: sr-qrels/test-* - config_name: sr-queries data_files: - split: test path: sr-queries/test-* - config_name: sr-top_ranked data_files: - split: test path: sr-top_ranked/test-* - config_name: sv-corpus data_files: - split: test path: sv-corpus/test-* - config_name: sv-qrels data_files: - split: test path: sv-qrels/test-* - config_name: sv-queries data_files: - split: test path: sv-queries/test-* - config_name: sv-top_ranked data_files: - split: test path: sv-top_ranked/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">WikipediaRerankingMultilingual</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> The dataset is derived from Cohere's wikipedia-2023-11 dataset and contains synthetically generated queries. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Encyclopaedic, Written | | Reference | https://huggingface.co/datasets/ellamind/wikipedia-2023-11-reranking-multilingual | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["WikipediaRerankingMultilingual"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @online{wikidump, author = {Wikimedia Foundation}, title = {Wikimedia Downloads}, url = {https://dumps.wikimedia.org}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("WikipediaRerankingMultilingual") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 240000, "number_of_characters": 83866932, "num_documents": 216000, "min_document_length": 100, "average_document_length": 381.70714351851854, "max_document_length": 9461, "unique_documents": 216000, "num_queries": 24000, "min_query_length": 7, "average_query_length": 59.091208333333334, "max_query_length": 180, "unique_queries": 24000, "none_queries": 0, "num_relevant_docs": 216000, "min_relevant_docs_per_query": 9, "average_relevant_docs_per_query": 1.0, "max_relevant_docs_per_query": 9, "unique_relevant_docs": 216000, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": 24000, "min_top_ranked_per_query": 9, "average_top_ranked_per_query": 9.0, "max_top_ranked_per_query": 9 } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/VoyageMMarcoReranking
mteb
2025-05-04T16:11:59Z
9
0
[ "task_categories:text-ranking", "annotations_creators:derived", "multilinguality:monolingual", "language:jpn", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2312.16144", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-ranking" ]
2025-02-18T20:02:06Z
null
--- annotations_creators: - derived language: - jpn license: cc-by-4.0 multilinguality: monolingual task_categories: - text-ranking task_ids: [] dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 26582357 num_examples: 53375 download_size: 12669365 dataset_size: 26582357 - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 3093432 num_examples: 53375 download_size: 359413 dataset_size: 3093432 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 139132 num_examples: 2048 download_size: 79174 dataset_size: 139132 - config_name: top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 1778562 num_examples: 2048 download_size: 353814 dataset_size: 1778562 configs: - config_name: corpus data_files: - split: test path: corpus/test-* - config_name: default data_files: - split: test path: data/test-* - config_name: queries data_files: - split: test path: queries/test-* - config_name: top_ranked data_files: - split: test path: top_ranked/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">VoyageMMarcoReranking</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> a hard-negative augmented version of the Japanese MMARCO dataset as used in Voyage AI Evaluation Suite | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Academic, Non-fiction, Written | | Reference | https://arxiv.org/abs/2312.16144 | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["VoyageMMarcoReranking"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{clavié2023jacolbert, archiveprefix = {arXiv}, author = {Benjamin Clavié}, eprint = {2312.16144}, title = {JaColBERT and Hard Negatives, Towards Better Japanese-First Embeddings for Retrieval: Early Technical Report}, year = {2023}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("VoyageMMarcoReranking") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 55423, "number_of_characters": 8824820, "num_documents": 53375, "min_document_length": 19, "average_document_length": 164.72532084309134, "max_document_length": 1192, "unique_documents": 53375, "num_queries": 2048, "min_query_length": 3, "average_query_length": 15.9208984375, "max_query_length": 73, "unique_queries": 2048, "none_queries": 0, "num_relevant_docs": 53375, "min_relevant_docs_per_query": 26, "average_relevant_docs_per_query": 1.06201171875, "max_relevant_docs_per_query": 29, "unique_relevant_docs": 53375, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": 2048, "min_top_ranked_per_query": 26, "average_top_ranked_per_query": 26.06201171875, "max_top_ranked_per_query": 29 } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/CQADupstack-Webmasters-PL
mteb
2025-05-04T16:10:56Z
16
0
[ "task_categories:text-retrieval", "task_ids:multiple-choice-qa", "annotations_creators:derived", "multilinguality:translated", "source_datasets:mteb/cqadupstack-webmasters", "language:pol", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2305.19840", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-retrieval" ]
2025-02-05T19:19:43Z
null
--- annotations_creators: - derived language: - pol license: unknown multilinguality: translated source_datasets: - mteb/cqadupstack-webmasters task_categories: - text-retrieval task_ids: - multiple-choice-qa dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 13844452 num_examples: 17405 download_size: 8365708 dataset_size: 13844452 - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 35771 num_examples: 1395 download_size: 16248 dataset_size: 35771 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 38008 num_examples: 506 download_size: 26256 dataset_size: 38008 configs: - config_name: corpus data_files: - split: test path: corpus/test-* - config_name: default data_files: - split: test path: data/test-* - config_name: queries data_files: - split: test path: queries/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CQADupstack-Webmasters-PL</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> CQADupStack: A Stack Exchange Question Duplicate Pairs Dataset | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Written, Web | | Reference | https://huggingface.co/datasets/clarin-knext/cqadupstack-webmasters-pl | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["CQADupstack-Webmasters-PL"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{wojtasik2024beirpl, archiveprefix = {arXiv}, author = {Konrad Wojtasik and Vadim Shishkin and Kacper Wołowiec and Arkadiusz Janz and Maciej Piasecki}, eprint = {2305.19840}, primaryclass = {cs.IR}, title = {BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language}, year = {2024}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("CQADupstack-Webmasters-PL") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 17911, "number_of_characters": 12905956, "num_documents": 17405, "min_document_length": 55, "average_document_length": 739.7775926457914, "max_document_length": 25496, "unique_documents": 17405, "num_queries": 506, "min_query_length": 12, "average_query_length": 59.5395256916996, "max_query_length": 154, "unique_queries": 506, "none_queries": 0, "num_relevant_docs": 1395, "min_relevant_docs_per_query": 1, "average_relevant_docs_per_query": 2.7569169960474307, "max_relevant_docs_per_query": 207, "unique_relevant_docs": 1395, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": null, "min_top_ranked_per_query": null, "average_top_ranked_per_query": null, "max_top_ranked_per_query": null } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/HotpotQA_test_top_250_only_w_correct-v2
mteb
2025-05-04T16:10:16Z
683
0
[ "task_categories:text-retrieval", "task_ids:multiple-choice-qa", "annotations_creators:human-annotated", "multilinguality:monolingual", "source_datasets:mteb/hotpotqa", "language:eng", "license:cc-by-sa-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-retrieval" ]
2024-09-28T05:55:11Z
null
--- annotations_creators: - human-annotated language: - eng license: cc-by-sa-4.0 multilinguality: monolingual source_datasets: - mteb/hotpotqa task_categories: - text-retrieval task_ids: - multiple-choice-qa dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 69897420.06567885 num_examples: 225621 download_size: 59246411 dataset_size: 69897420.06567885 - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 93923.56515867657 num_examples: 2000 download_size: 40450 dataset_size: 93923.56515867657 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 124244.29439567859 num_examples: 1000 download_size: 85083 dataset_size: 124244.29439567859 configs: - config_name: corpus data_files: - split: test path: corpus/test-* - config_name: default data_files: - split: test path: data/test-* - config_name: queries data_files: - split: test path: queries/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">HotpotQAHardNegatives</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> HotpotQA is a question answering dataset featuring natural, multi-hop questions, with strong supervision for supporting facts to enable more explainable question answering systems. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Web, Written | | Reference | https://hotpotqa.github.io/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["HotpotQAHardNegatives"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{yang-etal-2018-hotpotqa, abstract = {Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems{'} ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.}, address = {Brussels, Belgium}, author = {Yang, Zhilin and Qi, Peng and Zhang, Saizheng and Bengio, Yoshua and Cohen, William and Salakhutdinov, Ruslan and Manning, Christopher D.}, booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing}, doi = {10.18653/v1/D18-1259}, editor = {Riloff, Ellen and Chiang, David and Hockenmaier, Julia and Tsujii, Jun{'}ichi}, month = oct # {-} # nov, pages = {2369--2380}, publisher = {Association for Computational Linguistics}, title = {{H}otpot{QA}: A Dataset for Diverse, Explainable Multi-hop Question Answering}, url = {https://aclanthology.org/D18-1259}, year = {2018}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("HotpotQAHardNegatives") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 226621, "number_of_characters": 84600920, "num_documents": 225621, "min_document_length": 9, "average_document_length": 374.558822095461, "max_document_length": 3463, "unique_documents": 225621, "num_queries": 1000, "min_query_length": 34, "average_query_length": 92.584, "max_query_length": 288, "unique_queries": 1000, "none_queries": 0, "num_relevant_docs": 2000, "min_relevant_docs_per_query": 2, "average_relevant_docs_per_query": 2.0, "max_relevant_docs_per_query": 2, "unique_relevant_docs": 1975, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": null, "min_top_ranked_per_query": null, "average_top_ranked_per_query": null, "max_top_ranked_per_query": null } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/cqadupstack-mathematica
mteb
2025-05-04T16:09:59Z
380
1
[ "task_categories:text-retrieval", "task_ids:multiple-choice-qa", "annotations_creators:derived", "multilinguality:monolingual", "language:eng", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-retrieval" ]
2024-03-02T19:36:14Z
null
--- annotations_creators: - derived language: - eng license: apache-2.0 multilinguality: monolingual task_categories: - text-retrieval task_ids: - multiple-choice-qa config_names: - corpus tags: - mteb - text dataset_info: - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: float64 splits: - name: test num_bytes: 34691 num_examples: 1358 - config_name: corpus features: - name: _id dtype: string - name: title dtype: string - name: text dtype: string splits: - name: corpus num_bytes: 19568620 num_examples: 16705 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: queries num_bytes: 49576 num_examples: 804 configs: - config_name: default data_files: - split: test path: qrels/test.jsonl - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CQADupstackMathematicaRetrieval</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> CQADupStack: A Benchmark Data Set for Community Question-Answering Research | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Written, Academic, Non-fiction | | Reference | http://nlp.cis.unimelb.edu.au/resources/cqadupstack/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["CQADupstackMathematicaRetrieval"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{hoogeveen2015, acmid = {2838934}, address = {New York, NY, USA}, articleno = {3}, author = {Hoogeveen, Doris and Verspoor, Karin M. and Baldwin, Timothy}, booktitle = {Proceedings of the 20th Australasian Document Computing Symposium (ADCS)}, doi = {10.1145/2838931.2838934}, isbn = {978-1-4503-4040-3}, location = {Parramatta, NSW, Australia}, numpages = {8}, pages = {3:1--3:8}, publisher = {ACM}, series = {ADCS '15}, title = {CQADupStack: A Benchmark Data Set for Community Question-Answering Research}, url = {http://doi.acm.org/10.1145/2838931.2838934}, year = {2015}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("CQADupstackMathematicaRetrieval") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 17509, "number_of_characters": 19325188, "num_documents": 16705, "min_document_length": 75, "average_document_length": 1154.4967375037413, "max_document_length": 28907, "unique_documents": 16705, "num_queries": 804, "min_query_length": 15, "average_query_length": 48.90547263681592, "max_query_length": 137, "unique_queries": 804, "none_queries": 0, "num_relevant_docs": 1358, "min_relevant_docs_per_query": 1, "average_relevant_docs_per_query": 1.6890547263681592, "max_relevant_docs_per_query": 56, "unique_relevant_docs": 1358, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": null, "min_top_ranked_per_query": null, "average_top_ranked_per_query": null, "max_top_ranked_per_query": null } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/tweet_sentiment_extraction
mteb
2025-05-04T16:07:55Z
4,415
27
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:sentiment-classification", "task_ids:hate-speech-detection", "annotations_creators:human-annotated", "multilinguality:monolingual", "language:eng", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2022-05-26T18:07:50Z
null
--- annotations_creators: - human-annotated language: - eng license: unknown multilinguality: monolingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection tags: - mteb - text configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 2208166 num_examples: 27481 - name: test num_bytes: 281934 num_examples: 3534 download_size: 1710860 dataset_size: 2490100 --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">TweetSentimentExtractionClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Social, Written | | Reference | https://www.kaggle.com/competitions/tweet-sentiment-extraction/overview | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["TweetSentimentExtractionClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{tweet-sentiment-extraction, author = {Maggie, Phil Culliton, Wei Chen}, publisher = {Kaggle}, title = {Tweet Sentiment Extraction}, url = {https://kaggle.com/competitions/tweet-sentiment-extraction}, year = {2020}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("TweetSentimentExtractionClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 3534, "number_of_characters": 239476, "number_texts_intersect_with_train": 0, "min_text_length": 4, "average_text_length": 67.76344086021506, "max_text_length": 142, "unique_text": 3534, "unique_labels": 3, "labels": { "1": { "count": 1430 }, "2": { "count": 1103 }, "0": { "count": 1001 } } }, "train": { "num_samples": 27481, "number_of_characters": 1877709, "number_texts_intersect_with_train": null, "min_text_length": 0, "average_text_length": 68.32753538808632, "max_text_length": 141, "unique_text": 27481, "unique_labels": 3, "labels": { "1": { "count": 11118 }, "0": { "count": 7781 }, "2": { "count": 8582 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/HotelReviewSentimentClassification
mteb
2025-05-04T16:07:41Z
11
0
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:sentiment-classification", "task_ids:hate-speech-detection", "annotations_creators:derived", "multilinguality:monolingual", "language:ara", "license:unknown", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2024-12-21T10:42:59Z
null
--- annotations_creators: - derived language: - ara license: unknown multilinguality: monolingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 536128 num_examples: 2048 download_size: 274359 dataset_size: 536128 configs: - config_name: default data_files: - split: train path: data/train-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">HotelReviewSentimentClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> HARD is a dataset of Arabic hotel reviews collected from the Booking.com website. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Reviews, Written | | Reference | https://link.springer.com/chapter/10.1007/978-3-319-67056-0_3 | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["HotelReviewSentimentClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @article{elnagar2018hotel, author = {Elnagar, Ashraf and Khalifa, Yasmin S and Einea, Anas}, journal = {Intelligent natural language processing: Trends and applications}, pages = {35--52}, publisher = {Springer}, title = {Hotel Arabic-reviews dataset construction for sentiment analysis applications}, year = {2018}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("HotelReviewSentimentClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "train": { "num_samples": 2048, "number_of_characters": 282368, "number_texts_intersect_with_train": null, "min_text_length": 11, "average_text_length": 137.875, "max_text_length": 2698, "unique_text": 2044, "unique_labels": 4, "labels": { "4": { "count": 512 }, "3": { "count": 512 }, "0": { "count": 279 }, "1": { "count": 745 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
darkme-ai/LMMFinQA
darkme-ai
2025-05-04T15:53:07Z
0
0
[ "license:mit", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-03T06:22:05Z
null
--- license: mit --- ## 数据集结构 ### 数据实例 以下是数据集的示例,展示了不同任务类型的数据格式: #### 文本分类示例 ```python { "id": "1", "image": [ "itd1_1.jpg" ], "qa_type": [ "text_and_table_based_qa" ], "question": "<rk>不同的财务报表类型,利润表中“本期金额/本期数/本月金额”填写方法如下:\n1、小企业会计准则:填写本期(即本季度)的发生额,例如第二季度填写“4-6月份累计”;\n2、企业会计制度:填写本期(即本季度)的发生额,例如第二季度填写“4-6月份累计”;\n3、一般企业会计准则:填写从年初到本期期末的累计发生额,例如第二季度填写“1-6月份累计”。已执行和未执行新准则,填写规则是一样的,只是表中明细科目有所差异。</rk>\n<image>\n中,企业执行企业会计准则,利润表中本期金额是否只填写4到6月的发生额?" }
Themira/multilingual_parallel_data
Themira
2025-05-04T15:44:48Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-04T15:42:08Z
null
--- license: apache-2.0 ---
HungVu2003/opt-350m_beta_0.0_alpha_0.2_num-company_2_dataset_0_for_gen_10_v2
HungVu2003
2025-05-04T15:43:36Z
0
0
[ "region:us" ]
[]
2025-05-04T15:43:34Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2722918 num_examples: 13750 download_size: 960160 dataset_size: 2722918 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_1_for_gen_15_v2
HungVu2003
2025-05-04T15:15:58Z
0
0
[ "region:us" ]
[]
2025-05-04T15:15:57Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6346402 num_examples: 13750 download_size: 3220680 dataset_size: 6346402 configs: - config_name: default data_files: - split: train path: data/train-* ---
LadyMia/x_dataset_17682
LadyMia
2025-05-04T15:11:51Z
880
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-29T03:07:52Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** LadyMia/x_dataset_17682 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5FgYXBnD63LNLkArKfbK1i4K2gbLbs6zULHA2DXFmhLdtFHe ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{LadyMia2025datauniversex_dataset_17682, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={LadyMia}, year={2025}, url={https://huggingface.co/datasets/LadyMia/x_dataset_17682}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 37658378 - **Date Range:** 2025-01-22T00:00:00Z to 2025-02-13T00:00:00Z - **Last Updated:** 2025-02-18T21:42:55Z ### Data Distribution - Tweets with hashtags: 45.42% - Tweets without hashtags: 54.58% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 20555610 | 54.58% | | 2 | #riyadh | 235778 | 0.63% | | 3 | #zelena | 224298 | 0.60% | | 4 | #tiktok | 161795 | 0.43% | | 5 | #ad | 91773 | 0.24% | | 6 | #jhope_at_galadespiècesjaunes | 85795 | 0.23% | | 7 | #bbb25 | 79808 | 0.21% | | 8 | #transferlerlebirliktezafere | 58256 | 0.15% | | 9 | #theheartkillersep10 | 55037 | 0.15% | | 10 | #bbmzansi | 51161 | 0.14% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-29T03:08:57Z | 2977993 | 2977993 | | 2025-02-01T15:11:35Z | 7083709 | 10061702 | | 2025-02-05T03:15:34Z | 8967127 | 19028829 | | 2025-02-08T15:19:06Z | 9885163 | 28913992 | | 2025-02-12T03:23:51Z | 7367286 | 36281278 | | 2025-02-18T06:41:11Z | 659231 | 36940509 | | 2025-02-18T21:42:55Z | 717869 | 37658378 |
mteb/bengali_hate_speech
mteb
2025-05-04T15:09:57Z
0
0
[ "region:us" ]
[]
2025-05-04T15:09:52Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': 0 '1': 1 '2': 2 '3': 3 '4': 4 splits: - name: train num_bytes: 445907.77559976594 num_examples: 1567 - name: test num_bytes: 431110.58074897603 num_examples: 1515 download_size: 351631 dataset_size: 877018.356348742 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
vatolinalex/tweet_sarcasm
vatolinalex
2025-05-04T15:06:00Z
0
0
[ "region:us" ]
[]
2025-05-04T15:05:56Z
null
--- dataset_info: features: - name: dialect dtype: class_label: names: '0': egypt '1': gulf '2': levant '3': magreb '4': msa - name: label dtype: class_label: names: '0': non-sarcastic '1': sarcastic - name: sentiment dtype: class_label: names: '0': negative '1': neutral '2': positive - name: original_sentiment dtype: class_label: names: '0': negative '1': neutral '2': positive - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 1761516.7565485362 num_examples: 8125 - name: test num_bytes: 425852.990521327 num_examples: 1961 download_size: 1120002 dataset_size: 2187369.747069863 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
vatolinalex/restaurant_review_sentiment
vatolinalex
2025-05-04T15:05:44Z
0
0
[ "region:us" ]
[]
2025-05-04T15:05:30Z
null
--- dataset_info: features: - name: label dtype: class_label: names: '0': 0 '1': 1 - name: text dtype: string - name: restaurant_id dtype: string - name: user_id dtype: string splits: - name: train num_bytes: 2715408.5025107604 num_examples: 6279 - name: test num_bytes: 873566.6786226686 num_examples: 2020 download_size: 1930248 dataset_size: 3588975.181133429 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Oriolshhh/parlabe-errors-genere-60k
Oriolshhh
2025-05-04T14:35:18Z
0
0
[ "language:ca", "license:apache-2.0", "size_categories:10K<n<100K", "region:us", "català", "grammar-correction", "gender", "text-to-text", "synthetic" ]
[]
2025-05-04T14:30:03Z
null
--- language: ca license: apache-2.0 tags: - català - grammar-correction - gender - text-to-text - synthetic size_categories: - 10K<n<100K --- # Dataset d'errors de gènere en català (60.000 parelles) Aquest dataset conté **60.000 parelles de frases** amb errors de gènere, generades mitjançant un script automatitzat en Python. Cada parella està formada per: ```text_erroni,text_correcte``` --- ## Objectiu Aquest conjunt de dades està pensat per **entrenar models de correcció gramatical en català**, amb un focus específic en la detecció i correcció **d’errors de gènere**: - Concordança nominal (ex: *el noia → la noia*) - Concordança adjectival (ex: *una llibre interessant → un llibre interessant*) - Concordança pronominal i verbal --- ## Com s’ha generat? S’han creat automàticament frases correctes, i posteriorment s’hi han introduït **errors de gènere** de manera controlada: - Canviant articles, pronoms, adjectius i formes verbals - Mantenint la sintaxi coherent però incorrecta gramaticalment Aquestes parelles s'han dissenyat per simular errors reals d'escriptura en contextos formals i informals. --- ## Format - Llengua: Català (`ca`) - Format: `.csv` amb dues columnes: - `text_erroni` - `text_correcte` - Nombre de parelles: 60.000
shylee/eval_DP_cube_downDims1_cropNo_freeze1_16_16_ema1_1e-4_ckpt300000
shylee
2025-05-04T14:34:20Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-04T14:34:10Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 4, "total_frames": 3310, "total_tasks": 1, "total_videos": 12, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:4" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
hshwk1983/x_dataset_2983
hshwk1983
2025-05-04T14:33:54Z
2,809
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-27T07:01:04Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** hshwk1983/x_dataset_2983 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5F2RCkLaXEwdz4PALA5iwSBQQ4rWEAioaniBHouRyhUSYjne ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{hshwk19832025datauniversex_dataset_2983, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={hshwk1983}, year={2025}, url={https://huggingface.co/datasets/hshwk1983/x_dataset_2983}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 45361062 - **Date Range:** 2025-01-21T00:00:00Z to 2025-02-10T00:00:00Z - **Last Updated:** 2025-02-18T19:56:18Z ### Data Distribution - Tweets with hashtags: 49.23% - Tweets without hashtags: 50.77% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 23030513 | 50.77% | | 2 | #riyadh | 389599 | 0.86% | | 3 | #zelena | 270010 | 0.60% | | 4 | #tiktok | 216661 | 0.48% | | 5 | #ad | 127153 | 0.28% | | 6 | #bbb25 | 124236 | 0.27% | | 7 | #jhope_at_galadespiècesjaunes | 107356 | 0.24% | | 8 | #bbmzansi | 73192 | 0.16% | | 9 | #granhermano | 70611 | 0.16% | | 10 | #trump | 67914 | 0.15% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-27T07:02:01Z | 2802800 | 2802800 | | 2025-01-30T19:05:56Z | 9696380 | 12499180 | | 2025-02-03T07:09:45Z | 10920384 | 23419564 | | 2025-02-06T19:12:26Z | 6138868 | 29558432 | | 2025-02-10T07:16:07Z | 8261798 | 37820230 | | 2025-02-13T19:19:34Z | 6252880 | 44073110 | | 2025-02-18T04:54:59Z | 640422 | 44713532 | | 2025-02-18T19:56:18Z | 647530 | 45361062 |
Kallia/stock-news-summaries-finetuning
Kallia
2025-05-04T14:11:00Z
0
0
[ "region:us" ]
[]
2025-05-04T14:10:50Z
null
--- dataset_info: features: - name: article dtype: string - name: summary dtype: string splits: - name: train num_bytes: 5776072.8 num_examples: 2144 - name: validation num_bytes: 722009.1 num_examples: 268 - name: test num_bytes: 722009.1 num_examples: 268 download_size: 4522835 dataset_size: 7220090.999999999 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
alexchilton/gran-nanobody-proteins
alexchilton
2025-05-04T14:02:07Z
0
0
[ "task_categories:text-generation", "task_categories:graph-ml", "license:mit", "region:us", "protein", "graph-neural-network", "adjacency-matrix", "protein-structure", "nanobody" ]
[ "text-generation", "graph-ml" ]
2025-05-04T14:02:02Z
null
--- license: mit task_categories: - text-generation - graph-ml tags: - protein - graph-neural-network - adjacency-matrix - protein-structure - nanobody --- # GRAN Protein Structure Dataset ## Dataset Description This dataset contains protein graph data for training Graph Recurrent Attention Networks (GRAN) for protein sequence and structure generation. ### Dataset Summary - **Number of proteins:** 2965 - **Average protein length:** 121.0 residues - **Unique amino acids:** 22 - **Source:** Nanobody protein structures - **Created by:** alexchilton - **Date:** 2025-05-04 16:01:38 ### Dataset Structure Each protein entry contains: - `sequence`: Complete amino acid sequence - `sequence_length`: Total length of the protein - `graph_nodes`: List of graph nodes (residue indices) - `graph_edges`: List of graph edges (connections between residues) - `adjacency_matrix`: Binary adjacency matrix representing contacts - `node_features`: Features for each node (Meiler features or one-hot encoded residues) - `protein_id`: Unique identifier ### Amino Acids Available amino acids: ALA, ARG, ASN, ASP, CYS, GLN, GLU, GLY, HIS, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR, UNK, VAL, X ### Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("alexchilton/gran-nanobody-proteins") # Access a protein protein = dataset['train'][0] print(f"Sequence length: {protein['sequence_length']}") print(f"Number of graph nodes: {len(protein['graph_nodes'])}") print(f"Adjacency matrix shape: {np.array(protein['adjacency_matrix']).shape}") ``` ### Training GRAN Model This dataset is designed for training GRAN models that: 1. Generate both protein sequences and contact adjacency matrices 2. Model proteins as graphs with nodes (residues) and edges (contacts) 3. Use node features (Meiler descriptors or one-hot encoding) ### Citation If you use this dataset, please cite: ``` @dataset{gran_protein_structures, title={GRAN Protein Structure Dataset}, author={Alex Chilton}, year={2025}, url={https://huggingface.co/datasets/alexchilton/gran-nanobody-proteins} } ```
amekerishvili/ATCO2_full_with_ASR
amekerishvili
2025-05-04T13:34:29Z
0
0
[ "region:us" ]
[]
2025-05-04T12:50:29Z
null
--- dataset_info: features: - name: ID dtype: string - name: audio_file dtype: string - name: start_time dtype: float64 - name: end_time dtype: float64 - name: airport dtype: string - name: channel dtype: string - name: frequency dtype: string - name: time dtype: string - name: waypoints dtype: string - name: callsigns dtype: string - name: ground_truth_raw dtype: string - name: ground_truth dtype: string - name: non_Eng_ground_truth dtype: string - name: tags dtype: string - name: values_tags dtype: string - name: commands_tags dtype: string - name: callsigns_tags dtype: string - name: unnamed_tags dtype: string - name: ground_truth_norm dtype: string - name: whisper-large-v3 dtype: string - name: whisper-large-v3-norm dtype: string splits: - name: train num_bytes: 1671023 num_examples: 612 - name: validation num_bytes: 386303 num_examples: 136 - name: test num_bytes: 378628 num_examples: 129 download_size: 780857 dataset_size: 2435954 configs: - config_name: default data_files: - split: validation path: data/validation-* - split: train path: data/train-* - split: test path: data/test-* ---
RyanYr/ppo-dapo-qwen2.5math-7B-base-lr-mbs64_actor_matheval
RyanYr
2025-05-04T13:32:12Z
41
0
[ "region:us" ]
[]
2025-05-01T05:48:04Z
null
--- dataset_info: features: - name: data_source dtype: string - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: responses sequence: string - name: gt_ans dtype: string - name: extracted_solution sequence: string - name: rm_scores sequence: bool - name: avg_accuracy dtype: float64 - name: pass_accuracy dtype: bool - name: cons_accuracy dtype: float64 splits: - name: mixed.560 num_bytes: 5300357 num_examples: 1447 - name: math_eval_aime24.560 num_bytes: 3100476 num_examples: 30 - name: mixed.520 num_bytes: 5285795 num_examples: 1447 - name: math_eval_aime24.520 num_bytes: 3095444 num_examples: 30 - name: mixed.480 num_bytes: 5242604 num_examples: 1447 - name: math_eval_aime24.480 num_bytes: 2993172 num_examples: 30 - name: mixed.440 num_bytes: 5295669 num_examples: 1447 - name: math_eval_aime24.440 num_bytes: 3177680 num_examples: 30 - name: mixed.400 num_bytes: 5506782 num_examples: 1447 - name: math_eval_aime24.400 num_bytes: 3197991 num_examples: 30 - name: mixed.360 num_bytes: 5558655 num_examples: 1447 - name: math_eval_aime24.360 num_bytes: 3233767 num_examples: 30 - name: mixed.320 num_bytes: 5589724 num_examples: 1447 - name: math_eval_aime24.320 num_bytes: 3461053 num_examples: 30 - name: mixed.280 num_bytes: 5557727 num_examples: 1447 - name: math_eval_aime24.280 num_bytes: 3595586 num_examples: 30 - name: mixed.240 num_bytes: 5646899 num_examples: 1447 - name: math_eval_aime24.240 num_bytes: 3503310 num_examples: 30 - name: mixed.200 num_bytes: 5668086 num_examples: 1447 - name: math_eval_aime24.200 num_bytes: 3483421 num_examples: 30 - name: mixed.160 num_bytes: 5605211 num_examples: 1447 - name: math_eval_aime24.160 num_bytes: 3369360 num_examples: 30 - name: mixed.120 num_bytes: 5750349 num_examples: 1447 - name: math_eval_aime24.120 num_bytes: 3606737 num_examples: 30 - name: mixed.80 num_bytes: 5761201 num_examples: 1447 - name: math_eval_aime24.80 num_bytes: 3577887 num_examples: 30 - name: mixed.40 num_bytes: 5543713 num_examples: 1447 - name: math_eval_aime24.40 num_bytes: 3478202 num_examples: 30 - name: mixed.810 num_bytes: 5059616 num_examples: 1447 - name: math_eval_aime24.810 num_bytes: 3024389 num_examples: 30 - name: mixed.800 num_bytes: 5173948 num_examples: 1447 - name: math_eval_aime24.800 num_bytes: 3039992 num_examples: 30 - name: mixed.760 num_bytes: 5271342 num_examples: 1447 - name: math_eval_aime24.760 num_bytes: 3173198 num_examples: 30 - name: mixed.720 num_bytes: 5263113 num_examples: 1447 - name: math_eval_aime24.720 num_bytes: 3075709 num_examples: 30 - name: mixed.680 num_bytes: 5114494 num_examples: 1447 - name: math_eval_aime24.680 num_bytes: 3014977 num_examples: 30 - name: mixed.640 num_bytes: 5167418 num_examples: 1447 - name: math_eval_aime24.640 num_bytes: 2939843 num_examples: 30 - name: mixed.600 num_bytes: 5197076 num_examples: 1447 - name: math_eval_aime24.600 num_bytes: 3067380 num_examples: 30 - name: mixed.1080 num_bytes: 5195072 num_examples: 1447 - name: math_eval_aime24.1080 num_bytes: 2973035 num_examples: 30 - name: mixed.1040 num_bytes: 5224089 num_examples: 1447 - name: math_eval_aime24.1040 num_bytes: 3080196 num_examples: 30 - name: mixed.1000 num_bytes: 5119350 num_examples: 1447 - name: math_eval_aime24.1000 num_bytes: 2980353 num_examples: 30 - name: mixed.960 num_bytes: 5123610 num_examples: 1447 - name: math_eval_aime24.960 num_bytes: 2881442 num_examples: 30 - name: mixed.920 num_bytes: 5179595 num_examples: 1447 - name: math_eval_aime24.920 num_bytes: 3105395 num_examples: 30 - name: mixed.880 num_bytes: 5151262 num_examples: 1447 - name: math_eval_aime24.880 num_bytes: 3205808 num_examples: 30 - name: mixed.840 num_bytes: 5118019 num_examples: 1447 - name: math_eval_aime24.840 num_bytes: 2936143 num_examples: 30 download_size: 85642315 dataset_size: 239042722 configs: - config_name: default data_files: - split: mixed.560 path: data/mixed.560-* - split: math_eval_aime24.560 path: data/math_eval_aime24.560-* - split: mixed.520 path: data/mixed.520-* - split: math_eval_aime24.520 path: data/math_eval_aime24.520-* - split: mixed.480 path: data/mixed.480-* - split: math_eval_aime24.480 path: data/math_eval_aime24.480-* - split: mixed.440 path: data/mixed.440-* - split: math_eval_aime24.440 path: data/math_eval_aime24.440-* - split: mixed.400 path: data/mixed.400-* - split: math_eval_aime24.400 path: data/math_eval_aime24.400-* - split: mixed.360 path: data/mixed.360-* - split: math_eval_aime24.360 path: data/math_eval_aime24.360-* - split: mixed.320 path: data/mixed.320-* - split: math_eval_aime24.320 path: data/math_eval_aime24.320-* - split: mixed.280 path: data/mixed.280-* - split: math_eval_aime24.280 path: data/math_eval_aime24.280-* - split: mixed.240 path: data/mixed.240-* - split: math_eval_aime24.240 path: data/math_eval_aime24.240-* - split: mixed.200 path: data/mixed.200-* - split: math_eval_aime24.200 path: data/math_eval_aime24.200-* - split: mixed.160 path: data/mixed.160-* - split: math_eval_aime24.160 path: data/math_eval_aime24.160-* - split: mixed.120 path: data/mixed.120-* - split: math_eval_aime24.120 path: data/math_eval_aime24.120-* - split: mixed.80 path: data/mixed.80-* - split: math_eval_aime24.80 path: data/math_eval_aime24.80-* - split: mixed.40 path: data/mixed.40-* - split: math_eval_aime24.40 path: data/math_eval_aime24.40-* - split: mixed.810 path: data/mixed.810-* - split: math_eval_aime24.810 path: data/math_eval_aime24.810-* - split: mixed.800 path: data/mixed.800-* - split: math_eval_aime24.800 path: data/math_eval_aime24.800-* - split: mixed.760 path: data/mixed.760-* - split: math_eval_aime24.760 path: data/math_eval_aime24.760-* - split: mixed.720 path: data/mixed.720-* - split: math_eval_aime24.720 path: data/math_eval_aime24.720-* - split: mixed.680 path: data/mixed.680-* - split: math_eval_aime24.680 path: data/math_eval_aime24.680-* - split: mixed.640 path: data/mixed.640-* - split: math_eval_aime24.640 path: data/math_eval_aime24.640-* - split: mixed.600 path: data/mixed.600-* - split: math_eval_aime24.600 path: data/math_eval_aime24.600-* - split: mixed.1080 path: data/mixed.1080-* - split: math_eval_aime24.1080 path: data/math_eval_aime24.1080-* - split: mixed.1040 path: data/mixed.1040-* - split: math_eval_aime24.1040 path: data/math_eval_aime24.1040-* - split: mixed.1000 path: data/mixed.1000-* - split: math_eval_aime24.1000 path: data/math_eval_aime24.1000-* - split: mixed.960 path: data/mixed.960-* - split: math_eval_aime24.960 path: data/math_eval_aime24.960-* - split: mixed.920 path: data/mixed.920-* - split: math_eval_aime24.920 path: data/math_eval_aime24.920-* - split: mixed.880 path: data/mixed.880-* - split: math_eval_aime24.880 path: data/math_eval_aime24.880-* - split: mixed.840 path: data/mixed.840-* - split: math_eval_aime24.840 path: data/math_eval_aime24.840-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_0_for_gen_14_v2
HungVu2003
2025-05-04T13:29:17Z
0
0
[ "region:us" ]
[]
2025-05-04T13:29:15Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2076736 num_examples: 13750 download_size: 1120490 dataset_size: 2076736 configs: - config_name: default data_files: - split: train path: data/train-* ---
FLARE-MedFM/FLARE-Task2-LaptopSeg
FLARE-MedFM
2025-05-04T13:27:33Z
423
0
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2025-04-17T23:32:45Z
null
--- license: cc-by-nc-4.0 --- ## FLARE Task2 Laptop Seg Dataset ![20220309-FLARE22-Pictures-2.png](https://s2.loli.net/2024/03/14/mJoTYKNxUG9Pbe8.png) ## Data Description This is the dataset for [MICCAI FLARE 2024-2025 Task2: Abdominal CT Organ Segmentation on Laptop](https://www.codabench.org/competitions/2320/). The training set includes 2050 cases, where 50 cases have ground-truth labels from the FLARE22 dataset, and the remaining 2000 cases have pseudo labels generated by the FLARE 2022 winning solution. The old validation set and testing set are merged as a new validation set with 250 cases. For those participants who are constrained by computing resources, we also provide an unlabeled core set to develop the methods, where 50 unlabeled CT scans are sampled from the original pseudo training set. ### Data Structure **coreset_train_50_random:** 50 unlabeled CT scans sampled from the train_pseudo_label. **train_gt_label:** 50 CT scans with ground-truth labels. **train_pseudo_label:** 2000 CT scans with pseudo labels generated by the FLARE 2022 winning solution. **validation:** 200 hidden validation set and 50 public validation set. FLARE-Task2-LaptopSeg/ ├── coreset_train_50_random/ ├── train_gt_label/ │&nbsp;&nbsp;&nbsp;&nbsp;├── imagesTr/ │&nbsp;&nbsp;&nbsp;&nbsp;├── labelsTr/ │&nbsp;&nbsp;&nbsp;&nbsp;└── dataset.json ├── train_pseudo_label/ │&nbsp;&nbsp;&nbsp;&nbsp;├── imagesTr/ │&nbsp;&nbsp;&nbsp;&nbsp;├── pseudo_label_aladdin5_flare22.7z │&nbsp;&nbsp;&nbsp;&nbsp;└── pseudo_label_blackbean_flare22.zip ├── validation/ │&nbsp;&nbsp;&nbsp;&nbsp;├── Validation-Hidden-Images/ │&nbsp;&nbsp;&nbsp;&nbsp;├── Validation-Public-Images/ │&nbsp;&nbsp;&nbsp;&nbsp;└── Validation-Public-Labels/ └── README.md ### Dataset Download Instructions Participants can download the complete dataset using the following Python script: ```python from huggingface_hub import snapshot_download local_dir = "./FLARE-Task2-LaptopSeg" snapshot_download( repo_id="FLARE-MedFM/FLARE-Task2-LaptopSeg", repo_type="dataset", local_dir=local_dir, local_dir_use_symlinks=False, resume_download=True, )
hf-doc-build/doc-build
hf-doc-build
2025-05-04T13:19:01Z
319,590
9
[ "license:mit", "region:us" ]
[]
2022-10-24T15:39:05Z
null
--- license: mit pretty_name: Generated Docs for HF viewer: false --- This repo contains all the docs published on https://huggingface.co/docs. The docs are generated with https://github.com/huggingface/doc-builder. <!-- comment to trigger webhook.= -->
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_1_for_gen_13_v2
HungVu2003
2025-05-04T12:51:41Z
0
0
[ "region:us" ]
[]
2025-05-04T12:51:39Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6681057 num_examples: 13750 download_size: 3326270 dataset_size: 6681057 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZennyKenny/cosa-benchmark-dataset
ZennyKenny
2025-05-04T11:59:44Z
6
0
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "reasoning-datasets-competition" ]
[ "question-answering", "text-generation" ]
2025-05-04T06:49:21Z
null
--- dataset_info: features: - name: index dtype: int64 - name: code dtype: string - name: language dtype: string - name: difficulty dtype: string - name: vulnerability_type dtype: string - name: weakness_solution dtype: string - name: weakness_analysis dtype: string - name: solution_statement dtype: string - name: safe_code dtype: string splits: - name: train num_bytes: 1201328 num_examples: 200 download_size: 426230 dataset_size: 1201328 configs: - config_name: default data_files: - split: train path: data/train-* license: apache-2.0 task_categories: - question-answering - text-generation language: - en pretty_name: CoSa Benchmark Dataset size_categories: - n<1K tags: - reasoning-datasets-competition --- <a href="https://github.com/bespokelabsai/curator/"> <img src="https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k/resolve/main/made_with_curator.png" alt="Made with Curator" width=200px> </a> # 🧠 CoSa Benchmark Dataset ## 🔍 Introduction The **CoSa (Code Safety) Benchmark** is a curated evaluation dataset designed to measure the ability of large language models (LLMs) to detect, explain, and repair vulnerabilities in synthetic code samples. It is intended to benchmark LLMs for real-world application in code security audits, reasoning tasks, and secure code generation. ## 📦 Contents Each row in the dataset includes: - `code`: a code snippet (varied languages) - `language`: language of the code (Python, JavaScript, etc.) - `difficulty`: labeled as `easy`, `medium`, or `hard` - `vulnerability_type`: high-level category of exploit - `weakness_solution`: a natural language explanation of the vulnerability - `solution_statement`: a short summary of the mitigation - `safe_code`: a repaired version of the input code All samples were reviewed by a human for correctness of both the vulnerability and the repaired code. ## 🛠️ How It Was Created The dataset was generated using a multi-step pipeline built in [this notebook](https://github.com/kghamilton89/synthetic-data-generators/blob/main/reasoning-competition/code-safety-bench.ipynb). Code snippets were synthesized using LLM prompting, labeled with a vulnerability type, and then evaluated by another model for flaw detection and repair. All final `safe_code` examples were **manually reviewed for correctness**. ## 📈 Usage An LLM may be evaluated against the CoSa Benchmark as follows: ```python # run model on benchmark results = [] for i, row in tqdm(df.iterrows(), total=len(df), desc="Testing model on code"): code = row["code"] idx = row["index"] try: prompt = build_test_prompt(code) response = client.chat.completions.create( model="gpt-4o", # Change this messages=[{"role": "user", "content": prompt}], temperature=0.2, max_tokens=512 ) content = response.choices[0].message.content.strip() explanation = "" fixed_code = "" for line in content.splitlines(): if line.startswith("Explanation:"): explanation = line.replace("Explanation:", "").strip() elif line.startswith("Fixed Code:"): fixed_code = content.split("Fixed Code:")[1].strip() break results.append({ "index": idx, "model_explanation": explanation, "model_fix": fixed_code }) except Exception as e: print(f"⚠️ Error on row {i}: {e}") results.append({ "index": idx, "model_explanation": "ERROR", "model_fix": "" }) results_df = pd.DataFrame(results) results_df.to_json("llm-eval-results.jsonl", orient="records", lines=True) ``` Then score the results: ```python # load & score df = pd.merge( pd.read_json("llm-code-safety-benchmark.jsonl", lines=True), pd.read_json("llm-eval-results.jsonl", lines=True), on="index" ) # Add difficulty weight weights = {"easy": 1, "medium": 2, "hard": 3} df["weight"] = df["difficulty"].map(weights) # Score via sentence transformer + difflib from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import difflib encoder = SentenceTransformer("all-MiniLM-L6-v2") explanation_scores, code_scores, final_scores = [], [], [] for i, row in df.iterrows(): # Explanation scoring gt_expl = row["solution_statement"] pred_expl = row["model_explanation"] if pred_expl.lower() == "error": expl_score = 0 else: emb_gt = encoder.encode(gt_expl, convert_to_tensor=True) emb_pred = encoder.encode(pred_expl, convert_to_tensor=True) sim = cosine_similarity([emb_gt.cpu().numpy()], [emb_pred.cpu().numpy()])[0][0] expl_score = max(0.2, sim) if sim < 0.9 else 1.0 # Code scoring gt_code = row["safe_code"] pred_code = row["model_fix"] if not pred_code.strip(): code_score = 0 else: code_sim = difflib.SequenceMatcher(None, gt_code, pred_code).ratio() code_score = max(0.2, code_sim) if code_sim < 0.95 else 1.0 explanation_scores.append(expl_score) code_scores.append(code_score) avg = (expl_score + code_score) / 2 final_scores.append(avg * row["weight"]) df["explanation_score"] = explanation_scores df["code_score"] = code_scores df["total_score"] = final_scores # Normalize difficulty-adjusted score to 100 total_possible = df["weight"].sum() difficulty_score = (df["total_score"].sum() / total_possible) * 100 print(f"🏁 Difficulty-Adjusted Score: {difficulty_score:.2f}/100") ``` ## 🧪 OpenAI Model Evaluation Results ### 📌 GPT-4o - 🧠 Explanation: **59.92** - 🔧 Code Repair: **93.52** - 🏁 Final Score: **75.80** ### 📌 GPT-4o Mini - 🧠 Explanation: **61.12** - 🔧 Code Repair: **85.55** - 🏁 Final Score: **72.47** ### 📌 GPT-3.5 Turbo - 🧠 Explanation: **62.12** - 🔧 Code Repair: **79.88** - 🏁 Final Score: **70.18** ![CoSa Eval Chart](cosa-benchmark-sample.png) ## 🧠 Limitations & Biases - Most vulnerabilities are intentionally simplified for LLM interpretability. - Code snippets may not fully reflect production scenarios (e.g. frameworks, APIs). - While `safe_code` was **manually reviewed for correctness**, adversarial testing was not performed. - Languages are skewed toward Python, with some JavaScript, Bash, and C. ## 📚 Related Notebooks - [CoSa Dataset Generation Notebook](https://github.com/kghamilton89/synthetic-data-generators/blob/main/reasoning-competition/code-safety-bench.ipynb) - [GPT-4.1 Eval Notebook](https://github.com/kghamilton89/synthetic-data-generators/blob/main/reasoning-competition/cosa-evals/GPT_4.1_eval.ipynb) - [O4 Mini Eval Notebook](https://github.com/kghamilton89/synthetic-data-generators/blob/main/reasoning-competition/cosa-evals/o4_mini_eval.ipynb) - [O3 Eval Notebook](https://github.com/kghamilton89/synthetic-data-generators/blob/main/reasoning-competition/cosa-evals/o3_eval.ipynb) ## ❤️ These Builders Love CoSa ![CoSa GIF](builders-love-cosa.gif)
eduagarcia/corpus-carolina-parquet
eduagarcia
2025-05-04T11:37:49Z
0
0
[ "region:us" ]
[]
2025-05-04T11:19:36Z
null
--- dataset_info: features: - name: meta dtype: string - name: text dtype: string splits: - name: corpus num_bytes: 14303585243 num_examples: 2108999 download_size: 4948772195 dataset_size: 14303585243 configs: - config_name: default data_files: - split: corpus path: data/corpus-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_1_for_gen_12_v2
HungVu2003
2025-05-04T11:15:44Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T11:15:42Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6695843 num_examples: 13750 download_size: 3357646 dataset_size: 6695843 configs: - config_name: default data_files: - split: train path: data/train-* ---
AndreaBorghesi/Unfair_Inequality_Education
AndreaBorghesi
2025-05-04T11:04:51Z
0
0
[ "region:us" ]
[]
2025-05-04T10:52:02Z
null
--- configs: - config_name: default data_files: - split: data path: "dataset.csv" - split: mask path: "missing_mask.csv" --- This is a novel benchmark specifically designed for AI fairness research in education. It can be used for challenging tasks aimed at improving students' performance and reducing dropout rates, which are also discussed in the paper to emphasize significant research directions. By prioritizing fairness, this benchmark aims to foster the development of bias-free AI solutions, promoting equal educational access and outcomes for all students. This repository only contains the outcome of the benchmarking activity, that is, the final dataset (```dataset.csv```) and the he mask for dealing with missing values (```missing_mask.csv```). For those interested in all the processing details (masks, data obtained at the various pre-processing stages, the actual code) we refer to the following link: https://zenodo.org/records/11171863
Yuyeong/rw_pubmed_nbw_6_mask_public
Yuyeong
2025-05-04T10:58:11Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T10:57:56Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' - name: group_idx dtype: int64 - name: node_idx dtype: int64 splits: - name: train num_bytes: 2119487.563016686 num_examples: 6000 - name: validation num_bytes: 17662396.358472385 num_examples: 50000 - name: test num_bytes: 35324792.71694477 num_examples: 100000 download_size: 22984902 dataset_size: 55106676.638433844 --- # Dataset Card for "rw_pubmed_nbw_6_mask_public" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Yuyeong/rw_pubmed_mdlr_1_mask_public
Yuyeong
2025-05-04T09:52:47Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T09:52:20Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' - name: group_idx dtype: int64 - name: node_idx dtype: int64 splits: - name: train num_bytes: 9971886.792108333 num_examples: 6000 - name: validation num_bytes: 83099056.60090278 num_examples: 50000 - name: test num_bytes: 166198113.20180556 num_examples: 100000 download_size: 135201790 dataset_size: 259269056.59481668 --- # Dataset Card for "rw_pubmed_mdlr_1_mask_public" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Yuyeong/rw_pubmed_standard_2_mask_public
Yuyeong
2025-05-04T09:05:49Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T09:05:21Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' - name: group_idx dtype: int64 - name: node_idx dtype: int64 splits: - name: train num_bytes: 9971747.964700513 num_examples: 6000 - name: validation num_bytes: 83097899.7058376 num_examples: 50000 - name: test num_bytes: 166195799.4116752 num_examples: 100000 download_size: 162469519 dataset_size: 259265447.08221334 --- # Dataset Card for "rw_pubmed_standard_2_mask_public" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Yuyeong/rw_cora_standard_1_mask_public
Yuyeong
2025-05-04T08:27:07Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T08:26:40Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' - name: group_idx dtype: int64 - name: node_idx dtype: int64 splits: - name: train num_bytes: 20028522.88774003 num_examples: 14000 - name: validation num_bytes: 71530438.88478582 num_examples: 50000 - name: test num_bytes: 143060877.76957163 num_examples: 100000 download_size: 111756477 dataset_size: 234619839.54209748 --- # Dataset Card for "rw_cora_standard_1_mask_public" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
putdanil/inter1or
putdanil
2025-05-04T08:02:55Z
0
0
[ "region:us" ]
[]
2025-05-04T07:49:51Z
null
--- dataset_info: features: - name: image_path dtype: image - name: caption dtype: string splits: - name: train num_bytes: 18411049934.656 num_examples: 4438 download_size: 17149567703 dataset_size: 18411049934.656 configs: - config_name: default data_files: - split: train path: data/train-* ---
alchemistyzz/mathvision_test
alchemistyzz
2025-05-04T07:36:11Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T10:04:54Z
null
--- license: apache-2.0 ---
HungVu2003/opt-350m_beta_0.0_alpha_0.2_num-company_2_dataset_1_for_gen_6_v2
HungVu2003
2025-05-04T07:05:24Z
0
0
[ "region:us" ]
[]
2025-05-04T07:05:23Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2486011 num_examples: 13750 download_size: 1036048 dataset_size: 2486011 configs: - config_name: default data_files: - split: train path: data/train-* ---
valpy/if_multi_old_3_different_range
valpy
2025-05-04T04:34:01Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T04:33:06Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: dataset dtype: string - name: constraint_type dtype: string - name: constraint dtype: string splits: - name: train num_bytes: 90775411 num_examples: 57306 download_size: 41406293 dataset_size: 90775411 configs: - config_name: default data_files: - split: train path: data/train-* ---
ma921/golden-hh-tokenized-gpt2_noise0
ma921
2025-05-04T03:27:26Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T03:27:22Z
null
--- dataset_info: features: - name: sft_input_ids sequence: int64 - name: pos_input_ids sequence: int64 - name: neg_input_ids sequence: int64 splits: - name: train num_bytes: 17534576 num_examples: 12066 download_size: 4349810 dataset_size: 17534576 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/mix_avg_all
mlfoundations-dev
2025-05-04T02:47:06Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T02:33:43Z
null
--- dataset_info: features: - name: instruction_seed dtype: string - name: _source dtype: string - name: gpt41_mini_response dtype: string - name: __original_row_idx dtype: int64 - name: length dtype: int64 - name: domain dtype: string - name: r1_response dtype: string - name: r1_reasoning_content dtype: string - name: extract_solution dtype: string - name: url dtype: string - name: filename dtype: string - name: success dtype: bool - name: page_count dtype: int64 - name: page_number dtype: int64 - name: question_choices_solutions dtype: string - name: extracted_question dtype: string - name: extracted_answer_choices sequence: string - name: matched_solution dtype: string - name: qa_validation_outputs dtype: bool - name: classifier_reasoning dtype: string - name: is_organic_chemistry dtype: bool - name: ms_id dtype: int64 - name: _science_reasoning sequence: string - name: _science_deepseek_solution sequence: string - name: _science_final_reasoning_trace sequence: string - name: _majority_responses sequence: string - name: verified_final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: difficulty dtype: int64 - name: difficulty_reasoning dtype: string - name: id dtype: string - name: output dtype: string - name: source dtype: string - name: license dtype: string - name: dataset dtype: string - name: split dtype: string - name: solution dtype: string - name: _code_reasoning dtype: string - name: _code_deepseek_solution dtype: string - name: _code_final_reasoning_trace dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: response_seed dtype: string - name: _math_reasoning dtype: string - name: _math_deepseek_solution dtype: string - name: _math_final_reasoning_trace dtype: string splits: - name: train num_bytes: 36642395331.0 num_examples: 94797 download_size: 14773154614 dataset_size: 36642395331.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
marcuscedricridia/OpenMathInstruct-1-1000-processed
marcuscedricridia
2025-05-04T02:46:57Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T02:46:56Z
null
--- dataset_info: features: - name: question dtype: string - name: generated_solution dtype: string splits: - name: train num_bytes: 586120.6902226892 num_examples: 1000 download_size: 293455 dataset_size: 586120.6902226892 configs: - config_name: default data_files: - split: train path: data/train-* ---
prithivMLmods/Openpdf-Analysis-Recognition
prithivMLmods
2025-05-04T02:39:38Z
0
0
[ "task_categories:image-to-text", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us", "pdf", "ocr", "document", "code" ]
[ "image-to-text" ]
2025-05-03T08:20:35Z
null
--- license: apache-2.0 task_categories: - image-to-text language: - en tags: - pdf - ocr - document - code size_categories: - 1K<n<10K --- # Openpdf-Analysis-Recognition The **Openpdf-Analysis-Recognition** dataset is curated for tasks related to image-to-text recognition, particularly for scanned document images and OCR (Optical Character Recognition) use cases. It contains over 6,900 images in a structured `imagefolder` format suitable for training models on document parsing, PDF image understanding, and layout/text extraction tasks. | **Attribute** | **Value** | |---------------|------------------------| | Task | Image-to-Text | | Modality | Image | | Format | ImageFolder | | Language | English | | License | Apache 2.0 | | Size | 1K - 10K samples | | Split | train (6,910 samples) | ### Key Features * Contains **6.91k** training samples of document-style images. * Each sample is an **image**, with no associated text or label (raw OCR input). * Dataset is auto-converted to **Parquet** format by Hugging Face for efficient streaming and processing. * Suitable for OCR research, PDF document parsing, and code/text recognition tasks. ## Usage You can load the dataset using the Hugging Face `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("prithivMLmods/Openpdf-Analysis-Recognition") ``` ## File Size * **Total download size**: \~2.72 GB * **Auto-converted Parquet size**: \~2.71 GB ## License This dataset is released under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
BornSaint/D33_590d
BornSaint
2025-05-04T01:44:08Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T01:44:05Z
null
--- dataset_info: features: - name: conversation list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 4301338 num_examples: 590 download_size: 1871609 dataset_size: 4301338 configs: - config_name: default data_files: - split: train path: data/train-* ---
ParkSY/data_nerf_more_concept_org_style_anything_depthmap_normalmap
ParkSY
2025-05-04T01:06:46Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T01:06:40Z
null
--- dataset_info: features: - name: input_image dtype: string - name: edit_prompt dtype: string - name: edited_image dtype: string - name: label dtype: int64 - name: depthmap dtype: string - name: normal_map dtype: string splits: - name: train num_bytes: 380305 num_examples: 819 download_size: 36116 dataset_size: 380305 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_llm2_gen1_WXS_doc1000_synt64_lr1e-04_acm_FRESH
dgambettaphd
2025-05-04T01:04:41Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T01:04:18Z
null
--- dataset_info: features: - name: id_doc dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 9773483 num_examples: 17000 download_size: 5870471 dataset_size: 9773483 configs: - config_name: default data_files: - split: train path: data/train-* ---
psyonp/ttr_response_2
psyonp
2025-05-04T00:06:55Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T00:06:54Z
null
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: num_tokens_question dtype: int64 - name: num_tokens_response dtype: int64 - name: semantic_similarity dtype: float64 - name: sentiment_question dtype: float64 - name: sentiment_response dtype: float64 - name: readability_question dtype: float64 - name: readability_response dtype: float64 - name: ttr_question dtype: float64 - name: ttr_response dtype: float64 - name: toxicity_question dtype: float64 - name: toxicity_response dtype: float64 - name: euclidean_distance dtype: float64 - name: kl_divergence dtype: float64 splits: - name: train num_bytes: 8059758 num_examples: 3995 download_size: 4768225 dataset_size: 8059758 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_2_for_gen_16
HungVu2003
2025-05-03T23:58:56Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T23:58:55Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 5074613 num_examples: 12500 download_size: 1290108 dataset_size: 5074613 configs: - config_name: default data_files: - split: train path: data/train-* ---
Bakovic/chatbot_medical_diabetique
Bakovic
2025-05-03T23:34:34Z
0
0
[ "license:intel-research", "region:us" ]
[]
2025-05-03T23:32:29Z
null
--- license: intel-research ---
AdoCleanCode/Youtube8M_real_train_data_v4_0.8
AdoCleanCode
2025-05-03T23:26:47Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T21:27:22Z
null
--- dataset_info: features: - name: 'Unnamed: 0' dtype: int64 - name: caption dtype: string - name: coarse_label dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 55669638 num_examples: 205336 download_size: 16574453 dataset_size: 55669638 configs: - config_name: default data_files: - split: train path: data/train-* ---
jysim/koch_test
jysim
2025-05-03T22:56:27Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-03T22:56:19Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "koch", "total_episodes": 2, "total_frames": 1159, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.webcam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ymroddi/langa_train
ymroddi
2025-05-03T22:40:33Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T18:52:20Z
null
--- dataset_info: features: - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 49574181 num_examples: 42328 - name: test num_bytes: 15226989 num_examples: 11207 download_size: 26250984 dataset_size: 64801170 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
kothasuhas/llp-gold-37m-1.5m_clip0.256_T1.0
kothasuhas
2025-05-03T22:39:09Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T22:35:25Z
null
--- dataset_info: features: - name: text dtype: string - name: p_log_probs dtype: float32 - name: q_log_probs dtype: float32 - name: num_tokens dtype: float32 - name: log_weight dtype: float64 splits: - name: train num_bytes: 3605804917.0 num_examples: 1500000 download_size: 197960374 dataset_size: 3605804917.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
AJ97/dd
AJ97
2025-05-03T22:31:37Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-03T22:31:37Z
null
--- license: apache-2.0 ---
kothasuhas/llama-3b-gold-ctx16
kothasuhas
2025-05-03T22:14:39Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T22:14:29Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 217731235 num_examples: 3200000 download_size: 159922823 dataset_size: 217731235 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/e1_science_longest_qwq
mlfoundations-dev
2025-05-03T21:26:30Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T21:22:55Z
null
--- dataset_info: features: - name: instruction_seed dtype: string - name: _source dtype: string - name: gpt41_mini_response dtype: string - name: __original_row_idx dtype: int64 - name: length dtype: int64 - name: domain dtype: string - name: r1_response dtype: string - name: r1_reasoning_content dtype: string - name: extract_solution dtype: string - name: url dtype: string - name: filename dtype: string - name: success dtype: bool - name: page_count dtype: int64 - name: page_number dtype: int64 - name: question_choices_solutions dtype: string - name: extracted_question dtype: string - name: extracted_answer_choices sequence: string - name: matched_solution dtype: string - name: qa_validation_outputs dtype: bool - name: classifier_reasoning dtype: string - name: is_organic_chemistry dtype: bool - name: ms_id dtype: int64 - name: final_reasoning_trace sequence: string - name: _majority_responses sequence: string - name: verified_final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 12484376307 num_examples: 31600 download_size: 5528947931 dataset_size: 12484376307 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.0_num-company_2_dataset_1_for_gen_18_v2
HungVu2003
2025-05-03T20:33:24Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T20:33:23Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6589847 num_examples: 12500 download_size: 3363829 dataset_size: 6589847 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.0_num-company_2_dataset_0_for_gen_18_v2
HungVu2003
2025-05-03T20:33:22Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T20:33:21Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 1148944 num_examples: 12500 download_size: 699103 dataset_size: 1148944 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.0_num-company_2_dataset_1_for_gen_16_v2
HungVu2003
2025-05-03T20:29:36Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T20:29:35Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6614598 num_examples: 12500 download_size: 3383351 dataset_size: 6614598 configs: - config_name: default data_files: - split: train path: data/train-* ---
anonymousEcaiHateLLM/Hate.2_label_eval_data
anonymousEcaiHateLLM
2025-05-03T20:27:23Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T20:27:20Z
null
--- dataset_info: features: - name: text dtype: string - name: ds dtype: string - name: language dtype: string - name: label_id dtype: int64 splits: - name: group_1 num_bytes: 790678 num_examples: 5481 - name: group_2 num_bytes: 834653 num_examples: 5700 download_size: 955652 dataset_size: 1625331 configs: - config_name: default data_files: - split: group_1 path: data/group_1-* - split: group_2 path: data/group_2-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.0_num-company_2_dataset_0_for_gen_6_v2
HungVu2003
2025-05-03T20:09:58Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T20:09:56Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 1151427 num_examples: 12500 download_size: 701524 dataset_size: 1151427 configs: - config_name: default data_files: - split: train path: data/train-* ---
Bretagne/WikiMatrix_br_fr
Bretagne
2025-05-03T19:49:04Z
15
0
[ "task_categories:translation", "multilinguality:multilingual", "language:br", "language:fra", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1907.05791", "region:us" ]
[ "translation" ]
2024-10-29T15:47:02Z
null
--- dataset_info: features: - name: br dtype: string - name: fr dtype: string splits: - name: train num_bytes: 4099920 num_examples: 23893 download_size: 3022709 dataset_size: 4099920 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - translation language: - br - fra multilinguality: - multilingual --- ## Description Paires breton/français du jeu de données WikiMatrix disponible sur [OPUS](https://opus.nlpl.eu/results/br&fr/corpus-result-table). **⚠ Attention ⚠** : il y a des problèmes d'alignement. Ce jeu de données n'est donc pas utilisbale tel quel et un post-processing serait à effectuer. ## Citations #### WikiMatrix ``` @misc{schwenk2019wikimatrixmining135mparallel, title={WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia}, author={Holger Schwenk and Vishrav Chaudhary and Shuo Sun and Hongyu Gong and Francisco Guzmán}, year={2019}, eprint={1907.05791}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/1907.05791}, } ``` #### OPUS ``` @inbook{4992de1b5fb34f3e9691772606b36edf, title = "News from OPUS - A Collection of Multilingual Parallel Corpora with Tools and Interfaces", author = "J{\"o}rg Tiedemann", year = "2009", language = "odefinierat/ok{\"a}nt", volume = "V", pages = "237--248", editor = "N. Nicolov and K. Bontcheva and G. Angelova and R. Mitkov", booktitle = "Recent Advances in Natural Language Processing", } ```
Bretagne/wikiann_br
Bretagne
2025-05-03T19:40:12Z
21
0
[ "task_categories:token-classification", "language:br", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "token-classification" ]
2024-10-16T21:21:02Z
null
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: int64 splits: - name: train num_bytes: 127019 num_examples: 915 - name: validation num_bytes: 121393 num_examples: 946 - name: test num_bytes: 130972 num_examples: 952 download_size: 120493 dataset_size: 379384 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* language: br task_categories: - token-classification --- ### Description Version nettoyée de [WikiAnn](https://huggingface.co/datasets/tner/wikiann). En effet, la version originale contenait des leaks et des duplications. De 1000 effectifs par split, la nouvelle répartition devient alors la suivante : ``` DatasetDict({ train: Dataset({ features: ['tokens', 'ner_tags'], num_rows: 915 }) validation: Dataset({ features: ['tokens', 'ner_tags'], num_rows: 946 }) test: Dataset({ features: ['tokens', 'ner_tags'], num_rows: 952 }) }) ``` ### Label ID Le dictionnaire label2id est disponible [ici](https://huggingface.co/datasets/tner/wikiann/raw/main/dataset/label.json). ```python { "B-LOC": 0, "B-ORG": 1, "B-PER": 2, "I-LOC": 3, "I-ORG": 4, "I-PER": 5, "O": 6 } ```
TheRealPilot638/Olmo-1B-0724-best_of_4_H200
TheRealPilot638
2025-05-03T19:24:26Z
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-28T17:28:12Z
null
--- dataset_info: - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-0--agg_strategy-last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: scores sequence: sequence: float64 - name: pred dtype: string - name: completion_tokens sequence: int64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string splits: - name: train num_bytes: 12951230 num_examples: 500 download_size: 3215226 dataset_size: 12951230 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-0--agg_strategy-last--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 splits: - name: train num_bytes: 32 num_examples: 1 download_size: 1961 dataset_size: 32 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-1--agg_strategy-last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: scores sequence: sequence: float64 - name: pred dtype: string - name: completion_tokens sequence: int64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string splits: - name: train num_bytes: 12797006 num_examples: 500 download_size: 3200583 dataset_size: 12797006 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-2--agg_strategy-last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: scores sequence: sequence: float64 - name: pred dtype: string - name: completion_tokens sequence: int64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string splits: - name: train num_bytes: 12918006 num_examples: 500 download_size: 3176928 dataset_size: 12918006 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-3--agg_strategy-last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: scores sequence: sequence: float64 - name: pred dtype: string - name: completion_tokens sequence: int64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string splits: - name: train num_bytes: 13126345 num_examples: 500 download_size: 3242153 dataset_size: 13126345 configs: - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-0--agg_strategy-last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-0--agg_strategy-last/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-0--agg_strategy-last--evals data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-0--agg_strategy-last--evals/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-1--agg_strategy-last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-1--agg_strategy-last/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-2--agg_strategy-last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-2--agg_strategy-last/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-3--agg_strategy-last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--seed-3--agg_strategy-last/train-* ---
alucchi/Qwen2.5-1.5B-Instruct_n1000_e10_oadam0.0001_b16_1_a10_flash_compact_ttt_a100_s40
alucchi
2025-05-03T19:23:54Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T19:23:44Z
null
--- dataset_info: - config_name: default features: - name: task_id dtype: string - name: prompt dtype: string - name: generated_text dtype: string - name: generated_grid_rect dtype: string - name: task_solution sequence: sequence: sequence: int64 - name: match dtype: bool - name: score dtype: float64 splits: - name: train num_bytes: 509760 num_examples: 70 download_size: 85260 dataset_size: 509760 - config_name: main features: - name: task_id dtype: string - name: prompt dtype: string - name: generated_text dtype: string - name: generated_grid_rect dtype: string - name: task_solution sequence: sequence: sequence: int64 - name: match dtype: bool - name: score dtype: float64 splits: - name: train num_bytes: 509760 num_examples: 70 download_size: 85260 dataset_size: 509760 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: main data_files: - split: train path: main/train-* ---
sltAI/crowdsourced-text-to-sign-language-rule-based-translation-corpus
sltAI
2025-05-03T18:32:05Z
372
0
[ "size_categories:1K<n<10K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-04-11T16:03:46Z
null
--- configs: - config_name: default data_files: - split: train path: data.csv --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]