datasetId
large_stringlengths
6
107
author
large_stringlengths
3
34
last_modified
large_stringdate
2021-05-20 00:57:22
2025-05-05 16:11:44
downloads
int64
0
4.28M
likes
int64
0
7.74k
tags
large listlengths
1
2.03k
task_categories
large listlengths
0
16
createdAt
large_stringdate
2022-03-02 23:29:22
2025-05-05 14:04:15
trending_score
float64
1
39
card
large_stringlengths
31
1M
armanc/scientific_papers
armanc
2024-01-18T11:15:30Z
2,713
163
[ "task_categories:summarization", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:100K<n<1M", "arxiv:1804.05685", "region:us", "abstractive-summarization" ]
[ "summarization" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - found language: - en language_creators: - found license: - unknown multilinguality: - monolingual pretty_name: ScientificPapers size_categories: - 100K<n<1M source_datasets: - original task_categories: - summarization task_ids: [] paperswithcode_id: null tags: - abstractive-summarization dataset_info: - config_name: arxiv features: - name: article dtype: string - name: abstract dtype: string - name: section_names dtype: string splits: - name: train num_bytes: 7148341992 num_examples: 203037 - name: validation num_bytes: 217125524 num_examples: 6436 - name: test num_bytes: 217514961 num_examples: 6440 download_size: 4504646347 dataset_size: 7582982477 - config_name: pubmed features: - name: article dtype: string - name: abstract dtype: string - name: section_names dtype: string splits: - name: train num_bytes: 2252027383 num_examples: 119924 - name: validation num_bytes: 127403398 num_examples: 6633 - name: test num_bytes: 127184448 num_examples: 6658 download_size: 4504646347 dataset_size: 2506615229 --- # Dataset Card for "scientific_papers" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** https://github.com/armancohan/long-summarization - **Paper:** [A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents](https://arxiv.org/abs/1804.05685) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 9.01 GB - **Size of the generated dataset:** 10.09 GB - **Total amount of disk used:** 19.10 GB ### Dataset Summary Scientific papers datasets contains two sets of long and structured documents. The datasets are obtained from ArXiv and PubMed OpenAccess repositories. Both "arxiv" and "pubmed" have two features: - article: the body of the document, paragraphs separated by "/n". - abstract: the abstract of the document, paragraphs separated by "/n". - section_names: titles of sections, separated by "/n". ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### arxiv - **Size of downloaded dataset files:** 4.50 GB - **Size of the generated dataset:** 7.58 GB - **Total amount of disk used:** 12.09 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "abstract": "\" we have studied the leptonic decay @xmath0 , via the decay channel @xmath1 , using a sample of tagged @xmath2 decays collected...", "article": "\"the leptonic decays of a charged pseudoscalar meson @xmath7 are processes of the type @xmath8 , where @xmath9 , @xmath10 , or @...", "section_names": "[sec:introduction]introduction\n[sec:detector]data and the cleo- detector\n[sec:analysys]analysis method\n[sec:conclusion]summary" } ``` #### pubmed - **Size of downloaded dataset files:** 4.50 GB - **Size of the generated dataset:** 2.51 GB - **Total amount of disk used:** 7.01 GB An example of 'validation' looks as follows. ``` This example was too long and was cropped: { "abstract": "\" background and aim : there is lack of substantial indian data on venous thromboembolism ( vte ) . \\n the aim of this study was...", "article": "\"approximately , one - third of patients with symptomatic vte manifests pe , whereas two - thirds manifest dvt alone .\\nboth dvt...", "section_names": "\"Introduction\\nSubjects and Methods\\nResults\\nDemographics and characteristics of venous thromboembolism patients\\nRisk factors ..." } ``` ### Data Fields The data fields are the same among all splits. #### arxiv - `article`: a `string` feature. - `abstract`: a `string` feature. - `section_names`: a `string` feature. #### pubmed - `article`: a `string` feature. - `abstract`: a `string` feature. - `section_names`: a `string` feature. ### Data Splits | name |train |validation|test| |------|-----:|---------:|---:| |arxiv |203037| 6436|6440| |pubmed|119924| 6633|6658| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @article{Cohan_2018, title={A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents}, url={http://dx.doi.org/10.18653/v1/n18-2097}, DOI={10.18653/v1/n18-2097}, journal={Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)}, publisher={Association for Computational Linguistics}, author={Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli}, year={2018} } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@jplu](https://github.com/jplu), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
zhoubolei/scene_parse_150
zhoubolei
2024-01-18T11:15:25Z
1,272
29
[ "task_categories:image-segmentation", "task_ids:instance-segmentation", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended|ade20k", "language:en", "license:bsd-3-clause", "size_categories:10K<n<100K", "arxiv:1608.05442", "region:us", "scene-parsing" ]
[ "image-segmentation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced - expert-generated language_creators: - found language: - en license: - bsd-3-clause multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|ade20k task_categories: - image-segmentation task_ids: - instance-segmentation paperswithcode_id: ade20k pretty_name: MIT Scene Parsing Benchmark tags: - scene-parsing dataset_info: - config_name: scene_parsing features: - name: image dtype: image - name: annotation dtype: image - name: scene_category dtype: class_label: names: '0': airport_terminal '1': art_gallery '2': badlands '3': ball_pit '4': bathroom '5': beach '6': bedroom '7': booth_indoor '8': botanical_garden '9': bridge '10': bullring '11': bus_interior '12': butte '13': canyon '14': casino_outdoor '15': castle '16': church_outdoor '17': closet '18': coast '19': conference_room '20': construction_site '21': corral '22': corridor '23': crosswalk '24': day_care_center '25': sand '26': elevator_interior '27': escalator_indoor '28': forest_road '29': gangplank '30': gas_station '31': golf_course '32': gymnasium_indoor '33': harbor '34': hayfield '35': heath '36': hoodoo '37': house '38': hunting_lodge_outdoor '39': ice_shelf '40': joss_house '41': kiosk_indoor '42': kitchen '43': landfill '44': library_indoor '45': lido_deck_outdoor '46': living_room '47': locker_room '48': market_outdoor '49': mountain_snowy '50': office '51': orchard '52': arbor '53': bookshelf '54': mews '55': nook '56': preserve '57': traffic_island '58': palace '59': palace_hall '60': pantry '61': patio '62': phone_booth '63': establishment '64': poolroom_home '65': quonset_hut_outdoor '66': rice_paddy '67': sandbox '68': shopfront '69': skyscraper '70': stone_circle '71': subway_interior '72': platform '73': supermarket '74': swimming_pool_outdoor '75': television_studio '76': indoor_procenium '77': train_railway '78': coral_reef '79': viaduct '80': wave '81': wind_farm '82': bottle_storage '83': abbey '84': access_road '85': air_base '86': airfield '87': airlock '88': airplane_cabin '89': airport '90': entrance '91': airport_ticket_counter '92': alcove '93': alley '94': amphitheater '95': amusement_arcade '96': amusement_park '97': anechoic_chamber '98': apartment_building_outdoor '99': apse_indoor '100': apse_outdoor '101': aquarium '102': aquatic_theater '103': aqueduct '104': arcade '105': arch '106': archaelogical_excavation '107': archive '108': basketball '109': football '110': hockey '111': performance '112': rodeo '113': soccer '114': armory '115': army_base '116': arrival_gate_indoor '117': arrival_gate_outdoor '118': art_school '119': art_studio '120': artists_loft '121': assembly_line '122': athletic_field_indoor '123': athletic_field_outdoor '124': atrium_home '125': atrium_public '126': attic '127': auditorium '128': auto_factory '129': auto_mechanics_indoor '130': auto_mechanics_outdoor '131': auto_racing_paddock '132': auto_showroom '133': backstage '134': backstairs '135': badminton_court_indoor '136': badminton_court_outdoor '137': baggage_claim '138': shop '139': exterior '140': balcony_interior '141': ballroom '142': bamboo_forest '143': bank_indoor '144': bank_outdoor '145': bank_vault '146': banquet_hall '147': baptistry_indoor '148': baptistry_outdoor '149': bar '150': barbershop '151': barn '152': barndoor '153': barnyard '154': barrack '155': baseball_field '156': basement '157': basilica '158': basketball_court_indoor '159': basketball_court_outdoor '160': bathhouse '161': batters_box '162': batting_cage_indoor '163': batting_cage_outdoor '164': battlement '165': bayou '166': bazaar_indoor '167': bazaar_outdoor '168': beach_house '169': beauty_salon '170': bedchamber '171': beer_garden '172': beer_hall '173': belfry '174': bell_foundry '175': berth '176': berth_deck '177': betting_shop '178': bicycle_racks '179': bindery '180': biology_laboratory '181': bistro_indoor '182': bistro_outdoor '183': bleachers_indoor '184': bleachers_outdoor '185': boardwalk '186': boat_deck '187': boathouse '188': bog '189': bomb_shelter_indoor '190': bookbindery '191': bookstore '192': bow_window_indoor '193': bow_window_outdoor '194': bowling_alley '195': box_seat '196': boxing_ring '197': breakroom '198': brewery_indoor '199': brewery_outdoor '200': brickyard_indoor '201': brickyard_outdoor '202': building_complex '203': building_facade '204': bullpen '205': burial_chamber '206': bus_depot_indoor '207': bus_depot_outdoor '208': bus_shelter '209': bus_station_indoor '210': bus_station_outdoor '211': butchers_shop '212': cabana '213': cabin_indoor '214': cabin_outdoor '215': cafeteria '216': call_center '217': campsite '218': campus '219': natural '220': urban '221': candy_store '222': canteen '223': car_dealership '224': backseat '225': frontseat '226': caravansary '227': cardroom '228': cargo_container_interior '229': airplane '230': boat '231': freestanding '232': carport_indoor '233': carport_outdoor '234': carrousel '235': casino_indoor '236': catacomb '237': cathedral_indoor '238': cathedral_outdoor '239': catwalk '240': cavern_indoor '241': cavern_outdoor '242': cemetery '243': chalet '244': chaparral '245': chapel '246': checkout_counter '247': cheese_factory '248': chemical_plant '249': chemistry_lab '250': chicken_coop_indoor '251': chicken_coop_outdoor '252': chicken_farm_indoor '253': chicken_farm_outdoor '254': childs_room '255': choir_loft_interior '256': church_indoor '257': circus_tent_indoor '258': circus_tent_outdoor '259': city '260': classroom '261': clean_room '262': cliff '263': booth '264': room '265': clock_tower_indoor '266': cloister_indoor '267': cloister_outdoor '268': clothing_store '269': coast_road '270': cockpit '271': coffee_shop '272': computer_room '273': conference_center '274': conference_hall '275': confessional '276': control_room '277': control_tower_indoor '278': control_tower_outdoor '279': convenience_store_indoor '280': convenience_store_outdoor '281': corn_field '282': cottage '283': cottage_garden '284': courthouse '285': courtroom '286': courtyard '287': covered_bridge_interior '288': crawl_space '289': creek '290': crevasse '291': library '292': cybercafe '293': dacha '294': dairy_indoor '295': dairy_outdoor '296': dam '297': dance_school '298': darkroom '299': delicatessen '300': dentists_office '301': department_store '302': departure_lounge '303': vegetation '304': desert_road '305': diner_indoor '306': diner_outdoor '307': dinette_home '308': vehicle '309': dining_car '310': dining_hall '311': dining_room '312': dirt_track '313': discotheque '314': distillery '315': ditch '316': dock '317': dolmen '318': donjon '319': doorway_indoor '320': doorway_outdoor '321': dorm_room '322': downtown '323': drainage_ditch '324': dress_shop '325': dressing_room '326': drill_rig '327': driveway '328': driving_range_indoor '329': driving_range_outdoor '330': drugstore '331': dry_dock '332': dugout '333': earth_fissure '334': editing_room '335': electrical_substation '336': elevated_catwalk '337': door '338': freight_elevator '339': elevator_lobby '340': elevator_shaft '341': embankment '342': embassy '343': engine_room '344': entrance_hall '345': escalator_outdoor '346': escarpment '347': estuary '348': excavation '349': exhibition_hall '350': fabric_store '351': factory_indoor '352': factory_outdoor '353': fairway '354': farm '355': fastfood_restaurant '356': fence '357': cargo_deck '358': ferryboat_indoor '359': passenger_deck '360': cultivated '361': wild '362': field_road '363': fire_escape '364': fire_station '365': firing_range_indoor '366': firing_range_outdoor '367': fish_farm '368': fishmarket '369': fishpond '370': fitting_room_interior '371': fjord '372': flea_market_indoor '373': flea_market_outdoor '374': floating_dry_dock '375': flood '376': florist_shop_indoor '377': florist_shop_outdoor '378': fly_bridge '379': food_court '380': football_field '381': broadleaf '382': needleleaf '383': forest_fire '384': forest_path '385': formal_garden '386': fort '387': fortress '388': foundry_indoor '389': foundry_outdoor '390': fountain '391': freeway '392': funeral_chapel '393': funeral_home '394': furnace_room '395': galley '396': game_room '397': garage_indoor '398': garage_outdoor '399': garbage_dump '400': gasworks '401': gate '402': gatehouse '403': gazebo_interior '404': general_store_indoor '405': general_store_outdoor '406': geodesic_dome_indoor '407': geodesic_dome_outdoor '408': ghost_town '409': gift_shop '410': glacier '411': glade '412': gorge '413': granary '414': great_hall '415': greengrocery '416': greenhouse_indoor '417': greenhouse_outdoor '418': grotto '419': guardhouse '420': gulch '421': gun_deck_indoor '422': gun_deck_outdoor '423': gun_store '424': hacienda '425': hallway '426': handball_court '427': hangar_indoor '428': hangar_outdoor '429': hardware_store '430': hat_shop '431': hatchery '432': hayloft '433': hearth '434': hedge_maze '435': hedgerow '436': heliport '437': herb_garden '438': highway '439': hill '440': home_office '441': home_theater '442': hospital '443': hospital_room '444': hot_spring '445': hot_tub_indoor '446': hot_tub_outdoor '447': hotel_outdoor '448': hotel_breakfast_area '449': hotel_room '450': hunting_lodge_indoor '451': hut '452': ice_cream_parlor '453': ice_floe '454': ice_skating_rink_indoor '455': ice_skating_rink_outdoor '456': iceberg '457': igloo '458': imaret '459': incinerator_indoor '460': incinerator_outdoor '461': industrial_area '462': industrial_park '463': inn_indoor '464': inn_outdoor '465': irrigation_ditch '466': islet '467': jacuzzi_indoor '468': jacuzzi_outdoor '469': jail_indoor '470': jail_outdoor '471': jail_cell '472': japanese_garden '473': jetty '474': jewelry_shop '475': junk_pile '476': junkyard '477': jury_box '478': kasbah '479': kennel_indoor '480': kennel_outdoor '481': kindergarden_classroom '482': kiosk_outdoor '483': kitchenette '484': lab_classroom '485': labyrinth_indoor '486': labyrinth_outdoor '487': lagoon '488': artificial '489': landing '490': landing_deck '491': laundromat '492': lava_flow '493': lavatory '494': lawn '495': lean-to '496': lecture_room '497': legislative_chamber '498': levee '499': library_outdoor '500': lido_deck_indoor '501': lift_bridge '502': lighthouse '503': limousine_interior '504': liquor_store_indoor '505': liquor_store_outdoor '506': loading_dock '507': lobby '508': lock_chamber '509': loft '510': lookout_station_indoor '511': lookout_station_outdoor '512': lumberyard_indoor '513': lumberyard_outdoor '514': machine_shop '515': manhole '516': mansion '517': manufactured_home '518': market_indoor '519': marsh '520': martial_arts_gym '521': mastaba '522': maternity_ward '523': mausoleum '524': medina '525': menhir '526': mesa '527': mess_hall '528': mezzanine '529': military_hospital '530': military_hut '531': military_tent '532': mine '533': mineshaft '534': mini_golf_course_indoor '535': mini_golf_course_outdoor '536': mission '537': dry '538': water '539': mobile_home '540': monastery_indoor '541': monastery_outdoor '542': moon_bounce '543': moor '544': morgue '545': mosque_indoor '546': mosque_outdoor '547': motel '548': mountain '549': mountain_path '550': mountain_road '551': movie_theater_indoor '552': movie_theater_outdoor '553': mudflat '554': museum_indoor '555': museum_outdoor '556': music_store '557': music_studio '558': misc '559': natural_history_museum '560': naval_base '561': newsroom '562': newsstand_indoor '563': newsstand_outdoor '564': nightclub '565': nuclear_power_plant_indoor '566': nuclear_power_plant_outdoor '567': nunnery '568': nursery '569': nursing_home '570': oasis '571': oast_house '572': observatory_indoor '573': observatory_outdoor '574': observatory_post '575': ocean '576': office_building '577': office_cubicles '578': oil_refinery_indoor '579': oil_refinery_outdoor '580': oilrig '581': operating_room '582': optician '583': organ_loft_interior '584': orlop_deck '585': ossuary '586': outcropping '587': outhouse_indoor '588': outhouse_outdoor '589': overpass '590': oyster_bar '591': oyster_farm '592': acropolis '593': aircraft_carrier_object '594': amphitheater_indoor '595': archipelago '596': questionable '597': assembly_hall '598': assembly_plant '599': awning_deck '600': back_porch '601': backdrop '602': backroom '603': backstage_outdoor '604': backstairs_indoor '605': backwoods '606': ballet '607': balustrade '608': barbeque '609': basin_outdoor '610': bath_indoor '611': bath_outdoor '612': bathhouse_outdoor '613': battlefield '614': bay '615': booth_outdoor '616': bottomland '617': breakfast_table '618': bric-a-brac '619': brooklet '620': bubble_chamber '621': buffet '622': bulkhead '623': bunk_bed '624': bypass '625': byroad '626': cabin_cruiser '627': cargo_helicopter '628': cellar '629': chair_lift '630': cocktail_lounge '631': corner '632': country_house '633': country_road '634': customhouse '635': dance_floor '636': deck-house_boat_deck_house '637': deck-house_deck_house '638': dining_area '639': diving_board '640': embrasure '641': entranceway_indoor '642': entranceway_outdoor '643': entryway_outdoor '644': estaminet '645': farm_building '646': farmhouse '647': feed_bunk '648': field_house '649': field_tent_indoor '650': field_tent_outdoor '651': fire_trench '652': fireplace '653': flashflood '654': flatlet '655': floating_dock '656': flood_plain '657': flowerbed '658': flume_indoor '659': flying_buttress '660': foothill '661': forecourt '662': foreshore '663': front_porch '664': garden '665': gas_well '666': glen '667': grape_arbor '668': grove '669': guardroom '670': guesthouse '671': gymnasium_outdoor '672': head_shop '673': hen_yard '674': hillock '675': housing_estate '676': housing_project '677': howdah '678': inlet '679': insane_asylum '680': outside '681': juke_joint '682': jungle '683': kraal '684': laboratorywet '685': landing_strip '686': layby '687': lean-to_tent '688': loge '689': loggia_outdoor '690': lower_deck '691': luggage_van '692': mansard '693': meadow '694': meat_house '695': megalith '696': mens_store_outdoor '697': mental_institution_indoor '698': mental_institution_outdoor '699': military_headquarters '700': millpond '701': millrace '702': natural_spring '703': nursing_home_outdoor '704': observation_station '705': open-hearth_furnace '706': operating_table '707': outbuilding '708': palestra '709': parkway '710': patio_indoor '711': pavement '712': pawnshop_outdoor '713': pinetum '714': piste_road '715': pizzeria_outdoor '716': powder_room '717': pumping_station '718': reception_room '719': rest_stop '720': retaining_wall '721': rift_valley '722': road '723': rock_garden '724': rotisserie '725': safari_park '726': salon '727': saloon '728': sanatorium '729': science_laboratory '730': scrubland '731': scullery '732': seaside '733': semidesert '734': shelter '735': shelter_deck '736': shelter_tent '737': shore '738': shrubbery '739': sidewalk '740': snack_bar '741': snowbank '742': stage_set '743': stall '744': stateroom '745': store '746': streetcar_track '747': student_center '748': study_hall '749': sugar_refinery '750': sunroom '751': supply_chamber '752': t-bar_lift '753': tannery '754': teahouse '755': threshing_floor '756': ticket_window_indoor '757': tidal_basin '758': tidal_river '759': tiltyard '760': tollgate '761': tomb '762': tract_housing '763': trellis '764': truck_stop '765': upper_balcony '766': vestibule '767': vinery '768': walkway '769': war_room '770': washroom '771': water_fountain '772': water_gate '773': waterscape '774': waterway '775': wetland '776': widows_walk_indoor '777': windstorm '778': packaging_plant '779': pagoda '780': paper_mill '781': park '782': parking_garage_indoor '783': parking_garage_outdoor '784': parking_lot '785': parlor '786': particle_accelerator '787': party_tent_indoor '788': party_tent_outdoor '789': pasture '790': pavilion '791': pawnshop '792': pedestrian_overpass_indoor '793': penalty_box '794': pet_shop '795': pharmacy '796': physics_laboratory '797': piano_store '798': picnic_area '799': pier '800': pig_farm '801': pilothouse_indoor '802': pilothouse_outdoor '803': pitchers_mound '804': pizzeria '805': planetarium_indoor '806': planetarium_outdoor '807': plantation_house '808': playground '809': playroom '810': plaza '811': podium_indoor '812': podium_outdoor '813': police_station '814': pond '815': pontoon_bridge '816': poop_deck '817': porch '818': portico '819': portrait_studio '820': postern '821': power_plant_outdoor '822': print_shop '823': priory '824': promenade '825': promenade_deck '826': pub_indoor '827': pub_outdoor '828': pulpit '829': putting_green '830': quadrangle '831': quicksand '832': quonset_hut_indoor '833': racecourse '834': raceway '835': raft '836': railroad_track '837': railway_yard '838': rainforest '839': ramp '840': ranch '841': ranch_house '842': reading_room '843': reception '844': recreation_room '845': rectory '846': recycling_plant_indoor '847': refectory '848': repair_shop '849': residential_neighborhood '850': resort '851': rest_area '852': restaurant '853': restaurant_kitchen '854': restaurant_patio '855': restroom_indoor '856': restroom_outdoor '857': revolving_door '858': riding_arena '859': river '860': road_cut '861': rock_arch '862': roller_skating_rink_indoor '863': roller_skating_rink_outdoor '864': rolling_mill '865': roof '866': roof_garden '867': root_cellar '868': rope_bridge '869': roundabout '870': roundhouse '871': rubble '872': ruin '873': runway '874': sacristy '875': salt_plain '876': sand_trap '877': sandbar '878': sauna '879': savanna '880': sawmill '881': schoolhouse '882': schoolyard '883': science_museum '884': scriptorium '885': sea_cliff '886': seawall '887': security_check_point '888': server_room '889': sewer '890': sewing_room '891': shed '892': shipping_room '893': shipyard_outdoor '894': shoe_shop '895': shopping_mall_indoor '896': shopping_mall_outdoor '897': shower '898': shower_room '899': shrine '900': signal_box '901': sinkhole '902': ski_jump '903': ski_lodge '904': ski_resort '905': ski_slope '906': sky '907': skywalk_indoor '908': skywalk_outdoor '909': slum '910': snowfield '911': massage_room '912': mineral_bath '913': spillway '914': sporting_goods_store '915': squash_court '916': stable '917': baseball '918': stadium_outdoor '919': stage_indoor '920': stage_outdoor '921': staircase '922': starting_gate '923': steam_plant_outdoor '924': steel_mill_indoor '925': storage_room '926': storm_cellar '927': street '928': strip_mall '929': strip_mine '930': student_residence '931': submarine_interior '932': sun_deck '933': sushi_bar '934': swamp '935': swimming_hole '936': swimming_pool_indoor '937': synagogue_indoor '938': synagogue_outdoor '939': taxistand '940': taxiway '941': tea_garden '942': tearoom '943': teashop '944': television_room '945': east_asia '946': mesoamerican '947': south_asia '948': western '949': tennis_court_indoor '950': tennis_court_outdoor '951': tent_outdoor '952': terrace_farm '953': indoor_round '954': indoor_seats '955': theater_outdoor '956': thriftshop '957': throne_room '958': ticket_booth '959': tobacco_shop_indoor '960': toll_plaza '961': tollbooth '962': topiary_garden '963': tower '964': town_house '965': toyshop '966': track_outdoor '967': trading_floor '968': trailer_park '969': train_interior '970': train_station_outdoor '971': station '972': tree_farm '973': tree_house '974': trench '975': trestle_bridge '976': tundra '977': rail_indoor '978': rail_outdoor '979': road_indoor '980': road_outdoor '981': turkish_bath '982': ocean_deep '983': ocean_shallow '984': utility_room '985': valley '986': van_interior '987': vegetable_garden '988': velodrome_indoor '989': velodrome_outdoor '990': ventilation_shaft '991': veranda '992': vestry '993': veterinarians_office '994': videostore '995': village '996': vineyard '997': volcano '998': volleyball_court_indoor '999': volleyball_court_outdoor '1000': voting_booth '1001': waiting_room '1002': walk_in_freezer '1003': warehouse_indoor '1004': warehouse_outdoor '1005': washhouse_indoor '1006': washhouse_outdoor '1007': watchtower '1008': water_mill '1009': water_park '1010': water_tower '1011': water_treatment_plant_indoor '1012': water_treatment_plant_outdoor '1013': block '1014': cascade '1015': cataract '1016': fan '1017': plunge '1018': watering_hole '1019': weighbridge '1020': wet_bar '1021': wharf '1022': wheat_field '1023': whispering_gallery '1024': widows_walk_interior '1025': windmill '1026': window_seat '1027': barrel_storage '1028': winery '1029': witness_stand '1030': woodland '1031': workroom '1032': workshop '1033': wrestling_ring_indoor '1034': wrestling_ring_outdoor '1035': yard '1036': youth_hostel '1037': zen_garden '1038': ziggurat '1039': zoo '1040': forklift '1041': hollow '1042': hutment '1043': pueblo '1044': vat '1045': perfume_shop '1046': steel_mill_outdoor '1047': orchestra_pit '1048': bridle_path '1049': lyceum '1050': one-way_street '1051': parade_ground '1052': pump_room '1053': recycling_plant_outdoor '1054': chuck_wagon splits: - name: train num_bytes: 8468086 num_examples: 20210 - name: test num_bytes: 744607 num_examples: 3352 - name: validation num_bytes: 838032 num_examples: 2000 download_size: 1179202534 dataset_size: 10050725 - config_name: instance_segmentation features: - name: image dtype: image - name: annotation dtype: image splits: - name: train num_bytes: 862611544 num_examples: 20210 - name: test num_bytes: 212493928 num_examples: 3352 - name: validation num_bytes: 87502294 num_examples: 2000 download_size: 1197393920 dataset_size: 1162607766 --- # Dataset Card for MIT Scene Parsing Benchmark ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [MIT Scene Parsing Benchmark homepage](http://sceneparsing.csail.mit.edu/) - **Repository:** [Scene Parsing repository (Caffe/Torch7)](https://github.com/CSAILVision/sceneparsing),[Scene Parsing repository (PyTorch)](https://github.com/CSAILVision/semantic-segmentation-pytorch) and [Instance Segmentation repository](https://github.com/CSAILVision/placeschallenge/tree/master/instancesegmentation) - **Paper:** [Scene Parsing through ADE20K Dataset](http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf) and [Semantic Understanding of Scenes through ADE20K Dataset](https://arxiv.org/abs/1608.05442) - **Leaderboard:** [MIT Scene Parsing Benchmark leaderboard](http://sceneparsing.csail.mit.edu/#:~:text=twice%20per%20week.-,leaderboard,-Organizers) - **Point of Contact:** [Bolei Zhou](mailto:[email protected]) ### Dataset Summary Scene parsing is the task of segmenting and parsing an image into different image regions associated with semantic categories, such as sky, road, person, and bed. MIT Scene Parsing Benchmark (SceneParse150) provides a standard training and evaluation platform for the algorithms of scene parsing. The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts. Specifically, the benchmark is divided into 20K images for training, 2K images for validation, and another batch of held-out images for testing. There are in total 150 semantic categories included for evaluation, which include e.g. sky, road, grass, and discrete objects like person, car, bed. Note that there are non-uniform distribution of objects occuring in the images, mimicking a more natural object occurrence in daily scene. The goal of this benchmark is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bedThis benchamark is similar to semantic segmentation tasks in COCO and Pascal Dataset, but the data is more scene-centric and with a diverse range of object categories. The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts. ### Supported Tasks and Leaderboards - `scene-parsing`: The goal of this task is to segment the whole image densely into semantic classes (image regions), where each pixel is assigned a class label such as the region of *tree* and the region of *building*. [The leaderboard](http://sceneparsing.csail.mit.edu/#:~:text=twice%20per%20week.-,leaderboard,-Organizers) for this task ranks the models by considering the mean of the pixel-wise accuracy and class-wise IoU as the final score. Pixel-wise accuracy indicates the ratio of pixels which are correctly predicted, while class-wise IoU indicates the Intersection of Union of pixels averaged over all the 150 semantic categories. Refer to the [Development Kit](https://github.com/CSAILVision/sceneparsing) for the detail. - `instance-segmentation`: The goal of this task is to detect the object instances inside an image and further generate the precise segmentation masks of the objects. Its difference compared to the task of scene parsing is that in scene parsing there is no instance concept for the segmented regions, instead in instance segmentation if there are three persons in the scene, the network is required to segment each one of the person regions. This task doesn't have an active leaderboard. The performance of the instance segmentation algorithms is evaluated by Average Precision (AP, or mAP), following COCO evaluation metrics. For each image, at most 255 top-scoring instance masks are taken across all categories. Each instance mask prediction is only considered if its IoU with ground truth is above a certain threshold. There are 10 IoU thresholds of 0.50:0.05:0.95 for evaluation. The final AP is averaged across 10 IoU thresholds and 100 categories. You can refer to COCO evaluation page for more explanation: http://mscoco.org/dataset/#detections-eval ### Languages English. ## Dataset Structure ### Data Instances A data point comprises an image and its annotation mask, which is `None` in the testing set. The `scene_parsing` configuration has an additional `scene_category` field. #### `scene_parsing` ``` { 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=683x512 at 0x1FF32A3EDA0>, 'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=683x512 at 0x1FF32E5B978>, 'scene_category': 0 } ``` #### `instance_segmentation` ``` { 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=256x256 at 0x20B51B5C400>, 'annotation': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x256 at 0x20B57051B38> } ``` ### Data Fields #### `scene_parsing` - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`. - `annotation`: A `PIL.Image.Image` object containing the annotation mask. - `scene_category`: A scene category for the image (e.g. `airport_terminal`, `canyon`, `mobile_home`). > **Note**: annotation masks contain labels ranging from 0 to 150, where 0 refers to "other objects". Those pixels are not considered in the official evaluation. Refer to [this file](https://github.com/CSAILVision/sceneparsing/blob/master/objectInfo150.csv) for the information about the labels of the 150 semantic categories, including indices, pixel ratios and names. #### `instance_segmentation` - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`. - `annotation`: A `PIL.Image.Image` object containing the annotation mask. > **Note**: in the instance annotation masks, the R(ed) channel encodes category ID, and the G(reen) channel encodes instance ID. Each object instance has a unique instance ID regardless of its category ID. In the dataset, all images have <256 object instances. Refer to [this file (train split)](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/instanceInfo100_train.txt) and to [this file (validation split)](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/instanceInfo100_val.txt) for the information about the labels of the 100 semantic categories. To find the mapping between the semantic categories for `instance_segmentation` and `scene_parsing`, refer to [this file](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/categoryMapping.txt). ### Data Splits The data is split into training, test and validation set. The training data contains 20210 images, the testing data contains 3352 images and the validation data contains 2000 images. ## Dataset Creation ### Curation Rationale The rationale from the paper for the ADE20K dataset from which this benchmark originates: > Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. > The motivation of this work is to collect a dataset that has densely annotated images (every pixel has a semantic label) with a large and an unrestricted open vocabulary. The images in our dataset are manually segmented in great detail, covering a diverse set of scenes, object and object part categories. The challenge for collecting such annotations is finding reliable annotators, as well as the fact that labeling is difficult if the class list is not defined in advance. On the other hand, open vocabulary naming also suffers from naming inconsistencies across different annotators. In contrast, our dataset was annotated by a single expert annotator, providing extremely detailed and exhaustive image annotations. On average, our annotator labeled 29 annotation segments per image, compared to the 16 segments per image labeled by external annotators (like workers from Amazon Mechanical Turk). Furthermore, the data consistency and quality are much higher than that of external annotators. ### Source Data #### Initial Data Collection and Normalization Images come from the LabelMe, SUN datasets, and Places and were selected to cover the 900 scene categories defined in the SUN database. This benchmark was built by selecting the top 150 objects ranked by their total pixel ratios from the ADE20K dataset. As the original images in the ADE20K dataset have various sizes, for simplicity those large-sized images were rescaled to make their minimum heights or widths as 512. Among the 150 objects, there are 35 stuff classes (i.e., wall, sky, road) and 115 discrete objects (i.e., car, person, table). The annotated pixels of the 150 objects occupy 92.75% of all the pixels in the dataset, where the stuff classes occupy 60.92%, and discrete objects occupy 31.83%. #### Who are the source language producers? The same as in the LabelMe, SUN datasets, and Places datasets. ### Annotations #### Annotation process Annotation process for the ADE20K dataset: > **Image Annotation.** For our dataset, we are interested in having a diverse set of scenes with dense annotations of all the objects present. Images come from the LabelMe, SUN datasets, and Places and were selected to cover the 900 scene categories defined in the SUN database. Images were annotated by a single expert worker using the LabelMe interface. Fig. 2 shows a snapshot of the annotation interface and one fully segmented image. The worker provided three types of annotations: object segments with names, object parts, and attributes. All object instances are segmented independently so that the dataset could be used to train and evaluate detection or segmentation algorithms. Datasets such as COCO, Pascal or Cityscape start by defining a set of object categories of interest. However, when labeling all the objects in a scene, working with a predefined list of objects is not possible as new categories appear frequently (see fig. 5.d). Here, the annotator created a dictionary of visual concepts where new classes were added constantly to ensure consistency in object naming. Object parts are associated with object instances. Note that parts can have parts too, and we label these associations as well. For example, the ‘rim’ is a part of a ‘wheel’, which in turn is part of a ‘car’. A ‘knob’ is a part of a ‘door’ that can be part of a ‘cabinet’. The total part hierarchy has a depth of 3. The object and part hierarchy is in the supplementary materials. > **Annotation Consistency.** Defining a labeling protocol is relatively easy when the labeling task is restricted to a fixed list of object classes, however it becomes challenging when the class list is openended. As the goal is to label all the objects within each image, the list of classes grows unbounded. >Many object classes appear only a few times across the entire collection of images. However, those rare >object classes cannot be ignored as they might be important elements for the interpretation of the scene. >Labeling in these conditions becomes difficult because we need to keep a growing list of all the object >classes in order to have a consistent naming across the entire dataset. Despite the annotator’s best effort, >the process is not free of noise. To analyze the annotation consistency we took a subset of 61 randomly >chosen images from the validation set, then asked our annotator to annotate them again (there is a time difference of six months). One expects that there are some differences between the two annotations. A few examples are shown in Fig 3. On average, 82.4% of the pixels got the same label. The remaining 17.6% of pixels had some errors for which we grouped into three error types as follows: > > • Segmentation quality: Variations in the quality of segmentation and outlining of the object boundary. One typical source of error arises when segmenting complex objects such as buildings and trees, which can be segmented with different degrees of precision. 5.7% of the pixels had this type of error. > > • Object naming: Differences in object naming (due to ambiguity or similarity between concepts, for instance calling a big car a ‘car’ in one segmentation and a ‘truck’ in the another one, or a ‘palm tree’ a‘tree’. 6.0% of the pixels had naming issues. These errors can be reduced by defining a very precise terminology, but this becomes much harder with a large growing vocabulary. > > • Segmentation quantity: Missing objects in one of the two segmentations. There is a very large number of objects in each image and some images might be annotated more thoroughly than others. For example, in the third column of Fig 3 the annotator missed some small objects in different annotations. 5.9% of the pixels are due to missing labels. A similar issue existed in segmentation datasets such as the Berkeley Image segmentation dataset. > > The median error values for the three error types are: 4.8%, 0.3% and 2.6% showing that the mean value is dominated by a few images, and that the most common type of error is segmentation quality. To further compare the annotation done by our single expert annotator and the AMT-like annotators, 20 images from the validation set are annotated by two invited external annotators, both with prior experience in image labeling. The first external annotator had 58.5% of inconsistent pixels compared to the segmentation provided by our annotator, and the second external annotator had 75% of the inconsistent pixels. Many of these inconsistencies are due to the poor quality of the segmentations provided by external annotators (as it has been observed with AMT which requires multiple verification steps for quality control). For the best external annotator (the first one), 7.9% of pixels have inconsistent segmentations (just slightly worse than our annotator), 14.9% have inconsistent object naming and 35.8% of the pixels correspond to missing objects, which is due to the much smaller number of objects annotated by the external annotator in comparison with the ones annotated by our expert annotator. The external annotators labeled on average 16 segments per image while our annotator provided 29 segments per image. #### Who are the annotators? Three expert annotators and the AMT-like annotators. ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations Refer to the `Annotation Consistency` subsection of `Annotation Process`. ## Additional Information ### Dataset Curators Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso and Antonio Torralba. ### Licensing Information The MIT Scene Parsing Benchmark dataset is licensed under a [BSD 3-Clause License](https://github.com/CSAILVision/sceneparsing/blob/master/LICENSE). ### Citation Information ```bibtex @inproceedings{zhou2017scene, title={Scene Parsing through ADE20K Dataset}, author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2017} } @article{zhou2016semantic, title={Semantic understanding of scenes through the ade20k dataset}, author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio}, journal={arXiv preprint arXiv:1608.05442}, year={2016} } ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
scan-tasks/scan-tasks
scan-tasks
2024-01-18T11:15:22Z
1,750
6
[ "task_categories:text2text-generation", "annotations_creators:no-annotation", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:bsd", "size_categories:10K<n<100K", "arxiv:1711.00350", "region:us", "multi-turn" ]
[ "text2text-generation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - no-annotation language_creators: - expert-generated language: - en license: - bsd multilinguality: - monolingual pretty_name: SCAN size_categories: - 10K<n<100K source_datasets: - original task_categories: - text2text-generation task_ids: [] paperswithcode_id: scan tags: - multi-turn dataset_info: - config_name: simple features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 3217770 num_examples: 16728 - name: test num_bytes: 799912 num_examples: 4182 download_size: 4080388 dataset_size: 4017682 - config_name: addprim_jump features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 2535625 num_examples: 14670 - name: test num_bytes: 1508445 num_examples: 7706 download_size: 4111174 dataset_size: 4044070 - config_name: addprim_turn_left features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 3908891 num_examples: 21890 - name: test num_bytes: 170063 num_examples: 1208 download_size: 4148216 dataset_size: 4078954 - config_name: filler_num0 features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 2513034 num_examples: 15225 - name: test num_bytes: 330087 num_examples: 1173 download_size: 2892291 dataset_size: 2843121 - config_name: filler_num1 features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 2802865 num_examples: 16290 - name: test num_bytes: 330087 num_examples: 1173 download_size: 3185317 dataset_size: 3132952 - config_name: filler_num2 features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 3106220 num_examples: 17391 - name: test num_bytes: 330087 num_examples: 1173 download_size: 3491975 dataset_size: 3436307 - config_name: filler_num3 features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 3412704 num_examples: 18528 - name: test num_bytes: 330087 num_examples: 1173 download_size: 3801870 dataset_size: 3742791 - config_name: length features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 2672464 num_examples: 16990 - name: test num_bytes: 1345218 num_examples: 3920 download_size: 4080388 dataset_size: 4017682 - config_name: template_around_right features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 2513034 num_examples: 15225 - name: test num_bytes: 1229757 num_examples: 4476 download_size: 3801870 dataset_size: 3742791 - config_name: template_jump_around_right features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 3412704 num_examples: 18528 - name: test num_bytes: 330087 num_examples: 1173 download_size: 3801870 dataset_size: 3742791 - config_name: template_opposite_right features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 2944398 num_examples: 15225 - name: test num_bytes: 857943 num_examples: 4476 download_size: 3861420 dataset_size: 3802341 - config_name: template_right features: - name: commands dtype: string - name: actions dtype: string splits: - name: train num_bytes: 3127623 num_examples: 15225 - name: test num_bytes: 716403 num_examples: 4476 download_size: 3903105 dataset_size: 3844026 config_names: - addprim_jump - addprim_turn_left - filler_num0 - filler_num1 - filler_num2 - filler_num3 - length - simple - template_around_right - template_jump_around_right - template_opposite_right - template_right --- # Dataset Card for "scan" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/brendenlake/SCAN](https://github.com/brendenlake/SCAN) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 224.18 MB - **Size of the generated dataset:** 44.53 MB - **Total amount of disk used:** 268.71 MB ### Dataset Summary SCAN tasks with various splits. SCAN is a set of simple language-driven navigation tasks for studying compositional learning and zero-shot generalization. See https://github.com/brendenlake/SCAN for a description of the splits. Example usage: data = datasets.load_dataset('scan/length') ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### addprim_jump - **Size of downloaded dataset files:** 18.69 MB - **Size of the generated dataset:** 4.05 MB - **Total amount of disk used:** 22.73 MB An example of 'train' looks as follows. ``` ``` #### addprim_turn_left - **Size of downloaded dataset files:** 18.69 MB - **Size of the generated dataset:** 4.09 MB - **Total amount of disk used:** 22.76 MB An example of 'train' looks as follows. ``` ``` #### filler_num0 - **Size of downloaded dataset files:** 18.69 MB - **Size of the generated dataset:** 2.85 MB - **Total amount of disk used:** 21.53 MB An example of 'train' looks as follows. ``` ``` #### filler_num1 - **Size of downloaded dataset files:** 18.69 MB - **Size of the generated dataset:** 3.14 MB - **Total amount of disk used:** 21.82 MB An example of 'train' looks as follows. ``` ``` #### filler_num2 - **Size of downloaded dataset files:** 18.69 MB - **Size of the generated dataset:** 3.44 MB - **Total amount of disk used:** 22.12 MB An example of 'train' looks as follows. ``` ``` ### Data Fields The data fields are the same among all splits. #### addprim_jump - `commands`: a `string` feature. - `actions`: a `string` feature. #### addprim_turn_left - `commands`: a `string` feature. - `actions`: a `string` feature. #### filler_num0 - `commands`: a `string` feature. - `actions`: a `string` feature. #### filler_num1 - `commands`: a `string` feature. - `actions`: a `string` feature. #### filler_num2 - `commands`: a `string` feature. - `actions`: a `string` feature. ### Data Splits | name |train|test| |-----------------|----:|---:| |addprim_jump |14670|7706| |addprim_turn_left|21890|1208| |filler_num0 |15225|1173| |filler_num1 |16290|1173| |filler_num2 |17391|1173| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{Lake2018GeneralizationWS, title={Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks}, author={Brenden M. Lake and Marco Baroni}, booktitle={ICML}, year={2018}, url={https://arxiv.org/pdf/1711.00350.pdf}, } ``` ### Contributions Thanks to [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
inparallel/saudinewsnet
inparallel
2024-01-18T11:15:20Z
111
8
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:ar", "license:unknown", "size_categories:10K<n<100K", "region:us" ]
[ "text-generation", "fill-mask" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - no-annotation language_creators: - found language: - ar license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling paperswithcode_id: null pretty_name: saudinewsnet dataset_info: features: - name: source dtype: string - name: url dtype: string - name: date_extracted dtype: string - name: title dtype: string - name: author dtype: string - name: content dtype: string splits: - name: train num_bytes: 103654105 num_examples: 31030 download_size: 29014166 dataset_size: 103654105 --- # Dataset Card for "saudinewsnet" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [SaudiNewsNet](https://github.com/parallelfold/SaudiNewsNet) - **Repository:** [Website](https://github.com/parallelfold/SaudiNewsNet) - **Paper:** [More Information Needed] - **Point of Contact:** [Mazen Abdulaziz](mailto:[email protected]) - **Size of downloaded dataset files:** 29.01 MB - **Size of the generated dataset:** 103.65 MB - **Total amount of disk used:** 132.67 MB ### Dataset Summary The dataset contains a set of 31,030 Arabic newspaper articles alongwith metadata, extracted from various online Saudi newspapers and written in MSA. The dataset currently contains **31,030** Arabic articles (with a total number of **8,758,976 words**). The articles were extracted from the following Saudi newspapers (sorted by number of articles): - [Al-Riyadh](http://www.alriyadh.com/) (4,852 articles) - [Al-Jazirah](http://al-jazirah.com/) (3,690 articles) - [Al-Yaum](http://alyaum.com/) (3,065 articles) - [Al-Eqtisadiya](http://aleqt.com/) (2,964 articles) - [Al-Sharq Al-Awsat](http://aawsat.com/) (2,947 articles) - [Okaz](http://www.okaz.com.sa/) (2,846 articles) - [Al-Watan](http://alwatan.com.sa/) (2,279 articles) - [Al-Madina](http://www.al-madina.com/) (2,252 articles) - [Al-Weeam](http://alweeam.com.sa/) (2,090 articles) - [Ain Alyoum](http://3alyoum.com/) (2,080 articles) - [Sabq](http://sabq.org/) (1,411 articles) - [Saudi Press Agency](http://www.spa.gov.sa) (369 articles) - [Arreyadi](http://www.arreyadi.com.sa/) (133 articles) - [Arreyadiyah](http://www.arreyadiyah.com/) (52 articles) ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 29.01 MB - **Size of the generated dataset:** 103.65 MB - **Total amount of disk used:** 132.67 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "author": "الرياض: محمد الحميدي", "content": "\"في وقت تتهيأ فيه السعودية لإطلاق الإصدار الثاني من العملات المعدنية، لا تزال التداول بمبالغ النقود المصنوعة من المعدن مستقرة عن...", "date_extracted": "2015-07-22 01:18:37", "source": "aawsat", "title": "\"«العملة المعدنية» السعودية تسجل انحسارًا تاريخيًا وسط تهيؤ لإطلاق الإصدار الثاني\"...", "url": "\"http://aawsat.com/home/article/411671/«العملة-المعدنية»-السعودية-تسجل-انحسارًا-تاريخيًا-وسط-تهيؤ-لإطلاق-الإصدار-الثاني\"..." } ``` ### Data Fields The data fields are the same among all splits. - **`source`** (str): The source newspaper. - **`url`** (str): The full URL from which the article was extracted. - **`date_extracted`** (str): The timestamp of the date on which the article was extracted. It has the format `YYYY-MM-DD hh:mm:ss`. Notice that this field does not necessarily represent the date on which the article was authored (or made available online), however for articles stamped with a date of extraction after August 1, 2015, this field most probably represents the date of authoring. - **`title`** (str): The title of the article. Contains missing values that were replaced with an empty string. - **`author`** (str): The author of the article. Contains missing values that were replaced with an empty string. - **`content`** (str): The content of the article. ### Data Splits | name |train| |-------|----:| |default|31030| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data | String Identifier | Newspaper | | ------------------ | --------- | | aawsat | [Al-Sharq Al-Awsat](http://aawsat.com/) | | aleqtisadiya | [Al-Eqtisadiya](http://aleqt.com/) | | aljazirah | [Al-Jazirah](http://al-jazirah.com/) | | almadina | [Al-Madina](http://www.al-madina.com/) | | alriyadh | [Al-Riyadh](http://www.alriyadh.com/) | | alwatan | [Al-Watan](http://alwatan.com.sa/) | | alweeam | [Al-Weeam](http://alweeam.com.sa/) | | alyaum | [Al-Yaum](http://alyaum.com/) | | arreyadi | [Arreyadi](http://www.arreyadi.com.sa/) | | arreyadiyah | [Arreyadi](http://www.arreyadiyah.com/) | | okaz | [Okaz](http://www.okaz.com.sa/) | | sabq | [Sabq](http://sabq.org/) | | was | [Saudi Press Agency](http://www.spa.gov.sa/) | | 3alyoum | [Ain Alyoum](http://3alyoum.com/) | #### Initial Data Collection and Normalization The Modern Standard Arabic texts crawled from the Internet. #### Who are the source language producers? Newspaper Websites. ### Annotations The dataset does not contain any additional annotations. ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License ### Citation Information ``` @misc{hagrima2015, author = "M. Alhagri", title = "Saudi Newspapers Arabic Corpus (SaudiNewsNet)", year = 2015, url = "http://github.com/ParallelMazen/SaudiNewsNet" } ``` ### Contributions Thanks to [@abdulelahsm](https://github.com/abdulelahsm) for adding this dataset.
INK-USC/riddle_sense
INK-USC
2024-01-18T11:14:43Z
100
24
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:1K<n<10K", "region:us" ]
[ "question-answering" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - other multilinguality: - monolingual pretty_name: RiddleSense size_categories: - 1K<n<10K source_datasets: - original task_categories: - question-answering task_ids: - multiple-choice-qa dataset_info: features: - name: answerKey dtype: string - name: question dtype: string - name: choices sequence: - name: label dtype: string - name: text dtype: string splits: - name: train num_bytes: 720715 num_examples: 3510 - name: validation num_bytes: 208276 num_examples: 1021 - name: test num_bytes: 212790 num_examples: 1184 download_size: 2083122 dataset_size: 1141781 --- # Dataset Card for RiddleSense ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://inklab.usc.edu/RiddleSense/ - **Repository:** https://github.com/INK-USC/RiddleSense/ - **Paper:** https://inklab.usc.edu/RiddleSense/riddlesense_acl21_paper.pdf - **Leaderboard:** https://inklab.usc.edu/RiddleSense/#leaderboard - **Point of Contact:** [Yuchen Lin]([email protected]) ### Dataset Summary Answering such a riddle-style question is a challenging cognitive process, in that it requires complex commonsense reasoning abilities, an understanding of figurative language, and counterfactual reasoning skills, which are all important abilities for advanced natural language understanding (NLU). However, there is currently no dedicated datasets aiming to test these abilities. Herein, we present RiddleSense, a new multiple-choice question answering task, which comes with the first large dataset (5.7k examples) for answering riddle-style commonsense questions. We systematically evaluate a wide range of models over the challenge, and point out that there is a large gap between the best-supervised model and human performance  suggesting intriguing future research in the direction of higher-order commonsense reasoning and linguistic creativity towards building advanced NLU systems. ### Supported Tasks and Leaderboards [Needs More Information] ### Languages English ## Dataset Structure ### Data Instances An example of 'train' looks as follows. ``` { "answerKey": "E", "choices": { "label": ["A", "B", "C", "D", "E"], "text": ["throw", "bit", "gallow", "mouse", "hole"] }, "question": "A man is incarcerated in prison, and as his punishment he has to carry a one tonne bag of sand backwards and forwards across a field the size of a football pitch. What is the one thing he can put in it to make it lighter?" } ``` ### Data Fields Data Fields The data fields are the same among all splits. default - `answerKey`: a string feature. - `question`: a string feature. - `choices`: a dictionary feature containing: - `label`: a string feature. - `text`: a string feature. ### Data Splits |name| train| validation| test| |---|---|---|---| |default| 3510| 1021| 1184| ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations Dataset provided for research purposes only. Please check dataset license for additional information. ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information The copyright of RiddleSense dataset is consistent with the terms of use of the fan websites and the intellectual property and privacy rights of the original sources. All of our riddles and answers are from fan websites that can be accessed freely. The website owners state that you may print and download material from the sites solely for non-commercial use provided that we agree not to change or delete any copyright or proprietary notices from the materials. The dataset users must agree that they will only use the dataset for research purposes before they can access the both the riddles and our annotations. We do not vouch for the potential bias or fairness issue that might exist within the riddles. You do not have the right to redistribute them. Again, you must not use this dataset for any commercial purposes. ### Citation Information ``` @InProceedings{lin-etal-2021-riddlesense, title={RiddleSense: Reasoning about Riddle Questions Featuring Linguistic Creativity and Commonsense Knowledge}, author={Lin, Bill Yuchen and Wu, Ziyi and Yang, Yichi and Lee, Dong-Ho and Ren, Xiang}, journal={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL-IJCNLP 2021): Findings}, year={2021} } ``` ### Contributions Thanks to [@ziyiwu9494](https://github.com/ziyiwu9494) for adding this dataset.
kdexd/red_caps
kdexd
2024-01-18T11:14:38Z
740,731
59
[ "task_categories:image-to-text", "task_ids:image-captioning", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:10M<n<100M", "arxiv:2111.11431", "region:us" ]
[ "image-to-text" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - found language_creators: - found language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 10M<n<100M source_datasets: - original task_categories: - image-to-text task_ids: - image-captioning paperswithcode_id: redcaps pretty_name: RedCaps dataset_info: features: - name: image_id dtype: string - name: author dtype: string - name: image_url dtype: string - name: raw_caption dtype: string - name: caption dtype: string - name: subreddit dtype: class_label: names: '0': abandonedporn '1': abandoned '2': absoluteunits '3': airplants '4': alltheanimals '5': amateurphotography '6': amateurroomporn '7': animalporn '8': antiques '9': antkeeping '10': ants '11': aquariums '12': architectureporn '13': artefactporn '14': astronomy '15': astrophotography '16': australiancattledog '17': australianshepherd '18': autumnporn '19': averagebattlestations '20': awwducational '21': awwnverts '22': axolotls '23': backpacking '24': backyardchickens '25': baking '26': ballpython '27': barista '28': bassfishing '29': battlestations '30': bbq '31': beagle '32': beardeddragons '33': beekeeping '34': beerandpizza '35': beerporn '36': beerwithaview '37': beginnerwoodworking '38': bengalcats '39': bento '40': bernesemountaindogs '41': berries '42': bettafish '43': bicycling '44': bikecommuting '45': birding '46': birdphotography '47': birdpics '48': birdsofprey '49': birds '50': blackcats '51': blacksmith '52': bladesmith '53': boatporn '54': bonsai '55': bookporn '56': bookshelf '57': bordercollie '58': bostonterrier '59': botanicalporn '60': breadit '61': breakfastfood '62': breakfast '63': bridgeporn '64': brochet '65': budgetfood '66': budgies '67': bulldogs '68': burgers '69': butterflies '70': cabinporn '71': cactus '72': cakedecorating '73': cakewin '74': cameras '75': campingandhiking '76': camping '77': carnivorousplants '78': carpentry '79': carporn '80': cassetteculture '81': castiron '82': castles '83': casualknitting '84': catpictures '85': cats '86': ceramics '87': chameleons '88': charcuterie '89': cheesemaking '90': cheese '91': chefit '92': chefknives '93': chickens '94': chihuahua '95': chinchilla '96': chinesefood '97': churchporn '98': cider '99': cityporn '100': classiccars '101': cockatiel '102': cocktails '103': coffeestations '104': coins '105': cookiedecorating '106': corgi '107': cornsnakes '108': cozyplaces '109': crafts '110': crestedgecko '111': crochet '112': crossstitch '113': crows '114': crystals '115': cupcakes '116': dachshund '117': damnthatsinteresting '118': desertporn '119': designmyroom '120': desksetup '121': dessertporn '122': dessert '123': diy '124': dobermanpinscher '125': doggos '126': dogpictures '127': drunkencookery '128': duck '129': dumpsterdiving '130': earthporn '131': eatsandwiches '132': embroidery '133': entomology '134': equestrian '135': espresso '136': exposureporn '137': eyebleach '138': f1porn '139': farming '140': femalelivingspace '141': fermentation '142': ferrets '143': fireporn '144': fishing '145': fish '146': flowers '147': flyfishing '148': foodporn '149': food '150': foraging '151': fossilporn '152': fountainpens '153': foxes '154': frenchbulldogs '155': frogs '156': gardening '157': gardenwild '158': geckos '159': gemstones '160': geologyporn '161': germanshepherds '162': glutenfree '163': goldenretrievers '164': goldfish '165': gold '166': greatpyrenees '167': grilledcheese '168': grilling '169': guineapigs '170': gunporn '171': guns '172': hamsters '173': handtools '174': healthyfood '175': hedgehog '176': helicopters '177': herpetology '178': hiking '179': homestead '180': horses '181': hotpeppers '182': houseplants '183': houseporn '184': husky '185': icecreamery '186': indoorgarden '187': infrastructureporn '188': insects '189': instantpot '190': interestingasfuck '191': interiordesign '192': itookapicture '193': jellyfish '194': jewelry '195': kayakfishing '196': kayaking '197': ketorecipes '198': knifeporn '199': knives '200': labrador '201': leathercraft '202': leopardgeckos '203': lizards '204': lookatmydog '205': macarons '206': machineporn '207': macroporn '208': malelivingspace '209': mead '210': mealprepsunday '211': mechanicalkeyboards '212': mechanicalpencils '213': melts '214': metalworking '215': microgreens '216': microporn '217': mildlyinteresting '218': mineralporn '219': monitors '220': monstera '221': mostbeautiful '222': motorcycleporn '223': muglife '224': mushroomgrowers '225': mushroomporn '226': mushrooms '227': mycology '228': natureisfuckinglit '229': natureporn '230': nebelung '231': orchids '232': otters '233': outdoors '234': owls '235': parrots '236': pelletgrills '237': pens '238': perfectfit '239': permaculture '240': photocritique '241': photographs '242': pics '243': pitbulls '244': pizza '245': plantbaseddiet '246': plantedtank '247': plantsandpots '248': plants '249': pomeranians '250': pottery '251': pourpainting '252': proplifting '253': pugs '254': pug '255': quilting '256': rabbits '257': ramen '258': rarepuppers '259': reeftank '260': reptiles '261': resincasting '262': roomporn '263': roses '264': rottweiler '265': ruralporn '266': sailing '267': salsasnobs '268': samoyeds '269': savagegarden '270': scotch '271': seaporn '272': seriouseats '273': sewing '274': sharks '275': shiba '276': shihtzu '277': shrimptank '278': siamesecats '279': siberiancats '280': silverbugs '281': skyporn '282': sloths '283': smoking '284': snails '285': snakes '286': sneakers '287': sneks '288': somethingimade '289': soup '290': sourdough '291': sousvide '292': spaceporn '293': spicy '294': spiderbro '295': spiders '296': squirrels '297': steak '298': streetphotography '299': succulents '300': superbowl '301': supermodelcats '302': sushi '303': tacos '304': tarantulas '305': tastyfood '306': teaporn '307': tea '308': tequila '309': terrariums '310': thedepthsbelow '311': thriftstorehauls '312': tinyanimalsonfingers '313': tonightsdinner '314': toolporn '315': tools '316': torties '317': tortoise '318': tractors '319': trailrunning '320': trains '321': trucks '322': turtle '323': underwaterphotography '324': upcycling '325': urbanexploration '326': urbanhell '327': veganfoodporn '328': veganrecipes '329': vegetablegardening '330': vegetarian '331': villageporn '332': vintageaudio '333': vintage '334': vinyl '335': volumeeating '336': watches '337': waterporn '338': weatherporn '339': wewantplates '340': wildernessbackpacking '341': wildlifephotography '342': wine '343': winterporn '344': woodcarving '345': woodworking '346': workbenches '347': workspaces '348': yarnaddicts '349': zerowaste - name: score dtype: int32 - name: created_utc dtype: timestamp[s, tz=UTC] - name: permalink dtype: string - name: crosspost_parents sequence: string config_name: all splits: - name: train num_bytes: 3378544525 num_examples: 12011121 download_size: 1061908181 dataset_size: 3378544525 --- # Dataset Card for RedCaps ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Dataset Preprocessing](#dataset-preprocessing) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [RedCaps homepage](https://redcaps.xyz/) - **Repository:** [RedCaps repository](https://github.com/redcaps-dataset/redcaps-downloader) - **Paper:** [RedCaps: web-curated image-text data created by the people, for the people](https://arxiv.org/abs/2111.11431) - **Leaderboard:** - **Point of Contact:** [Karan Desai](mailto:[email protected]) ### Dataset Summary RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit. Images and captions from Reddit depict and describe a wide variety of objects and scenes. The data is collected from a manually curated set of subreddits (350 total), which give coarse image labels and allow steering of the dataset composition without labeling individual instances. RedCaps data is created *by the people, for the people* – it contains everyday things that users like to share on social media, for example hobbies (r/crafts) and pets (r/shiba). Captions often contain specific and fine-grained descriptions (northern cardinal, taj mahal). Subreddit names provide relevant image labels (r/shiba) even when captions may not (mlem!), and sometimes may group many visually unrelated images through a common semantic meaning (r/perfectfit). ### Dataset Preprocessing This dataset doesn't download the images locally by default. Instead, it exposes URLs to the images. To fetch the images, use the following code: ```python from concurrent.futures import ThreadPoolExecutor from functools import partial import io import urllib import PIL.Image from datasets import load_dataset from datasets.utils.file_utils import get_datasets_user_agent USER_AGENT = get_datasets_user_agent() def fetch_single_image(image_url, timeout=None, retries=0): for _ in range(retries + 1): try: request = urllib.request.Request( image_url, data=None, headers={"user-agent": USER_AGENT}, ) with urllib.request.urlopen(request, timeout=timeout) as req: image = PIL.Image.open(io.BytesIO(req.read())) break except Exception: image = None return image def fetch_images(batch, num_threads, timeout=None, retries=0): fetch_single_image_with_args = partial(fetch_single_image, timeout=timeout, retries=retries) with ThreadPoolExecutor(max_workers=num_threads) as executor: batch["image"] = list(executor.map(fetch_single_image_with_args, batch["image_url"])) return batch num_threads = 20 dset = load_dataset("red_caps", "rabbits_2017") dset = dset.map(fetch_images, batched=True, batch_size=100, fn_kwargs={"num_threads": num_threads}) ``` Some image links point to more than one image. You can process and downloaded those as follows: ```python from concurrent.futures import ThreadPoolExecutor from functools import partial import io import os import re import urllib import PIL.Image import datasets from datasets import load_dataset from datasets.utils.file_utils import get_datasets_user_agent USER_AGENT = get_datasets_user_agent() def fetch_single_image(image_url, timeout=None, retries=0): for _ in range(retries + 1): try: request = urllib.request.Request( image_url, data=None, headers={"user-agent": USER_AGENT}, ) with urllib.request.urlopen(request, timeout=timeout) as req: image = PIL.Image.open(io.BytesIO(req.read())) break except Exception: image = None return image def fetch_images(batch, num_threads, timeout=None, retries=0): fetch_single_image_with_args = partial(fetch_single_image, timeout=timeout, retries=retries) with ThreadPoolExecutor(max_workers=num_threads) as executor: batch["image"] = list(executor.map(lambda image_urls: [fetch_single_image_with_args(image_url) for image_url in image_urls], batch["image_url"])) return batch def process_image_urls(batch): processed_batch_image_urls = [] for image_url in batch["image_url"]: processed_example_image_urls = [] image_url_splits = re.findall(r"http\S+", image_url) for image_url_split in image_url_splits: if "imgur" in image_url_split and "," in image_url_split: for image_url_part in image_url_split.split(","): if not image_url_part: continue image_url_part = image_url_part.strip() root, ext = os.path.splitext(image_url_part) if not root.startswith("http"): root = "http://i.imgur.com/" + root root = root.split("#")[0] if not ext: ext = ".jpg" ext = re.split(r"[?%]", ext)[0] image_url_part = root + ext processed_example_image_urls.append(image_url_part) else: processed_example_image_urls.append(image_url_split) processed_batch_image_urls.append(processed_example_image_urls) batch["image_url"] = processed_batch_image_urls return batch dset = load_dataset("red_caps", "rabbits_2017") dset = dset.map(process_image_urls, batched=True, num_proc=4) features = dset["train"].features.copy() features["image"] = datasets.Sequence(datasets.Image()) num_threads = 20 dset = dset.map(fetch_images, batched=True, batch_size=100, features=features, fn_kwargs={"num_threads": num_threads}) ``` Note that in the above code, we use the `datasets.Sequence` feature to represent a list of images for the multi-image links. ### Supported Tasks and Leaderboards From the paper: > We have used our dataset to train deep neural networks that perform image captioning, and that learn transferable visual representations for a variety of downstream visual recognition tasks (image classification, object detection, instance segmentation). > We anticipate that the dataset could be used for a variety of vision-and-language (V&L) tasks, such as image or text retrieval or text-to-image synthesis. ### Languages All of the subreddits in RedCaps use English as their primary language. ## Dataset Structure ### Data Instances Each instance in RedCaps represents a single Reddit image post: ``` { 'image_id': 'bpzj7r', 'author': 'djasz1', 'image_url': 'https://i.redd.it/ho0wntksivy21.jpg', 'raw_caption': 'Found on a friend’s property in the Keys FL. She is now happily living in my house.', 'caption': 'found on a friend's property in the keys fl. she is now happily living in my house.', 'subreddit': 3, 'score': 72, 'created_utc': datetime.datetime(2019, 5, 18, 1, 36, 41), 'permalink': '/r/airplants/comments/bpzj7r/found_on_a_friends_property_in_the_keys_fl_she_is/', 'crosspost_parents': None } ``` ### Data Fields - `image_id`: Unique alphanumeric ID of the image post (assigned by Reddit). - `author`: Reddit username of the image post author. - `image_url`: Static URL for downloading the image associated with the post. - `raw_caption`: Textual description of the image, written by the post author. - `caption`: Cleaned version of "raw_caption" by us (see Q35). - `subreddit`: Name of subreddit where the post was submitted. - `score`: Net upvotes (discounting downvotes) received by the image post. This field is equal to `None` if the image post is a crosspost. - `created_utc`: Integer time epoch (in UTC) when the post was submitted to Reddit. - `permalink`: Partial URL of the Reddit post (https://reddit.com/<permalink>). - `crosspost_parents`: List of parent posts. This field is optional. ### Data Splits All the data is contained in training set. The training set has nearly 12M (12,011,111) instances. From the paper: > We intend our dataset to be primarily used for pre-training with one or more specific downstream task(s) in mind. Hence, all instances in our dataset would be used for training while the validation split is derived from downstream task(s). If users require a validation split, we recommend sampling it such that it follows the same subreddit distribution as entire dataset. ## Dataset Creation ### Curation Rationale From the paper: > Large datasets of image-text pairs are widely used for pre-training generic representations that transfer to a variety of downstream vision and vision-and-language tasks. Existing public datasets of this kind were curated from search engine results (SBU Captions [1]) or HTML alt-text from arbitrary web pages (Conceptual Captions [2, 31]). They performed complex data filtering to deal with noisy web data. Due to aggressive filtering, their data collection is inefficient and diversity is artificially supressed. We argue that the quality of data depends on its source, and the human intent behind its creation. In this work, we explore Reddit – a social media platform, for curating high quality data. We introduce RedCaps – a large dataset of 12M image-text pairs from Reddit. While we expect the use-cases of RedCaps to be similar to existing datasets, we discuss how Reddit as a data source leads to fast and lightweight collection, better data quality, lets us easily steer the data distribution, and facilitates ethically responsible data curation. ### Source Data #### Initial Data Collection and Normalization From the paper: > **Data Collection Pipeline** Reddit’s uniform structure allows us to parallelize data collection as independent tasks – each task involves collecting posts submitted to a single subreddit in one year. Our collection pipeline has three steps: (1) subreddit selection, (2) image post filtering, and (3) caption cleaning. **Step 1**. Subreddit selection: We collect data from a manually curated set of subreddits. Subreddits have their own rules, community norms, and moderators so curating subreddits allows us to steer the dataset’s composition without annotating individual instances. We select subreddits with a high volume of images posts, where images tend to be photographs (rather than memes, drawings, screenshots, etc) and post titles tend to describe image content (rather than making jokes, political commentary, etc). We do not select any NSFW, banned, or quarantined subreddits. We want to minimize the number of people that appear in RedCaps, so we omit subreddits whose primary purpose is to share or comment on images of people (such as celebrity pics or user selfies). We choose subreddits focused on general photography (r/pics, r/itookapicture), animals (r/axolotls, r/birdsofprey, r/dachshund), plants (r/roses, r/succulents), objects (r/classiccars, r/trains, r/mechanicalkeyboards), food (r/steak, r/macarons), scenery (r/cityporn1 , r/desertporn), or activities (r/carpentry, r/kayaking). In total we collect data from 350 subreddits; the full list can be found in Appendix A. **Step 2**. Image post filtering: We use Pushshift [41] and Reddit [42, 43] APIs to download all image posts submitted to our selected subreddits from 2008–2020. Posts are collected at least six months after their creation to let upvotes stabilize. We only collect posts with images hosted on three domains: Reddit (i.redd.it), Imgur (i.imgur.com), and Flickr (staticflickr.com). Some image posts contain multiple images (gallery posts) – in this case we only collect the first image and associate it with the caption. We discard posts with < 2 upvotes to avoid unappealing content, and we discard posts marked NSFW (by their authors or subreddit moderators) to avoid pornographic or disturbing content. **Step 3**. Caption cleaning: We expect Reddit post titles to be less noisy than other large-scale sources of image captions such as alt-text [2, 31], so we apply minimal text cleaning. We lowercase captions and use ftfy [44] to remove character accents, emojis, and non-latin characters, following [29, 35, 36]. Then we apply simple pattern matching to discard all sub-strings enclosed in brackets ((.*), [.*]). These sub-strings usually give non-semantic information: original content tags [oc], image resolutions (800x600 px), camera specs (shot with iPhone), self-promotion [Instagram: @user], and other references (link in comments). Finally, like [31] we replace social media handles (words starting with ‘@’) with a [USR] token to protect user privacy and reduce redundancy. Due to such filtering, ≈12K (0.1%) captions in our dataset are empty strings. We do not discard them, as subreddit names alone provide meaningful supervision. Unlike CC-3M or CC-12M that discard captions without nouns or that don’t overlap image tags, we do not discard any instances in this step. Through this pipeline, we collect 13.4M instances from 350 subreddits. Our collection pipeline is less resource-intensive than existing datasets – we do not require webpage crawlers, search engines, or large databases of indexed webpages. RedCaps is easily extensible in the future by selecting more subreddits and collecting posts from future years. Next, we perform additional filtering to mitigate user privacy risks and harmful stereotypes in RedCaps, resulting in final size of 12M instances. #### Who are the source language producers? Reddit is the singular data source for RedCaps. ### Annotations #### Annotation process The dataset is built using fully automatic data collection pipeline which doesn't require any human annotators. #### Who are the annotators? The annotation process doesn't require any human annotators. ### Personal and Sensitive Information From the paper: > **Does the dataset relate to people?** The dataset pertains to people in that people wrote the captions and posted images to Reddit that we curate in RedCaps. We made specific design choices while curating RedCaps to avoid large quantities of images containing people: (a) We collect data from manually curated subreddits in which most contain primarily pertains to animals, objects, places, or activities. We exclude all subreddits whose primary purpose is to share and describe images of people (such as celebrity photos or user selfies). (b) We use an off-the-shelf face detector to find and remove images with potential presence of human faces. We manually checked 50K random images in RedCaps (Q16) and found 79 images with identifiable human faces – the entire dataset may have ≈19K (0.15%) images with identifiable people. Refer Section 2.2 in the main paper. > **Is it possible to identify one or more natural persons, either directly or indirectly (i.e., in combination with other data) from the dataset?** Yes, all instances in RedCaps include Reddit usernames of their post authors. This could be used to look up the Reddit user profile, and some Reddit users may have identifying information in their profiles. Some images may contain human faces which could be identified by appearance. However, note that all this information is already public on Reddit, and searching it in RedCaps is no easier than searching directly on Reddit. > **Were the individuals in question notified about the data collection?** No. Reddit users are anonymous by default, and are not required to share their personal contact information (email, phone numbers, etc.). Hence, the only way to notify the authors of RedCaps image posts is by sending them private messages on Reddit. This is practically difficult to do manually, and will be classified as spam and blocked by Reddit if attempted to programmatically send a templated message to millions of users. > **Did the individuals in question consent to the collection and use of their data?** Users did not explicitly consent to the use of their data in our dataset. However, by uploading their data on Reddit, they consent that it would appear on the Reddit plaform and will be accessible via the official Reddit API (which we use to collect RedCaps). > **If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the future or for certain uses?** Users have full control over the presence of their data in our dataset. If users wish to revoke their consent, they can delete the underlying Reddit post – it will be automatically removed dfrom RedCaps since we distributed images as URLs. Moreover, we provide an opt-out request form on our dataset website for anybody to request removal of an individual instance if it is potentially harmful (e.g. NSFW, violates privacy, harmful stereotypes, etc.). ## Considerations for Using the Data ### Social Impact of Dataset From the paper: > **Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact analysis) been conducted?** No. ### Discussion of Biases From the paper: > **Harmful Stereotypes**: Another concern with Reddit data is that images or language may represent harmful stereotypes about gender, race, or other characteristics of people [48, 49, 51]. We select only non-NSFW subreddits with active moderation for collecting data. This stands in contrast to less curated uses of Reddit data, such as GPT-2 [35] whose training data includes at least 63K documents from banned or quarantined subreddits which may contain toxic language [53]. We attempt to further reduce harmful stereotypes in two ways: > * **NSFW images**: We use the InceptionV3 [54] model from [55] to filter images detected as porn or hentai with confidence ≥ 0.9. Similar to face filtering, we estimated precision of our filtering and estimated amount of missed detections, shown in Table 1. The model detects 87K images with low precision (∼1%) – most detections are non-NSFW images with pink and beige hues. > * **Potentially derogatory language**: We filter instances whose captions contain words or phrases from a common blocklist [56]. It is important to note that such coarse filtering might suppress language from marginalized groups reclaiming slurs [51]; however, as RedCaps is not intended to describe people, we believe this is a pragmatic tradeoff to avoid propagating harmful labels. > **Reddit demographics**: Reddit’s user demographics are not representative of the population at large. Compared to US adults, Reddit users skew male (69% vs 49%), young (58% 18-29 years old vs 22%), college educated (36% vs 28%), and politically liberal (41% vs 25%) [57]. Reddit users are predominantly white (63%) [57], and 49% of desktop traffic to Reddit comes from the United States [58]. All of the subreddits in RedCaps use English as their primary language. Taken together, these demographic biases likely also bias the types of objects and places that appear in images on Reddit, and the language used to describe these images. We do not offer explicit countermeasures to these biases, but users of RedCaps should keep in mind that size doesn’t guarantee diversity [51]. Subtler issues may also exist, such as imbalanced representation of demographic groups [59] or gender bias in object co-occurrence [60] or language [61]. These are hard to control in internet data, so we release RedCaps with explicit instructions on suitable use-cases; specifically requesting models not be trained to identify people, or make decisions that impact people. We document these instructions and other terms-of-use in a datasheet [45], provided in Appendix G. > **Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety?** The scale of RedCaps means that we are unable to verify the contents of all images and captions. However we have tried to minimize the possibility that RedCaps contains data that might be offensive, insulting, threatening, or might cause anxiety via the following mitigations: (a) We manually curate the set of subreddits from which to collect data; we only chose subreddits that are not marked NSFW and which generally contain non-offensive content. (b) Within our curated subreddits, we did not include any posts marked NSFW. (c) We removed all instances whose captions contained any of the 400 potentially offensive words or phrases. Refer Section 2.2 in the main paper. (d) We remove all instances whose images were flagged NSFW by an off-the-shelf detector. We manually checked 50K random images in RedCaps and found one image containing nudity (exposed buttocks; no identifiable face). Refer Section 2.2 in the main paper > **Does the dataset identify any subpopulations (e.g., by age, gender)?** RedCaps does not explicitly identify any subpopulations. Since some images contain people and captions are free-form natural language written by Reddit users, it is possible that some captions may identify people appearing in individual images as part of a subpopulation. > **Were any ethical review processes conducted (e.g., by an institutional review board)?** We did not conduct a formal ethical review process via institutional review boards. However, as described in Section 2.2 of the main paper and Q16 we employed several filtering mechanisms to try and remove instances that could be problematic. ### Other Known Limitations From the paper: > **Are there any errors, sources of noise, or redundancies in the dataset?** RedCaps is noisy by design since image-text pairs on the internet are noisy and unstructured. Some instances may also have duplicate images and captions – Reddit users may have shared the same image post in multiple subreddits. Such redundancies constitute a very small fraction of the dataset, and should have almost no effect in training large-scale models. > **Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor-patient confidentiality, data that includes the content of individuals non-public communications)?** No, the subreddits included in RedCaps do not cover topics that may be considered confidential. All posts were publicly shared on Reddit prior to inclusion in RedCaps. ## Additional Information ### Dataset Curators From the paper: > Four researchers at the University of Michigan (affiliated as of 2021) have created RedCaps: Karan Desai, Gaurav Kaul, Zubin Aysola, and Justin Johnson. ### Licensing Information The image metadata is licensed under CC-BY 4.0 license. Additionally, uses of this dataset are subject to Reddit API terms (https://www.reddit.com/wiki/ api-terms) and users must comply with Reddit User Agreeement, Content Policy, and Privacy Policy – all accessible at https://www.redditinc.com/policies. From the paper: > RedCaps should only be used for non-commercial research. RedCaps should not be used for any tasks that involve identifying features related to people (facial recognition, gender, age, ethnicity identification, etc.) or make decisions that impact people (mortgages, job applications, criminal sentences; or moderation decisions about user-uploaded data that could result in bans from a website). Any commercial and for-profit uses of RedCaps are restricted – it should not be used to train models that will be deployed in production systems as part of a product offered by businesses or government agencies. ### Citation Information ```bibtex @misc{desai2021redcaps, title={RedCaps: web-curated image-text data created by the people, for the people}, author={Karan Desai and Gaurav Kaul and Zubin Aysola and Justin Johnson}, year={2021}, eprint={2111.11431}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
deepmind/pg19
deepmind
2024-01-18T11:12:51Z
2,140
54
[ "task_categories:text-generation", "task_ids:language-modeling", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "arxiv:1911.05507", "region:us" ]
[ "text-generation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - apache-2.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-generation task_ids: - language-modeling paperswithcode_id: pg-19 pretty_name: PG-19 dataset_info: features: - name: short_book_title dtype: string - name: publication_date dtype: int32 - name: url dtype: string - name: text dtype: string splits: - name: train num_bytes: 11453688452 num_examples: 28602 - name: validation num_bytes: 17402295 num_examples: 50 - name: test num_bytes: 40482852 num_examples: 100 download_size: 11740397875 dataset_size: 11511573599 --- # Dataset Card for "pg19" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/deepmind/pg19](https://github.com/deepmind/pg19) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [Compressive Transformers for Long-Range Sequence Modelling](https://arxiv.org/abs/1911.05507) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 11.74 GB - **Size of the generated dataset:** 11.51 GB - **Total amount of disk used:** 23.25 GB ### Dataset Summary This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Project Gutenberg books library, that were published before 1919. It also contains metadata of book titles and publication dates. PG-19 is over double the size of the Billion Word benchmark and contains documents that are 20X longer, on average, than the WikiText long-range language modelling benchmark. Books are partitioned into a train, validation, and test set. Book metadata is stored in metadata.csv which contains (book_id, short_book_title, publication_date). Unlike prior benchmarks, we do not constrain the vocabulary size --- i.e. mapping rare words to an UNK token --- but instead release the data as an open-vocabulary benchmark. The only processing of the text that has been applied is the removal of boilerplate license text, and the mapping of offensive discriminatory words as specified by Ofcom to placeholder tokens. Users are free to model the data at the character-level, subword-level, or via any mechanism that can model an arbitrary string of text. To compare models we propose to continue measuring the word-level perplexity, by calculating the total likelihood of the dataset (via any chosen subword vocabulary or character-based scheme) divided by the number of tokens --- specified below in the dataset statistics table. One could use this dataset for benchmarking long-range language models, or use it to pre-train for other natural language processing tasks which require long-range reasoning, such as LAMBADA or NarrativeQA. We would not recommend using this dataset to train a general-purpose language model, e.g. for applications to a production-system dialogue agent, due to the dated linguistic style of old texts and the inherent biases present in historical writing. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 11.74 GB - **Size of the generated dataset:** 11.51 GB - **Total amount of disk used:** 23.25 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "publication_date": 1907, "short_book_title": "La Fiammetta by Giovanni Boccaccio", "text": "\"\\n\\n\\n\\nProduced by Ted Garvin, Dave Morgan and PG Distributed Proofreaders\\n\\n\\n\\n\\nLA FIAMMETTA\\n\\nBY\\n\\nGIOVANNI BOCCACCIO\\n...", "url": "http://www.gutenberg.org/ebooks/10006" } ``` ### Data Fields The data fields are the same among all splits. #### default - `short_book_title`: a `string` feature. - `publication_date`: a `int32` feature. - `url`: a `string` feature. - `text`: a `string` feature. ### Data Splits | name |train|validation|test| |-------|----:|---------:|---:| |default|28602| 50| 100| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The dataset is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.html). ### Citation Information ``` @article{raecompressive2019, author = {Rae, Jack W and Potapenko, Anna and Jayakumar, Siddhant M and Hillier, Chloe and Lillicrap, Timothy P}, title = {Compressive Transformers for Long-Range Sequence Modelling}, journal = {arXiv preprint}, url = {https://arxiv.org/abs/1911.05507}, year = {2019}, } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@lucidrains](https://github.com/lucidrains), [@lhoestq](https://github.com/lhoestq) for adding this dataset.
peoples-daily-ner/peoples_daily_ner
peoples-daily-ner
2024-01-18T11:12:44Z
464
12
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:zh", "license:unknown", "size_categories:10K<n<100K", "region:us" ]
[ "token-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - found language: - zh license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - token-classification task_ids: - named-entity-recognition pretty_name: People's Daily NER dataset_info: features: - name: id dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-PER '2': I-PER '3': B-ORG '4': I-ORG '5': B-LOC '6': I-LOC config_name: peoples_daily_ner splits: - name: train num_bytes: 14972456 num_examples: 20865 - name: validation num_bytes: 1676741 num_examples: 2319 - name: test num_bytes: 3346975 num_examples: 4637 download_size: 8385672 dataset_size: 19996172 --- # Dataset Card for People's Daily NER ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Github](https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/People's%20Daily) - **Repository:** [Github](https://github.com/OYE93/Chinese-NLP-Corpus/) - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information No citation available for this dataset. ### Contributions Thanks to [@JetRunner](https://github.com/JetRunner) for adding this dataset.
peixiang/pec
peixiang
2024-01-18T11:12:41Z
38
7
[ "task_categories:text-generation", "task_categories:fill-mask", "task_categories:text-retrieval", "task_ids:dialogue-modeling", "task_ids:utterance-retrieval", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:gpl-3.0", "size_categories:100K<n<1M", "region:us" ]
[ "text-generation", "fill-mask", "text-retrieval" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found language: - en license: - gpl-3.0 multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-generation - fill-mask - text-retrieval task_ids: - dialogue-modeling - utterance-retrieval paperswithcode_id: pec pretty_name: Persona-Based Empathetic Conversational dataset_info: - config_name: happy features: - name: personas sequence: string - name: context sequence: string - name: context_speakers sequence: string - name: response dtype: string - name: response_speaker dtype: string splits: - name: train num_bytes: 643196978 num_examples: 157195 - name: test num_bytes: 92003042 num_examples: 22730 - name: validation num_bytes: 81132088 num_examples: 19829 download_size: 252434681 dataset_size: 816332108 - config_name: offmychest features: - name: personas sequence: string - name: context sequence: string - name: context_speakers sequence: string - name: response dtype: string - name: response_speaker dtype: string splits: - name: train num_bytes: 518616402 num_examples: 123968 - name: test num_bytes: 64173390 num_examples: 15324 - name: validation num_bytes: 66675909 num_examples: 16004 download_size: 252434681 dataset_size: 649465701 - config_name: all features: - name: personas sequence: string - name: context sequence: string - name: context_speakers sequence: string - name: response dtype: string - name: response_speaker dtype: string splits: - name: train num_bytes: 1162655628 num_examples: 281163 - name: test num_bytes: 156310498 num_examples: 38054 - name: validation num_bytes: 147940164 num_examples: 35833 download_size: 252434681 dataset_size: 1466906290 config_names: - all - happy - offmychest --- # Dataset Card for PEC ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [PEC repository](https://github.com/zhongpeixiang/PEC) - **Paper:** [Towards Persona-Based Empathetic Conversational Models](https://www.aclweb.org/anthology/2020.emnlp-main.531/) - **Point of Contact:** [Peixiang Zhong](mailto:[email protected]) ### Dataset Summary The PEC dataset is an English-language dataset of open-domain conversations gathered from two subreddits on Reddit, i.e., happy and offmychest. PEC has around 350K persona-based empathetic conversations. Each utterance is associated with a speaker, and each speaker has a persona of multiple persona sentences. The conversations in PEC are more empathetic than casual conversations. The conversations in the happy domain are mostly positive, whereas the conversations in the offmychest domain are mostly negative. ### Supported Tasks and Leaderboards - `dialogue-modeling`, `utterance-retrieval`: this dataset can be used to train a generative or retrieval-based conversational model. ### Languages English ## Dataset Structure ### Data Instances A typical data example comprises a list of context utterances, a list of context speakers, a response to the context, the response speaker and the persona of the response speaker. An example from PEC looks as follows: ``` {'context': ['found out this morning i got a job promotion ! ! !'], 'context_speakers': ['HeWentToJared91'], 'personas': [ "i ca n't stand working in the ugli .", 'i ’ve always liked my eyes except for the fact that they ca n’t shoot lasers', 'i feel really bad about myself as a person right now , and i could really use a hand .', 'i drank a coffee , and it just made me feel even more exhausted .', 'i want a natsuki t shirt', "i 've dealt with depression in the past .", 'i love red dead 2'], 'response': "you look like a nice person ! we 're proud of you , and i bet you earned that promotion !", 'response_speaker': 'tylock'} ``` ### Data Fields - `context`: a list of strings, each string denotes a context utterance. - `context_speakers`: a list of strings, each string denotes a speaker. - `response`: a string denoting the response to the `context`. - `response_speaker`: a string denoting the speaker of `response`. - `personas`: a list of strings, each string denotes a persona sentence of `response_speaker`. ### Data Splits The data is split into a training, validation and test set for each of the three domains. Note that the *all* domain is the concatenation of the *happy* and *offmychest* domains. | domain | train | validation | test | |------------|-------:|-----------:|------:| | happy | 157195 | 19829 | 22730 | | offmychest | 123968 | 16004 | 15324 | | all | 281163 | 35833 | 38054 | ## Dataset Creation ### Curation Rationale PEC was built to provide a testbed for machines to learn persona-based empathetic responding. In our empirical analysis, we found that different personas have different styles of empathetic responding. This dataset can also be used to investigate the link between persona and empathy in human conversations. According to our human assessment, the conversations on the happy and offmychest subreddits are significantly more empathetic than casual conversations. ### Source Data #### Initial Data Collection and Normalization The data was obtained via the [pushshift API](https://pushshift.io/using-bigquery-with-reddit-data/) via Google BigQuery. #### Who are the source language producers? The language producers are users of the [r/happy](https://www.reddit.com/r/happy/), and [r/offmychest](https://www.reddit.com/r/offmychest/) subreddits between 2012 and 2020. No further demographic information was available from the data source. ### Annotations #### Annotation process The dataset does not contain any additional annotations. #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information The dataset includes the speaker IDs of users on *happy* and *offmychest* subreddits. ## Considerations for Using the Data ### Social Impact of Dataset The purpose of this dataset is to help develop more personalised and empathetic conversational systems, which is an important milestone towards truly human-like conversational agents. ### Discussion of Biases [More Information Needed] ### Other Known Limitations A small portion of the dataset has the issues of sexism, hate, and harassment. The persona sentences are noisy. ## Additional Information ### Dataset Curators The dataset was initially created by Peixiang Zhong, Chen Zhang, Hao Wang, Yong Liu, and Chunyan Miao, jointly done at Nanyang Technological University and Alibaba Group. ### Licensing Information The licensing status of the dataset hinges on the legal status of the [Pushshift.io](https://files.pushshift.io/reddit/) data which is unclear. ### Citation Information ``` @inproceedings{zhong-etal-2020-towards, title = "Towards Persona-Based Empathetic Conversational Models", author = "Zhong, Peixiang and Zhang, Chen and Wang, Hao and Liu, Yong and Miao, Chunyan", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", year = "2020", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.531", pages = "6556--6566" } ``` ### Contributions Thanks to [@zhongpeixiang](https://github.com/zhongpeixiang) for adding this dataset.
Helsinki-NLP/open_subtitles
Helsinki-NLP
2024-01-18T11:11:17Z
815
68
[ "task_categories:translation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:af", "language:ar", "language:bg", "language:bn", "language:br", "language:bs", "language:ca", "language:cs", "language:da", "language:de", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:gl", "language:he", "language:hi", "language:hr", "language:hu", "language:hy", "language:id", "language:is", "language:it", "language:ja", "language:ka", "language:kk", "language:ko", "language:lt", "language:lv", "language:mk", "language:ml", "language:ms", "language:nl", "language:no", "language:pl", "language:pt", "language:ro", "language:ru", "language:si", "language:sk", "language:sl", "language:sq", "language:sr", "language:sv", "language:ta", "language:te", "language:th", "language:tl", "language:tr", "language:uk", "language:ur", "language:vi", "language:zh", "license:unknown", "size_categories:10K<n<100K", "region:us" ]
[ "translation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found language: - af - ar - bg - bn - br - bs - ca - cs - da - de - el - en - eo - es - et - eu - fa - fi - fr - gl - he - hi - hr - hu - hy - id - is - it - ja - ka - kk - ko - lt - lv - mk - ml - ms - nl - 'no' - pl - pt - ro - ru - si - sk - sl - sq - sr - sv - ta - te - th - tl - tr - uk - ur - vi - zh language_bcp47: - pt-BR - ze-EN - ze-ZH - zh-CN - zh-TW license: - unknown multilinguality: - multilingual size_categories: - 10K<n<100K - 1M<n<10M - n<1K source_datasets: - original task_categories: - translation task_ids: [] paperswithcode_id: opensubtitles pretty_name: OpenSubtitles dataset_info: - config_name: bs-eo features: - name: id dtype: string - name: meta struct: - name: year dtype: uint32 - name: imdbId dtype: uint32 - name: subtitleId struct: - name: bs dtype: uint32 - name: eo dtype: uint32 - name: sentenceIds struct: - name: bs sequence: uint32 - name: eo sequence: uint32 - name: translation dtype: translation: languages: - bs - eo splits: - name: train num_bytes: 1204266 num_examples: 10989 download_size: 333050 dataset_size: 1204266 - config_name: fr-hy features: - name: id dtype: string - name: meta struct: - name: year dtype: uint32 - name: imdbId dtype: uint32 - name: subtitleId struct: - name: fr dtype: uint32 - name: hy dtype: uint32 - name: sentenceIds struct: - name: fr sequence: uint32 - name: hy sequence: uint32 - name: translation dtype: translation: languages: - fr - hy splits: - name: train num_bytes: 132450 num_examples: 668 download_size: 41861 dataset_size: 132450 - config_name: da-ru features: - name: id dtype: string - name: meta struct: - name: year dtype: uint32 - name: imdbId dtype: uint32 - name: subtitleId struct: - name: da dtype: uint32 - name: ru dtype: uint32 - name: sentenceIds struct: - name: da sequence: uint32 - name: ru sequence: uint32 - name: translation dtype: translation: languages: - da - ru splits: - name: train num_bytes: 1082649105 num_examples: 7543012 download_size: 267995167 dataset_size: 1082649105 - config_name: en-hi features: - name: id dtype: string - name: meta struct: - name: year dtype: uint32 - name: imdbId dtype: uint32 - name: subtitleId struct: - name: en dtype: uint32 - name: hi dtype: uint32 - name: sentenceIds struct: - name: en sequence: uint32 - name: hi sequence: uint32 - name: translation dtype: translation: languages: - en - hi splits: - name: train num_bytes: 13845544 num_examples: 93016 download_size: 2967295 dataset_size: 13845544 - config_name: bn-is features: - name: id dtype: string - name: meta struct: - name: year dtype: uint32 - name: imdbId dtype: uint32 - name: subtitleId struct: - name: bn dtype: uint32 - name: is dtype: uint32 - name: sentenceIds struct: - name: bn sequence: uint32 - name: is sequence: uint32 - name: translation dtype: translation: languages: - bn - is splits: - name: train num_bytes: 6371251 num_examples: 38272 download_size: 1411625 dataset_size: 6371251 config_names: - bn-is - bs-eo - da-ru - en-hi - fr-hy --- # Dataset Card for OpenSubtitles ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** http://opus.nlpl.eu/OpenSubtitles.php - **Repository:** None - **Paper:** http://www.lrec-conf.org/proceedings/lrec2016/pdf/62_Paper.pdf - **Leaderboard:** [More Information Needed] - **Point of Contact:** [More Information Needed] ### Dataset Summary To load a language pair which isn't part of the config, all you need to do is specify the language code as pairs. You can find the valid pairs in Homepage section of Dataset Description: http://opus.nlpl.eu/OpenSubtitles.php E.g. `dataset = load_dataset("open_subtitles", lang1="fi", lang2="hi")` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages The languages in the dataset are: - af - ar - bg - bn - br - bs - ca - cs - da - de - el - en - eo - es - et - eu - fa - fi - fr - gl - he - hi - hr - hu - hy - id - is - it - ja - ka - kk - ko - lt - lv - mk - ml - ms - nl - no - pl - pt - pt_br: Portuguese (Brazil) (pt-BR) - ro - ru - si - sk - sl - sq - sr - sv - ta - te - th - tl - tr - uk - ur - vi - ze_en: English constituent of Bilingual Chinese-English (subtitles displaying two languages at once, one per line) - ze_zh: Chinese constituent of Bilingual Chinese-English (subtitles displaying two languages at once, one per line) - zh_cn: Simplified Chinese (zh-CN, `zh-Hans`) - zh_tw: Traditional Chinese (zh-TW, `zh-Hant`) ## Dataset Structure ### Data Instances Here are some examples of questions and facts: ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data [More Information Needed] #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.
Maluuba/newsqa
Maluuba
2024-01-18T11:10:32Z
142
15
[ "task_categories:question-answering", "task_ids:extractive-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:100K<n<1M", "region:us" ]
[ "question-answering" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - mit multilinguality: - monolingual size_categories: - 100K<n<1M - 10K<n<100K source_datasets: - original task_categories: - question-answering task_ids: - extractive-qa paperswithcode_id: newsqa pretty_name: NewsQA dataset_info: - config_name: combined-csv features: - name: story_id dtype: string - name: story_text dtype: string - name: question dtype: string - name: answer_char_ranges dtype: string splits: - name: train num_bytes: 465942194 num_examples: 119633 download_size: 0 dataset_size: 465942194 - config_name: combined-json features: - name: storyId dtype: string - name: text dtype: string - name: type dtype: string - name: questions sequence: - name: q dtype: string - name: isAnswerAbsent dtype: int32 - name: isQuestionBad dtype: int32 - name: consensus struct: - name: s dtype: int32 - name: e dtype: int32 - name: badQuestion dtype: bool - name: noAnswer dtype: bool - name: answers sequence: - name: sourcerAnswers sequence: - name: s dtype: int32 - name: e dtype: int32 - name: badQuestion dtype: bool - name: noAnswer dtype: bool - name: validated_answers sequence: - name: s dtype: int32 - name: e dtype: int32 - name: badQuestion dtype: bool - name: noAnswer dtype: bool - name: count dtype: int32 splits: - name: train num_bytes: 68667276 num_examples: 12744 download_size: 0 dataset_size: 68667276 - config_name: split features: - name: story_id dtype: string - name: story_text dtype: string - name: question dtype: string - name: answer_token_ranges dtype: string splits: - name: train num_bytes: 362031288 num_examples: 92549 - name: test num_bytes: 19763673 num_examples: 5126 - name: validation num_bytes: 19862778 num_examples: 5166 download_size: 0 dataset_size: 401657739 config_names: - combined-csv - combined-json - split --- # Dataset Card for NewsQA ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://www.microsoft.com/en-us/research/project/newsqa-dataset/ - **Repository:** https://github.com/Maluuba/newsqa - **Paper:** https://www.aclweb.org/anthology/W17-2623/ - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Needs More Information] ### Dataset Summary NewsQA is a challenging machine comprehension dataset of over 100,000 human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of over 10,000 news articles from CNN, with answers consisting of spans of text from the corresponding articles. ### Supported Tasks and Leaderboards [Needs More Information] ### Languages English ## Dataset Structure ### Data Instances ``` {'storyId': './cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story', 'text': 'NEW DELHI, India (CNN) -- A high court in northern India on Friday acquitted a wealthy businessman facing the death sentence for the killing of a teen in a case dubbed "the house of horrors."\n\n\n\nMoninder Singh Pandher was sentenced to death by a lower court in February.\n\n\n\nThe teen was one of 19 victims -- children and young women -- in one of the most gruesome serial killings in India in recent years.\n\n\n\nThe Allahabad high court has acquitted Moninder Singh Pandher, his lawyer Sikandar B. Kochar told CNN.\n\n\n\nPandher and his domestic employee Surinder Koli were sentenced to death in February by a lower court for the rape and murder of the 14-year-old.\n\n\n\nThe high court upheld Koli\'s death sentence, Kochar said.\n\n\n\nThe two were arrested two years ago after body parts packed in plastic bags were found near their home in Noida, a New Delhi suburb. Their home was later dubbed a "house of horrors" by the Indian media.\n\n\n\nPandher was not named a main suspect by investigators initially, but was summoned as co-accused during the trial, Kochar said.\n\n\n\nKochar said his client was in Australia when the teen was raped and killed.\n\n\n\nPandher faces trial in the remaining 18 killings and could remain in custody, the attorney said.', 'type': 'train', 'questions': {'q': ['What was the amount of children murdered?', 'When was Pandher sentenced to death?', 'The court aquitted Moninder Singh Pandher of what crime?', 'who was acquitted', 'who was sentenced', 'What was Moninder Singh Pandher acquitted for?', 'Who was sentenced to death in February?', 'how many people died', 'How many children and young women were murdered?'], 'isAnswerAbsent': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'isQuestionBad': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'consensus': [{'s': 294, 'e': 297, 'badQuestion': False, 'noAnswer': False}, {'s': 261, 'e': 271, 'badQuestion': False, 'noAnswer': False}, {'s': 624, 'e': 640, 'badQuestion': False, 'noAnswer': False}, {'s': 195, 'e': 218, 'badQuestion': False, 'noAnswer': False}, {'s': 195, 'e': 218, 'badQuestion': False, 'noAnswer': False}, {'s': 129, 'e': 151, 'badQuestion': False, 'noAnswer': False}, {'s': 195, 'e': 218, 'badQuestion': False, 'noAnswer': False}, {'s': 294, 'e': 297, 'badQuestion': False, 'noAnswer': False}, {'s': 294, 'e': 297, 'badQuestion': False, 'noAnswer': False}], 'answers': [{'sourcerAnswers': [{'s': [294], 'e': [297], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [0], 'e': [0], 'badQuestion': [False], 'noAnswer': [True]}, {'s': [0], 'e': [0], 'badQuestion': [False], 'noAnswer': [True]}]}, {'sourcerAnswers': [{'s': [261], 'e': [271], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [258], 'e': [271], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [261], 'e': [271], 'badQuestion': [False], 'noAnswer': [False]}]}, {'sourcerAnswers': [{'s': [26], 'e': [33], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [0], 'e': [0], 'badQuestion': [False], 'noAnswer': [True]}, {'s': [624], 'e': [640], 'badQuestion': [False], 'noAnswer': [False]}]}, {'sourcerAnswers': [{'s': [195], 'e': [218], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [195], 'e': [218], 'badQuestion': [False], 'noAnswer': [False]}]}, {'sourcerAnswers': [{'s': [0], 'e': [0], 'badQuestion': [False], 'noAnswer': [True]}, {'s': [195, 232], 'e': [218, 271], 'badQuestion': [False, False], 'noAnswer': [False, False]}, {'s': [0], 'e': [0], 'badQuestion': [False], 'noAnswer': [True]}]}, {'sourcerAnswers': [{'s': [129], 'e': [192], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [129], 'e': [151], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [133], 'e': [151], 'badQuestion': [False], 'noAnswer': [False]}]}, {'sourcerAnswers': [{'s': [195], 'e': [218], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [195], 'e': [218], 'badQuestion': [False], 'noAnswer': [False]}]}, {'sourcerAnswers': [{'s': [294], 'e': [297], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [294], 'e': [297], 'badQuestion': [False], 'noAnswer': [False]}]}, {'sourcerAnswers': [{'s': [294], 'e': [297], 'badQuestion': [False], 'noAnswer': [False]}, {'s': [294], 'e': [297], 'badQuestion': [False], 'noAnswer': [False]}]}], 'validated_answers': [{'s': [0, 294], 'e': [0, 297], 'badQuestion': [False, False], 'noAnswer': [True, False], 'count': [1, 2]}, {'s': [], 'e': [], 'badQuestion': [], 'noAnswer': [], 'count': []}, {'s': [624], 'e': [640], 'badQuestion': [False], 'noAnswer': [False], 'count': [2]}, {'s': [], 'e': [], 'badQuestion': [], 'noAnswer': [], 'count': []}, {'s': [195], 'e': [218], 'badQuestion': [False], 'noAnswer': [False], 'count': [2]}, {'s': [129], 'e': [151], 'badQuestion': [False], 'noAnswer': [False], 'count': [2]}, {'s': [], 'e': [], 'badQuestion': [], 'noAnswer': [], 'count': []}, {'s': [], 'e': [], 'badQuestion': [], 'noAnswer': [], 'count': []}, {'s': [], 'e': [], 'badQuestion': [], 'noAnswer': [], 'count': []}]}} ``` ### Data Fields Configuration: combined-csv - 'story_id': An identifier of the story. - 'story_text': Text of the story. - 'question': A question about the story. - 'answer_char_ranges': The raw data collected for character based indices to answers in story_text. E.g. 196:228|196:202,217:228|None. Answers from different crowdsourcers are separated by `|`; within those, multiple selections from the same crowdsourcer are separated by `,`. `None` means the crowdsourcer thought there was no answer to the question in the story. The start is inclusive and the end is exclusive. The end may point to whitespace after a token. Configuration: combined-json - 'storyId': An identifier of the story. - 'text': Text of the story. - 'type': Split type. Will be "train", "validation" or "test". - 'questions': A list containing the following: - 'q': A question about the story. - 'isAnswerAbsent': Proportion of crowdsourcers that said there was no answer to the question in the story. - 'isQuestionBad': Proportion of crowdsourcers that said the question does not make sense. - 'consensus': The consensus answer. Use this field to pick the best continuous answer span from the text. If you want to know about a question having multiple answers in the text then you can use the more detailed "answers" and "validated_answers". The object can have start and end positions like in the example above or can be {"badQuestion": true} or {"noAnswer": true}. Note that there is only one consensus answer since it's based on the majority agreement of the crowdsourcers. - 's': Start of the answer. The first character of the answer in "text" (inclusive). - 'e': End of the answer. The last character of the answer in "text" (exclusive). - 'badQuestion': The validator said that the question did not make sense. - 'noAnswer': The crowdsourcer said that there was no answer to the question in the text. - 'answers': The answers from various crowdsourcers. - 'sourcerAnswers': The answer provided from one crowdsourcer. - 's': Start of the answer. The first character of the answer in "text" (inclusive). - 'e': End of the answer. The last character of the answer in "text" (exclusive). - 'badQuestion': The crowdsourcer said that the question did not make sense. - 'noAnswer': The crowdsourcer said that there was no answer to the question in the text. - 'validated_answers': The answers from the validators. - 's': Start of the answer. The first character of the answer in "text" (inclusive). - 'e': End of the answer. The last character of the answer in "text" (exclusive). - 'badQuestion': The validator said that the question did not make sense. - 'noAnswer': The validator said that there was no answer to the question in the text. - 'count': The number of validators that agreed with this answer. Configuration: split - 'story_id': An identifier of the story - 'story_text': text of the story - 'question': A question about the story. - 'answer_token_ranges': Word based indices to answers in story_text. E.g. 196:202,217:228. Multiple selections from the same answer are separated by `,`. The start is inclusive and the end is exclusive. The end may point to whitespace after a token. ### Data Splits | name | train | validation | test | |---------------|-----------:|-----------:|--------:| | combined-csv | 119633 | | | | combined-json | 12744 | | | | split | 92549 | 5166 | 5126 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information NewsQA Code Copyright (c) Microsoft Corporation All rights reserved. MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. © 2020 GitHub, Inc. ### Citation Information @inproceedings{trischler2017newsqa, title={NewsQA: A Machine Comprehension Dataset}, author={Trischler, Adam and Wang, Tong and Yuan, Xingdi and Harris, Justin and Sordoni, Alessandro and Bachman, Philip and Suleman, Kaheer}, booktitle={Proceedings of the 2nd Workshop on Representation Learning for NLP}, pages={191--200}, year={2017} ### Contributions Thanks to [@rsanjaykamath](https://github.com/rsanjaykamath) for adding this dataset.
IWSLT/mt_eng_vietnamese
IWSLT
2024-01-18T11:09:37Z
296
26
[ "task_categories:translation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:en", "language:vi", "license:unknown", "size_categories:100K<n<1M", "region:us" ]
[ "translation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found multilinguality: - multilingual language: - en - vi license: - unknown size_categories: - 100K<n<1M source_datasets: - original task_categories: - translation task_ids: [] paperswithcode_id: null pretty_name: MtEngVietnamese dataset_info: - config_name: iwslt2015-vi-en features: - name: translation dtype: translation: languages: - vi - en splits: - name: train num_bytes: 32478282 num_examples: 133318 - name: validation num_bytes: 323743 num_examples: 1269 - name: test num_bytes: 323743 num_examples: 1269 download_size: 32323025 dataset_size: 33125768 - config_name: iwslt2015-en-vi features: - name: translation dtype: translation: languages: - en - vi splits: - name: train num_bytes: 32478282 num_examples: 133318 - name: validation num_bytes: 323743 num_examples: 1269 - name: test num_bytes: 323743 num_examples: 1269 download_size: 32323025 dataset_size: 33125768 --- # Dataset Card for mt_eng_vietnamese ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://nlp.stanford.edu/projects/nmt/data/iwslt15.en-vi/ - **Repository:** [Needs More Information] - **Paper:** [Needs More Information] - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Needs More Information] ### Dataset Summary Preprocessed Dataset from IWSLT'15 English-Vietnamese machine translation: English-Vietnamese. ### Supported Tasks and Leaderboards Machine Translation ### Languages English, Vietnamese ## Dataset Structure ### Data Instances An example from the dataset: ``` { 'translation': { 'en': 'In 4 minutes , atmospheric chemist Rachel Pike provides a glimpse of the massive scientific effort behind the bold headlines on climate change , with her team -- one of thousands who contributed -- taking a risky flight over the rainforest in pursuit of data on a key molecule .', 'vi': 'Trong 4 phút , chuyên gia hoá học khí quyển Rachel Pike giới thiệu sơ lược về những nỗ lực khoa học miệt mài đằng sau những tiêu đề táo bạo về biến đổi khí hậu , cùng với đoàn nghiên cứu của mình -- hàng ngàn người đã cống hiến cho dự án này -- một chuyến bay mạo hiểm qua rừng già để tìm kiếm thông tin về một phân tử then chốt .' } } ``` ### Data Fields - translation: - en: text in english - vi: text in vietnamese ### Data Splits train: 133318, validation: 1269, test: 1269 ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @inproceedings{Luong-Manning:iwslt15, Address = {Da Nang, Vietnam} Author = {Luong, Minh-Thang and Manning, Christopher D.}, Booktitle = {International Workshop on Spoken Language Translation}, Title = {Stanford Neural Machine Translation Systems for Spoken Language Domain}, Year = {2015}} ``` ### Contributions Thanks to [@Nilanshrajput](https://github.com/Nilanshrajput) for adding this dataset.
UdS-LSV/menyo20k_mt
UdS-LSV
2024-01-18T11:08:52Z
111
3
[ "task_categories:translation", "annotations_creators:expert-generated", "annotations_creators:found", "language_creators:found", "multilinguality:translation", "source_datasets:original", "language:en", "language:yo", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "arxiv:2103.08647", "region:us" ]
[ "translation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated - found language_creators: - found language: - en - yo license: - cc-by-nc-4.0 multilinguality: - translation size_categories: - 10K<n<100K source_datasets: - original task_categories: - translation task_ids: [] paperswithcode_id: menyo-20k pretty_name: MENYO-20k dataset_info: features: - name: translation dtype: translation: languages: - en - yo config_name: menyo20k_mt splits: - name: train num_bytes: 2551345 num_examples: 10070 - name: validation num_bytes: 870011 num_examples: 3397 - name: test num_bytes: 1905432 num_examples: 6633 download_size: 5206234 dataset_size: 5326788 --- # Dataset Card for MENYO-20k ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** https://github.com/uds-lsv/menyo-20k_MT/ - **Paper:** [The Effect of Domain and Diacritics in Yorùbá-English Neural Machine Translation](https://arxiv.org/abs/2103.08647) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary MENYO-20k is a multi-domain parallel dataset with texts obtained from news articles, ted talks, movie transcripts, radio transcripts, science and technology texts, and other short articles curated from the web and professional translators. The dataset has 20,100 parallel sentences split into 10,070 training sentences, 3,397 development sentences, and 6,633 test sentences (3,419 multi-domain, 1,714 news domain, and 1,500 ted talks speech transcript domain). ### Supported Tasks and Leaderboards [More Information Needed] ### Languages Languages are English and Yoruba. ## Dataset Structure ### Data Instances An instance example: ``` {'translation': {'en': 'Unit 1: What is Creative Commons?', 'yo': 'Ìdá 1: Kín ni Creative Commons?' } } ``` ### Data Fields - `translation`: - `en`: English sentence. - `yo`: Yoruba sentence. ### Data Splits Training, validation and test splits are available. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information The dataset is open but for non-commercial use because some data sources like Ted talks and JW news require permission for commercial use. The dataset is licensed under Creative Commons [Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/) License: https://github.com/uds-lsv/menyo-20k_MT/blob/master/LICENSE ### Citation Information If you use this dataset, please cite this paper: ``` @inproceedings{adelani-etal-2021-effect, title = "The Effect of Domain and Diacritics in {Y}oruba{--}{E}nglish Neural Machine Translation", author = "Adelani, David and Ruiter, Dana and Alabi, Jesujoba and Adebonojo, Damilola and Ayeni, Adesina and Adeyemi, Mofe and Awokoya, Ayodele Esther and Espa{\~n}a-Bonet, Cristina", booktitle = "Proceedings of the 18th Biennial Machine Translation Summit (Volume 1: Research Track)", month = aug, year = "2021", address = "Virtual", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2021.mtsummit-research.6", pages = "61--75", abstract = "Massively multilingual machine translation (MT) has shown impressive capabilities and including zero and few-shot translation between low-resource language pairs. However and these models are often evaluated on high-resource languages with the assumption that they generalize to low-resource ones. The difficulty of evaluating MT models on low-resource pairs is often due to lack of standardized evaluation datasets. In this paper and we present MENYO-20k and the first multi-domain parallel corpus with a especially curated orthography for Yoruba{--}English with standardized train-test splits for benchmarking. We provide several neural MT benchmarks and compare them to the performance of popular pre-trained (massively multilingual) MT models both for the heterogeneous test set and its subdomains. Since these pre-trained models use huge amounts of data with uncertain quality and we also analyze the effect of diacritics and a major characteristic of Yoruba and in the training data. We investigate how and when this training condition affects the final quality of a translation and its understandability.Our models outperform massively multilingual models such as Google ($+8.7$ BLEU) and Facebook M2M ($+9.1$) when translating to Yoruba and setting a high quality benchmark for future research.", } ``` ### Contributions Thanks to [@yvonnegitau](https://github.com/yvonnegitau) for adding this dataset.
allenai/math_qa
allenai
2024-01-18T11:08:38Z
9,619
103
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:extended|aqua_rat", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "region:us" ]
[ "question-answering" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - crowdsourced language: - en language_creators: - crowdsourced - expert-generated license: - apache-2.0 multilinguality: - monolingual pretty_name: MathQA size_categories: - 10K<n<100K source_datasets: - extended|aqua_rat task_categories: - question-answering task_ids: - multiple-choice-qa paperswithcode_id: mathqa dataset_info: features: - name: Problem dtype: string - name: Rationale dtype: string - name: options dtype: string - name: correct dtype: string - name: annotated_formula dtype: string - name: linear_formula dtype: string - name: category dtype: string splits: - name: test num_bytes: 1844184 num_examples: 2985 - name: train num_bytes: 18368826 num_examples: 29837 - name: validation num_bytes: 2752969 num_examples: 4475 download_size: 7302821 dataset_size: 22965979 --- # Dataset Card for MathQA ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://math-qa.github.io/math-QA/](https://math-qa.github.io/math-QA/) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms](https://aclanthology.org/N19-1245/) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 7.30 MB - **Size of the generated dataset:** 22.96 MB - **Total amount of disk used:** 30.27 MB ### Dataset Summary We introduce a large-scale dataset of math word problems. Our dataset is gathered by using a new representation language to annotate over the AQuA-RAT dataset with fully-specified operational programs. AQuA-RAT has provided the questions, options, rationale, and the correct options. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 7.30 MB - **Size of the generated dataset:** 22.96 MB - **Total amount of disk used:** 30.27 MB An example of 'train' looks as follows. ``` { "Problem": "a multiple choice test consists of 4 questions , and each question has 5 answer choices . in how many r ways can the test be completed if every question is unanswered ?", "Rationale": "\"5 choices for each of the 4 questions , thus total r of 5 * 5 * 5 * 5 = 5 ^ 4 = 625 ways to answer all of them . answer : c .\"", "annotated_formula": "power(5, 4)", "category": "general", "correct": "c", "linear_formula": "power(n1,n0)|", "options": "a ) 24 , b ) 120 , c ) 625 , d ) 720 , e ) 1024" } ``` ### Data Fields The data fields are the same among all splits. #### default - `Problem`: a `string` feature. - `Rationale`: a `string` feature. - `options`: a `string` feature. - `correct`: a `string` feature. - `annotated_formula`: a `string` feature. - `linear_formula`: a `string` feature. - `category`: a `string` feature. ### Data Splits | name |train|validation|test| |-------|----:|---------:|---:| |default|29837| 4475|2985| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The dataset is licensed under the [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0). ### Citation Information ``` @inproceedings{amini-etal-2019-mathqa, title = "{M}ath{QA}: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms", author = "Amini, Aida and Gabriel, Saadia and Lin, Shanchuan and Koncel-Kedziorski, Rik and Choi, Yejin and Hajishirzi, Hannaneh", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)", month = jun, year = "2019", address = "Minneapolis, Minnesota", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/N19-1245", doi = "10.18653/v1/N19-1245", pages = "2357--2367", } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
deepmind/math_dataset
deepmind
2024-01-18T11:08:35Z
7,471
123
[ "language:en", "arxiv:1904.01557", "region:us" ]
[]
2022-03-02T23:29:22Z
null
--- pretty_name: Mathematics Dataset language: - en paperswithcode_id: mathematics dataset_info: - config_name: algebra__linear_1d features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 516405 num_examples: 10000 - name: train num_bytes: 92086245 num_examples: 1999998 download_size: 2333082954 dataset_size: 92602650 - config_name: algebra__linear_1d_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1018090 num_examples: 10000 - name: train num_bytes: 199566926 num_examples: 1999998 download_size: 2333082954 dataset_size: 200585016 - config_name: algebra__linear_2d features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 666095 num_examples: 10000 - name: train num_bytes: 126743526 num_examples: 1999998 download_size: 2333082954 dataset_size: 127409621 - config_name: algebra__linear_2d_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1184664 num_examples: 10000 - name: train num_bytes: 234405885 num_examples: 1999998 download_size: 2333082954 dataset_size: 235590549 - config_name: algebra__polynomial_roots features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 868630 num_examples: 10000 - name: train num_bytes: 163134199 num_examples: 1999998 download_size: 2333082954 dataset_size: 164002829 - config_name: algebra__polynomial_roots_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1281321 num_examples: 10000 - name: train num_bytes: 251435312 num_examples: 1999998 download_size: 2333082954 dataset_size: 252716633 - config_name: algebra__sequence_next_term features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 752459 num_examples: 10000 - name: train num_bytes: 138735194 num_examples: 1999998 download_size: 2333082954 dataset_size: 139487653 - config_name: algebra__sequence_nth_term features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 947764 num_examples: 10000 - name: train num_bytes: 175945643 num_examples: 1999998 download_size: 2333082954 dataset_size: 176893407 - config_name: arithmetic__add_or_sub features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 483725 num_examples: 10000 - name: train num_bytes: 89690356 num_examples: 1999998 download_size: 2333082954 dataset_size: 90174081 - config_name: arithmetic__add_or_sub_in_base features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 502221 num_examples: 10000 - name: train num_bytes: 93779137 num_examples: 1999998 download_size: 2333082954 dataset_size: 94281358 - config_name: arithmetic__add_sub_multiple features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 498421 num_examples: 10000 - name: train num_bytes: 90962782 num_examples: 1999998 download_size: 2333082954 dataset_size: 91461203 - config_name: arithmetic__div features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 421520 num_examples: 10000 - name: train num_bytes: 78417908 num_examples: 1999998 download_size: 2333082954 dataset_size: 78839428 - config_name: arithmetic__mixed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 513364 num_examples: 10000 - name: train num_bytes: 93989009 num_examples: 1999998 download_size: 2333082954 dataset_size: 94502373 - config_name: arithmetic__mul features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 394004 num_examples: 10000 - name: train num_bytes: 73499093 num_examples: 1999998 download_size: 2333082954 dataset_size: 73893097 - config_name: arithmetic__mul_div_multiple features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 497308 num_examples: 10000 - name: train num_bytes: 91406689 num_examples: 1999998 download_size: 2333082954 dataset_size: 91903997 - config_name: arithmetic__nearest_integer_root features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 705630 num_examples: 10000 - name: train num_bytes: 137771237 num_examples: 1999998 download_size: 2333082954 dataset_size: 138476867 - config_name: arithmetic__simplify_surd features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1261753 num_examples: 10000 - name: train num_bytes: 207753790 num_examples: 1999998 download_size: 2333082954 dataset_size: 209015543 - config_name: calculus__differentiate features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1025947 num_examples: 10000 - name: train num_bytes: 199013993 num_examples: 1999998 download_size: 2333082954 dataset_size: 200039940 - config_name: calculus__differentiate_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1343416 num_examples: 10000 - name: train num_bytes: 263757570 num_examples: 1999998 download_size: 2333082954 dataset_size: 265100986 - config_name: comparison__closest features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 681229 num_examples: 10000 - name: train num_bytes: 132274822 num_examples: 1999998 download_size: 2333082954 dataset_size: 132956051 - config_name: comparison__closest_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1071089 num_examples: 10000 - name: train num_bytes: 210658152 num_examples: 1999998 download_size: 2333082954 dataset_size: 211729241 - config_name: comparison__kth_biggest features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 797185 num_examples: 10000 - name: train num_bytes: 149077463 num_examples: 1999998 download_size: 2333082954 dataset_size: 149874648 - config_name: comparison__kth_biggest_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1144556 num_examples: 10000 - name: train num_bytes: 221547532 num_examples: 1999998 download_size: 2333082954 dataset_size: 222692088 - config_name: comparison__pair features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 452528 num_examples: 10000 - name: train num_bytes: 85707543 num_examples: 1999998 download_size: 2333082954 dataset_size: 86160071 - config_name: comparison__pair_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 946187 num_examples: 10000 - name: train num_bytes: 184702998 num_examples: 1999998 download_size: 2333082954 dataset_size: 185649185 - config_name: comparison__sort features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 712498 num_examples: 10000 - name: train num_bytes: 131752705 num_examples: 1999998 download_size: 2333082954 dataset_size: 132465203 - config_name: comparison__sort_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1114257 num_examples: 10000 - name: train num_bytes: 213871896 num_examples: 1999998 download_size: 2333082954 dataset_size: 214986153 - config_name: measurement__conversion features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 592904 num_examples: 10000 - name: train num_bytes: 118650852 num_examples: 1999998 download_size: 2333082954 dataset_size: 119243756 - config_name: measurement__time features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 584278 num_examples: 10000 - name: train num_bytes: 116962599 num_examples: 1999998 download_size: 2333082954 dataset_size: 117546877 - config_name: numbers__base_conversion features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 490881 num_examples: 10000 - name: train num_bytes: 90363333 num_examples: 1999998 download_size: 2333082954 dataset_size: 90854214 - config_name: numbers__div_remainder features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 644523 num_examples: 10000 - name: train num_bytes: 125046212 num_examples: 1999998 download_size: 2333082954 dataset_size: 125690735 - config_name: numbers__div_remainder_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1151347 num_examples: 10000 - name: train num_bytes: 226341870 num_examples: 1999998 download_size: 2333082954 dataset_size: 227493217 - config_name: numbers__gcd features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 659492 num_examples: 10000 - name: train num_bytes: 127914889 num_examples: 1999998 download_size: 2333082954 dataset_size: 128574381 - config_name: numbers__gcd_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1206805 num_examples: 10000 - name: train num_bytes: 237534189 num_examples: 1999998 download_size: 2333082954 dataset_size: 238740994 - config_name: numbers__is_factor features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 396129 num_examples: 10000 - name: train num_bytes: 75875988 num_examples: 1999998 download_size: 2333082954 dataset_size: 76272117 - config_name: numbers__is_factor_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 949828 num_examples: 10000 - name: train num_bytes: 185369842 num_examples: 1999998 download_size: 2333082954 dataset_size: 186319670 - config_name: numbers__is_prime features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 385749 num_examples: 10000 - name: train num_bytes: 73983639 num_examples: 1999998 download_size: 2333082954 dataset_size: 74369388 - config_name: numbers__is_prime_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 947888 num_examples: 10000 - name: train num_bytes: 184808483 num_examples: 1999998 download_size: 2333082954 dataset_size: 185756371 - config_name: numbers__lcm features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 717978 num_examples: 10000 - name: train num_bytes: 136826050 num_examples: 1999998 download_size: 2333082954 dataset_size: 137544028 - config_name: numbers__lcm_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1127744 num_examples: 10000 - name: train num_bytes: 221148668 num_examples: 1999998 download_size: 2333082954 dataset_size: 222276412 - config_name: numbers__list_prime_factors features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 585749 num_examples: 10000 - name: train num_bytes: 109982816 num_examples: 1999998 download_size: 2333082954 dataset_size: 110568565 - config_name: numbers__list_prime_factors_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1053510 num_examples: 10000 - name: train num_bytes: 205379513 num_examples: 1999998 download_size: 2333082954 dataset_size: 206433023 - config_name: numbers__place_value features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 496977 num_examples: 10000 - name: train num_bytes: 95180091 num_examples: 1999998 download_size: 2333082954 dataset_size: 95677068 - config_name: numbers__place_value_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1011130 num_examples: 10000 - name: train num_bytes: 197187918 num_examples: 1999998 download_size: 2333082954 dataset_size: 198199048 - config_name: numbers__round_number features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 570636 num_examples: 10000 - name: train num_bytes: 111472483 num_examples: 1999998 download_size: 2333082954 dataset_size: 112043119 - config_name: numbers__round_number_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1016754 num_examples: 10000 - name: train num_bytes: 201057283 num_examples: 1999998 download_size: 2333082954 dataset_size: 202074037 - config_name: polynomials__add features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1308455 num_examples: 10000 - name: train num_bytes: 257576092 num_examples: 1999998 download_size: 2333082954 dataset_size: 258884547 - config_name: polynomials__coefficient_named features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1137226 num_examples: 10000 - name: train num_bytes: 219716251 num_examples: 1999998 download_size: 2333082954 dataset_size: 220853477 - config_name: polynomials__collect features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 774709 num_examples: 10000 - name: train num_bytes: 143743260 num_examples: 1999998 download_size: 2333082954 dataset_size: 144517969 - config_name: polynomials__compose features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1209763 num_examples: 10000 - name: train num_bytes: 233651887 num_examples: 1999998 download_size: 2333082954 dataset_size: 234861650 - config_name: polynomials__evaluate features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 599446 num_examples: 10000 - name: train num_bytes: 114538250 num_examples: 1999998 download_size: 2333082954 dataset_size: 115137696 - config_name: polynomials__evaluate_composed features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1148362 num_examples: 10000 - name: train num_bytes: 226022455 num_examples: 1999998 download_size: 2333082954 dataset_size: 227170817 - config_name: polynomials__expand features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1057353 num_examples: 10000 - name: train num_bytes: 202338235 num_examples: 1999998 download_size: 2333082954 dataset_size: 203395588 - config_name: polynomials__simplify_power features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1248040 num_examples: 10000 - name: train num_bytes: 216407582 num_examples: 1999998 download_size: 2333082954 dataset_size: 217655622 - config_name: probability__swr_p_level_set features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1159050 num_examples: 10000 - name: train num_bytes: 227540179 num_examples: 1999998 download_size: 2333082954 dataset_size: 228699229 - config_name: probability__swr_p_sequence features: - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1097442 num_examples: 10000 - name: train num_bytes: 215865725 num_examples: 1999998 download_size: 2333082954 dataset_size: 216963167 --- # Dataset Card for "math_dataset" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/deepmind/mathematics_dataset](https://github.com/deepmind/mathematics_dataset) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 130.65 GB - **Size of the generated dataset:** 9.08 GB - **Total amount of disk used:** 139.73 GB ### Dataset Summary Mathematics database. This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty. This is designed to test the mathematical learning and algebraic reasoning skills of learning models. Original paper: Analysing Mathematical Reasoning Abilities of Neural Models (Saxton, Grefenstette, Hill, Kohli). Example usage: train_examples, val_examples = datasets.load_dataset( 'math_dataset/arithmetic__mul', split=['train', 'test'], as_supervised=True) ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### algebra__linear_1d - **Size of downloaded dataset files:** 2.33 GB - **Size of the generated dataset:** 92.60 MB - **Total amount of disk used:** 2.43 GB An example of 'train' looks as follows. ``` ``` #### algebra__linear_1d_composed - **Size of downloaded dataset files:** 2.33 GB - **Size of the generated dataset:** 200.58 MB - **Total amount of disk used:** 2.53 GB An example of 'train' looks as follows. ``` ``` #### algebra__linear_2d - **Size of downloaded dataset files:** 2.33 GB - **Size of the generated dataset:** 127.41 MB - **Total amount of disk used:** 2.46 GB An example of 'train' looks as follows. ``` ``` #### algebra__linear_2d_composed - **Size of downloaded dataset files:** 2.33 GB - **Size of the generated dataset:** 235.59 MB - **Total amount of disk used:** 2.57 GB An example of 'train' looks as follows. ``` ``` #### algebra__polynomial_roots - **Size of downloaded dataset files:** 2.33 GB - **Size of the generated dataset:** 164.01 MB - **Total amount of disk used:** 2.50 GB An example of 'train' looks as follows. ``` ``` ### Data Fields The data fields are the same among all splits. #### algebra__linear_1d - `question`: a `string` feature. - `answer`: a `string` feature. #### algebra__linear_1d_composed - `question`: a `string` feature. - `answer`: a `string` feature. #### algebra__linear_2d - `question`: a `string` feature. - `answer`: a `string` feature. #### algebra__linear_2d_composed - `question`: a `string` feature. - `answer`: a `string` feature. #### algebra__polynomial_roots - `question`: a `string` feature. - `answer`: a `string` feature. ### Data Splits | name | train |test | |---------------------------|------:|----:| |algebra__linear_1d |1999998|10000| |algebra__linear_1d_composed|1999998|10000| |algebra__linear_2d |1999998|10000| |algebra__linear_2d_composed|1999998|10000| |algebra__polynomial_roots |1999998|10000| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @article{2019arXiv, author = {Saxton, Grefenstette, Hill, Kohli}, title = {Analysing Mathematical Reasoning Abilities of Neural Models}, year = {2019}, journal = {arXiv:1904.01557} } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
lst-nectec/lst20
lst-nectec
2024-01-18T11:08:24Z
239
5
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "task_ids:part-of-speech", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:th", "license:other", "size_categories:10K<n<100K", "region:us", "word-segmentation", "clause-segmentation", "sentence-segmentation" ]
[ "token-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - found language: - th license: - other multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - token-classification task_ids: - named-entity-recognition - part-of-speech pretty_name: LST20 tags: - word-segmentation - clause-segmentation - sentence-segmentation dataset_info: features: - name: id dtype: string - name: fname dtype: string - name: tokens sequence: string - name: pos_tags sequence: class_label: names: '0': NN '1': VV '2': PU '3': CC '4': PS '5': AX '6': AV '7': FX '8': NU '9': AJ '10': CL '11': PR '12': NG '13': PA '14': XX '15': IJ - name: ner_tags sequence: class_label: names: '0': O '1': B_BRN '2': B_DES '3': B_DTM '4': B_LOC '5': B_MEA '6': B_NUM '7': B_ORG '8': B_PER '9': B_TRM '10': B_TTL '11': I_BRN '12': I_DES '13': I_DTM '14': I_LOC '15': I_MEA '16': I_NUM '17': I_ORG '18': I_PER '19': I_TRM '20': I_TTL '21': E_BRN '22': E_DES '23': E_DTM '24': E_LOC '25': E_MEA '26': E_NUM '27': E_ORG '28': E_PER '29': E_TRM '30': E_TTL - name: clause_tags sequence: class_label: names: '0': O '1': B_CLS '2': I_CLS '3': E_CLS config_name: lst20 splits: - name: train num_bytes: 107725145 num_examples: 63310 - name: validation num_bytes: 9646167 num_examples: 5620 - name: test num_bytes: 8217425 num_examples: 5250 download_size: 0 dataset_size: 125588737 --- # Dataset Card for LST20 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://aiforthai.in.th/ - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** [email]([email protected]) ### Dataset Summary LST20 Corpus is a dataset for Thai language processing developed by National Electronics and Computer Technology Center (NECTEC), Thailand. It offers five layers of linguistic annotation: word boundaries, POS tagging, named entities, clause boundaries, and sentence boundaries. At a large scale, it consists of 3,164,002 words, 288,020 named entities, 248,181 clauses, and 74,180 sentences, while it is annotated with 16 distinct POS tags. All 3,745 documents are also annotated with one of 15 news genres. Regarding its sheer size, this dataset is considered large enough for developing joint neural models for NLP. Manually download at https://aiforthai.in.th/corpus.php See `LST20 Annotation Guideline.pdf` and `LST20 Brief Specification.pdf` within the downloaded `AIFORTHAI-LST20Corpus.tar.gz` for more details. ### Supported Tasks and Leaderboards - POS tagging - NER tagging - clause segmentation - sentence segmentation - word tokenization ### Languages Thai ## Dataset Structure ### Data Instances ``` {'clause_tags': [1, 2, 2, 2, 2, 2, 2, 2, 3], 'fname': 'T11964.txt', 'id': '0', 'ner_tags': [8, 0, 0, 0, 0, 0, 0, 0, 25], 'pos_tags': [0, 0, 0, 1, 0, 8, 8, 8, 0], 'tokens': ['ธรรมนูญ', 'แชมป์', 'สิงห์คลาสสิก', 'กวาด', 'รางวัล', 'แสน', 'สี่', 'หมื่น', 'บาท']} {'clause_tags': [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3], 'fname': 'T11964.txt', 'id': '1', 'ner_tags': [8, 18, 28, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 15, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6], 'pos_tags': [0, 2, 0, 2, 1, 1, 2, 8, 2, 10, 2, 8, 2, 1, 0, 1, 0, 4, 7, 1, 0, 2, 8, 2, 10, 1, 10, 4, 2, 8, 2, 4, 0, 4, 0, 2, 8, 2, 10, 2, 8], 'tokens': ['ธรรมนูญ', '_', 'ศรีโรจน์', '_', 'เก็บ', 'เพิ่ม', '_', '4', '_', 'อันเดอร์พาร์', '_', '68', '_', 'เข้า', 'ป้าย', 'รับ', 'แชมป์', 'ใน', 'การ', 'เล่น', 'อาชีพ', '_', '19', '_', 'ปี', 'เป็น', 'ครั้ง', 'ที่', '_', '8', '_', 'ใน', 'ชีวิต', 'ด้วย', 'สกอร์', '_', '18', '_', 'อันเดอร์พาร์', '_', '270']} ``` ### Data Fields - `id`: nth sentence in each set, starting at 0 - `fname`: text file from which the sentence comes from - `tokens`: word tokens - `pos_tags`: POS tags - `ner_tags`: NER tags - `clause_tags`: clause tags ### Data Splits | | train | eval | test | all | |----------------------|-----------|-------------|-------------|-----------| | words | 2,714,848 | 240,891 | 207,295 | 3,163,034 | | named entities | 246,529 | 23,176 | 18,315 | 288,020 | | clauses | 214,645 | 17,486 | 16,050 | 246,181 | | sentences | 63,310 | 5,620 | 5,250 | 74,180 | | distinct words | 42,091 | (oov) 2,595 | (oov) 2,006 | 46,692 | | breaking spaces※ | 63,310 | 5,620 | 5,250 | 74,180 | | non-breaking spaces※※| 402,380 | 39,920 | 32,204 | 475,504 | ※ Breaking space = space that is used as a sentence boundary marker ※※ Non-breaking space = space that is not used as a sentence boundary marker ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? Respective authors of the news articles ### Annotations #### Annotation process Detailed annotation guideline can be found in `LST20 Annotation Guideline.pdf`. #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information All texts are from public news. No personal and sensitive information is expected to be included. ## Considerations for Using the Data ### Social Impact of Dataset - Large-scale Thai NER & POS tagging, clause & sentence segmentatation, word tokenization ### Discussion of Biases - All 3,745 texts are from news domain: - politics: 841 - crime and accident: 592 - economics: 512 - entertainment: 472 - sports: 402 - international: 279 - science, technology and education: 216 - health: 92 - general: 75 - royal: 54 - disaster: 52 - development: 45 - environment: 40 - culture: 40 - weather forecast: 33 - Word tokenization is done accoding to Inter­BEST 2009 Guideline. ### Other Known Limitations - Some NER tags do not correspond with given labels (`B`, `I`, and so on) ## Additional Information ### Dataset Curators [NECTEC](https://www.nectec.or.th/en/) ### Licensing Information 1. Non-commercial use, research, and open source Any non-commercial use of the dataset for research and open-sourced projects is encouraged and free of charge. Please cite our technical report for reference. If you want to perpetuate your models trained on our dataset and share them to the research community in Thailand, please send your models, code, and APIs to the AI for Thai Project. Please contact Dr. Thepchai Supnithi via [email protected] for more information. Note that modification and redistribution of the dataset by any means are strictly prohibited unless authorized by the corpus authors. 2. Commercial use In any commercial use of the dataset, there are two options. - Option 1 (in kind): Contributing a dataset of 50,000 words completely annotated with our annotation scheme within 1 year. Your data will also be shared and recognized as a dataset co-creator in the research community in Thailand. - Option 2 (in cash): Purchasing a lifetime license for the entire dataset is required. The purchased rights of use cover only this dataset. In both options, please contact Dr. Thepchai Supnithi via [email protected] for more information. ### Citation Information ``` @article{boonkwan2020annotation, title={The Annotation Guideline of LST20 Corpus}, author={Boonkwan, Prachya and Luantangsrisuk, Vorapon and Phaholphinyo, Sitthaa and Kriengket, Kanyanat and Leenoi, Dhanon and Phrombut, Charun and Boriboon, Monthika and Kosawat, Krit and Supnithi, Thepchai}, journal={arXiv preprint arXiv:2008.05055}, year={2020} } ``` ### Contributions Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset.
ucsbnlp/liar
ucsbnlp
2024-01-18T11:08:08Z
2,007
24
[ "task_categories:text-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:10K<n<100K", "arxiv:1705.00648", "region:us", "fake-news-detection" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: [] paperswithcode_id: liar pretty_name: LIAR tags: - fake-news-detection dataset_info: features: - name: id dtype: string - name: label dtype: class_label: names: '0': 'false' '1': half-true '2': mostly-true '3': 'true' '4': barely-true '5': pants-fire - name: statement dtype: string - name: subject dtype: string - name: speaker dtype: string - name: job_title dtype: string - name: state_info dtype: string - name: party_affiliation dtype: string - name: barely_true_counts dtype: float32 - name: false_counts dtype: float32 - name: half_true_counts dtype: float32 - name: mostly_true_counts dtype: float32 - name: pants_on_fire_counts dtype: float32 - name: context dtype: string splits: - name: train num_bytes: 2730651 num_examples: 10269 - name: test num_bytes: 341414 num_examples: 1283 - name: validation num_bytes: 341592 num_examples: 1284 download_size: 1013571 dataset_size: 3413657 train-eval-index: - config: default task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: statement: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for [Dataset Name] ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://sites.cs.ucsb.edu/~william/ - **Repository:** - **Paper:** https://arxiv.org/abs/1705.00648 - **Leaderboard:** - **Point of Contact:** ### Dataset Summary LIAR is a dataset for fake news detection with 12.8K human labeled short statements from politifact.com's API, and each statement is evaluated by a politifact.com editor for its truthfulness. The distribution of labels in the LIAR dataset is relatively well-balanced: except for 1,050 pants-fire cases, the instances for all other labels range from 2,063 to 2,638. In each case, the labeler provides a lengthy analysis report to ground each judgment. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages English. ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@hugoabonizio](https://github.com/hugoabonizio) for adding this dataset.
peluz/lener_br
peluz
2024-01-18T11:07:59Z
373
35
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:pt", "license:unknown", "size_categories:10K<n<100K", "region:us", "legal" ]
[ "token-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - pt license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - token-classification task_ids: - named-entity-recognition paperswithcode_id: lener-br pretty_name: leNER-br dataset_info: features: - name: id dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-ORGANIZACAO '2': I-ORGANIZACAO '3': B-PESSOA '4': I-PESSOA '5': B-TEMPO '6': I-TEMPO '7': B-LOCAL '8': I-LOCAL '9': B-LEGISLACAO '10': I-LEGISLACAO '11': B-JURISPRUDENCIA '12': I-JURISPRUDENCIA config_name: lener_br splits: - name: train num_bytes: 3984189 num_examples: 7828 - name: validation num_bytes: 719433 num_examples: 1177 - name: test num_bytes: 823708 num_examples: 1390 download_size: 2983137 dataset_size: 5527330 tags: - legal --- # Dataset Card for leNER-br ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [leNER-BR homepage](https://cic.unb.br/~teodecampos/LeNER-Br/) - **Repository:** [leNER-BR repository](https://github.com/peluz/lener-br) - **Paper:** [leNER-BR: Long Form Question Answering](https://cic.unb.br/~teodecampos/LeNER-Br/luz_etal_propor2018.pdf) - **Point of Contact:** [Pedro H. Luz de Araujo](mailto:[email protected]) ### Dataset Summary LeNER-Br is a Portuguese language dataset for named entity recognition applied to legal documents. LeNER-Br consists entirely of manually annotated legislation and legal cases texts and contains tags for persons, locations, time entities, organizations, legislation and legal cases. To compose the dataset, 66 legal documents from several Brazilian Courts were collected. Courts of superior and state levels were considered, such as Supremo Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas Gerais and Tribunal de Contas da União. In addition, four legislation documents were collected, such as "Lei Maria da Penha", giving a total of 70 documents ### Supported Tasks and Leaderboards [More Information Needed] ### Languages The language supported is Portuguese. ## Dataset Structure ### Data Instances An example from the dataset looks as follows: ``` { "id": "0", "ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0], "tokens": [ "EMENTA", ":", "APELAÇÃO", "CÍVEL", "-", "AÇÃO", "DE", "INDENIZAÇÃO", "POR", "DANOS", "MORAIS", "-", "PRELIMINAR", "-", "ARGUIDA", "PELO", "MINISTÉRIO", "PÚBLICO", "EM", "GRAU", "RECURSAL"] } ``` ### Data Fields - `id`: id of the sample - `tokens`: the tokens of the example text - `ner_tags`: the NER tags of each token The NER tags correspond to this list: ``` "O", "B-ORGANIZACAO", "I-ORGANIZACAO", "B-PESSOA", "I-PESSOA", "B-TEMPO", "I-TEMPO", "B-LOCAL", "I-LOCAL", "B-LEGISLACAO", "I-LEGISLACAO", "B-JURISPRUDENCIA", "I-JURISPRUDENCIA" ``` The NER tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any non-initial word. ### Data Splits The data is split into train, validation and test set. The split sizes are as follow: | Train | Val | Test | | ------ | ----- | ---- | | 7828 | 1177 | 1390 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @inproceedings{luz_etal_propor2018, author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and Renato R. R. {de Oliveira} and Matheus Stauffer and Samuel Couto and Paulo Bermejo}, title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text}, booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})}, publisher = {Springer}, series = {Lecture Notes on Computer Science ({LNCS})}, pages = {313--323}, year = {2018}, month = {September 24-26}, address = {Canela, RS, Brazil}, doi = {10.1007/978-3-319-99722-3_32}, url = {https://cic.unb.br/~teodecampos/LeNER-Br/}, } ``` ### Contributions Thanks to [@jonatasgrosman](https://github.com/jonatasgrosman) for adding this dataset.
google/jigsaw_toxicity_pred
google
2024-01-18T11:06:53Z
768
24
[ "task_categories:text-classification", "task_ids:multi-label-classification", "annotations_creators:crowdsourced", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc0-1.0", "size_categories:100K<n<1M", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - other language: - en license: - cc0-1.0 multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification task_ids: - multi-label-classification pretty_name: JigsawToxicityPred dataset_info: features: - name: comment_text dtype: string - name: toxic dtype: class_label: names: '0': 'false' '1': 'true' - name: severe_toxic dtype: class_label: names: '0': 'false' '1': 'true' - name: obscene dtype: class_label: names: '0': 'false' '1': 'true' - name: threat dtype: class_label: names: '0': 'false' '1': 'true' - name: insult dtype: class_label: names: '0': 'false' '1': 'true' - name: identity_hate dtype: class_label: names: '0': 'false' '1': 'true' splits: - name: train num_bytes: 71282358 num_examples: 159571 - name: test num_bytes: 28241991 num_examples: 63978 download_size: 0 dataset_size: 99524349 train-eval-index: - config: default task: text-classification task_id: binary_classification splits: train_split: train eval_split: test col_mapping: comment_text: text toxic: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for [Dataset Name] ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Jigsaw Comment Toxicity Classification Kaggle Competition](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data) - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary Discussing things you care about can be difficult. The threat of abuse and harassment online means that many people stop expressing themselves and give up on seeking different opinions. Platforms struggle to effectively facilitate conversations, leading many communities to limit or completely shut down user comments. This dataset consists of a large number of Wikipedia comments which have been labeled by human raters for toxic behavior. ### Supported Tasks and Leaderboards The dataset support multi-label classification ### Languages The comments are in English ## Dataset Structure ### Data Instances A data point consists of a comment followed by multiple labels that can be associated with it. {'id': '02141412314', 'comment_text': 'Sample comment text', 'toxic': 0, 'severe_toxic': 0, 'obscene': 0, 'threat': 0, 'insult': 0, 'identity_hate': 1, } ### Data Fields - `id`: id of the comment - `comment_text`: the text of the comment - `toxic`: value of 0(non-toxic) or 1(toxic) classifying the comment - `severe_toxic`: value of 0(non-severe_toxic) or 1(severe_toxic) classifying the comment - `obscene`: value of 0(non-obscene) or 1(obscene) classifying the comment - `threat`: value of 0(non-threat) or 1(threat) classifying the comment - `insult`: value of 0(non-insult) or 1(insult) classifying the comment - `identity_hate`: value of 0(non-identity_hate) or 1(identity_hate) classifying the comment ### Data Splits The data is split into a training and testing set. ## Dataset Creation ### Curation Rationale The dataset was created to help in efforts to identify and curb instances of toxicity online. ### Source Data #### Initial Data Collection and Normalization The dataset is a collection of Wikipedia comments. #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases If words that are associated with swearing, insults or profanity are present in a comment, it is likely that it will be classified as toxic, regardless of the tone or the intent of the author e.g. humorous/self-deprecating. This could present some biases towards already vulnerable minority groups. ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information The "Toxic Comment Classification" dataset is released under [CC0], with the underlying comment text being governed by Wikipedia\'s [CC-SA-3.0]. ### Citation Information No citation information. ### Contributions Thanks to [@Tigrex161](https://github.com/Tigrex161) for adding this dataset.
takala/financial_phrasebank
takala
2024-01-18T11:03:40Z
6,292
220
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:sentiment-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-sa-3.0", "size_categories:1K<n<10K", "arxiv:1307.5336", "region:us", "finance" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - expert-generated language_creators: - found language: - en license: - cc-by-nc-sa-3.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification task_ids: - multi-class-classification - sentiment-classification pretty_name: FinancialPhrasebank dataset_info: - config_name: sentences_allagree features: - name: sentence dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 303371 num_examples: 2264 download_size: 681890 dataset_size: 303371 - config_name: sentences_75agree features: - name: sentence dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 472703 num_examples: 3453 download_size: 681890 dataset_size: 472703 - config_name: sentences_66agree features: - name: sentence dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 587152 num_examples: 4217 download_size: 681890 dataset_size: 587152 - config_name: sentences_50agree features: - name: sentence dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 679240 num_examples: 4846 download_size: 681890 dataset_size: 679240 tags: - finance --- # Dataset Card for financial_phrasebank ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Kaggle](https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news) [ResearchGate](https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10) - **Repository:** - **Paper:** [Arxiv](https://arxiv.org/abs/1307.5336) - **Leaderboard:** [Kaggle](https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news/code) [PapersWithCode](https://paperswithcode.com/sota/sentiment-analysis-on-financial-phrasebank) = - **Point of Contact:** [Pekka Malo](mailto:[email protected]) [Ankur Sinha](mailto:[email protected]) ### Dataset Summary Polar sentiment dataset of sentences from financial news. The dataset consists of 4840 sentences from English language financial news categorised by sentiment. The dataset is divided by agreement rate of 5-8 annotators. ### Supported Tasks and Leaderboards Sentiment Classification ### Languages English ## Dataset Structure ### Data Instances ``` { "sentence": "Pharmaceuticals group Orion Corp reported a fall in its third-quarter earnings that were hit by larger expenditures on R&D and marketing .", "label": "negative" } ``` ### Data Fields - sentence: a tokenized line from the dataset - label: a label corresponding to the class as a string: 'positive', 'negative' or 'neutral' ### Data Splits There's no train/validation/test split. However the dataset is available in four possible configurations depending on the percentage of agreement of annotators: `sentences_50agree`; Number of instances with >=50% annotator agreement: 4846 `sentences_66agree`: Number of instances with >=66% annotator agreement: 4217 `sentences_75agree`: Number of instances with >=75% annotator agreement: 3453 `sentences_allagree`: Number of instances with 100% annotator agreement: 2264 ## Dataset Creation ### Curation Rationale The key arguments for the low utilization of statistical techniques in financial sentiment analysis have been the difficulty of implementation for practical applications and the lack of high quality training data for building such models. Especially in the case of finance and economic texts, annotated collections are a scarce resource and many are reserved for proprietary use only. To resolve the missing training data problem, we present a collection of ∼ 5000 sentences to establish human-annotated standards for benchmarking alternative modeling techniques. The objective of the phrase level annotation task was to classify each example sentence into a positive, negative or neutral category by considering only the information explicitly available in the given sentence. Since the study is focused only on financial and economic domains, the annotators were asked to consider the sentences from the view point of an investor only; i.e. whether the news may have positive, negative or neutral influence on the stock price. As a result, sentences which have a sentiment that is not relevant from an economic or financial perspective are considered neutral. ### Source Data #### Initial Data Collection and Normalization The corpus used in this paper is made out of English news on all listed companies in OMX Helsinki. The news has been downloaded from the LexisNexis database using an automated web scraper. Out of this news database, a random subset of 10,000 articles was selected to obtain good coverage across small and large companies, companies in different industries, as well as different news sources. Following the approach taken by Maks and Vossen (2010), we excluded all sentences which did not contain any of the lexicon entities. This reduced the overall sample to 53,400 sentences, where each has at least one or more recognized lexicon entity. The sentences were then classified according to the types of entity sequences detected. Finally, a random sample of ∼5000 sentences was chosen to represent the overall news database. #### Who are the source language producers? The source data was written by various financial journalists. ### Annotations #### Annotation process This release of the financial phrase bank covers a collection of 4840 sentences. The selected collection of phrases was annotated by 16 people with adequate background knowledge on financial markets. Given the large number of overlapping annotations (5 to 8 annotations per sentence), there are several ways to define a majority vote based gold standard. To provide an objective comparison, we have formed 4 alternative reference datasets based on the strength of majority agreement: #### Who are the annotators? Three of the annotators were researchers and the remaining 13 annotators were master's students at Aalto University School of Business with majors primarily in finance, accounting, and economics. ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases All annotators were from the same institution and so interannotator agreement should be understood with this taken into account. ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/. If you are interested in commercial use of the data, please contact the following authors for an appropriate license: - [Pekka Malo](mailto:[email protected]) - [Ankur Sinha](mailto:[email protected]) ### Citation Information ``` @article{Malo2014GoodDO, title={Good debt or bad debt: Detecting semantic orientations in economic texts}, author={P. Malo and A. Sinha and P. Korhonen and J. Wallenius and P. Takala}, journal={Journal of the Association for Information Science and Technology}, year={2014}, volume={65} } ``` ### Contributions Thanks to [@frankier](https://github.com/frankier) for adding this dataset.
thunlp/few_rel
thunlp
2024-01-18T11:03:39Z
140
6
[ "task_categories:other", "annotations_creators:crowdsourced", "annotations_creators:machine-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "arxiv:1810.10147", "arxiv:1910.07124", "region:us", "relation-extraction" ]
[ "other" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced - machine-generated language_creators: - found language: - en license: - mit multilinguality: - monolingual size_categories: - 10K<n<100K - n<1K source_datasets: - original task_categories: - other task_ids: [] paperswithcode_id: fewrel pretty_name: Few-Shot Relation Classification Dataset tags: - relation-extraction dataset_info: - config_name: default features: - name: relation dtype: string - name: tokens sequence: string - name: head struct: - name: text dtype: string - name: type dtype: string - name: indices sequence: sequence: int64 - name: tail struct: - name: text dtype: string - name: type dtype: string - name: indices sequence: sequence: int64 - name: names sequence: string splits: - name: train_wiki num_bytes: 19923155 num_examples: 44800 - name: val_nyt num_bytes: 1385642 num_examples: 2500 - name: val_pubmed num_bytes: 488502 num_examples: 1000 - name: val_semeval num_bytes: 2646249 num_examples: 8851 - name: val_wiki num_bytes: 5147348 num_examples: 11200 - name: pubmed_unsupervised num_bytes: 1117703 num_examples: 2500 download_size: 22674323 dataset_size: 30708599 - config_name: pid2name features: - name: relation dtype: string - name: names sequence: string splits: - name: pid2name num_bytes: 81607 num_examples: 744 download_size: 22674323 dataset_size: 81607 config_names: - default - pid2name --- # Dataset Card for few_rel ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [GitHub Page](https://thunlp.github.io/) - **Repository:** [GitHub](https://github.com/thunlp/FewRel) - **Paper:** [FewRel](https://arxiv.org/abs/1810.10147), [FewRel 2.0](https://arxiv.org/abs/1910.07124) - **Leaderboard:** [GitHub Leaderboard](https://thunlp.github.io/fewrel.html) - **Point of Contact:** [Needs More Information] ### Dataset Summary FewRel is a large-scale few-shot relation extraction dataset, which contains more than one hundred relations and tens of thousands of annotated instances cross different domains. ### Supported Tasks and Leaderboards [Needs More Information] ### Languages The dataset contaings English text, as used by writers on Wikipedia, and crowdsourced English annotations. ## Dataset Structure ### Data Instances An instance from `train_wiki` split: ``` {'head': {'indices': [[16]], 'text': 'tjq', 'type': 'Q1331049'}, 'names': ['place served by transport hub', 'territorial entity or entities served by this transport hub (airport, train station, etc.)'], 'relation': 'P931', 'tail': {'indices': [[13, 14]], 'text': 'tanjung pandan', 'type': 'Q3056359'}, 'tokens': ['Merpati', 'flight', '106', 'departed', 'Jakarta', '(', 'CGK', ')', 'on', 'a', 'domestic', 'flight', 'to', 'Tanjung', 'Pandan', '(', 'TJQ', ')', '.']} ``` ### Data Fields For `default`: - `relation`: a `string` feature containing PID of the relation. - `tokens`: a `list` of `string` features containing tokens for the text. - `head`: a dictionary containing: - `text`: a `string` feature representing the head entity. - `type`: a `string` feature representing the type of the head entity. - `indices`: a `list` containing `list` of token indices. - `tail`: a dictionary containing: - `text`: a `string` feature representing the tail entity. - `type`: a `string` feature representing the type of the tail entity. - `indices`: a `list` containing `list` of token indices. - `names`: a `list` of `string` features containing relation names. For `pubmed_unsupervised` split, this is set to a `list` with an empty `string`. For `val_semeval` and `val_pubmed` split, this is set to a `list` with the `string` from the `relation` field. ### Data Splits `train_wiki`: 44800 `val_nyt`: 2500 `val_pubmed`: 1000 `val_semeval`: 8851 `val_wiki`: 11200 `pubmed_unsupervised`: 2500 ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators For FewRel: Han, Xu and Zhu, Hao and Yu, Pengfei and Wang, Ziyun and Yao, Yuan and Liu, Zhiyuan and Sun, Maosong For FewRel 2.0: Gao, Tianyu and Han, Xu and Zhu, Hao and Liu, Zhiyuan and Li, Peng and Sun, Maosong and Zhou, Jie ### Licensing Information ``` MIT License Copyright (c) 2018 THUNLP Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` ### Citation Information ``` @inproceedings{han-etal-2018-fewrel, title = "{F}ew{R}el: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation", author = "Han, Xu and Zhu, Hao and Yu, Pengfei and Wang, Ziyun and Yao, Yuan and Liu, Zhiyuan and Sun, Maosong", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", month = oct # "-" # nov, year = "2018", address = "Brussels, Belgium", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D18-1514", doi = "10.18653/v1/D18-1514", pages = "4803--4809" } ``` ``` @inproceedings{gao-etal-2019-fewrel, title = "{F}ew{R}el 2.0: Towards More Challenging Few-Shot Relation Classification", author = "Gao, Tianyu and Han, Xu and Zhu, Hao and Liu, Zhiyuan and Li, Peng and Sun, Maosong and Zhou, Jie", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D19-1649", doi = "10.18653/v1/D19-1649", pages = "6251--6256" } ``` ### Contributions Thanks to [@gchhablani](https://github.com/gchhablani) for adding this dataset.
fever/fever
fever
2024-01-18T11:03:38Z
1,004
30
[ "task_categories:text-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended|wikipedia", "language:en", "license:cc-by-sa-3.0", "license:gpl-3.0", "size_categories:100K<n<1M", "region:us", "knowledge-verification" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- language: - en paperswithcode_id: fever annotations_creators: - crowdsourced language_creators: - found license: - cc-by-sa-3.0 - gpl-3.0 multilinguality: - monolingual pretty_name: FEVER size_categories: - 100K<n<1M source_datasets: - extended|wikipedia task_categories: - text-classification task_ids: [] tags: - knowledge-verification dataset_info: - config_name: v1.0 features: - name: id dtype: int32 - name: label dtype: string - name: claim dtype: string - name: evidence_annotation_id dtype: int32 - name: evidence_id dtype: int32 - name: evidence_wiki_url dtype: string - name: evidence_sentence_id dtype: int32 splits: - name: train num_bytes: 29591412 num_examples: 311431 - name: labelled_dev num_bytes: 3643157 num_examples: 37566 - name: unlabelled_dev num_bytes: 1548965 num_examples: 19998 - name: unlabelled_test num_bytes: 1617002 num_examples: 19998 - name: paper_dev num_bytes: 1821489 num_examples: 18999 - name: paper_test num_bytes: 1821668 num_examples: 18567 download_size: 44853972 dataset_size: 40043693 - config_name: v2.0 features: - name: id dtype: int32 - name: label dtype: string - name: claim dtype: string - name: evidence_annotation_id dtype: int32 - name: evidence_id dtype: int32 - name: evidence_wiki_url dtype: string - name: evidence_sentence_id dtype: int32 splits: - name: validation num_bytes: 306243 num_examples: 2384 download_size: 392466 dataset_size: 306243 - config_name: wiki_pages features: - name: id dtype: string - name: text dtype: string - name: lines dtype: string splits: - name: wikipedia_pages num_bytes: 7254115038 num_examples: 5416537 download_size: 1713485474 dataset_size: 7254115038 --- # Dataset Card for "fever" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://fever.ai/](https://fever.ai/) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Dataset Summary With billions of individual pages on the web providing information on almost every conceivable topic, we should have the ability to collect facts that answer almost every conceivable question. However, only a small fraction of this information is contained in structured sources (Wikidata, Freebase, etc.) – we are therefore limited by our ability to transform free-form text to structured knowledge. There is, however, another problem that has become the focus of a lot of recent research and media coverage: false information coming from unreliable sources. The FEVER workshops are a venue for work in verifiable knowledge extraction and to stimulate progress in this direction. - FEVER Dataset: FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The claims are classified as Supported, Refuted or NotEnoughInfo. For the first two classes, the annotators also recorded the sentence(s) forming the necessary evidence for their judgment. - FEVER 2.0 Adversarial Attacks Dataset: The FEVER 2.0 Dataset consists of 1174 claims created by the submissions of participants in the Breaker phase of the 2019 shared task. Participants (Breakers) were tasked with generating adversarial examples that induce classification errors for the existing systems. Breakers submitted a dataset of up to 1000 instances with equal number of instances for each of the three classes (Supported, Refuted NotEnoughInfo). Only novel claims (i.e. not contained in the original FEVER dataset) were considered as valid entries to the shared task. The submissions were then manually evaluated for Correctness (grammatical, appropriately labeled and meet the FEVER annotation guidelines requirements). ### Supported Tasks and Leaderboards The task is verification of textual claims against textual sources. When compared to textual entailment (TE)/natural language inference, the key difference is that in these tasks the passage to verify each claim is given, and in recent years it typically consists a single sentence, while in verification systems it is retrieved from a large set of documents in order to form the evidence. ### Languages The dataset is in English. ## Dataset Structure ### Data Instances #### v1.0 - **Size of downloaded dataset files:** 44.86 MB - **Size of the generated dataset:** 40.05 MB - **Total amount of disk used:** 84.89 MB An example of 'train' looks as follows. ``` 'claim': 'Nikolaj Coster-Waldau worked with the Fox Broadcasting Company.', 'evidence_wiki_url': 'Nikolaj_Coster-Waldau', 'label': 'SUPPORTS', 'id': 75397, 'evidence_id': 104971, 'evidence_sentence_id': 7, 'evidence_annotation_id': 92206} ``` #### v2.0 - **Size of downloaded dataset files:** 0.39 MB - **Size of the generated dataset:** 0.30 MB - **Total amount of disk used:** 0.70 MB An example of 'validation' looks as follows. ``` {'claim': "There is a convicted statutory rapist called Chinatown's writer.", 'evidence_wiki_url': '', 'label': 'NOT ENOUGH INFO', 'id': 500000, 'evidence_id': -1, 'evidence_sentence_id': -1, 'evidence_annotation_id': 269158} ``` #### wiki_pages - **Size of downloaded dataset files:** 1.71 GB - **Size of the generated dataset:** 7.25 GB - **Total amount of disk used:** 8.97 GB An example of 'wikipedia_pages' looks as follows. ``` {'text': 'The following are the football -LRB- soccer -RRB- events of the year 1928 throughout the world . ', 'lines': '0\tThe following are the football -LRB- soccer -RRB- events of the year 1928 throughout the world .\n1\t', 'id': '1928_in_association_football'} ``` ### Data Fields The data fields are the same among all splits. #### v1.0 - `id`: a `int32` feature. - `label`: a `string` feature. - `claim`: a `string` feature. - `evidence_annotation_id`: a `int32` feature. - `evidence_id`: a `int32` feature. - `evidence_wiki_url`: a `string` feature. - `evidence_sentence_id`: a `int32` feature. #### v2.0 - `id`: a `int32` feature. - `label`: a `string` feature. - `claim`: a `string` feature. - `evidence_annotation_id`: a `int32` feature. - `evidence_id`: a `int32` feature. - `evidence_wiki_url`: a `string` feature. - `evidence_sentence_id`: a `int32` feature. #### wiki_pages - `id`: a `string` feature. - `text`: a `string` feature. - `lines`: a `string` feature. ### Data Splits #### v1.0 | | train | unlabelled_dev | labelled_dev | paper_dev | unlabelled_test | paper_test | |------|-------:|---------------:|-------------:|----------:|----------------:|-----------:| | v1.0 | 311431 | 19998 | 37566 | 18999 | 19998 | 18567 | #### v2.0 | | validation | |------|-----------:| | v2.0 | 2384 | #### wiki_pages | | wikipedia_pages | |------------|----------------:| | wiki_pages | 5416537 | ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information FEVER license: ``` These data annotations incorporate material from Wikipedia, which is licensed pursuant to the Wikipedia Copyright Policy. These annotations are made available under the license terms described on the applicable Wikipedia article pages, or, where Wikipedia license terms are unavailable, under the Creative Commons Attribution-ShareAlike License (version 3.0), available at http://creativecommons.org/licenses/by-sa/3.0/ (collectively, the “License Terms”). You may not use these files except in compliance with the applicable License Terms. ``` ### Citation Information If you use "FEVER Dataset", please cite: ```bibtex @inproceedings{Thorne18Fever, author = {Thorne, James and Vlachos, Andreas and Christodoulopoulos, Christos and Mittal, Arpit}, title = {{FEVER}: a Large-scale Dataset for Fact Extraction and {VERification}}, booktitle = {NAACL-HLT}, year = {2018} } ``` If you use "FEVER 2.0 Adversarial Attacks Dataset", please cite: ```bibtex @inproceedings{Thorne19FEVER2, author = {Thorne, James and Vlachos, Andreas and Cocarascu, Oana and Christodoulopoulos, Christos and Mittal, Arpit}, title = {The {FEVER2.0} Shared Task}, booktitle = {Proceedings of the Second Workshop on {Fact Extraction and VERification (FEVER)}}, year = {2018} } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@mariamabarham](https://github.com/mariamabarham), [@lewtun](https://github.com/lewtun), [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
li2017dailydialog/daily_dialog
li2017dailydialog
2024-01-18T11:02:28Z
8,414
145
[ "task_categories:text-classification", "task_ids:multi-label-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "region:us", "emotion-classification", "dialog-act-classification" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - expert-generated language_creators: - found language: - en license: - cc-by-nc-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - multi-label-classification paperswithcode_id: dailydialog pretty_name: DailyDialog tags: - emotion-classification - dialog-act-classification dataset_info: features: - name: dialog sequence: string - name: act sequence: class_label: names: '0': __dummy__ '1': inform '2': question '3': directive '4': commissive - name: emotion sequence: class_label: names: '0': no emotion '1': anger '2': disgust '3': fear '4': happiness '5': sadness '6': surprise splits: - name: train num_bytes: 7296715 num_examples: 11118 - name: test num_bytes: 655844 num_examples: 1000 - name: validation num_bytes: 673943 num_examples: 1000 download_size: 4475921 dataset_size: 8626502 --- # Dataset Card for "daily_dialog" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [http://yanran.li/dailydialog](http://yanran.li/dailydialog) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 4.48 MB - **Size of the generated dataset:** 8.63 MB - **Total amount of disk used:** 13.11 MB ### Dataset Summary We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 4.48 MB - **Size of the generated dataset:** 8.63 MB - **Total amount of disk used:** 13.11 MB An example of 'validation' looks as follows. ``` This example was too long and was cropped: { "act": [2, 1, 1, 1, 1, 2, 3, 2, 3, 4], "dialog": "[\"Good afternoon . This is Michelle Li speaking , calling on behalf of IBA . Is Mr Meng available at all ? \", \" This is Mr Meng ...", "emotion": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] } ``` ### Data Fields The data fields are the same among all splits. #### default - `dialog`: a `list` of `string` features. - `act`: a `list` of classification labels, with possible values including `__dummy__` (0), `inform` (1), `question` (2), `directive` (3) and `commissive` (4). - `emotion`: a `list` of classification labels, with possible values including `no emotion` (0), `anger` (1), `disgust` (2), `fear` (3), `happiness` (4), `sadness` (5) and `surprise` (6). ### Data Splits | name |train|validation|test| |-------|----:|---------:|---:| |default|11118| 1000|1000| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations Dataset provided for research purposes only. Please check dataset license for additional information. ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information DailyDialog dataset is licensed under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). ### Citation Information ``` @InProceedings{li2017dailydialog, author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi}, title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset}, booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)}, year = {2017} } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@julien-c](https://github.com/julien-c) for adding this dataset.
arxiv-community/arxiv_dataset
arxiv-community
2024-01-18T11:01:52Z
3,323
114
[ "task_categories:translation", "task_categories:summarization", "task_categories:text-retrieval", "task_ids:document-retrieval", "task_ids:entity-linking-retrieval", "task_ids:explanation-generation", "task_ids:fact-checking-retrieval", "task_ids:text-simplification", "annotations_creators:no-annotation", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc0-1.0", "size_categories:1M<n<10M", "arxiv:1905.00075", "region:us" ]
[ "translation", "summarization", "text-retrieval" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - no-annotation language_creators: - expert-generated language: - en license: - cc0-1.0 multilinguality: - monolingual size_categories: - 1M<n<10M source_datasets: - original task_categories: - translation - summarization - text-retrieval task_ids: - document-retrieval - entity-linking-retrieval - explanation-generation - fact-checking-retrieval - text-simplification paperswithcode_id: null pretty_name: arXiv Dataset dataset_info: features: - name: id dtype: string - name: submitter dtype: string - name: authors dtype: string - name: title dtype: string - name: comments dtype: string - name: journal-ref dtype: string - name: doi dtype: string - name: report-no dtype: string - name: categories dtype: string - name: license dtype: string - name: abstract dtype: string - name: update_date dtype: string splits: - name: train num_bytes: 3056873071 num_examples: 2349354 download_size: 0 dataset_size: 3056873071 --- # Dataset Card for arXiv Dataset ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Kaggle arXiv Dataset Homepage](https://www.kaggle.com/Cornell-University/arxiv) - **Repository:** - **Paper:** [On the Use of ArXiv as a Dataset](https://arxiv.org/abs/1905.00075) - **Leaderboard:** - **Point of Contact:** [Matt Bierbaum](mailto:[email protected]) ### Dataset Summary A dataset of 1.7 million arXiv articles for applications like trend analysis, paper recommender engines, category prediction, co-citation networks, knowledge graph construction and semantic search interfaces. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages The language supported is English ## Dataset Structure ### Data Instances This dataset is a mirror of the original ArXiv data. Because the full dataset is rather large (1.1TB and growing), this dataset provides only a metadata file in the json format. An example is given below ``` {'id': '0704.0002', 'submitter': 'Louis Theran', 'authors': 'Ileana Streinu and Louis Theran', 'title': 'Sparsity-certifying Graph Decompositions', 'comments': 'To appear in Graphs and Combinatorics', 'journal-ref': None, 'doi': None, 'report-no': None, 'categories': 'math.CO cs.CG', 'license': 'http://arxiv.org/licenses/nonexclusive-distrib/1.0/', 'abstract': ' We describe a new algorithm, the $(k,\\ell)$-pebble game with colors, and use\nit obtain a characterization of the family of $(k,\\ell)$-sparse graphs and\nalgorithmic solutions to a family of problems concerning tree decompositions of\ngraphs. Special instances of sparse graphs appear in rigidity theory and have\nreceived increased attention in recent years. In particular, our colored\npebbles generalize and strengthen the previous results of Lee and Streinu and\ngive a new proof of the Tutte-Nash-Williams characterization of arboricity. We\nalso present a new decomposition that certifies sparsity based on the\n$(k,\\ell)$-pebble game with colors. Our work also exposes connections between\npebble game algorithms and previous sparse graph algorithms by Gabow, Gabow and\nWestermann and Hendrickson.\n', 'update_date': '2008-12-13'} ``` ### Data Fields - `id`: ArXiv ID (can be used to access the paper) - `submitter`: Who submitted the paper - `authors`: Authors of the paper - `title`: Title of the paper - `comments`: Additional info, such as number of pages and figures - `journal-ref`: Information about the journal the paper was published in - `doi`: [Digital Object Identifier](https://www.doi.org) - `report-no`: Report Number - `abstract`: The abstract of the paper - `categories`: Categories / tags in the ArXiv system ### Data Splits The data was not splited. ## Dataset Creation ### Curation Rationale For nearly 30 years, ArXiv has served the public and research communities by providing open access to scholarly articles, from the vast branches of physics to the many subdisciplines of computer science to everything in between, including math, statistics, electrical engineering, quantitative biology, and economics. This rich corpus of information offers significant, but sometimes overwhelming depth. In these times of unique global challenges, efficient extraction of insights from data is essential. To help make the arXiv more accessible, a free, open pipeline on Kaggle to the machine-readable arXiv dataset: a repository of 1.7 million articles, with relevant features such as article titles, authors, categories, abstracts, full text PDFs, and more is presented to empower new use cases that can lead to the exploration of richer machine learning techniques that combine multi-modal features towards applications like trend analysis, paper recommender engines, category prediction, co-citation networks, knowledge graph construction and semantic search interfaces. ### Source Data This data is based on arXiv papers. [More Information Needed] #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations This dataset contains no annotations. #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators The original data is maintained by [ArXiv](https://arxiv.org/) ### Licensing Information The data is under the [Creative Commons CC0 1.0 Universal Public Domain Dedication](https://creativecommons.org/publicdomain/zero/1.0/) ### Citation Information ``` @misc{clement2019arxiv, title={On the Use of ArXiv as a Dataset}, author={Colin B. Clement and Matthew Bierbaum and Kevin P. O'Keeffe and Alexander A. Alemi}, year={2019}, eprint={1905.00075}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ### Contributions Thanks to [@tanmoyio](https://github.com/tanmoyio) for adding this dataset.
abuelkhair-corpus/arabic_billion_words
abuelkhair-corpus
2024-01-18T11:01:47Z
441
29
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:ar", "license:unknown", "size_categories:100K<n<1M", "arxiv:1611.04033", "region:us" ]
[ "text-generation", "fill-mask" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found language: - ar license: - unknown multilinguality: - monolingual size_categories: - 100K<n<1M - 10K<n<100K - 1M<n<10M source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling paperswithcode_id: null pretty_name: Arabic Billion Words dataset_info: - config_name: Alittihad features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 1601790302 num_examples: 349342 download_size: 348259999 dataset_size: 1601790302 - config_name: Almasryalyoum features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 1056197870 num_examples: 291723 download_size: 242604438 dataset_size: 1056197870 - config_name: Almustaqbal features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 1545659336 num_examples: 446873 download_size: 350826797 dataset_size: 1545659336 - config_name: Alqabas features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 2631729746 num_examples: 817274 download_size: 595274646 dataset_size: 2631729746 - config_name: Echoroukonline features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 464386206 num_examples: 139732 download_size: 108184378 dataset_size: 464386206 - config_name: Ryiadh features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 3101294859 num_examples: 858188 download_size: 691264971 dataset_size: 3101294859 - config_name: Sabanews features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 198019614 num_examples: 92149 download_size: 38214558 dataset_size: 198019614 - config_name: SaudiYoum features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 2723291416 num_examples: 888068 download_size: 605537923 dataset_size: 2723291416 - config_name: Techreen features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 1103458209 num_examples: 314597 download_size: 252976781 dataset_size: 1103458209 - config_name: Youm7 features: - name: url dtype: string - name: head_line dtype: string - name: date dtype: string - name: text dtype: string splits: - name: train num_bytes: 3004689464 num_examples: 1172136 download_size: 617708074 dataset_size: 3004689464 config_names: - Alittihad - Almasryalyoum - Almustaqbal - Alqabas - Echoroukonline - Ryiadh - Sabanews - SaudiYoum - Techreen - Youm7 --- # Dataset Card for Arabic Billion Words Corpus ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus - **Repository:** - **Paper:** https://arxiv.org/pdf/1611.04033 - **Leaderboard:** - **Point of Contact:**[Ibrahim Abu El-Khair]([email protected]) ### Dataset Summary Abu El-Khair Corpus is an Arabic text corpus, that includes more than five million newspaper articles. It contains over a billion and a half words in total, out of which, there are about three million unique words. The corpus is encoded with two types of encoding, namely: UTF-8, and Windows CP-1256. Also it was marked with two mark-up languages, namely: SGML, and XML. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages Arabic ## Dataset Structure ### Data Instances This is an example of the "Almasryalyoum" configuration subset: ```python { "url": "http://today.almasryalyoum.com/printerfriendly.aspx?ArticleID=61300", "head_line": "رئيس وزراء المجر: عنصرية جماهير أوجبيست جلبت العار للبلاد", "date": "19/5/2007", "text": """قال متحدث باسم الحكومة المجرية: إن رئيس الوزراء فيرنك جيوركساني رحب بقرار اتحاد كرة القدم المجري بخصم ثلاث نقاط من نادي أوجبيست بسبب السلوك العنصري الذي صدر من جماهيره. وعاقب الاتحاد المجري فريق أوجبيست بعد أن سخرت جماهيره من إبراهيم سيديبي مهاجم فريق ديبرينسين الأسود أثناء مباراة الفريقين أوائل مايو الجاري. يذكر أن الاتحاد فرض أيضا غرامة مالية قدرها 20 ألف دولار علي أوجبيست في عام 2005 بعد أن رددت جماهيره شعارات معادية للسامية خلال مباراة بالدوري المجري. وأوضح جيوركساني في خطاب إلي إيستفان كيستليكي رئيس الاتحاد المجري لكرة القدم، أن هذا السلوك العنصري من الجماهير «جلب العار لكرة القدم وللمجر». يذكر أن المجر بها مجموعة من مشجعي كرة القدم المشاغبين «الهوليجانز»، وشارك الكثير منهم في أعمال شغب معادية للحكومة في العام الماضي.""", } ``` ### Data Fields The data fields are: - "url": string, original url of the article, - "head_line": string, headline of the article, - "date": string, date of the article, - "text": string, text content of the article, ### Data Splits There is only one "training" split for all configuration subsets, containing the following number of examples: | | Number of examples | |:---------------|-------------------:| | Alittihad | 349342 | | Almasryalyoum | 291723 | | Almustaqbal | 446873 | | Alqabas | 817274 | | Echoroukonline | 139732 | | Ryiadh | 858188 | | Sabanews | 92149 | | SaudiYoum | 888068 | | Techreen | 314597 | | Youm7 | 1172136 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @article{el20161, title={1.5 billion words arabic corpus}, author={El-Khair, Ibrahim Abu}, journal={arXiv preprint arXiv:1611.04033}, year={2016} } ``` ### Contributions Thanks to [@zaidalyafeai](https://github.com/zaidalyafeai) and [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
facebook/curiosity_dialogs
facebook
2024-01-18T09:51:48Z
122
12
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:dialogue-modeling", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "region:us", "conversational-curiosity" ]
[ "text-generation", "fill-mask" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - cc-by-nc-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - dialogue-modeling paperswithcode_id: curiosity pretty_name: Curiosity Dataset tags: - conversational-curiosity dataset_info: features: - name: messages sequence: - name: message dtype: string - name: liked dtype: class_label: names: '0': 'False' '1': 'True' - name: sender dtype: class_label: names: '0': user '1': assistant - name: facts sequence: - name: fid dtype: int32 - name: used dtype: class_label: names: '0': 'False' '1': 'True' - name: source dtype: class_label: names: '0': section '1': known '2': random - name: message_id dtype: string - name: dialog_acts sequence: string - name: known_entities sequence: string - name: focus_entity dtype: string - name: dialog_id dtype: int32 - name: inferred_steps dtype: class_label: names: '0': 'False' '1': 'True' - name: created_time dtype: int64 - name: aspects sequence: string - name: first_aspect dtype: string - name: second_aspect dtype: string - name: shuffle_facts dtype: class_label: names: '0': 'False' '1': 'True' - name: related_entities sequence: string - name: tag dtype: string - name: user_id dtype: int32 - name: assistant_id dtype: int32 - name: is_annotated dtype: class_label: names: '0': 'False' '1': 'True' - name: user_dialog_rating dtype: int32 - name: user_other_agent_rating dtype: int32 - name: assistant_dialog_rating dtype: int32 - name: assistant_other_agent_rating dtype: int32 - name: reported dtype: class_label: names: '0': 'False' '1': 'True' - name: annotated dtype: class_label: names: '0': 'False' '1': 'True' config_name: curiosity_dialogs splits: - name: train num_bytes: 37198297 num_examples: 10287 - name: val num_bytes: 4914487 num_examples: 1287 - name: test num_bytes: 4915613 num_examples: 1287 - name: test_zero num_bytes: 4333191 num_examples: 1187 download_size: 92169165 dataset_size: 51361588 --- # Dataset Card for Curiosity Dataset ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Curiosity Dataset Homepage](https://www.pedro.ai/curiosity) - **Repository:** [Curiosity Dataset Repository](https://github.com/facebookresearch/curiosity) - **Paper:** [ACL Anthology](https://www.aclweb.org/anthology/2020.emnlp-main.655/) - **Point of Contact:** [Pedro Rodriguez](https://mailhide.io/e/wbfjM) ### Dataset Summary Curiosity dataset consists of 14K English dialogs (181K utterances) where users and assistants converse about geographic topics like geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog acts, grounding to Wikipedia, and user reactions to messages. ### Supported Tasks and Leaderboards * `text-generation-other-conversational-curiosity`: The dataset can be used to train a model for Conversational Curiosity, which consists in the testing of the hypothesis that engagement increases when users are presented with facts related to what they know. Success on this task is typically measured by achieving a *high* [Accuracy](https://huggingface.co/metrics/accuracy) and [F1 Score](https://huggingface.co/metrics/f1). ### Languages The text in the dataset is in English collected by crowd-souring. The associated BCP-47 code is `en`. ## Dataset Structure ### Data Instances A typical data point consists of dialogs between an user and an assistant, which is followed by the different attributes of the particular dialog. An example from the Curiosity Dataset train set looks as follows: ``` {'annotated': 1, 'aspects': ['Media', 'Politics and government'], 'assistant_dialog_rating': 5, 'assistant_id': 341, 'assistant_other_agent_rating': 5, 'created_time': 1571783665, 'dialog_id': 21922, 'first_aspect': 'Media', 'focus_entity': 'Namibia', 'inferred_steps': 1, 'is_annotated': 0, 'known_entities': ['South Africa', 'United Kingdom', 'Portugal'], 'messages': {'dialog_acts': [['request_topic'], ['inform_response'], ['request_aspect'], ['inform_response'], ['request_followup'], ['inform_response'], ['request_aspect', 'feedback_positive'], ['inform_response'], ['request_followup'], ['inform_response'], [], []], 'facts': [{'fid': [], 'source': [], 'used': []}, {'fid': [77870, 77676, 77816, 77814, 77775, 77659, 77877, 77785, 77867], 'source': [0, 1, 2, 2, 0, 2, 0, 1, 1], 'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]}, {'fid': [], 'source': [], 'used': []}, {'fid': [77725, 77870, 77676, 77863, 77814, 77775, 77659, 77877, 77867], 'source': [2, 0, 1, 1, 2, 0, 2, 0, 1], 'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]}, {'fid': [], 'source': [], 'used': []}, {'fid': [77694, 77661, 77863, 77780, 77671, 77704, 77869, 77693, 77877], 'source': [1, 2, 1, 0, 2, 2, 0, 1, 0], 'used': [0, 0, 0, 0, 0, 0, 0, 0, 1]}, {'fid': [], 'source': [], 'used': []}, {'fid': [77816, 77814, 77864, 77659, 77877, 77803, 77738, 77784, 77789], 'source': [2, 2, 0, 2, 0, 1, 1, 0, 1], 'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]}, {'fid': [], 'source': [], 'used': []}, {'fid': [77694, 77776, 77780, 77696, 77707, 77693, 77778, 77702, 77743], 'source': [1, 0, 0, 2, 1, 1, 0, 2, 2], 'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]}, {'fid': [], 'source': [], 'used': []}, {'fid': [77662, 77779, 77742, 77734, 77663, 77777, 77702, 77731, 77778], 'source': [1, 0, 2, 1, 2, 0, 2, 1, 0], 'used': [0, 0, 0, 0, 0, 0, 0, 0, 1]}], 'liked': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'message': ['Hi. I want information about Namibia.', 'Nmbia is a country in southern Africa.', 'Do you have information about the media there?', 'A mentional amount of foriegn', 'What about it?', "Media and journalists in Namibia are represented by the Namibia chapter of the Media Institute of 'southern Africa and the Editors Forum of Namibia.", 'Interesting! What can you tell me about the politics and government?', 'Namibia formed the Namibian Defence Force, comprising former enemies in a 23-year bush war.', 'Do you have more information about it?', "With a small army and a fragile economy , the Namibian government's principal foreign policy concern is developing strengthened ties within the Southern African region.", "That's all I wanted to know. Thank you!", 'My pleasure!'], 'message_id': ['617343895', '2842515356', '4240816985', '520711081', '1292358002', '3677078227', '1563061125', '1089028270', '1607063839', '113037558', '1197873991', '1399017322'], 'sender': [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]}, 'related_entities': ['Western Roman Empire', 'United Kingdom', 'Portuguese language', 'Southern African Development Community', 'South Africa', 'Kalahari Desert', 'Namib Desert', 'League of Nations', 'Afrikaans', 'Sub-Saharan Africa', 'Portugal', 'South-West Africa', 'Warmbad, Namibia', 'German language', 'NBC'], 'reported': 0, 'second_aspect': 'Politics and government', 'shuffle_facts': 1, 'tag': 'round_2', 'user_dialog_rating': 5, 'user_id': 207, 'user_other_agent_rating': 5} ``` ### Data Fields * `messages`: List of dialogs between the user and the assistant and their associated attributes * `dialog_acts`: List of actions performed in the dialogs * `facts`: List of facts returned by the assistant * `fid`: Fact ID * `source`: Source for the fact * `used`: Whether facts were used before in the same dialog * `liked`: List of values indicating whether each dialog was liked * `message`: List of dialogs (messages) between the user and the assistant * `message_id`: Message ID * `sender`: Message author ID (numeric) * `known_entities`: Rooted facts about entities the user knows * `focus_entity` : Entity in focus in the dialogs * `dialog_id `: Dialog ID * `inferred_steps`: Number of inferred steps * `created_time`: Time of creation of the dialog * `aspects`: List of two aspects which the dialog is about * `first_aspect`: First aspect * `second_aspect`: Second aspect * `shuffle_facts`: Whether facts were shuffled * `related_entities` : List of fifteen related entities to the focus entity * `tag`: Conversation tag * `user_id`: User ID * `assistant_id`: Assistant ID * `is_annotated`: 0 or 1 (More Information Needed) * `user_dialog_rating`: 1 - 5 (More Information Needed) * `user_other_agent_rating`: 1 - 5 (More Information Needed) * `assistant_dialog_rating`: 1 - 5 (More Information Needed) * `assistant_other_agent_rating`: 1 - 5 (More Information Needed) * `reported`: Whether the dialog was reported inappropriate * `annotated`: 0 or 1 (More Information Needed) ### Data Splits The data is split into a training, validation, test and test_zero set as per the original dataset split. | | train | validation | test | test_zero | |-----------------------|------:|-----------:|-----:|----------:| | Input dialog examples | 10287 | 1287 | 1287 | 1187 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/legalcode) ### Citation Information ``` @inproceedings{rodriguez2020curiosity, title = {Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity}, author = {Pedro Rodriguez and Paul Crook and Seungwhan Moon and Zhiguang Wang}, year = 2020, booktitle = {Empirical Methods in Natural Language Processing} } ``` ### Contributions Thanks to [@vineeths96](https://github.com/vineeths96) for adding this dataset.
aviaefrat/cryptonite
aviaefrat
2024-01-18T09:49:43Z
66
6
[ "task_categories:question-answering", "task_ids:open-domain-qa", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "arxiv:2103.01242", "region:us" ]
[ "question-answering" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - cc-by-nc-4.0 multilinguality: - monolingual size_categories: - 100K<n<1M - 1K<n<10K source_datasets: - original task_categories: - question-answering task_ids: - open-domain-qa paperswithcode_id: null pretty_name: Cryptonite dataset_info: - config_name: default features: - name: agent_info sequence: - name: Bottomline dtype: string - name: Role dtype: string - name: Target dtype: float32 - name: agent_turn sequence: int32 - name: dialogue_acts sequence: - name: intent dtype: string - name: price dtype: float32 - name: utterance sequence: string - name: items sequence: - name: Category dtype: string - name: Images dtype: string - name: Price dtype: float32 - name: Description dtype: string - name: Title dtype: string splits: - name: train num_bytes: 8538836 num_examples: 5247 - name: test num_bytes: 1353933 num_examples: 838 - name: validation num_bytes: 966032 num_examples: 597 download_size: 25373618 dataset_size: 10858801 - config_name: cryptonite features: - name: clue dtype: string - name: answer dtype: string - name: enumeration dtype: string - name: publisher dtype: string - name: date dtype: int64 - name: quick dtype: bool - name: id dtype: string splits: - name: train num_bytes: 52228597 num_examples: 470804 - name: validation num_bytes: 2901768 num_examples: 26156 - name: test num_bytes: 2908275 num_examples: 26157 download_size: 21615952 dataset_size: 58038640 config_names: - cryptonite - default --- # Dataset Card for Cryptonite ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Github](https://github.com/aviaefrat/cryptonite) - **Repository:** [Github](https://github.com/aviaefrat/cryptonite) - **Paper:** [Arxiv](https://arxiv.org/pdf/2103.01242.pdf) - **Leaderboard:** - **Point of Contact:** [Twitter](https://twitter.com/AviaEfrat) ### Dataset Summary Current NLP datasets targeting ambiguity can be solved by a native speaker with relative ease. We present Cryptonite, a large-scale dataset based on cryptic crosswords, which is both linguistically complex and naturally sourced. Each example in Cryptonite is a cryptic clue, a short phrase or sentence with a misleading surface reading, whose solving requires disambiguating semantic, syntactic, and phonetic wordplays, as well as world knowledge. Cryptic clues pose a challenge even for experienced solvers, though top-tier experts can solve them with almost 100% accuracy. Cryptonite is a challenging task for current models; fine-tuning T5-Large on 470k cryptic clues achieves only 7.6% accuracy, on par with the accuracy of a rule-based clue solver (8.6%). ### Languages English ## Dataset Structure ### Data Instances This is one example from the train set. ```python { 'clue': 'make progress socially in stated region (5)', 'answer': 'climb', 'date': 971654400000, 'enumeration': '(5)', 'id': 'Times-31523-6across', 'publisher': 'Times', 'quick': False } ``` ### Data Fields - `clue`: a string representing the clue provided for the crossword - `answer`: a string representing the answer to the clue - `enumeration`: a string representing the - `publisher`: a string representing the publisher of the crossword - `date`: a int64 representing the UNIX timestamp of the date of publication of the crossword - `quick`: a bool representing whether the crossword is quick (a crossword aimed at beginners, easier to solve) - `id`: a string to uniquely identify a given example in the dataset ### Data Splits Train (470,804 examples), validation (26,156 examples), test (26,157 examples). ## Dataset Creation ### Curation Rationale Crosswords from the Times and the Telegraph. ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Avia Efrat, Uri Shaham, Dan Kilman, Omer Levy ### Licensing Information `cc-by-nc-4.0` ### Citation Information ``` @misc{efrat2021cryptonite, title={Cryptonite: A Cryptic Crossword Benchmark for Extreme Ambiguity in Language}, author={Avia Efrat and Uri Shaham and Dan Kilman and Omer Levy}, year={2021}, eprint={2103.01242}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions Thanks to [@theo-m](https://github.com/theo-m) for adding this dataset.
nyu-mll/crows_pairs
nyu-mll
2024-01-18T09:49:15Z
1,595
8
[ "task_categories:text-classification", "task_ids:text-scoring", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-sa-4.0", "size_categories:1K<n<10K", "region:us", "bias-evaluation" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - cc-by-sa-4.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification task_ids: - text-scoring paperswithcode_id: crows-pairs pretty_name: CrowS-Pairs tags: - bias-evaluation dataset_info: features: - name: id dtype: int32 - name: sent_more dtype: string - name: sent_less dtype: string - name: stereo_antistereo dtype: class_label: names: '0': stereo '1': antistereo - name: bias_type dtype: class_label: names: '0': race-color '1': socioeconomic '2': gender '3': disability '4': nationality '5': sexual-orientation '6': physical-appearance '7': religion '8': age - name: annotations sequence: sequence: class_label: names: '0': race-color '1': socioeconomic '2': gender '3': disability '4': nationality '5': sexual-orientation '6': physical-appearance '7': religion '8': age - name: anon_writer dtype: string - name: anon_annotators sequence: string config_name: crows_pairs splits: - name: test num_bytes: 419976 num_examples: 1508 download_size: 437764 dataset_size: 419976 --- # Dataset Card for CrowS-Pairs ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Add homepage URL here if available (unless it's a GitHub repository)]() - **Repository:** https://github.com/nyu-mll/crows-pairs - **Paper:** https://aclanthology.org/2020.emnlp-main.154 - **Leaderboard:** [If the dataset supports an active leaderboard, add link here]() - **Point of Contact:** [If known, name and email of at least one person the reader can contact for questions about the dataset.]() ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data [More Information Needed] #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information CrowS-Pairs is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). It is created using prompts taken from the [ROCStories corpora](https://cs.rochester.edu/nlp/rocstories/) and the fiction part of [MNLI](https://cims.nyu.edu/~sbowman/multinli/). Please refer to their papers for more details. ### Citation Information ``` @inproceedings{nangia-etal-2020-crows, title = "{C}row{S}-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models", author = "Nangia, Nikita and Vania, Clara and Bhalerao, Rasika and Bowman, Samuel R.", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.emnlp-main.154", doi = "10.18653/v1/2020.emnlp-main.154", pages = "1953--1967", } ``` ### Contributions Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.
allenai/cosmos_qa
allenai
2024-01-18T09:43:51Z
1,599
30
[ "task_categories:multiple-choice", "task_ids:multiple-choice-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "arxiv:1909.00277", "region:us" ]
[ "multiple-choice" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language: - en language_creators: - found license: - cc-by-4.0 multilinguality: - monolingual pretty_name: CosmosQA size_categories: - 10K<n<100K source_datasets: - original task_categories: - multiple-choice task_ids: - multiple-choice-qa paperswithcode_id: cosmosqa dataset_info: features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: answer0 dtype: string - name: answer1 dtype: string - name: answer2 dtype: string - name: answer3 dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 17159918 num_examples: 25262 - name: test num_bytes: 5121479 num_examples: 6963 - name: validation num_bytes: 2186987 num_examples: 2985 download_size: 24399475 dataset_size: 24468384 --- # Dataset Card for "cosmos_qa" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://wilburone.github.io/cosmos/](https://wilburone.github.io/cosmos/) - **Repository:** https://github.com/wilburOne/cosmosqa/ - **Paper:** [Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning](https://arxiv.org/abs/1909.00277) - **Point of Contact:** [Lifu Huang](mailto:[email protected]) - **Size of downloaded dataset files:** 24.40 MB - **Size of the generated dataset:** 24.51 MB - **Total amount of disk used:** 48.91 MB ### Dataset Summary Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 24.40 MB - **Size of the generated dataset:** 24.51 MB - **Total amount of disk used:** 48.91 MB An example of 'validation' looks as follows. ``` This example was too long and was cropped: { "answer0": "If he gets married in the church he wo nt have to get a divorce .", "answer1": "He wants to get married to a different person .", "answer2": "He wants to know if he does nt like this girl can he divorce her ?", "answer3": "None of the above choices .", "context": "\"Do i need to go for a legal divorce ? I wanted to marry a woman but she is not in the same religion , so i am not concern of th...", "id": "3BFF0DJK8XA7YNK4QYIGCOG1A95STE##3180JW2OT5AF02OISBX66RFOCTG5J7##A2LTOS0AZ3B28A##Blog_56156##q1_a1##378G7J1SJNCDAAIN46FM2P7T6KZEW2", "label": 1, "question": "Why is this person asking about divorce ?" } ``` ### Data Fields The data fields are the same among all splits. #### default - `id`: a `string` feature. - `context`: a `string` feature. - `question`: a `string` feature. - `answer0`: a `string` feature. - `answer1`: a `string` feature. - `answer2`: a `string` feature. - `answer3`: a `string` feature. - `label`: a `int32` feature. ### Data Splits | name |train|validation|test| |-------|----:|---------:|---:| |default|25262| 2985|6963| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information As reported via email by Yejin Choi, the dataset is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. ### Citation Information ``` @inproceedings{huang-etal-2019-cosmos, title = "Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning", author = "Huang, Lifu and Le Bras, Ronan and Bhagavatula, Chandra and Choi, Yejin", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D19-1243", doi = "10.18653/v1/D19-1243", pages = "2391--2401", } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@albertvillanova](https://github.com/albertvillanova), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
ZihanWangKi/conllpp
ZihanWangKi
2024-01-18T09:35:35Z
214
16
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended|conll2003", "language:en", "license:unknown", "size_categories:10K<n<100K", "region:us" ]
[ "token-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|conll2003 task_categories: - token-classification task_ids: - named-entity-recognition paperswithcode_id: conll pretty_name: CoNLL++ train-eval-index: - config: conllpp task: token-classification task_id: entity_extraction splits: train_split: train eval_split: test col_mapping: tokens: tokens ner_tags: tags metrics: - type: seqeval name: seqeval dataset_info: features: - name: id dtype: string - name: tokens sequence: string - name: pos_tags sequence: class_label: names: 0: '"' 1: '''''' 2: '#' 3: $ 4: ( 5: ) 6: ',' 7: . 8: ':' 9: '``' 10: CC 11: CD 12: DT 13: EX 14: FW 15: IN 16: JJ 17: JJR 18: JJS 19: LS 20: MD 21: NN 22: NNP 23: NNPS 24: NNS 25: NN|SYM 26: PDT 27: POS 28: PRP 29: PRP$ 30: RB 31: RBR 32: RBS 33: RP 34: SYM 35: TO 36: UH 37: VB 38: VBD 39: VBG 40: VBN 41: VBP 42: VBZ 43: WDT 44: WP 45: WP$ 46: WRB - name: chunk_tags sequence: class_label: names: 0: O 1: B-ADJP 2: I-ADJP 3: B-ADVP 4: I-ADVP 5: B-CONJP 6: I-CONJP 7: B-INTJ 8: I-INTJ 9: B-LST 10: I-LST 11: B-NP 12: I-NP 13: B-PP 14: I-PP 15: B-PRT 16: I-PRT 17: B-SBAR 18: I-SBAR 19: B-UCP 20: I-UCP 21: B-VP 22: I-VP - name: ner_tags sequence: class_label: names: 0: O 1: B-PER 2: I-PER 3: B-ORG 4: I-ORG 5: B-LOC 6: I-LOC 7: B-MISC 8: I-MISC config_name: conllpp splits: - name: train num_bytes: 6931393 num_examples: 14041 - name: validation num_bytes: 1739247 num_examples: 3250 - name: test num_bytes: 1582078 num_examples: 3453 download_size: 4859600 dataset_size: 10252718 --- # Dataset Card for "conllpp" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Github](https://github.com/ZihanWangKi/CrossWeigh) - **Repository:** [Github](https://github.com/ZihanWangKi/CrossWeigh) - **Paper:** [Aclweb](https://www.aclweb.org/anthology/D19-1519) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary CoNLLpp is a corrected version of the CoNLL2003 NER dataset where labels of 5.38% of the sentences in the test set have been manually corrected. The training set and development set from CoNLL2003 is included for completeness. One correction on the test set for example, is: ``` { "tokens": ["SOCCER", "-", "JAPAN", "GET", "LUCKY", "WIN", ",", "CHINA", "IN", "SURPRISE", "DEFEAT", "."], "original_ner_tags_in_conll2003": ["O", "O", "B-LOC", "O", "O", "O", "O", "B-PER", "O", "O", "O", "O"], "corrected_ner_tags_in_conllpp": ["O", "O", "B-LOC", "O", "O", "O", "O", "B-LOC", "O", "O", "O", "O"], } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances #### conllpp - **Size of downloaded dataset files:** 4.85 MB - **Size of the generated dataset:** 10.26 MB - **Total amount of disk used:** 15.11 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "chunk_tags": [11, 12, 12, 21, 13, 11, 11, 21, 13, 11, 12, 13, 11, 21, 22, 11, 12, 17, 11, 21, 17, 11, 12, 12, 21, 22, 22, 13, 11, 0], "id": "0", "ner_tags": [0, 3, 4, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "pos_tags": [12, 22, 22, 38, 15, 22, 28, 38, 15, 16, 21, 35, 24, 35, 37, 16, 21, 15, 24, 41, 15, 16, 21, 21, 20, 37, 40, 35, 21, 7], "tokens": ["The", "European", "Commission", "said", "on", "Thursday", "it", "disagreed", "with", "German", "advice", "to", "consumers", "to", "shun", "British", "lamb", "until", "scientists", "determine", "whether", "mad", "cow", "disease", "can", "be", "transmitted", "to", "sheep", "."] } ``` ### Data Fields The data fields are the same among all splits. #### conllpp - `id`: a `string` feature. - `tokens`: a `list` of `string` features. - `pos_tags`: a `list` of classification labels, with possible values including `"` (0), `''` (1), `#` (2), `$` (3), `(` (4). - `chunk_tags`: a `list` of classification labels, with possible values including `O` (0), `B-ADJP` (1), `I-ADJP` (2), `B-ADVP` (3), `I-ADVP` (4). - `ner_tags`: a `list` of classification labels, with possible values including `O` (0), `B-PER` (1), `I-PER` (2), `B-ORG` (3), `I-ORG` (4). ### Data Splits | name |train|validation|test| |---------|----:|---------:|---:| |conll2003|14041| 3250|3453| ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @inproceedings{wang2019crossweigh, title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations}, author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei}, booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)}, pages={5157--5166}, year={2019} } ``` ### Contributions Thanks to [@ZihanWangKi](https://github.com/ZihanWangKi) for adding this dataset.
ontonotes/conll2012_ontonotesv5
ontonotes
2024-01-18T09:34:57Z
968
43
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "task_ids:part-of-speech", "task_ids:coreference-resolution", "task_ids:parsing", "task_ids:lemmatization", "task_ids:word-sense-disambiguation", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:ar", "language:en", "language:zh", "license:cc-by-nc-nd-4.0", "size_categories:10K<n<100K", "region:us", "semantic-role-labeling" ]
[ "token-classification" ]
2022-03-15T10:48:28Z
1
--- annotations_creators: - expert-generated language_creators: - found language: - ar - en - zh license: - cc-by-nc-nd-4.0 multilinguality: - multilingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - token-classification task_ids: - named-entity-recognition - part-of-speech - coreference-resolution - parsing - lemmatization - word-sense-disambiguation paperswithcode_id: ontonotes-5-0 pretty_name: CoNLL2012 shared task data based on OntoNotes 5.0 tags: - semantic-role-labeling dataset_info: - config_name: english_v4 features: - name: document_id dtype: string - name: sentences list: - name: part_id dtype: int32 - name: words sequence: string - name: pos_tags sequence: class_label: names: '0': XX '1': '``' '2': $ '3': '''''' '4': ',' '5': -LRB- '6': -RRB- '7': . '8': ':' '9': ADD '10': AFX '11': CC '12': CD '13': DT '14': EX '15': FW '16': HYPH '17': IN '18': JJ '19': JJR '20': JJS '21': LS '22': MD '23': NFP '24': NN '25': NNP '26': NNPS '27': NNS '28': PDT '29': POS '30': PRP '31': PRP$ '32': RB '33': RBR '34': RBS '35': RP '36': SYM '37': TO '38': UH '39': VB '40': VBD '41': VBG '42': VBN '43': VBP '44': VBZ '45': WDT '46': WP '47': WP$ '48': WRB - name: parse_tree dtype: string - name: predicate_lemmas sequence: string - name: predicate_framenet_ids sequence: string - name: word_senses sequence: float32 - name: speaker dtype: string - name: named_entities sequence: class_label: names: '0': O '1': B-PERSON '2': I-PERSON '3': B-NORP '4': I-NORP '5': B-FAC '6': I-FAC '7': B-ORG '8': I-ORG '9': B-GPE '10': I-GPE '11': B-LOC '12': I-LOC '13': B-PRODUCT '14': I-PRODUCT '15': B-DATE '16': I-DATE '17': B-TIME '18': I-TIME '19': B-PERCENT '20': I-PERCENT '21': B-MONEY '22': I-MONEY '23': B-QUANTITY '24': I-QUANTITY '25': B-ORDINAL '26': I-ORDINAL '27': B-CARDINAL '28': I-CARDINAL '29': B-EVENT '30': I-EVENT '31': B-WORK_OF_ART '32': I-WORK_OF_ART '33': B-LAW '34': I-LAW '35': B-LANGUAGE '36': I-LANGUAGE - name: srl_frames list: - name: verb dtype: string - name: frames sequence: string - name: coref_spans sequence: sequence: int32 length: 3 splits: - name: train num_bytes: 112246121 num_examples: 1940 - name: validation num_bytes: 14116925 num_examples: 222 - name: test num_bytes: 14709044 num_examples: 222 download_size: 193644139 dataset_size: 141072090 - config_name: chinese_v4 features: - name: document_id dtype: string - name: sentences list: - name: part_id dtype: int32 - name: words sequence: string - name: pos_tags sequence: class_label: names: '0': X '1': AD '2': AS '3': BA '4': CC '5': CD '6': CS '7': DEC '8': DEG '9': DER '10': DEV '11': DT '12': ETC '13': FW '14': IJ '15': INF '16': JJ '17': LB '18': LC '19': M '20': MSP '21': NN '22': NR '23': NT '24': OD '25': 'ON' '26': P '27': PN '28': PU '29': SB '30': SP '31': URL '32': VA '33': VC '34': VE '35': VV - name: parse_tree dtype: string - name: predicate_lemmas sequence: string - name: predicate_framenet_ids sequence: string - name: word_senses sequence: float32 - name: speaker dtype: string - name: named_entities sequence: class_label: names: '0': O '1': B-PERSON '2': I-PERSON '3': B-NORP '4': I-NORP '5': B-FAC '6': I-FAC '7': B-ORG '8': I-ORG '9': B-GPE '10': I-GPE '11': B-LOC '12': I-LOC '13': B-PRODUCT '14': I-PRODUCT '15': B-DATE '16': I-DATE '17': B-TIME '18': I-TIME '19': B-PERCENT '20': I-PERCENT '21': B-MONEY '22': I-MONEY '23': B-QUANTITY '24': I-QUANTITY '25': B-ORDINAL '26': I-ORDINAL '27': B-CARDINAL '28': I-CARDINAL '29': B-EVENT '30': I-EVENT '31': B-WORK_OF_ART '32': I-WORK_OF_ART '33': B-LAW '34': I-LAW '35': B-LANGUAGE '36': I-LANGUAGE - name: srl_frames list: - name: verb dtype: string - name: frames sequence: string - name: coref_spans sequence: sequence: int32 length: 3 splits: - name: train num_bytes: 77195698 num_examples: 1391 - name: validation num_bytes: 10828169 num_examples: 172 - name: test num_bytes: 9585138 num_examples: 166 download_size: 193644139 dataset_size: 97609005 - config_name: arabic_v4 features: - name: document_id dtype: string - name: sentences list: - name: part_id dtype: int32 - name: words sequence: string - name: pos_tags sequence: string - name: parse_tree dtype: string - name: predicate_lemmas sequence: string - name: predicate_framenet_ids sequence: string - name: word_senses sequence: float32 - name: speaker dtype: string - name: named_entities sequence: class_label: names: '0': O '1': B-PERSON '2': I-PERSON '3': B-NORP '4': I-NORP '5': B-FAC '6': I-FAC '7': B-ORG '8': I-ORG '9': B-GPE '10': I-GPE '11': B-LOC '12': I-LOC '13': B-PRODUCT '14': I-PRODUCT '15': B-DATE '16': I-DATE '17': B-TIME '18': I-TIME '19': B-PERCENT '20': I-PERCENT '21': B-MONEY '22': I-MONEY '23': B-QUANTITY '24': I-QUANTITY '25': B-ORDINAL '26': I-ORDINAL '27': B-CARDINAL '28': I-CARDINAL '29': B-EVENT '30': I-EVENT '31': B-WORK_OF_ART '32': I-WORK_OF_ART '33': B-LAW '34': I-LAW '35': B-LANGUAGE '36': I-LANGUAGE - name: srl_frames list: - name: verb dtype: string - name: frames sequence: string - name: coref_spans sequence: sequence: int32 length: 3 splits: - name: train num_bytes: 42017761 num_examples: 359 - name: validation num_bytes: 4859292 num_examples: 44 - name: test num_bytes: 4900664 num_examples: 44 download_size: 193644139 dataset_size: 51777717 - config_name: english_v12 features: - name: document_id dtype: string - name: sentences list: - name: part_id dtype: int32 - name: words sequence: string - name: pos_tags sequence: class_label: names: '0': XX '1': '``' '2': $ '3': '''''' '4': '*' '5': ',' '6': -LRB- '7': -RRB- '8': . '9': ':' '10': ADD '11': AFX '12': CC '13': CD '14': DT '15': EX '16': FW '17': HYPH '18': IN '19': JJ '20': JJR '21': JJS '22': LS '23': MD '24': NFP '25': NN '26': NNP '27': NNPS '28': NNS '29': PDT '30': POS '31': PRP '32': PRP$ '33': RB '34': RBR '35': RBS '36': RP '37': SYM '38': TO '39': UH '40': VB '41': VBD '42': VBG '43': VBN '44': VBP '45': VBZ '46': VERB '47': WDT '48': WP '49': WP$ '50': WRB - name: parse_tree dtype: string - name: predicate_lemmas sequence: string - name: predicate_framenet_ids sequence: string - name: word_senses sequence: float32 - name: speaker dtype: string - name: named_entities sequence: class_label: names: '0': O '1': B-PERSON '2': I-PERSON '3': B-NORP '4': I-NORP '5': B-FAC '6': I-FAC '7': B-ORG '8': I-ORG '9': B-GPE '10': I-GPE '11': B-LOC '12': I-LOC '13': B-PRODUCT '14': I-PRODUCT '15': B-DATE '16': I-DATE '17': B-TIME '18': I-TIME '19': B-PERCENT '20': I-PERCENT '21': B-MONEY '22': I-MONEY '23': B-QUANTITY '24': I-QUANTITY '25': B-ORDINAL '26': I-ORDINAL '27': B-CARDINAL '28': I-CARDINAL '29': B-EVENT '30': I-EVENT '31': B-WORK_OF_ART '32': I-WORK_OF_ART '33': B-LAW '34': I-LAW '35': B-LANGUAGE '36': I-LANGUAGE - name: srl_frames list: - name: verb dtype: string - name: frames sequence: string - name: coref_spans sequence: sequence: int32 length: 3 splits: - name: train num_bytes: 174173192 num_examples: 10539 - name: validation num_bytes: 24264804 num_examples: 1370 - name: test num_bytes: 18254144 num_examples: 1200 download_size: 193644139 dataset_size: 216692140 --- # Dataset Card for CoNLL2012 shared task data based on OntoNotes 5.0 ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [CoNLL-2012 Shared Task](https://conll.cemantix.org/2012/data.html), [Author's page](https://cemantix.org/data/ontonotes.html) - **Repository:** [Mendeley](https://data.mendeley.com/datasets/zmycy7t9h9) - **Paper:** [Towards Robust Linguistic Analysis using OntoNotes](https://aclanthology.org/W13-3516/) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre, multilingual corpus manually annotated with syntactic, semantic and discourse information. This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task. It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only). The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility. See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1) For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above. ### Supported Tasks and Leaderboards - [Named Entity Recognition on Ontonotes v5 (English)](https://paperswithcode.com/sota/named-entity-recognition-ner-on-ontonotes-v5) - [Coreference Resolution on OntoNotes](https://paperswithcode.com/sota/coreference-resolution-on-ontonotes) - [Semantic Role Labeling on OntoNotes](https://paperswithcode.com/sota/semantic-role-labeling-on-ontonotes) - ... ### Languages V4 data for Arabic, Chinese, English, and V12 data for English ## Dataset Structure ### Data Instances ``` { {'document_id': 'nw/wsj/23/wsj_2311', 'sentences': [{'part_id': 0, 'words': ['CONCORDE', 'trans-Atlantic', 'flights', 'are', '$', '2, 'to', 'Paris', 'and', '$', '3, 'to', 'London', '.']}, 'pos_tags': [25, 18, 27, 43, 2, 12, 17, 25, 11, 2, 12, 17, 25, 7], 'parse_tree': '(TOP(S(NP (NNP CONCORDE) (JJ trans-Atlantic) (NNS flights) )(VP (VBP are) (NP(NP(NP ($ $) (CD 2,400) )(PP (IN to) (NP (NNP Paris) ))) (CC and) (NP(NP ($ $) (CD 3,200) )(PP (IN to) (NP (NNP London) ))))) (. .) ))', 'predicate_lemmas': [None, None, None, 'be', None, None, None, None, None, None, None, None, None, None], 'predicate_framenet_ids': [None, None, None, '01', None, None, None, None, None, None, None, None, None, None], 'word_senses': [None, None, None, None, None, None, None, None, None, None, None, None, None, None], 'speaker': None, 'named_entities': [7, 6, 0, 0, 0, 15, 0, 5, 0, 0, 15, 0, 5, 0], 'srl_frames': [{'frames': ['B-ARG1', 'I-ARG1', 'I-ARG1', 'B-V', 'B-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'O'], 'verb': 'are'}], 'coref_spans': [], {'part_id': 0, 'words': ['In', 'a', 'Centennial', 'Journal', 'article', 'Oct.', '5', ',', 'the', 'fares', 'were', 'reversed', '.']}]} 'pos_tags': [17, 13, 25, 25, 24, 25, 12, 4, 13, 27, 40, 42, 7], 'parse_tree': '(TOP(S(PP (IN In) (NP (DT a) (NML (NNP Centennial) (NNP Journal) ) (NN article) ))(NP (NNP Oct.) (CD 5) ) (, ,) (NP (DT the) (NNS fares) )(VP (VBD were) (VP (VBN reversed) )) (. .) ))', 'predicate_lemmas': [None, None, None, None, None, None, None, None, None, None, None, 'reverse', None], 'predicate_framenet_ids': [None, None, None, None, None, None, None, None, None, None, None, '01', None], 'word_senses': [None, None, None, None, None, None, None, None, None, None, None, None, None], 'speaker': None, 'named_entities': [0, 0, 4, 22, 0, 12, 30, 0, 0, 0, 0, 0, 0], 'srl_frames': [{'frames': ['B-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'B-ARGM-TMP', 'I-ARGM-TMP', 'O', 'B-ARG1', 'I-ARG1', 'O', 'B-V', 'O'], 'verb': 'reversed'}], 'coref_spans': [], } ``` ### Data Fields - **`document_id`** (*`str`*): This is a variation on the document filename - **`sentences`** (*`List[Dict]`*): All sentences of the same document are in a single example for the convenience of concatenating sentences. Every element in `sentences` is a *`Dict`* composed of the following data fields: - **`part_id`** (*`int`*) : Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. - **`words`** (*`List[str]`*) : - **`pos_tags`** (*`List[ClassLabel]` or `List[str]`*) : This is the Penn-Treebank-style part of speech. When parse information is missing, all parts of speech except the one for which there is some sense or proposition annotation are marked with a XX tag. The verb is marked with just a VERB tag. - tag set : Note tag sets below are founded by scanning all the data, and I found it seems to be a little bit different from officially stated tag sets. See official documents in the [Mendeley repo](https://data.mendeley.com/datasets/zmycy7t9h9) - arabic : str. Because pos tag in Arabic is compounded and complex, hard to represent it by `ClassLabel` - chinese v4 : `datasets.ClassLabel(num_classes=36, names=["X", "AD", "AS", "BA", "CC", "CD", "CS", "DEC", "DEG", "DER", "DEV", "DT", "ETC", "FW", "IJ", "INF", "JJ", "LB", "LC", "M", "MSP", "NN", "NR", "NT", "OD", "ON", "P", "PN", "PU", "SB", "SP", "URL", "VA", "VC", "VE", "VV",])`, where `X` is for pos tag missing - english v4 : `datasets.ClassLabel(num_classes=49, names=["XX", "``", "$", "''", ",", "-LRB-", "-RRB-", ".", ":", "ADD", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NFP", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WP$", "WRB",])`, where `XX` is for pos tag missing, and `-LRB-`/`-RRB-` is "`(`" / "`)`". - english v12 : `datasets.ClassLabel(num_classes=51, names="english_v12": ["XX", "``", "$", "''", "*", ",", "-LRB-", "-RRB-", ".", ":", "ADD", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NFP", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "VERB", "WDT", "WP", "WP$", "WRB",])`, where `XX` is for pos tag missing, and `-LRB-`/`-RRB-` is "`(`" / "`)`". - **`parse_tree`** (*`Optional[str]`*) : An serialized NLTK Tree representing the parse. It includes POS tags as pre-terminal nodes. When the parse information is missing, the parse will be `None`. - **`predicate_lemmas`** (*`List[Optional[str]]`*) : The predicate lemma of the words for which we have semantic role information or word sense information. All other indices are `None`. - **`predicate_framenet_ids`** (*`List[Optional[int]]`*) : The PropBank frameset ID of the lemmas in predicate_lemmas, or `None`. - **`word_senses`** (*`List[Optional[float]]`*) : The word senses for the words in the sentence, or None. These are floats because the word sense can have values after the decimal, like 1.1. - **`speaker`** (*`Optional[str]`*) : This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. When it is not available, it will be `None`. - **`named_entities`** (*`List[ClassLabel]`*) : The BIO tags for named entities in the sentence. - tag set : `datasets.ClassLabel(num_classes=37, names=["O", "B-PERSON", "I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE",])` - **`srl_frames`** (*`List[{"word":str, "frames":List[str]}]`*) : A dictionary keyed by the verb in the sentence for the given Propbank frame labels, in a BIO format. - **`coref spans`** (*`List[List[int]]`*) : The spans for entity mentions involved in coreference resolution within the sentence. Each element is a tuple composed of (cluster_id, start_index, end_index). Indices are inclusive. ### Data Splits Each dataset (arabic_v4, chinese_v4, english_v4, english_v12) has 3 splits: _train_, _validation_, and _test_ ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @inproceedings{pradhan-etal-2013-towards, title = "Towards Robust Linguistic Analysis using {O}nto{N}otes", author = {Pradhan, Sameer and Moschitti, Alessandro and Xue, Nianwen and Ng, Hwee Tou and Bj{\"o}rkelund, Anders and Uryupina, Olga and Zhang, Yuchen and Zhong, Zhi}, booktitle = "Proceedings of the Seventeenth Conference on Computational Natural Language Learning", month = aug, year = "2013", address = "Sofia, Bulgaria", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W13-3516", pages = "143--152", } ``` ### Contributions Thanks to [@richarddwang](https://github.com/richarddwang) for adding this dataset.
zefang-liu/phishing-email-dataset
zefang-liu
2024-01-17T23:48:20Z
476
11
[ "task_categories:text-classification", "language:en", "license:lgpl-3.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2024-01-17T23:36:31Z
2
--- license: lgpl-3.0 language: - en task_categories: - text-classification size_categories: - 10K<n<100K --- # Phishing Email Dataset This dataset on Hugging Face is a direct copy of the 'Phishing Email Detection' dataset from Kaggle, shared under the [GNU Lesser General Public License 3.0](https://www.gnu.org/licenses/lgpl-3.0.html). The dataset was originally created by the user '[Cyber Cop](https://www.kaggle.com/subhajournal)' on Kaggle. For complete details, including licensing and usage information, please visit the [original Kaggle page](https://www.kaggle.com/datasets/subhajournal/phishingemails).
ucinlp/drop
ucinlp
2024-01-17T08:15:43Z
2,714
53
[ "task_categories:question-answering", "task_categories:text2text-generation", "task_ids:extractive-qa", "task_ids:abstractive-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-sa-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1903.00161", "region:us" ]
[ "question-answering", "text2text-generation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - cc-by-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - question-answering - text2text-generation task_ids: - extractive-qa - abstractive-qa paperswithcode_id: drop pretty_name: DROP dataset_info: features: - name: section_id dtype: string - name: query_id dtype: string - name: passage dtype: string - name: question dtype: string - name: answers_spans sequence: - name: spans dtype: string - name: types dtype: string splits: - name: train num_bytes: 105572506 num_examples: 77400 - name: validation num_bytes: 11737755 num_examples: 9535 download_size: 11538387 dataset_size: 117310261 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* --- # Dataset Card for "drop" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://allenai.org/data/drop - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** https://aclanthology.org/N19-1246/ - **Paper:** https://arxiv.org/abs/1903.00161 - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 8.30 MB - **Size of the generated dataset:** 110.91 MB - **Total amount of disk used:** 119.21 MB ### Dataset Summary DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs. . DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was necessary for prior datasets. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 8.30 MB - **Size of the generated dataset:** 110.91 MB - **Total amount of disk used:** 119.21 MB An example of 'validation' looks as follows. ``` This example was too long and was cropped: { "answers_spans": { "spans": ["Chaz Schilens"] }, "passage": "\" Hoping to rebound from their loss to the Patriots, the Raiders stayed at home for a Week 16 duel with the Houston Texans. Oak...", "question": "Who scored the first touchdown of the game?" } ``` ### Data Fields The data fields are the same among all splits. #### default - `passage`: a `string` feature. - `question`: a `string` feature. - `answers_spans`: a dictionary feature containing: - `spans`: a `string` feature. ### Data Splits | name |train|validation| |-------|----:|---------:| |default|77409| 9536| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{Dua2019DROP, author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner}, title={ {DROP}: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, booktitle={Proc. of NAACL}, year={2019} } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@lewtun](https://github.com/lewtun) for adding this dataset.
clue/clue
clue
2024-01-17T07:48:08Z
2,758
43
[ "task_categories:text-classification", "task_categories:multiple-choice", "task_ids:topic-classification", "task_ids:semantic-similarity-scoring", "task_ids:natural-language-inference", "task_ids:multiple-choice-qa", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:zh", "license:unknown", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2004.05986", "region:us", "coreference-nli", "qa-nli" ]
[ "text-classification", "multiple-choice" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - other language_creators: - other language: - zh license: - unknown multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification - multiple-choice task_ids: - topic-classification - semantic-similarity-scoring - natural-language-inference - multiple-choice-qa paperswithcode_id: clue pretty_name: 'CLUE: Chinese Language Understanding Evaluation benchmark' tags: - coreference-nli - qa-nli dataset_info: - config_name: afqmc features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' - name: idx dtype: int32 splits: - name: test num_bytes: 378718 num_examples: 3861 - name: train num_bytes: 3396503 num_examples: 34334 - name: validation num_bytes: 426285 num_examples: 4316 download_size: 2337418 dataset_size: 4201506 - config_name: c3 features: - name: id dtype: int32 - name: context sequence: string - name: question dtype: string - name: choice sequence: string - name: answer dtype: string splits: - name: test num_bytes: 1600142 num_examples: 1625 - name: train num_bytes: 9672739 num_examples: 11869 - name: validation num_bytes: 2990943 num_examples: 3816 download_size: 4718960 dataset_size: 14263824 - config_name: chid features: - name: idx dtype: int32 - name: candidates sequence: string - name: content sequence: string - name: answers sequence: - name: text dtype: string - name: candidate_id dtype: int32 splits: - name: test num_bytes: 11480435 num_examples: 3447 - name: train num_bytes: 252477926 num_examples: 84709 - name: validation num_bytes: 10117761 num_examples: 3218 download_size: 198468807 dataset_size: 274076122 - config_name: cluewsc2020 features: - name: idx dtype: int32 - name: text dtype: string - name: label dtype: class_label: names: '0': 'true' '1': 'false' - name: target struct: - name: span1_text dtype: string - name: span2_text dtype: string - name: span1_index dtype: int32 - name: span2_index dtype: int32 splits: - name: test num_bytes: 645637 num_examples: 2574 - name: train num_bytes: 288816 num_examples: 1244 - name: validation num_bytes: 72670 num_examples: 304 download_size: 380611 dataset_size: 1007123 - config_name: cmnli features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: label dtype: class_label: names: '0': neutral '1': entailment '2': contradiction - name: idx dtype: int32 splits: - name: test num_bytes: 2386821 num_examples: 13880 - name: train num_bytes: 67684989 num_examples: 391783 - name: validation num_bytes: 2051829 num_examples: 12241 download_size: 54234919 dataset_size: 72123639 - config_name: cmrc2018 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: answers sequence: - name: text dtype: string - name: answer_start dtype: int32 splits: - name: test num_bytes: 3112042 num_examples: 2000 - name: train num_bytes: 15508062 num_examples: 10142 - name: validation num_bytes: 5183785 num_examples: 3219 - name: trial num_bytes: 1606907 num_examples: 1002 download_size: 5459001 dataset_size: 25410796 - config_name: csl features: - name: idx dtype: int32 - name: corpus_id dtype: int32 - name: abst dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' - name: keyword sequence: string splits: - name: test num_bytes: 2463728 num_examples: 3000 - name: train num_bytes: 16478890 num_examples: 20000 - name: validation num_bytes: 2464563 num_examples: 3000 download_size: 3936111 dataset_size: 21407181 - config_name: diagnostics features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: label dtype: class_label: names: '0': neutral '1': entailment '2': contradiction - name: idx dtype: int32 splits: - name: test num_bytes: 42392 num_examples: 514 download_size: 23000 dataset_size: 42392 - config_name: drcd features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: answers sequence: - name: text dtype: string - name: answer_start dtype: int32 splits: - name: test num_bytes: 4982378 num_examples: 3493 - name: train num_bytes: 37443386 num_examples: 26936 - name: validation num_bytes: 5222729 num_examples: 3524 download_size: 11188875 dataset_size: 47648493 - config_name: iflytek features: - name: sentence dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' '7': '7' '8': '8' '9': '9' '10': '10' '11': '11' '12': '12' '13': '13' '14': '14' '15': '15' '16': '16' '17': '17' '18': '18' '19': '19' '20': '20' '21': '21' '22': '22' '23': '23' '24': '24' '25': '25' '26': '26' '27': '27' '28': '28' '29': '29' '30': '30' '31': '31' '32': '32' '33': '33' '34': '34' '35': '35' '36': '36' '37': '37' '38': '38' '39': '39' '40': '40' '41': '41' '42': '42' '43': '43' '44': '44' '45': '45' '46': '46' '47': '47' '48': '48' '49': '49' '50': '50' '51': '51' '52': '52' '53': '53' '54': '54' '55': '55' '56': '56' '57': '57' '58': '58' '59': '59' '60': '60' '61': '61' '62': '62' '63': '63' '64': '64' '65': '65' '66': '66' '67': '67' '68': '68' '69': '69' '70': '70' '71': '71' '72': '72' '73': '73' '74': '74' '75': '75' '76': '76' '77': '77' '78': '78' '79': '79' '80': '80' '81': '81' '82': '82' '83': '83' '84': '84' '85': '85' '86': '86' '87': '87' '88': '88' '89': '89' '90': '90' '91': '91' '92': '92' '93': '93' '94': '94' '95': '95' '96': '96' '97': '97' '98': '98' '99': '99' '100': '100' '101': '101' '102': '102' '103': '103' '104': '104' '105': '105' '106': '106' '107': '107' '108': '108' '109': '109' '110': '110' '111': '111' '112': '112' '113': '113' '114': '114' '115': '115' '116': '116' '117': '117' '118': '118' - name: idx dtype: int32 splits: - name: test num_bytes: 2105684 num_examples: 2600 - name: train num_bytes: 10028605 num_examples: 12133 - name: validation num_bytes: 2157119 num_examples: 2599 download_size: 9777855 dataset_size: 14291408 - config_name: ocnli features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: label dtype: class_label: names: '0': neutral '1': entailment '2': contradiction - name: idx dtype: int32 splits: - name: test num_bytes: 376058 num_examples: 3000 - name: train num_bytes: 6187142 num_examples: 50437 - name: validation num_bytes: 366227 num_examples: 2950 download_size: 3000218 dataset_size: 6929427 - config_name: tnews features: - name: sentence dtype: string - name: label dtype: class_label: names: '0': '100' '1': '101' '2': '102' '3': '103' '4': '104' '5': '106' '6': '107' '7': '108' '8': '109' '9': '110' '10': '112' '11': '113' '12': '114' '13': '115' '14': '116' - name: idx dtype: int32 splits: - name: test num_bytes: 810970 num_examples: 10000 - name: train num_bytes: 4245677 num_examples: 53360 - name: validation num_bytes: 797922 num_examples: 10000 download_size: 4697843 dataset_size: 5854569 configs: - config_name: afqmc data_files: - split: test path: afqmc/test-* - split: train path: afqmc/train-* - split: validation path: afqmc/validation-* - config_name: c3 data_files: - split: test path: c3/test-* - split: train path: c3/train-* - split: validation path: c3/validation-* - config_name: chid data_files: - split: test path: chid/test-* - split: train path: chid/train-* - split: validation path: chid/validation-* - config_name: cluewsc2020 data_files: - split: test path: cluewsc2020/test-* - split: train path: cluewsc2020/train-* - split: validation path: cluewsc2020/validation-* - config_name: cmnli data_files: - split: test path: cmnli/test-* - split: train path: cmnli/train-* - split: validation path: cmnli/validation-* - config_name: cmrc2018 data_files: - split: test path: cmrc2018/test-* - split: train path: cmrc2018/train-* - split: validation path: cmrc2018/validation-* - split: trial path: cmrc2018/trial-* - config_name: csl data_files: - split: test path: csl/test-* - split: train path: csl/train-* - split: validation path: csl/validation-* - config_name: diagnostics data_files: - split: test path: diagnostics/test-* - config_name: drcd data_files: - split: test path: drcd/test-* - split: train path: drcd/train-* - split: validation path: drcd/validation-* - config_name: iflytek data_files: - split: test path: iflytek/test-* - split: train path: iflytek/train-* - split: validation path: iflytek/validation-* - config_name: ocnli data_files: - split: test path: ocnli/test-* - split: train path: ocnli/train-* - split: validation path: ocnli/validation-* - config_name: tnews data_files: - split: test path: tnews/test-* - split: train path: tnews/train-* - split: validation path: tnews/validation-* --- # Dataset Card for "clue" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://www.cluebenchmarks.com - **Repository:** https://github.com/CLUEbenchmark/CLUE - **Paper:** [CLUE: A Chinese Language Understanding Evaluation Benchmark](https://aclanthology.org/2020.coling-main.419/) - **Paper:** https://arxiv.org/abs/2004.05986 - **Point of Contact:** [Zhenzhong Lan](mailto:[email protected]) - **Size of downloaded dataset files:** 198.68 MB - **Size of the generated dataset:** 486.34 MB - **Total amount of disk used:** 685.02 MB ### Dataset Summary CLUE, A Chinese Language Understanding Evaluation Benchmark (https://www.cluebenchmarks.com/) is a collection of resources for training, evaluating, and analyzing Chinese language understanding systems. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### afqmc - **Size of downloaded dataset files:** 1.20 MB - **Size of the generated dataset:** 4.20 MB - **Total amount of disk used:** 5.40 MB An example of 'validation' looks as follows. ``` { "idx": 0, "label": 0, "sentence1": "双十一花呗提额在哪", "sentence2": "里可以提花呗额度" } ``` #### c3 - **Size of downloaded dataset files:** 3.20 MB - **Size of the generated dataset:** 15.69 MB - **Total amount of disk used:** 18.90 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "answer": "比人的灵敏", "choice": ["没有人的灵敏", "和人的差不多", "和人的一样好", "比人的灵敏"], "context": "[\"许多动物的某些器官感觉特别灵敏,它们能比人类提前知道一些灾害事件的发生,例如,海洋中的水母能预报风暴,老鼠能事先躲避矿井崩塌或有害气体,等等。地震往往能使一些动物的某些感觉器官受到刺激而发生异常反应。如一个地区的重力发生变异,某些动物可能通过它们的平衡...", "id": 1, "question": "动物的器官感觉与人的相比有什么不同?" } ``` #### chid - **Size of downloaded dataset files:** 139.20 MB - **Size of the generated dataset:** 274.08 MB - **Total amount of disk used:** 413.28 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "answers": { "candidate_id": [3, 5, 6, 1, 7, 4, 0], "text": ["碌碌无为", "无所作为", "苦口婆心", "得过且过", "未雨绸缪", "软硬兼施", "传宗接代"] }, "candidates": "[\"传宗接代\", \"得过且过\", \"咄咄逼人\", \"碌碌无为\", \"软硬兼施\", \"无所作为\", \"苦口婆心\", \"未雨绸缪\", \"和衷共济\", \"人老珠黄\"]...", "content": "[\"谈到巴萨目前的成就,瓜迪奥拉用了“坚持”两个字来形容。自从上世纪90年代克鲁伊夫带队以来,巴萨就坚持每年都有拉玛西亚球员进入一队的传统。即便是范加尔时代,巴萨强力推出的“巴萨五鹰”德拉·佩纳、哈维、莫雷罗、罗杰·加西亚和贝拉乌桑几乎#idiom0000...", "idx": 0 } ``` #### cluewsc2020 - **Size of downloaded dataset files:** 0.28 MB - **Size of the generated dataset:** 1.03 MB - **Total amount of disk used:** 1.29 MB An example of 'train' looks as follows. ``` { "idx": 0, "label": 1, "target": { "span1_index": 3, "span1_text": "伤口", "span2_index": 27, "span2_text": "它们" }, "text": "裂开的伤口涂满尘土,里面有碎石子和木头刺,我小心翼翼把它们剔除出去。" } ``` #### cmnli - **Size of downloaded dataset files:** 31.40 MB - **Size of the generated dataset:** 72.12 MB - **Total amount of disk used:** 103.53 MB An example of 'train' looks as follows. ``` { "idx": 0, "label": 0, "sentence1": "从概念上讲,奶油略读有两个基本维度-产品和地理。", "sentence2": "产品和地理位置是使奶油撇油起作用的原因。" } ``` ### Data Fields The data fields are the same among all splits. #### afqmc - `sentence1`: a `string` feature. - `sentence2`: a `string` feature. - `label`: a classification label, with possible values including `0` (0), `1` (1). - `idx`: a `int32` feature. #### c3 - `id`: a `int32` feature. - `context`: a `list` of `string` features. - `question`: a `string` feature. - `choice`: a `list` of `string` features. - `answer`: a `string` feature. #### chid - `idx`: a `int32` feature. - `candidates`: a `list` of `string` features. - `content`: a `list` of `string` features. - `answers`: a dictionary feature containing: - `text`: a `string` feature. - `candidate_id`: a `int32` feature. #### cluewsc2020 - `idx`: a `int32` feature. - `text`: a `string` feature. - `label`: a classification label, with possible values including `true` (0), `false` (1). - `span1_text`: a `string` feature. - `span2_text`: a `string` feature. - `span1_index`: a `int32` feature. - `span2_index`: a `int32` feature. #### cmnli - `sentence1`: a `string` feature. - `sentence2`: a `string` feature. - `label`: a classification label, with possible values including `neutral` (0), `entailment` (1), `contradiction` (2). - `idx`: a `int32` feature. ### Data Splits | name |train |validation|test | |-----------|-----:|---------:|----:| |afqmc | 34334| 4316| 3861| |c3 | 11869| 3816| 3892| |chid | 84709| 3218| 3231| |cluewsc2020| 1244| 304| 290| |cmnli |391783| 12241|13880| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{xu-etal-2020-clue, title = "{CLUE}: A {C}hinese Language Understanding Evaluation Benchmark", author = "Xu, Liang and Hu, Hai and Zhang, Xuanwei and Li, Lu and Cao, Chenjie and Li, Yudong and Xu, Yechen and Sun, Kai and Yu, Dian and Yu, Cong and Tian, Yin and Dong, Qianqian and Liu, Weitang and Shi, Bo and Cui, Yiming and Li, Junyi and Zeng, Jun and Wang, Rongzhao and Xie, Weijian and Li, Yanting and Patterson, Yina and Tian, Zuoyu and Zhang, Yiwen and Zhou, He and Liu, Shaoweihua and Zhao, Zhe and Zhao, Qipeng and Yue, Cong and Zhang, Xinrui and Yang, Zhengliang and Richardson, Kyle and Lan, Zhenzhong", booktitle = "Proceedings of the 28th International Conference on Computational Linguistics", month = dec, year = "2020", address = "Barcelona, Spain (Online)", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2020.coling-main.419", doi = "10.18653/v1/2020.coling-main.419", pages = "4762--4772", } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@JetRunner](https://github.com/JetRunner) for adding this dataset.
cam-cst/cbt
cam-cst
2024-01-16T16:01:16Z
824
15
[ "task_categories:other", "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:machine-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:gfdl", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:1511.02301", "region:us" ]
[ "other", "question-answering" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - machine-generated language_creators: - found language: - en license: - gfdl multilinguality: - monolingual size_categories: - 100K<n<1M - n<1K source_datasets: - original task_categories: - other - question-answering task_ids: - multiple-choice-qa paperswithcode_id: cbt pretty_name: Children’s Book Test (CBT) config_names: - CN - NE - P - V - raw dataset_info: - config_name: CN features: - name: sentences sequence: string - name: question dtype: string - name: answer dtype: string - name: options sequence: string splits: - name: train num_bytes: 301730151 num_examples: 120769 - name: test num_bytes: 6138376 num_examples: 2500 - name: validation num_bytes: 4737257 num_examples: 2000 download_size: 31615166 dataset_size: 312605784 - config_name: NE features: - name: sentences sequence: string - name: question dtype: string - name: answer dtype: string - name: options sequence: string splits: - name: train num_bytes: 253551931 num_examples: 108719 - name: test num_bytes: 5707734 num_examples: 2500 - name: validation num_bytes: 4424316 num_examples: 2000 download_size: 29693075 dataset_size: 263683981 - config_name: P features: - name: sentences sequence: string - name: question dtype: string - name: answer dtype: string - name: options sequence: string splits: - name: train num_bytes: 852852601 num_examples: 334030 - name: test num_bytes: 6078048 num_examples: 2500 - name: validation num_bytes: 4776981 num_examples: 2000 download_size: 43825356 dataset_size: 863707630 - config_name: V features: - name: sentences sequence: string - name: question dtype: string - name: answer dtype: string - name: options sequence: string splits: - name: train num_bytes: 252177649 num_examples: 105825 - name: test num_bytes: 5806625 num_examples: 2500 - name: validation num_bytes: 4556425 num_examples: 2000 download_size: 29992082 dataset_size: 262540699 - config_name: raw features: - name: title dtype: string - name: content dtype: string splits: - name: train num_bytes: 25741580 num_examples: 98 - name: test num_bytes: 1528704 num_examples: 5 - name: validation num_bytes: 1182657 num_examples: 5 download_size: 16350790 dataset_size: 28452941 configs: - config_name: CN data_files: - split: train path: CN/train-* - split: test path: CN/test-* - split: validation path: CN/validation-* - config_name: NE data_files: - split: train path: NE/train-* - split: test path: NE/test-* - split: validation path: NE/validation-* - config_name: P data_files: - split: train path: P/train-* - split: test path: P/test-* - split: validation path: P/validation-* - config_name: V data_files: - split: train path: V/train-* - split: test path: V/test-* - split: validation path: V/validation-* - config_name: raw data_files: - split: train path: raw/train-* - split: test path: raw/test-* - split: validation path: raw/validation-* --- # Dataset Card for CBT ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:**[The bAbI project](https://research.fb.com/downloads/babi/) - **Repository:** - **Paper:** [arXiv Paper](https://arxiv.org/pdf/1511.02301.pdf) - **Leaderboard:** - **Point of Contact:** [Felix Hill](mailto:[email protected]) or [Antoine Bordes](mailto:[email protected]). ### Dataset Summary The Children’s Book Test (CBT) is designed to measure directly how well language models can exploit wider linguistic context. The CBT is built from books that are freely available. This dataset contains four different configurations: - `V`: where the answers to the questions are verbs. - `P`: where the answers to the questions are pronouns. - `NE`: where the answers to the questions are named entities. - `CN`: where the answers to the questions are common nouns. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages The data is present in English language as written by authors Lucy Maud Montgomery, Charles Dickens,Andrew Lang, etc. in story books for children. ## Dataset Structure ### Data Instances An instance from the `V` config: ``` {'answer': 'said', 'options': ['christening', 'existed', 'hear', 'knows', 'read', 'remarked', 'said', 'sitting', 'talking', 'wearing'], 'question': "`` They are very kind old ladies in their way , '' XXXXX the king ; `` and were nice to me when I was a boy . ''", 'sentences': ['This vexed the king even more than the queen , who was very clever and learned , and who had hated dolls when she was a child .', 'However , she , too in spite of all the books she read and all the pictures she painted , would have been glad enough to be the mother of a little prince .', 'The king was anxious to consult the fairies , but the queen would not hear of such a thing .', 'She did not believe in fairies : she said that they had never existed ; and that she maintained , though The History of the Royal Family was full of chapters about nothing else .', 'Well , at long and at last they had a little boy , who was generally regarded as the finest baby that had ever been seen .', 'Even her majesty herself remarked that , though she could never believe all the courtiers told her , yet he certainly was a fine child -- a very fine child .', 'Now , the time drew near for the christening party , and the king and queen were sitting at breakfast in their summer parlour talking over it .', 'It was a splendid room , hung with portraits of the royal ancestors .', 'There was Cinderella , the grandmother of the reigning monarch , with her little foot in her glass slipper thrust out before her .', 'There was the Marquis de Carabas , who , as everyone knows , was raised to the throne as prince consort after his marriage with the daughter of the king of the period .', 'On the arm of the throne was seated his celebrated cat , wearing boots .', 'There , too , was a portrait of a beautiful lady , sound asleep : this was Madame La Belle au Bois-dormant , also an ancestress of the royal family .', 'Many other pictures of celebrated persons were hanging on the walls .', "`` You have asked all the right people , my dear ? ''", 'said the king .', "`` Everyone who should be asked , '' answered the queen .", "`` People are so touchy on these occasions , '' said his majesty .", "`` You have not forgotten any of our aunts ? ''", "`` No ; the old cats ! ''", "replied the queen ; for the king 's aunts were old-fashioned , and did not approve of her , and she knew it ."]} ``` ### Data Fields For the `raw` config, the data fields are: - `title`: a `string` feature containing the title of the book present in the dataset. - `content`: a `string` feature containing the content of the book present in the dataset. For all other configs, the data fields are: - `sentences`: a `list` of `string` features containing 20 sentences from a book. - `question`: a `string` feature containing a question with blank marked as `XXXX` which is to be filled with one of the options. - `answer`: a `string` feature containing the answer. - `options`: a `list` of `string` features containing the options for the question. ### Data Splits The splits and corresponding sizes are: | |train |test |validation| |:--|------:|----:|---------:| |raw|98 |5 |5 | |V |105825 |2500 |2000 | |P |334030 |2500 |2000 | |CN |120769 |2500 |2000 | |NE |108719 |2500 |2000 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? Children's Book Authors ### Annotations #### Annotation process From the [homepage](https://research.fb.com/downloads/babi/): >After allocating books to either training, validation or test sets, we formed example ‘questions’ from chapters in the book by enumerating 21 consecutive sentences. In each question, the first 20 sentences form the context, and a word is removed from the 21st sentence, which becomes the query. Models must identify the answer word among a selection of 10 candidate answers appearing in the context sentences and the query. For finer-grained analyses, we evaluated four classes of question by removing distinct types of word: Named Entities, (Common) Nouns, Verbs and Prepositions. #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information ``` GNU Free Documentation License v1.3 ``` ### Citation Information ``` @misc{hill2016goldilocks, title={The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations}, author={Felix Hill and Antoine Bordes and Sumit Chopra and Jason Weston}, year={2016}, eprint={1511.02301}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions Thanks to [@gchhablani](https://github.com/gchhablani) for adding this dataset.
china-ai-law-challenge/cail2018
china-ai-law-challenge
2024-01-16T15:08:12Z
282
26
[ "task_categories:other", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:zh", "license:unknown", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:1807.02478", "region:us", "judgement-prediction" ]
[ "other" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found language: - zh license: - unknown multilinguality: - monolingual size_categories: - 1M<n<10M source_datasets: - original task_categories: - other task_ids: [] paperswithcode_id: chinese-ai-and-law-cail-2018 pretty_name: CAIL 2018 tags: - judgement-prediction dataset_info: features: - name: fact dtype: string - name: relevant_articles sequence: int32 - name: accusation sequence: string - name: punish_of_money dtype: float32 - name: criminals sequence: string - name: death_penalty dtype: bool - name: imprisonment dtype: float32 - name: life_imprisonment dtype: bool splits: - name: exercise_contest_train num_bytes: 220112348 num_examples: 154592 - name: exercise_contest_valid num_bytes: 21702109 num_examples: 17131 - name: exercise_contest_test num_bytes: 41057538 num_examples: 32508 - name: first_stage_train num_bytes: 1779653382 num_examples: 1710856 - name: first_stage_test num_bytes: 244334666 num_examples: 217016 - name: final_test num_bytes: 44194611 num_examples: 35922 download_size: 1167828091 dataset_size: 2351054654 configs: - config_name: default data_files: - split: exercise_contest_train path: data/exercise_contest_train-* - split: exercise_contest_valid path: data/exercise_contest_valid-* - split: exercise_contest_test path: data/exercise_contest_test-* - split: first_stage_train path: data/first_stage_train-* - split: first_stage_test path: data/first_stage_test-* - split: final_test path: data/final_test-* --- --- # Dataset Card for CAIL 2018 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Github](https://github.com/thunlp/CAIL/blob/master/README_en.md) - **Repository:** [Github](https://github.com/thunlp/CAIL) - **Paper:** [Arxiv](https://arxiv.org/abs/1807.02478) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@JetRunner](https://github.com/JetRunner) for adding this dataset.
botisan-ai/cantonese-mandarin-translations
botisan-ai
2024-01-13T03:30:12Z
85
21
[ "task_categories:text2text-generation", "task_categories:translation", "annotations_creators:machine-generated", "language_creators:found", "multilinguality:translation", "source_datasets:original", "language:zh", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "conditional-text-generation" ]
[ "text2text-generation", "translation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - machine-generated language_creators: - found language: - zh license: - cc-by-nc-sa-4.0 multilinguality: - translation size_categories: - unknown source_datasets: - original task_categories: - text2text-generation - translation task_ids: [] pretty_name: Cantonese - Mandarin Translations language_bcp47: - zh-CN - zh-HK tags: - conditional-text-generation --- # Dataset Card for cantonese-mandarin-translations ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This is a machine-translated parallel corpus between Cantonese (a Chinese dialect that is mainly spoken by Guangdong (province of China), Hong Kong, Macau and part of Malaysia) and Chinese (written form, in Simplified Chinese). ### Supported Tasks and Leaderboards N/A ### Languages - Cantonese (`yue`) - Simplified Chinese (`zh-CN`) ## Dataset Structure JSON lines with `yue` field and `zh` field for the parallel corpus. ### Data Instances N/A ### Data Fields - `yue`: Cantonese corpus - `zh`: translated Chinese corpus ### Data Splits No data splitting is done as of yet. ## Dataset Creation The dataset is produced by doing the following: - Download [HKCancor Cantonese Corpus](https://github.com/fcbond/hkcancor) and [CommonVoice Cantonese (Hong Kong Chinese `yue`) text corpus](https://commonvoice.mozilla.org/en/datasets) - Extract text corpus and merge datasets - Run text against [Microsoft's Translator API](https://learn.microsoft.com/en-us/azure/ai-services/translator/language-support) from `yue` to `zh-Hans` ### Curation Rationale Currently no such corpus exists, and it is hard to find such a corpus, so we tried to generate a reasonable batch of samples using machine translation for research purposes. ### Source Data - [HKCancor](https://github.com/fcbond/hkcancor) - [CommonVoice 7.0 Chinese (Hong Kong)](https://commonvoice.mozilla.org/en/datasets) #### Initial Data Collection and Normalization Normalization scripts will be included soon. #### Who are the source language producers? - [HKCancor](https://github.com/fcbond/hkcancor) - [CommonVoice 7.0 Chinese (Hong Kong)](https://commonvoice.mozilla.org/en/datasets) ### Annotations #### Annotation process We run the Cantonese text corpus against Microsoft's Translator API. #### Who are the annotators? - [Microsoft's Translator API](https://learn.microsoft.com/en-us/azure/ai-services/translator/language-support) ### Personal and Sensitive Information N/A ## Considerations for Using the Data ### Social Impact of Dataset We would like to share this parallel corpus and welcome contributions to preserve the Cantonese dialect. ### Discussion of Biases N/A ### Other Known Limitations This parallel corpus is machine-translated, it is not 100% accurate. ## Additional Information ### Dataset Curators - [Botisan AI](https://botisan.ai) - [Haoran (Simon) Liang](https://github.com/lhr0909) ### Licensing Information [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) ### Citation Information ``` @misc {botisanAiCantoneseMandarinTranslationsDatasets, author = {Liang, H.}, title = {Cantonese Mandarin Translations Dataset}, year = {2021}, url = {https://huggingface.co/datasets/botisan-ai/cantonese-mandarin-translations}, } ``` ### Contributions Thanks to [@lhr0909](https://github.com/lhr0909) for adding this dataset.
defunct-datasets/eli5
defunct-datasets
2024-01-11T09:32:33Z
611
50
[ "task_categories:text2text-generation", "task_ids:abstractive-qa", "task_ids:open-domain-abstractive-qa", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:100K<n<1M", "arxiv:1907.09190", "arxiv:1904.04047", "region:us" ]
[ "text2text-generation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - no-annotation language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text2text-generation task_ids: - abstractive-qa - open-domain-abstractive-qa paperswithcode_id: eli5 pretty_name: ELI5 viewer: false dataset_info: features: - name: q_id dtype: string - name: title dtype: string - name: selftext dtype: string - name: document dtype: string - name: subreddit dtype: string - name: answers sequence: - name: a_id dtype: string - name: text dtype: string - name: score dtype: int32 - name: title_urls sequence: - name: url dtype: string - name: selftext_urls sequence: - name: url dtype: string - name: answers_urls sequence: - name: url dtype: string config_name: LFQA_reddit splits: - name: train_eli5 num_bytes: 577188173 num_examples: 272634 - name: validation_eli5 num_bytes: 21117891 num_examples: 9812 - name: test_eli5 num_bytes: 53099796 num_examples: 24512 - name: train_asks num_bytes: 286464210 num_examples: 131778 - name: validation_asks num_bytes: 9662481 num_examples: 2281 - name: test_asks num_bytes: 17713920 num_examples: 4462 - name: train_askh num_bytes: 330483260 num_examples: 98525 - name: validation_askh num_bytes: 18690845 num_examples: 4901 - name: test_askh num_bytes: 36246784 num_examples: 9764 download_size: 6326543 dataset_size: 1350667360 --- <div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400"> <p><b>Defunct:</b> Dataset "eli5" is defunct and no longer accessible due to unavailability of the source data.</p> </div> ## <span style="color:red">⚠️ Reddit recently [changed the terms of access](https://www.reddit.com/r/reddit/comments/12qwagm/an_update_regarding_reddits_api/) to its API, making the source data for this dataset unavailable</span>. # Dataset Card for ELI5 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [ELI5 homepage](https://facebookresearch.github.io/ELI5/explore.html) - **Repository:** [ELI5 repository](https://github.com/facebookresearch/ELI5) - **Paper:** [ELI5: Long Form Question Answering](https://arxiv.org/abs/1907.09190) - **Point of Contact:** [Yacine Jernite](mailto:[email protected]) ### Dataset Summary The ELI5 dataset is an English-language dataset of questions and answers gathered from three subreddits where users ask factual questions requiring paragraph-length or longer answers. The dataset was created to support the task of open-domain long form abstractive question answering, and covers questions about general topics in its [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/) subset, science in it [r/askscience](https://www.reddit.com/r/askscience/) subset, and History in its [r/AskHistorians](https://www.reddit.com/r/AskHistorians/) subset. ### Supported Tasks and Leaderboards - `abstractive-qa`, `open-domain-abstractive-qa`: The dataset can be used to train a model for Open Domain Long Form Question Answering. An LFQA model is presented with a non-factoid and asked to retrieve relevant information from a knowledge source (such as [Wikipedia](https://www.wikipedia.org/)), then use it to generate a multi-sentence answer. The model performance is measured by how high its [ROUGE](https://huggingface.co/metrics/rouge) score to the reference is. A [BART-based model](https://huggingface.co/yjernite/bart_eli5) with a [dense retriever](https://huggingface.co/yjernite/retribert-base-uncased) trained to draw information from [Wikipedia passages](https://huggingface.co/datasets/wiki_snippets) achieves a [ROUGE-L of 0.149](https://yjernite.github.io/lfqa.html#generation). ### Languages The text in the dataset is in English, as spoken by Reddit users on the [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/), [r/askscience](https://www.reddit.com/r/askscience/), and [r/AskHistorians](https://www.reddit.com/r/AskHistorians/) subreddits. The associated BCP-47 code is `en`. ## Dataset Structure ### Data Instances A typical data point comprises a question, with a `title` containing the main question and a `selftext` which sometimes elaborates on it, and a list of answers from the forum sorted by the number of upvotes they obtained. Additionally, the URLs in each of the text fields have been extracted to respective lists and replaced by generic tokens in the text. An example from the ELI5 test set looks as follows: ``` {'q_id': '8houtx', 'title': 'Why does water heated to room temperature feel colder than the air around it?', 'selftext': '', 'document': '', 'subreddit': 'explainlikeimfive', 'answers': {'a_id': ['dylcnfk', 'dylcj49'], 'text': ["Water transfers heat more efficiently than air. When something feels cold it's because heat is being transferred from your skin to whatever you're touching. Since water absorbs the heat more readily than air, it feels colder.", "Air isn't as good at transferring heat compared to something like water or steel (sit on a room temperature steel bench vs. a room temperature wooden bench, and the steel one will feel more cold).\n\nWhen you feel cold, what you're feeling is heat being transferred out of you. If there is no breeze, you feel a certain way. If there's a breeze, you will get colder faster (because the moving air is pulling the heat away from you), and if you get into water, its quite good at pulling heat from you. Get out of the water and have a breeze blow on you while you're wet, all of the water starts evaporating, pulling even more heat from you."], 'score': [5, 2]}, 'title_urls': {'url': []}, 'selftext_urls': {'url': []}, 'answers_urls': {'url': []}} ``` ### Data Fields - `q_id`: a string question identifier for each example, corresponding to its ID in the [Pushshift.io](https://files.pushshift.io/reddit/submissions/) Reddit submission dumps. - `subreddit`: One of `explainlikeimfive`, `askscience`, or `AskHistorians`, indicating which subreddit the question came from - `title`: title of the question, with URLs extracted and replaced by `URL_n` tokens - `title_urls`: list of the extracted URLs, the `n`th element of the list was replaced by `URL_n` - `selftext`: either an empty string or an elaboration of the question - `selftext_urls`: similar to `title_urls` but for `self_text` - `answers`: a list of answers, each answer has: - `a_id`: a string answer identifier for each answer, corresponding to its ID in the [Pushshift.io](https://files.pushshift.io/reddit/comments/) Reddit comments dumps. - `text`: the answer text with the URLs normalized - `score`: the number of upvotes the answer had received when the dumps were created - `answers_urls`: a list of the extracted URLs. All answers use the same list, the numbering of the normalization token continues across answer texts ### Data Splits The data is split into a training, validation and test set for each of the three subreddits. In order to avoid having duplicate questions in across sets, the `title` field of each of the questions were ranked by their tf-idf match to their nearest neighbor and the ones with the smallest value were used in the test and validation sets. The final split sizes are as follow: | | Train | Valid | Test | | ----- | ------ | ----- | ---- | | r/explainlikeimfive examples| 272634 | 9812 | 24512| | r/askscience examples | 131778 | 2281 | 4462 | | r/AskHistorians examples | 98525 | 4901 | 9764 | ## Dataset Creation ### Curation Rationale ELI5 was built to provide a testbed for machines to learn how to answer more complex questions, which requires them to find and combine information in a coherent manner. The dataset was built by gathering questions that were asked by community members of three subreddits, including [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/), along with the answers that were provided by other users. The [rules of the subreddit](https://www.reddit.com/r/explainlikeimfive/wiki/detailed_rules) make this data particularly well suited to training a model for abstractive question answering: the questions need to seek an objective explanation about well established facts, and the answers provided need to be understandable to a layperson without any particular knowledge domain. ### Source Data #### Initial Data Collection and Normalization The data was obtained by filtering submissions and comments from the subreddits of interest from the XML dumps of the [Reddit forum](https://www.reddit.com/) hosted on [Pushshift.io](https://files.pushshift.io/reddit/). In order to further improve the quality of the selected examples, only questions with a score of at least 2 and at least one answer with a score of at least 2 were selected for the dataset. The dataset questions and answers span a period form August 2012 to August 2019. #### Who are the source language producers? The language producers are users of the [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/), [r/askscience](https://www.reddit.com/r/askscience/), and [r/AskHistorians](https://www.reddit.com/r/AskHistorians/) subreddits between 2012 and 2019. No further demographic information was available from the data source. ### Annotations The dataset does not contain any additional annotations. #### Annotation process [N/A] #### Who are the annotators? [N/A] ### Personal and Sensitive Information The authors removed the speaker IDs from the [Pushshift.io](https://files.pushshift.io/reddit/) dumps but did not otherwise anonymize the data. Some of the questions and answers are about contemporary public figures or individuals who appeared in the news. ## Considerations for Using the Data ### Social Impact of Dataset The purpose of this dataset is to help develop better question answering systems. A system that succeeds at the supported task would be able to provide a coherent answer to even complex questions requiring a multi-step explanation, which is beyond the ability of even the larger existing models. The task is also thought as a test-bed for retrieval model which can show the users which source text was used in generating the answer and allow them to confirm the information provided to them. It should be noted however that the provided answers were written by Reddit users, an information which may be lost if models trained on it are deployed in down-stream applications and presented to users without context. The specific biases this may introduce are discussed in the next section. ### Discussion of Biases While Reddit hosts a number of thriving communities with high quality discussions, it is also widely known to have corners where sexism, hate, and harassment are significant issues. See for example the [recent post from Reddit founder u/spez](https://www.reddit.com/r/announcements/comments/gxas21/upcoming_changes_to_our_content_policy_our_board/) outlining some of the ways he thinks the website's historical policies have been responsible for this problem, [Adrienne Massanari's 2015 article on GamerGate](https://www.researchgate.net/publication/283848479_Gamergate_and_The_Fappening_How_Reddit's_algorithm_governance_and_culture_support_toxic_technocultures) and follow-up works, or a [2019 Wired article on misogyny on Reddit](https://www.wired.com/story/misogyny-reddit-research/). While there has been some recent work in the NLP community on *de-biasing* models (e.g. [Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings](https://arxiv.org/abs/1904.04047) for word embeddings trained specifically on Reddit data), this problem is far from solved, and the likelihood that a trained model might learn the biases present in the data remains a significant concern. We still note some encouraging signs for all of these communities: [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/) and [r/askscience](https://www.reddit.com/r/askscience/) have similar structures and purposes, and [r/askscience](https://www.reddit.com/r/askscience/) was found in 2015 to show medium supportiveness and very low toxicity when compared to other subreddits (see a [hackerfall post](https://hackerfall.com/story/study-and-interactive-visualization-of-toxicity-in), [thecut.com write-up](https://www.thecut.com/2015/03/interactive-chart-of-reddits-toxicity.html) and supporting [data](https://chart-studio.plotly.com/~bsbell21/210/toxicity-vs-supportiveness-by-subreddit/#data)). Meanwhile, the [r/AskHistorians rules](https://www.reddit.com/r/AskHistorians/wiki/rules) mention that the admins will not tolerate "_racism, sexism, or any other forms of bigotry_". However, further analysis of whether and to what extent these rules reduce toxicity is still needed. We also note that given the audience of the Reddit website which is more broadly used in the US and Europe, the answers will likely present a Western perspectives, which is particularly important to note when dealing with historical topics. ### Other Known Limitations The answers provided in the dataset are represent the opinion of Reddit users. While these communities strive to be helpful, they should not be considered to represent a ground truth. ## Additional Information ### Dataset Curators The dataset was initially created by Angela Fan, Ethan Perez, Yacine Jernite, Jason Weston, Michael Auli, and David Grangier, during work done at Facebook AI Research (FAIR). ### Licensing Information The licensing status of the dataset hinges on the legal status of the [Pushshift.io](https://files.pushshift.io/reddit/) data which is unclear. ### Citation Information ``` @inproceedings{eli5_lfqa, author = {Angela Fan and Yacine Jernite and Ethan Perez and David Grangier and Jason Weston and Michael Auli}, editor = {Anna Korhonen and David R. Traum and Llu{\'{\i}}s M{\`{a}}rquez}, title = {{ELI5:} Long Form Question Answering}, booktitle = {Proceedings of the 57th Conference of the Association for Computational Linguistics, {ACL} 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers}, pages = {3558--3567}, publisher = {Association for Computational Linguistics}, year = {2019}, url = {https://doi.org/10.18653/v1/p19-1346}, doi = {10.18653/v1/p19-1346} } ``` ### Contributions Thanks to [@lewtun](https://github.com/lewtun), [@lhoestq](https://github.com/lhoestq), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@yjernite](https://github.com/yjernite) for adding this dataset.
rezacsedu/bn_hate_speech
rezacsedu
2024-01-10T10:29:39Z
100
2
[ "task_categories:text-classification", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:bn", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2004.07807", "region:us", "hate-speech-topic-classification" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced - expert-generated language_creators: - found language: - bn license: - mit multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification task_ids: [] paperswithcode_id: bengali-hate-speech pretty_name: Bengali Hate Speech Dataset tags: - hate-speech-topic-classification dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': Personal '1': Political '2': Religious '3': Geopolitical '4': Gender abusive splits: - name: train num_bytes: 972631 num_examples: 3418 download_size: 389814 dataset_size: 972631 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for Bengali Hate Speech Dataset ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Bengali Hate Speech Dataset](https://github.com/rezacsedu/Bengali-Hate-Speech-Dataset) - **Repository:** [Bengali Hate Speech Dataset](https://github.com/rezacsedu/Bengali-Hate-Speech-Dataset) - **Paper:** [Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network](https://arxiv.org/abs/2004.07807) - **Point of Contact:** [Md. Rezaul Karim]([email protected]) ### Dataset Summary The Bengali Hate Speech Dataset is a Bengali-language dataset of news articles collected from various Bengali media sources and categorized based on the type of hate in the text. The dataset was created to provide greater support for under-resourced languages like Bengali on NLP tasks, and serves as a benchmark for multiple types of classification tasks. ### Supported Tasks and Leaderboards * `topic classification`: The dataset can be used to train a Multichannel Convolutional-LSTM for classifying different types of hate speech. The model performance can be measured by its F1 score. ### Languages The text in the dataset is in Bengali and the associated BCP-47 code is `bn`. ## Dataset Structure ### Data Instances A data instance takes the form of a news article and its associated label. 🚨 Beware that the following example contains extremely offensive content! An example looks like this: ``` {"text": "রেন্ডিয়াকে পৃথীবির মানচিএ থেকে মুচে ফেলতে হবে", "label": "Geopolitical"} ``` ### Data Fields * `text`: the text of the Bengali news article * `label`: one of `Geopolitical`, `Personal`, `Political`, `Religious`, or `Gender abusive` indicating the type of hate speech ### Data Splits The dataset has 3418 examples. ## Dataset Creation ### Curation Rationale Under-resourced languages like Bengali lack supporting resources that languages like English have. This dataset was collected from multiple Bengali news sources to provide several classification benchmarks for hate speech detection, document classification and sentiment analysis. ### Source Data #### Initial Data Collection and Normalization Bengali articles were collected from a Bengali Wikipedia dump, Bengali news articles, news dumps of TV channels, books, blogs, sports portal and social media. Emphasis was placed on Facebook pages and newspaper sources because they have about 50 million followers and is a common source of opinion and hate speech. The full dataset consists of 250 million articles and is currently being prepared. This is a subset of the full dataset. #### Who are the source language producers? The source language producers are Bengali authors and users who interact with these various forms of Bengali media. ### Annotations #### Annotation process The data was annotated by manually identifying freqently occurring terms in texts containing hate speech and references to specific entities. The authors also prepared normalized frequency vectors of 175 abusive terms that are commonly used to express hate in Bengali. A hate label is assigned if at least one of these terms exists in the text. Annotator's were provided with unbiased text only contents to make the decision. Non-hate statements were removed from the list and the category of hate was further divided into political, personal, gender abusive, geopolitical and religious. To reduce possible bias, each label was assigned based on a majority voting on the annotator's opinions and Cohen's Kappa was computed to measure inter-annotator agreement. #### Who are the annotators? Three native Bengali speakers and two linguists annotated the dataset which was then reviewed and validated by three experts (one South Asian linguist and two native speakers). ### Personal and Sensitive Information The dataset contains very sensitive and highly offensive comments in a religious, political and gendered context. Some of the comments are directed towards contemporary public figures like politicians, religious leaders, celebrities and athletes. ## Considerations for Using the Data ### Social Impact of Dataset The purpose of the dataset is to improve hate speech detection in Bengali. The growth of social media has enabled people to express hate freely online and there has been a lot of focus on detecting hate speech for highly resourced languages like English. The use of hate speech is pervasive, like any other major language, which can have serious and deadly consequences. Failure to react to hate speech renders targeted minorities more vulnerable to attack and it can also create indifference towards their treatment from majority populations. ### Discussion of Biases The dataset was collected using a bootstrapping approach. An initial search was made for specific types of texts, articles and tweets containing common harassment directed at targeting characteristics. As a result, this dataset contains **extremely** offensive content that is disturbing. In addition, Facebook pages and newspaper sources were emphasized because they are well-known for having hate and harassment issues. ### Other Known Limitations The dataset contains racist, sexist, homophobic and offensive comments. It is collected and annotated for research related purposes only. ## Additional Information ### Dataset Curators The dataset was curated by Md. Rezaul Karim, Sumon Kanti Dey, Bharathi Raja Chakravarthi, John McCrae and Michael Cochez. ### Licensing Information This dataset is licensed under the MIT License. ### Citation Information ``` @inproceedings{karim2020BengaliNLP, title={Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network}, author={Karim, Md. Rezaul and Chakravarti, Bharathi Raja and P. McCrae, John and Cochez, Michael}, booktitle={7th IEEE International Conference on Data Science and Advanced Analytics (IEEE DSAA,2020)}, publisher={IEEE}, year={2020} } ``` ### Contributions Thanks to [@stevhliu](https://github.com/stevhliu) for adding this dataset.
spyysalo/bc2gm_corpus
spyysalo
2024-01-10T10:03:04Z
400
10
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "token-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - token-classification task_ids: - named-entity-recognition pretty_name: Bc2GmCorpus dataset_info: config_name: bc2gm_corpus features: - name: id dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-GENE '2': I-GENE splits: - name: train num_bytes: 6095123 num_examples: 12500 - name: validation num_bytes: 1215919 num_examples: 2500 - name: test num_bytes: 2454589 num_examples: 5000 download_size: 2154630 dataset_size: 9765631 configs: - config_name: bc2gm_corpus data_files: - split: train path: bc2gm_corpus/train-* - split: validation path: bc2gm_corpus/validation-* - split: test path: bc2gm_corpus/test-* default: true --- # Dataset Card for bc2gm_corpus ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Github](https://github.com/spyysalo/bc2gm-corpus/) - **Repository:** [Github](https://github.com/spyysalo/bc2gm-corpus/) - **Paper:** [NCBI](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559986/) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields - `id`: Sentence identifier. - `tokens`: Array of tokens composing a sentence. - `ner_tags`: Array of tags, where `0` indicates no disease mentioned, `1` signals the first token of a disease and `2` the subsequent disease tokens. ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@mahajandiwakar](https://github.com/mahajandiwakar) for adding this dataset.
legacy-datasets/banking77
legacy-datasets
2024-01-10T08:23:17Z
3,128
48
[ "task_categories:text-classification", "task_ids:intent-classification", "task_ids:multi-class-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2003.04807", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - intent-classification - multi-class-classification pretty_name: BANKING77 dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': activate_my_card '1': age_limit '2': apple_pay_or_google_pay '3': atm_support '4': automatic_top_up '5': balance_not_updated_after_bank_transfer '6': balance_not_updated_after_cheque_or_cash_deposit '7': beneficiary_not_allowed '8': cancel_transfer '9': card_about_to_expire '10': card_acceptance '11': card_arrival '12': card_delivery_estimate '13': card_linking '14': card_not_working '15': card_payment_fee_charged '16': card_payment_not_recognised '17': card_payment_wrong_exchange_rate '18': card_swallowed '19': cash_withdrawal_charge '20': cash_withdrawal_not_recognised '21': change_pin '22': compromised_card '23': contactless_not_working '24': country_support '25': declined_card_payment '26': declined_cash_withdrawal '27': declined_transfer '28': direct_debit_payment_not_recognised '29': disposable_card_limits '30': edit_personal_details '31': exchange_charge '32': exchange_rate '33': exchange_via_app '34': extra_charge_on_statement '35': failed_transfer '36': fiat_currency_support '37': get_disposable_virtual_card '38': get_physical_card '39': getting_spare_card '40': getting_virtual_card '41': lost_or_stolen_card '42': lost_or_stolen_phone '43': order_physical_card '44': passcode_forgotten '45': pending_card_payment '46': pending_cash_withdrawal '47': pending_top_up '48': pending_transfer '49': pin_blocked '50': receiving_money '51': Refund_not_showing_up '52': request_refund '53': reverted_card_payment? '54': supported_cards_and_currencies '55': terminate_account '56': top_up_by_bank_transfer_charge '57': top_up_by_card_charge '58': top_up_by_cash_or_cheque '59': top_up_failed '60': top_up_limits '61': top_up_reverted '62': topping_up_by_card '63': transaction_charged_twice '64': transfer_fee_charged '65': transfer_into_account '66': transfer_not_received_by_recipient '67': transfer_timing '68': unable_to_verify_identity '69': verify_my_identity '70': verify_source_of_funds '71': verify_top_up '72': virtual_card_not_working '73': visa_or_mastercard '74': why_verify_identity '75': wrong_amount_of_cash_received '76': wrong_exchange_rate_for_cash_withdrawal splits: - name: train num_bytes: 715028 num_examples: 10003 - name: test num_bytes: 204010 num_examples: 3080 download_size: 392040 dataset_size: 919038 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* train-eval-index: - config: default task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for BANKING77 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Github](https://github.com/PolyAI-LDN/task-specific-datasets) - **Repository:** [Github](https://github.com/PolyAI-LDN/task-specific-datasets) - **Paper:** [ArXiv](https://arxiv.org/abs/2003.04807) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary <div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400"> <p><b>Deprecated:</b> Dataset "banking77" is deprecated and will be deleted. Use "<a href="https://huggingface.co/datasets/PolyAI/banking77">PolyAI/banking77</a>" instead.</p> </div> Dataset composed of online banking queries annotated with their corresponding intents. BANKING77 dataset provides a very fine-grained set of intents in a banking domain. It comprises 13,083 customer service queries labeled with 77 intents. It focuses on fine-grained single-domain intent detection. ### Supported Tasks and Leaderboards Intent classification, intent detection ### Languages English ## Dataset Structure ### Data Instances An example of 'train' looks as follows: ``` { 'label': 11, # integer label corresponding to "card_arrival" intent 'text': 'I am still waiting on my card?' } ``` ### Data Fields - `text`: a string feature. - `label`: One of classification labels (0-76) corresponding to unique intents. Intent names are mapped to `label` in the following way: | label | intent (category) | |---:|:-------------------------------------------------| | 0 | activate_my_card | | 1 | age_limit | | 2 | apple_pay_or_google_pay | | 3 | atm_support | | 4 | automatic_top_up | | 5 | balance_not_updated_after_bank_transfer | | 6 | balance_not_updated_after_cheque_or_cash_deposit | | 7 | beneficiary_not_allowed | | 8 | cancel_transfer | | 9 | card_about_to_expire | | 10 | card_acceptance | | 11 | card_arrival | | 12 | card_delivery_estimate | | 13 | card_linking | | 14 | card_not_working | | 15 | card_payment_fee_charged | | 16 | card_payment_not_recognised | | 17 | card_payment_wrong_exchange_rate | | 18 | card_swallowed | | 19 | cash_withdrawal_charge | | 20 | cash_withdrawal_not_recognised | | 21 | change_pin | | 22 | compromised_card | | 23 | contactless_not_working | | 24 | country_support | | 25 | declined_card_payment | | 26 | declined_cash_withdrawal | | 27 | declined_transfer | | 28 | direct_debit_payment_not_recognised | | 29 | disposable_card_limits | | 30 | edit_personal_details | | 31 | exchange_charge | | 32 | exchange_rate | | 33 | exchange_via_app | | 34 | extra_charge_on_statement | | 35 | failed_transfer | | 36 | fiat_currency_support | | 37 | get_disposable_virtual_card | | 38 | get_physical_card | | 39 | getting_spare_card | | 40 | getting_virtual_card | | 41 | lost_or_stolen_card | | 42 | lost_or_stolen_phone | | 43 | order_physical_card | | 44 | passcode_forgotten | | 45 | pending_card_payment | | 46 | pending_cash_withdrawal | | 47 | pending_top_up | | 48 | pending_transfer | | 49 | pin_blocked | | 50 | receiving_money | | 51 | Refund_not_showing_up | | 52 | request_refund | | 53 | reverted_card_payment? | | 54 | supported_cards_and_currencies | | 55 | terminate_account | | 56 | top_up_by_bank_transfer_charge | | 57 | top_up_by_card_charge | | 58 | top_up_by_cash_or_cheque | | 59 | top_up_failed | | 60 | top_up_limits | | 61 | top_up_reverted | | 62 | topping_up_by_card | | 63 | transaction_charged_twice | | 64 | transfer_fee_charged | | 65 | transfer_into_account | | 66 | transfer_not_received_by_recipient | | 67 | transfer_timing | | 68 | unable_to_verify_identity | | 69 | verify_my_identity | | 70 | verify_source_of_funds | | 71 | verify_top_up | | 72 | virtual_card_not_working | | 73 | visa_or_mastercard | | 74 | why_verify_identity | | 75 | wrong_amount_of_cash_received | | 76 | wrong_exchange_rate_for_cash_withdrawal | ### Data Splits | Dataset statistics | Train | Test | | --- | --- | --- | | Number of examples | 10 003 | 3 080 | | Average character length | 59.5 | 54.2 | | Number of intents | 77 | 77 | | Number of domains | 1 | 1 | ## Dataset Creation ### Curation Rationale Previous intent detection datasets such as Web Apps, Ask Ubuntu, the Chatbot Corpus or SNIPS are limited to small number of classes (<10), which oversimplifies the intent detection task and does not emulate the true environment of commercial systems. Although there exist large scale *multi-domain* datasets ([HWU64](https://github.com/xliuhw/NLU-Evaluation-Data) and [CLINC150](https://github.com/clinc/oos-eval)), the examples per each domain may not sufficiently capture the full complexity of each domain as encountered "in the wild". This dataset tries to fill the gap and provides a very fine-grained set of intents in a *single-domain* i.e. **banking**. Its focus on fine-grained single-domain intent detection makes it complementary to the other two multi-domain datasets. ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process The dataset does not contain any additional annotations. #### Who are the annotators? [N/A] ### Personal and Sensitive Information [N/A] ## Considerations for Using the Data ### Social Impact of Dataset The purpose of this dataset it to help develop better intent detection systems. Any comprehensive intent detection evaluation should involve both coarser-grained multi-domain datasets and a fine-grained single-domain dataset such as BANKING77. ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [PolyAI](https://github.com/PolyAI-LDN) ### Licensing Information Creative Commons Attribution 4.0 International ### Citation Information ``` @inproceedings{Casanueva2020, author = {I{\~{n}}igo Casanueva and Tadas Temcinas and Daniela Gerz and Matthew Henderson and Ivan Vulic}, title = {Efficient Intent Detection with Dual Sentence Encoders}, year = {2020}, month = {mar}, note = {Data available at https://github.com/PolyAI-LDN/task-specific-datasets}, url = {https://arxiv.org/abs/2003.04807}, booktitle = {Proceedings of the 2nd Workshop on NLP for ConvAI - ACL 2020} } ``` ### Contributions Thanks to [@dkajtoch](https://github.com/dkajtoch) for adding this dataset.
tuanphong/ascent_kb
tuanphong
2024-01-09T14:44:26Z
112
3
[ "task_categories:other", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2011.00905", "region:us", "knowledge-base" ]
[ "other" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 1M<n<10M source_datasets: - original task_categories: - other task_ids: [] paperswithcode_id: ascentkb pretty_name: Ascent KB tags: - knowledge-base dataset_info: - config_name: canonical features: - name: arg1 dtype: string - name: rel dtype: string - name: arg2 dtype: string - name: support dtype: int64 - name: facets list: - name: value dtype: string - name: type dtype: string - name: support dtype: int64 - name: source_sentences list: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 2976665740 num_examples: 8904060 download_size: 898478552 dataset_size: 2976665740 - config_name: open features: - name: subject dtype: string - name: predicate dtype: string - name: object dtype: string - name: support dtype: int64 - name: facets list: - name: value dtype: string - name: type dtype: string - name: support dtype: int64 - name: source_sentences list: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 2882646222 num_examples: 8904060 download_size: 900156754 dataset_size: 2882646222 configs: - config_name: canonical data_files: - split: train path: canonical/train-* default: true - config_name: open data_files: - split: train path: open/train-* --- # Dataset Card for Ascent KB ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://ascent.mpi-inf.mpg.de/ - **Repository:** https://github.com/phongnt570/ascent - **Paper:** https://arxiv.org/abs/2011.00905 - **Point of Contact:** http://tuan-phong.com ### Dataset Summary This dataset contains 8.9M commonsense assertions extracted by the Ascent pipeline developed at the [Max Planck Institute for Informatics](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/). The focus of this dataset is on everyday concepts such as *elephant*, *car*, *laptop*, etc. The current version of Ascent KB (v1.0.0) is approximately **19 times larger than ConceptNet** (note that, in this comparison, non-commonsense knowledge in ConceptNet such as lexical relations is excluded). For more details, take a look at [the research paper](https://arxiv.org/abs/2011.00905) and [the website](https://ascent.mpi-inf.mpg.de). ### Supported Tasks and Leaderboards The dataset can be used in a wide range of downstream tasks such as commonsense question answering or dialogue systems. ### Languages The dataset is in English. ## Dataset Structure ### Data Instances There are two configurations available for this dataset: 1. `canonical` (default): This part contains `<arg1 ; rel ; arg2>` assertions where the relations (`rel`) were mapped to [ConceptNet relations](https://github.com/commonsense/conceptnet5/wiki/Relations) with slight modifications: - Introducing 2 new relations: `/r/HasSubgroup`, `/r/HasAspect`. - All `/r/HasA` relations were replaced with `/r/HasAspect`. This is motivated by the [ATOMIC-2020](https://allenai.org/data/atomic-2020) schema, although they grouped all `/r/HasA` and `/r/HasProperty` into `/r/HasProperty`. - The `/r/UsedFor` relation was replaced with `/r/ObjectUse` which is broader (could be either _"used for"_, _"used in"_, or _"used as"_, ect.). This is also taken from ATOMIC-2020. 2. `open`: This part contains open assertions of the form `<subject ; predicate ; object>` extracted directly from web contents. This is the original form of the `canonical` triples. In both configurations, each assertion is equipped with extra information including: a set of semantic `facets` (e.g., *LOCATION*, *TEMPORAL*, etc.), its `support` (i.e., number of occurrences), and a list of `source_sentences`. An example row in the `canonical` configuration: ```JSON { "arg1": "elephant", "rel": "/r/HasProperty", "arg2": "intelligent", "support": 15, "facets": [ { "value": "extremely", "type": "DEGREE", "support": 11 } ], "source_sentences": [ { "text": "Elephants are extremely intelligent animals.", "source": "https://www.softschools.com/facts/animals/asian_elephant_facts/2310/" }, { "text": "Elephants are extremely intelligent creatures and an elephant's brain can weigh as much as 4-6 kg.", "source": "https://www.elephantsforafrica.org/elephant-facts/" } ] } ``` ### Data Fields - **For `canonical` configuration** - `arg1`: the first argument to the relationship, e.g., *elephant* - `rel`: the canonical relation, e.g., */r/HasProperty* - `arg2`: the second argument to the relationship, e.g., *intelligence* - `support`: the number of occurrences of the assertion, e.g., *15* - `facets`: an array of semantic facets, each contains - `value`: facet value, e.g., *extremely* - `type`: facet type, e.g., *DEGREE* - `support`: the number of occurrences of the facet, e.g., *11* - `source_sentences`: an array of source sentences from which the assertion was extracted, each contains - `text`: the raw text of the sentence - `source`: the URL to its parent document - **For `open` configuration** - The fields of this configuration are the same as the `canonical` configuration's, except that the (`arg1`, `rel`, `arg2`) fields are replaced with the (`subject`, `predicate`, `object`) fields which are free text phrases extracted directly from the source sentences using an Open Information Extraction (OpenIE) tool. ### Data Splits There are no splits. All data points come to a default split called `train`. ## Dataset Creation ### Curation Rationale The commonsense knowledge base was created to assist in development of robust and reliable AI. ### Source Data #### Initial Data Collection and Normalization Texts were collected from the web using the Bing Search API, and went through various cleaning steps before being processed by an OpenIE tool to get open assertions. The assertions were then grouped into semantically equivalent clusters. Take a look at the research paper for more details. #### Who are the source language producers? Web users. ### Annotations #### Annotation process None. #### Who are the annotators? None. ### Personal and Sensitive Information Unknown. ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators The knowledge base has been developed by researchers at the [Max Planck Institute for Informatics](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/). Contact [Tuan-Phong Nguyen](http://tuan-phong.com) in case of questions and comments. ### Licensing Information [The Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/) ### Citation Information ``` @InProceedings{nguyen2021www, title={Advanced Semantics for Commonsense Knowledge Extraction}, author={Nguyen, Tuan-Phong and Razniewski, Simon and Weikum, Gerhard}, year={2021}, booktitle={The Web Conference 2021}, } ``` ### Contributions Thanks to [@phongnt570](https://github.com/phongnt570) for adding this dataset.
sealuzh/app_reviews
sealuzh
2024-01-09T12:30:17Z
857
26
[ "task_categories:text-classification", "task_ids:text-scoring", "task_ids:sentiment-scoring", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - unknown multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification task_ids: - text-scoring - sentiment-scoring pretty_name: AppReviews dataset_info: features: - name: package_name dtype: string - name: review dtype: string - name: date dtype: string - name: star dtype: int8 splits: - name: train num_bytes: 32768731 num_examples: 288065 download_size: 13207727 dataset_size: 32768731 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for [Dataset Name] ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Home Page](https://github.com/sealuzh/user_quality) - **Repository:** [Repo Link](https://github.com/sealuzh/user_quality) - **Paper:** [Link](https://giograno.me/assets/pdf/workshop/wama17.pdf) - **Leaderboard: - **Point of Contact:** [Darshan Gandhi]([email protected]) ### Dataset Summary It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches) ### Supported Tasks and Leaderboards The dataset we provide comprises 395 different apps from F-Droid repository, including code quality indicators of 629 versions of these apps. It also encloses app reviews related to each of these versions, which have been automatically categorized classifying types of user feedback from a software maintenance and evolution perspective. ### Languages The dataset is a monolingual dataset which has the messages English. ## Dataset Structure ### Data Instances The dataset consists of a message in English. {'package_name': 'com.mantz_it.rfanalyzer', 'review': "Great app! The new version now works on my Bravia Android TV which is great as it's right by my rooftop aerial cable. The scan feature would be useful...any ETA on when this will be available? Also the option to import a list of bookmarks e.g. from a simple properties file would be useful.", 'date': 'October 12 2016', 'star': 4} ### Data Fields * package_name : Name of the Software Application Package * review : Message of the user * date : date when the user posted the review * star : rating provied by the user for the application ### Data Splits There is training data, with a total of : 288065 ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset With the help of this dataset one can try to understand more about software applications and what are the views and opinions of the users about them. This helps to understand more about which type of software applications are prefeered by the users and how do these applications facilitate the user to help them solve their problems and issues. ### Discussion of Biases The reviews are only for applications which are in the open-source software applications, the other sectors have not been considered here ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Giovanni Grano - (University of Zurich), Sebastiano Panichella - (University of Zurich), Andrea di Sorbo - (University of Sannio) ### Licensing Information [More Information Needed] ### Citation Information @InProceedings{Zurich Open Repository and Archive:dataset, title = {Software Applications User Reviews}, authors={Grano, Giovanni; Di Sorbo, Andrea; Mercaldo, Francesco; Visaggio, Corrado A; Canfora, Gerardo; Panichella, Sebastiano}, year={2017} } ### Contributions Thanks to [@darshan-gandhi](https://github.com/darshan-gandhi) for adding this dataset.
sewon/ambig_qa
sewon
2024-01-09T12:27:07Z
910
14
[ "task_categories:question-answering", "task_ids:open-domain-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended|natural_questions", "source_datasets:original", "language:en", "license:cc-by-sa-3.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2004.10645", "region:us" ]
[ "question-answering" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - cc-by-sa-3.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|natural_questions - original task_categories: - question-answering task_ids: - open-domain-qa paperswithcode_id: ambigqa pretty_name: 'AmbigQA: Answering Ambiguous Open-domain Questions' dataset_info: - config_name: full features: - name: id dtype: string - name: question dtype: string - name: annotations sequence: - name: type dtype: string - name: answer sequence: string - name: qaPairs sequence: - name: question dtype: string - name: answer sequence: string - name: viewed_doc_titles sequence: string - name: used_queries sequence: - name: query dtype: string - name: results sequence: - name: title dtype: string - name: snippet dtype: string - name: nq_answer sequence: string - name: nq_doc_title dtype: string splits: - name: train num_bytes: 43538533 num_examples: 10036 - name: validation num_bytes: 15383268 num_examples: 2002 download_size: 30674462 dataset_size: 58921801 - config_name: light features: - name: id dtype: string - name: question dtype: string - name: annotations sequence: - name: type dtype: string - name: answer sequence: string - name: qaPairs sequence: - name: question dtype: string - name: answer sequence: string splits: - name: train num_bytes: 2739628 num_examples: 10036 - name: validation num_bytes: 805756 num_examples: 2002 download_size: 1777867 dataset_size: 3545384 configs: - config_name: full data_files: - split: train path: full/train-* - split: validation path: full/validation-* default: true - config_name: light data_files: - split: train path: light/train-* - split: validation path: light/validation-* --- # Dataset Card for AmbigQA: Answering Ambiguous Open-domain Questions ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - [**Homepage:**](https://nlp.cs.washington.edu/ambigqa/) - [**Repository:**](https://github.com/shmsw25/AmbigQA) - [**Paper:**](https://arxiv.org/pdf/2004.10645.pdf) ### Dataset Summary AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus. AMBIGNQ, a dataset with 14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity. We provide two distributions of our new dataset AmbigNQ: a `full` version with all annotation metadata and a `light` version with only inputs and outputs. ### Supported Tasks and Leaderboards `question-answering` ### Languages English ## Dataset Structure ### Data Instances An example from the data set looks as follows: ``` {'annotations': {'answer': [[]], 'qaPairs': [{'answer': [['April 19, 1987'], ['December 17, 1989']], 'question': ['When did the Simpsons first air on television as an animated short on the Tracey Ullman Show?', 'When did the Simpsons first air as a half-hour prime time show?']}], 'type': ['multipleQAs']}, 'id': '-4469503464110108318', 'nq_answer': ['December 17 , 1989'], 'nq_doc_title': 'The Simpsons', 'question': 'When did the simpsons first air on television?', 'used_queries': {'query': ['When did the simpsons first air on television?'], 'results': [{'snippet': ['The <b>Simpsons</b> is an American animated <b>television</b> sitcom starring the animated \nSimpson family, ... Since its <b>debut</b> on December 17, 1989, the show <b>has</b> \nbroadcast 673 episodes and its 30th season started ... The <b>Simpsons first</b> season \n<b>was</b> the Fox network&#39;s <b>first TV</b> series to rank among a season&#39;s top 30 highest-\nrated shows.', 'The <b>Simpsons</b> is an American animated sitcom created by Matt Groening for the \nFox ... Since its <b>debut</b> on December 17, 1989, 674 episodes of The <b>Simpsons</b> \nhave been broadcast. ... When producer James L. Brooks <b>was</b> working on the \n<b>television</b> variety show The Tracey Ullman Show, he decided to include small \nanimated&nbsp;...', '... in shorts from The Tracey Ullman Show as their <b>television debut</b> in 1987. The \n<b>Simpsons</b> shorts are a series of animated shorts that <b>aired</b> as a recurring \nsegment on Fox variety <b>television</b> series The Tracey ... The final short to <b>air was</b> &quot;\n<b>TV Simpsons</b>&quot;, originally airing on May 14, 1989. The <b>Simpsons</b> later debuted on\n&nbsp;...', 'The <b>first</b> season of the American animated <b>television</b> series The <b>Simpsons</b> \noriginally <b>aired</b> on the Fox network between December 17, 1989, and May 13, \n1990, beginning with the Christmas special &quot;<b>Simpsons</b> Roasting on an Open Fire\n&quot;. The executive producers for the <b>first</b> production season <b>were</b> Matt Groening,&nbsp;...', 'The <b>Simpsons</b> is an American animated <b>television</b> sitcom created by Matt \nGroening for the Fox ... Since its <b>debut</b> on December 17, 1989, The <b>Simpsons</b> \n<b>has</b> broadcast 674 episodes. The show holds several American <b>television</b> \nlongevity&nbsp;...', 'The opening sequence of the American animated <b>television</b> series The <b>Simpsons</b> \nis among the most popular opening sequences in <b>television</b> and is accompanied \nby one of <b>television&#39;s</b> most recognizable theme songs. The <b>first</b> episode to use \nthis intro <b>was</b> the series&#39; second episode &quot;Bart the ... <b>was</b> the <b>first</b> episode of The \n<b>Simpsons</b> to <b>air</b> in 720p high-definition <b>television</b>,&nbsp;...', '&quot;<b>Simpsons</b> Roasting on an Open Fire&quot;, titled onscreen as &quot;The <b>Simpsons</b> \nChristmas Special&quot;, is the premiere episode of the American animated <b>TV</b> series \nThe <b>Simpsons</b>, ... The show <b>was</b> originally intended to <b>debut</b> earlier in 1989 with &quot;\nSome Enchanted Evening&quot;, but due to animation problems with that episode, the \nshow&nbsp;...', '&quot;Stark Raving Dad&quot; is the <b>first</b> episode of the third season of the American \nanimated <b>television</b> series The <b>Simpsons</b>. It <b>first aired</b> on the Fox network in the \nUnited States on September 19, 1991. ... The <b>Simpsons was</b> the second highest \nrated show on Fox the week it <b>aired</b>, behind Married... with Children. &quot;Stark \nRaving Dad,&quot;&nbsp;...', 'The <b>Simpsons</b>&#39; twentieth season <b>aired</b> on Fox from September 28, 2008 to May \n17, 2009. With this season, the show tied Gunsmoke as the longest-running \nAmerican primetime <b>television</b> series in terms of total number ... It <b>was</b> the <b>first</b>-\never episode of the show to <b>air</b> in Europe before being seen in the United States.', 'The animated <b>TV</b> show The <b>Simpsons</b> is an American English language \nanimated sitcom which ... The <b>Simpsons was</b> dubbed for the <b>first</b> time in Punjabi \nand <b>aired</b> on Geo <b>TV</b> in Pakistan. The name of the localised Punjabi version is \nTedi Sim&nbsp;...'], 'title': ['History of The Simpsons', 'The Simpsons', 'The Simpsons shorts', 'The Simpsons (season 1)', 'List of The Simpsons episodes', 'The Simpsons opening sequence', 'Simpsons Roasting on an Open Fire', 'Stark Raving Dad', 'The Simpsons (season 20)', 'Non-English versions of The Simpsons']}]}, 'viewed_doc_titles': ['The Simpsons']} ``` ### Data Fields Full ``` {'id': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None), 'annotations': Sequence(feature={'type': Value(dtype='string', id=None), 'answer': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'qaPairs': Sequence(feature={'question': Value(dtype='string', id=None), 'answer': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}, length=-1, id=None)}, length=-1, id=None), 'viewed_doc_titles': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'used_queries': Sequence(feature={'query': Value(dtype='string', id=None), 'results': Sequence(feature={'title': Value(dtype='string', id=None), 'snippet': Value(dtype='string', id=None)}, length=-1, id=None)}, length=-1, id=None), 'nq_answer': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'nq_doc_title': Value(dtype='string', id=None)} ``` In the original data format `annotations` have different keys depending on the `type` field = `singleAnswer` or `multipleQAs`. But this implementation uses an empty list `[]` for the unavailable keys please refer to Dataset Contents(https://github.com/shmsw25/AmbigQA#dataset-contents) for more details. ``` for example in train_light_dataset: for i,t in enumerate(example['annotations']['type']): if t =='singleAnswer': # use the example['annotations']['answer'][i] # example['annotations']['qaPairs'][i] - > is [] print(example['annotations']['answer'][i]) else: # use the example['annotations']['qaPairs'][i] # example['annotations']['answer'][i] - > is [] print(example['annotations']['qaPairs'][i]) ``` please refer to Dataset Contents(https://github.com/shmsw25/AmbigQA#dataset-contents) for more details. Light version only has `id`, `question`, `annotations` fields ### Data Splits - train: 10036 - validation: 2002 ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data - Wikipedia - NQ-open: ``` @article{ kwiatkowski2019natural, title={ Natural questions: a benchmark for question answering research}, author={ Kwiatkowski, Tom and Palomaki, Jennimaria and Redfield, Olivia and Collins, Michael and Parikh, Ankur and Alberti, Chris and Epstein, Danielle and Polosukhin, Illia and Devlin, Jacob and Lee, Kenton and others }, journal={ Transactions of the Association for Computational Linguistics }, year={ 2019 } } ``` #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [CC BY-SA 3.0](http://creativecommons.org/licenses/by-sa/3.0/) ### Citation Information ``` @inproceedings{ min2020ambigqa, title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions }, author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke }, booktitle={ EMNLP }, year={2020} } ``` ### Contributions Thanks to [@cceyda](https://github.com/cceyda) for adding this dataset.
wikimedia/wikipedia
wikimedia
2024-01-09T09:40:51Z
99,568
790
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "language:ab", "language:ace", "language:ady", "language:af", "language:alt", "language:am", "language:ami", "language:an", "language:ang", "language:anp", "language:ar", "language:arc", "language:ary", "language:arz", "language:as", "language:ast", "language:atj", "language:av", "language:avk", "language:awa", "language:ay", "language:az", "language:azb", "language:ba", "language:ban", "language:bar", "language:bbc", "language:bcl", "language:be", "language:bg", "language:bh", "language:bi", "language:bjn", "language:blk", "language:bm", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bug", "language:bxr", "language:ca", "language:cbk", "language:cdo", "language:ce", "language:ceb", "language:ch", "language:chr", "language:chy", "language:ckb", "language:co", "language:cr", "language:crh", "language:cs", "language:csb", "language:cu", "language:cv", "language:cy", "language:da", "language:dag", "language:de", "language:dga", "language:din", "language:diq", "language:dsb", "language:dty", "language:dv", "language:dz", "language:ee", "language:el", "language:eml", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:ext", "language:fa", "language:fat", "language:ff", "language:fi", "language:fj", "language:fo", "language:fon", "language:fr", "language:frp", "language:frr", "language:fur", "language:fy", "language:ga", "language:gag", "language:gan", "language:gcr", "language:gd", "language:gl", "language:glk", "language:gn", "language:gom", "language:gor", "language:got", "language:gpe", "language:gsw", "language:gu", "language:guc", "language:gur", "language:guw", "language:gv", "language:ha", "language:hak", "language:haw", "language:hbs", "language:he", "language:hi", "language:hif", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:hyw", "language:ia", "language:id", "language:ie", "language:ig", "language:ik", "language:ilo", "language:inh", "language:io", "language:is", "language:it", "language:iu", "language:ja", "language:jam", "language:jbo", "language:jv", "language:ka", "language:kaa", "language:kab", "language:kbd", "language:kbp", "language:kcg", "language:kg", "language:ki", "language:kk", "language:kl", "language:km", "language:kn", "language:ko", "language:koi", "language:krc", "language:ks", "language:ksh", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lad", "language:lb", "language:lbe", "language:lez", "language:lfn", "language:lg", "language:li", "language:lij", "language:lld", "language:lmo", "language:ln", "language:lo", "language:lt", "language:ltg", "language:lv", "language:lzh", "language:mad", "language:mai", "language:map", "language:mdf", "language:mg", "language:mhr", "language:mi", "language:min", "language:mk", "language:ml", "language:mn", "language:mni", "language:mnw", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nan", "language:nap", "language:nds", "language:ne", "language:new", "language:nia", "language:nl", "language:nn", "language:no", "language:nov", "language:nqo", "language:nrf", "language:nso", "language:nv", "language:ny", "language:oc", "language:olo", "language:om", "language:or", "language:os", "language:pa", "language:pag", "language:pam", "language:pap", "language:pcd", "language:pcm", "language:pdc", "language:pfl", "language:pi", "language:pih", "language:pl", "language:pms", "language:pnb", "language:pnt", "language:ps", "language:pt", "language:pwn", "language:qu", "language:rm", "language:rmy", "language:rn", "language:ro", "language:ru", "language:rue", "language:rup", "language:rw", "language:sa", "language:sah", "language:sat", "language:sc", "language:scn", "language:sco", "language:sd", "language:se", "language:sg", "language:sgs", "language:shi", "language:shn", "language:si", "language:sk", "language:skr", "language:sl", "language:sm", "language:smn", "language:sn", "language:so", "language:sq", "language:sr", "language:srn", "language:ss", "language:st", "language:stq", "language:su", "language:sv", "language:sw", "language:szl", "language:szy", "language:ta", "language:tay", "language:tcy", "language:te", "language:tet", "language:tg", "language:th", "language:ti", "language:tk", "language:tl", "language:tly", "language:tn", "language:to", "language:tpi", "language:tr", "language:trv", "language:ts", "language:tt", "language:tum", "language:tw", "language:ty", "language:tyv", "language:udm", "language:ug", "language:uk", "language:ur", "language:uz", "language:ve", "language:vec", "language:vep", "language:vi", "language:vls", "language:vo", "language:vro", "language:wa", "language:war", "language:wo", "language:wuu", "language:xal", "language:xh", "language:xmf", "language:yi", "language:yo", "language:yue", "language:za", "language:zea", "language:zgh", "language:zh", "language:zu", "license:cc-by-sa-3.0", "license:gfdl", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation", "fill-mask" ]
2022-03-02T23:29:22Z
null
--- language: - ab - ace - ady - af - alt - am - ami - an - ang - anp - ar - arc - ary - arz - as - ast - atj - av - avk - awa - ay - az - azb - ba - ban - bar - bbc - bcl - be - bg - bh - bi - bjn - blk - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk - cdo - ce - ceb - ch - chr - chy - ckb - co - cr - crh - cs - csb - cu - cv - cy - da - dag - de - dga - din - diq - dsb - dty - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - fat - ff - fi - fj - fo - fon - fr - frp - frr - fur - fy - ga - gag - gan - gcr - gd - gl - glk - gn - gom - gor - got - gpe - gsw - gu - guc - gur - guw - gv - ha - hak - haw - hbs - he - hi - hif - hr - hsb - ht - hu - hy - hyw - ia - id - ie - ig - ik - ilo - inh - io - is - it - iu - ja - jam - jbo - jv - ka - kaa - kab - kbd - kbp - kcg - kg - ki - kk - kl - km - kn - ko - koi - krc - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lez - lfn - lg - li - lij - lld - lmo - ln - lo - lt - ltg - lv - lzh - mad - mai - map - mdf - mg - mhr - mi - min - mk - ml - mn - mni - mnw - mr - mrj - ms - mt - mwl - my - myv - mzn - nah - nan - nap - nds - ne - new - nia - nl - nn - 'no' - nov - nqo - nrf - nso - nv - ny - oc - olo - om - or - os - pa - pag - pam - pap - pcd - pcm - pdc - pfl - pi - pih - pl - pms - pnb - pnt - ps - pt - pwn - qu - rm - rmy - rn - ro - ru - rue - rup - rw - sa - sah - sat - sc - scn - sco - sd - se - sg - sgs - shi - shn - si - sk - skr - sl - sm - smn - sn - so - sq - sr - srn - ss - st - stq - su - sv - sw - szl - szy - ta - tay - tcy - te - tet - tg - th - ti - tk - tl - tly - tn - to - tpi - tr - trv - ts - tt - tum - tw - ty - tyv - udm - ug - uk - ur - uz - ve - vec - vep - vi - vls - vo - vro - wa - war - wo - wuu - xal - xh - xmf - yi - yo - yue - za - zea - zgh - zh - zu license: - cc-by-sa-3.0 - gfdl size_categories: - n<1K - 1K<n<10K - 10K<n<100K - 100K<n<1M - 1M<n<10M task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling configs: - config_name: 20231101.ab data_files: - split: train path: 20231101.ab/train-* - config_name: 20231101.ace data_files: - split: train path: 20231101.ace/train-* - config_name: 20231101.ady data_files: - split: train path: 20231101.ady/train-* - config_name: 20231101.af data_files: - split: train path: 20231101.af/train-* - config_name: 20231101.als data_files: - split: train path: 20231101.als/train-* - config_name: 20231101.alt data_files: - split: train path: 20231101.alt/train-* - config_name: 20231101.am data_files: - split: train path: 20231101.am/train-* - config_name: 20231101.ami data_files: - split: train path: 20231101.ami/train-* - config_name: 20231101.an data_files: - split: train path: 20231101.an/train-* - config_name: 20231101.ang data_files: - split: train path: 20231101.ang/train-* - config_name: 20231101.anp data_files: - split: train path: 20231101.anp/train-* - config_name: 20231101.ar data_files: - split: train path: 20231101.ar/train-* - config_name: 20231101.arc data_files: - split: train path: 20231101.arc/train-* - config_name: 20231101.ary data_files: - split: train path: 20231101.ary/train-* - config_name: 20231101.arz data_files: - split: train path: 20231101.arz/train-* - config_name: 20231101.as data_files: - split: train path: 20231101.as/train-* - config_name: 20231101.ast data_files: - split: train path: 20231101.ast/train-* - config_name: 20231101.atj data_files: - split: train path: 20231101.atj/train-* - config_name: 20231101.av data_files: - split: train path: 20231101.av/train-* - config_name: 20231101.avk data_files: - split: train path: 20231101.avk/train-* - config_name: 20231101.awa data_files: - split: train path: 20231101.awa/train-* - config_name: 20231101.ay data_files: - split: train path: 20231101.ay/train-* - config_name: 20231101.az data_files: - split: train path: 20231101.az/train-* - config_name: 20231101.azb data_files: - split: train path: 20231101.azb/train-* - config_name: 20231101.ba data_files: - split: train path: 20231101.ba/train-* - config_name: 20231101.ban data_files: - split: train path: 20231101.ban/train-* - config_name: 20231101.bar data_files: - split: train path: 20231101.bar/train-* - config_name: 20231101.bat-smg data_files: - split: train path: 20231101.bat-smg/train-* - config_name: 20231101.bcl data_files: - split: train path: 20231101.bcl/train-* - config_name: 20231101.be data_files: - split: train path: 20231101.be/train-* - config_name: 20231101.be-x-old data_files: - split: train path: 20231101.be-x-old/train-* - config_name: 20231101.bg data_files: - split: train path: 20231101.bg/train-* - config_name: 20231101.bh data_files: - split: train path: 20231101.bh/train-* - config_name: 20231101.bi data_files: - split: train path: 20231101.bi/train-* - config_name: 20231101.bjn data_files: - split: train path: 20231101.bjn/train-* - config_name: 20231101.blk data_files: - split: train path: 20231101.blk/train-* - config_name: 20231101.bm data_files: - split: train path: 20231101.bm/train-* - config_name: 20231101.bn data_files: - split: train path: 20231101.bn/train-* - config_name: 20231101.bo data_files: - split: train path: 20231101.bo/train-* - config_name: 20231101.bpy data_files: - split: train path: 20231101.bpy/train-* - config_name: 20231101.br data_files: - split: train path: 20231101.br/train-* - config_name: 20231101.bs data_files: - split: train path: 20231101.bs/train-* - config_name: 20231101.bug data_files: - split: train path: 20231101.bug/train-* - config_name: 20231101.bxr data_files: - split: train path: 20231101.bxr/train-* - config_name: 20231101.ca data_files: - split: train path: 20231101.ca/train-* - config_name: 20231101.cbk-zam data_files: - split: train path: 20231101.cbk-zam/train-* - config_name: 20231101.cdo data_files: - split: train path: 20231101.cdo/train-* - config_name: 20231101.ce data_files: - split: train path: 20231101.ce/train-* - config_name: 20231101.ceb data_files: - split: train path: 20231101.ceb/train-* - config_name: 20231101.ch data_files: - split: train path: 20231101.ch/train-* - config_name: 20231101.chr data_files: - split: train path: 20231101.chr/train-* - config_name: 20231101.chy data_files: - split: train path: 20231101.chy/train-* - config_name: 20231101.ckb data_files: - split: train path: 20231101.ckb/train-* - config_name: 20231101.co data_files: - split: train path: 20231101.co/train-* - config_name: 20231101.cr data_files: - split: train path: 20231101.cr/train-* - config_name: 20231101.crh data_files: - split: train path: 20231101.crh/train-* - config_name: 20231101.cs data_files: - split: train path: 20231101.cs/train-* - config_name: 20231101.csb data_files: - split: train path: 20231101.csb/train-* - config_name: 20231101.cu data_files: - split: train path: 20231101.cu/train-* - config_name: 20231101.cv data_files: - split: train path: 20231101.cv/train-* - config_name: 20231101.cy data_files: - split: train path: 20231101.cy/train-* - config_name: 20231101.da data_files: - split: train path: 20231101.da/train-* - config_name: 20231101.dag data_files: - split: train path: 20231101.dag/train-* - config_name: 20231101.de data_files: - split: train path: 20231101.de/train-* - config_name: 20231101.din data_files: - split: train path: 20231101.din/train-* - config_name: 20231101.diq data_files: - split: train path: 20231101.diq/train-* - config_name: 20231101.dsb data_files: - split: train path: 20231101.dsb/train-* - config_name: 20231101.dty data_files: - split: train path: 20231101.dty/train-* - config_name: 20231101.dv data_files: - split: train path: 20231101.dv/train-* - config_name: 20231101.dz data_files: - split: train path: 20231101.dz/train-* - config_name: 20231101.ee data_files: - split: train path: 20231101.ee/train-* - config_name: 20231101.el data_files: - split: train path: 20231101.el/train-* - config_name: 20231101.eml data_files: - split: train path: 20231101.eml/train-* - config_name: 20231101.en data_files: - split: train path: 20231101.en/train-* - config_name: 20231101.eo data_files: - split: train path: 20231101.eo/train-* - config_name: 20231101.es data_files: - split: train path: 20231101.es/train-* - config_name: 20231101.et data_files: - split: train path: 20231101.et/train-* - config_name: 20231101.eu data_files: - split: train path: 20231101.eu/train-* - config_name: 20231101.ext data_files: - split: train path: 20231101.ext/train-* - config_name: 20231101.fa data_files: - split: train path: 20231101.fa/train-* - config_name: 20231101.fat data_files: - split: train path: 20231101.fat/train-* - config_name: 20231101.ff data_files: - split: train path: 20231101.ff/train-* - config_name: 20231101.fi data_files: - split: train path: 20231101.fi/train-* - config_name: 20231101.fiu-vro data_files: - split: train path: 20231101.fiu-vro/train-* - config_name: 20231101.fj data_files: - split: train path: 20231101.fj/train-* - config_name: 20231101.fo data_files: - split: train path: 20231101.fo/train-* - config_name: 20231101.fon data_files: - split: train path: 20231101.fon/train-* - config_name: 20231101.fr data_files: - split: train path: 20231101.fr/train-* - config_name: 20231101.frp data_files: - split: train path: 20231101.frp/train-* - config_name: 20231101.frr data_files: - split: train path: 20231101.frr/train-* - config_name: 20231101.fur data_files: - split: train path: 20231101.fur/train-* - config_name: 20231101.fy data_files: - split: train path: 20231101.fy/train-* - config_name: 20231101.ga data_files: - split: train path: 20231101.ga/train-* - config_name: 20231101.gag data_files: - split: train path: 20231101.gag/train-* - config_name: 20231101.gan data_files: - split: train path: 20231101.gan/train-* - config_name: 20231101.gcr data_files: - split: train path: 20231101.gcr/train-* - config_name: 20231101.gd data_files: - split: train path: 20231101.gd/train-* - config_name: 20231101.gl data_files: - split: train path: 20231101.gl/train-* - config_name: 20231101.glk data_files: - split: train path: 20231101.glk/train-* - config_name: 20231101.gn data_files: - split: train path: 20231101.gn/train-* - config_name: 20231101.gom data_files: - split: train path: 20231101.gom/train-* - config_name: 20231101.gor data_files: - split: train path: 20231101.gor/train-* - config_name: 20231101.got data_files: - split: train path: 20231101.got/train-* - config_name: 20231101.gpe data_files: - split: train path: 20231101.gpe/train-* - config_name: 20231101.gu data_files: - split: train path: 20231101.gu/train-* - config_name: 20231101.guc data_files: - split: train path: 20231101.guc/train-* - config_name: 20231101.gur data_files: - split: train path: 20231101.gur/train-* - config_name: 20231101.guw data_files: - split: train path: 20231101.guw/train-* - config_name: 20231101.gv data_files: - split: train path: 20231101.gv/train-* - config_name: 20231101.ha data_files: - split: train path: 20231101.ha/train-* - config_name: 20231101.hak data_files: - split: train path: 20231101.hak/train-* - config_name: 20231101.haw data_files: - split: train path: 20231101.haw/train-* - config_name: 20231101.he data_files: - split: train path: 20231101.he/train-* - config_name: 20231101.hi data_files: - split: train path: 20231101.hi/train-* - config_name: 20231101.hif data_files: - split: train path: 20231101.hif/train-* - config_name: 20231101.hr data_files: - split: train path: 20231101.hr/train-* - config_name: 20231101.hsb data_files: - split: train path: 20231101.hsb/train-* - config_name: 20231101.ht data_files: - split: train path: 20231101.ht/train-* - config_name: 20231101.hu data_files: - split: train path: 20231101.hu/train-* - config_name: 20231101.hy data_files: - split: train path: 20231101.hy/train-* - config_name: 20231101.hyw data_files: - split: train path: 20231101.hyw/train-* - config_name: 20231101.ia data_files: - split: train path: 20231101.ia/train-* - config_name: 20231101.id data_files: - split: train path: 20231101.id/train-* - config_name: 20231101.ie data_files: - split: train path: 20231101.ie/train-* - config_name: 20231101.ig data_files: - split: train path: 20231101.ig/train-* - config_name: 20231101.ik data_files: - split: train path: 20231101.ik/train-* - config_name: 20231101.ilo data_files: - split: train path: 20231101.ilo/train-* - config_name: 20231101.inh data_files: - split: train path: 20231101.inh/train-* - config_name: 20231101.io data_files: - split: train path: 20231101.io/train-* - config_name: 20231101.is data_files: - split: train path: 20231101.is/train-* - config_name: 20231101.it data_files: - split: train path: 20231101.it/train-* - config_name: 20231101.iu data_files: - split: train path: 20231101.iu/train-* - config_name: 20231101.ja data_files: - split: train path: 20231101.ja/train-* - config_name: 20231101.jam data_files: - split: train path: 20231101.jam/train-* - config_name: 20231101.jbo data_files: - split: train path: 20231101.jbo/train-* - config_name: 20231101.jv data_files: - split: train path: 20231101.jv/train-* - config_name: 20231101.ka data_files: - split: train path: 20231101.ka/train-* - config_name: 20231101.kaa data_files: - split: train path: 20231101.kaa/train-* - config_name: 20231101.kab data_files: - split: train path: 20231101.kab/train-* - config_name: 20231101.kbd data_files: - split: train path: 20231101.kbd/train-* - config_name: 20231101.kbp data_files: - split: train path: 20231101.kbp/train-* - config_name: 20231101.kcg data_files: - split: train path: 20231101.kcg/train-* - config_name: 20231101.kg data_files: - split: train path: 20231101.kg/train-* - config_name: 20231101.ki data_files: - split: train path: 20231101.ki/train-* - config_name: 20231101.kk data_files: - split: train path: 20231101.kk/train-* - config_name: 20231101.kl data_files: - split: train path: 20231101.kl/train-* - config_name: 20231101.km data_files: - split: train path: 20231101.km/train-* - config_name: 20231101.kn data_files: - split: train path: 20231101.kn/train-* - config_name: 20231101.ko data_files: - split: train path: 20231101.ko/train-* - config_name: 20231101.koi data_files: - split: train path: 20231101.koi/train-* - config_name: 20231101.krc data_files: - split: train path: 20231101.krc/train-* - config_name: 20231101.ks data_files: - split: train path: 20231101.ks/train-* - config_name: 20231101.ksh data_files: - split: train path: 20231101.ksh/train-* - config_name: 20231101.ku data_files: - split: train path: 20231101.ku/train-* - config_name: 20231101.kv data_files: - split: train path: 20231101.kv/train-* - config_name: 20231101.kw data_files: - split: train path: 20231101.kw/train-* - config_name: 20231101.ky data_files: - split: train path: 20231101.ky/train-* - config_name: 20231101.la data_files: - split: train path: 20231101.la/train-* - config_name: 20231101.lad data_files: - split: train path: 20231101.lad/train-* - config_name: 20231101.lb data_files: - split: train path: 20231101.lb/train-* - config_name: 20231101.lbe data_files: - split: train path: 20231101.lbe/train-* - config_name: 20231101.lez data_files: - split: train path: 20231101.lez/train-* - config_name: 20231101.lfn data_files: - split: train path: 20231101.lfn/train-* - config_name: 20231101.lg data_files: - split: train path: 20231101.lg/train-* - config_name: 20231101.li data_files: - split: train path: 20231101.li/train-* - config_name: 20231101.lij data_files: - split: train path: 20231101.lij/train-* - config_name: 20231101.lld data_files: - split: train path: 20231101.lld/train-* - config_name: 20231101.lmo data_files: - split: train path: 20231101.lmo/train-* - config_name: 20231101.ln data_files: - split: train path: 20231101.ln/train-* - config_name: 20231101.lo data_files: - split: train path: 20231101.lo/train-* - config_name: 20231101.lt data_files: - split: train path: 20231101.lt/train-* - config_name: 20231101.ltg data_files: - split: train path: 20231101.ltg/train-* - config_name: 20231101.lv data_files: - split: train path: 20231101.lv/train-* - config_name: 20231101.mad data_files: - split: train path: 20231101.mad/train-* - config_name: 20231101.mai data_files: - split: train path: 20231101.mai/train-* - config_name: 20231101.map-bms data_files: - split: train path: 20231101.map-bms/train-* - config_name: 20231101.mdf data_files: - split: train path: 20231101.mdf/train-* - config_name: 20231101.mg data_files: - split: train path: 20231101.mg/train-* - config_name: 20231101.mhr data_files: - split: train path: 20231101.mhr/train-* - config_name: 20231101.mi data_files: - split: train path: 20231101.mi/train-* - config_name: 20231101.min data_files: - split: train path: 20231101.min/train-* - config_name: 20231101.mk data_files: - split: train path: 20231101.mk/train-* - config_name: 20231101.ml data_files: - split: train path: 20231101.ml/train-* - config_name: 20231101.mn data_files: - split: train path: 20231101.mn/train-* - config_name: 20231101.mni data_files: - split: train path: 20231101.mni/train-* - config_name: 20231101.mnw data_files: - split: train path: 20231101.mnw/train-* - config_name: 20231101.mr data_files: - split: train path: 20231101.mr/train-* - config_name: 20231101.mrj data_files: - split: train path: 20231101.mrj/train-* - config_name: 20231101.ms data_files: - split: train path: 20231101.ms/train-* - config_name: 20231101.mt data_files: - split: train path: 20231101.mt/train-* - config_name: 20231101.mwl data_files: - split: train path: 20231101.mwl/train-* - config_name: 20231101.my data_files: - split: train path: 20231101.my/train-* - config_name: 20231101.myv data_files: - split: train path: 20231101.myv/train-* - config_name: 20231101.mzn data_files: - split: train path: 20231101.mzn/train-* - config_name: 20231101.nah data_files: - split: train path: 20231101.nah/train-* - config_name: 20231101.nap data_files: - split: train path: 20231101.nap/train-* - config_name: 20231101.nds data_files: - split: train path: 20231101.nds/train-* - config_name: 20231101.nds-nl data_files: - split: train path: 20231101.nds-nl/train-* - config_name: 20231101.ne data_files: - split: train path: 20231101.ne/train-* - config_name: 20231101.new data_files: - split: train path: 20231101.new/train-* - config_name: 20231101.nia data_files: - split: train path: 20231101.nia/train-* - config_name: 20231101.nl data_files: - split: train path: 20231101.nl/train-* - config_name: 20231101.nn data_files: - split: train path: 20231101.nn/train-* - config_name: 20231101.no data_files: - split: train path: 20231101.no/train-* - config_name: 20231101.nov data_files: - split: train path: 20231101.nov/train-* - config_name: 20231101.nqo data_files: - split: train path: 20231101.nqo/train-* - config_name: 20231101.nrm data_files: - split: train path: 20231101.nrm/train-* - config_name: 20231101.nso data_files: - split: train path: 20231101.nso/train-* - config_name: 20231101.nv data_files: - split: train path: 20231101.nv/train-* - config_name: 20231101.ny data_files: - split: train path: 20231101.ny/train-* - config_name: 20231101.oc data_files: - split: train path: 20231101.oc/train-* - config_name: 20231101.olo data_files: - split: train path: 20231101.olo/train-* - config_name: 20231101.om data_files: - split: train path: 20231101.om/train-* - config_name: 20231101.or data_files: - split: train path: 20231101.or/train-* - config_name: 20231101.os data_files: - split: train path: 20231101.os/train-* - config_name: 20231101.pa data_files: - split: train path: 20231101.pa/train-* - config_name: 20231101.pag data_files: - split: train path: 20231101.pag/train-* - config_name: 20231101.pam data_files: - split: train path: 20231101.pam/train-* - config_name: 20231101.pap data_files: - split: train path: 20231101.pap/train-* - config_name: 20231101.pcd data_files: - split: train path: 20231101.pcd/train-* - config_name: 20231101.pcm data_files: - split: train path: 20231101.pcm/train-* - config_name: 20231101.pdc data_files: - split: train path: 20231101.pdc/train-* - config_name: 20231101.pfl data_files: - split: train path: 20231101.pfl/train-* - config_name: 20231101.pi data_files: - split: train path: 20231101.pi/train-* - config_name: 20231101.pih data_files: - split: train path: 20231101.pih/train-* - config_name: 20231101.pl data_files: - split: train path: 20231101.pl/train-* - config_name: 20231101.pms data_files: - split: train path: 20231101.pms/train-* - config_name: 20231101.pnb data_files: - split: train path: 20231101.pnb/train-* - config_name: 20231101.pnt data_files: - split: train path: 20231101.pnt/train-* - config_name: 20231101.ps data_files: - split: train path: 20231101.ps/train-* - config_name: 20231101.pt data_files: - split: train path: 20231101.pt/train-* - config_name: 20231101.pwn data_files: - split: train path: 20231101.pwn/train-* - config_name: 20231101.qu data_files: - split: train path: 20231101.qu/train-* - config_name: 20231101.rm data_files: - split: train path: 20231101.rm/train-* - config_name: 20231101.rmy data_files: - split: train path: 20231101.rmy/train-* - config_name: 20231101.rn data_files: - split: train path: 20231101.rn/train-* - config_name: 20231101.ro data_files: - split: train path: 20231101.ro/train-* - config_name: 20231101.roa-rup data_files: - split: train path: 20231101.roa-rup/train-* - config_name: 20231101.roa-tara data_files: - split: train path: 20231101.roa-tara/train-* - config_name: 20231101.ru data_files: - split: train path: 20231101.ru/train-* - config_name: 20231101.rue data_files: - split: train path: 20231101.rue/train-* - config_name: 20231101.rw data_files: - split: train path: 20231101.rw/train-* - config_name: 20231101.sa data_files: - split: train path: 20231101.sa/train-* - config_name: 20231101.sah data_files: - split: train path: 20231101.sah/train-* - config_name: 20231101.sat data_files: - split: train path: 20231101.sat/train-* - config_name: 20231101.sc data_files: - split: train path: 20231101.sc/train-* - config_name: 20231101.scn data_files: - split: train path: 20231101.scn/train-* - config_name: 20231101.sco data_files: - split: train path: 20231101.sco/train-* - config_name: 20231101.sd data_files: - split: train path: 20231101.sd/train-* - config_name: 20231101.se data_files: - split: train path: 20231101.se/train-* - config_name: 20231101.sg data_files: - split: train path: 20231101.sg/train-* - config_name: 20231101.sh data_files: - split: train path: 20231101.sh/train-* - config_name: 20231101.shi data_files: - split: train path: 20231101.shi/train-* - config_name: 20231101.shn data_files: - split: train path: 20231101.shn/train-* - config_name: 20231101.si data_files: - split: train path: 20231101.si/train-* - config_name: 20231101.simple data_files: - split: train path: 20231101.simple/train-* - config_name: 20231101.sk data_files: - split: train path: 20231101.sk/train-* - config_name: 20231101.skr data_files: - split: train path: 20231101.skr/train-* - config_name: 20231101.sl data_files: - split: train path: 20231101.sl/train-* - config_name: 20231101.sm data_files: - split: train path: 20231101.sm/train-* - config_name: 20231101.smn data_files: - split: train path: 20231101.smn/train-* - config_name: 20231101.sn data_files: - split: train path: 20231101.sn/train-* - config_name: 20231101.so data_files: - split: train path: 20231101.so/train-* - config_name: 20231101.sq data_files: - split: train path: 20231101.sq/train-* - config_name: 20231101.sr data_files: - split: train path: 20231101.sr/train-* - config_name: 20231101.srn data_files: - split: train path: 20231101.srn/train-* - config_name: 20231101.ss data_files: - split: train path: 20231101.ss/train-* - config_name: 20231101.st data_files: - split: train path: 20231101.st/train-* - config_name: 20231101.stq data_files: - split: train path: 20231101.stq/train-* - config_name: 20231101.su data_files: - split: train path: 20231101.su/train-* - config_name: 20231101.sv data_files: - split: train path: 20231101.sv/train-* - config_name: 20231101.sw data_files: - split: train path: 20231101.sw/train-* - config_name: 20231101.szl data_files: - split: train path: 20231101.szl/train-* - config_name: 20231101.szy data_files: - split: train path: 20231101.szy/train-* - config_name: 20231101.ta data_files: - split: train path: 20231101.ta/train-* - config_name: 20231101.tay data_files: - split: train path: 20231101.tay/train-* - config_name: 20231101.tcy data_files: - split: train path: 20231101.tcy/train-* - config_name: 20231101.te data_files: - split: train path: 20231101.te/train-* - config_name: 20231101.tet data_files: - split: train path: 20231101.tet/train-* - config_name: 20231101.tg data_files: - split: train path: 20231101.tg/train-* - config_name: 20231101.th data_files: - split: train path: 20231101.th/train-* - config_name: 20231101.ti data_files: - split: train path: 20231101.ti/train-* - config_name: 20231101.tk data_files: - split: train path: 20231101.tk/train-* - config_name: 20231101.tl data_files: - split: train path: 20231101.tl/train-* - config_name: 20231101.tly data_files: - split: train path: 20231101.tly/train-* - config_name: 20231101.tn data_files: - split: train path: 20231101.tn/train-* - config_name: 20231101.to data_files: - split: train path: 20231101.to/train-* - config_name: 20231101.tpi data_files: - split: train path: 20231101.tpi/train-* - config_name: 20231101.tr data_files: - split: train path: 20231101.tr/train-* - config_name: 20231101.trv data_files: - split: train path: 20231101.trv/train-* - config_name: 20231101.ts data_files: - split: train path: 20231101.ts/train-* - config_name: 20231101.tt data_files: - split: train path: 20231101.tt/train-* - config_name: 20231101.tum data_files: - split: train path: 20231101.tum/train-* - config_name: 20231101.tw data_files: - split: train path: 20231101.tw/train-* - config_name: 20231101.ty data_files: - split: train path: 20231101.ty/train-* - config_name: 20231101.tyv data_files: - split: train path: 20231101.tyv/train-* - config_name: 20231101.udm data_files: - split: train path: 20231101.udm/train-* - config_name: 20231101.ug data_files: - split: train path: 20231101.ug/train-* - config_name: 20231101.uk data_files: - split: train path: 20231101.uk/train-* - config_name: 20231101.ur data_files: - split: train path: 20231101.ur/train-* - config_name: 20231101.uz data_files: - split: train path: 20231101.uz/train-* - config_name: 20231101.ve data_files: - split: train path: 20231101.ve/train-* - config_name: 20231101.vec data_files: - split: train path: 20231101.vec/train-* - config_name: 20231101.vep data_files: - split: train path: 20231101.vep/train-* - config_name: 20231101.vi data_files: - split: train path: 20231101.vi/train-* - config_name: 20231101.vls data_files: - split: train path: 20231101.vls/train-* - config_name: 20231101.vo data_files: - split: train path: 20231101.vo/train-* - config_name: 20231101.wa data_files: - split: train path: 20231101.wa/train-* - config_name: 20231101.war data_files: - split: train path: 20231101.war/train-* - config_name: 20231101.wo data_files: - split: train path: 20231101.wo/train-* - config_name: 20231101.wuu data_files: - split: train path: 20231101.wuu/train-* - config_name: 20231101.xal data_files: - split: train path: 20231101.xal/train-* - config_name: 20231101.xh data_files: - split: train path: 20231101.xh/train-* - config_name: 20231101.xmf data_files: - split: train path: 20231101.xmf/train-* - config_name: 20231101.yi data_files: - split: train path: 20231101.yi/train-* - config_name: 20231101.yo data_files: - split: train path: 20231101.yo/train-* - config_name: 20231101.za data_files: - split: train path: 20231101.za/train-* - config_name: 20231101.zea data_files: - split: train path: 20231101.zea/train-* - config_name: 20231101.zh data_files: - split: train path: 20231101.zh/train-* - config_name: 20231101.zh-classical data_files: - split: train path: 20231101.zh-classical/train-* - config_name: 20231101.zh-min-nan data_files: - split: train path: 20231101.zh-min-nan/train-* - config_name: 20231101.zh-yue data_files: - split: train path: 20231101.zh-yue/train-* - config_name: 20231101.zu data_files: - split: train path: 20231101.zu/train-* dataset_info: - config_name: 20231101.ab features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4334455 num_examples: 6152 download_size: 1237796 dataset_size: 4334455 - config_name: 20231101.ace features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5065801 num_examples: 13003 download_size: 1574258 dataset_size: 5065801 - config_name: 20231101.ady features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 765030 num_examples: 706 download_size: 347450 dataset_size: 765030 - config_name: 20231101.af features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 226672176 num_examples: 112518 download_size: 124485544 dataset_size: 226672176 - config_name: 20231101.als features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 81450196 num_examples: 30013 download_size: 49452211 dataset_size: 81450196 - config_name: 20231101.alt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6819963 num_examples: 1087 download_size: 2910477 dataset_size: 6819963 - config_name: 20231101.am features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 24218002 num_examples: 13906 download_size: 10720027 dataset_size: 24218002 - config_name: 20231101.ami features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4460174 num_examples: 1628 download_size: 2261859 dataset_size: 4460174 - config_name: 20231101.an features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 57572050 num_examples: 44249 download_size: 29573020 dataset_size: 57572050 - config_name: 20231101.ang features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2913906 num_examples: 4121 download_size: 1789811 dataset_size: 2913906 - config_name: 20231101.anp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9226211 num_examples: 2749 download_size: 3355979 dataset_size: 9226211 - config_name: 20231101.ar features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3124486159 num_examples: 1219201 download_size: 1323304271 dataset_size: 3124486159 - config_name: 20231101.arc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 849731 num_examples: 1936 download_size: 369584 dataset_size: 849731 - config_name: 20231101.ary features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12049878 num_examples: 8087 download_size: 4672257 dataset_size: 12049878 - config_name: 20231101.arz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1402294447 num_examples: 1620194 download_size: 317231585 dataset_size: 1402294447 - config_name: 20231101.as features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 90312333 num_examples: 12338 download_size: 34581561 dataset_size: 90312333 - config_name: 20231101.ast features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 470575521 num_examples: 133419 download_size: 271196430 dataset_size: 470575521 - config_name: 20231101.atj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1012467 num_examples: 1971 download_size: 513962 dataset_size: 1012467 - config_name: 20231101.av features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6084045 num_examples: 3426 download_size: 2573436 dataset_size: 6084045 - config_name: 20231101.avk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 32119428 num_examples: 28353 download_size: 7984474 dataset_size: 32119428 - config_name: 20231101.awa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3703396 num_examples: 3679 download_size: 1269824 dataset_size: 3703396 - config_name: 20231101.ay features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4395813 num_examples: 5384 download_size: 1756131 dataset_size: 4395813 - config_name: 20231101.az features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 433663157 num_examples: 196158 download_size: 230064038 dataset_size: 433663157 - config_name: 20231101.azb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 187041147 num_examples: 243376 download_size: 46739926 dataset_size: 187041147 - config_name: 20231101.ba features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 297738837 num_examples: 63319 download_size: 122595805 dataset_size: 297738837 - config_name: 20231101.ban features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 18012727 num_examples: 20986 download_size: 6715876 dataset_size: 18012727 - config_name: 20231101.bar features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36317102 num_examples: 27096 download_size: 21799389 dataset_size: 36317102 - config_name: 20231101.bat-smg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7212849 num_examples: 17221 download_size: 3348765 dataset_size: 7212849 - config_name: 20231101.bcl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 20394331 num_examples: 15743 download_size: 11369234 dataset_size: 20394331 - config_name: 20231101.be features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 624718980 num_examples: 236165 download_size: 284921288 dataset_size: 624718980 - config_name: 20231101.be-x-old features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 252510447 num_examples: 84361 download_size: 114318588 dataset_size: 252510447 - config_name: 20231101.bg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1103334425 num_examples: 294275 download_size: 512344058 dataset_size: 1103334425 - config_name: 20231101.bh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16675295 num_examples: 8612 download_size: 5880458 dataset_size: 16675295 - config_name: 20231101.bi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 404249 num_examples: 1548 download_size: 203610 dataset_size: 404249 - config_name: 20231101.bjn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6884860 num_examples: 10519 download_size: 3323032 dataset_size: 6884860 - config_name: 20231101.blk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 26566991 num_examples: 2946 download_size: 8028430 dataset_size: 26566991 - config_name: 20231101.bm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 623659 num_examples: 1258 download_size: 343812 dataset_size: 623659 - config_name: 20231101.bn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 962624238 num_examples: 143069 download_size: 343885999 dataset_size: 962624238 - config_name: 20231101.bo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 132723880 num_examples: 12881 download_size: 38851784 dataset_size: 132723880 - config_name: 20231101.bpy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 42975314 num_examples: 25165 download_size: 6568483 dataset_size: 42975314 - config_name: 20231101.br features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 85635744 num_examples: 84340 download_size: 49768597 dataset_size: 85635744 - config_name: 20231101.bs features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 193734399 num_examples: 92596 download_size: 107858627 dataset_size: 193734399 - config_name: 20231101.bug features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3434889 num_examples: 15880 download_size: 817034 dataset_size: 3434889 - config_name: 20231101.bxr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6687172 num_examples: 2791 download_size: 3078699 dataset_size: 6687172 - config_name: 20231101.ca features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1958810542 num_examples: 737409 download_size: 1116799343 dataset_size: 1958810542 - config_name: 20231101.cbk-zam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2061944 num_examples: 3285 download_size: 825899 dataset_size: 2061944 - config_name: 20231101.cdo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5109207 num_examples: 16449 download_size: 1982914 dataset_size: 5109207 - config_name: 20231101.ce features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 730387049 num_examples: 601271 download_size: 88393330 dataset_size: 730387049 - config_name: 20231101.ceb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4568256711 num_examples: 6122708 download_size: 828085216 dataset_size: 4568256711 - config_name: 20231101.ch features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 178002 num_examples: 576 download_size: 89277 dataset_size: 178002 - config_name: 20231101.chr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 767618 num_examples: 1113 download_size: 343140 dataset_size: 767618 - config_name: 20231101.chy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 148139 num_examples: 802 download_size: 75865 dataset_size: 148139 - config_name: 20231101.ckb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 107150420 num_examples: 52024 download_size: 42964544 dataset_size: 107150420 - config_name: 20231101.co features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11104243 num_examples: 7799 download_size: 5794731 dataset_size: 11104243 - config_name: 20231101.cr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 57257 num_examples: 187 download_size: 36081 dataset_size: 57257 - config_name: 20231101.crh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9689171 num_examples: 27691 download_size: 3654461 dataset_size: 9689171 - config_name: 20231101.cs features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1566286962 num_examples: 534044 download_size: 976484249 dataset_size: 1566286962 - config_name: 20231101.csb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3748643 num_examples: 5480 download_size: 2055233 dataset_size: 3748643 - config_name: 20231101.cu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 981592 num_examples: 1235 download_size: 398252 dataset_size: 981592 - config_name: 20231101.cv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 81873026 num_examples: 51863 download_size: 29640641 dataset_size: 81873026 - config_name: 20231101.cy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 305837783 num_examples: 279455 download_size: 112257456 dataset_size: 305837783 - config_name: 20231101.da features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 547068330 num_examples: 295347 download_size: 327688122 dataset_size: 547068330 - config_name: 20231101.dag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21618973 num_examples: 10071 download_size: 9026986 dataset_size: 21618973 - config_name: 20231101.de features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9622925305 num_examples: 2845308 download_size: 5771317942 dataset_size: 9622925305 - config_name: 20231101.din features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 564398 num_examples: 512 download_size: 340530 dataset_size: 564398 - config_name: 20231101.diq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19671441 num_examples: 41775 download_size: 7616839 dataset_size: 19671441 - config_name: 20231101.dsb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3315228 num_examples: 3379 download_size: 1931937 dataset_size: 3315228 - config_name: 20231101.dty features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7030648 num_examples: 3632 download_size: 2521250 dataset_size: 7030648 - config_name: 20231101.dv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13934393 num_examples: 4352 download_size: 5283133 dataset_size: 13934393 - config_name: 20231101.dz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8855969 num_examples: 788 download_size: 2583520 dataset_size: 8855969 - config_name: 20231101.ee features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 898491 num_examples: 1181 download_size: 492813 dataset_size: 898491 - config_name: 20231101.el features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1345589075 num_examples: 226834 download_size: 637372489 dataset_size: 1345589075 - config_name: 20231101.eml features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3625415 num_examples: 12961 download_size: 1689575 dataset_size: 3625415 - config_name: 20231101.en features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 20200062385 num_examples: 6407814 download_size: 11630929031 dataset_size: 20200062385 - config_name: 20231101.eo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 523113804 num_examples: 344851 download_size: 297738138 dataset_size: 523113804 - config_name: 20231101.es features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6033536133 num_examples: 1841155 download_size: 3493595869 dataset_size: 6033536133 - config_name: 20231101.et features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 440177170 num_examples: 240397 download_size: 265444734 dataset_size: 440177170 - config_name: 20231101.eu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 565567318 num_examples: 416347 download_size: 270355505 dataset_size: 565567318 - config_name: 20231101.ext features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4389633 num_examples: 3785 download_size: 2761099 dataset_size: 4389633 - config_name: 20231101.fa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1899154938 num_examples: 979869 download_size: 759368283 dataset_size: 1899154938 - config_name: 20231101.fat features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2032812 num_examples: 1122 download_size: 1124684 dataset_size: 2032812 - config_name: 20231101.ff features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1867995 num_examples: 2419 download_size: 1087702 dataset_size: 1867995 - config_name: 20231101.fi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1146146663 num_examples: 561598 download_size: 680512230 dataset_size: 1146146663 - config_name: 20231101.fiu-vro features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4636361 num_examples: 6590 download_size: 2434159 dataset_size: 4636361 - config_name: 20231101.fj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 604791 num_examples: 1294 download_size: 328059 dataset_size: 604791 - config_name: 20231101.fo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15415249 num_examples: 14080 download_size: 8857239 dataset_size: 15415249 - config_name: 20231101.fon features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 592216 num_examples: 705 download_size: 317444 dataset_size: 592216 - config_name: 20231101.fr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8065794826 num_examples: 2564646 download_size: 4614488286 dataset_size: 8065794826 - config_name: 20231101.frp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3676441 num_examples: 5766 download_size: 1914046 dataset_size: 3676441 - config_name: 20231101.frr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10819914 num_examples: 18666 download_size: 5317694 dataset_size: 10819914 - config_name: 20231101.fur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4090412 num_examples: 4001 download_size: 2421238 dataset_size: 4090412 - config_name: 20231101.fy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 134196708 num_examples: 52416 download_size: 76002257 dataset_size: 134196708 - config_name: 20231101.ga features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 60640820 num_examples: 59156 download_size: 34136733 dataset_size: 60640820 - config_name: 20231101.gag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2428849 num_examples: 2968 download_size: 1331866 dataset_size: 2428849 - config_name: 20231101.gan features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2915229 num_examples: 6743 download_size: 1508844 dataset_size: 2915229 - config_name: 20231101.gcr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2338277 num_examples: 2399 download_size: 1345482 dataset_size: 2338277 - config_name: 20231101.gd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14051607 num_examples: 15979 download_size: 7190137 dataset_size: 14051607 - config_name: 20231101.gl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 493905881 num_examples: 200092 download_size: 291104907 dataset_size: 493905881 - config_name: 20231101.glk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6086185 num_examples: 7049 download_size: 2382997 dataset_size: 6086185 - config_name: 20231101.gn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6921948 num_examples: 5519 download_size: 3806548 dataset_size: 6921948 - config_name: 20231101.gom features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 30889533 num_examples: 4259 download_size: 11306217 dataset_size: 30889533 - config_name: 20231101.gor features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6369540 num_examples: 15359 download_size: 2101154 dataset_size: 6369540 - config_name: 20231101.got features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1533770 num_examples: 1013 download_size: 636307 dataset_size: 1533770 - config_name: 20231101.gpe features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2017667 num_examples: 1110 download_size: 1141261 dataset_size: 2017667 - config_name: 20231101.gu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 121282557 num_examples: 30445 download_size: 39554078 dataset_size: 121282557 - config_name: 20231101.guc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 978923 num_examples: 679 download_size: 578311 dataset_size: 978923 - config_name: 20231101.gur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2325435 num_examples: 1383 download_size: 1068954 dataset_size: 2325435 - config_name: 20231101.guw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1913143 num_examples: 1312 download_size: 1042328 dataset_size: 1913143 - config_name: 20231101.gv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6307253 num_examples: 6206 download_size: 3347095 dataset_size: 6307253 - config_name: 20231101.ha features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 77906472 num_examples: 36492 download_size: 43131815 dataset_size: 77906472 - config_name: 20231101.hak features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4523680 num_examples: 10246 download_size: 1878558 dataset_size: 4523680 - config_name: 20231101.haw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1677790 num_examples: 2612 download_size: 696781 dataset_size: 1677790 - config_name: 20231101.he features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1950200381 num_examples: 333874 download_size: 979183998 dataset_size: 1950200381 - config_name: 20231101.hi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 672817362 num_examples: 163093 download_size: 237834604 dataset_size: 672817362 - config_name: 20231101.hif features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5685329 num_examples: 10986 download_size: 2715682 dataset_size: 5685329 - config_name: 20231101.hr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 443636903 num_examples: 202848 download_size: 275245343 dataset_size: 443636903 - config_name: 20231101.hsb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15667118 num_examples: 13957 download_size: 7437491 dataset_size: 15667118 - config_name: 20231101.ht features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 55088040 num_examples: 70159 download_size: 21993952 dataset_size: 55088040 - config_name: 20231101.hu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1515899113 num_examples: 532427 download_size: 904857314 dataset_size: 1515899113 - config_name: 20231101.hy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1179459973 num_examples: 303036 download_size: 490121120 dataset_size: 1179459973 - config_name: 20231101.hyw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 59564550 num_examples: 11725 download_size: 27450541 dataset_size: 59564550 - config_name: 20231101.ia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16409449 num_examples: 28247 download_size: 8237640 dataset_size: 16409449 - config_name: 20231101.id features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1125928594 num_examples: 665622 download_size: 583801799 dataset_size: 1125928594 - config_name: 20231101.ie features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6737711 num_examples: 11877 download_size: 3019044 dataset_size: 6737711 - config_name: 20231101.ig features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 66086115 num_examples: 22908 download_size: 34663540 dataset_size: 66086115 - config_name: 20231101.ik features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 199773 num_examples: 846 download_size: 115758 dataset_size: 199773 - config_name: 20231101.ilo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16854494 num_examples: 15371 download_size: 7352572 dataset_size: 16854494 - config_name: 20231101.inh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2727253 num_examples: 2123 download_size: 1279524 dataset_size: 2727253 - config_name: 20231101.io features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 38735196 num_examples: 40930 download_size: 17106040 dataset_size: 38735196 - config_name: 20231101.is features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 87856729 num_examples: 57453 download_size: 52286137 dataset_size: 87856729 - config_name: 20231101.it features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4924856310 num_examples: 1833639 download_size: 2931265519 dataset_size: 4924856310 - config_name: 20231101.iu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 291185 num_examples: 562 download_size: 136987 dataset_size: 291185 - config_name: 20231101.ja features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7039610767 num_examples: 1389467 download_size: 3941998526 dataset_size: 7039610767 - config_name: 20231101.jam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1142348 num_examples: 1780 download_size: 702664 dataset_size: 1142348 - config_name: 20231101.jbo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2523538 num_examples: 1394 download_size: 890356 dataset_size: 2523538 - config_name: 20231101.jv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 72786688 num_examples: 73380 download_size: 36852134 dataset_size: 72786688 - config_name: 20231101.ka features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 699872960 num_examples: 169602 download_size: 239987665 dataset_size: 699872960 - config_name: 20231101.kaa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5139436 num_examples: 4074 download_size: 2913134 dataset_size: 5139436 - config_name: 20231101.kab features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4392542 num_examples: 5830 download_size: 2580584 dataset_size: 4392542 - config_name: 20231101.kbd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3014575 num_examples: 1670 download_size: 1304580 dataset_size: 3014575 - config_name: 20231101.kbp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3584563 num_examples: 1931 download_size: 1806400 dataset_size: 3584563 - config_name: 20231101.kcg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 914665 num_examples: 1151 download_size: 513904 dataset_size: 914665 - config_name: 20231101.kg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 390163 num_examples: 1329 download_size: 209059 dataset_size: 390163 - config_name: 20231101.ki features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 760980 num_examples: 1668 download_size: 427003 dataset_size: 760980 - config_name: 20231101.kk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 497917145 num_examples: 238615 download_size: 180750520 dataset_size: 497917145 - config_name: 20231101.kl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 313658 num_examples: 301 download_size: 193719 dataset_size: 313658 - config_name: 20231101.km features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 103252582 num_examples: 11994 download_size: 35567417 dataset_size: 103252582 - config_name: 20231101.kn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 402848197 num_examples: 31437 download_size: 147156434 dataset_size: 402848197 - config_name: 20231101.ko features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1412099944 num_examples: 647897 download_size: 782677061 dataset_size: 1412099944 - config_name: 20231101.koi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5103799 num_examples: 3504 download_size: 1888392 dataset_size: 5103799 - config_name: 20231101.krc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4589808 num_examples: 2100 download_size: 2022144 dataset_size: 4589808 - config_name: 20231101.ks features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2868186 num_examples: 4307 download_size: 1094458 dataset_size: 2868186 - config_name: 20231101.ksh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3117003 num_examples: 2945 download_size: 2009928 dataset_size: 3117003 - config_name: 20231101.ku features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 44523131 num_examples: 63076 download_size: 22938233 dataset_size: 44523131 - config_name: 20231101.kv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9245577 num_examples: 5595 download_size: 3690978 dataset_size: 9245577 - config_name: 20231101.kw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4687165 num_examples: 6995 download_size: 2711398 dataset_size: 4687165 - config_name: 20231101.ky features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 166911089 num_examples: 79438 download_size: 63947035 dataset_size: 166911089 - config_name: 20231101.la features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 141080163 num_examples: 138263 download_size: 76588430 dataset_size: 141080163 - config_name: 20231101.lad features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4901343 num_examples: 3663 download_size: 2754531 dataset_size: 4901343 - config_name: 20231101.lb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 88826996 num_examples: 62414 download_size: 50515020 dataset_size: 88826996 - config_name: 20231101.lbe features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 745140 num_examples: 1279 download_size: 304394 dataset_size: 745140 - config_name: 20231101.lez features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9794637 num_examples: 4264 download_size: 3864848 dataset_size: 9794637 - config_name: 20231101.lfn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8870685 num_examples: 4832 download_size: 5207546 dataset_size: 8870685 - config_name: 20231101.lg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6891539 num_examples: 4048 download_size: 3708097 dataset_size: 6891539 - config_name: 20231101.li features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 29633678 num_examples: 14849 download_size: 17727918 dataset_size: 29633678 - config_name: 20231101.lij features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11448686 num_examples: 11203 download_size: 6255409 dataset_size: 11448686 - config_name: 20231101.lld features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 50163974 num_examples: 180677 download_size: 13866243 dataset_size: 50163974 - config_name: 20231101.lmo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 43496783 num_examples: 73510 download_size: 19142356 dataset_size: 43496783 - config_name: 20231101.ln features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2035050 num_examples: 3534 download_size: 1122138 dataset_size: 2035050 - config_name: 20231101.lo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15283258 num_examples: 5014 download_size: 5646554 dataset_size: 15283258 - config_name: 20231101.lt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 336559824 num_examples: 211292 download_size: 194873569 dataset_size: 336559824 - config_name: 20231101.ltg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 915364 num_examples: 1070 download_size: 530299 dataset_size: 915364 - config_name: 20231101.lv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 227272112 num_examples: 123413 download_size: 129739227 dataset_size: 227272112 - config_name: 20231101.mad features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1596836 num_examples: 1192 download_size: 908630 dataset_size: 1596836 - config_name: 20231101.mai features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21562856 num_examples: 14714 download_size: 6180231 dataset_size: 21562856 - config_name: 20231101.map-bms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5341068 num_examples: 13580 download_size: 2377123 dataset_size: 5341068 - config_name: 20231101.mdf features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4694770 num_examples: 4257 download_size: 1725294 dataset_size: 4694770 - config_name: 20231101.mg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 73767229 num_examples: 96316 download_size: 22117304 dataset_size: 73767229 - config_name: 20231101.mhr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19249450 num_examples: 11347 download_size: 6902162 dataset_size: 19249450 - config_name: 20231101.mi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4169094 num_examples: 7919 download_size: 1044444 dataset_size: 4169094 - config_name: 20231101.min features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 118995918 num_examples: 227143 download_size: 25691303 dataset_size: 118995918 - config_name: 20231101.mk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 651422351 num_examples: 139559 download_size: 271265486 dataset_size: 651422351 - config_name: 20231101.ml features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 494135127 num_examples: 85791 download_size: 183071274 dataset_size: 494135127 - config_name: 20231101.mn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 91943210 num_examples: 24048 download_size: 41521786 dataset_size: 91943210 - config_name: 20231101.mni features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9820483 num_examples: 10894 download_size: 2208525 dataset_size: 9820483 - config_name: 20231101.mnw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 47237206 num_examples: 3295 download_size: 13765461 dataset_size: 47237206 - config_name: 20231101.mr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 261879018 num_examples: 94133 download_size: 81991233 dataset_size: 261879018 - config_name: 20231101.mrj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8732281 num_examples: 10542 download_size: 3283618 dataset_size: 8732281 - config_name: 20231101.ms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 423352360 num_examples: 368628 download_size: 210149264 dataset_size: 423352360 - config_name: 20231101.mt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 32009639 num_examples: 5743 download_size: 18686521 dataset_size: 32009639 - config_name: 20231101.mwl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19353725 num_examples: 4500 download_size: 11521563 dataset_size: 19353725 - config_name: 20231101.my features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 314417700 num_examples: 109310 download_size: 85497205 dataset_size: 314417700 - config_name: 20231101.myv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11145865 num_examples: 7958 download_size: 4600620 dataset_size: 11145865 - config_name: 20231101.mzn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16335757 num_examples: 18717 download_size: 5419390 dataset_size: 16335757 - config_name: 20231101.nah features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2503320 num_examples: 6218 download_size: 1191779 dataset_size: 2503320 - config_name: 20231101.nap features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6395706 num_examples: 14884 download_size: 3188122 dataset_size: 6395706 - config_name: 20231101.nds features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 92990126 num_examples: 84285 download_size: 48106879 dataset_size: 92990126 - config_name: 20231101.nds-nl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13582403 num_examples: 7847 download_size: 8354427 dataset_size: 13582403 - config_name: 20231101.ne features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 109032486 num_examples: 32885 download_size: 37548833 dataset_size: 109032486 - config_name: 20231101.new features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 159095610 num_examples: 73003 download_size: 20517810 dataset_size: 159095610 - config_name: 20231101.nia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2117902 num_examples: 1714 download_size: 1086670 dataset_size: 2117902 - config_name: 20231101.nl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2646316266 num_examples: 2135977 download_size: 1436843432 dataset_size: 2646316266 - config_name: 20231101.nn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 237467406 num_examples: 167653 download_size: 134751873 dataset_size: 237467406 - config_name: 20231101.no features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1033188011 num_examples: 617937 download_size: 590970350 dataset_size: 1033188011 - config_name: 20231101.nov features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 965640 num_examples: 1693 download_size: 493500 dataset_size: 965640 - config_name: 20231101.nqo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8261058 num_examples: 1580 download_size: 3508645 dataset_size: 8261058 - config_name: 20231101.nrm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3216817 num_examples: 4902 download_size: 1507257 dataset_size: 3216817 - config_name: 20231101.nso features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2796467 num_examples: 8650 download_size: 936349 dataset_size: 2796467 - config_name: 20231101.nv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16993060 num_examples: 22460 download_size: 3304031 dataset_size: 16993060 - config_name: 20231101.ny features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1691825 num_examples: 1129 download_size: 938621 dataset_size: 1691825 - config_name: 20231101.oc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 120092607 num_examples: 89101 download_size: 64043588 dataset_size: 120092607 - config_name: 20231101.olo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3173332 num_examples: 4640 download_size: 1724315 dataset_size: 3173332 - config_name: 20231101.om features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3604768 num_examples: 1970 download_size: 1982849 dataset_size: 3604768 - config_name: 20231101.or features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 75078226 num_examples: 17375 download_size: 26706212 dataset_size: 75078226 - config_name: 20231101.os features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13182881 num_examples: 17663 download_size: 5572799 dataset_size: 13182881 - config_name: 20231101.pa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 212972877 num_examples: 51423 download_size: 81452929 dataset_size: 212972877 - config_name: 20231101.pag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1391816 num_examples: 2665 download_size: 455808 dataset_size: 1391816 - config_name: 20231101.pam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8294902 num_examples: 9006 download_size: 4277038 dataset_size: 8294902 - config_name: 20231101.pap features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4251480 num_examples: 3520 download_size: 2435005 dataset_size: 4251480 - config_name: 20231101.pcd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5704321 num_examples: 5717 download_size: 3145572 dataset_size: 5704321 - config_name: 20231101.pcm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1886987 num_examples: 1238 download_size: 1160762 dataset_size: 1886987 - config_name: 20231101.pdc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1225978 num_examples: 2176 download_size: 698254 dataset_size: 1225978 - config_name: 20231101.pfl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3694464 num_examples: 2762 download_size: 1971214 dataset_size: 3694464 - config_name: 20231101.pi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1144100 num_examples: 3057 download_size: 200764 dataset_size: 1144100 - config_name: 20231101.pih features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 278139 num_examples: 934 download_size: 177092 dataset_size: 278139 - config_name: 20231101.pl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2950148809 num_examples: 1587721 download_size: 1765059986 dataset_size: 2950148809 - config_name: 20231101.pms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 34340217 num_examples: 67980 download_size: 12008880 dataset_size: 34340217 - config_name: 20231101.pnb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 304117649 num_examples: 72307 download_size: 133266242 dataset_size: 304117649 - config_name: 20231101.pnt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 630636 num_examples: 533 download_size: 275639 dataset_size: 630636 - config_name: 20231101.ps features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 114259737 num_examples: 20529 download_size: 53312545 dataset_size: 114259737 - config_name: 20231101.pt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2758783436 num_examples: 1112246 download_size: 1579641059 dataset_size: 2758783436 - config_name: 20231101.pwn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 811954 num_examples: 408 download_size: 444109 dataset_size: 811954 - config_name: 20231101.qu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16828457 num_examples: 24196 download_size: 7688106 dataset_size: 16828457 - config_name: 20231101.rm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 18053014 num_examples: 3822 download_size: 10483970 dataset_size: 18053014 - config_name: 20231101.rmy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 611778 num_examples: 1279 download_size: 356457 dataset_size: 611778 - config_name: 20231101.rn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 530318 num_examples: 819 download_size: 301252 dataset_size: 530318 - config_name: 20231101.ro features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 847410736 num_examples: 442389 download_size: 466937380 dataset_size: 847410736 - config_name: 20231101.roa-rup features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1687829 num_examples: 1432 download_size: 951677 dataset_size: 1687829 - config_name: 20231101.roa-tara features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7470331 num_examples: 9367 download_size: 4003095 dataset_size: 7470331 - config_name: 20231101.ru features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10277958919 num_examples: 1945063 download_size: 4876849588 dataset_size: 10277958919 - config_name: 20231101.rue features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13128572 num_examples: 8759 download_size: 6346106 dataset_size: 13128572 - config_name: 20231101.rw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11898854 num_examples: 8063 download_size: 6623388 dataset_size: 11898854 - config_name: 20231101.sa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 69854997 num_examples: 12156 download_size: 23850161 dataset_size: 69854997 - config_name: 20231101.sah features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 48562374 num_examples: 17098 download_size: 21675888 dataset_size: 48562374 - config_name: 20231101.sat features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 45247783 num_examples: 9767 download_size: 15428584 dataset_size: 45247783 - config_name: 20231101.sc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12776438 num_examples: 7586 download_size: 7711996 dataset_size: 12776438 - config_name: 20231101.scn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 17685098 num_examples: 26530 download_size: 10223816 dataset_size: 17685098 - config_name: 20231101.sco features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 42808738 num_examples: 35276 download_size: 24287944 dataset_size: 42808738 - config_name: 20231101.sd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 37021659 num_examples: 16928 download_size: 17591997 dataset_size: 37021659 - config_name: 20231101.se features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3600527 num_examples: 8043 download_size: 1816006 dataset_size: 3600527 - config_name: 20231101.sg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 140127 num_examples: 564 download_size: 72486 dataset_size: 140127 - config_name: 20231101.sh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 569225870 num_examples: 458392 download_size: 266379293 dataset_size: 569225870 - config_name: 20231101.shi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2369002 num_examples: 1779 download_size: 1359828 dataset_size: 2369002 - config_name: 20231101.shn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 33553593 num_examples: 13945 download_size: 8163231 dataset_size: 33553593 - config_name: 20231101.si features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 138806443 num_examples: 23065 download_size: 54229127 dataset_size: 138806443 - config_name: 20231101.simple features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 291254232 num_examples: 241787 download_size: 156885218 dataset_size: 291254232 - config_name: 20231101.sk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 416804817 num_examples: 242235 download_size: 239513292 dataset_size: 416804817 - config_name: 20231101.skr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 22705446 num_examples: 5819 download_size: 9978607 dataset_size: 22705446 - config_name: 20231101.sl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 454829910 num_examples: 183006 download_size: 267485569 dataset_size: 454829910 - config_name: 20231101.sm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 902927 num_examples: 1151 download_size: 492349 dataset_size: 902927 - config_name: 20231101.smn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5764244 num_examples: 5383 download_size: 2813872 dataset_size: 5764244 - config_name: 20231101.sn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9790528 num_examples: 11621 download_size: 4979456 dataset_size: 9790528 - config_name: 20231101.so features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13663784 num_examples: 9021 download_size: 7940363 dataset_size: 13663784 - config_name: 20231101.sq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 208779652 num_examples: 104854 download_size: 116945494 dataset_size: 208779652 - config_name: 20231101.sr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1721596392 num_examples: 676605 download_size: 697391786 dataset_size: 1721596392 - config_name: 20231101.srn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 649317 num_examples: 1219 download_size: 215103 dataset_size: 649317 - config_name: 20231101.ss features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1076102 num_examples: 945 download_size: 600997 dataset_size: 1076102 - config_name: 20231101.st features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 968161 num_examples: 1099 download_size: 530165 dataset_size: 968161 - config_name: 20231101.stq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4942784 num_examples: 4134 download_size: 2884429 dataset_size: 4942784 - config_name: 20231101.su features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 48066965 num_examples: 61555 download_size: 19806020 dataset_size: 48066965 - config_name: 20231101.sv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2153690744 num_examples: 2574513 download_size: 974261228 dataset_size: 2153690744 - config_name: 20231101.sw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 73119299 num_examples: 78587 download_size: 35936177 dataset_size: 73119299 - config_name: 20231101.szl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21439309 num_examples: 57035 download_size: 7347967 dataset_size: 21439309 - config_name: 20231101.szy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11355780 num_examples: 4885 download_size: 6192815 dataset_size: 11355780 - config_name: 20231101.ta features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 810734099 num_examples: 160651 download_size: 265652020 dataset_size: 810734099 - config_name: 20231101.tay features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2974229 num_examples: 2747 download_size: 1232811 dataset_size: 2974229 - config_name: 20231101.tcy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12166612 num_examples: 2202 download_size: 4611006 dataset_size: 12166612 - config_name: 20231101.te features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 730376585 num_examples: 87854 download_size: 215097076 dataset_size: 730376585 - config_name: 20231101.tet features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1466200 num_examples: 1468 download_size: 744390 dataset_size: 1466200 - config_name: 20231101.tg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 148256281 num_examples: 110962 download_size: 49825647 dataset_size: 148256281 - config_name: 20231101.th features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1014547923 num_examples: 159719 download_size: 371916105 dataset_size: 1014547923 - config_name: 20231101.ti features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 729995 num_examples: 435 download_size: 363723 dataset_size: 729995 - config_name: 20231101.tk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13326412 num_examples: 7918 download_size: 7383654 dataset_size: 13326412 - config_name: 20231101.tl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 85794472 num_examples: 45341 download_size: 45797527 dataset_size: 85794472 - config_name: 20231101.tly features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2590482 num_examples: 8086 download_size: 1070456 dataset_size: 2590482 - config_name: 20231101.tn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4380768 num_examples: 1585 download_size: 1708110 dataset_size: 4380768 - config_name: 20231101.to features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1090611 num_examples: 1887 download_size: 518244 dataset_size: 1090611 - config_name: 20231101.tpi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 460420 num_examples: 1399 download_size: 241908 dataset_size: 460420 - config_name: 20231101.tr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 997254242 num_examples: 534988 download_size: 552923659 dataset_size: 997254242 - config_name: 20231101.trv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4971204 num_examples: 1880 download_size: 2706664 dataset_size: 4971204 - config_name: 20231101.ts features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 847032 num_examples: 785 download_size: 455648 dataset_size: 847032 - config_name: 20231101.tt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 681325421 num_examples: 501116 download_size: 129141056 dataset_size: 681325421 - config_name: 20231101.tum features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13429984 num_examples: 18708 download_size: 5459856 dataset_size: 13429984 - config_name: 20231101.tw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7982767 num_examples: 3978 download_size: 4118530 dataset_size: 7982767 - config_name: 20231101.ty features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 338743 num_examples: 1355 download_size: 150963 dataset_size: 338743 - config_name: 20231101.tyv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14324694 num_examples: 3491 download_size: 6528290 dataset_size: 14324694 - config_name: 20231101.udm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7036113 num_examples: 5677 download_size: 2982821 dataset_size: 7036113 - config_name: 20231101.ug features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 42254159 num_examples: 8634 download_size: 17741860 dataset_size: 42254159 - config_name: 20231101.uk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4969483901 num_examples: 1294720 download_size: 2276769383 dataset_size: 4969483901 - config_name: 20231101.ur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 410511855 num_examples: 200154 download_size: 167627869 dataset_size: 410511855 - config_name: 20231101.uz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 397176774 num_examples: 246729 download_size: 210262652 dataset_size: 397176774 - config_name: 20231101.ve features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 359542 num_examples: 840 download_size: 163318 dataset_size: 359542 - config_name: 20231101.vec features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 37917528 num_examples: 69268 download_size: 16179506 dataset_size: 37917528 - config_name: 20231101.vep features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11643856 num_examples: 6960 download_size: 6423002 dataset_size: 11643856 - config_name: 20231101.vi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1617830227 num_examples: 1288680 download_size: 729557588 dataset_size: 1617830227 - config_name: 20231101.vls features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11336278 num_examples: 7872 download_size: 6985406 dataset_size: 11336278 - config_name: 20231101.vo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19521708 num_examples: 35193 download_size: 6582571 dataset_size: 19521708 - config_name: 20231101.wa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12268826 num_examples: 12038 download_size: 7327616 dataset_size: 12268826 - config_name: 20231101.war features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 467647882 num_examples: 1266394 download_size: 104588442 dataset_size: 467647882 - config_name: 20231101.wo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3525303 num_examples: 1746 download_size: 2094574 dataset_size: 3525303 - config_name: 20231101.wuu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 25029545 num_examples: 43010 download_size: 15985963 dataset_size: 25029545 - config_name: 20231101.xal features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1391731 num_examples: 2295 download_size: 507198 dataset_size: 1391731 - config_name: 20231101.xh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3665998 num_examples: 1883 download_size: 2505472 dataset_size: 3665998 - config_name: 20231101.xmf features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 37712629 num_examples: 18099 download_size: 12948576 dataset_size: 37712629 - config_name: 20231101.yi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36038273 num_examples: 15179 download_size: 16218296 dataset_size: 36038273 - config_name: 20231101.yo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19081408 num_examples: 33819 download_size: 8861465 dataset_size: 19081408 - config_name: 20231101.za features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1365300 num_examples: 2993 download_size: 666521 dataset_size: 1365300 - config_name: 20231101.zea features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5224563 num_examples: 6082 download_size: 2620396 dataset_size: 5224563 - config_name: 20231101.zh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2790577882 num_examples: 1384748 download_size: 1721150260 dataset_size: 2790577882 - config_name: 20231101.zh-classical features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14869227 num_examples: 12708 download_size: 10098073 dataset_size: 14869227 - config_name: 20231101.zh-min-nan features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 153672031 num_examples: 432798 download_size: 37122048 dataset_size: 153672031 - config_name: 20231101.zh-yue features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 109936351 num_examples: 134140 download_size: 64950815 dataset_size: 109936351 - config_name: 20231101.zu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7088246 num_examples: 11561 download_size: 3792429 dataset_size: 7088246 language_bcp47: - be-tarask - en-simple --- # Dataset Card for Wikimedia Wikipedia ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://dumps.wikimedia.org](https://dumps.wikimedia.org) - **Repository:** - **Paper:** - **Point of Contact:** ### Dataset Summary Wikipedia dataset containing cleaned articles of all languages. The dataset is built from the Wikipedia dumps (https://dumps.wikimedia.org/) with one subset per language, each containing a single train split. Each example contains the content of one full Wikipedia article with cleaning to strip markdown and unwanted sections (references, etc.). All language subsets have already been processed for recent dump, and you can load them per date and language this way: ```python from datasets import load_dataset ds = load_dataset("wikimedia/wikipedia", "20231101.en") ``` #### Data Visualization Click the [Nomic Atlas](https://atlas.nomic.ai/map/475c26d7-b142-4795-9887-02b6eeb18dc0/0d312be6-a3bb-4586-b6b7-53dcd0cbefa5) map below to visualize the 6.4 million samples in the `20231101.en` split. <a href="https://atlas.nomic.ai/map/475c26d7-b142-4795-9887-02b6eeb18dc0/0d312be6-a3bb-4586-b6b7-53dcd0cbefa5"> <img src="https://cdn-uploads.huggingface.co/production/uploads/6480c476cacb1c4a0696eeb8/sZNN6Vubc0Oue83vKaJUu.webp" alt="Nomic-Atlas Wikipedia Map" width="25%"/> </a> ### Supported Tasks and Leaderboards The dataset is generally used for Language Modeling. ### Languages You can find the list of languages here: https://meta.wikimedia.org/wiki/List_of_Wikipedias ## Dataset Structure ### Data Instances An example looks as follows: ``` {'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the fourth month...' } ``` ### Data Fields The data fields are the same among all configurations: - `id` (`str`): ID of the article. - `url` (`str`): URL of the article. - `title` (`str`): Title of the article. - `text` (`str`): Text content of the article. ### Data Splits All configurations contain a single `train` split. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization The dataset is built from the Wikipedia dumps: https://dumps.wikimedia.org You can find the full list of languages and dates here: https://dumps.wikimedia.org/backup-index.html The articles have been parsed using the [`mwparserfromhell`](https://mwparserfromhell.readthedocs.io) tool. When uploading the data files for the 20231101 dump, we noticed that the Wikimedia Dumps website does not contain this date dump for the "bbc", "dga", nor "zgh" Wikipedias. We have reported the issue to the Wikimedia Phabricator: https://phabricator.wikimedia.org/T351761 #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information Copyright licensing information: https://dumps.wikimedia.org/legal.html All original textual content is licensed under the [GNU Free Documentation License](https://www.gnu.org/licenses/fdl-1.3.html) (GFDL) and the [Creative Commons Attribution-Share-Alike 3.0 License](https://creativecommons.org/licenses/by-sa/3.0/). Some text may be available only under the Creative Commons license; see their [Terms of Use](https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use) for details. Text written by some authors may be released under additional licenses or into the public domain. ### Citation Information ``` @ONLINE{wikidump, author = "Wikimedia Foundation", title = "Wikimedia Downloads", url = "https://dumps.wikimedia.org" } ```
Yelp/yelp_review_full
Yelp
2024-01-04T17:14:53Z
11,747
119
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1509.01626", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - other multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification pretty_name: YelpReviewFull license_details: yelp-licence dataset_info: config_name: yelp_review_full features: - name: label dtype: class_label: names: '0': 1 star '1': 2 star '2': 3 stars '3': 4 stars '4': 5 stars - name: text dtype: string splits: - name: train num_bytes: 483811554 num_examples: 650000 - name: test num_bytes: 37271188 num_examples: 50000 download_size: 322952369 dataset_size: 521082742 configs: - config_name: yelp_review_full data_files: - split: train path: yelp_review_full/train-* - split: test path: yelp_review_full/test-* default: true train-eval-index: - config: yelp_review_full task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- --- # Dataset Card for YelpReviewFull ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Yelp](https://www.yelp.com/dataset) - **Repository:** [Crepe](https://github.com/zhangxiangxiao/Crepe) - **Paper:** [Character-level Convolutional Networks for Text Classification](https://arxiv.org/abs/1509.01626) - **Point of Contact:** [Xiang Zhang](mailto:[email protected]) ### Dataset Summary The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data. ### Supported Tasks and Leaderboards - `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the text, predict the sentiment. ### Languages The reviews were mainly written in english. ## Dataset Structure ### Data Instances A typical data point, comprises of a text and the corresponding label. An example from the YelpReviewFull test set looks as follows: ``` { 'label': 0, 'text': 'I got \'new\' tires from them and within two weeks got a flat. I took my car to a local mechanic to see if i could get the hole patched, but they said the reason I had a flat was because the previous patch had blown - WAIT, WHAT? I just got the tire and never needed to have it patched? This was supposed to be a new tire. \\nI took the tire over to Flynn\'s and they told me that someone punctured my tire, then tried to patch it. So there are resentful tire slashers? I find that very unlikely. After arguing with the guy and telling him that his logic was far fetched he said he\'d give me a new tire \\"this time\\". \\nI will never go back to Flynn\'s b/c of the way this guy treated me and the simple fact that they gave me a used tire!' } ``` ### Data Fields - 'text': The review texts are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n". - 'label': Corresponds to the score associated with the review (between 1 and 5). ### Data Splits The Yelp reviews full star dataset is constructed by randomly taking 130,000 training samples and 10,000 testing samples for each review star from 1 to 5. In total there are 650,000 trainig samples and 50,000 testing samples. ## Dataset Creation ### Curation Rationale The Yelp reviews full star dataset is constructed by Xiang Zhang ([email protected]) from the Yelp Dataset Challenge 2015. It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information You can check the official [yelp-dataset-agreement](https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf). ### Citation Information Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). ### Contributions Thanks to [@hfawaz](https://github.com/hfawaz) for adding this dataset.
uclanlp/wino_bias
uclanlp
2024-01-04T16:50:33Z
1,832
18
[ "task_categories:token-classification", "task_ids:coreference-resolution", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1804.06876", "region:us" ]
[ "token-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - mit multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - token-classification task_ids: - coreference-resolution paperswithcode_id: winobias pretty_name: WinoBias dataset_info: - config_name: type1_anti features: - name: document_id dtype: string - name: part_number dtype: string - name: word_number sequence: int32 - name: tokens sequence: string - name: pos_tags sequence: class_label: names: '0': '"' '1': '''''' '2': '#' '3': $ '4': ( '5': ) '6': ',' '7': . '8': ':' '9': '``' '10': CC '11': CD '12': DT '13': EX '14': FW '15': IN '16': JJ '17': JJR '18': JJS '19': LS '20': MD '21': NN '22': NNP '23': NNPS '24': NNS '25': NN|SYM '26': PDT '27': POS '28': PRP '29': PRP$ '30': RB '31': RBR '32': RBS '33': RP '34': SYM '35': TO '36': UH '37': VB '38': VBD '39': VBG '40': VBN '41': VBP '42': VBZ '43': WDT '44': WP '45': WP$ '46': WRB '47': HYPH '48': XX '49': NFP '50': AFX '51': ADD '52': -LRB- '53': -RRB- '54': '-' - name: parse_bit sequence: string - name: predicate_lemma sequence: string - name: predicate_framenet_id sequence: string - name: word_sense sequence: string - name: speaker sequence: string - name: ner_tags sequence: class_label: names: '0': B-PERSON '1': I-PERSON '2': B-NORP '3': I-NORP '4': B-FAC '5': I-FAC '6': B-ORG '7': I-ORG '8': B-GPE '9': I-GPE '10': B-LOC '11': I-LOC '12': B-PRODUCT '13': I-PRODUCT '14': B-EVENT '15': I-EVENT '16': B-WORK_OF_ART '17': I-WORK_OF_ART '18': B-LAW '19': I-LAW '20': B-LANGUAGE '21': I-LANGUAGE '22': B-DATE '23': I-DATE '24': B-TIME '25': I-TIME '26': B-PERCENT '27': I-PERCENT '28': B-MONEY '29': I-MONEY '30': B-QUANTITY '31': I-QUANTITY '32': B-ORDINAL '33': I-ORDINAL '34': B-CARDINAL '35': I-CARDINAL '36': '*' '37': '0' '38': '-' - name: verbal_predicates sequence: string - name: coreference_clusters sequence: string splits: - name: validation num_bytes: 380510 num_examples: 396 - name: test num_bytes: 402893 num_examples: 396 download_size: 65383 dataset_size: 783403 - config_name: type1_pro features: - name: document_id dtype: string - name: part_number dtype: string - name: word_number sequence: int32 - name: tokens sequence: string - name: pos_tags sequence: class_label: names: '0': '"' '1': '''''' '2': '#' '3': $ '4': ( '5': ) '6': ',' '7': . '8': ':' '9': '``' '10': CC '11': CD '12': DT '13': EX '14': FW '15': IN '16': JJ '17': JJR '18': JJS '19': LS '20': MD '21': NN '22': NNP '23': NNPS '24': NNS '25': NN|SYM '26': PDT '27': POS '28': PRP '29': PRP$ '30': RB '31': RBR '32': RBS '33': RP '34': SYM '35': TO '36': UH '37': VB '38': VBD '39': VBG '40': VBN '41': VBP '42': VBZ '43': WDT '44': WP '45': WP$ '46': WRB '47': HYPH '48': XX '49': NFP '50': AFX '51': ADD '52': -LRB- '53': -RRB- '54': '-' - name: parse_bit sequence: string - name: predicate_lemma sequence: string - name: predicate_framenet_id sequence: string - name: word_sense sequence: string - name: speaker sequence: string - name: ner_tags sequence: class_label: names: '0': B-PERSON '1': I-PERSON '2': B-NORP '3': I-NORP '4': B-FAC '5': I-FAC '6': B-ORG '7': I-ORG '8': B-GPE '9': I-GPE '10': B-LOC '11': I-LOC '12': B-PRODUCT '13': I-PRODUCT '14': B-EVENT '15': I-EVENT '16': B-WORK_OF_ART '17': I-WORK_OF_ART '18': B-LAW '19': I-LAW '20': B-LANGUAGE '21': I-LANGUAGE '22': B-DATE '23': I-DATE '24': B-TIME '25': I-TIME '26': B-PERCENT '27': I-PERCENT '28': B-MONEY '29': I-MONEY '30': B-QUANTITY '31': I-QUANTITY '32': B-ORDINAL '33': I-ORDINAL '34': B-CARDINAL '35': I-CARDINAL '36': '*' '37': '0' '38': '-' - name: verbal_predicates sequence: string - name: coreference_clusters sequence: string splits: - name: validation num_bytes: 379044 num_examples: 396 - name: test num_bytes: 401705 num_examples: 396 download_size: 65516 dataset_size: 780749 - config_name: type2_anti features: - name: document_id dtype: string - name: part_number dtype: string - name: word_number sequence: int32 - name: tokens sequence: string - name: pos_tags sequence: class_label: names: '0': '"' '1': '''''' '2': '#' '3': $ '4': ( '5': ) '6': ',' '7': . '8': ':' '9': '``' '10': CC '11': CD '12': DT '13': EX '14': FW '15': IN '16': JJ '17': JJR '18': JJS '19': LS '20': MD '21': NN '22': NNP '23': NNPS '24': NNS '25': NN|SYM '26': PDT '27': POS '28': PRP '29': PRP$ '30': RB '31': RBR '32': RBS '33': RP '34': SYM '35': TO '36': UH '37': VB '38': VBD '39': VBG '40': VBN '41': VBP '42': VBZ '43': WDT '44': WP '45': WP$ '46': WRB '47': HYPH '48': XX '49': NFP '50': AFX '51': ADD '52': -LRB- '53': -RRB- '54': '-' - name: parse_bit sequence: string - name: predicate_lemma sequence: string - name: predicate_framenet_id sequence: string - name: word_sense sequence: string - name: speaker sequence: string - name: ner_tags sequence: class_label: names: '0': B-PERSON '1': I-PERSON '2': B-NORP '3': I-NORP '4': B-FAC '5': I-FAC '6': B-ORG '7': I-ORG '8': B-GPE '9': I-GPE '10': B-LOC '11': I-LOC '12': B-PRODUCT '13': I-PRODUCT '14': B-EVENT '15': I-EVENT '16': B-WORK_OF_ART '17': I-WORK_OF_ART '18': B-LAW '19': I-LAW '20': B-LANGUAGE '21': I-LANGUAGE '22': B-DATE '23': I-DATE '24': B-TIME '25': I-TIME '26': B-PERCENT '27': I-PERCENT '28': B-MONEY '29': I-MONEY '30': B-QUANTITY '31': I-QUANTITY '32': B-ORDINAL '33': I-ORDINAL '34': B-CARDINAL '35': I-CARDINAL '36': '*' '37': '0' '38': '-' - name: verbal_predicates sequence: string - name: coreference_clusters sequence: string splits: - name: validation num_bytes: 368421 num_examples: 396 - name: test num_bytes: 376926 num_examples: 396 download_size: 62555 dataset_size: 745347 - config_name: type2_pro features: - name: document_id dtype: string - name: part_number dtype: string - name: word_number sequence: int32 - name: tokens sequence: string - name: pos_tags sequence: class_label: names: '0': '"' '1': '''''' '2': '#' '3': $ '4': ( '5': ) '6': ',' '7': . '8': ':' '9': '``' '10': CC '11': CD '12': DT '13': EX '14': FW '15': IN '16': JJ '17': JJR '18': JJS '19': LS '20': MD '21': NN '22': NNP '23': NNPS '24': NNS '25': NN|SYM '26': PDT '27': POS '28': PRP '29': PRP$ '30': RB '31': RBR '32': RBS '33': RP '34': SYM '35': TO '36': UH '37': VB '38': VBD '39': VBG '40': VBN '41': VBP '42': VBZ '43': WDT '44': WP '45': WP$ '46': WRB '47': HYPH '48': XX '49': NFP '50': AFX '51': ADD '52': -LRB- '53': -RRB- '54': '-' - name: parse_bit sequence: string - name: predicate_lemma sequence: string - name: predicate_framenet_id sequence: string - name: word_sense sequence: string - name: speaker sequence: string - name: ner_tags sequence: class_label: names: '0': B-PERSON '1': I-PERSON '2': B-NORP '3': I-NORP '4': B-FAC '5': I-FAC '6': B-ORG '7': I-ORG '8': B-GPE '9': I-GPE '10': B-LOC '11': I-LOC '12': B-PRODUCT '13': I-PRODUCT '14': B-EVENT '15': I-EVENT '16': B-WORK_OF_ART '17': I-WORK_OF_ART '18': B-LAW '19': I-LAW '20': B-LANGUAGE '21': I-LANGUAGE '22': B-DATE '23': I-DATE '24': B-TIME '25': I-TIME '26': B-PERCENT '27': I-PERCENT '28': B-MONEY '29': I-MONEY '30': B-QUANTITY '31': I-QUANTITY '32': B-ORDINAL '33': I-ORDINAL '34': B-CARDINAL '35': I-CARDINAL '36': '*' '37': '0' '38': '-' - name: verbal_predicates sequence: string - name: coreference_clusters sequence: string splits: - name: validation num_bytes: 366957 num_examples: 396 - name: test num_bytes: 375144 num_examples: 396 download_size: 62483 dataset_size: 742101 - config_name: wino_bias features: - name: document_id dtype: string - name: part_number dtype: string - name: word_number sequence: int32 - name: tokens sequence: string - name: pos_tags sequence: class_label: names: '0': '"' '1': '''''' '2': '#' '3': $ '4': ( '5': ) '6': ',' '7': . '8': ':' '9': '``' '10': CC '11': CD '12': DT '13': EX '14': FW '15': IN '16': JJ '17': JJR '18': JJS '19': LS '20': MD '21': NN '22': NNP '23': NNPS '24': NNS '25': NN|SYM '26': PDT '27': POS '28': PRP '29': PRP$ '30': RB '31': RBR '32': RBS '33': RP '34': SYM '35': TO '36': UH '37': VB '38': VBD '39': VBG '40': VBN '41': VBP '42': VBZ '43': WDT '44': WP '45': WP$ '46': WRB '47': HYPH '48': XX '49': NFP '50': AFX '51': ADD '52': -LRB- '53': -RRB- - name: parse_bit sequence: string - name: predicate_lemma sequence: string - name: predicate_framenet_id sequence: string - name: word_sense sequence: string - name: speaker sequence: string - name: ner_tags sequence: class_label: names: '0': B-PERSON '1': I-PERSON '2': B-NORP '3': I-NORP '4': B-FAC '5': I-FAC '6': B-ORG '7': I-ORG '8': B-GPE '9': I-GPE '10': B-LOC '11': I-LOC '12': B-PRODUCT '13': I-PRODUCT '14': B-EVENT '15': I-EVENT '16': B-WORK_OF_ART '17': I-WORK_OF_ART '18': B-LAW '19': I-LAW '20': B-LANGUAGE '21': I-LANGUAGE '22': B-DATE '23': I-DATE '24': B-TIME '25': I-TIME '26': B-PERCENT '27': I-PERCENT '28': B-MONEY '29': I-MONEY '30': B-QUANTITY '31': I-QUANTITY '32': B-ORDINAL '33': I-ORDINAL '34': B-CARDINAL '35': I-CARDINAL '36': '*' '37': '0' - name: verbal_predicates sequence: string splits: - name: train num_bytes: 173899234 num_examples: 150335 download_size: 268725744 dataset_size: 173899234 configs: - config_name: type1_anti data_files: - split: validation path: type1_anti/validation-* - split: test path: type1_anti/test-* - config_name: type1_pro data_files: - split: validation path: type1_pro/validation-* - split: test path: type1_pro/test-* - config_name: type2_anti data_files: - split: validation path: type2_anti/validation-* - split: test path: type2_anti/test-* - config_name: type2_pro data_files: - split: validation path: type2_pro/validation-* - split: test path: type2_pro/test-* --- # Dataset Card for Wino_Bias dataset ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [WinoBias](https://uclanlp.github.io/corefBias/overview) - **Repository:** - **Paper:** [Arxiv](https://arxiv.org/abs/1804.06876) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary WinoBias, a Winograd-schema dataset for coreference resolution focused on gender bias. The corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). ### Supported Tasks and Leaderboards The underlying task is coreference resolution. ### Languages English ## Dataset Structure ### Data Instances The dataset has 4 subsets: `type1_pro`, `type1_anti`, `type2_pro` and `type2_anti`. The `*_pro` subsets contain sentences that reinforce gender stereotypes (e.g. mechanics are male, nurses are female), whereas the `*_anti` datasets contain "anti-stereotypical" sentences (e.g. mechanics are female, nurses are male). The `type1` (*WB-Knowledge*) subsets contain sentences for which world knowledge is necessary to resolve the co-references, and `type2` (*WB-Syntax*) subsets require only the syntactic information present in the sentence to resolve them. ### Data Fields - document_id = This is a variation on the document filename - part_number = Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. - word_num = This is the word index of the word in that sentence. - tokens = This is the token as segmented/tokenized in the Treebank. - pos_tags = This is the Penn Treebank style part of speech. When parse information is missing, all part of speeches except the one for which there is some sense or proposition annotation are marked with a XX tag. The verb is marked with just a VERB tag. - parse_bit = This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. When the parse information is missing, the first word of a sentence is tagged as "(TOP*" and the last word is tagged as "*)" and all intermediate words are tagged with a "*". - predicate_lemma = The predicate lemma is mentioned for the rows for which we have semantic role information or word sense information. All other rows are marked with a "-". - predicate_framenet_id = This is the PropBank frameset ID of the predicate in predicate_lemma. - word_sense = This is the word sense of the word in Column tokens. - speaker = This is the speaker or author name where available. - ner_tags = These columns identifies the spans representing various named entities. For documents which do not have named entity annotation, each line is represented with an "*". - verbal_predicates = There is one column each of predicate argument structure information for the predicate mentioned in predicate_lemma. If there are no predicates tagged in a sentence this is a single column with all rows marked with an "*". ### Data Splits Dev and Test Split available ## Dataset Creation ### Curation Rationale The WinoBias dataset was introduced in 2018 (see [paper](https://arxiv.org/abs/1804.06876)), with its original task being *coreference resolution*, which is a task that aims to identify mentions that refer to the same entity or person. ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? The dataset was created by researchers familiar with the WinoBias project, based on two prototypical templates provided by the authors, in which entities interact in plausible ways. ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? "Researchers familiar with the [WinoBias] project" ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [Recent work](https://www.microsoft.com/en-us/research/uploads/prod/2021/06/The_Salmon_paper.pdf) has shown that this dataset contains grammatical issues, incorrect or ambiguous labels, and stereotype conflation, among other limitations. ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez and Kai-Wei Chan ### Licensing Information MIT Licence ### Citation Information @article{DBLP:journals/corr/abs-1804-06876, author = {Jieyu Zhao and Tianlu Wang and Mark Yatskar and Vicente Ordonez and Kai{-}Wei Chang}, title = {Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods}, journal = {CoRR}, volume = {abs/1804.06876}, year = {2018}, url = {http://arxiv.org/abs/1804.06876}, archivePrefix = {arXiv}, eprint = {1804.06876}, timestamp = {Mon, 13 Aug 2018 16:47:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1804-06876.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ### Contributions Thanks to [@akshayb7](https://github.com/akshayb7) for adding this dataset. Updated by [@JieyuZhao](https://github.com/JieyuZhao).
Stanford/web_questions
Stanford
2024-01-04T16:41:06Z
4,003
32
[ "task_categories:question-answering", "task_ids:open-domain-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - question-answering task_ids: - open-domain-qa paperswithcode_id: webquestions pretty_name: WebQuestions dataset_info: features: - name: url dtype: string - name: question dtype: string - name: answers sequence: string splits: - name: train num_bytes: 530711 num_examples: 3778 - name: test num_bytes: 288184 num_examples: 2032 download_size: 402395 dataset_size: 818895 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # Dataset Card for "web_questions" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a](https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [Semantic Parsing on Freebase from Question-Answer Pairs](https://aclanthology.org/D13-1160/) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 1.27 MB - **Size of the generated dataset:** 0.83 MB - **Total amount of disk used:** 2.10 MB ### Dataset Summary This dataset consists of 6,642 question/answer pairs. The questions are supposed to be answerable by Freebase, a large knowledge graph. The questions are mostly centered around a single named entity. The questions are popular ones asked on the web (at least in 2013). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 1.27 MB - **Size of the generated dataset:** 0.83 MB - **Total amount of disk used:** 2.10 MB An example of 'train' looks as follows. ``` { "answers": ["Jamaican Creole English Language", "Jamaican English"], "question": "what does jamaican people speak?", "url": "http://www.freebase.com/view/en/jamaica" } ``` ### Data Fields The data fields are the same among all splits. #### default - `url`: a `string` feature. - `question`: a `string` feature. - `answers`: a `list` of `string` features. ### Data Splits | name |train|test| |-------|----:|---:| |default| 3778|2032| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{berant-etal-2013-semantic, title = "Semantic Parsing on {F}reebase from Question-Answer Pairs", author = "Berant, Jonathan and Chou, Andrew and Frostig, Roy and Liang, Percy", booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing", month = oct, year = "2013", address = "Seattle, Washington, USA", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D13-1160", pages = "1533--1544", } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@lewtun](https://github.com/lewtun) for adding this dataset.
allenai/sciq
allenai
2024-01-04T16:23:51Z
16,907
106
[ "task_categories:question-answering", "task_ids:closed-domain-qa", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-3.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - no-annotation language_creators: - crowdsourced language: - en license: - cc-by-nc-3.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - question-answering task_ids: - closed-domain-qa paperswithcode_id: sciq pretty_name: SciQ dataset_info: features: - name: question dtype: string - name: distractor3 dtype: string - name: distractor1 dtype: string - name: distractor2 dtype: string - name: correct_answer dtype: string - name: support dtype: string splits: - name: train num_bytes: 6546183 num_examples: 11679 - name: validation num_bytes: 554120 num_examples: 1000 - name: test num_bytes: 563927 num_examples: 1000 download_size: 4674410 dataset_size: 7664230 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Dataset Card for "sciq" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://allenai.org/data/sciq](https://allenai.org/data/sciq) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 2.82 MB - **Size of the generated dataset:** 7.68 MB - **Total amount of disk used:** 10.50 MB ### Dataset Summary The SciQ dataset contains 13,679 crowdsourced science exam questions about Physics, Chemistry and Biology, among others. The questions are in multiple-choice format with 4 answer options each. For the majority of the questions, an additional paragraph with supporting evidence for the correct answer is provided. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 2.82 MB - **Size of the generated dataset:** 7.68 MB - **Total amount of disk used:** 10.50 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "correct_answer": "coriolis effect", "distractor1": "muon effect", "distractor2": "centrifugal effect", "distractor3": "tropical effect", "question": "What phenomenon makes global winds blow northeast to southwest or the reverse in the northern hemisphere and northwest to southeast or the reverse in the southern hemisphere?", "support": "\"Without Coriolis Effect the global winds would blow north to south or south to north. But Coriolis makes them blow northeast to..." } ``` ### Data Fields The data fields are the same among all splits. #### default - `question`: a `string` feature. - `distractor3`: a `string` feature. - `distractor1`: a `string` feature. - `distractor2`: a `string` feature. - `correct_answer`: a `string` feature. - `support`: a `string` feature. ### Data Splits | name |train|validation|test| |-------|----:|---------:|---:| |default|11679| 1000|1000| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The dataset is licensed under the [Creative Commons Attribution-NonCommercial 3.0 Unported License](http://creativecommons.org/licenses/by-nc/3.0/). ### Citation Information ``` @inproceedings{SciQ, title={Crowdsourcing Multiple Choice Science Questions}, author={Johannes Welbl, Nelson F. Liu, Matt Gardner}, year={2017}, journal={arXiv:1707.06209v1} } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
textmachinelab/quail
textmachinelab
2024-01-04T16:18:32Z
17,696
7
[ "task_categories:multiple-choice", "task_ids:multiple-choice-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "multiple-choice" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - cc-by-nc-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - multiple-choice task_ids: - multiple-choice-qa paperswithcode_id: quail pretty_name: Question Answering for Artificial Intelligence (QuAIL) dataset_info: config_name: quail features: - name: id dtype: string - name: context_id dtype: string - name: question_id dtype: string - name: domain dtype: string - name: metadata struct: - name: author dtype: string - name: title dtype: string - name: url dtype: string - name: context dtype: string - name: question dtype: string - name: question_type dtype: string - name: answers sequence: string - name: correct_answer_id dtype: int32 splits: - name: train num_bytes: 23432601 num_examples: 10246 - name: validation num_bytes: 4989531 num_examples: 2164 - name: challenge num_bytes: 1199792 num_examples: 556 download_size: 2286403 dataset_size: 29621924 configs: - config_name: quail data_files: - split: train path: quail/train-* - split: validation path: quail/validation-* - split: challenge path: quail/challenge-* default: true --- # Dataset Card for "quail" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://text-machine-lab.github.io/blog/2020/quail/](https://text-machine-lab.github.io/blog/2020/quail/) - **Repository:** https://github.com/text-machine-lab/quail - **Paper:** [Getting Closer to AI Complete Question Answering: A Set of Prerequisite Real Tasks](https://doi.org/10.1609/aaai.v34i05.6398 ) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 6.41 MB - **Size of the generated dataset:** 29.62 MB - **Total amount of disk used:** 36.03 MB ### Dataset Summary QuAIL is a reading comprehension dataset. QuAIL contains 15K multi-choice questions in texts 300-350 tokens long 4 domains (news, user stories, fiction, blogs).QuAIL is balanced and annotated for question types. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### quail - **Size of downloaded dataset files:** 6.41 MB - **Size of the generated dataset:** 29.62 MB - **Total amount of disk used:** 36.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "answers": ["the cousin is not friendly", "the cousin could have been pretier", "not enough information", "the cousin was too nice"], "context": "\"That fall came and I went back to Michigan and the school year went by and summer came and I never really thought about it. I'm...", "context_id": "f001", "correct_answer_id": 0, "domain": "fiction", "id": "f001_19", "metadata": { "author": "Joseph Devon", "title": "Black Eyed Susan", "url": "http://manybooks.net/pages/devonjother08black_eyed_susan/0.html" }, "question": "After the events in the text what does the author think about the cousin?", "question_id": "19", "question_type": "Subsequent_state" } ``` ### Data Fields The data fields are the same among all splits. #### quail - `id`: a `string` feature. - `context_id`: a `string` feature. - `question_id`: a `string` feature. - `domain`: a `string` feature. - `author`: a `string` feature. - `title`: a `string` feature. - `url`: a `string` feature. - `context`: a `string` feature. - `question`: a `string` feature. - `question_type`: a `string` feature. - `answers`: a `list` of `string` features. - `correct_answer_id`: a `int32` feature. ### Data Splits |name |train|challenge|validation| |-----|----:|--------:|---------:| |quail|10246| 556| 2164| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{DBLP:conf/aaai/RogersKDR20, author = {Anna Rogers and Olga Kovaleva and Matthew Downey and Anna Rumshisky}, title = {Getting Closer to {AI} Complete Question Answering: {A} Set of Prerequisite Real Tasks}, booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI} 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA, February 7-12, 2020}, pages = {8722--8731}, publisher = {{AAAI} Press}, year = {2020}, url = {https://aaai.org/ojs/index.php/AAAI/article/view/6398}, timestamp = {Thu, 04 Jun 2020 13:18:48 +0200}, biburl = {https://dblp.org/rec/conf/aaai/RogersKDR20.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ### Contributions Thanks to [@sai-prasanna](https://github.com/sai-prasanna), [@ngdodd](https://github.com/ngdodd) for adding this dataset.
allenai/qasc
allenai
2024-01-04T16:17:46Z
1,337
17
[ "task_categories:question-answering", "task_categories:multiple-choice", "task_ids:extractive-qa", "task_ids:multiple-choice-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1910.11473", "region:us" ]
[ "question-answering", "multiple-choice" ]
2022-03-02T23:29:22Z
2
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - question-answering - multiple-choice task_ids: - extractive-qa - multiple-choice-qa paperswithcode_id: qasc pretty_name: Question Answering via Sentence Composition (QASC) dataset_info: features: - name: id dtype: string - name: question dtype: string - name: choices sequence: - name: text dtype: string - name: label dtype: string - name: answerKey dtype: string - name: fact1 dtype: string - name: fact2 dtype: string - name: combinedfact dtype: string - name: formatted_question dtype: string splits: - name: train num_bytes: 4891878 num_examples: 8134 - name: test num_bytes: 390534 num_examples: 920 - name: validation num_bytes: 559180 num_examples: 926 download_size: 2349698 dataset_size: 5841592 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* --- # Dataset Card for "qasc" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://allenai.org/data/qasc](https://allenai.org/data/qasc) - **Repository:** https://github.com/allenai/qasc/ - **Paper:** [QASC: A Dataset for Question Answering via Sentence Composition](https://arxiv.org/abs/1910.11473) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 1.61 MB - **Size of the generated dataset:** 5.87 MB - **Total amount of disk used:** 7.49 MB ### Dataset Summary QASC is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice questions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 1.61 MB - **Size of the generated dataset:** 5.87 MB - **Total amount of disk used:** 7.49 MB An example of 'validation' looks as follows. ``` { "answerKey": "F", "choices": { "label": ["A", "B", "C", "D", "E", "F", "G", "H"], "text": ["sand", "occurs over a wide range", "forests", "Global warming", "rapid changes occur", "local weather conditions", "measure of motion", "city life"] }, "combinedfact": "Climate is generally described in terms of local weather conditions", "fact1": "Climate is generally described in terms of temperature and moisture.", "fact2": "Fire behavior is driven by local weather conditions such as winds, temperature and moisture.", "formatted_question": "Climate is generally described in terms of what? (A) sand (B) occurs over a wide range (C) forests (D) Global warming (E) rapid changes occur (F) local weather conditions (G) measure of motion (H) city life", "id": "3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG", "question": "Climate is generally described in terms of what?" } ``` ### Data Fields The data fields are the same among all splits. #### default - `id`: a `string` feature. - `question`: a `string` feature. - `choices`: a dictionary feature containing: - `text`: a `string` feature. - `label`: a `string` feature. - `answerKey`: a `string` feature. - `fact1`: a `string` feature. - `fact2`: a `string` feature. - `combinedfact`: a `string` feature. - `formatted_question`: a `string` feature. ### Data Splits | name |train|validation|test| |-------|----:|---------:|---:| |default| 8134| 926| 920| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The dataset is released under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. ### Citation Information ``` @article{allenai:qasc, author = {Tushar Khot and Peter Clark and Michal Guerquin and Peter Jansen and Ashish Sabharwal}, title = {QASC: A Dataset for Question Answering via Sentence Composition}, journal = {arXiv:1910.11473v2}, year = {2020}, } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun) for adding this dataset.
openai/openai_humaneval
openai
2024-01-04T16:08:05Z
81,423
314
[ "task_categories:text2text-generation", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2107.03374", "region:us", "code-generation" ]
[ "text2text-generation" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - mit multilinguality: - monolingual size_categories: - n<1K source_datasets: - original task_categories: - text2text-generation task_ids: [] paperswithcode_id: humaneval pretty_name: OpenAI HumanEval tags: - code-generation dataset_info: config_name: openai_humaneval features: - name: task_id dtype: string - name: prompt dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: entry_point dtype: string splits: - name: test num_bytes: 194394 num_examples: 164 download_size: 83920 dataset_size: 194394 configs: - config_name: openai_humaneval data_files: - split: test path: openai_humaneval/test-* default: true --- # Dataset Card for OpenAI HumanEval ## Table of Contents - [OpenAI HumanEval](#openai-humaneval) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) - [Who are the source language producers?](#who-are-the-source-language-producers) - [Annotations](#annotations) - [Annotation process](#annotation-process) - [Who are the annotators?](#who-are-the-annotators) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [GitHub Repository](https://github.com/openai/human-eval) - **Paper:** [Evaluating Large Language Models Trained on Code](https://arxiv.org/abs/2107.03374) ### Dataset Summary The HumanEval dataset released by OpenAI includes 164 programming problems with a function sig- nature, docstring, body, and several unit tests. They were handwritten to ensure not to be included in the training set of code generation models. ### Supported Tasks and Leaderboards ### Languages The programming problems are written in Python and contain English natural text in comments and docstrings. ## Dataset Structure ```python from datasets import load_dataset load_dataset("openai_humaneval") DatasetDict({ test: Dataset({ features: ['task_id', 'prompt', 'canonical_solution', 'test', 'entry_point'], num_rows: 164 }) }) ``` ### Data Instances An example of a dataset instance: ``` { "task_id": "test/0", "prompt": "def return1():\n", "canonical_solution": " return 1", "test": "def check(candidate):\n assert candidate() == 1", "entry_point": "return1" } ``` ### Data Fields - `task_id`: identifier for the data sample - `prompt`: input for the model containing function header and docstrings - `canonical_solution`: solution for the problem in the `prompt` - `test`: contains function to test generated code for correctness - `entry_point`: entry point for test ### Data Splits The dataset only consists of a test split with 164 samples. ## Dataset Creation ### Curation Rationale Since code generation models are often trained on dumps of GitHub a dataset not included in the dump was necessary to properly evaluate the model. However, since this dataset was published on GitHub it is likely to be included in future dumps. ### Source Data The dataset was handcrafted by engineers and researchers at OpenAI. #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information None. ## Considerations for Using the Data Make sure you execute generated Python code in a safe environment when evauating against this dataset as generated code could be harmful. ### Social Impact of Dataset With this dataset code generating models can be better evaluated which leads to fewer issues introduced when using such models. ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators OpenAI ### Licensing Information MIT License ### Citation Information ``` @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser and Mohammad Bavarian and Clemens Winter and Philippe Tillet and Felipe Petroski Such and Dave Cummings and Matthias Plappert and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain and William Saunders and Christopher Hesse and Andrew N. Carr and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ### Contributions Thanks to [@lvwerra](https://github.com/lvwerra) for adding this dataset.
nyu-mll/multi_nli
nyu-mll
2024-01-04T16:06:27Z
3,810
100
[ "task_categories:text-classification", "task_ids:natural-language-inference", "task_ids:multi-input-text-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-3.0", "license:cc-by-sa-3.0", "license:mit", "license:other", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - crowdsourced language_creators: - crowdsourced - found language: - en license: - cc-by-3.0 - cc-by-sa-3.0 - mit - other multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification task_ids: - natural-language-inference - multi-input-text-classification paperswithcode_id: multinli pretty_name: Multi-Genre Natural Language Inference license_details: Open Portion of the American National Corpus dataset_info: features: - name: promptID dtype: int32 - name: pairID dtype: string - name: premise dtype: string - name: premise_binary_parse dtype: string - name: premise_parse dtype: string - name: hypothesis dtype: string - name: hypothesis_binary_parse dtype: string - name: hypothesis_parse dtype: string - name: genre dtype: string - name: label dtype: class_label: names: '0': entailment '1': neutral '2': contradiction splits: - name: train num_bytes: 410210306 num_examples: 392702 - name: validation_matched num_bytes: 10063907 num_examples: 9815 - name: validation_mismatched num_bytes: 10610189 num_examples: 9832 download_size: 224005223 dataset_size: 430884402 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation_matched path: data/validation_matched-* - split: validation_mismatched path: data/validation_mismatched-* --- # Dataset Card for Multi-Genre Natural Language Inference (MultiNLI) ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://www.nyu.edu/projects/bowman/multinli/](https://www.nyu.edu/projects/bowman/multinli/) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 226.85 MB - **Size of the generated dataset:** 76.95 MB - **Total amount of disk used:** 303.81 MB ### Dataset Summary The Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information. The corpus is modeled on the SNLI corpus, but differs in that covers a range of genres of spoken and written text, and supports a distinctive cross-genre generalization evaluation. The corpus served as the basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages The dataset contains samples in English only. ## Dataset Structure ### Data Instances - **Size of downloaded dataset files:** 226.85 MB - **Size of the generated dataset:** 76.95 MB - **Total amount of disk used:** 303.81 MB Example of a data instance: ``` { "promptID": 31193, "pairID": "31193n", "premise": "Conceptually cream skimming has two basic dimensions - product and geography.", "premise_binary_parse": "( ( Conceptually ( cream skimming ) ) ( ( has ( ( ( two ( basic dimensions ) ) - ) ( ( product and ) geography ) ) ) . ) )", "premise_parse": "(ROOT (S (NP (JJ Conceptually) (NN cream) (NN skimming)) (VP (VBZ has) (NP (NP (CD two) (JJ basic) (NNS dimensions)) (: -) (NP (NN product) (CC and) (NN geography)))) (. .)))", "hypothesis": "Product and geography are what make cream skimming work. ", "hypothesis_binary_parse": "( ( ( Product and ) geography ) ( ( are ( what ( make ( cream ( skimming work ) ) ) ) ) . ) )", "hypothesis_parse": "(ROOT (S (NP (NN Product) (CC and) (NN geography)) (VP (VBP are) (SBAR (WHNP (WP what)) (S (VP (VBP make) (NP (NP (NN cream)) (VP (VBG skimming) (NP (NN work)))))))) (. .)))", "genre": "government", "label": 1 } ``` ### Data Fields The data fields are the same among all splits. - `promptID`: Unique identifier for prompt - `pairID`: Unique identifier for pair - `{premise,hypothesis}`: combination of `premise` and `hypothesis` - `{premise,hypothesis} parse`: Each sentence as parsed by the Stanford PCFG Parser 3.5.2 - `{premise,hypothesis} binary parse`: parses in unlabeled binary-branching format - `genre`: a `string` feature. - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). Dataset instances which don't have any gold label are marked with -1 label. Make sure you filter them before starting the training using `datasets.Dataset.filter`. ### Data Splits |train |validation_matched|validation_mismatched| |-----:|-----------------:|--------------------:| |392702| 9815| 9832| ## Dataset Creation ### Curation Rationale They constructed MultiNLI so as to make it possible to explicitly evaluate models both on the quality of their sentence representations within the training domain and on their ability to derive reasonable representations in unfamiliar domains. ### Source Data #### Initial Data Collection and Normalization They created each sentence pair by selecting a premise sentence from a preexisting text source and asked a human annotator to compose a novel sentence to pair with it as a hypothesis. #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The majority of the corpus is released under the OANC’s license, which allows all content to be freely used, modified, and shared under permissive terms. The data in the FICTION section falls under several permissive licenses; Seven Swords is available under a Creative Commons Share-Alike 3.0 Unported License, and with the explicit permission of the author, Living History and Password Incorrect are available under Creative Commons Attribution 3.0 Unported Licenses; the remaining works of fiction are in the public domain in the United States (but may be licensed differently elsewhere). ### Citation Information ``` @InProceedings{N18-1101, author = "Williams, Adina and Nangia, Nikita and Bowman, Samuel", title = "A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference", booktitle = "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)", year = "2018", publisher = "Association for Computational Linguistics", pages = "1112--1122", location = "New Orleans, Louisiana", url = "http://aclweb.org/anthology/N18-1101" } ``` ### Contributions Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik), [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.
curaihealth/medical_questions_pairs
curaihealth
2024-01-04T14:27:42Z
828
48
[ "task_categories:text-classification", "task_ids:semantic-similarity-classification", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2008.13546", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - other language: - en license: - unknown multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification task_ids: - semantic-similarity-classification pretty_name: MedicalQuestionsPairs dataset_info: features: - name: dr_id dtype: int32 - name: question_1 dtype: string - name: question_2 dtype: string - name: label dtype: class_label: names: '0': 0 '1': 1 splits: - name: train num_bytes: 701642 num_examples: 3048 download_size: 313704 dataset_size: 701642 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for [medical_questions_pairs] ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [Medical questions pairs repository](https://github.com/curai/medical-question-pair-dataset) - **Paper:** [Effective Transfer Learning for Identifying Similar Questions:Matching User Questions to COVID-19 FAQs](https://arxiv.org/abs/2008.13546) ### Dataset Summary This dataset consists of 3048 similar and dissimilar medical question pairs hand-generated and labeled by Curai's doctors. Doctors with a list of 1524 patient-asked questions randomly sampled from the publicly available crawl of [HealthTap](https://github.com/durakkerem/Medical-Question-Answer-Datasets). Each question results in one similar and one different pair through the following instructions provided to the labelers: - Rewrite the original question in a different way while maintaining the same intent. Restructure the syntax as much as possible and change medical details that would not impact your response. e.g. "I'm a 22-y-o female" could become "My 26 year old daughter" - Come up with a related but dissimilar question for which the answer to the original question would be WRONG OR IRRELEVANT. Use similar key words. The first instruction generates a positive question pair (similar) and the second generates a negative question pair (different). With the above instructions, the task was intentionally framed such that positive question pairs can look very different by superficial metrics, and negative question pairs can conversely look very similar. This ensures that the task is not trivial. ### Supported Tasks and Leaderboards - `text-classification` : The dataset can be used to train a model to identify similar and non similar medical question pairs. ### Languages The text in the dataset is in English. ## Dataset Structure ### Data Instances The dataset contains dr_id, question_1, question_2, label. 11 different doctors were used for this task so dr_id ranges from 1 to 11. The label is 1 if the question pair is similar and 0 otherwise. ### Data Fields - `dr_id`: 11 different doctors were used for this task so dr_id ranges from 1 to 11 - `question_1`: Original Question - `question_2`: Rewritten Question maintaining the same intent like Original Question - `label`: The label is 1 if the question pair is similar and 0 otherwise. ### Data Splits The dataset as of now consists of only one split(train) but can be split seperately based on the requirement | | train | |----------------------------|------:| | Non similar Question Pairs | 1524 | | Similar Question Pairs | 1524 | ## Dataset Creation Doctors with a list of 1524 patient-asked questions randomly sampled from the publicly available crawl of [HealthTap](https://github.com/durakkerem/Medical-Question-Answer-Datasets). Each question results in one similar and one different pair through the following instructions provided to the labelers: - Rewrite the original question in a different way while maintaining the same intent. Restructure the syntax as much as possible and change medical details that would not impact your response. e.g. "I'm a 22-y-o female" could become "My 26 year old daughter" - Come up with a related but dissimilar question for which the answer to the original question would be WRONG OR IRRELEVANT. Use similar key words. The first instruction generates a positive question pair (similar) and the second generates a negative question pair (different). With the above instructions, the task was intentionally framed such that positive question pairs can look very different by superficial metrics, and negative question pairs can conversely look very similar. This ensures that the task is not trivial. ### Curation Rationale [More Information Needed] ### Source Data 1524 patient-asked questions randomly sampled from the publicly available crawl of [HealthTap](https://github.com/durakkerem/Medical-Question-Answer-Datasets) #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations [More Information Needed] #### Annotation process Doctors with a list of 1524 patient-asked questions randomly sampled from the publicly available crawl of [HealthTap](https://github.com/durakkerem/Medical-Question-Answer-Datasets). Each question results in one similar and one different pair through the following instructions provided to the labelers: - Rewrite the original question in a different way while maintaining the same intent. Restructure the syntax as much as possible and change medical details that would not impact your response. e.g. "I'm a 22-y-o female" could become "My 26 year old daughter" - Come up with a related but dissimilar question for which the answer to the original question would be WRONG OR IRRELEVANT. Use similar key words. The first instruction generates a positive question pair (similar) and the second generates a negative question pair (different). With the above instructions, the task was intentionally framed such that positive question pairs can look very different by superficial metrics, and negative question pairs can conversely look very similar. This ensures that the task is not trivial. #### Who are the annotators? **Curai's doctors** ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data [More Information Needed] ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information [More Information Needed] ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @misc{mccreery2020effective, title={Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs}, author={Clara H. McCreery and Namit Katariya and Anitha Kannan and Manish Chablani and Xavier Amatriain}, year={2020}, eprint={2008.13546}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ### Contributions Thanks to [@tuner007](https://github.com/tuner007) for adding this dataset.
google-research-datasets/mbpp
google-research-datasets
2024-01-04T14:26:37Z
53,321
171
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2108.07732", "region:us", "code-generation" ]
[ "text2text-generation" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - crowdsourced - expert-generated language_creators: - crowdsourced - expert-generated language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - n<1K source_datasets: - original task_categories: - text2text-generation task_ids: [] pretty_name: Mostly Basic Python Problems tags: - code-generation dataset_info: - config_name: full features: - name: task_id dtype: int32 - name: text dtype: string - name: code dtype: string - name: test_list sequence: string - name: test_setup_code dtype: string - name: challenge_test_list sequence: string splits: - name: train num_bytes: 176879 num_examples: 374 - name: test num_bytes: 244104 num_examples: 500 - name: validation num_bytes: 42405 num_examples: 90 - name: prompt num_bytes: 4550 num_examples: 10 download_size: 236069 dataset_size: 467938 - config_name: sanitized features: - name: source_file dtype: string - name: task_id dtype: int32 - name: prompt dtype: string - name: code dtype: string - name: test_imports sequence: string - name: test_list sequence: string splits: - name: train num_bytes: 63453 num_examples: 120 - name: test num_bytes: 132720 num_examples: 257 - name: validation num_bytes: 20050 num_examples: 43 - name: prompt num_bytes: 3407 num_examples: 7 download_size: 115422 dataset_size: 219630 configs: - config_name: full data_files: - split: train path: full/train-* - split: test path: full/test-* - split: validation path: full/validation-* - split: prompt path: full/prompt-* default: true - config_name: sanitized data_files: - split: train path: sanitized/train-* - split: test path: sanitized/test-* - split: validation path: sanitized/validation-* - split: prompt path: sanitized/prompt-* --- # Dataset Card for Mostly Basic Python Problems (mbpp) ## Table of Contents - [Dataset Card for Mostly Basic Python Problems (mbpp)](#dataset-card-for-mostly-basic-python-problems-(mbpp)) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) - [Who are the source language producers?](#who-are-the-source-language-producers) - [Annotations](#annotations) - [Annotation process](#annotation-process) - [Who are the annotators?](#who-are-the-annotators) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** https://github.com/google-research/google-research/tree/master/mbpp - **Paper:** [Program Synthesis with Large Language Models](https://arxiv.org/abs/2108.07732) ### Dataset Summary The benchmark consists of around 1,000 crowd-sourced Python programming problems, designed to be solvable by entry level programmers, covering programming fundamentals, standard library functionality, and so on. Each problem consists of a task description, code solution and 3 automated test cases. As described in the paper, a subset of the data has been hand-verified by us. Released [here](https://github.com/google-research/google-research/tree/master/mbpp) as part of [Program Synthesis with Large Language Models, Austin et. al., 2021](https://arxiv.org/abs/2108.07732). ### Supported Tasks and Leaderboards This dataset is used to evaluate code generations. ### Languages English - Python code ## Dataset Structure ```python dataset_full = load_dataset("mbpp") DatasetDict({ test: Dataset({ features: ['task_id', 'text', 'code', 'test_list', 'test_setup_code', 'challenge_test_list'], num_rows: 974 }) }) dataset_sanitized = load_dataset("mbpp", "sanitized") DatasetDict({ test: Dataset({ features: ['source_file', 'task_id', 'prompt', 'code', 'test_imports', 'test_list'], num_rows: 427 }) }) ``` ### Data Instances #### mbpp - full ``` { 'task_id': 1, 'text': 'Write a function to find the minimum cost path to reach (m, n) from (0, 0) for the given cost matrix cost[][] and a position (m, n) in cost[][].', 'code': 'R = 3\r\nC = 3\r\ndef min_cost(cost, m, n): \r\n\ttc = [[0 for x in range(C)] for x in range(R)] \r\n\ttc[0][0] = cost[0][0] \r\n\tfor i in range(1, m+1): \r\n\t\ttc[i][0] = tc[i-1][0] + cost[i][0] \r\n\tfor j in range(1, n+1): \r\n\t\ttc[0][j] = tc[0][j-1] + cost[0][j] \r\n\tfor i in range(1, m+1): \r\n\t\tfor j in range(1, n+1): \r\n\t\t\ttc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] \r\n\treturn tc[m][n]', 'test_list': [ 'assert min_cost([[1, 2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8', 'assert min_cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) == 12', 'assert min_cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16'], 'test_setup_code': '', 'challenge_test_list': [] } ``` #### mbpp - sanitized ``` { 'source_file': 'Benchmark Questions Verification V2.ipynb', 'task_id': 2, 'prompt': 'Write a function to find the shared elements from the given two lists.', 'code': 'def similar_elements(test_tup1, test_tup2):\n res = tuple(set(test_tup1) & set(test_tup2))\n return (res) ', 'test_imports': [], 'test_list': [ 'assert set(similar_elements((3, 4, 5, 6),(5, 7, 4, 10))) == set((4, 5))', 'assert set(similar_elements((1, 2, 3, 4),(5, 4, 3, 7))) == set((3, 4))', 'assert set(similar_elements((11, 12, 14, 13),(17, 15, 14, 13))) == set((13, 14))' ] } ``` ### Data Fields - `source_file`: unknown - `text`/`prompt`: description of programming task - `code`: solution for programming task - `test_setup_code`/`test_imports`: necessary code imports to execute tests - `test_list`: list of tests to verify solution - `challenge_test_list`: list of more challenging test to further probe solution ### Data Splits There are two version of the dataset (full and sanitized), each with four splits: - train - evaluation - test - prompt The `prompt` split corresponds to samples used for few-shot prompting and not for training. ## Dataset Creation See section 2.1 of original [paper](https://arxiv.org/abs/2108.07732). ### Curation Rationale In order to evaluate code generation functions a set of simple programming tasks as well as solutions is necessary which this dataset provides. ### Source Data #### Initial Data Collection and Normalization The dataset was manually created from scratch. #### Who are the source language producers? The dataset was created with an internal crowdsourcing effort at Google. ### Annotations #### Annotation process The full dataset was created first and a subset then underwent a second round to improve the task descriptions. #### Who are the annotators? The dataset was created with an internal crowdsourcing effort at Google. ### Personal and Sensitive Information None. ## Considerations for Using the Data Make sure you execute generated Python code in a safe environment when evauating against this dataset as generated code could be harmful. ### Social Impact of Dataset With this dataset code generating models can be better evaluated which leads to fewer issues introduced when using such models. ### Discussion of Biases ### Other Known Limitations Since the task descriptions might not be expressive enough to solve the task. The `sanitized` split aims at addressing this issue by having a second round of annotators improve the dataset. ## Additional Information ### Dataset Curators Google Research ### Licensing Information CC-BY-4.0 ### Citation Information ``` @article{austin2021program, title={Program Synthesis with Large Language Models}, author={Austin, Jacob and Odena, Augustus and Nye, Maxwell and Bosma, Maarten and Michalewski, Henryk and Dohan, David and Jiang, Ellen and Cai, Carrie and Terry, Michael and Le, Quoc and others}, journal={arXiv preprint arXiv:2108.07732}, year={2021} ``` ### Contributions Thanks to [@lvwerra](https://github.com/lvwerra) for adding this dataset.
coastalcph/lex_glue
coastalcph
2024-01-04T14:25:27Z
27,251
57
[ "task_categories:question-answering", "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:multiple-choice-qa", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.00976", "arxiv:2109.00904", "arxiv:1805.01217", "arxiv:2104.08671", "region:us" ]
[ "question-answering", "text-classification" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - found language_creators: - found language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended task_categories: - question-answering - text-classification task_ids: - multi-class-classification - multi-label-classification - multiple-choice-qa - topic-classification pretty_name: LexGLUE config_names: - case_hold - ecthr_a - ecthr_b - eurlex - ledgar - scotus - unfair_tos dataset_info: - config_name: case_hold features: - name: context dtype: string - name: endings sequence: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' splits: - name: train num_bytes: 74781706 num_examples: 45000 - name: test num_bytes: 5989952 num_examples: 3600 - name: validation num_bytes: 6474603 num_examples: 3900 download_size: 47303537 dataset_size: 87246261 - config_name: ecthr_a features: - name: text sequence: string - name: labels sequence: class_label: names: '0': '2' '1': '3' '2': '5' '3': '6' '4': '8' '5': '9' '6': '10' '7': '11' '8': '14' '9': P1-1 splits: - name: train num_bytes: 89637449 num_examples: 9000 - name: test num_bytes: 11884168 num_examples: 1000 - name: validation num_bytes: 10985168 num_examples: 1000 download_size: 53352586 dataset_size: 112506785 - config_name: ecthr_b features: - name: text sequence: string - name: labels sequence: class_label: names: '0': '2' '1': '3' '2': '5' '3': '6' '4': '8' '5': '9' '6': '10' '7': '11' '8': '14' '9': P1-1 splits: - name: train num_bytes: 89657649 num_examples: 9000 - name: test num_bytes: 11886928 num_examples: 1000 - name: validation num_bytes: 10987816 num_examples: 1000 download_size: 53352494 dataset_size: 112532393 - config_name: eurlex features: - name: text dtype: string - name: labels sequence: class_label: names: '0': '100163' '1': '100168' '2': '100169' '3': '100170' '4': '100171' '5': '100172' '6': '100173' '7': '100174' '8': '100175' '9': '100176' '10': '100177' '11': '100179' '12': '100180' '13': '100183' '14': '100184' '15': '100185' '16': '100186' '17': '100187' '18': '100189' '19': '100190' '20': '100191' '21': '100192' '22': '100193' '23': '100194' '24': '100195' '25': '100196' '26': '100197' '27': '100198' '28': '100199' '29': '100200' '30': '100201' '31': '100202' '32': '100204' '33': '100205' '34': '100206' '35': '100207' '36': '100212' '37': '100214' '38': '100215' '39': '100220' '40': '100221' '41': '100222' '42': '100223' '43': '100224' '44': '100226' '45': '100227' '46': '100229' '47': '100230' '48': '100231' '49': '100232' '50': '100233' '51': '100234' '52': '100235' '53': '100237' '54': '100238' '55': '100239' '56': '100240' '57': '100241' '58': '100242' '59': '100243' '60': '100244' '61': '100245' '62': '100246' '63': '100247' '64': '100248' '65': '100249' '66': '100250' '67': '100252' '68': '100253' '69': '100254' '70': '100255' '71': '100256' '72': '100257' '73': '100258' '74': '100259' '75': '100260' '76': '100261' '77': '100262' '78': '100263' '79': '100264' '80': '100265' '81': '100266' '82': '100268' '83': '100269' '84': '100270' '85': '100271' '86': '100272' '87': '100273' '88': '100274' '89': '100275' '90': '100276' '91': '100277' '92': '100278' '93': '100279' '94': '100280' '95': '100281' '96': '100282' '97': '100283' '98': '100284' '99': '100285' splits: - name: train num_bytes: 390770241 num_examples: 55000 - name: test num_bytes: 59739094 num_examples: 5000 - name: validation num_bytes: 41544476 num_examples: 5000 download_size: 208028049 dataset_size: 492053811 - config_name: ledgar features: - name: text dtype: string - name: label dtype: class_label: names: '0': Adjustments '1': Agreements '2': Amendments '3': Anti-Corruption Laws '4': Applicable Laws '5': Approvals '6': Arbitration '7': Assignments '8': Assigns '9': Authority '10': Authorizations '11': Base Salary '12': Benefits '13': Binding Effects '14': Books '15': Brokers '16': Capitalization '17': Change In Control '18': Closings '19': Compliance With Laws '20': Confidentiality '21': Consent To Jurisdiction '22': Consents '23': Construction '24': Cooperation '25': Costs '26': Counterparts '27': Death '28': Defined Terms '29': Definitions '30': Disability '31': Disclosures '32': Duties '33': Effective Dates '34': Effectiveness '35': Employment '36': Enforceability '37': Enforcements '38': Entire Agreements '39': Erisa '40': Existence '41': Expenses '42': Fees '43': Financial Statements '44': Forfeitures '45': Further Assurances '46': General '47': Governing Laws '48': Headings '49': Indemnifications '50': Indemnity '51': Insurances '52': Integration '53': Intellectual Property '54': Interests '55': Interpretations '56': Jurisdictions '57': Liens '58': Litigations '59': Miscellaneous '60': Modifications '61': No Conflicts '62': No Defaults '63': No Waivers '64': Non-Disparagement '65': Notices '66': Organizations '67': Participations '68': Payments '69': Positions '70': Powers '71': Publicity '72': Qualifications '73': Records '74': Releases '75': Remedies '76': Representations '77': Sales '78': Sanctions '79': Severability '80': Solvency '81': Specific Performance '82': Submission To Jurisdiction '83': Subsidiaries '84': Successors '85': Survival '86': Tax Withholdings '87': Taxes '88': Terminations '89': Terms '90': Titles '91': Transactions With Affiliates '92': Use Of Proceeds '93': Vacations '94': Venues '95': Vesting '96': Waiver Of Jury Trials '97': Waivers '98': Warranties '99': Withholdings splits: - name: train num_bytes: 43358291 num_examples: 60000 - name: test num_bytes: 6845581 num_examples: 10000 - name: validation num_bytes: 7143588 num_examples: 10000 download_size: 27650585 dataset_size: 57347460 - config_name: scotus features: - name: text dtype: string - name: label dtype: class_label: names: '0': '1' '1': '2' '2': '3' '3': '4' '4': '5' '5': '6' '6': '7' '7': '8' '8': '9' '9': '10' '10': '11' '11': '12' '12': '13' splits: - name: train num_bytes: 178959316 num_examples: 5000 - name: test num_bytes: 76213279 num_examples: 1400 - name: validation num_bytes: 75600243 num_examples: 1400 download_size: 173411399 dataset_size: 330772838 - config_name: unfair_tos features: - name: text dtype: string - name: labels sequence: class_label: names: '0': Limitation of liability '1': Unilateral termination '2': Unilateral change '3': Content removal '4': Contract by using '5': Choice of law '6': Jurisdiction '7': Arbitration splits: - name: train num_bytes: 1041782 num_examples: 5532 - name: test num_bytes: 303099 num_examples: 1607 - name: validation num_bytes: 452111 num_examples: 2275 download_size: 865604 dataset_size: 1796992 configs: - config_name: case_hold data_files: - split: train path: case_hold/train-* - split: test path: case_hold/test-* - split: validation path: case_hold/validation-* - config_name: ecthr_a data_files: - split: train path: ecthr_a/train-* - split: test path: ecthr_a/test-* - split: validation path: ecthr_a/validation-* - config_name: ecthr_b data_files: - split: train path: ecthr_b/train-* - split: test path: ecthr_b/test-* - split: validation path: ecthr_b/validation-* - config_name: eurlex data_files: - split: train path: eurlex/train-* - split: test path: eurlex/test-* - split: validation path: eurlex/validation-* - config_name: ledgar data_files: - split: train path: ledgar/train-* - split: test path: ledgar/test-* - split: validation path: ledgar/validation-* - config_name: scotus data_files: - split: train path: scotus/train-* - split: test path: scotus/test-* - split: validation path: scotus/validation-* - config_name: unfair_tos data_files: - split: train path: unfair_tos/train-* - split: test path: unfair_tos/test-* - split: validation path: unfair_tos/validation-* --- # Dataset Card for "LexGLUE" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://github.com/coastalcph/lex-glue - **Repository:** https://github.com/coastalcph/lex-glue - **Paper:** https://arxiv.org/abs/2110.00976 - **Leaderboard:** https://github.com/coastalcph/lex-glue - **Point of Contact:** [Ilias Chalkidis](mailto:[email protected]) ### Dataset Summary Inspired by the recent widespread use of the GLUE multi-task benchmark NLP dataset (Wang et al., 2018), the subsequent more difficult SuperGLUE (Wang et al., 2019), other previous multi-task NLP benchmarks (Conneau and Kiela, 2018; McCann et al., 2018), and similar initiatives in other domains (Peng et al., 2019), we introduce the *Legal General Language Understanding Evaluation (LexGLUE) benchmark*, a benchmark dataset to evaluate the performance of NLP methods in legal tasks. LexGLUE is based on seven existing legal NLP datasets, selected using criteria largely from SuperGLUE. As in GLUE and SuperGLUE (Wang et al., 2019b,a), one of our goals is to push towards generic (or ‘foundation’) models that can cope with multiple NLP tasks, in our case legal NLP tasks possibly with limited task-specific fine-tuning. Another goal is to provide a convenient and informative entry point for NLP researchers and practitioners wishing to explore or develop methods for legalNLP. Having these goals in mind, the datasets we include in LexGLUE and the tasks they address have been simplified in several ways to make it easier for newcomers and generic models to address all tasks. LexGLUE benchmark is accompanied by experimental infrastructure that relies on Hugging Face Transformers library and resides at: https://github.com/coastalcph/lex-glue. ### Supported Tasks and Leaderboards The supported tasks are the following: <table> <tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><td>Classes</td><tr> <tr><td>ECtHR (Task A)</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>Multi-label classification</td><td>10+1</td></tr> <tr><td>ECtHR (Task B)</td><td> <a href="https://aclanthology.org/2021.naacl-main.22/">Chalkidis et al. (2021a)</a> </td><td>ECHR</td><td>Multi-label classification </td><td>10+1</td></tr> <tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>Multi-class classification</td><td>14</td></tr> <tr><td>EUR-LEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. (2021b)</a></td><td>EU Law</td><td>Multi-label classification</td><td>100</td></tr> <tr><td>LEDGAR</td><td> <a href="https://aclanthology.org/2020.lrec-1.155/">Tuggener et al. (2020)</a></td><td>Contracts</td><td>Multi-class classification</td><td>100</td></tr> <tr><td>UNFAIR-ToS</td><td><a href="https://arxiv.org/abs/1805.01217"> Lippi et al. (2019)</a></td><td>Contracts</td><td>Multi-label classification</td><td>8+1</td></tr> <tr><td>CaseHOLD</td><td><a href="https://arxiv.org/abs/2104.08671">Zheng et al. (2021)</a></td><td>US Law</td><td>Multiple choice QA</td><td>n/a</td></tr> </table> #### ecthr_a The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of the ECHR that were violated (if any). #### ecthr_b The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of ECHR that were allegedly violated (considered by the court). #### scotus The US Supreme Court (SCOTUS) is the highest federal court in the United States of America and generally hears only the most controversial or otherwise complex cases which have not been sufficiently well solved by lower courts. This is a single-label multi-class classification task, where given a document (court opinion), the task is to predict the relevant issue areas. The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute). #### eurlex European Union (EU) legislation is published in EUR-Lex portal. All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office. The current version of EuroVoc contains more than 7k concepts referring to various activities of the EU and its Member States (e.g., economics, health-care, trade). Given a document, the task is to predict its EuroVoc labels (concepts). #### ledgar LEDGAR dataset aims contract provision (paragraph) classification. The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC) filings, which are publicly available from EDGAR. Each label represents the single main topic (theme) of the corresponding contract provision. #### unfair_tos The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube, Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of unfair contractual terms (sentences), meaning terms that potentially violate user rights according to the European consumer law. #### case_hold The CaseHOLD (Case Holdings on Legal Decisions) dataset includes multiple choice questions about holdings of US court cases from the Harvard Law Library case law corpus. Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case. The input consists of an excerpt (or prompt) from a court decision, containing a reference to a particular case, while the holding statement is masked out. The model must identify the correct (masked) holding statement from a selection of five choices. The current leaderboard includes several Transformer-based (Vaswaniet al., 2017) pre-trained language models, which achieve state-of-the-art performance in most NLP tasks (Bommasani et al., 2021) and NLU benchmarks (Wang et al., 2019a). Results reported by [Chalkidis et al. (2021)](https://arxiv.org/abs/2110.00976): *Task-wise Test Results* <table> <tr><td><b>Dataset</b></td><td><b>ECtHR A</b></td><td><b>ECtHR B</b></td><td><b>SCOTUS</b></td><td><b>EUR-LEX</b></td><td><b>LEDGAR</b></td><td><b>UNFAIR-ToS</b></td><td><b>CaseHOLD</b></td></tr> <tr><td><b>Model</b></td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1</td><td>μ-F1 / m-F1 </td></tr> <tr><td>TFIDF+SVM</td><td> 64.7 / 51.7 </td><td>74.6 / 65.1 </td><td> <b>78.2</b> / <b>69.5</b> </td><td>71.3 / 51.4 </td><td>87.2 / 82.4 </td><td>95.4 / 78.8</td><td>n/a </td></tr> <tr><td colspan="8" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr> <td>BERT</td> <td> 71.2 / 63.6 </td> <td> 79.7 / 73.4 </td> <td> 68.3 / 58.3 </td> <td> 71.4 / 57.2 </td> <td> 87.6 / 81.8 </td> <td> 95.6 / 81.3 </td> <td> 70.8 </td> </tr> <td>RoBERTa</td> <td> 69.2 / 59.0 </td> <td> 77.3 / 68.9 </td> <td> 71.6 / 62.0 </td> <td> 71.9 / <b>57.9</b> </td> <td> 87.9 / 82.3 </td> <td> 95.2 / 79.2 </td> <td> 71.4 </td> </tr> <td>DeBERTa</td> <td> 70.0 / 60.8 </td> <td> 78.8 / 71.0 </td> <td> 71.1 / 62.7 </td> <td> <b>72.1</b> / 57.4 </td> <td> 88.2 / 83.1 </td> <td> 95.5 / 80.3 </td> <td> 72.6 </td> </tr> <td>Longformer</td> <td> 69.9 / 64.7 </td> <td> 79.4 / 71.7 </td> <td> 72.9 / 64.0 </td> <td> 71.6 / 57.7 </td> <td> 88.2 / 83.0 </td> <td> 95.5 / 80.9 </td> <td> 71.9 </td> </tr> <td>BigBird</td> <td> 70.0 / 62.9 </td> <td> 78.8 / 70.9 </td> <td> 72.8 / 62.0 </td> <td> 71.5 / 56.8 </td> <td> 87.8 / 82.6 </td> <td> 95.7 / 81.3 </td> <td> 70.8 </td> </tr> <td>Legal-BERT</td> <td> 70.0 / 64.0 </td> <td> <b>80.4</b> / <b>74.7</b> </td> <td> 76.4 / 66.5 </td> <td> <b>72.1</b> / 57.4 </td> <td> 88.2 / 83.0 </td> <td> <b>96.0</b> / <b>83.0</b> </td> <td> 75.3 </td> </tr> <td>CaseLaw-BERT</td> <td> 69.8 / 62.9 </td> <td> 78.8 / 70.3 </td> <td> 76.6 / 65.9 </td> <td> 70.7 / 56.6 </td> <td> 88.3 / 83.0 </td> <td> <b>96.0</b> / 82.3 </td> <td> <b>75.4</b> </td> </tr> <tr><td colspan="8" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr> <tr><td>RoBERTa</td> <td> <b>73.8</b> / <b>67.6</b> </td> <td> 79.8 / 71.6 </td> <td> 75.5 / 66.3 </td> <td> 67.9 / 50.3 </td> <td> <b>88.6</b> / <b>83.6</b> </td> <td> 95.8 / 81.6 </td> <td> 74.4 </td> </tr> </table> *Averaged (Mean over Tasks) Test Results* <table> <tr><td><b>Averaging</b></td><td><b>Arithmetic</b></td><td><b>Harmonic</b></td><td><b>Geometric</b></td></tr> <tr><td><b>Model</b></td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td></tr> <tr><td colspan="4" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr> <tr><td>BERT</td><td> 77.8 / 69.5 </td><td> 76.7 / 68.2 </td><td> 77.2 / 68.8 </td></tr> <tr><td>RoBERTa</td><td> 77.8 / 68.7 </td><td> 76.8 / 67.5 </td><td> 77.3 / 68.1 </td></tr> <tr><td>DeBERTa</td><td> 78.3 / 69.7 </td><td> 77.4 / 68.5 </td><td> 77.8 / 69.1 </td></tr> <tr><td>Longformer</td><td> 78.5 / 70.5 </td><td> 77.5 / 69.5 </td><td> 78.0 / 70.0 </td></tr> <tr><td>BigBird</td><td> 78.2 / 69.6 </td><td> 77.2 / 68.5 </td><td> 77.7 / 69.0 </td></tr> <tr><td>Legal-BERT</td><td> <b>79.8</b> / <b>72.0</b> </td><td> <b>78.9</b> / <b>70.8</b> </td><td> <b>79.3</b> / <b>71.4</b> </td></tr> <tr><td>CaseLaw-BERT</td><td> 79.4 / 70.9 </td><td> 78.5 / 69.7 </td><td> 78.9 / 70.3 </td></tr> <tr><td colspan="4" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr> <tr><td>RoBERTa</td><td> 79.4 / 70.8 </td><td> 78.4 / 69.1 </td><td> 78.9 / 70.0 </td></tr> </table> ### Languages We only consider English datasets, to make experimentation easier for researchers across the globe. ## Dataset Structure ### Data Instances #### ecthr_a An example of 'train' looks as follows. ```json { "text": ["8. The applicant was arrested in the early morning of 21 October 1990 ...", ...], "labels": [6] } ``` #### ecthr_b An example of 'train' looks as follows. ```json { "text": ["8. The applicant was arrested in the early morning of 21 October 1990 ...", ...], "label": [5, 6] } ``` #### scotus An example of 'train' looks as follows. ```json { "text": "Per Curiam\nSUPREME COURT OF THE UNITED STATES\nRANDY WHITE, WARDEN v. ROGER L. WHEELER\n Decided December 14, 2015\nPER CURIAM.\nA death sentence imposed by a Kentucky trial court and\naffirmed by the ...", "label": 8 } ``` #### eurlex An example of 'train' looks as follows. ```json { "text": "COMMISSION REGULATION (EC) No 1629/96 of 13 August 1996 on an invitation to tender for the refund on export of wholly milled round grain rice to certain third countries ...", "labels": [4, 20, 21, 35, 68] } ``` #### ledgar An example of 'train' looks as follows. ```json { "text": "All Taxes shall be the financial responsibility of the party obligated to pay such Taxes as determined by applicable law and neither party is or shall be liable at any time for any of the other party ...", "label": 32 } ``` #### unfair_tos An example of 'train' looks as follows. ```json { "text": "tinder may terminate your account at any time without notice if it believes that you have violated this agreement.", "label": 2 } ``` #### casehold An example of 'test' looks as follows. ```json { "context": "In Granato v. City and County of Denver, No. CIV 11-0304 MSK/BNB, 2011 WL 3820730 (D.Colo. Aug. 20, 2011), the Honorable Marcia S. Krieger, now-Chief United States District Judge for the District of Colorado, ruled similarly: At a minimum, a party asserting a Mo-nell claim must plead sufficient facts to identify ... to act pursuant to City or State policy, custom, decision, ordinance, re d 503, 506-07 (3d Cir.l985)(<HOLDING>).", "endings": ["holding that courts are to accept allegations in the complaint as being true including monell policies and writing that a federal court reviewing the sufficiency of a complaint has a limited task", "holding that for purposes of a class certification motion the court must accept as true all factual allegations in the complaint and may draw reasonable inferences therefrom", "recognizing that the allegations of the complaint must be accepted as true on a threshold motion to dismiss", "holding that a court need not accept as true conclusory allegations which are contradicted by documents referred to in the complaint", "holding that where the defendant was in default the district court correctly accepted the fact allegations of the complaint as true" ], "label": 0 } ``` ### Data Fields #### ecthr_a - `text`: a list of `string` features (list of factual paragraphs (facts) from the case description). - `labels`: a list of classification labels (a list of violated ECHR articles, if any) . <details> <summary>List of ECHR articles</summary> "Article 2", "Article 3", "Article 5", "Article 6", "Article 8", "Article 9", "Article 10", "Article 11", "Article 14", "Article 1 of Protocol 1" </details> #### ecthr_b - `text`: a list of `string` features (list of factual paragraphs (facts) from the case description) - `labels`: a list of classification labels (a list of articles considered). <details> <summary>List of ECHR articles</summary> "Article 2", "Article 3", "Article 5", "Article 6", "Article 8", "Article 9", "Article 10", "Article 11", "Article 14", "Article 1 of Protocol 1" </details> #### scotus - `text`: a `string` feature (the court opinion). - `label`: a classification label (the relevant issue area). <details> <summary>List of issue areas</summary> (1, Criminal Procedure), (2, Civil Rights), (3, First Amendment), (4, Due Process), (5, Privacy), (6, Attorneys), (7, Unions), (8, Economic Activity), (9, Judicial Power), (10, Federalism), (11, Interstate Relations), (12, Federal Taxation), (13, Miscellaneous), (14, Private Action) </details> #### eurlex - `text`: a `string` feature (an EU law). - `labels`: a list of classification labels (a list of relevant EUROVOC concepts). <details> <summary>List of EUROVOC concepts</summary> The list is very long including 100 EUROVOC concepts. You can find the EUROVOC concepts descriptors <a href="https://raw.githubusercontent.com/nlpaueb/multi-eurlex/master/data/eurovoc_descriptors.json">here</a>. </details> #### ledgar - `text`: a `string` feature (a contract provision/paragraph). - `label`: a classification label (the type of contract provision). <details> <summary>List of contract provision types</summary> "Adjustments", "Agreements", "Amendments", "Anti-Corruption Laws", "Applicable Laws", "Approvals", "Arbitration", "Assignments", "Assigns", "Authority", "Authorizations", "Base Salary", "Benefits", "Binding Effects", "Books", "Brokers", "Capitalization", "Change In Control", "Closings", "Compliance With Laws", "Confidentiality", "Consent To Jurisdiction", "Consents", "Construction", "Cooperation", "Costs", "Counterparts", "Death", "Defined Terms", "Definitions", "Disability", "Disclosures", "Duties", "Effective Dates", "Effectiveness", "Employment", "Enforceability", "Enforcements", "Entire Agreements", "Erisa", "Existence", "Expenses", "Fees", "Financial Statements", "Forfeitures", "Further Assurances", "General", "Governing Laws", "Headings", "Indemnifications", "Indemnity", "Insurances", "Integration", "Intellectual Property", "Interests", "Interpretations", "Jurisdictions", "Liens", "Litigations", "Miscellaneous", "Modifications", "No Conflicts", "No Defaults", "No Waivers", "Non-Disparagement", "Notices", "Organizations", "Participations", "Payments", "Positions", "Powers", "Publicity", "Qualifications", "Records", "Releases", "Remedies", "Representations", "Sales", "Sanctions", "Severability", "Solvency", "Specific Performance", "Submission To Jurisdiction", "Subsidiaries", "Successors", "Survival", "Tax Withholdings", "Taxes", "Terminations", "Terms", "Titles", "Transactions With Affiliates", "Use Of Proceeds", "Vacations", "Venues", "Vesting", "Waiver Of Jury Trials", "Waivers", "Warranties", "Withholdings", </details> #### unfair_tos - `text`: a `string` feature (a ToS sentence) - `labels`: a list of classification labels (a list of unfair types, if any). <details> <summary>List of unfair types</summary> "Limitation of liability", "Unilateral termination", "Unilateral change", "Content removal", "Contract by using", "Choice of law", "Jurisdiction", "Arbitration" </details> #### casehold - `context`: a `string` feature (a context sentence incl. a masked holding statement). - `holdings`: a list of `string` features (a list of candidate holding statements). - `label`: a classification label (the id of the original/correct holding). ### Data Splits <table> <tr><td>Dataset </td><td>Training</td><td>Development</td><td>Test</td><td>Total</td></tr> <tr><td>ECtHR (Task A)</td><td>9,000</td><td>1,000</td><td>1,000</td><td>11,000</td></tr> <tr><td>ECtHR (Task B)</td><td>9,000</td><td>1,000</td><td>1,000</td><td>11,000</td></tr> <tr><td>SCOTUS</td><td>5,000</td><td>1,400</td><td>1,400</td><td>7,800</td></tr> <tr><td>EUR-LEX</td><td>55,000</td><td>5,000</td><td>5,000</td><td>65,000</td></tr> <tr><td>LEDGAR</td><td>60,000</td><td>10,000</td><td>10,000</td><td>80,000</td></tr> <tr><td>UNFAIR-ToS</td><td>5,532</td><td>2,275</td><td>1,607</td><td>9,414</td></tr> <tr><td>CaseHOLD</td><td>45,000</td><td>3,900</td><td>3,900</td><td>52,800</td></tr> </table> ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data <table> <tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><tr> <tr><td>ECtHR (Task A)</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>Multi-label classification</td></tr> <tr><td>ECtHR (Task B)</td><td> <a href="https://aclanthology.org/2021.naacl-main.22/">Chalkidis et al. (2021a)</a> </td><td>ECHR</td><td>Multi-label classification </td></tr> <tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>Multi-class classification</td></tr> <tr><td>EUR-LEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. (2021b)</a></td><td>EU Law</td><td>Multi-label classification</td></tr> <tr><td>LEDGAR</td><td> <a href="https://aclanthology.org/2020.lrec-1.155/">Tuggener et al. (2020)</a></td><td>Contracts</td><td>Multi-class classification</td></tr> <tr><td>UNFAIR-ToS</td><td><a href="https://arxiv.org/abs/1805.01217"> Lippi et al. (2019)</a></td><td>Contracts</td><td>Multi-label classification</td></tr> <tr><td>CaseHOLD</td><td><a href="https://arxiv.org/abs/2104.08671">Zheng et al. (2021)</a></td><td>US Law</td><td>Multiple choice QA</td></tr> </table> #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Dataset Curators *Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras.* *LexGLUE: A Benchmark Dataset for Legal Language Understanding in English.* *2022. In the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin, Ireland.* ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information [*Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras.* *LexGLUE: A Benchmark Dataset for Legal Language Understanding in English.* *2022. In the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin, Ireland.*](https://arxiv.org/abs/2110.00976) ``` @inproceedings{chalkidis-etal-2021-lexglue, title={LexGLUE: A Benchmark Dataset for Legal Language Understanding in English}, author={Chalkidis, Ilias and Jana, Abhik and Hartung, Dirk and Bommarito, Michael and Androutsopoulos, Ion and Katz, Daniel Martin and Aletras, Nikolaos}, year={2022}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics}, address={Dubln, Ireland}, } ``` ### Contributions Thanks to [@iliaschalkidis](https://github.com/iliaschalkidis) for adding this dataset.
klue/klue
klue
2024-01-04T14:05:57Z
10,323
74
[ "task_categories:fill-mask", "task_categories:question-answering", "task_categories:text-classification", "task_categories:text-generation", "task_categories:token-classification", "task_ids:extractive-qa", "task_ids:named-entity-recognition", "task_ids:natural-language-inference", "task_ids:parsing", "task_ids:semantic-similarity-scoring", "task_ids:text-scoring", "task_ids:topic-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:ko", "license:cc-by-sa-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2105.09680", "region:us", "relation-extraction" ]
[ "fill-mask", "question-answering", "text-classification", "text-generation", "token-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - ko license: - cc-by-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - fill-mask - question-answering - text-classification - text-generation - token-classification task_ids: - extractive-qa - named-entity-recognition - natural-language-inference - parsing - semantic-similarity-scoring - text-scoring - topic-classification paperswithcode_id: klue pretty_name: KLUE config_names: - dp - mrc - ner - nli - re - sts - wos - ynat tags: - relation-extraction dataset_info: - config_name: dp features: - name: sentence dtype: string - name: index list: int32 - name: word_form list: string - name: lemma list: string - name: pos list: string - name: head list: int32 - name: deprel list: string splits: - name: train num_bytes: 7899965 num_examples: 10000 - name: validation num_bytes: 1557462 num_examples: 2000 download_size: 3742577 dataset_size: 9457427 - config_name: mrc features: - name: title dtype: string - name: context dtype: string - name: news_category dtype: string - name: source dtype: string - name: guid dtype: string - name: is_impossible dtype: bool - name: question_type dtype: int32 - name: question dtype: string - name: answers sequence: - name: answer_start dtype: int32 - name: text dtype: string splits: - name: train num_bytes: 46505593 num_examples: 17554 - name: validation num_bytes: 15583017 num_examples: 5841 download_size: 30098472 dataset_size: 62088610 - config_name: ner features: - name: sentence dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-DT '1': I-DT '2': B-LC '3': I-LC '4': B-OG '5': I-OG '6': B-PS '7': I-PS '8': B-QT '9': I-QT '10': B-TI '11': I-TI '12': O splits: - name: train num_bytes: 19891905 num_examples: 21008 - name: validation num_bytes: 4937563 num_examples: 5000 download_size: 5265887 dataset_size: 24829468 - config_name: nli features: - name: guid dtype: string - name: source dtype: string - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: class_label: names: '0': entailment '1': neutral '2': contradiction splits: - name: train num_bytes: 5719882 num_examples: 24998 - name: validation num_bytes: 673260 num_examples: 3000 download_size: 2056116 dataset_size: 6393142 - config_name: re features: - name: guid dtype: string - name: sentence dtype: string - name: subject_entity struct: - name: word dtype: string - name: start_idx dtype: int32 - name: end_idx dtype: int32 - name: type dtype: string - name: object_entity struct: - name: word dtype: string - name: start_idx dtype: int32 - name: end_idx dtype: int32 - name: type dtype: string - name: label dtype: class_label: names: '0': no_relation '1': org:dissolved '2': org:founded '3': org:place_of_headquarters '4': org:alternate_names '5': org:member_of '6': org:members '7': org:political/religious_affiliation '8': org:product '9': org:founded_by '10': org:top_members/employees '11': org:number_of_employees/members '12': per:date_of_birth '13': per:date_of_death '14': per:place_of_birth '15': per:place_of_death '16': per:place_of_residence '17': per:origin '18': per:employee_of '19': per:schools_attended '20': per:alternate_names '21': per:parents '22': per:children '23': per:siblings '24': per:spouse '25': per:other_family '26': per:colleagues '27': per:product '28': per:religion '29': per:title - name: source dtype: string splits: - name: train num_bytes: 11145426 num_examples: 32470 - name: validation num_bytes: 2559272 num_examples: 7765 download_size: 8190257 dataset_size: 13704698 - config_name: sts features: - name: guid dtype: string - name: source dtype: string - name: sentence1 dtype: string - name: sentence2 dtype: string - name: labels struct: - name: label dtype: float64 - name: real-label dtype: float64 - name: binary-label dtype: class_label: names: '0': negative '1': positive splits: - name: train num_bytes: 2832889 num_examples: 11668 - name: validation num_bytes: 122641 num_examples: 519 download_size: 1587855 dataset_size: 2955530 - config_name: wos features: - name: guid dtype: string - name: domains list: string - name: dialogue list: - name: role dtype: string - name: text dtype: string - name: state list: string splits: - name: train num_bytes: 26676970 num_examples: 8000 - name: validation num_bytes: 3488911 num_examples: 1000 download_size: 6358855 dataset_size: 30165881 - config_name: ynat features: - name: guid dtype: string - name: title dtype: string - name: label dtype: class_label: names: '0': IT과학 '1': 경제 '2': 사회 '3': 생활문화 '4': 세계 '5': 스포츠 '6': 정치 - name: url dtype: string - name: date dtype: string splits: - name: train num_bytes: 10109584 num_examples: 45678 - name: validation num_bytes: 2039181 num_examples: 9107 download_size: 5012303 dataset_size: 12148765 configs: - config_name: dp data_files: - split: train path: dp/train-* - split: validation path: dp/validation-* - config_name: mrc data_files: - split: train path: mrc/train-* - split: validation path: mrc/validation-* - config_name: ner data_files: - split: train path: ner/train-* - split: validation path: ner/validation-* - config_name: nli data_files: - split: train path: nli/train-* - split: validation path: nli/validation-* - config_name: re data_files: - split: train path: re/train-* - split: validation path: re/validation-* - config_name: sts data_files: - split: train path: sts/train-* - split: validation path: sts/validation-* - config_name: wos data_files: - split: train path: wos/train-* - split: validation path: wos/validation-* - config_name: ynat data_files: - split: train path: ynat/train-* - split: validation path: ynat/validation-* --- # Dataset Card for KLUE ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://klue-benchmark.com/ - **Repository:** https://github.com/KLUE-benchmark/KLUE - **Paper:** [KLUE: Korean Language Understanding Evaluation](https://arxiv.org/abs/2105.09680) - **Leaderboard:** [Leaderboard](https://klue-benchmark.com/leaderboard) - **Point of Contact:** https://github.com/KLUE-benchmark/KLUE/issues ### Dataset Summary KLUE is a collection of 8 tasks to evaluate natural language understanding capability of Korean language models. We delibrately select the 8 tasks, which are Topic Classification, Semantic Textual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. ### Supported Tasks and Leaderboards Topic Classification, Semantic Textual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking ### Languages `ko-KR` ## Dataset Structure ### Data Instances #### ynat An example of 'train' looks as follows. ``` {'date': '2016.06.30. 오전 10:36', 'guid': 'ynat-v1_train_00000', 'label': 3, 'title': '유튜브 내달 2일까지 크리에이터 지원 공간 운영', 'url': 'https://news.naver.com/main/read.nhn?mode=LS2D&mid=shm&sid1=105&sid2=227&oid=001&aid=0008508947'} ``` #### sts An example of 'train' looks as follows. ``` {'guid': 'klue-sts-v1_train_00000', 'labels': {'label': 3.7, 'real-label': 3.714285714285714, 'binary-label': 1}, 'sentence1': '숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다.', 'sentence2': '숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다.', 'source': 'airbnb-rtt'} ``` #### nli An example of 'train' looks as follows. ``` {'guid': 'klue-nli-v1_train_00000', 'hypothesis': '힛걸 진심 최고로 멋지다.', 'label': 0, 'premise': '힛걸 진심 최고다 그 어떤 히어로보다 멋지다', 'source': 'NSMC'} ``` #### ner An example of 'train' looks as follows. ``` {'tokens': ['특', '히', ' ', '영', '동', '고', '속', '도', '로', ' ', '강', '릉', ' ', '방', '향', ' ', '문', '막', '휴', '게', '소', '에', '서', ' ', '만', '종', '분', '기', '점', '까', '지', ' ', '5', '㎞', ' ', '구', '간', '에', '는', ' ', '승', '용', '차', ' ', '전', '용', ' ', '임', '시', ' ', '갓', '길', '차', '로', '제', '를', ' ', '운', '영', '하', '기', '로', ' ', '했', '다', '.'], 'ner_tags': [12, 12, 12, 2, 3, 3, 3, 3, 3, 12, 2, 3, 12, 12, 12, 12, 2, 3, 3, 3, 3, 12, 12, 12, 2, 3, 3, 3, 3, 12, 12, 12, 8, 9, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12], 'sentence': '특히 <영동고속도로:LC> <강릉:LC> 방향 <문막휴게소:LC>에서 <만종분기점:LC>까지 <5㎞:QT> 구간에는 승용차 전용 임시 갓길차로제를 운영하기로 했다.'} ``` #### re An example of 'train' looks as follows. ``` {'guid': 'klue-re-v1_train_00000', 'label': 0, 'object_entity': {'word': '조지 해리슨', 'start_idx': 13, 'end_idx': 18, 'type': 'PER'}, 'sentence': '〈Something〉는 조지 해리슨이 쓰고 비틀즈가 1969년 앨범 《Abbey Road》에 담은 노래다.', 'source': 'wikipedia', 'subject_entity': {'word': '비틀즈', 'start_idx': 24, 'end_idx': 26, 'type': 'ORG'}} ``` #### dp An example of 'train' looks as follows. ``` {'deprel': ['NP', 'NP_OBJ', 'VP', 'NP', 'NP_SBJ', 'NP', 'NP_MOD', 'NP_CNJ', 'NP_CNJ', 'NP', 'NP', 'NP_OBJ', 'AP', 'VP'], 'head': [2, 3, 14, 5, 14, 7, 10, 10, 10, 11, 12, 14, 14, 0], 'index': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], 'lemma': ['해당', '그림 을', '보 면', '디즈니', '공주 들 이', '브리트니', '스피어스 의', '앨범 이나', '뮤직 비디오 ,', '화보', '속', '모습 을', '똑같이', '재연 하 였 다 .'], 'pos': ['NNG', 'NNG+JKO', 'VV+EC', 'NNP', 'NNG+XSN+JKS', 'NNP', 'NNP+JKG', 'NNG+JC', 'NNG+NNG+SP', 'NNG', 'NNG', 'NNG+JKO', 'MAG', 'NNG+XSA+EP+EF+SF'], 'sentence': '해당 그림을 보면 디즈니 공주들이 브리트니 스피어스의 앨범이나 뮤직비디오, 화보 속 모습을 똑같이 재연했다.', 'word_form': ['해당', '그림을', '보면', '디즈니', '공주들이', '브리트니', '스피어스의', '앨범이나', '뮤직비디오,', '화보', '속', '모습을', '똑같이', '재연했다.']} ``` #### mrc An example of 'train' looks as follows. ``` {'answers': {'answer_start': [478, 478], 'text': ['한 달가량', '한 달']}, 'context': '올여름 장마가 17일 제주도에서 시작됐다. 서울 등 중부지방은 예년보다 사나흘 정도 늦은 이달 말께 장마가 시작될 전망이다.17일 기상청에 따르면 제주도 남쪽 먼바다에 있는 장마전선의 영향으로 이날 제주도 산간 및 내륙지역에 호우주의보가 내려지면서 곳곳에 100㎜에 육박하는 많은 비가 내렸다. 제주의 장마는 평년보다 2~3일, 지난해보다는 하루 일찍 시작됐다. 장마는 고온다습한 북태평양 기단과 한랭 습윤한 오호츠크해 기단이 만나 형성되는 장마전선에서 내리는 비를 뜻한다.장마전선은 18일 제주도 먼 남쪽 해상으로 내려갔다가 20일께 다시 북상해 전남 남해안까지 영향을 줄 것으로 보인다. 이에 따라 20~21일 남부지방에도 예년보다 사흘 정도 장마가 일찍 찾아올 전망이다. 그러나 장마전선을 밀어올리는 북태평양 고기압 세력이 약해 서울 등 중부지방은 평년보다 사나흘가량 늦은 이달 말부터 장마가 시작될 것이라는 게 기상청의 설명이다. 장마전선은 이후 한 달가량 한반도 중남부를 오르내리며 곳곳에 비를 뿌릴 전망이다. 최근 30년간 평균치에 따르면 중부지방의 장마 시작일은 6월24~25일이었으며 장마기간은 32일, 강수일수는 17.2일이었다.기상청은 올해 장마기간의 평균 강수량이 350~400㎜로 평년과 비슷하거나 적을 것으로 내다봤다. 브라질 월드컵 한국과 러시아의 경기가 열리는 18일 오전 서울은 대체로 구름이 많이 끼지만 비는 오지 않을 것으로 예상돼 거리 응원에는 지장이 없을 전망이다.', 'guid': 'klue-mrc-v1_train_12759', 'is_impossible': False, 'news_category': '종합', 'question': '북태평양 기단과 오호츠크해 기단이 만나 국내에 머무르는 기간은?', 'question_type': 1, 'source': 'hankyung', 'title': '제주도 장마 시작 … 중부는 이달 말부터'} ``` #### wos An example of 'train' looks as follows. ``` {'dialogue': [{'role': 'user', 'text': '쇼핑을 하려는데 서울 서쪽에 있을까요?', 'state': ['관광-종류-쇼핑', '관광-지역-서울 서쪽']}, {'role': 'sys', 'text': '서울 서쪽에 쇼핑이 가능한 곳이라면 노량진 수산물 도매시장이 있습니다.', 'state': []}, {'role': 'user', 'text': '오 네 거기 주소 좀 알려주세요.', 'state': ['관광-종류-쇼핑', '관광-지역-서울 서쪽', '관광-이름-노량진 수산물 도매시장']}, {'role': 'sys', 'text': '노량진 수산물 도매시장의 주소는 서울 동작구 93806입니다.', 'state': []}, {'role': 'user', 'text': '알려주시는김에 연락처랑 평점도 좀 알려주세요.', 'state': ['관광-종류-쇼핑', '관광-지역-서울 서쪽', '관광-이름-노량진 수산물 도매시장']}, {'role': 'sys', 'text': '그럼. 연락처는 6182006591이고 평점은 4점입니다.', 'state': []}, {'role': 'user', 'text': '와 감사합니다.', 'state': ['관광-종류-쇼핑', '관광-지역-서울 서쪽', '관광-이름-노량진 수산물 도매시장']}, {'role': 'sys', 'text': '감사합니다.', 'state': []}], 'domains': ['관광'], 'guid': 'wos-v1_train_00001'} ``` ### Data Fields #### ynat + `guid`: a `string` feature + `title`: a `string` feature + `label`: a classification label, with possible values `IT과학`(0), `경제`(1), `사회`(2), `생활문화`(3), `세계`(4), `스포츠`(5), `정치`(6) + `url`: a `string` feature + `date`: a `string` feature #### sts + `guid`: a `string` feature + `source`: a `string` feature + `sentence1`: a `string` feature + `sentence2`: a `string` feature + `labels`: a dictionary feature containing + `label`: a `float64` feature + `real-label`: a `float64` feature + `binary-label`: a classification label, with possible values `negative`(0), `positive`(1) #### nli + `guid`: a `string` feature + `source`: a `string` feature + `premise`: a `string` feature + `hypothesis`: a `string` feature + `label`: a classification label, with possible values `entailment`(0), `neutral`(1), `contradiction`(2) #### ner + `sentence`: a `string` feature + `tokens`: a list of a `string` feature (tokenization is at character level) + `ner_tags`: a list of classification labels, with possible values including `B-DT`(0), `I-DT`(1), `B-LC`(2), `I-LC`(3), `B-OG`(4), `I-OG`(5), `B-PS`(6), `I-PS`(7), `B-QT`(8), `I-QT`(9), `B-TI`(10), `I-TI`(11), `O`(12) #### re + `guid`: a `string` feature + `sentence`: a `string` feature + `subject_entity`: a dictionary feature containing + `word`: a `string` feature + `start_idx`: a `int32` feature + `end_idx`: a `int32` feature + `type`: a `string` feature + `object_entity`: a dictionary feature containing + `word`: a `string` feature + `start_idx`: a `int32` feature + `end_idx`: a `int32` feature + `type`: a `string` feature + `label`: a list of labels, with possible values including `no_relation`(0), `org:dissolved`(1), `org:founded`(2), `org:place_of_headquarters`(3), `org:alternate_names`(4), `org:member_of`(5), `org:members`(6), `org:political/religious_affiliation`(7), `org:product`(8), `org:founded_by`(9),`org:top_members/employees`(10), `org:number_of_employees/members`(11), `per:date_of_birth`(12), `per:date_of_death`(13), `per:place_of_birth`(14), `per:place_of_death`(15), `per:place_of_residence`(16), `per:origin`(17), `per:employee_of`(18), `per:schools_attended`(19), `per:alternate_names`(20), `per:parents`(21), `per:children`(22), `per:siblings`(23), `per:spouse`(24), `per:other_family`(25), `per:colleagues`(26), `per:product`(27), `per:religion`(28), `per:title`(29), + `source`: a `string` feature #### dp + `sentence`: a `string` feature + `index`: a list of `int32` feature + `word_form`: a list of `string` feature + `lemma`: a list of `string` feature + `pos`: a list of `string` feature + `head`: a list of `int32` feature + `deprel`: a list of `string` feature #### mrc + `title`: a `string` feature + `context`: a `string` feature + `news_category`: a `string` feature + `source`: a `string` feature + `guid`: a `string` feature + `is_impossible`: a `bool` feature + `question_type`: a `int32` feature + `question`: a `string` feature + `answers`: a dictionary feature containing + `answer_start`: a `int32` feature + `text`: a `string` feature #### wos + `guid`: a `string` feature + `domains`: a `string` feature + `dialogue`: a list of dictionary feature containing + `role`: a `string` feature + `text`: a `string` feature + `state`: a `string` feature ### Data Splits #### ynat You can see more details in [here](https://klue-benchmark.com/tasks/66/data/description). + train: 45,678 + validation: 9,107 #### sts You can see more details in [here](https://klue-benchmark.com/tasks/67/data/description). + train: 11,668 + validation: 519 #### nli You can see more details in [here](https://klue-benchmark.com/tasks/68/data/description). + train: 24,998 + validation: 3,000 #### ner You can see more details in [here](https://klue-benchmark.com/tasks/69/overview/description). + train: 21,008 + validation: 5,000 #### re You can see more details in [here](https://klue-benchmark.com/tasks/70/overview/description). + train: 32,470 + validation: 7,765 #### dp You can see more details in [here](https://klue-benchmark.com/tasks/71/data/description). + train: 10,000 + validation: 2,000 #### mrc You can see more details in [here](https://klue-benchmark.com/tasks/72/overview/description). + train: 17,554 + validation: 5,841 #### wos You can see more details in [here](https://klue-benchmark.com/tasks/73/overview/description). + train: 8,000 + validation: 1,000 ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information [Needs More Information] ### Citation Information ``` @misc{park2021klue, title={KLUE: Korean Language Understanding Evaluation}, author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jungwoo Ha and Kyunghyun Cho}, year={2021}, eprint={2105.09680}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions Thanks to [@jungwhank](https://github.com/jungwhank), [@bzantium](https://github.com/bzantium) for adding this dataset.
ai4bharat/indic_glue
ai4bharat
2024-01-04T12:36:30Z
78,429
11
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:multiple-choice", "task_ids:topic-classification", "task_ids:natural-language-inference", "task_ids:sentiment-analysis", "task_ids:semantic-similarity-scoring", "task_ids:named-entity-recognition", "task_ids:multiple-choice-qa", "annotations_creators:other", "language_creators:found", "multilinguality:multilingual", "source_datasets:extended|other", "language:as", "language:bn", "language:en", "language:gu", "language:hi", "language:kn", "language:ml", "language:mr", "language:or", "language:pa", "language:ta", "language:te", "license:other", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "discourse-mode-classification", "paraphrase-identification", "cross-lingual-similarity", "headline-classification" ]
[ "text-classification", "token-classification", "multiple-choice" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - other language_creators: - found language: - as - bn - en - gu - hi - kn - ml - mr - or - pa - ta - te license: - other multilinguality: - multilingual size_categories: - 100K<n<1M source_datasets: - extended|other task_categories: - text-classification - token-classification - multiple-choice task_ids: - topic-classification - natural-language-inference - sentiment-analysis - semantic-similarity-scoring - named-entity-recognition - multiple-choice-qa pretty_name: IndicGLUE tags: - discourse-mode-classification - paraphrase-identification - cross-lingual-similarity - headline-classification dataset_info: - config_name: actsa-sc.te features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 1370907 num_examples: 4328 - name: validation num_bytes: 166089 num_examples: 541 - name: test num_bytes: 168291 num_examples: 541 download_size: 727630 dataset_size: 1705287 - config_name: bbca.hi features: - name: label dtype: string - name: text dtype: string splits: - name: train num_bytes: 22126205 num_examples: 3467 - name: test num_bytes: 5501148 num_examples: 866 download_size: 10349015 dataset_size: 27627353 - config_name: copa.en features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 46033 num_examples: 400 - name: validation num_bytes: 11679 num_examples: 100 - name: test num_bytes: 55846 num_examples: 500 download_size: 79431 dataset_size: 113558 - config_name: copa.gu features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 92097 num_examples: 362 - name: validation num_bytes: 23450 num_examples: 88 - name: test num_bytes: 109997 num_examples: 448 download_size: 107668 dataset_size: 225544 - config_name: copa.hi features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 93376 num_examples: 362 - name: validation num_bytes: 23559 num_examples: 88 - name: test num_bytes: 112830 num_examples: 449 download_size: 104233 dataset_size: 229765 - config_name: copa.mr features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 93441 num_examples: 362 - name: validation num_bytes: 23874 num_examples: 88 - name: test num_bytes: 112055 num_examples: 449 download_size: 105962 dataset_size: 229370 - config_name: csqa.as features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 3800523 num_examples: 2942 download_size: 1390423 dataset_size: 3800523 - config_name: csqa.bn features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 54671018 num_examples: 38845 download_size: 19648180 dataset_size: 54671018 - config_name: csqa.gu features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 29131607 num_examples: 22861 download_size: 6027825 dataset_size: 29131607 - config_name: csqa.hi features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 40409347 num_examples: 35140 download_size: 14711258 dataset_size: 40409347 - config_name: csqa.kn features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 21199816 num_examples: 13666 download_size: 7669655 dataset_size: 21199816 - config_name: csqa.ml features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 47220836 num_examples: 26537 download_size: 17382215 dataset_size: 47220836 - config_name: csqa.mr features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 13667174 num_examples: 11370 download_size: 5072738 dataset_size: 13667174 - config_name: csqa.or features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 2562365 num_examples: 1975 download_size: 948046 dataset_size: 2562365 - config_name: csqa.pa features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 5806097 num_examples: 5667 download_size: 2194109 dataset_size: 5806097 - config_name: csqa.ta features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 61868481 num_examples: 38590 download_size: 20789467 dataset_size: 61868481 - config_name: csqa.te features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 58784997 num_examples: 41338 download_size: 17447618 dataset_size: 58784997 - config_name: cvit-mkb-clsr.en-bn features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 1990957 num_examples: 5522 download_size: 945551 dataset_size: 1990957 - config_name: cvit-mkb-clsr.en-gu features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 2303377 num_examples: 6463 download_size: 1093313 dataset_size: 2303377 - config_name: cvit-mkb-clsr.en-hi features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 1855989 num_examples: 5169 download_size: 890609 dataset_size: 1855989 - config_name: cvit-mkb-clsr.en-ml features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 1990089 num_examples: 4886 download_size: 868956 dataset_size: 1990089 - config_name: cvit-mkb-clsr.en-mr features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 2130601 num_examples: 5760 download_size: 993961 dataset_size: 2130601 - config_name: cvit-mkb-clsr.en-or features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 274873 num_examples: 752 download_size: 134334 dataset_size: 274873 - config_name: cvit-mkb-clsr.en-ta features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 2565178 num_examples: 5637 download_size: 1091653 dataset_size: 2565178 - config_name: cvit-mkb-clsr.en-te features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 1771129 num_examples: 5049 download_size: 840410 dataset_size: 1771129 - config_name: cvit-mkb-clsr.en-ur features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 288430 num_examples: 1006 download_size: 166129 dataset_size: 288430 - config_name: iitp-mr.hi features: - name: text dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 6704905 num_examples: 2480 - name: validation num_bytes: 822218 num_examples: 310 - name: test num_bytes: 702373 num_examples: 310 download_size: 3151762 dataset_size: 8229496 - config_name: iitp-pr.hi features: - name: text dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 945589 num_examples: 4182 - name: validation num_bytes: 120100 num_examples: 523 - name: test num_bytes: 121910 num_examples: 523 download_size: 509822 dataset_size: 1187599 - config_name: inltkh.gu features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 883063 num_examples: 5269 - name: validation num_bytes: 111201 num_examples: 659 - name: test num_bytes: 110757 num_examples: 659 download_size: 515094 dataset_size: 1105021 - config_name: inltkh.ml features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 1108145 num_examples: 5036 - name: validation num_bytes: 140055 num_examples: 630 - name: test num_bytes: 138847 num_examples: 630 download_size: 571019 dataset_size: 1387047 - config_name: inltkh.mr features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 1462614 num_examples: 9672 - name: validation num_bytes: 180306 num_examples: 1210 - name: test num_bytes: 180558 num_examples: 1210 download_size: 840304 dataset_size: 1823478 - config_name: inltkh.ta features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 2659569 num_examples: 5346 - name: validation num_bytes: 316083 num_examples: 669 - name: test num_bytes: 320465 num_examples: 669 download_size: 1271262 dataset_size: 3296117 - config_name: inltkh.te features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 1361667 num_examples: 4328 - name: validation num_bytes: 170471 num_examples: 541 - name: test num_bytes: 173149 num_examples: 541 download_size: 726293 dataset_size: 1705287 - config_name: md.hi features: - name: sentence dtype: string - name: discourse_mode dtype: string - name: story_number dtype: int32 - name: id dtype: int32 splits: - name: train num_bytes: 1672109 num_examples: 7974 - name: validation num_bytes: 211187 num_examples: 997 - name: test num_bytes: 210175 num_examples: 997 download_size: 939801 dataset_size: 2093471 - config_name: sna.bn features: - name: text dtype: string - name: label dtype: class_label: names: '0': kolkata '1': state '2': national '3': sports '4': entertainment '5': international splits: - name: train num_bytes: 46070046 num_examples: 11284 - name: validation num_bytes: 5648126 num_examples: 1411 - name: test num_bytes: 5799979 num_examples: 1411 download_size: 21415940 dataset_size: 57518151 - config_name: wiki-ner.as features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 374983 num_examples: 1021 - name: validation num_bytes: 49312 num_examples: 157 - name: test num_bytes: 50456 num_examples: 160 download_size: 72919 dataset_size: 474751 - config_name: wiki-ner.bn features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 7502824 num_examples: 20223 - name: validation num_bytes: 988683 num_examples: 2985 - name: test num_bytes: 985941 num_examples: 2690 download_size: 1278219 dataset_size: 9477448 - config_name: wiki-ner.gu features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 1571588 num_examples: 2343 - name: validation num_bytes: 192804 num_examples: 297 - name: test num_bytes: 197877 num_examples: 255 download_size: 329660 dataset_size: 1962269 - config_name: wiki-ner.hi features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 3762505 num_examples: 9463 - name: validation num_bytes: 468678 num_examples: 1114 - name: test num_bytes: 475253 num_examples: 1256 download_size: 948132 dataset_size: 4706436 - config_name: wiki-ner.kn features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 1352027 num_examples: 2679 - name: validation num_bytes: 179538 num_examples: 412 - name: test num_bytes: 180791 num_examples: 476 download_size: 421877 dataset_size: 1712356 - config_name: wiki-ner.ml features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 7678887 num_examples: 15620 - name: validation num_bytes: 969947 num_examples: 2067 - name: test num_bytes: 991102 num_examples: 2042 download_size: 2390442 dataset_size: 9639936 - config_name: wiki-ner.mr features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 5431489 num_examples: 12151 - name: validation num_bytes: 701637 num_examples: 1498 - name: test num_bytes: 655682 num_examples: 1329 download_size: 1410663 dataset_size: 6788808 - config_name: wiki-ner.or features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 493758 num_examples: 1077 - name: validation num_bytes: 58568 num_examples: 132 - name: test num_bytes: 62211 num_examples: 153 download_size: 102783 dataset_size: 614537 - config_name: wiki-ner.pa features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 520244 num_examples: 1408 - name: validation num_bytes: 61170 num_examples: 186 - name: test num_bytes: 61788 num_examples: 179 download_size: 149727 dataset_size: 643202 - config_name: wiki-ner.ta features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 10117080 num_examples: 20466 - name: validation num_bytes: 1267188 num_examples: 2586 - name: test num_bytes: 1321626 num_examples: 2611 download_size: 2819083 dataset_size: 12705894 - config_name: wiki-ner.te features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 3881211 num_examples: 7978 - name: validation num_bytes: 458509 num_examples: 841 - name: test num_bytes: 507806 num_examples: 1110 download_size: 1006881 dataset_size: 4847526 - config_name: wnli.en features: - name: hypothesis dtype: string - name: premise dtype: string - name: label dtype: class_label: names: '0': not_entailment '1': entailment '2': None splits: - name: train num_bytes: 104569 num_examples: 635 - name: validation num_bytes: 11878 num_examples: 71 - name: test num_bytes: 37297 num_examples: 146 download_size: 57667 dataset_size: 153744 - config_name: wnli.gu features: - name: hypothesis dtype: string - name: premise dtype: string - name: label dtype: class_label: names: '0': not_entailment '1': entailment '2': None splits: - name: train num_bytes: 251554 num_examples: 635 - name: validation num_bytes: 28175 num_examples: 71 - name: test num_bytes: 94578 num_examples: 146 download_size: 98032 dataset_size: 374307 - config_name: wnli.hi features: - name: hypothesis dtype: string - name: premise dtype: string - name: label dtype: class_label: names: '0': not_entailment '1': entailment '2': None splits: - name: train num_bytes: 253334 num_examples: 635 - name: validation num_bytes: 28676 num_examples: 71 - name: test num_bytes: 90823 num_examples: 146 download_size: 99450 dataset_size: 372833 - config_name: wnli.mr features: - name: hypothesis dtype: string - name: premise dtype: string - name: label dtype: class_label: names: '0': not_entailment '1': entailment '2': None splits: - name: train num_bytes: 256649 num_examples: 635 - name: validation num_bytes: 29218 num_examples: 71 - name: test num_bytes: 97128 num_examples: 146 download_size: 103774 dataset_size: 382995 - config_name: wstp.as features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 13581336 num_examples: 5000 - name: validation num_bytes: 1698968 num_examples: 625 - name: test num_bytes: 1697650 num_examples: 626 download_size: 6959458 dataset_size: 16977954 - config_name: wstp.bn features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 143340457 num_examples: 47580 - name: validation num_bytes: 17759236 num_examples: 5947 - name: test num_bytes: 17633865 num_examples: 5948 download_size: 69145372 dataset_size: 178733558 - config_name: wstp.gu features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 39353464 num_examples: 10004 - name: validation num_bytes: 4887752 num_examples: 1251 - name: test num_bytes: 4699158 num_examples: 1251 download_size: 19763249 dataset_size: 48940374 - config_name: wstp.hi features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 158529578 num_examples: 44069 - name: validation num_bytes: 19371904 num_examples: 5509 - name: test num_bytes: 19593001 num_examples: 5509 download_size: 77868574 dataset_size: 197494483 - config_name: wstp.kn features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 139950313 num_examples: 35379 - name: validation num_bytes: 17789782 num_examples: 4422 - name: test num_bytes: 17897031 num_examples: 4423 download_size: 67719504 dataset_size: 175637126 - config_name: wstp.ml features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 88360504 num_examples: 27527 - name: validation num_bytes: 11193340 num_examples: 3441 - name: test num_bytes: 11150914 num_examples: 3441 download_size: 42336357 dataset_size: 110704758 - config_name: wstp.mr features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 28302341 num_examples: 10446 - name: validation num_bytes: 3328798 num_examples: 1306 - name: test num_bytes: 3631684 num_examples: 1306 download_size: 13886208 dataset_size: 35262823 - config_name: wstp.or features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 10900006 num_examples: 4015 - name: validation num_bytes: 1264935 num_examples: 502 - name: test num_bytes: 1344652 num_examples: 502 download_size: 5319128 dataset_size: 13509593 - config_name: wstp.pa features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 22189730 num_examples: 8772 - name: validation num_bytes: 2789186 num_examples: 1097 - name: test num_bytes: 2685767 num_examples: 1097 download_size: 11201369 dataset_size: 27664683 - config_name: wstp.ta features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 151929218 num_examples: 48940 - name: validation num_bytes: 18817167 num_examples: 6117 - name: test num_bytes: 18815071 num_examples: 6118 download_size: 68699092 dataset_size: 189561456 - config_name: wstp.te features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 151696691 num_examples: 80000 - name: validation num_bytes: 19003169 num_examples: 10000 - name: test num_bytes: 18991913 num_examples: 10000 download_size: 50158580 dataset_size: 189691773 configs: - config_name: actsa-sc.te data_files: - split: train path: actsa-sc.te/train-* - split: validation path: actsa-sc.te/validation-* - split: test path: actsa-sc.te/test-* - config_name: bbca.hi data_files: - split: train path: bbca.hi/train-* - split: test path: bbca.hi/test-* - config_name: copa.en data_files: - split: train path: copa.en/train-* - split: validation path: copa.en/validation-* - split: test path: copa.en/test-* - config_name: copa.gu data_files: - split: train path: copa.gu/train-* - split: validation path: copa.gu/validation-* - split: test path: copa.gu/test-* - config_name: copa.hi data_files: - split: train path: copa.hi/train-* - split: validation path: copa.hi/validation-* - split: test path: copa.hi/test-* - config_name: copa.mr data_files: - split: train path: copa.mr/train-* - split: validation path: copa.mr/validation-* - split: test path: copa.mr/test-* - config_name: csqa.as data_files: - split: test path: csqa.as/test-* - config_name: csqa.bn data_files: - split: test path: csqa.bn/test-* - config_name: csqa.gu data_files: - split: test path: csqa.gu/test-* - config_name: csqa.hi data_files: - split: test path: csqa.hi/test-* - config_name: csqa.kn data_files: - split: test path: csqa.kn/test-* - config_name: csqa.ml data_files: - split: test path: csqa.ml/test-* - config_name: csqa.mr data_files: - split: test path: csqa.mr/test-* - config_name: csqa.or data_files: - split: test path: csqa.or/test-* - config_name: csqa.pa data_files: - split: test path: csqa.pa/test-* - config_name: csqa.ta data_files: - split: test path: csqa.ta/test-* - config_name: csqa.te data_files: - split: test path: csqa.te/test-* - config_name: cvit-mkb-clsr.en-bn data_files: - split: test path: cvit-mkb-clsr.en-bn/test-* - config_name: cvit-mkb-clsr.en-gu data_files: - split: test path: cvit-mkb-clsr.en-gu/test-* - config_name: cvit-mkb-clsr.en-hi data_files: - split: test path: cvit-mkb-clsr.en-hi/test-* - config_name: cvit-mkb-clsr.en-ml data_files: - split: test path: cvit-mkb-clsr.en-ml/test-* - config_name: cvit-mkb-clsr.en-mr data_files: - split: test path: cvit-mkb-clsr.en-mr/test-* - config_name: cvit-mkb-clsr.en-or data_files: - split: test path: cvit-mkb-clsr.en-or/test-* - config_name: cvit-mkb-clsr.en-ta data_files: - split: test path: cvit-mkb-clsr.en-ta/test-* - config_name: cvit-mkb-clsr.en-te data_files: - split: test path: cvit-mkb-clsr.en-te/test-* - config_name: cvit-mkb-clsr.en-ur data_files: - split: test path: cvit-mkb-clsr.en-ur/test-* - config_name: iitp-mr.hi data_files: - split: train path: iitp-mr.hi/train-* - split: validation path: iitp-mr.hi/validation-* - split: test path: iitp-mr.hi/test-* - config_name: iitp-pr.hi data_files: - split: train path: iitp-pr.hi/train-* - split: validation path: iitp-pr.hi/validation-* - split: test path: iitp-pr.hi/test-* - config_name: inltkh.gu data_files: - split: train path: inltkh.gu/train-* - split: validation path: inltkh.gu/validation-* - split: test path: inltkh.gu/test-* - config_name: inltkh.ml data_files: - split: train path: inltkh.ml/train-* - split: validation path: inltkh.ml/validation-* - split: test path: inltkh.ml/test-* - config_name: inltkh.mr data_files: - split: train path: inltkh.mr/train-* - split: validation path: inltkh.mr/validation-* - split: test path: inltkh.mr/test-* - config_name: inltkh.ta data_files: - split: train path: inltkh.ta/train-* - split: validation path: inltkh.ta/validation-* - split: test path: inltkh.ta/test-* - config_name: inltkh.te data_files: - split: train path: inltkh.te/train-* - split: validation path: inltkh.te/validation-* - split: test path: inltkh.te/test-* - config_name: md.hi data_files: - split: train path: md.hi/train-* - split: validation path: md.hi/validation-* - split: test path: md.hi/test-* - config_name: sna.bn data_files: - split: train path: sna.bn/train-* - split: validation path: sna.bn/validation-* - split: test path: sna.bn/test-* - config_name: wiki-ner.as data_files: - split: train path: wiki-ner.as/train-* - split: validation path: wiki-ner.as/validation-* - split: test path: wiki-ner.as/test-* - config_name: wiki-ner.bn data_files: - split: train path: wiki-ner.bn/train-* - split: validation path: wiki-ner.bn/validation-* - split: test path: wiki-ner.bn/test-* - config_name: wiki-ner.gu data_files: - split: train path: wiki-ner.gu/train-* - split: validation path: wiki-ner.gu/validation-* - split: test path: wiki-ner.gu/test-* - config_name: wiki-ner.hi data_files: - split: train path: wiki-ner.hi/train-* - split: validation path: wiki-ner.hi/validation-* - split: test path: wiki-ner.hi/test-* - config_name: wiki-ner.kn data_files: - split: train path: wiki-ner.kn/train-* - split: validation path: wiki-ner.kn/validation-* - split: test path: wiki-ner.kn/test-* - config_name: wiki-ner.ml data_files: - split: train path: wiki-ner.ml/train-* - split: validation path: wiki-ner.ml/validation-* - split: test path: wiki-ner.ml/test-* - config_name: wiki-ner.mr data_files: - split: train path: wiki-ner.mr/train-* - split: validation path: wiki-ner.mr/validation-* - split: test path: wiki-ner.mr/test-* - config_name: wiki-ner.or data_files: - split: train path: wiki-ner.or/train-* - split: validation path: wiki-ner.or/validation-* - split: test path: wiki-ner.or/test-* - config_name: wiki-ner.pa data_files: - split: train path: wiki-ner.pa/train-* - split: validation path: wiki-ner.pa/validation-* - split: test path: wiki-ner.pa/test-* - config_name: wiki-ner.ta data_files: - split: train path: wiki-ner.ta/train-* - split: validation path: wiki-ner.ta/validation-* - split: test path: wiki-ner.ta/test-* - config_name: wiki-ner.te data_files: - split: train path: wiki-ner.te/train-* - split: validation path: wiki-ner.te/validation-* - split: test path: wiki-ner.te/test-* - config_name: wnli.en data_files: - split: train path: wnli.en/train-* - split: validation path: wnli.en/validation-* - split: test path: wnli.en/test-* - config_name: wnli.gu data_files: - split: train path: wnli.gu/train-* - split: validation path: wnli.gu/validation-* - split: test path: wnli.gu/test-* - config_name: wnli.hi data_files: - split: train path: wnli.hi/train-* - split: validation path: wnli.hi/validation-* - split: test path: wnli.hi/test-* - config_name: wnli.mr data_files: - split: train path: wnli.mr/train-* - split: validation path: wnli.mr/validation-* - split: test path: wnli.mr/test-* - config_name: wstp.as data_files: - split: train path: wstp.as/train-* - split: validation path: wstp.as/validation-* - split: test path: wstp.as/test-* - config_name: wstp.bn data_files: - split: train path: wstp.bn/train-* - split: validation path: wstp.bn/validation-* - split: test path: wstp.bn/test-* - config_name: wstp.gu data_files: - split: train path: wstp.gu/train-* - split: validation path: wstp.gu/validation-* - split: test path: wstp.gu/test-* - config_name: wstp.hi data_files: - split: train path: wstp.hi/train-* - split: validation path: wstp.hi/validation-* - split: test path: wstp.hi/test-* - config_name: wstp.kn data_files: - split: train path: wstp.kn/train-* - split: validation path: wstp.kn/validation-* - split: test path: wstp.kn/test-* - config_name: wstp.ml data_files: - split: train path: wstp.ml/train-* - split: validation path: wstp.ml/validation-* - split: test path: wstp.ml/test-* - config_name: wstp.mr data_files: - split: train path: wstp.mr/train-* - split: validation path: wstp.mr/validation-* - split: test path: wstp.mr/test-* - config_name: wstp.or data_files: - split: train path: wstp.or/train-* - split: validation path: wstp.or/validation-* - split: test path: wstp.or/test-* - config_name: wstp.pa data_files: - split: train path: wstp.pa/train-* - split: validation path: wstp.pa/validation-* - split: test path: wstp.pa/test-* - config_name: wstp.ta data_files: - split: train path: wstp.ta/train-* - split: validation path: wstp.ta/validation-* - split: test path: wstp.ta/test-* - config_name: wstp.te data_files: - split: train path: wstp.te/train-* - split: validation path: wstp.te/validation-* - split: test path: wstp.te/test-* --- # Dataset Card for "indic_glue" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://ai4bharat.iitm.ac.in/indic-glue - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages](https://aclanthology.org/2020.findings-emnlp.445/) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 3.51 GB - **Size of the generated dataset:** 1.65 GB - **Total amount of disk used:** 5.16 GB ### Dataset Summary IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task in which a system must read a sentence with a pronoun and select the referent of that pronoun from a list of choices. The examples are manually constructed to foil simple statistical methods: Each one is contingent on contextual information provided by a single word or phrase in the sentence. To convert the problem into sentence pair classification, we construct sentence pairs by replacing the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of new examples derived from fiction books that was shared privately by the authors of the original corpus. While the included training set is balanced between two classes, the test set is imbalanced between them (65% not entailment). Also, due to a data quirk, the development set is adversarial: hypotheses are sometimes shared between training and development examples, so if a model memorizes the training examples, they will predict the wrong label on corresponding development set example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence between a model's score on this task and its score on the unconverted original task. We call converted dataset WNLI (Winograd NLI). This dataset is translated and publicly released for 3 Indian languages by AI4Bharat. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### actsa-sc.te - **Size of downloaded dataset files:** 0.38 MB - **Size of the generated dataset:** 1.71 MB - **Total amount of disk used:** 2.09 MB An example of 'validation' looks as follows. ``` This example was too long and was cropped: { "label": 0, "text": "\"ప్రయాణాల్లో ఉన్నవారికోసం బస్ స్టేషన్లు, రైల్వే స్టేషన్లలో పల్స్పోలియో బూతులను ఏర్పాటు చేసి చిన్నారులకు పోలియో చుక్కలు వేసేలా ఏర..." } ``` #### bbca.hi - **Size of downloaded dataset files:** 5.77 MB - **Size of the generated dataset:** 27.63 MB - **Total amount of disk used:** 33.40 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "label": "pakistan", "text": "\"नेटिजन यानि इंटरनेट पर सक्रिय नागरिक अब ट्विटर पर सरकार द्वारा लगाए प्रतिबंधों के समर्थन या विरोध में अपने विचार व्यक्त करते है..." } ``` #### copa.en - **Size of downloaded dataset files:** 0.75 MB - **Size of the generated dataset:** 0.12 MB - **Total amount of disk used:** 0.87 MB An example of 'validation' looks as follows. ``` { "choice1": "I swept the floor in the unoccupied room.", "choice2": "I shut off the light in the unoccupied room.", "label": 1, "premise": "I wanted to conserve energy.", "question": "effect" } ``` #### copa.gu - **Size of downloaded dataset files:** 0.75 MB - **Size of the generated dataset:** 0.23 MB - **Total amount of disk used:** 0.99 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "choice1": "\"સ્ત્રી જાણતી હતી કે તેનો મિત્ર મુશ્કેલ સમયમાંથી પસાર થઈ રહ્યો છે.\"...", "choice2": "\"મહિલાને લાગ્યું કે તેના મિત્રએ તેની દયાળુ લાભ લીધો છે.\"...", "label": 0, "premise": "મહિલાએ તેના મિત્રની મુશ્કેલ વર્તન સહન કરી.", "question": "cause" } ``` #### copa.hi - **Size of downloaded dataset files:** 0.75 MB - **Size of the generated dataset:** 0.23 MB - **Total amount of disk used:** 0.99 MB An example of 'validation' looks as follows. ``` { "choice1": "मैंने उसका प्रस्ताव ठुकरा दिया।", "choice2": "उन्होंने मुझे उत्पाद खरीदने के लिए राजी किया।", "label": 0, "premise": "मैंने सेल्समैन की पिच पर शक किया।", "question": "effect" } ``` ### Data Fields The data fields are the same among all splits. #### actsa-sc.te - `text`: a `string` feature. - `label`: a classification label, with possible values including `positive` (0), `negative` (1). #### bbca.hi - `label`: a `string` feature. - `text`: a `string` feature. #### copa.en - `premise`: a `string` feature. - `choice1`: a `string` feature. - `choice2`: a `string` feature. - `question`: a `string` feature. - `label`: a `int32` feature. #### copa.gu - `premise`: a `string` feature. - `choice1`: a `string` feature. - `choice2`: a `string` feature. - `question`: a `string` feature. - `label`: a `int32` feature. #### copa.hi - `premise`: a `string` feature. - `choice1`: a `string` feature. - `choice2`: a `string` feature. - `question`: a `string` feature. - `label`: a `int32` feature. ### Data Splits #### actsa-sc.te | |train|validation|test| |-----------|----:|---------:|---:| |actsa-sc.te| 4328| 541| 541| #### bbca.hi | |train|test| |-------|----:|---:| |bbca.hi| 3467| 866| #### copa.en | |train|validation|test| |-------|----:|---------:|---:| |copa.en| 400| 100| 500| #### copa.gu | |train|validation|test| |-------|----:|---------:|---:| |copa.gu| 362| 88| 448| #### copa.hi | |train|validation|test| |-------|----:|---------:|---:| |copa.hi| 362| 88| 449| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{kakwani-etal-2020-indicnlpsuite, title = "{I}ndic{NLPS}uite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for {I}ndian Languages", author = "Kakwani, Divyanshu and Kunchukuttan, Anoop and Golla, Satish and N.C., Gokul and Bhattacharyya, Avik and Khapra, Mitesh M. and Kumar, Pratyush", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.findings-emnlp.445", doi = "10.18653/v1/2020.findings-emnlp.445", pages = "4948--4961", } @inproceedings{Levesque2011TheWS, title={The Winograd Schema Challenge}, author={H. Levesque and E. Davis and L. Morgenstern}, booktitle={KR}, year={2011} } ``` ### Contributions Thanks to [@sumanthd17](https://github.com/sumanthd17) for adding this dataset.
tdavidson/hate_speech_offensive
tdavidson
2024-01-04T12:06:17Z
1,339
31
[ "task_categories:text-classification", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1703.04009", "region:us", "hate-speech-detection" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - expert-generated - crowdsourced language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: [] paperswithcode_id: hate-speech-and-offensive-language pretty_name: Hate Speech and Offensive Language tags: - hate-speech-detection dataset_info: features: - name: count dtype: int64 - name: hate_speech_count dtype: int64 - name: offensive_language_count dtype: int64 - name: neither_count dtype: int64 - name: class dtype: class_label: names: '0': hate speech '1': offensive language '2': neither - name: tweet dtype: string splits: - name: train num_bytes: 3207814 num_examples: 24783 download_size: 1627672 dataset_size: 3207814 configs: - config_name: default data_files: - split: train path: data/train-* train-eval-index: - config: default task: text-classification task_id: multi_class_classification splits: train_split: train col_mapping: tweet: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for [Dataset Name] ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://github.com/t-davidson/hate-speech-and-offensive-language - **Repository:** https://github.com/t-davidson/hate-speech-and-offensive-language - **Paper:** https://arxiv.org/abs/1703.04009 - **Leaderboard:** - **Point of Contact:** https://docs.google.com/forms/d/e/1FAIpQLSdrPNlfVBlqxun2tivzAtsZaOoPC5YYMocn-xscCgeRakLXHg/viewform?usp=pp_url&entry.1506871634&entry.147453066&entry.1390333885&entry.516829772 ### Dataset Summary An annotated dataset for hate speech and offensive language detection on tweets. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages English (`en`) ## Dataset Structure ### Data Instances ``` { "count": 3, "hate_speech_annotation": 0, "offensive_language_annotation": 0, "neither_annotation": 3, "label": 2, # "neither" "tweet": "!!! RT @mayasolovely: As a woman you shouldn't complain about cleaning up your house. &amp; as a man you should always take the trash out...") } ``` ### Data Fields ``` count: (Integer) number of users who coded each tweet (min is 3, sometimes more users coded a tweet when judgments were determined to be unreliable, hate_speech_annotation: (Integer) number of users who judged the tweet to be hate speech, offensive_language_annotation: (Integer) number of users who judged the tweet to be offensive, neither_annotation: (Integer) number of users who judged the tweet to be neither offensive nor non-offensive, label: (Class Label) class label for majority of CF users (0: 'hate-speech', 1: 'offensive-language' or 2: 'neither'), tweet: (string) ``` ### Data Splits This dataset is not splitted, only the train split is available. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information Usernames are not anonymized in the dataset. ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information MIT License ### Citation Information @inproceedings{hateoffensive, title = {Automated Hate Speech Detection and the Problem of Offensive Language}, author = {Davidson, Thomas and Warmsley, Dana and Macy, Michael and Weber, Ingmar}, booktitle = {Proceedings of the 11th International AAAI Conference on Web and Social Media}, series = {ICWSM '17}, year = {2017}, location = {Montreal, Canada}, pages = {512-515} } ### Contributions Thanks to [@hugoabonizio](https://github.com/hugoabonizio) for adding this dataset.
AI-team-UoA/greek_legal_code
AI-team-UoA
2024-01-04T12:03:50Z
304
12
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:el", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2109.15298", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found language: - el license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - multi-class-classification - topic-classification pretty_name: Greek Legal Code dataset_info: - config_name: chapter features: - name: text dtype: string - name: label dtype: class_label: names: '0': ΜΕΤΑΛΛΕΙΑ ΚΑΙ ΟΡΥΧΕΙΑ '1': ΣΤΑΤΙΩΤΙΚΕΣ ΣΧΟΛΕΣ '2': ΠΑΡΟΧΕΣ ΑΝΕΡΓΙΑΣ '3': ΣΙΔΗΡΟΔΡΟΜΙΚΑ ΔΙΚΤΥΑ '4': ΕΙΔΙΚΑ ΣΤΡΑΤΙΩΤΙΚΑ ΑΔΙΚΗΜΑΤΑ '5': ΚΡΑΤΙΚΕΣ ΠΡΟΜΗΘΕΙΕΣ '6': ΑΓΡΟΤΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ '7': ΑΞΙΩΜΑΤΙΚΟΙ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '8': ΣΧΕΔΙΑ ΠΟΛΕΩΝ '9': ΣΥΚΑ '10': ΠΡΟΛΗΨΙΣ ΚΑΙ ΔΙΩΞΙΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ '11': ΔΙΕΘΝΕΙΣ ΜΕΤΑΦΟΡΕΣ '12': ΓΕΝΙΚΗ ΣΥΓΚΟΙΝΩΝΙΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ '13': ΚΛΗΡΟΝΟΜΙΚΟ ΔΙΚΑΙΟ '14': ΚΟΙΝΩΝΙΚΗ ΑΝΤΙΛΗΨΗ '15': ΝΑΥΤΙΛΙΑΚΕΣ ΣΗΜΑΝΣΕΙΣ '16': ΔΙΕΘΝΕΣ ΠΟΙΝΙΚΟ ΔΙΚΑΙΟ '17': ΑΣΦΑΛΙΣΤΙΚΟΙ ΟΡΓΑΝΙΣΜΟΙ Ε.Ν '18': ΣΩΜΑΤΙΚΗ ΑΓΩΓΗ '19': ΣΠΟΡΟΠΑΡΑΓΩΓΗ '20': ΥΠΗΡΕΣΙΑΙ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ '21': ΤΑΜΕΙΑ ΣΥΝΤΑΞΕΩΝ ΤΡΑΠΕΖΩΝ '22': ΠΥΡΟΣΒΕΣΤΙΚΟ ΣΩΜΑ '23': ΔΙΑΦΟΡΕΣ ΒΙΟΜΗΧΑΝΙΕΣ '24': ΕΚΤΕΛΕΣΗ ΚΑΙ ΣΥΝΕΠΕΙΕΣ ΤΗΣ ΠΟΙΝΗΣ '25': ΔΙΕΘΝΕΙΣ ΑΣΦΑΛΙΣΤΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '26': ΝΟΜΟΘΕΣΙΑ '27': ΒΑΜΒΑΚΙ '28': ΠΑΡΟΧΕΣ ΣΥΝΤΑΞΕΩΝ '29': ΝΟΜΙΣΜΑ '30': ΣΥΜΒΑΣΗ ΝΑΥΤΙΚΗΣ ΕΡΓΑΣΙΑΣ '31': ΟΡΓΑΝΙΣΜΟΊ ΚΟΙΝΩΝΙΚΉΣ ΑΣΦΑΛΊΣΕΩΣ '32': ΑΓΡΟΤΙΚΗ ΑΣΦΑΛΕΙΑ '33': ΥΓΕΙΟΝΟΜΙΚΟΣ ΕΛΕΓΧΟΣ ΕΙΣΕΡΧΟΜΕΝΩΝ '34': ΜΟΥΣΕΙΑ ΚΑΙ ΣΥΛΛΟΓΕΣ '35': ΠΡΟΣΩΠΙΚΟ Ι.Κ.Α '36': ΞΕΝΟΔΟΧΕΙΑ '37': ΚΡΑΤΙΚΗ ΑΣΦΑΛΕΙΑ '38': ΣΥΝΕΤΑΙΡΙΣΜΟΙ '39': ΠΟΛΥΕΘΝΕΙΣ ΣΥΜΦΩΝΙΕΣ '40': ΕΤΕΡΟΔΟΞΟΙ '41': ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΙΣ '42': ΓΕΩΡΓΙΚΟΙ ΟΡΓΑΝΙΣΜΟΙ '43': ΓΕΝΙΚΟ ΛΟΓΙΣΤΗΡΙΟ '44': ΡΥΘΜΙΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ '45': ΠΑΡΟΧΟΙ ΚΙΝΗΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ '46': ΕΜΠΡΑΓΜΑΤΟΣ ΑΣΦΑΛΕΙΑ '47': ΦΟΡΟΛΟΓΙΑ ΑΚΑΘΑΡΙΣΤΟΥ ΠΡΟΣΟΔΟΥ '48': ΚΤΗΜΑΤΙΚΕΣ ΤΡΑΠΕΖΕΣ '49': ΣΤΑΤΙΣΤΙΚΗ '50': ΚΕΡΑΙΕΣ – ΣΤΑΘΜΟΙ ΚΕΡΑΙΩΝ '51': ΠΟΙΝΙΚΟΣ ΝΟΜΟΣ '52': ΜΕΣΑ ΔΙΔΑΣΚΑΛΙΑΣ '53': ΕΜΠΟΡΙΟ ΦΑΡΜΑΚΩΝ '54': ΔΙΑΦΟΡΑ '55': ΔΗΜΟΣΙΑ ΚΤΗΜΑΤΑ '56': ΕΙΣΦΟΡΕΣ Ι.Κ.Α '57': ΚΑΤΑΓΓΕΛΙΑ ΣΥΜΒΑΣΕΩΣ ΕΡΓΑΣΙΑΣ '58': ΠΡΟΣΩΠΙΚΟ ΠΟΛΙΤΙΚΗΣ ΑΕΡΟΠΟΡΙΑΣ '59': ΔΗΜΟΣΙΟ ΧΡΕΟΣ '60': ΑΠΟΤΑΜΙΕΥΣΗ '61': ΑΛΛΟΘΡΗΣΚΟΙ '62': ΠΛΟΗΓΙΚΗ ΥΠΗΡΕΣΙΑ '63': ΤΥΠΟΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΕΣ '64': ΤΡΟΠΟΠΟΙΗΣΗ ΚΑΙ ΚΑΤΑΡΓΗΣΗ ΤΗΣ ΠΟΙΝΗΣ '65': ΑΣΦΑΛΙΣΤΙΚΑ ΤΑΜΕΙΑ ΤΥΠΟΥ '66': ΟΙΚΟΓΕΝΕΙΑΚΟ ΔΙΚΑΙΟ '67': ΔΙΟΙΚΗΣΗ ΕΘΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ '68': ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΑΜΥΝΑΣ '69': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΠΡΟΝΟΙΑΣ '70': ΠΡΟΣΩΠΙΚΟ ΤΩΝ ΔΙΚΑΣΤΗΡΙΩΝ '71': ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΩΝ ΕΙΔΙΚΩΝ ΚΑΤΗΓΟΡΙΩΝ '72': ΠΑΡΟΧΕΣ ΑΣΘΕΝΕΙΑΣ '73': ΜΕΤΑΝΑΣΤΕΥΣΗ '74': ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ '75': ΑΣΦΑΛΕΙΑ ΝΑΥΣΙΠΛΟΪΑΣ '76': ΟΔΟΠΟΙΪΑ '77': ΣΤΡΑΤΟΔΙΚΕΙΑ '78': ΜΙΣΘΩΣΗ '79': ΕΙΣΠΡΑΞΗ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ '80': ΟΠΛΙΤΕΣ ΚΑΙ ΑΝΘΥΠΑΣΠΙΣΤΕΣ '81': ΟΡΓΑΝΙΣΜΟΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΛΛΑΔΑΣ (Ο.Τ.Ε.) '82': ΌΡΓΑΝΑ ΆΣΚΗΣΗΣ ΔΙΑΧΕΙΡΙΣΤΙΚΟΎ ΕΛΈΓΧΟΥ ΟΡΓΑΝΙΣΜΏΝ ΚΑΙ ΕΠΙΧΕΙΡΉΣΕΩΝ '83': ΠΟΙΝΙΚΗ ΝΟΜΟΘΕΣΙΑ ΤΥΠΟΥ '84': ΕΞΑΓΩΓΙΚΟ ΕΜΠΟΡΙΟ '85': ΑΕΡΟΠΟΡΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '86': ΓΕΩΡΓΙΚΟΙ ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΑΓΡΟΤΙΚΕΣ ΣΥΝΕΤΑΙΡΙΣΤΙΚΕΣ ΟΡΓΑΝΩΣΕΙΣ '87': ΟΙΚΟΝΟΜΙΚΕΣ ΥΠΗΡΕΣΙΕΣ '88': ΟΧΥΡΩΣΕΙΣ '89': ΕΚΤΑΚΤΟΙ ΠΟΙΝΙΚΟΙ ΝΟΜΟΙ '90': ΕΚΤΕΛΕΣΗ '91': ΔΙΟΙΚΗΤΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ '92': ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ '93': ΑΣΦΑΛΙΣΤΙΚΑ ΤΑΜΕΙΑ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '94': ΕΚΚΑΘΑΡΙΣΕΙΣ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '95': ΔΙΟΙΚΗΣΗ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ '96': ΑΝΩΤΑΤΟ ΕΙΔΙΚΟ ΔΙΚΑΣΤΗΡΙΟ '97': ΑΡΤΟΣ '98': ΕΙΣΑΓΩΓΙΚΟ ΕΜΠΟΡΙΟ '99': ΑΛΙΕΙΑ '100': ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΠΕΡΙΟΥΣΙΑ '101': ΔΙΑΦΟΡΑ ΔΗΜΟΣΙΑ ΕΡΓΑ '102': ΜΟΝΕΣ '103': ΠΡΟΕΔΡΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΚΑΙ ΠΡΟΕΔΡΙΑ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ '104': ΠΟΛΥΕΘΝΕΙΣ ΟΡΓΑΝΙΣΜΟΙ '105': ΑΡΧΑΙΟΤΗΤΕΣ '106': ΝΑΟΙ ΚΑΙ ΛΕΙΤΟΥΡΓΟΙ ΑΥΤΩΝ '107': ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ '108': ΕΝΙΣΧΥΣΙΣ ΤΗΣ ΓΕΩΡΓΙΑΣ '109': ΕΚΘΕΣΕΙΣ '110': ΠΡΟΣΤΑΣΙΑ ΤΩΝ ΣΥΝΑΛΛΑΓΩΝ '111': ΑΣΦΑΛΙΣΗ '112': ΚΤΗΝΟΤΡΟΦΙΑ '113': ΕΚΠΑΙΔΕΥΤΙΚΑ ΤΕΛΗ '114': ΔΙΟΙΚΗΣΗ ΕΚΠΑΙΔΕΥΣΕΩΣ '115': ΤΑΜΕΙΟ ΠΑΡΑΚΑΤΑΘΗΚΩΝ ΚΑΙ ΔΑΝΕΙΩΝ '116': ΑΓΑΘΟΕΡΓΑ ΙΔΡΥΜΑΤΑ '117': ΦΟΡΟΛΟΓΙΚΑ ΔΙΚΑΣΤΗΡΙΑ '118': ΦΟΡΟΙ ΚΑΤΑΝΑΛΩΣΕΩΣ '119': ΒΙΒΛΙΟΘΗΚΕΣ-ΠΡΟΣΤΑΣΙΑ ΒΙΒΛΙΟΥ-ΔΙΑΔΟΣΗ ΛΟΓΟΤΕΧΝΙΑΣ '120': ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΕΣ ΚΑΙ ΤΑΧΥΔΡΟΜΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '121': ΙΔΙΩΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ '122': ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ '123': ΑΣΥΡΜΑΤΟΣ '124': ΑΠΟΔΟΧΕΣ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΩΝ '125': ΥΓΕΙΟΝΟΜΙΚΗ ΥΠΗΡΕΣΙΑ ΣΤΡΑΤΟΥ '126': ΦΑΡΜΑΚΕΙΑ '127': ΔΗΜΟΣΙΟ ΛΟΓΙΣΤΙΚΟ '128': ΝΑΥΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ '129': ΕΞΥΠΗΡΕΤΗΣΗ ΠΟΛΙΤΙΚΗΣ ΑΕΡΟΠΟΡΙΑΣ '130': ΠΑΡΟΧΕΣ Ι.Κ.Α '131': ΓΕΝΙΚΑ ΥΓΕΙΟΝΟΜΙΚΑ ΜΕΤΡΑ '132': ΕΚΜΕΤΑΛΛΕΥΣΗ ΘΑΛΑΣΣΙΩΝ ΣΥΓΚΟΙΝΩΝΙΩΝ '133': ΠΡΟΣΩΠΙΚΟ ΤΑΧΥΔΡΟΜΕΙΩΝ '134': ΕΚΤΕΛΕΣΤΙΚΗ ΕΞΟΥΣΙΑ '135': ΣΥΣΤΑΣΗ ΚΑΙ ΕΔΡΑ ΤΟΥ ΚΡΑΤΟΥΣ '136': ΦΟΡΟΛΟΓΙΑ ΔΙΑΣΚΕΔΑΣΕΩΝ '137': ΤΗΛΕΦΩΝΑ '138': ΣΤΡΑΤΟΛΟΓΙΑ '139': ΕΚΠΑΙΔΕΥΣΗ ΕΡΓΑΤΩΝ '140': ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ '141': ΦΟΡΟΛΟΓΙΑ ΟΙΝΟΠΝΕΥΜΑΤΩΔΩΝ ΠΟΤΩΝ '142': ΥΠΟΥΡΓΕΙΟ ΓΕΩΡΓΙΑΣ '143': ΣΩΜΑΤΕΙΑ '144': ΕΙΔΙΚΕΣ ΜΟΡΦΕΣ ΑΠΑΣΧΟΛΗΣΗΣ '145': ΥΠΟΥΡΓΕΙΟ ΔΙΚΑΙΟΣΥΝΗΣ '146': ΝΑΥΤΙΛΙΑΚΟΙ ΟΡΓΑΝΙΣΜΟΙ '147': ΤΟΥΡΙΣΜΟΣ '148': ΚΑΠΝΟΣ '149': ΠΡΟΣΤΑΣΙΑ ΗΘΩΝ '150': ΕΙΔΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΝΑΥΤΙΚΟΥ '151': ΑΠΟΔΟΧΕΣ ΣΤΡΑΤΙΩΤΙΚΩΝ '152': ΠΡΟΝΟΙΑ ΠΛΗΡΩΜΑΤΩΝ Ε.Ν '153': ΕΙΔΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΠΕΡΙ ΑΝΩΝ.ΕΤΑΙΡΕΙΩΝ '154': ΔΗΜΟΣΙΑ ΔΙΟΙΚΗΣΗ '155': ΤΟΠΙΚΑ ΣΧΕΔΙΑ ΠΟΛΕΩΝ '156': ΠΡΟΣΤΑΣΙΑ ΠΑΙΔΙΚΗΣ ΗΛΙΚΙΑΣ '157': ΕΛΛΗΝΙΚΗ ΑΣΤΥΝΟΜΙΑ '158': ΛΙΜΕΝΙΚΟ ΣΩΜΑ '159': ΤΟΥΡΙΣΤΙΚΗ ΑΣΤΥΝΟΜΙΑ '160': ΒΙΟΜΗΧΑΝΙΑ '161': ΣΧΟΛΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ '162': ΑΣΦΑΛΙΣΤΙΚΟΙ ΟΡΓΑΝΙΣΜΟΙ ΣΤΡΑΤΟΥ '163': ΑΛΥΚΕΣ '164': ΕΣΩΤΕΡΙΚΟ ΕΜΠΟΡΙΟ '165': ΕΘΝΙΚΟ ΣΥΣΤΗΜΑ ΥΓΕΙΑΣ '166': ΝΟΜΟΘΕΤΙΚΗ ΕΞΟΥΣΙΑ '167': ΔΙΟΙΚΗΣH ΚΟΙΝΩΝIKΗΣ ΠΡΟΝΟΙΑΣ '168': ΠΛΗΡΩΜΑΤΑ '169': ΜΑΘΗΤΙΚΗ ΠΡΟΝΟΙΑ '170': ΔΙΟΙΚΗΣΗ ΤΥΠΟΥ ΚΑΙ ΤΟΥΡΙΣΜΟΥ '171': ΕΠΟΙΚΙΣΜΟΣ '172': ΤΡΟΧΙΟΔΡΟΜΟΙ '173': ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ '174': ΑΕΡΟΠΟΡΙΚΗ ΕΚΠΑΙΔΕΥΣΗ '175': ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ '176': ΘΕΑΤΡΟ '177': ΥΔΡΕΥΣΗ '178': ΔΙΕΘΝΕΙΣ ΣΤΡΑΤΙΩΤΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '179': ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ '180': ΥΠΟΥΡΓΕΙΟ ΕΞΩΤΕΡΙΚΩΝ '181': ΕΥΡΩΠΑΪΚΟΙ ΠΟΛΥΕΘΝΕΙΣ ΟΡΓΑΝΙΣΜΟΙ '182': ΕΛΕΥΘΕΡΙΑ ΤΗΣ ΕΡΓΑΣΙΑΣ '183': ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΔΗΜ.ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΑΠΟΚΕΝΤΡΩΣΗΣ '184': ΔΙΑΦΟΡΕΣ ΕΝΟΧΙΚΕΣ ΣΧΕΣΕΙΣ '185': ΛΗΞΙΑΡΧΕΙΑ '186': ΕΙΔΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ '187': ΤΕΛΩΝΕΙΑΚΕΣ ΣΥΜΒΑΣΕΙΣ '188': ΝΑΥΤΙΚΟ ΠΟΙΝΙΚΟ ΔΙΚΑΙΟ '189': ΣΤΕΓΑΣΗ ΔΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ '190': ΠΛΗΡΩΜΑΤΑ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '191': ΣΥΝΤΑΓΜΑΤΙΚΟΣ ΧΑΡΤΗΣ '192': ΗΛΕΚΤΡΙΣΜΟΣ '193': ΑΣΦΑΛΙΣΤΙΚΑ ΔΙΚΑΣΤΗΡΙΑ '194': ΛΕΣΧΕΣ ΕΛΛΗΝΙΚΗΣ ΑΣΤΥΝΟΜΙΑΣ '195': ΥΠΟΥΡΓΕΙΟ ΔΗΜΟΣΙΑΣ TAΞΗΣ '196': ΕΚΤΕΛΕΣ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ '197': ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ '198': ΔΑΣΙΚΗ ΝΟΜΟΘΕΣΙΑ '199': ΕΙΔΙΚΕΣ ΑΝΩΤΑΤΕΣ ΣΧΟΛΕΣ '200': ΕΔΑΦΟΣ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΚΡΑΤΟΥΣ '201': ΔΙΚΗΓΟΡΟΙ '202': ΔΙΚΑΙΟ ΤΩΝ ΠΡΟΣΩΠΩΝ '203': ΔΙΟΙΚΗΣΗ ΤΑΧΥΔΡΟΜΙΚΗΣ, ΤΗΛΕΓΡΑΦΙΚΗΣ '204': ΣΧΟΛΙΚΑ ΚΤΙΡΙΑ ΚΑΙ ΤΑΜΕΙΑ '205': ΑΕΡΟΛΙΜΕΝΕΣ '206': ΥΠΟΘΗΚΟΦΥΛΑΚΕΙΑ '207': ΑΣΦΑΛΙΣΤΙΚΑ ΤΑΜΕΙΑ ΠΡΟΣΩΠΙΚΟΥ ΥΠΟΥΡΓΕΙΟΥ ΔΗΜΟΣΙΑΣ ΤΑΞΗΣ '208': ΔΙΑΧΕΙΡΙΣΕΙΣ ΤΟΥ ΔΗΜΟΣΙΟΥ '209': ΕΜΠΡΑΓΜΑΤΟ ΔΙΚΑΙΟ '210': ΦΟΡΤΟΕΚΦΟΡΤΩΣΕΙΣ '211': ΑΝΩΝΥΜΕΣ ΕΤΑΙΡΕΙΕΣ '212': ΕΙΔΙΚΟΙ ΕΠΙΣΙΤΙΣΤΙΚΟΙ ΝΟΜΟΙ '213': ΕΚΚΛΗΣΙΕΣ ΑΛΛΟΔΑΠΗΣ '214': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ '215': ΟΡΓΑΝΙΣΜΟΣ ΑΣΦΑΛΙΣΗΣ ΕΛΕΥΘΕΡΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ '216': ΑΣΦΑΛΕΙΑ ΑΕΡΟΠΛΟΪΑΣ '217': ΤΑΜΕΙΑ ΑΣΦΑΛΙΣΕΩΣ ΚΑΙ ΑΡΩΓΗΣ '218': ΑΝΩΤΑΤΗ ΕΚΠΑΙΔΕΥΣΗ '219': ΠΟΛΕΜΙΚΗ ΔΙΑΘΕΣΙΜΟΤΗΤΑ '220': ΠΟΙΝΙΚΟ ΚΑΙ ΠΕΙΘΑΡΧΙΚΟ ΔΙΚΑΙΟ '221': ΦΟΡΟΛΟΓΙΑ ΕΠΙΤΗΔΕΥΜΑΤΟΣ '222': ΕΚΤΑΚΤΕΣ ΦΟΡΟΛΟΓΙΕΣ '223': ΠΟΙΝΙΚΗ ΔΙΚΟΝΟΜΙΑ '224': ΣΤΟΙΧΕΙΩΔΗΣ ΕΚΠΑΙΔΕΥΣΗ '225': ΣΥΜΒΟΥΛΙΟ ΕΠΙΚΡΑΤΕΙΑΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΑ ΔΙΚΑΣΤΗΡΙΑ '226': ΝΟΜΙΚΑ ΠΡΟΣΩΠΑ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΕΙΣ '227': ΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΝΑΥΤΙΚΟΥ '228': ΤΥΠΟΣ '229': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΕΠΑΓΓΕΛΜΑΤΙΩΝ '230': ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ '231': ΧΡΕΩΓΡΑΦΑ '232': ΠΡΟΪΟΝΤΑ ΕΛΑΙΑΣ '233': ΕΚΚΛΗΣΙΑ ΙΟΝΙΩΝ ΝΗΣΩΝ '234': ΔΙΟΙΚΗΣH ΥΓΙΕΙΝΗΣ '235': ΑΕΡΟΠΟΡΙΚΟ ΠΟΙΝΙΚΟ ΔΙΚΑΙΟ '236': ΚΑΤΑΠΟΛΕΜΗΣΗ ΝΟΣΩΝ ΚΑΤ’ ΙΔΙΑΝ '237': ΕΙΔΙΚΟΙ ΠΟΙΝΙΚΟΙ ΝΟΜΟΙ '238': ΘΗΡΑ '239': ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΕΡΓΑΖΟΜΕΝΩΝ '240': ΔΙΟΙΚΗΣΗ ΣΥΓΚΟΙΝΩΝΙΩΝ '241': ΑΠΟΣΤΟΛΙΚΗ ΔΙΑΚΟΝΙΑ ΕΚΚΛΗΣΙΑΣ ΤΗΣ ΕΛΛΑΔΟΣ '242': ΠΡΟΣΩΡΙΝΕΣ ΑΤΕΛΕΙΕΣ '243': ΤΑΧΥΔΡΟΜΙΚΑ ΤΑΜΙΕΥΤΗΡΙΑ '244': ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΚΑΛΩΝ ΤΕΧΝΩΝ '245': ΔΙΟΙΚΗΣΗ ΕΡΓΑΣΙΑΣ '246': ΑΓΙΟΝ ΟΡΟΣ '247': ΣΧΟΛΕΣ Π. ΝΑΥΤΙΚΟΥ '248': ΤΡΑΠΕΖΕΣ '249': ΕΛΕΓΧΟΣ ΚΙΝΗΣΕΩΣ ΜΕ ΤΟ ΕΞΩΤΕΡΙΚΟ '250': ΕΙΔΙΚΑΙ ΚΑΤΗΓΟΡΙΑΙ ΠΛΟΙΩΝ '251': ΓΕΩΡΓΙΚΗ ΥΓΙΕΙΝΗ '252': ΕΞΟΔΑ ΠΟΙΝΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ '253': ΕΡΓΑΣΙΑ ΓΥΝΑΙΚΩΝ ΚΑΙ ΑΝΗΛΙΚΩΝ '254': ΔΙΟΙΚΗΣΗ ΕΦΟΔΙΑΣΜΟΥ '255': ΕΜΠΟΡΙΚΑ ΕΠΑΓΓΕΛΜΑΤΑ '256': ΕΚΤΕΛΩΝΙΣΤΕΣ '257': ΦΟΡΟΛΟΓΙΑ ΚΛΗΡΟΝΟΜΙΩΝ, ΔΩΡΕΩΝ ΚΛΠ '258': ΟΡΓΑΝΙΣΜΟΙ ΥΠΟΥΡΓΕΙΟΥ ΕΡΓΑΣΙΑΣ '259': ΕΝΙΣΧΥΣΗ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΩΝ '260': ΔΙΑΦΟΡΟΙ ΦΟΡΟΛΟΓΙΚΟΙ ΝΟΜΟΙ '261': ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ '262': ΜΗΤΡΩΑ ΔΗΜΟΤΩΝ '263': ΚΑΤΑΣΤΑΣΗ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '264': ΠΡΟΣΩΠΙΚΟΝ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ '265': ΥΓΕΙΟΝΟΜΙΚΗ ΑΝΤΙΛΗΨΗ '266': ΤΕΛΗ ΧΑΡΤΟΣΗΜΟΥ '267': ΣΤΡΑΤΙΩΤΙΚΟΙ ΓΕΝΙΚΑ '268': ΛΙΜΕΝΙΚΕΣ ΑΡΧΕΣ '269': ΕΛΕΓΧΟΣ ΚΥΚΛΟΦΟΡΙΑΣ '270': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΣ ΚΑΙ ΑΥΤΑΣΦΑΛΙΣΕΩΣ ΥΓΕΙΟΝΟΜΙΚΩΝ '271': ΠΟΛΙΤΙΚΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΡΑΤΕΥΣΗ '272': ΤΗΛΕΓΡΑΦΟΙ '273': ΣΕΙΣΜΟΠΛΗΚΤΟΙ '274': ΙΑΜΑΤΙΚΕΣ ΠΗΓΕΣ '275': ΙΔΙΩΤΙΚΟ ΝΑΥΤΙΚΟ ΔΙΚΑΙΟ '276': ΔΙΕΘΝΕΙΣ ΥΓΕΙΟΝΟΜΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '277': ΝΟΜΙΚΑ ΠΡΟΣΩΠΑ ΔΗΜΟΣΙΟΥ ΔΙΚΑΙΟΥ '278': ΕΚΚΛΗΣΙΑ ΚΡΗΤΗΣ '279': ΠΡΟΣΤΑΣΙΑ ΝΟΜΙΣΜΑΤΟΣ '280': ΠΡΟΣΤΑΣΙΑ ΠΡΟΪΟΝΤΩΝ ΑΜΠΕΛΟΥ '281': ΑΝΑΠΗΡΟΙ ΚΑΙ ΘΥΜΑΤΑ ΠΟΛΕΜΟΥ '282': ΠΑΡΟΧΕΣ ΔΙΑΦΟΡΕΣ '283': ΤΟΠΙΚΗ ΑΥΤΟΔΙΟΙΚΗΣΗ '284': OΡΓΑΝΩΣΗ ΣΤΡΑΤΟΥ ΞΗΡΑΣ '285': ΔΙΑΚΟΠΕΣ ΤΗΣ ΕΡΓΑΣΙΑΣ '286': ΟΡΓΑΝΙΣΜΟΣ ΠΟΛΕΜΙΚΗΣ ΑΕΡΟΠΟΡΙΑΣ '287': ΕΠΙΜΕΛΗΤΗΡΙΑ '288': ΕΚΚΛΗΣΙΑ ΤΗΣ ΕΛΛΑΔΟΣ '289': ΝΑΡΚΩΤΙΚΑ '290': ΕΚΜΕΤΑΛΛΕΥΣΗ ΤΑΧΥΔΡΟΜΕΙΩΝ '291': ΜΟΥΣΙΚΗ '292': ΝΟΜΑΡΧΙΕΣ '293': ΠΡΟΣΩΠΙΚΟ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '294': ΓΕΝΙΚΟ ΧΗΜΕΙΟ ΤΟΥ ΚΡΑΤΟΥΣ '295': ΚΡΑΤΙΚΗ '296': ΔΙΟΙΚΗΣΗ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '297': ΠΑΡΟΧΟΙ ΣΤΑΘΕΡΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ '298': ΕΠΑΓΓΕΛΜΑΤΙΚΟΣ ΚΙΝΔΥΝΟΣ '299': ΕΝΟΧΕΣ ΣΕ ΧΡΥΣΟ ΚΑΙ ΣΥΝΑΛΛΑΓΜΑ '300': ΙΠΠΟΠΑΡΑΓΩΓΗ '301': ΑΥΤΟΚΙΝΗΤΑ '302': ΑΓΟΡΑΝΟΜΙΚΕΣ ΔΙΑΤΑΞΕΙΣ '303': ΠΡΟΣΦΥΓΕΣ '304': ΔΙΑΦΟΡΑ ΣΤΡΑΤΙΩΤΙΚΑ ΘΕΜΑΤΑ '305': ΓΕΝ. ΓΡΑΜΜ. ΒΙΟΜΗΧΑΝΙΑΣ - ΓΕΝ. ΓΡΑΜΜ. ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ '306': ΔΙΑΜΕΤΑΚΟΜΙΣΗ '307': ΔΙΚΑΙΟΣΤΑΣΙΟ '308': ΥΔΑΤΑ '309': ΦΟΡΟΛΟΓΙΚΕΣ ΔΙΕΥΚΟΛΥΝΣΕΙΣ ΚΑΙ ΑΠΑΛΛΑΓΕΣ '310': ΜΟΝΟΠΩΛΙΑ '311': ΕΙΔΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ '312': ΠΡΟΝΟΙΑ ΓΙΑ ΤΟΥΣ ΣΤΡΑΤΙΩΤΙΚΟΥΣ '313': ΠΟΛΙΤΙΚΗ ΔΙΚΟΝΟΜΙΑ '314': ΟΡΓΑΝΩΣΗ ΧΡΟΝΟΥ ΕΡΓΑΣΙΑΣ '315': ΠΡΟΣΩΠΙΚΟ ΤΥΠΟΥ '316': ΔΙΚΑΣΤΙΚΟΙ ΕΠΙΜΕΛΗΤΕΣ '317': ΛΟΥΤΡΟΠΟΛΕΙΣ '318': ΤΕΛΩΝΕΙΑΚΟΣ ΚΩΔΙΚΑΣ '319': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΝΟΜΙΚΩΝ '320': ΔΙΑΦΟΡΟΙ ΤΕΛΩΝΕΙΑΚΟΙ ΝΟΜΟΙ '321': ΔΙΟΙΚΗΣΗ ΠΟΛΙΤΙΚΗΣ ΑΕΡΟΠΟΡΙΑΣ '322': ΑΕΡΟΠΟΡΙΚΕΣ ΕΚΜΕΤΑΛΛΕΥΣΕΙΣ '323': ΕΜΠΟΡΙΚΕΣ ΠΡΑΞΕΙΣ '324': ΔΙΚΑΣΤΗΡΙΑ '325': ΒΑΣΙΛΕΙΑ ΚΑΙ ΑΝΤΙΒΑΣΙΛΕΙΑ '326': ΠΡΟΣΩΠΙΚΟ ΠΟΛΕΜΙΚΗΣ ΑΕΡΟΠΟΡΙΑΣ '327': ΠΡΟΣΤΑΣΙΑ ΚΑΙ ΚΙΝΗΤΡΑ ΙΔΙΩΤΙΚΩΝ ΕΠΕΝΔΥΣΕΩΝ '328': ΒΑΣΙΛΙΚΑ ΙΔΡΥΜΑΤΑ '329': ΣΙΔΗΡΟΔΡΟΜΟΙ ΓΕΝΙΚΑ '330': ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ '331': ΔΙΑΦΟΡΑ ΑΣΦΑΛΙΣΤΙΚΑ ΤΑΜΕΙΑ '332': ΥΓΕΙΟΝΟΜΙΚΑ ΕΠΑΓΓΕΛΜΑΤΑ '333': ΦΟΡΟΛΟΓΙΑ ΚΑΠΝΟΥ '334': ΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ '335': ΧΩΡΟΦΥΛΑΚΗ '336': ΤΕΛΩΝΕΙΑΚΗ ΥΠΗΡΕΣΙΑ '337': ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ '338': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΑΣΦΑΛΙΣΤΩΝ '339': ΑΣΦΑΛΙΣΤΙΚΟΙ ΟΡΓΑΝΙΣΜΟΙ '340': ΣΤΡΑΤΙΩΤΙΚΑ ΕΡΓΑ ΚΑΙ ΠΡΟΜΗΘΕΙΕΣ '341': ΥΠΟΝΟΜΟΙ '342': ΦΟΡΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟΥ '343': ΕΤΑΙΡΕΙΕΣ ΠΕΡΙΩΡΙΣΜΕΝΗΣ ΕΥΘΥΝΗΣ '344': ΥΠΟΥΡΓΕΊΟ ΚΟΙΝΩΝΙΚΏΝ ΑΣΦΑΛΊΣΕΩΝ '345': ΣΥΜΒΟΛΑΙΟΓΡΑΦΟΙ '346': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΑΡΤΕΡΓΑΤΩΝ '347': ΕΡΓΑ ΚΑΙ ΠΡΟΜΗΘΕΙΕΣ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ '348': ΕΛΕΓΚΤΙΚΟ ΣΥΝΕΔΡΙΟ '349': ΔΙΑΦΟΡΑ ΕΠΙΣΤΗΜΟΝΙΚΑ ΙΔΡΥΜΑΤΑ '350': ΑΞΙΩΜΑΤΙΚΟΙ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ '351': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΕΜΠΟΡΩΝ (Τ.Α.Ε) '352': ΣΤΡΑΤΙΩΤΙΚΗ ΠΟΙΝΙΚΗ '353': ΦΟΡΟΛΟΓΙΑ ΟΙΝΟΠΝΕΥΜΑΤΟΣ '354': ΟΡΓΑΝΙΣΜΟΣ ΓΕΩΡΓΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ '355': ΣΥΛΛΟΓΙΚΕΣ ΣΥΜΒΑΣΕΙΣ ΕΡΓΑΣΙΑΣ '356': ΧΡΗΜΑΤΙΣΤΗΡΙΑ '357': ΠΟΛΙΤΙΚΑΙ ΚΑΙ ΣΤΡΑΤΙΩΤΙΚΑΙ ΣΥΝΤΑΞΕΙΣ '358': ΚΟΙΝΩΝΙΚΗ ΣΤΕΓΑΣΤΙΚΗ ΣΥΝΔΡΟΜΗ '359': ΚΑΤΟΧΥΡΩΣΗ ΕΠΑΓΓΕΛΜΑΤΩΝ '360': ΦΟΡΟΛΟΓΙΑ ΚΑΘΑΡΑΣ ΠΡΟΣΟΔΟΥ '361': ΠΕΡΙΦΕΡΕΙΕΣ '362': ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΔΙΚΑΙΟΣΥΝΗ '363': ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ '364': ΕΘΝΙΚΑ ΚΛΗΡΟΔΟΤΗΜΑΤΑ '365': ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ ΕΡΓΑ '366': ΛΙΜΕΝΕΣ '367': ΦΥΛΑΚΕΣ '368': ΓΕΩΡΓΙΚΗ ΕΚΠΑΙΔΕΥΣΗ '369': ΠΛΗΡΩΜΗ ΕΡΓΑΣΙΑΣ '370': ΕΜΠΟΡΙΚΟΣ ΝΟΜΟΣ '371': ΙΔΡΥΜΑ ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ '372': ΑΣΦΑΛΙΣΤΙΚΑ ΤΑΜΕΙΑ ΤΡΑΠΕΖΩΝ '373': ΕΙΔΙΚΟΙ ΑΓΡΟΤΙΚΟΙ ΝΟΜΟΙ '374': ΔΙΕΘΝΕΙΣ ΔΙΚΟΝΟΜΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '375': ΥΠΟΥΡΓΕΙΑ ΜΑΚΕΔΟΝΙΑΣ–ΘΡΑΚΗΣ, ΑΙΓΑΙΟΥ Κ.Λ.Π '376': ΑΣΤΥΝΟΜΙΚΟΊ ΣΚΎΛΟΙ '377': ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ '378': ΕΚΔΟΣΗ ΕΓΚΛΗΜΑΤΙΩΝ '379': ΑΓΟΡΑΝΟΜΙΑ '380': ΔΙΚΑΣΤΙΚΟ ΤΟΥ ΔΗΜΟΣΙΟΥ '381': ΑΣΤΙΚΟΣ ΚΩΔΙΚΑΣ '382': ΤΕΛΩΝΕΙΑΚΕΣ ΑΤΕΛΕΙΕΣ '383': ΑΓΡΟΤΙΚΕΣ ΜΙΣΘΩΣΕΙΣ '384': ΛΕΩΦΟΡΕΙΑ '385': ΓΕΝΙΚΟΙ ΕΠΙΣΙΤΙΣΤΙΚΟΙ ΝΟΜΟΙ '386': ΑΣΤΥΝΟΜΙΑ ΠΟΛΕΩΝ '387': ΜΗΧΑΝΙΚΟΙ ΚΑΙ ΕΡΓΟΛΑΒΟΙ '388': ΠΟΛΕΜΙΚΕΣ ΣΥΝΤΑΞΕΙΣ splits: - name: train num_bytes: 216757887 num_examples: 28536 - name: test num_bytes: 71533786 num_examples: 9516 - name: validation num_bytes: 68824457 num_examples: 9511 download_size: 145510070 dataset_size: 357116130 - config_name: subject features: - name: text dtype: string - name: label dtype: class_label: names: '0': ΜΕΤΟΧΙΚΟ ΤΑΜΕΙΟ Π.Ν '1': ΜΕΤΑΝΑΣΤΕΥΣΗ ΣΤΟ ΒΕΛΓΙΟ '2': ΝΑΥΤΙΚΕΣ ΦΥΛΑΚΕΣ '3': ΚΑΝΟΝΙΣΜΟΣ ΕΚΤΕΛΕΣΕΩΣ ΣΤΡΑΤΙΩΤΙΚΩΝ ΕΡΓΩΝ '4': ΔΙΟΙΚΗΤΙΚΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΥΠΗΡΕΣΙΑ '5': ΑΣΚΗΣΗ ΠΟΙΝΙΚΗΣ ΑΓΩΓΗΣ '6': ΚΑΝΟΝΙΣΜΟΣ ΕΣΩΤΕΡΙΚΗΣ ΥΠΗΡΕΣΙΑΣ ΕΠΙΒΑΤΗΓΩΝ ΠΛΟΙΩΝ '7': ΚΩΔΙΚΑΣ ΠΟΛΙΤΙΚΗΣ ΔΙΚΟΝΟΜΙΑΣ - ΠΑΛΑΙΟΣ '8': ΚΑΤΑΣΤΑΤΙΚΟ ΤΑΜΕΙΟΥ ΑΣΦΑΛΙΣΕΩΣ ΕΜΠΟΡΩΝ (Τ.Α.Ε) '9': ΜΗΧΑΝΟΛΟΓΟΙ, ΗΛΕΚΤΡΟΛΟΓΟΙ, ΝΑΥΠΗΓΟΙ ΚΑΙ ΜΗΧΑΝΟΔΗΓΟΙ '10': ΣΤΕΓΑΣΗ ΠΑΡΑΠΗΓΜΑΤΟΥΧΩΝ '11': ΝΟΜΙΣΜΑΤΙΚΗ ΕΠΙΤΡΟΠΗ '12': ΠΕΡΙΦΕΡΕΙΑΚΑ ΤΑΜΕΙΑ '13': ΜΗΤΡΩΑ ΑΡΡΕΝΩΝ '14': ΔΙΚΑΣΤΙΚΕΣ ΔΙΑΚΟΠΕΣ '15': ΣΥΜΦΩΝΙΑ ΠΕΡΙ ΠΡΟΞΕΝΙΚΩΝ ΣΧΕΣΕΩΝ '16': ΠΑΛΑΙΟΙ ΑΣΤΙΚΟΙ ΚΩΔΙΚΕΣ '17': ΚΛΑΔΟΣ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΔΙΚΗΓΟΡΩΝ (Κ.Ε.Α.Δ.) '18': ΟΙΚΟΝΟΜΙΚΕΣ ΑΡΜΟΔΙΟΤΗΤΕΣ ΣΤΡΑΤΙΩΤΙΚΩΝ ΑΡΧΩΝ '19': ΥΠΟΝΟΜΟΙ ΘΕΣΣΑΛΟΝΙΚΗΣ '20': ΔΙΑΦΟΡΑ ΥΔΡΑΥΛΙΚΑ ΤΑΜΕΙΑ '21': ΕΛΕΓΧΟΣ ΘΕΑΤΡΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΔΙΣΚΩΝ '22': ΥΠΗΡΕΣΙΑ ΙΠΠΟΠΑΡΑΓΩΓΗΣ '23': ΣΩΜΑΤΙΚΗ ΑΓΩΓΗ '24': ΕΚΔΙΚΑΣΗ ΤΕΛΩΝΕΙΑΚΩΝ ΠΑΡΑΒΑΣΕΩΝ '25': ΚΙΝΗΤΡΑ ΙΔΙΩΤΙΚΩΝ ΕΠΕΝΔΥΣΕΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ '26': ΜΕΛΗ ΟΙΚΟΓΕΝΕΙΑΣ ΑΣΦΑΛΙΣΜΕΝΩΝ '27': ΚΕΡΜΑΤΑ '28': ΕΠΙΔΟΜΑ ΑΝΑΠΡΟΣΑΡΜΟΓΗΣ '29': ΕΚΤΕΛΕΣΗ ΔΑΣΙΚΩΝ ΕΡΓΩΝ '30': ΛΙΠΑΣΜΑΤΑ '31': ΕΠΙΧΟΡΗΓΗΣΗ ΣΠΟΥΔΑΣΤΩΝ ΤΕΚΝΩΝ ΕΡΓΑΖΟΜΕΝΩΝ '32': ΠΡΟΣΤΑΣΙΑ ΟΙΝΟΥ '33': ΠΤΗΤΙΚΟ ΚΑΙ ΚΑΤΑΔΥΤΙΚΟ ΕΠΙΔΟΜΑ '34': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΥΠΑΛΛΗΛΩΝ ΕΜΠΟΡΙΚΩΝ ΚΑΤΑΣΤΗΜΑΤΩΝ (Τ.Ε.Α.Υ.Ε.Κ.) '35': ΕΚΚΟΚΚΙΣΗ ΒΑΜΒΑΚΟΣ '36': ΜΟΝΟΠΩΛΙΟ ΚΙΝΙΝΟΥ '37': ΙΝΣΤΙΤΟΥΤΑ ΔΙΕΘΝΟΥΣ ΔΙΚΑΙΟΥ '38': ΙΑΠΩΝΙΑ – ΙΝΔΙΑ –ΙΟΡΔΑΝΙΑ Κ.ΛΠ '39': ΕΠΙΔΟΜΑ ΣΤΟΛΗΣ '40': ΑΝΑΓΝΩΡΙΣΕΙΣ '41': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΕΡΓΟΛΗΠΤΩΝ '42': ΑΝΑΣΤΟΛΗ ΤΗΣ ΠΟΙΝΗΣ '43': ΠΟΤΑΜΟΠΛΟΙΑ '44': ΕΙΔΙΚΗ ΤΕΛΩΝΕΙΑΚΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗ '45': ΕΠΙΘΕΩΡΗΣΗ ΦΑΡΜΑΚΕΙΩΝ '46': ΣΥΝΤΑΞΕΙΣ ΘΥΜΑΤΩΝ ΕΘΝΙΚΩΝ '47': ΑΠΛΟΠΟΙΗΣΗ ΤΕΛΩΝΕΙΑΚΩΝ ΔΙΑΤΥΠΩΣΕΩΝ '48': ΚΛΑΔΟΣ ΑΣΘΕΝΕΙΑΣ Τ.Α.Κ.Ε '49': ΥΠΗΡΕΣΙΑ ΥΠΟΔΟΧΗΣ ΠΛΟΙΩΝ ΚΑΙ ΠΟΛΕΜΙΚΗ ΧΡΗΣΗ ΛΙΜΕΝΩΝ '50': ΦΑΡΜΑΚΕΙΟ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '51': ΤΑΜΕΙΟ ΑΠΟΚΑΤΑΣΤΑΣΕΩΣ ΠΡΟΣΦΥΓΩΝ ΣΥΜΒΟΥΛΙΟΥ ΤΗΣ ΕΥΡΩΠΗΣ '52': ΝΑΥΤΙΚΕΣ ΕΤΑΙΡΕΙΕΣ '53': ΙΣΡΑΗΛΙΤΙΚΕΣ ΚΟΙΝΟΤΗΤΕΣ '54': ΣΕΙΣΜΟΠΛΗΚΤΟΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ (ΑΤΤΙΚΗΣ, ΒΟΙΩΤΙΑΣ Κ.Λ.Π.) '55': ΔΙΑΦΟΡΕΣ ΣΧΟΛΕΣ Π.Ν '56': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΕΜΠΟΡ.ΚΑΙ ΒΙΟΜ.- ΕΠΑΓΓΕΛ. ΚΑΙ ΒΙΟΤΕΧΝ. ΕΠΙΜΕΛΗΤΗΡΙΩΝ ΤΟΥ ΚΡΑΤΟΥΣ '57': ΕΘΝΙΚΗ ΚΤΗΜΑΤΙΚΗ ΤΡΑΠΕΖΑ '58': ΝΑΥΤΙΚΟΙ ΑΚΟΛΟΥΘΟΙ '59': ΔΗΜΟΣΙΕΣ ΝΑΥΤΙΚΕΣ ΣΧΟΛΕΣ '60': ΜΙΚΡΟΦΩΤΟΓΡΑΦΙΕΣ '61': ΚΑΤΑΣΤΑΤΙΚΟΙ ΝΟΜΟΙ-Τ.Σ.Α.Υ '62': ΚΑΤΑΣΤΑΣΗ ΑΞΙΩΜΑΤΙΚΩΝ Π.Ν '63': ΕΛΛΗΝΙΚΑ ΣΧΟΛΕΙΑ ΑΛΛΟΔΑΠΗΣ '64': ΟΡΓΑΝΙΣΜΟΣ ΟΙΚΟΝΟΜΙΚΗΣ '65': ΕΘΝΙΚΗ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ '66': ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ Ν.Π.Δ.Δ '67': ΠΡΟΣΩΠΙΚΟ ΜΕ ΣΧΕΣΗ ΙΔΙΩΤΙΚΟΥ ΔΙΚΑΙΟΥ '68': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΕΤΑΙΡΕΙΑΣ ΥΔΡΕΥΣΗΣ ΚΑΙ ΑΠΟΧΕΤΕΥΣΗΣ ΠΡΩΤΕΥΟΥΣΗΣ (Τ.Ε.Α.Π.Ε.Υ.Α.Π.) '69': ΣΩΜΑ ΟΙΚΟΝΟΜΙΚΟΥ ΕΛΕΓΧΟΥ '70': ΣΥΜΒΑΣΗ ΠΕΡΙ ΔΙΕΚΔΙΚΗΣΕΩΣ ΔΙΑΤΡΟΦΗΣ '71': ΙΣΟΤΗΤΑ ΤΩΝ ΔΥΟ ΦΥΛΩΝ '72': ΤΑΜΕΙΟ ΑΡΩΓΗΣ ΚΑΙ ΕΠΙΚΟΥΡΙΚΟ ΤΑΜΕΙΟ '73': ΤΟΥΡΙΣΤΙΚΟ ΔΕΛΤΙΟ '74': ΔΙΑΦΟΡΟΙ ΝΟΜΟΙ '75': ΟΡΓΑΝΙΣΜΟΣ ΛΙΜΕΝΟΣ ΠΕΙΡΑΙΩΣ ΑΝΩΝΥΜΗ ΕΤΑΙΡΙΑ '76': ΕΚΚΑΘΑΡΙΣΙΣ ΔΙΟΡΙΣΜΩΝ ΚΑΙ ΠΡΟΑΓΩΓΩΝ ΚΑΤΟΧΗΣ '77': ΤΑΞΙΝΟΜΗΣΗ ΒΑΜΒΑΚΟΣ '78': ΠΡΥΤΑΝΕΙΣ ΚΑΙ ΚΟΣΜΗΤΟΡΕΣ '79': ΥΠΗΡΕΣΙΑΚΟ ΣΥΜΒΟΥΛΙΟ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ '80': ΩΡΕΣ ΕΡΓΑΣΙΑΣ ΣΤΗΝ ΒΙΟΜΗΧΑΝΙΑ ΚΑΙ ΒΙΟΤΕΧΝΙΑ '81': ΧΑΡΤΗΣ ΟΡΓΑΝΙΣΜΟΥ ΟΙΚΟΝΟΜΙΚΗΣ ΣΥΝΕΡΓΑΣΙΑΣ '82': ΓΥΜΝΑΣΙΟ ΑΠΟΔΗΜΩΝ ΕΛΛΗΝΟΠΑΙΔΩΝ '83': ΚΑΝΟΝΙΣΜΟΣ ΑΣΘΕΝΕΙΑΣ '84': ΕΚΔΟΣΕΙΣ ΥΠΟΥΡΓΕΙΟΥ ΕΜΠΟΡΙΚΗΣ ΝΑΥΤΙΛΙΑΣ '85': ΠΛΗΤΤΟΜΕΝΟΙ ΑΠΟ ΘΕΟΜΗΝΙΕΣ ΚΑΙ ΑΛΛΑ ΕΚΤΑΚΤΑ ΓΕΓΟΝΟΤΑ '86': ΩΡΕΣ ΕΡΓΑΣΙΑΣ ΠΡΟΣΩΠΙΚΟΥ '87': ΓΕΩΜΗΛΑ '88': ΦΟΡΟΛΟΓΙΑ ΑΝΑΤΙΜΗΣΗΣ ΑΚΙΝΗΤΩΝ '89': ΠΑΝΩΛΗΣ '90': ΣΧΟΛΕΣ ΝΗΠΙΑΓΩΓΩΝ '91': ΦΑΡΜΑΚΑΠΟΘΗΚΕΣ '92': ΦΡΟΝΤΙΣΤΗΡΙΑ ΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ '93': ΟΙΚΟΓΕΝΕΙΑΚΑ ΕΠΙΔΟΜΑΤΑ ΜΙΣΘΩΤΩΝ '94': ΗΛΕΚΤΡΟΚΙΝΗΤΑ ΛΕΩΦΟΡΕΙΑ ΑΘΗΝΩΝ – ΠΕΙΡΑΙΩΣ (Η.Λ.Π.Α.Π.) '95': ΑΣΤΙΚΑ ΔΙΚΑΙΩΜΑΤΑ ΑΛΛΟΔΑΠΩΝ '96': ΠΟΛΙΤΙΚΟ ΠΡΟΣΩΠΙΚΟ ΑΕΡΟΠΟΡΙΑΣ '97': ΔΙΚΑΣΤΙΚΗ ΕΚΠΡΟΣΩΠΗΣΗ Ι.Κ.Α '98': ΥΓΕΙΟΝΟΜΙΚΗ ΥΠΗΡΕΣΙΑ Π.Σ '99': ΥΓΕΙΟΝΟΜΙΚΟΙ ΣΤΑΘΜΟΙ '100': ΙΕΡΑΡΧΙΑ ΚΑΙ ΠΡΟΑΓΩΓΕΣ ΜΟΝΙΜΩΝ ΥΠΑΞΙΩΜΑΤΙΚΩΝ ΚΑΙ ΑΝΘΥΠΑΣΠΙΣΤΩΝ '101': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΕΡΓΑΤΟΤΕΧΝΙΤΩΝ ΚΑΙ ΥΠΑΛΛΗΛΩΝ ΔΕΡΜΑΤΟΣ ΕΛΛΑΔΑΣ (Τ.Ε.Α.Ε.Υ.Δ.Ε.) '102': ΠΡΑΤΗΡΙΑ ΑΡΤΟΥ '103': ΠΛΗΡΩΜΗ ΜΕ ΕΠΙΤΑΓΗ '104': ΤΕΧΝΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΕΛΙΚΟΠΤΕΡΩΝ '105': ΔΙΕΘΝΕΙΣ ΤΑΧΥΔΡΟΜΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '106': ΔΙΚΑΣΤΙΚΟΙ ΑΝΤΙΠΡΟΣΩΠΟΙ ΤΟΥ ΔΗΜΟΣΙΟΥ '107': ΩΡΕΣ ΕΡΓΑΣΙΑΣ ΣΕ ΔΙΑΦΟΡΑ ΕΠΑΓΓΕΛΜΑΤΑ '108': ΔΙΕΥΘΥΝΣΗ ΚΤΗΝΟΤΡΟΦΙΑΣ '109': ΕΠΙΘΕΩΡΗΣΗ ΣΦΑΓΙΩΝ '110': ΠΛΩΙΜΟΤΗΤΑ ΑΕΡΟΣΚΑΦΩΝ '111': ΑΓΟΡΑΝΟΜΙΚΟΣ ΚΩΔΙΚΑΣ '112': ΔΙΕΘΝΕΙΣ ΜΕΤΑΦΟΡΕΣ ΕΠΙΒΑΤΩΝ ΚΑΙ ΕΜΠΟΡΕΥΜΑΤΩΝ '113': ΠΡΟΜΗΘΕΙΕΣ '114': ΔΙΑΦΟΡΕΣ ΔΙΑΤΑΞΕΙΣ '115': ΔΙΑΙΤΗΣΙΑ ΣΥΛΛΟΓΙΚΩΝ ΔΙΑΦΟΡΩΝ - ΜΕΣΟΛΑΒΗΤΕΣ ΔΙΑΙΤΗΤΕΣ '116': ΣΟΥΛΤΑΝΙΝΑ '117': ΜΕΤΑΓΡΑΦΗ '118': ΕΙΣΑΓΩΓΗ ΕΠΙΣΤΗΜΟΝΙΚΟΥ ΥΛΙΚΟΥ '119': ΔΙΑΡΘΡΩΣΗ ΥΠΗΡΕΣΙΩΝ Ο.Γ.Α '120': ΔΙΚΑΣΤΙΚΟΙ ΛΕΙΤΟΥΡΓΟΙ - ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΙΚΑΣΤΩΝ '121': ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΚΑΙ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ '122': ΑΣΚΗΣΗ ΙΑΤΡΙΚΟΥ ΕΠΑΓΓΕΛΜΑΤΟΣ '123': ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '124': ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΑΝΜΙΟΥ ΠΑΤΡΩΝ '125': ΑΛΛΟΔΑΠΕΣ ΝΑΥΤΙΛΙΑΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ '126': ΛΑΤΟΜΕΙΑ '127': ΕΚΜΕΤΑΛΛΕΥΣΗ ΙΑΜΑΤΙΚΩΝ ΠΗΓΩΝ '128': ΠΩΛΗΣΗ ΧΡΕΩΓΡΑΦΩΝ ΜΕ ΔΟΣΕΙΣ '129': ΝΟΜΟΘΕΣΙΑ ΠΕΡΙ ΤΡΑΠΕΖΩΝ (ΓΕΝΙΚΑ) '130': ΕΙΔΙΚΑ ΜΕΤΑΛΛΕΙΑ '131': YΠΟΥΡΓΕΙΟ ΥΓΙΕΙΝΗΣ '132': ΛΗΞΙΑΡΧΙΚΕΣ ΠΡΑΞΕΙΣ '133': ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΓΙΑ ΤΟΝ ΤΥΠΟ '134': ΕΘΝΙΚΟ ΣΥΣΤΗΜΑ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ-ΚΑΤΑΡΤΙΣΗΣ '135': ΑΡΟΥΡΑΙΟΙ ΚΑΙ ΑΚΡΙΔΕΣ '136': ΠΡΟΣΤΑΣΙΑ ΦΥΜΑΤΙΚΩΝ ΝΑΥΤΙΚΩΝ '137': ΑΠΟΡΡΗΤΟ ΕΠΙΣΤΟΛΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ '138': ΠΟΡΘΜΕΙΑ ΚΑΙ ΟΧΗΜΑΤΑΓΩΓΑ '139': ΜΕΤΡΑ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΕΝΕΡΓΕΙΑΣ '140': ΣΤΟΙΧΕΙΑ ΠΡΟΣΩΠΙΚΟΥ ΔΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ Ν.Π.Δ.Δ '141': ΠΑΓΙΕΣ ΑΜΟΙΒΕΣ ΔΙΚΗΓΟΡΩΝ '142': ΟΡΓΑΝΙΣΜΟΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ '143': ΟΙΚΟΝΟΜΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΤΗΣ ΕΛΛΑΔΑΣ '144': ΓΡΑΦΕΙΑ ΕΥΡΕΣΕΩΣ ΕΡΓΑΣΙΑΣ '145': ΔΙΑΦΗΜΙΣΕΙΣ '146': ΔΙΑΦΟΡΕΣ ΥΠΟΤΡΟΦΙΕΣ '147': ΦΟΡΤΗΓΑ ΑΚΤΟΠΛΟΙΚΑ ΠΛΟΙΑ (ΜS) ΜΕΧΡΙ 500 Κ.Ο.Χ '148': ΕΠΙΤΡΟΠΗ ΣΥΝΕΡΓΑΣΙΑΣ UNICEF '149': ΥΓΙΕΙΝΗ ΘΕΡΕΤΡΩΝ '150': ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ '151': ΑΠΑΓΟΡΕΥΣΕΙΣ ΕΞΑΓΩΓΗΣ '152': ΑΜΠΕΛΟΥΡΓΙΚΟ ΚΤΗΜΑΤΟΛΟΓΙΟ '153': ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ '154': ΔΙΕΘΝΗΣ ΝΑΥΤΙΛΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ '155': ΔΙΕΥΘΥΝΣΗ ΤΕΛΩΝΕΙΑΚΟΥ ΕΛΕΓΧΟΥ '156': ΔΕΛΤΙΑ ΤΑΥΤΟΤΗΤΟΣ Π. ΝΑΥΤΙΚΟΥ '157': ΑΝΩΤΑΤΗ ΥΓΕΙΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ '158': ΠΡΟΣΤΑΣΙΑ ΕΦΕΔΡΩΝ ΑΞΙΩΜΑΤΙΚΩΝ, ΑΝΑΠΗΡΩΝ ΠΟΛΕΜΟΥ ΚΑΙ ΑΓΩΝΙΣΤΩΝ ΕΘΝ. ΑΝΤΙΣΤΑΣΗΣ '159': ΦΟΡΟΙ ΥΠΕΡ ΤΡΙΤΩΝ '160': ΑΓΡΟΛΗΨΙΕΣ ΙΟΝΙΩΝ ΝΗΣΙΩΝ '161': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΥΠΑΛΛΗΛΩΝ ΕΜΠΟΡΙΟΥ ΤΡΟΦΙΜΩΝ (Τ.Ε.Α.Υ.Ε.Τ) '162': ΑΝΩΤΑΤΟ ΕΙΔΙΚΟ ΔΙΚΑΣΤΗΡΙΟ '163': ΕΙΣΑΓΩΓΗ ΓΥΝΑΙΚΩΝ ΣΤΙΣ ΑΝΩΤΑΤΕΣ ΣΤΡΑΤΙΩΤΙΚΕΣ ΣΧΟΛΕΣ '164': ΣΧΟΛΗ ΑΞΙΩΜΑΤΙΚΩΝ ΝΟΣΗΛΕΥΤΙΚΗΣ (Σ.Α.Ν.) '165': ΔΙΑΔΙΚΑΣΙΑ ΔΙΟΙΚΗΤΙΚΩΝ ΔΙΚΑΣΤΗΡΙΩΝ '166': ΠΡΟΣΤΑΣΙΑ ΕΡΓΑΖΟΜΕΝΟΥ ΠΑΙΔΙΟΥ '167': ΑΜΝΗΣΤΙΑ '168': ΣΧΟΛΕΣ ΚΑΛΛΙΤΕΧΝΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ '169': ΧΑΡΗ ΚΑΙ ΜΕΤΡΙΑΣΜΟΣ '170': ΤΥΦΛΟΙ '171': ΣΥΜΒΟΥΛΙΟ ΤΗΣ ΕΥΡΩΠΗΣ '172': ΕΡΓΟΣΤΑΣΙΑ ΕΚΡΗΚΤΙΚΩΝ ΥΛΩΝ '173': ΜΗΤΡΩΑ Π. ΝΑΥΤΙΚΟΥ '174': ΥΓΡΗ ΑΜΜΩΝΙΑ '175': ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ '176': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΑΞΙΩΜΑΤΙΚΩΝ Ε.Ν '177': ΕΠΑΓΓΕΛΜΑΤΙΚΟΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΚΑΙ ΚΑΤΑΡΤΙΣΗ '178': ΤΕΛΩΝΕΙΑΚΗ ΕΠΙΒΛΕΨΗ '179': ΠΡΟΣΩΡΙΝΕΣ ΕΥΡΩΠΑΙΚΕΣ ΣΥΜΦΩΝΙΕΣ '180': ΜΟΝΟΠΩΛΙΟ ΠΑΙΓΝΙΟΧΑΡΤΩΝ '181': ΛΕΙΤΟΥΡΓΙΑ ΤΟΥΡΙΣΤΙΚΗΣ ΑΣΤΥΝΟΜΙΑΣ '182': ΕΚΠΟΙΗΣΗ ΕΚΚΛΗΣΙΑΣΤΙΚΩΝ ΚΙΝΗΤΩΝ ΚΑΙ ΑΚΙΝΗΤΩΝ '183': ΣΥΛΛΟΓΙΚΕΣ ΣΥΜΒΑΣΕΙΣ (ΓΕΝΙΚΑ) '184': ΟΔΟΙΠΟΡΙΚΑ ΚΑΙ ΑΠΟΖΗΜΙΩΣΕΙΣ ΕΚΤΟΣ ΕΔΡΑΣ '185': ΣΤΕΓΑΣΤΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΠΡΟΣΦΥΓΩΝ '186': ΑΝΩΤΑΤΑ ΣΥΜΒΟΥΛΙΑ ΕΚΠΑΙΔΕΥΣΕΩΣ '187': ΑΡΧΕΙΑ ΥΠΟΥΡΓΕΙΟΥ ΟΙΚΟΝΟΜΙΚΩΝ '188': ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΥΠΟΥΡΓΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ '189': ΠΕΡΙΠΤΕΡΑ ΑΝΑΠΗΡΩΝ ΠΟΛΕΜΟΥ '190': ΕΠΑΓΓΕΛΜΑΤΙΚΕΣ ΟΡΓΑΝΩΣΕΙΣ ΕΜΠΟΡΩΝ, ΒΙΟΤΕΧΝΩΝ ΚΑΙ ΛΟΙΠΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ '191': ΙΔΙΩΤΙΚΟΙ ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ '192': ΘΕΑΤΡΙΚΑ ΕΡΓΑ '193': ΜΕ ΤΗ ΝΕΑ ΖΗΛΑΝΔΙΑ '194': ΦΟΡΟΣ ΚΑΤΑΝΑΛΩΣΕΩΣ ΣΑΚΧΑΡΕΩΣ '195': ΝΟΜΑΡΧΙΑΚΑ ΤΑΜΕΙΑ '196': ΑΓΩΓΕΣ ΚΑΚΟΔΙΚΙΑΣ '197': ΚΩΔΙΚΑΣ ΦΟΡΟΛΟΓΙΚΗΣ ΔΙΚΟΝΟΜΙΑΣ '198': ΑΤΟΜΑ ΒΑΡΙΑ ΝΟΗΤΙΚΑ ΚΑΘΥΣΤΕΡΗΜΕΝΑ '199': ΜΕ ΤΗ ΣΟΥΗΔΙΑ '200': ΑΕΡΟΝΑΥΤΙΚΗ ΜΕΤΕΩΡΟΛΟΓΙΑ '201': ΙΔΙΩΤΙΚΕΣ ΣΧΟΛΕΣ ΓΥΜΝΑΣΤΙΚΗΣ '202': ΠΕΡΙΟΥΣΙΑ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ '203': ΑΓΟΡΑΠΩΛΗΣΙΕΣ ΚΑΤΟΧΗΣ '204': ΕΚΚΛΗΣΙΑ ΠΑΡΙΣΙΩΝ '205': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΠΡΟΣΤΑΣΙΑΣ ΦΥΤΩΝ '206': ΚΑΤΟΧΥΡΩΣΗ ΘΡΗΣΚΕΥΤΙΚΗΣ ΕΛΕΥΘΕΡΙΑΣ '207': ΥΓΕΙΟΝΟΜΙΚΗ ΕΞΕΤΑΣΗ ΜΗ ΙΠΤΑΜΕΝΟΥ ΠΡΟΣΩΠΙΚΟΥ '208': ΣΥΝΤΑΞΕΙΣ ΘΥΜΑΤΩΝ ΠΟΛΕΜΟΥ 1940 '209': ΥΔΡΑΥΛΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ '210': ΚΟΙΝΩΝΙΚΟΙ ΛΕΙΤΟΥΡΓΟΙ - ΚΟΙΝΩΝΙΚΟΙ ΣΥΜΒΟΥΛΟΙ '211': ΔΙΑΦΟΡΕΣ ΠΡΟΣΩΡΙΝΕΣ ΑΤΕΛΕΙΕΣ '212': ΟΙΚΟΝΟΜΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΛΟΓΙΣΤΙΚΟ '213': ΕΞΗΛΕΚΤΡΙΣΜΟΣ ΝΗΣΩΝ '214': ΕΚΠΑΙΔΕΥΣΗ ΣΤΕΛΕΧΩΝ '215': ΩΡΕΣ ΕΡΓΑΣΙΑΣ ΚΑΤΑΣΤΗΜΑΤΩΝ ΚΑΙ ΓΡΑΦΕΙΩΝ '216': ΗΜΕΡΟΛΟΓΙΟ ΓΕΦΥΡΑΣ '217': ΠΡΟΣΤΑΣΙΑ ΤΗΣ ΣΤΑΦΙΔΑΣ '218': ΠΑΛΑΙΟΙ ΔΙΚΟΝΟΜΙΚΟΙ ΝΟΜΟΙ '219': ΤΑΜΕΙΟ ΕΠΙΚ. ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΟΡΓΑΝΙΣΜΩΝ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ (Τ.Ε.Α.Π.Ο.Κ.Α.) '220': ΠΑΡΟΧΕΣ ΥΓΕΙΑΣ ΑΣΦΑΛΙΣΤΙΚΩΝ ΟΡΓΑΝΙΣΜΩΝ '221': ΠΛΑΝΟΔΙΟΙ ΙΧΘΥΟΠΩΛΕΣ '222': ΔΙΑΦΟΡΟΙ ΝΟΜΟΙ ΠΕΡΙ ΑΞΙΩΜΑΤΙΚΩΝ Π.Ν '223': ΥΠΟΧΡΕΩΣΕΙΣ ΕΦΟΠΛΙΣΤΩΝ ΣΕ ΑΣΘΕΝΕΙΑ Η ΘΑΝΑΤΟ ΝΑΥΤΙΚΩΝ '224': ΠΡΟΣΤΑΣΙΑ ΚΑΤΑ ΤΗΣ ΑΣΘΕΝΕΙΑΣ '225': ΓΕΝΙΚΑ ΠΕΡΙ ΣΧΕΔΙΩΝ ΠΟΛΕΩΝ '226': ΕΞΑΙΡΕΣΕΙΣ ΑΠΟ ΤΗΝ ΕΡΓΑΤΙΚΗ ΝΟΜΟΘΕΣΙΑ '227': ΑΓΡΟΤΙΚΟ ΚΤΗΜΑΤΟΛΟΓΙΟ '228': ΣΥΝΤΑΓΜΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΕΚΚΛΗΣΙΑΣ ΤΗΣ ΕΛΛΑΔΟΣ '229': ΠΑΝΑΓΙΟΣ ΤΑΦΟΣ '230': ΣΥΝΕΡΓΕΙΑ Π. ΝΑΥΤΙΚΟΥ '231': ΕΠΙΘΕΩΡΗΣΙΣ ΣΤΡΑΤΟΥ '232': ΣΥΝΘΕΣΗ ΠΛΗΡΩΜΑΤΩΝ '233': ΟΡΓΑΝΙΣΜΟΣ ΕΡΓΑΤΙΚΗΣ ΕΣΤΙΑΣ '234': ΔΙΑΦΟΡΑ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ '235': ΔΙΚΑΙΩΜΑ ΤΟΥ ΣΥΝΕΡΧΕΣΘΑΙ '236': ΚΟΙΝΩΝΙΚΟΠΟΙΗΣΗ - ΑΠΟΚΡΑΤΙΚΟΠΟΙΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΗΜΟΣΙΟΥ ΧΑΡΑΚΤΗΡΑ '237': ΛΑΙΚΗ ΚΑΤΟΙΚΙΑ '238': ΦΟΡΟΛΟΓΙΑ ΚΕΡΔΩΝ '239': ΤΕΧΝΙΚΗ ΥΠΗΡΕΣΙΑ '240': ΜΕΤΕΚΠΑΙΔΕΥΣΗ ΔΗΜΟΔΙΔΑΣΚΑΛΩΝ '241': ΣΥΝΤΑΞΕΙΣ ΥΠΟΥΡΓΩΝ ΚΑΙ ΒΟΥΛΕΥΤΩΝ '242': ΟΡΙΟ ΗΛΙΚΙΑΣ '243': ΣΤΡΑΤΙΩΤΙΚΕΣ ΠΡΟΜΗΘΕΙΕΣ '244': ΑΠΟΣΤΟΛΑΙ ΕΞΩΤΕΡΙΚΟΥ '245': ΦΟΡΟΛΟΓΙΑ ΑΚΙΝΗΤΗΣ ΠΕΡΙΟΥΣΙΑΣ '246': ΧΡΟΝΟΣ ΕΡΓΑΣΙΑΣ - ΑΔΕΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΕΛΛΗΝΙΚΗΣ ΑΣΤΥΝΟΜΙΑΣ '247': ΝΑΥΤΙΚΑ ΕΡΓΑ ΚΑΙ ΠΡΟΜΗΘΕΙΕΣ '248': ΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΛΟΓΙΣΤΙΚΟ '249': ΔΑΣΜΟΛΟΓΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '250': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΧΡΗΜΑΤΙΣΤΩΝ ,ΜΕΣΙΤΩΝ,ΑΝΤΙΚΡΥΣΤΩΝ ΚΑΙ ΥΠΑΛΛΗΛΩΝ ΧΡΗΜΑΤΙΣΤΗΡΙΟΥ ΑΘΗΝΩΝ (Τ.Α.Χ.Μ.Α.) '251': ΚΡΑΤΙΚΗ ΣΧΟΛΗ ΟΡΧΗΣΤΙΚΗΣ ΤΕΧΝΗΣ '252': ΕΘΝΙΚΗ ΛΥΡΙΚΗ ΣΚΗΝΗ '253': ΑΕΡΟΝΑΥΤΙΚΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ '254': ΚΕΝΤΡΟ ΒΙΟΤΕΧΝΙΚΗΣ ΑΝΑΠΤΥΞΗΣ '255': ΑΡΧΑΙΟΛΟΓΙΚΟ ΜΟΥΣΕΙΟ '256': ΥΠΕΡΩΚΕΑΝΕΙΑ '257': ΔΑΣΗ '258': ΑΣΚΗΣΗ ΚΤΗΝΙΑΤΡΙΚΟΥ ΕΠΑΓΓΕΛΜΑΤΟΣ '259': ΚΤΗΣΗ ΚΑΙ ΑΠΩΛΕΙΑ '260': ΡΑΔΙΟΤΗΛΕΓΡΑΦΙΚΗ ΥΠΗΡΕΣΙΑ '261': ΑΕΡΟΛΙΜΕΝΑΣ ΑΘΗΝΩΝ '262': ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ '263': ΣΤΕΛΕΧΟΣ ΕΦΕΔΡΩΝ ΑΞΙΩΜΑΤΙΚΩΝ '264': ΠΤΩΧΕΥΣΗ ΚΑΙ ΣΥΜΒΙΒΑΣΜΟΣ '265': ΠΟΛΙΤΙΚΟΣ ΓΑΜΟΣ '266': ΙΔΙΩΤΙΚΗ ΕΠΙΧΕΙΡΗΣΗ ΑΣΦΑΛΙΣΕΩΣ '267': ΠΛΟΙΑ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '268': ΙΑΤΡΙΚΕΣ ΑΜΟΙΒΕΣ '269': ΕΛΛΗΝΙΚΟΣ ΕΡΥΘΡΟΣ ΣΤΑΥΡΟΣ '270': ΑΝΩΜΑΛΕΣ ΚΑΤΑΘΕΣΕΙΣ ΣΕ ΧΡΥΣΟ '271': ΣΥΜΒΟΥΛΙΟ ΤΙΜΗΣ ΑΞΙΩΜΑΤΙΚΩΝ Π.Ν '272': ΔΙΑΦΟΡΟΙ ΑΡΔΕΥΤΙΚΟΙ ΝΟΜΟΙ '273': ΚΥΒΕΡΝΗΤΙΚΟΣ ΕΠΙΤΡΟΠΟΣ '274': ΕΚΤΕΛΕΣΗ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ '275': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΚΑΙ ΑΡΩΓΗΣ '276': ΔΑΣΙΚΕΣ ΜΕΤΑΦΟΡΕΣ '277': ΜΕ ΤΗ ΔΗΜΟΚΡΑΤΙΑ ΤΟΥ ΚΕΜΠΕΚ '278': ΕΠΑΝΕΞΑΓΟΜΕΝΑ ΜΕ ΕΓΓΥΗΣΗ '279': ΔΙΑΝΟΜΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ '280': ΑΡΣΗ ΣΥΓΚΡΟΥΣΕΩΣ ΚΑΘΗΚΟΝΤΩΝ '281': ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΛΟΙΑ '282': ΚΕΝΤΡΟ ΜΕΤΑΦΡΑΣΗΣ '283': ΕΙΣΦΟΡΕΣ ΚΑΙ ΝΑΥΛΩΣΕΙΣ '284': ΜΕΤΕΓΓΡΑΦΕΣ ΦΟΙΤΗΤΩΝ ΑΝΩΤ. ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΙΔΡΥΜΑΤΩΝ '285': ΤΜΗΜΑΤΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ - ΑΘΛΗΤΙΣΜΟΥ '286': ΨΥΧΙΑΤΡΕΙΑ '287': ΦΟΡΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟΥ ΑΝΩΝ. ΕΤΑΙΡΕΙΩΝ '288': ΤΥΠΟΙ ΣΥΜΒΟΛΑΙΩΝ '289': ΚΑΝΟΝΙΣΜΟΣ ΕΠΙΘΕΩΡΗΣΕΩΣ '290': ΜΟΥΣΕΙΟ ΕΛΛΗΝΙΚΗΣ ΛΑΙΚΗΣ ΤΕΧΝΗΣ '291': ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ '292': ΟΡΓΑΝΙΣΜΟΣ ΕΡΓΑΤΙΚΗΣ ΚΑΤΟΙΚΙΑΣ '293': ΑΣΦΑΛΕΙΑ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΟΙΚΟΔΟΜΕΣ '294': ΣΤΕΓΑΝΗ ΥΠΟΔΙΑΙΡΕΣΗ ΠΛΟΙΩΝ '295': ΔΙΟΙΚΗΣΗ ΠΡΩΤΕΥΟΥΣΗΣ '296': ΔΙΔΑΚΤΟΡΙΚΕΣ - ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΣΠΟΥΔΕΣ ΕΘΝΙΚΟΥ ΜΕΤΣΟΒΙΟΥ '297': ΕΙΣΦΟΡΑ ΚΑΤΟΧΩΝ ΕΙΔΩΝ ΠΡΩΤΗΣ ΑΝΑΓΚΗΣ '298': ΔΙΑΦΟΡΟΙ ΔΙΚΟΝΟΜΙΚΟΙ ΝΟΜΟΙ '299': ΔΙΕΘΝΕΙΣ ΛΙΜΕΝΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '300': ΥΓΕΙΟΝΟΜΙΚΗ ΥΠΗΡΕΣΙΑ ΕΛ.ΑΣ '301': ΕΛΛΗΝΙΚΑ ΤΑΧΥΔΡΟΜΕΙΑ (ΕΛ.ΤΑ) '302': ΜΙΣΘΟΙ ΚΑΙ ΕΠΙΔΟΜΑΤΑ Π. ΝΑΥΤΙΚΟΥ '303': ΓΕΩΡΓΙΚΑ ΤΑΜΕΙΑ '304': ΑΤΕΛΕΙΕΣ ΥΠΕΡ ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ '305': ΑΠΟΒΑΡΟ '306': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΕΚΠΡΟΣΩΠΩΝ ΚΑΙ ΥΠΑΛΛΗΛΩΝ '307': ΚΩΔΙΚΑΣ ΠΕΡΙ ΔΙΚΗΓΟΡΩΝ '308': ΙΕΡΑΡΧΙΑ ΚΑΙ ΠΡΟΒΙΒΑΣΜΟΙ '309': ΙΣΡΑΗΛΙΤΕΣ '310': ΣΩΜΑ ΚΤΗΝΙΑΤΡΙΚΟ '311': ΝΟΡΒΗΓΙΑ - ΝΕΑ ΖΗΛΑΝΔΙΑ – ΝΙΓΗΡΙΑ Κ.ΛΠ '312': ΕΝΤΥΠΑ ΚΑΙ ΒΙΒΛΙΟΘΗΚΕΣ ΝΑΥΤΙΚΟΥ '313': ΥΠΟΥΡΓΕΙΟ ΤΥΠΟΥ ΚΑΙ ΜΕΣΩΝ ΜΑΖΙΚΗΣ ΕΝΗΜΕΡΩΣΗΣ '314': ΝΑΥΤΙΚΕΣ ΠΕΙΘΑΡΧΙΚΕΣ ΠΟΙΝΕΣ '315': ΜΙΣΘΩΣΕΙΣ ΑΓΡΟΤΙΚΩΝ ΑΚΙΝΗΤΩΝ '316': ΔΙΑΦΟΡΟΙ ΣΥΝΕΤΑΙΡΙΣΜΟΙ '317': ΑΓΡΟΤΙΚΗ ΠΙΣΤΗ '318': ΛΑΙΚΕΣ ΑΓΟΡΕΣ-ΤΑΜΕΙΟ ΛΑΙΚΩΝ ΑΓΟΡΩΝ '319': ΚΑΝΟΝΙΣΜΟΣ ΠΕΙΘΑΡΧΙΑΣ ΧΩΡΟΦΥΛΑΚΗΣ '320': ΑΔΙΚΗΜΑΤΑ ΚΑΤΑ ΤΗΣ ΔΗΜΟΣΙΑΣ ΑΣΦΑΛΕΙΑΣ '321': ΕΝΟΙΚΙΑΣΗ ΦΟΡΟΥ ΔΗΜΟΣΙΩΝ ΘΕΑΜΑΤΩΝ '322': ΕΥΡΩΠΑΙΚΗ ΣΥΜΒΑΣΗ ΚΟΙΝΩΝΙΚΗΣ ΚΑΙ ΙΑΤΡΙΚΗΣ ΑΝΤΙΛΗΨΕΩΣ '323': ΕΠΙΒΑΤΗΓΑ ΑΕΡΟΣΤΡΩΜΝΑ ΟΧΗΜΑΤΑ '324': ΕΦΕΔΡΟΙ '325': ΣΤΡΑΤΙΩΤΙΚΕΣ ΛΕΣΧΕΣ '326': ΠΡΟΣΩΠΙΚΟ ΦΥΛΑΚΩΝ '327': ΑΝΑΘΕΩΡΗΣΗ ΤΙΜΩΝ '328': ΜΑΛΑΚΙΑ ΚΑΙ ΜΑΛΑΚΟΣΤΡΑΚΑ '329': ΚΩΔΙΚΑΣ ΔΗΜΟΣΙΟΥ ΝΑΥΤΙΚΟΥ ΔΙΚΑΙΟΥ '330': ΔΙΑΦΟΡΑ ΣΩΜΑΤΕΙΑ '331': ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ '332': ΚΩΔΙΚΟΠΟΙΗΣΗ ΑΓΟΡΑΝΟΜΙΚΩΝ ΔΙΑΤΑΞΕΩΝ '333': ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΑΛΛΟΔΑΠΗ '334': ΔΙΔΑΚΤΙΚΑ ΒΙΒΛΙΑ '335': ΣΥΝΤΑΞΙΟΔΟΤΙΚΑ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΑ ΘΕΜΑΤΑ ΠΡΟΣΩΠΙΚΟΥ Ν.Π.Δ.Δ '336': ΕΠΙΔΟΜΑ ΟΙΚΟΓΕΝΕΙΩΝ ΣΤΡΑΤΙΩΤΙΚΩΝ ΕΞΑΦΑΝΙΣΘΕΝΤΩΝ ΚΑΙ ΑΙΧΜΑΛΩΤΩΝ '337': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ '338': ΚΕΝΤΡΟ ΔΙΠΛΩΜΑΤΙΚΩΝ ΣΠΟΥΔΩΝ '339': ΓΕΝ. ΔΙΕΥΘΥΝΣΗ ΤΥΠΟΥ ΚΑΙ ΠΛΗΡΟΦΟΡΙΩΝ '340': ΑΡΧΕΙΑ ΤΕΛΩΝΕΙΑΚΩΝ ΑΡΧΩΝ '341': ΕΙΔΙΚΕΣ ΤΙΜΕΣ ΚΑΥΣΙΜΩΝ '342': ΣΤΕΓΗ ΥΓΕΙΟΝΟΜΙΚΩΝ '343': ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΒΟΛΑΙΟΓΡΑΦΩΝ '344': ΒΟΥΛΗ '345': ΕΠΙΛΟΓΗ & ΑΞΙΟΛΟΓΗΣΗ ΑΣΤΥΝΟΜΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΕΛ.ΑΣ '346': ΧΟΙΡΟΤΡΟΦΙΑ '347': ΦΟΡΟΣ ΚΑΤΑΝΑΛΩΣΕΩΣ ΠΕΤΡΕΛΑΙΟΕΙΔΩΝ '348': ΕΠΙΒΟΛΗ ΤΕΛΩΝΙΑΚΩΝ ΔΑΣΜΩΝ '349': ΑΕΡΟΠΟΡΙΚΗ ΣΤΡΑΤΟΛΟΓΙΑ '350': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΓΙΑ ΤΑ ΝΑΡΚΩΤΙΚΑ '351': ΔΙΑΦΟΡΕΣ ΤΡΑΠΕΖΕΣ '352': ΟΙΝΟΛΟΓΟΙ '353': ΤΕΛΩΝΟΦΥΛΑΚΗ '354': ΤΑΜΕΙΟ ΕΘΝΙΚΗΣ ΑΜΥΝΑΣ (T.EΘ.A.) - ΕΘΝΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΟΠΛΙΣΜΟΥ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ (Ε.Ε.Ε.Ε.Δ.) '355': ΕΚΤΕΛΕΣΗ ΤΗΣ ΠΟΙΝΗΣ '356': ΙΣΟΛΟΓΙΣΜΟΙ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ '357': ΑΡΧΙΤΕΚΤΟΝΙΚΟΙ ΔΙΑΓΩΝΙΣΜΟΙ '358': ΚΑΤΑΡΓΗΣΗ ΦΥΛΕΤΙΚΩΝ ΔΙΑΚΡΙΣΕΩΝ '359': ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΔΙΚΑΙΩΜΑΤΑ ΑΠΟΦΟΙΤΩΝ '360': ΜΟΝΑΣΤΗΡΙΑΚΗ ΠΕΡΙΟΥΣΙΑ ΣΑΜΟΥ '361': ΣΥΝΤΑΞΗ ΔΗΜΟΤΙΚΩΝ ΚΑΙ ΚΟΙΝΟΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ '362': ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΟΡΙΕΣ '363': ΦΡΟΝΤΙΣΤΗΡΙΑ ΕΦΑΡΜΟΓΩΝ '364': ΝΟΜΑΡΧΙΕΣ ΑΤΤΙΚΗΣ '365': ΦΥΜΑΤΙΩΣΗ '366': ΕΛΕΓΧΟΣ ΑΝΑΤΙΜΗΣΕΩΝ '367': ΑΤΕΛΕΙΕΣ ΥΠΕΡ ΤΗΣ ΝΑΥΤΙΛΙΑΣ '368': ΚΩΦΑΛΑΛΟΙ '369': ΙΑΤΡΙΚΗ ΔΕΟΝΤΟΛΟΓΙΑ '370': ΕΞΟΔΑ ΔΗΜΟΣΙΑΣ ΑΣΦΑΛΕΙΑΣ '371': ΜΕ ΤΗΝ ΑΡΓΕΝΤΙΝΗ '372': ΚΛΑΔΟΣ ΥΓΕΙΟΝΟΜΙΚΗΣ ΠΕΡΙΘΑΛΨΗΣ Τ.Α.Ε '373': ΥΠΗΡΕΣΙΑ ΕΚΚΑΘΑΡΙΣΕΩΣ ΝΑΡΚΟΠΕΔΙΩΝ '374': ΤΑΜΕΙΟ ΑΡΩΓΗΣ ΥΠΑΛΛΗΛΩΝ ΑΣΤΥΝΟΜΙΑΣ ΠΟΛΕΩΝ Τ.Α.Υ.Α.Π '375': ΠΡΟΣΤΑΣΙΑ ΔΗΜΟΣΙΩΝ ΚΤΗΜΑΤΩΝ '376': ΒΙΒΛΙΑ ΕΝΔΙΚΩΝ ΜΕΣΩΝ '377': ΕΛΛΗΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΜΙΚΡΟΜΕΣΑΙΩΝ ΜΕΤΑΠΟΙΗΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΧΕΙΡΟΤΕΧΝΙΑΣ '378': ΔΗΜΟΣΙΟΓΡΑΦΙΚΟΣ ΧΑΡΤΗΣ '379': ΦΟΡΟΣ ΓΑΜΙΚΩΝ ΣΥΜΦΩΝΩΝ ΙΣΡΑΗΛΙΤΩΝ '380': ΥΠΟΤΡΟΦΙΑΙ ΚΤΗΝΙΑΤΡΙΚΗΣ '381': ΑΠΟΔΟΧΕΣ ΠΡΟΣΩΠΙΚΟΥ ΙΔΙΩΤΙΚΟΥ ΔΙΚΑΙΟΥ '382': ΕΠΙΒΑΤΗΓΑ ΑΚΤΟΠΛΟΙΚΑ ΠΛΟΙΑ '383': ΠΑΛΑΙΟΙ ΔΗΜΟΣΙΟΥΠΑΛΛΗΛΙΚΟΙ ΝΟΜΟΙ '384': ΚΩΔΙΚΑΣ ΠΕΡΙ ΚΛΗΡΟΔΟΤΗΜΑΤΩΝ '385': ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΘΕΩΡΗΣΗ '386': ΚΤΗΜΑΤΟΓΡΑΦΗΣΗ ΔΑΣΩΝ '387': ΟΡΓΑΝΙΚΕΣ ΘΕΣΕΙΣ '388': ΠΕΡΙΟΡΙΣΜΟΣ ΧΡΗΣΗΣ ΟΡΙΣΜΕΝΩΝ ΣΥΜΒΑΤΙΚΩΝ ΟΠΛΩΝ '389': ΑΓΙΟΝ ΟΡΟΣ '390': ΚΥΡΩΣΕΙΣ ΦΟΡΟΛΟΓΙΚΩΝ ΠΑΡΑΒΑΣΕΩΝ '391': ΚΑΤΑΣΤΑΣΗ ΠΡΟΣΩΠΙΚΟΥ Ο.Γ.Α '392': ΕΠΑΝΑΠΑΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΩΝ '393': ΜΑΘΗΤΕΣ ΤΕΧΝΙΤΕΣ '394': ΔΙΑΒΙΒΑΣΕΙΣ '395': ΕΜΜΙΣΘΟΙ ΚΑΙ ΠΟΙΝΙΚΟΙ ΔΙΚ. ΕΠΙΜΕΛΗΤΕΣ '396': ΣΥΜΒΑΣΕΙΣ ΔΙΚΑΣΤΙΚΗΣ ΣΥΝΔΡΟΜΗΣ '397': ΔΗΜΟΣΙΑ ΕΠΙΧΕΙΡΗΣΗ ΠΕΤΡΕΛΑΙΟΥ '398': ΕΛΛΗΝΙΚΗ ΤΡΑΠΕΖΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΑΝΑΠΤΥΞΕΩΣ ΑΝΩΝΥΜΟΣ ΕΤΑΙΡΕΙΑ (Ε.Τ.Β.Α. Α.Ε.) '399': ΕΙΔΙΚΟΤΗΤΕΣ ΚΑΙ ΤΡΟΠΟΣ ΕΙΣΟΔΟΥ ΣΤΕΛΕΧΩΝ '400': ΠΡΟΣΤΑΣΙΑ ΕΡΓΑΖΟΜΕΝΩΝ ΣΤΗΝ ΗΜΕΔΑΠΗ - ΣΩΜΑ ΕΠΙΘΕΩΡΗΣΗΣ ΕΡΓΑΣΙΑΣ '401': ΙΝΣΤΙΤΟΥΤΟ ΩΚΕΑΝΟΓΡΑΦΙΚΩΝ ΚΑΙ ΑΛΙΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ '402': ΕΛΕΓΧΟΣ ΑΠΟΛΥΣΕΩΝ ΜΙΣΘΩΤΩΝ '403': ΠΑΝΕΛΛΗΝΙΑ ΕΚΘΕΣΗ ΛΑΜΙΑΣ '404': ΚΥΡΙΑΚΗ ΑΡΓΙΑ ΚΑΙ ΑΛΛΕΣ ΥΠΟΧΡΕΩΤΙΚΕΣ ΑΡΓΙΕΣ '405': ΚΛΑΔΟΣ ΥΓΕΙΑΣ Ο.Α.Ε.Ε '406': ΟΡΚΟΣ ΣΤΡΑΤΙΩΤΙΚΩΝ '407': ΕΜΠΟΡΙΚΑ ΒΙΒΛΙΑ '408': ΥΓΕΙΟΝΟΜΙΚΕΣ ΕΠΙΤΡΟΠΕΣ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ '409': ΑΓΙΟΣ ΒΙΚΕΝΤΙΟΣ-ΓΡΕΝΑΔΙΝΟΙ, ΑΓΙΟΣ ΜΑΡΙΝΟΣ Κ.ΛΠ '410': ΑΠΟΖΗΜΙΩΣΗ ΔΙΑΤΕΛΕΣΑΝΤΩΝ ΠΡΩΘΥΠΟΥΡΓΩΝ '411': ΑΣΦΑΛΙΣΗ ΛΟΓΟΤΕΧΝΩΝ ΚΑΙ ΚΑΛΛΙΤΕΧΝΩΝ '412': ΠΕΙΘΑΡΧΙΚΑ ΣΥΜΒΟΥΛΙΑ '413': ΕΤΑΙΡΙΕΣ ΧΡΗΜΑΤΟΔΟΤΙΚΗΣ ΜΙΣΘΩΣΗΣ '414': ΚΟΙΝΩΝΙΚΗ ΥΠΗΡΕΣΙΑ ΦΥΛΑΚΩΝ '415': ΚΑΝΟΝΙΣΜΟΣ ΥΠΗΡΕΣΙΩΝ ΑΓΡΟΦΥΛΑΚΗΣ '416': ΑΣΦΑΛΙΣΗ ΣΤΟ ΙΚΑ '417': ΕΜΠΟΡΙΚΟΙ ΣΥΜΒΟΥΛΟΙ ΚΑΙ ΑΚΟΛΟΥΘΟΙ '418': ΕΠΙΚΟΥΡΟΙ ΠΑΡΑΤΗΡΗΤΕΣ '419': ΥΠΟΤΡΟΦΙΕΣ '420': ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ '421': ΠΡΩΤΕΣ ΥΛΕΣ ΣΟΚΟΛΑΤΟΠΟΙΙΑΣ '422': ΕΠΙΤΡΟΠΗ ΚΗΠΩΝ ΚΑΙ ΔΕΝΔΡΟΣΤΟΙΧΙΩΝ '423': ΚΙΝΗΤΟ ΕΠΙΣΗΜΑ '424': ΣΥΝΔΙΚΑΛΙΣΜΟΣ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '425': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ Π.Ν '426': ΟΡΓΑΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΑΜΕΙΟΥ ΠΑΡΑΚΑΤΑΘΗΚΩΝ ΚΑΙ ΔΑΝΕΙΩΝ '427': ΑΔΕΙΕΣ ΗΝΙΟΧΙΑΣ '428': ΥΠΗΡΕΣΙΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΜΕΛΕΤΩΝ '429': ΚΡΑΤΙΚΑ ΑΥΤΟΚΙΝΗΤΑ '430': ΑΤΟΜΙΚΗ ΚΑΤΑΓΓΕΛΙΑ ΣΥΜΒΑΣΕΩΣ ΕΡΓΑΣΙΑΣ '431': ΠΟΛΥΤΕΚΝΟΙ '432': ΙΣΤΟΡΙΚΟ ΑΡΧΕΙΟ ΜΑΚΕΔΟΝΙΑΣ '433': ΑΣΦΑΛΙΣΗ ΑΥΤΟΚΙΝΗΤΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ '434': ΔΑΝΕΙΑ ΕΣΩΤΕΡΙΚΑ '435': ΕΚΚΛΗΣΙΑ ΚΡΗΤΗΣ '436': ΦΟΡΟΛΟΓΙΑ ΣΤΑΦΙΔΑΣ '437': ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΑΔΕΙΕΣ '438': ΑΕΡΟΔΙΚΕΙΑ '439': ΕΠΙΔΟΜΑ ΑΣΘΕΝΕΙΑΣ '440': ΘΕΣΕΙΣ ΣΥΜΒΟΛΑΙΟΓΡΑΦΩΝ '441': ΑΓΟΡΑ ΣΥΝΑΛΛΑΓΜΑΤΟΣ '442': ΝΟΜΙΚΟ ΣΥΜΒΟΥΛΙΟ ΤΟΥ ΚΡΑΤΟΥΣ (Ν.Σ.Κ.) '443': ΦΟΡΟΛΟΓΙΑ ΜΕΤΑΒΙΒΑΣΗΣ '444': ΣΥΜΒΟΥΛΙΑ - ΕΠΙΤΡΟΠΕΣ - ΙΝΣΤΙΤΟΥΤΑ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ '445': ΤΕΛΗ ΕΙΣΙΤΗΡΙΩΝ ΚΑΙ ΚΟΜΙΣΤΡΩΝ '446': ΟΙΚΟΝΟΜΙΚΗ ΥΠΗΡΕΣΙΑ ΥΓΕΙΟΝΟΜΙΚΟΥ ΣΩΜΑΤΟΣ '447': ΠΡΟΣΩΠΙΚΟ ΣΩΜΑΤΩΝ ΑΣΦΑΛΕΙΑΣ ΜΕ ΣΧΕΣΗ ΙΔΙΩΤΙΚΟΥ ΔΙΚΑΙΟΥ '448': ΑΡΤΕΡΓΑΤΕΣ '449': ΕΥΚΟΛΙΕΣ ΣΕ ΦΟΙΤΗΤΕΣ '450': ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΚΟΙΝΗΣ ΧΟΡΤΟΝΟΜΗΣ ΚΑΙ ΣΥΝΙΔΙΟΚΤΗΣΙΑΣ '451': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΓΕΝΙΚΟΥ ΝΟΣΟΚΟΜΕΙΟΥ Ο ΕΥΑΓΓΕΛΙΣΜΟΣ '452': ΠΡΟΣΚΟΠΙΣΜΟΣ '453': ΣΥΜΒΟΥΛΙΑ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΕΚΠΑΙΔΕΥΣΕΩΣ '454': ΚΡΑΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΜΗΧΑΝΗΜΑΤΩΝ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ '455': ΑΤΟΜΙΚΑ ΕΓΓΡΑΦΑ ΑΝΘΥΠΑΣΠΙΣΤΩΝ-ΥΠΑΞΙΩΜΑΤΙΚΩΝ '456': ΔΙΑΦΟΡΕΣ ΣΧΟΛΕΣ '457': ΒΙΒΛΙΑ ΔΗΜΟΣΙΕΥΣΕΩΣ ΔΙΑΘΗΚΩΝ '458': ΚΑΝΟΝΙΣΜΟΙ ΠΡΟΣΩΠΙΚΟΥ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ '459': ΤΟΥΡΙΣΤΙΚΟΙ ΤΟΠΟΙ '460': ΙΝΣΤΙΤΟΥΤΟ ΞΕΝΩΝ ΓΛΩΣΣΩΝ ΚΑΙ ΦΙΛΟΛΟΓΙΩΝ '461': ΚΑΠΝΟΠΩΛΕΣ '462': ΑΓΩΓΕΣ ΓΙΑΤΡΩΝ '463': ΣΥΣΤΑΣΗ ΚΑΙ ΑΠΟΔΟΣΗ ΠΑΡΑΚΑΤΑΘΗΚΩΝ ΑΠΟ Τ.Π. ΚΑΙ Δ '464': ΑΔΙΚΗΜΑΤΑ ΔΙΑΠΡΑΤΤΟΜΕΝΑ ΣΤΑ ΚΡΑΤΗ-ΜΕΛΗ '465': ΑΝΑΣΤΟΛΕΣ ΤΟΥ ΣΥΝΤΑΓΜΑΤΟΣ - ΚΑΤΑΣΤΑΣΗ ΠΟΛΙΟΡΚΙΑΣ '466': ΣΥΜΒΑΣΕΙΣ ΠΑΡΟΧΗΣ ΑΣΦΑΛΕΙΑΣ (ΕΝΕΧΥΡΟ, ΥΠΟΘΗΚΗ Κ.ΛΠ.) '467': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣΝΑΥΤΙΚΩΝ ΠΡΑΚΤΟΡΩΝ ΚΑΙ ΥΠΑΛΛΗΛΩΝ (Τ.Α.Ν.Π.Υ.) '468': ΑΝΩΤΑΤΟ ΣΥΓΚΟΙΝΩΝΙΑΚΟ ΣΥΜΒΟΥΛΙΟ '469': ΠΡΕΒΕΝΤΟΡΙΑ '470': ΑΝΑΒΟΛΗ ΣΤΡΑΤΕΥΣΕΩΣ '471': ΕΙΔΙΚΑ ΛΗΞΙΑΡΧΕΙΑ '472': ΓΕΩΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ '473': ΥΓΕΙΟΝΟΜΙΚΑ ΔΙΚΑΙΩΜΑΤΑ '474': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ '475': ΚΑΖΑΚΣΤΑΝ – ΚΑΜΕΡΟΥΝ – ΚΑΝΑΔΑΣ Κ.ΛΠ '476': ΣΥΝΤΑΞΕΙΣ ΘΥΜΑΤΩΝ ΑΠΟ ΤΟΝ ΑΜΑΧΟ ΠΛΗΘΥΣΜΟ '477': ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ '478': ΕΚΤΕΛΩΝΙΣΜΟΣ ΤΑΧΥΔΡΟΜΙΚΩΝ ΔΕΜΑΤΩΝ '479': ΥΔΡΕΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗΣ '480': ΣΥΜΦΩΝΙΕΣ ΠΕΡΙ ΠΛΩΤΩΝ ΟΔΩΝ '481': ΑΝΑΚΗΡΥΞΗ ΤΗΣ ΑΝΕΞΑΡΤΗΣΙΑΣ '482': ΕΠΙΤΡΟΠΗ ΟΛΥΜΠΙΑΚΩΝ ΑΓΩΝΩΝ '483': ΟΙΝΟΠΑΡΑΓΩΓΗ ΑΤΤΙΚΟΒΟΙΩΤΙΑΣ '484': ΕΚΠΤΩΣΕΙΣ ΥΠΕΡ ΕΞΑΓΩΓΕΩΝ '485': ΦΟΡΟΛΟΓΙΑ ΚΛΗΡΟΝΟΜΙΩΝ, ΔΩΡΕΩΝ, ΓΟΝΙΚΩΝ ΠΑΡΟΧΩΝ '486': ΟΡΦΑΝΟΤΡΟΦΕΙΑ ΚΑΙ ΟΙΚΟΤΡΟΦΕΙΑ '487': ΜΕ ΤΗΝ ΟΥΡΑΓΟΥΑΗ '488': ΜΕ ΤΗΝ ΑΥΣΤΡΙΑΚΗ '489': ΔΙΑΦΟΡΟΙ ΦΟΡΟΙ ΚΑΤΑΝΑΛΩΣΕΩΣ '490': ΔΙΕΥΘΥΝΣΗ ΕΦΕΔΡΩΝ - ΠΟΛΕΜΙΣΤΩΝ - ΑΓΩΝΙΣΤΩΝ '491': ΑΓΡΟΤΙΚΕΣ ΟΙΚΟΚΥΡΙΚΕΣ ΣΧΟΛΕΣ '492': ΞΥΛΕΙΑ '493': ΒΙΒΛΙΑΡΙΑ ΥΓΕΙΑΣ ΕΡΓΑΤΩΝ '494': ΣΧΟΛΗ ΑΞΙΩΜΑΤΙΚΩΝ ΣΤΡΑΤΙΩΤΙΚΩΝ ΥΠΗΡΕΣΙΩΝ '495': ΝΟΜΑΡΧΙΑΚΕΣ ΚΑΙ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ '496': ΕΓΓΥΗΣΕΙΣ ΚΑΙ ΔΑΝΕΙΑ ΤΟΥ ΔΗΜΟΣΙΟΥ '497': ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ '498': ΤΑΚΤΙΚΑ ΔΙΟΙΚΗΤΙΚΑ ΔΙΚΑΣΤΗΡΙΑ - ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ '499': ΤΡΟΦΟΔΟΣΙΑ ΠΛΗΡΩΜΑΤΩΝ ΠΛΟΙΩΝ '500': ΔΙΑΦΟΡΟΙ ΛΙΜΕΝΕΣ ΚΑΙ ΛΙΜΕΝΙΚΑ ΤΑΜΕΙΑ '501': ΗΛΕΚΤΡΙΚΕΣ ΕΚΜΕΤΑΛΛΕΥΣΕΙΣ '502': ΠΡΟΥΠΟΘΕΣΕΙΣ ΑΣΚΗΣΗΣ ΔΙΑΦΟΡΩΝ ΕΠΑΓΓΕΛΜΑΤΩΝ '503': ΤΕΛΩΝΕΙΑΚΗ ΥΠΗΡΕΣΙΑ ΑΕΡΟΣΚΑΦΩΝ '504': ΕΠΙΤΡΟΠΗ ΔΑΣΜΟΛΟΓΙΟΥ '505': ΝΑΥΠΗΓΕΙΑ Π. ΝΑΥΤΙΚΟΥ '506': ΒΙΟΜΗΧΑΝΙΚΕΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΕΣ ΠΕΡΙΟΧΕΣ '507': ΙΑΤΡΟΔΙΚΑΣΤΕΣ '508': ΑΘΛΗΤΙΣΜΟΣ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ '509': ΟΡΓΑΝΙΣΜΟΣ ΣΥΚΩΝ '510': ΚΑΝΟΝΙΣΜΟΣ ΑΣΘΕΝΕΙΑΣ ΤΑΜΕΙΟΥ ΣΥΝΤΑΞΕΩΝ ΕΦΗΜΕΡΙΔΟΠΩΛΩΝ ΚΑΙ ΥΠΑΛΛΗΛΩΝ ΠΡΑΚΤΟΡΕΙΩΝ (Τ.Σ.Ε.Υ.Π.) '511': ΑΔΕΙΕΣ ΜΙΣΘΩΤΩΝ '512': ΠΡΟΣΤΑΣΙΑ ΚΕΦΑΛΑΙΩΝ ΕΞΩΤΕΡΙΚΟΥ '513': ΑΠΟΔΕΙΚΤΙΚΑ ΦΟΡΟΛΟΓΙΚΗΣ ΕΝΗΜΕΡΟΤΗΤΑΣ '514': ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΘΝΙΚΗ ΕΠΙΤΡΟΠΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΑΧΥΔΡΟΜΕΙΩΝ (Ε.Ε.Τ.Τ.) '515': ΠΡΟΣΩΠΙΚΟ Ο.Τ.Ε '516': ΒΑΣΙΛΙΚΑ ΙΔΡΥΜΑΤΑ '517': ΑΠΟΚΑΤΑΣΤΑΣΗ ΠΛΗΓΕΝΤΩΝ ΑΠΟ ΕΚΡΗΞΗ ΠΛΟΙΟΥ ΣΤΗΝ ΚΡΗΤΗ '518': ΕΚΜΕΤΑΛΛΕΥΣΗ ΔΥΝΑΜΕΩΣ ΡΕΟΝΤΩΝ ΥΔΑΤΩΝ '519': ΚΑΚΟΥΡΓΙΟΔΙΚΕΙΑ '520': ΚΕΝΤΡΙΚΕΣ ΑΓΟΡΕΣ ΑΛΛΩΝ ΠΟΛΕΩΝ '521': ΤΑΜΕΙΟ ΑΛΛΗΛΟΒΟΗΘΕΙΑΣ Π.Ν '522': ΕΚΛΟΓΙΚΟΙ ΚΑΤΑΛΟΓΟΙ ΚΑΙ ΒΙΒΛΙΑΡΙΑ '523': ΥΠΗΡΕΣΙΑ ΕΓΓΕΙΩΝ ΒΕΛΤΙΩΣΕΩΝ '524': ΤΟΥΡΙΣΤΙΚΗ ΑΝΑΠΤΥΞΗ '525': ΝΟΜΟΘΕΣΙΑ ΠΕΡΙ ΣΥΜΒΑΣΕΩΣ ΕΡΓΑΣΙΑΣ '526': ΕΛΕΓΧΟΣ ΕΚΡΗΚΤΙΚΩΝ ΥΛΩΝ '527': ΜΑΚΕΔΟΝΙΚΟΙ ΣΙΔΗΡΟΔΡΟΜΟΙ '528': ΔΙΕΥΚΟΛΥΝΣΕΙΣ ΣΕ ΔΗΜΟΣΙΟΥΣ ΥΠΑΛΛΗΛΟΥΣ '529': ΣΤΡΑΤΙΩΤΙΚΕΣ ΥΠΟΧΡΕΩΣΕΙΣ ΕΠΑΝΑΠΑΤΡΙΖΟΜΕΝΩΝ '530': ΔΙΑΚΡΙΣΗ ΕΜΠΟΡΙΚΩΝ ΠΡΑΞΕΩΝ '531': ΟΡΓΑΝΙΣΜΟΣ ΕΛΛΗΝΙΚΩΝ ΓΕΩΡΓΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ (Ε.Λ.Γ.Α.) '532': ΕΞΩΣΧΟΛΙΚΗ ΣΩΜΑΤΙΚΗ ΑΓΩΓΗ '533': ΔΡΑΧΜΟΠΟΙΗΣΗ '534': ΜΕ ΤΗ ΒΡΑΖΙΛΙΑ '535': ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΑΚΑΔΗΜΙΑ '536': ΑΝΤΑΛΛΑΓΗ ΘΕΡΑΠΕΥΤΙΚΩΝ ΟΥΣΙΩΝ '537': ΓΑΛΛΙΑ, ΓΕΡΜΑΝΙΑ Κ.ΛΠ '538': ΝΟΜΟΠΑΡΑΣΚΕΥΑΣΤΙΚΕΣ ΕΠΙΤΡΟΠΕΣ '539': ΚΥΒΕΡΝΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ '540': ΣΤΡΑΤΙΩΤΙΚΟΙ ΑΚΟΛΟΥΘΟΙ '541': ΔΙΑΘΕΣΗ ΑΠΟΣΤΡΑΓΓΙΖΟΜΕΝΩΝ ΓΑΙΩΝ '542': ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΓΙΑ ΡΑΔΙΟΦΩΝΙΑ – ΤΗΛΕΟΡΑΣΗ '543': ΓΝΩΜΟΔΟΤΙΚΟ ΣΥΜΒΟΥΛΙΟ ΦΑΡΜΑΚΩΝ '544': ΣΥΜΒΑΣΕΙΣ ΔΙΑΦΟΡΕΣ '545': ΠΡΑΞΕΙΣ ΚΑΤΑ ΤΗΣ ΑΣΦΑΛΕΙΑΣ ΤΗΣ ΑΕΡΟΠΟΡΙΑΣ '546': ΙΑΤΡΟΙ ΙΑΜΑΤΙΚΩΝ ΠΗΓΩΝ '547': ΚΕΝΤΡΙΚΟ ΣΥΜΒΟΥΛΙΟ ΥΓΕΙΑΣ (ΚΕ.Σ.Υ.) '548': ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '549': ΥΠΟΥΡΓΕΙΟ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ '550': ΤΕΧΝΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΕΛΑΦΡΩΝ ΑΕΡΟΠΛΑΝΩΝ Δ.Χ '551': ΠΟΛΥΕΘΝΕΙΣ ΜΟΡΦΩΤΙΚΕΣ ΣΥΜΦΩΝΙΕΣ '552': ΕΚΠΑΙΔΕΥΣΗ Λ.Σ '553': ΠΡΟΣΤΑΣΙΑ ΕΛΕΥΘΕΡΟΥ ΑΝΤΑΓΩΝΙΣΜΟΥ '554': ΕΘΝΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΚΟΥ ΕΠΙΜΕΛΗΤΗΡΙΟΥ '555': ΟΡΓΑΝΙΣΜΟΣ '556': ΤΕΛΩΝΕΙΑΚΕΣ ΠΑΡΑΚΑΤΑΘΗΚΕΣ '557': ΕΛΕΓΧΟΣ ΟΡΓΑΝΙΣΜΩΝ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ '558': ΕΝΩΣΕΙΣ ΑΠΟΣΤΡΑΤΩΝ ΑΞΙΩΜΑΤΙΚΩΝ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ '559': ΦΥΛΛΑ ΠΟΙΟΤΗΤΑΣ ΑΞΙΩΜΑΤΙΚΩΝ Π.Ν '560': ΙΝΣΤΙΤΟΥΤΟ ΓΕΩΛΟΓΙΚΩΝ ΚΑΙ ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ '561': ΛΑΟΓΡΑΦΙΚΟ ΚΑΙ ΕΘΝΟΛΟΓΙΚΟ ΜΟΥΣΕΙΟ ΜΑΚΕΔΟΝΙΑΣ - ΘΡΑΚΗΣ '562': ΠΡΩΤΕΣ ΥΛΕΣ ΤΑΠΗΤΟΥΡΓΙΑΣ '563': ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ '564': ΚΩΔΙΚΑΣ ΟΔΙΚΗΣ ΚΥΚΛΟΦΟΡΙΑΣ '565': ΦΑΡΜΑΚΕΥΤΙΚΗ ΠΕΡΙΘΑΛΨΗ '566': ΜΕΛΕΤΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΔΗΜΟΣΙΩΝ ΕΠΕΝΔΥΣΕΩΝ '567': ΕΠΙΔΟΣΗ ΔΙΑ ΤΟΥ ΤΑΧΥΔΡΟΜΕΙΟΥ '568': ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ '569': ΗΘΙΚΕΣ ΑΜΟΙΒΕΣ '570': ΔΗΜΟΣΙΑ ΚΤΗΜΑΤΑ ΣΤΗ ΔΩΔΕΚΑΝΗΣΟ '571': ΣΥΜΒΑΣΕΙΣ ΔΙΚΑΣΤΙΚΗΣ ΑΝΤΙΛΗΨΕΩΣ '572': ΠΕΡΙΟΡΙΣΜΟΙ ΑΛΙΕΙΑΣ '573': ΠΥΡΗΝΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ '574': ΩΡΕΣ ΕΡΓΑΣΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΑΥΤΟΚΙΝΗΤΩΝ '575': ΕΓΓΡΑΦΕΣ, ΕΞΕΤΑΣΕΙΣ, ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ '576': ΔΙΚΑΙΩΜΑΤΑ ΤΕΛΩΝΕΙΑΚΩΝ ΕΡΓΑΣΙΩΝ '577': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΑΥΤΟΚΙΝΗΤΙΣΤΩΝ (Τ.Σ.Α.) '578': ΤΗΛΕΦΩΝΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ '579': ΦΟΡΟΛΟΓΙΑ ΑΣΦΑΛΙΣΤΡΩΝ '580': ΔΙΕΘΝΗΣ ΥΔΡΟΓΡΑΦΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ '581': ΕΠΑΡΧΙΕΣ '582': ΑΓΡΟΤ. ΑΠΟΚΑΤΑΣΤΑΣΗ ΠΡΟΣΦΥΓΩΝ '583': ΓΕΝΙΚΑ ΓΙΑ ΤΑ ΘΕΑΤΡΑ '584': ΣΥΜΒΑΣΕΙΣ ΔΙΩΞΕΩΣ ΛΑΘΡΕΜΠΟΡΙΟΥ '585': ΜΗΧΑΝΕΣ ΠΡΟΠΛΗΡΩΜΗΣ ΤΕΛΩΝ '586': ΟΡΓΑΝΙΣΜΟΣ ΚΡΑΤΙΚΩΝ ΘΕΑΤΡΩΝ '587': ΚΕΝΤΡΟ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΟΥ ΚΟΙΝΩΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ '588': ΦΟΡΟΣ ΠΡΟΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ '589': ΤΑΜΕΙΑ ΑΡΩΓΗΣ ΤΤΤ. ΥΠΑΛΛΗΛΩΝ '590': ΣΩΜΑ ΟΡΚΩΤΩΝ ΕΛΕΓΚΤΩΝ ΛΟΓΙΣΤΩΝ (Σ.Ο.Ε.Λ.), ΕΠΙΤΡΟΠΗ ΛΟΓΙΣΤΙΚΗΣ ΤΥΠΟΠΟΙΗΣΗΣ ΚΑΙ ΕΛΕΓΧΩΝ (Ε.Λ.Τ.Ε.) '591': ΑΓΡΟΤΙΚΑ ΝΗΠΙΟΤΡΟΦΕΙΑ '592': ΣΧΕΔΙΟ ΠΟΛΕΩΣ ΑΘΗΝΩΝ ΠΕΙΡΑΙΩΣ '593': ΜΙΣΘΩΣΕΙΣ ΑΚΙΝΗΤΩΝ Ο.Δ.Ε.Π '594': ΕΛΕΓΧΟΣ ΣΠΟΡΟΠΑΡΑΓΩΓΗΣ '595': ΑΜΥΝΤΙΚΕΣ ΠΕΡΙΟΧΕΣ ΚΑΙ Ν. ΟΧΥΡΑ '596': ΟΔΟΙΠΟΡΙΚΑ '597': ΠΟΡΟΙ ΟΡΓΑΝΙΣΜΩΝ ΤΟΥΡΙΣΜΟΥ '598': ΔΙΕΘΝΕΣ ΔΙΚΑΣΤΗΡΙΟ '599': ΟΙΚΟΝΟΜΙΚΗ ΜΕΡΙΜΝΑ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ '600': ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ '601': ΝΟΜΙΚΗ ΒΟΗΘΕΙΑ ΣΕ ΠΟΛΙΤΕΣ ΧΑΜΗΛΟΥ ΕΙΣΟΔΗΜΑΤΟΣ '602': ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΙ ΣΥΛΛΟΓΟΙ '603': ΥΠΟΥΡΓΕΙΟ ΣΤΡΑΤΙΩΤΙΚΩΝ '604': ΠΡΟΣΩΠΙΚΟ Ε.Μ.Π '605': ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ '606': ΑΓΟΝΕΣ ΓΡΑΜΜΕΣ '607': ΜΟΝΟΠΩΛΙΟ ΠΕΤΡΕΛΑΙΟΥ '608': ΠΡΟΛΗΨΗ ΡΥΠΑΝΣΗΣ ΤΗΣ ΘΑΛΑΣΣΑΣ '609': ΧΩΡΙΚΗ ΔΙΚΑΙΟΔΟΣΙΑ ΤΕΛΩΝΕΙΑΚΩΝ ΑΡΧΩΝ '610': ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΣΩΜΑΤΕΙΑ '611': ΥΠΗΡΕΣΙΑ ΑΓΡΟΤΙΚΗΣ ΑΣΦΑΛΕΙΑΣ '612': ΑΞΙΟΠΟΙΗΣΗ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΠΕΡΙΟΥΣΙΑΣ '613': ΕΜΠΟΡΙΚΟΙ ΑΝΤΙΠΡΟΣΩΠΟΙ '614': ΕΝΩΣΕΙΣ ΕΦΕΔΡΩΝ ΑΞΙΩΜΑΤΙΚΩΝ '615': ΑΤΕΛΕΙΕΣ ΥΠΕΡ ΤΗΣ ΒΙΟΜΗΧΑΝΙΑΣ '616': ΛΟΓΙΣΤΙΚΟ ΕΙΔΙΚΩΝ ΤΑΜΕΙΩΝ Ν.Π.Δ.Δ '617': ΣΥΜΒΑΣΗ ΓΙΑ ΔΕΙΓΜΑΤΑ ΚΛΠ '618': ΕΡΓΟΛΗΠΤΕΣ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ '619': ΕΠΑΝΕΠΟΙΚΙΣΜΟΣ ΠΑΡΑΜΕΘΟΡΙΩΝ ΠΕΡΙΟΧΩΝ '620': ΦΑΡΙΚΑ ΤΕΛΗ '621': ΛΑΤΟΜΕΙΑ ΜΑΡΜΑΡΩΝ '622': ΠΟΣΟΣΤΟ ΣΥΜΜΕΤΟΧΗΣ ΑΣΦΑΛΙΣΜΕΝΩΝ '623': ΑΣΦΑΛΕΙΑ ΑΝΘΡΩΠΙΝΗΣ ΖΩΗΣ ΣΤΗ ΘΑΛΑΣΣΑ '624': ΟΡΓΑΝΙΚΟΙ ΝΟΜΟΙ ΠΕΡΙ ΦΥΛΑΚΩΝ '625': ΛΑΘΡΕΜΠΟΡΙΑ '626': ΑΣΦΑΛΙΣΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΓΕΝΙΚΑ '627': ΕΙΣΑΓΩΓΗ ΧΛΩΡΙΚΟΥ ΚΑΛΙΟΥ '628': ΙΝΣΤΙΤΟΥΤΟ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ '629': ΕΠΙΔΟΜΑ ΠΑΣΧΑ - ΧΡΙΣΤΟΥΓΕΝΝΩΝ '630': ΓΕΩΡΓΙΚΟΙ ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΑΛΛΗΛΑΣΦΑΛΕΙΑΣ '631': ΟΡΓΑΝΙΣΜΟΣ ΦΟΡΟΛΟΓΙΚΩΝ ΔΙΚΑΣΤΗΡΙΩΝ '632': ΕΠΙΔΟΣΗ '633': ΙΔΡΥΜΑ ΚΡΑΤΙΚΩΝ ΥΠΟΤΡΟΦΙΩΝ '634': ΥΓΕΙΟΝΟΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΑΕΡΟΥΓΕΙΟΝΟΜΕΙΩΝ '635': ΟΦΕΙΛΕΣ ΠΡΟΣ ΤΟ ΔΗΜΟΣΙΟ '636': ΠΡΑΚΤΟΡΕΙΑ ΕΙΔΗΣΕΩΝ '637': ΕΛΕΓΧΟΣ ΚΑΙ ΕΠΟΠΤΕΙΑ ΞΕΝΟΔΟΧΕΙΩΝ ΚΛΠ '638': ΚΟΙΝΑ ΤΑΜΕΙΑ ΕΚΜΕΤΑΛΛΕΥΣΕΩΣ ΛΕΩΦΟΡΕΙΩΝ (Κ.Τ.Ε.Λ.) '639': ΚΑΤΩΤΑΤΑ ΟΡΙΑ ΜΙΣΘΩΝ ΚΑΙ ΗΜΕΡΟΜΙΣΘΙΩΝ '640': ΣΥΝΤΗΡΗΤΙΚΗ ΚΑΤΑΣΧΕΣΗ ΠΛΟΙΩΝ '641': ΥΠΗΡΕΣΙΑ ΠΡΟΣΤΑΣΙΑΣ ΕΡΓΑΖΟΜΕΝΩΝ ΣΤΗΝ ΑΛΛΟΔΑΠΗ '642': ΕΥΡΩΠΑΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΠΥΡΗΝΙΚΩΝ ΕΡΕΥΝΩΝ '643': ΒΙΒΛΙΑ ΓΕΩΡΓΙΚΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ '644': ΠΟΛΙΤΙΚΕΣ ΚΑΙ ΣΤΡΑΤΙΩΤΙΚΕΣ ΣΥΝΤΑΞΕΙΣ '645': ΜΕΤΑΤΡΟΠΗ ΜΕΤΟΧΩΝ ΣΕ ΟΝΟΜΑΣΤΙΚΕΣ '646': ΕΙΔΙΚΟΙ ΦΡΟΥΡΟΙ '647': ΥΠΗΡΕΣΙΑ ΕΘΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ '648': ΡΥΘΜΙΣΤΙΚΟΣ ΦΟΡΟΣ '649': ΛΙΜΑΝΙ ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΚΑΙ '650': ΕΚΚΛΗΣΙΑΣΤΙΚΕΣ ΥΠΟΤΡΟΦΙΕΣ '651': ΦΟΡΟΛΟΓΙΑ ΟΙΝΟΥ '652': ΔΙΕΘΝΗΣ ΥΓΕΙΟΝΟΜΙΚΗ ΣΥΜΒΑΣΗ ΑΕΡΟΝΑΥΤΙΛΙΑΣ '653': ΤΑΜΕΙΟ ΑΡΩΓΗΣ ΥΠΑΛΛΗΛΩΝ '654': ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ ΑΓΡΟΤΩΝ '655': ΚΥΡΟΣ ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΩΝ ΠΡΑΞΕΩΝ '656': ΦΟΡΟΛΟΓΙΑ ΥΠΕΡΑΞΙΑΣ ΑΚΙΝΗΤΩΝ '657': ΝΗΠΙΑΓΩΓΕΙΑ '658': ΕΚΘΕΜΑΤΑ ΚΑΙ ΔΕΙΓΜΑΤΑ '659': ΥΓΕΙΟΝΟΜΙΚΟ ΣΩΜΑ ΑΕΡΟΠΟΡΙΑΣ '660': ΠΛΗΡΩΜΗ ΜΙΣΘΩΝ ΚΑΙ ΗΜΕΡΟΜΙΣΘΙΩΝ '661': ΚΩΔΙΚΑΣ ΦΟΡΟΛΟΓΙΑΣ ΚΑΠΝΟΥ '662': ΟΡΙΑ '663': ΔΙΚΑΙΟΣΤΑΣΙΑ ΣΕΙΣΜΟΠΑΘΩΝ, ΠΥΡΟΠΑΘΩΝ, ΠΡΟΣΦΥΓΩΝ ΚΛΠ '664': ΧΡΕΗ ΚΛΗΡΟΝΟΜΙΩΝ '665': ΠΡΟΣΩΠΙΚΟΝ ΙΔΡΥΜΑΤΩΝ ΠΑΙΔΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ '666': ΜΙΣΘΩΣΕΙΣ ΚΑΙ ΑΓΟΡΕΣ '667': ΠΑΛΑΙΟΤΕΡΑΙ ΕΚΚΑΘΑΡΙΣΕΙΣ '668': ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΓΡΟΤΩΝ '669': ΑΠΑΛΛΟΤΡΙΩΣΕΙΣ ΓΙΑ ΔΗΜΟΤΙΚΑ ΚΑΙ ΚΟΙΝΟΤΙΚΑ ΕΡΓΑ '670': ΜΗΤΡΩΟ ΑΓΡΟΤΩΝ '671': ΚΑΝΟΝΙΣΜΟΣ ΔΙΕΥΚΟΛΥΝΣΕΩΝ '672': ΚΡΑΤΙΚΟ ΕΡΓΟΣΤΑΣΙΟ ΑΕΡΟΠΛΑΝΩΝ '673': ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΝΔΕΙΚΤΙΚΑ '674': ΑΥΘΑΙΡΕΤΕΣ ΚΑΤΑΣΚΕΥΕΣ '675': ΕΓΚΑΤΑΛΕΛΕΙΜΜΕΝΕΣ ΕΚΤΑΣΕΙΣ '676': ΥΠΟΥΡΓΕΙΟ ΔΗΜΟΣΙΩΝ ΄ΕΡΓΩΝ '677': ΠΡΟΝΟΙΑ Β. ΕΛΛΑΔΟΣ '678': ΔΙΚΑΣΤΙΚΟ ΕΝΣΗΜΟ - ΑΓΩΓΟΣΗΜΟ '679': ΤΑΧΥΔΡΟΜΙΚΗ ΑΝΤΑΠΟΚΡΙΣΗ '680': ΕΣΩΤΕΡΙΚΗ ΝΟΜΟΘΕΣΙΑ '681': ΦΟΡΟΛΟΓΙΑ ΤΣΙΓΑΡΟΧΑΡΤΟΥ '682': ΟΡΓΑΝΙΚΕΣ ΘΕΣΕΙΣ ΑΞΙΩΜΑΤΙΚΩΝ '683': ΜΑΙΕΥΤΙΚΗ ΠΕΡΙΘΑΛΨΗ '684': ΑΔΕΙΕΣ ΣΤΡΑΤΙΩΤΙΚΩΝ '685': ΟΡΓΑΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΕΛΛΗΝΙΚΗΣ ΑΣΤΥΝΟΜΙΑΣ '686': ΠΟΙΝΙΚΟΣ ΚΑΙ ΠΕΙΘΑΡΧΙΚΟΣ ΚΩΔΙΚΑΣ '687': ΑΝΥΠΟΤΑΚΤΟΙ '688': ΔΙΕΥΘΥΝΣΗ ΤΕΛΩΝΕΙΩΝ ΘΕΣΣΑΛΟΝΙΚΗΣ '689': ΠΕΡΙΦΕΡΕΙΕΣ ΛΙΜΕΝΙΚΩΝ ΑΡΧΩΝ '690': ΑΣΦΑΛΙΣΗ ΚΑΙ ΕΙΣΠΡΑΞΗ ΠΟΡΩΝ Τ.Ε.Β.Ε '691': ΣΙΔΗΡΟΣ '692': ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΜΠΟΡΙΟΥ '693': ΔΙΑΧΕΙΡΙΣΗ ΙΣΡΑΗΛΙΤΙΚΩΝ ΠΕΡΟΥΣΙΩΝ '694': ΛΙΠΟΤΑΞΙΑ '695': ΒΑΡΕΑ ΚΑΙ ΑΝΘΥΓΙΕΙΝΑ ΕΠΑΓΓΕΛΜΑΤΑ '696': ΕΙΔΙΚΟ ΤΑΜΕΙΟ ΜΗΧΑΝΗΜΑΤΩΝ '697': ΛΕΩΦΟΡΕΙΑ ΠΕΡΙΟΧΗΣ ΠΡΩΤΕΥΟΥΣΑΣ '698': ΑΝΑΜΟΡΦΩΤΙΚΑ ΚΑΤΑΣΤΗΜΑΤΑ '699': ΥΓΕΙΟΝΟΜΙΚΟ ΣΩΜΑ '700': ΟΡΓΑΝΙΣΜΟΣ ΥΠΟΥΡΓΕΙΟΥ ΕΡΓΑΣΙΑΣ '701': ΔΙΩΡΥΓΑ ΚΟΡΙΝΘΟΥ '702': ΠΕΡΙΘΑΛΨΗ ΦΥΜΑΤΙΚΩΝ ΑΣΦΑΛΙΣΜΕΝΩΝ '703': ΚΟΙΝΩΝΙΚΟΣ ΕΛΕΓΧΟΣ ΔΙΟΙΚΗΣΗΣ - ΑΝΤΙΓΡΑΦΕΙΟΚΡΑΤΙΚΑ ΜΕΤΡΑ -ΕΚΚΑΘΑΡΙΣΗ ΑΡΧΕΙΩΝ '704': ΒΙΒΛΙΑ ΥΠΟΘΕΣΕΩΝ ΕΚΟΥΣΙΑΣ ΔΙΚΑΙΟΔΟΣΙΑΣ '705': ΖΑΧΑΡΗ '706': ΒΟΡΕΙΟΑΤΛΑΝΤΙΚΗ ΑΜΥΝΤΙΚΗ ΟΡΓΑΝΩΣΗ (Ν.Α.Τ.Ο) '707': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΠΡΟΣΩΠΙΚΟΥ ΕΤΑΙΡΕΙΑΣ ΓΕΝΙΚΩΝ ΑΠΟΘΗΚΩΝ '708': ΝΟΜΙΚΗ ΚΑΤΑΣΤΑΣΗ ΠΡΟΣΦΥΓΩΝ '709': ΔΙΚΑΣΤΗΡΙΟ ΛΕΙΩΝ '710': ΔΙΕΘΝΗΣ ΟΡΓΑΝΩΣΗ ΕΡΓΑΣΙΑΣ '711': ΠΡΟΜΗΘΕΙΕΣ–ΜΙΣΘΩΣΕΙΣ–ΕΡΓΑ Ο.Γ.Α '712': ΠΕΡΙΘΑΛΨΗ ΠΡΟΣΩΠΙΚΟΥ Ο.Γ.Α '713': ΧΟΡΗΓΗΣΗ ΔΑΝΕΙΩΝ ΑΠΟ Τ.Π. ΚΑΙ ΔΑΝΕΙΩΝ '714': ΤΕΛΟΣ ΕΠΙΤΗΔΕΥΜΑΤΟΣ '715': ΕΛΕΥΘΕΡΑ ΤΕΛΩΝΕΙΑΚΑ ΣΥΓΚΡΟΤΗΜΑΤΑ '716': ΦΟΡΟΛΟΓΙΚΑ ΚΙΝΗΤΡΑ ΣΥΓΧΩΝΕΥΣΕΩΣ Η ΜΕΤΑΤΡΟΠΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ '717': ΚΑΤΑΣΤΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ T.E.B.E '718': ΝΑΥΤΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ '719': ΠΡΟΣΩΠΙΚΟ Υ.Ε.Ν '720': ΛΕΙΤΟΥΡΓΟΙ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ '721': ΚΟΙΝΟΠΡΑΞΙΑ ΓΕΩΡΓΙΚΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ '722': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΕΠΙΧΕΙΡΗΜΑΤΙΩΝ ΚΙΝΗΜΑΤΟΓΡΑΦΟΥ '723': ΒΟΣΚΟΤΟΠΟΙ '724': ΕΠΙΤΟΚΙΑ ΤΡΑΠΕΖΩΝ '725': ΚΑΠΝΙΚΟΙ ΟΡΓΑΝΙΣΜΟΙ '726': ΣΤΑΘΜΟΙ ΑΥΤΟΚΙΝΗΤΩΝ '727': ΕΥΛΟΓΙΑ '728': ΠΕΡΙΦΕΡΕΙΑΚΕΣ ΥΠΗΡΕΣΙΕΣ ΥΠΟΥΡΓΕΙΟΥ ΒΙΟΜΗΧΑΝΙΑΣ '729': ΤΑΜΕΙΟ ΑΕΡΟΠΟΡΙΚΗΣ ΑΜΥΝΑΣ '730': ΟΡΓΑΝΙΣΜΟΣ ΚΕΝΤΡΙΚΗΣ ΥΠΗΡΕΣΙΑΣ '731': ΤΑΜΕΙΟ ΕΡΓΑΣΙΑΣ ΗΘΟΠΟΙΩΝ '732': ΤΕΛΩΝΙΣΜΟΣ ΕΙΔΩΝ ΑΤΟΜΙΚΗΣ ΧΡΗΣΕΩΣ '733': ΦΟΡΟΛΟΓΙΑ ΠΡΟΣΟΔΟΥ ΑΠΟ ΠΛΟΙΑ '734': ΔΙΟΙΚΗΤΙΚΗ ΔΙΑΙΡΕΣΗΣ '735': ΟΡΓΑΝΙΣΜΟΣ ΑΥΤΟΚΙΝΗΤΟΔΡΟΜΙΩΝ ΕΛΛΑΔΟΣ (Ο.Α.Ε.) '736': ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΑΜΕΣΗΣ ΒΟΗΘΕΙΑΣ (Ε.Κ.Α.Β.) '737': ΓΝΩΜΟΔΟΤΙΚΟ ΣΥΜΒΟΥΛΙΟ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΠΤΥΞΗΣ '738': ΔΙΑΘΗΚΗ '739': ΑΓΩΓΕΣ ΔΙΑΤΡΟΦΗΣ '740': ΦΑΡΜΑΚΕΥΤΙΚΟΙ ΣΥΛΛΟΓΟΙ '741': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΚΑΙ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΓΕΩΡΓΙΚΩΝ ΣΥΝΕΤΑΙΡΙΣΤΙΚΩΝ ΟΡΓΑΝΩΣΕΩΝ (Τ.Σ.Ε.Α.Π.Γ.Σ.Ο) '742': ΕΠΙΔΟΜΑΤΑ ΔΙΑΦΟΡΑ '743': ΠΕΙΘΑΡΧΙΚΟ ΔΙΚΑΙΟ '744': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΧΗΜΙΚΩΝ (Τ.Ε.Α.Χ) '745': ΠΡΟΑΓΩΓΕΣ ΚΑΙ ΠΡΟΣΟΝΤΑ ΠΥΡΟΣΒΕΣΤΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ '746': ΟΔΟΙΠΟΡΙΚΑ ΕΞΟΔΑ ΠΡΟΣΩΠΙΚΟΥ ΣΩΜΑΤΩΝ ΑΣΦΑΛΕΙΑΣ '747': ΝΟΣΗΛΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ ΚΑΤ’ ΙΔΙΑΝ '748': ΠΡΟΣΤΑΣΙΑ ΚΑΤΑ ΤΗΣ ΦΥΛΛΟΞΗΡΑΣ '749': ΟΡΓΑΝΙΣΜΟΣ ΤΑΜΕΙΟΥ ΝΟΜΙΚΩΝ '750': ΠΡΑΤΗΡΙΑ ΥΓΡΩΝ ΚΑΥΣΙΜΩΝ '751': ΘΡΗΣΚΕΥΤΙΚΟ ΣΩΜΑ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ '752': ΔΙΑΔΙΚΑΣΙΑ ΑΝΑΓΚΑΣΤΙΚΩΝ ΑΠΑΛΛΟΤΡΙΩΣΕΩΝ ΑΚΙΝΗΤΩΝ '753': ΔΙΕΡΜΗΝΕΙΣ '754': ΣΧΕΔΙΑ ΑΛΛΩΝ ΠΟΛΕΩΝ '755': ΤΑΜΕΙΟ ΑΛΛΗΛΟΒΟΗΘΕΙΑΣ ΣΤΡΑΤΙΩΤΙΚΩΝ ΑΕΡΟΠΟΡΙΑΣ '756': ΗΜΕΡΟΛΟΓΙΟ ΜΗΧΑΝΗΣ '757': ΚΕΝΤΡΟ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ '758': ΩΡΕΣ ΕΡΓΑΣΙΑΣ ΣΕ ΑΡΤΟΠΟΙΕΙΑ '759': ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ '760': ΜΕΤΑΦΡΑΣΤΙΚΑ ΓΡΑΦΕΙΑ '761': ΠΡΟΔΙΑΓΡΑΦΕΣ ΜΕΛΕΤΩΝ '762': ΣΥΝΤΑΞΕΙΣ ΘΥΜΑΤΩΝ ΕΘΝΙΚΗΣ '763': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΣΥΜΒΟΛΑΙΟΓΡΑΦΩΝ '764': ΙΑΤΡΟΔΙΚΑΣΤΙΚΗ ΑΜΟΙΒΗ '765': ΕΦΟΡΙΕΣ ΚΑΠΝΟΥ – ΚΑΠΝΕΡΓΟΣΤΑΣΙΑ '766': ΠΟΙΜΝΙΟΣΤΑΣΙΑ '767': ΚΕΝΤΡΑ ΕΡΕΥΝΑΣ - ΕΡΕΥΝΗΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ '768': ΤΑΜΕΙΑ ΠΡΟΝΟΙΑΣ ΔΙΚΗΓΟΡΩΝ '769': ΟΙΝΟΠΑΡΑΓΩΓΗ ΣΑΜΟΥ '770': ΙΜΑΤΙΣΜΟΣ Π. ΝΑΥΤΙΚΟΥ '771': ΜΗΧΑΝΙΚΟΙ,ΑΡΧΙΤΕΚΤΟΝΕΣ,ΤΟΠΟΓΡΑΦΟΙ '772': ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ '773': ΝΕΟΙ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΟΙ ΘΕΣΜΟΙ '774': ΥΠΗΡΕΣΙΑ ΠΟΛΙΤΙΚΗΣ ΑΕΡΟΠΟΡΙΑΣ '775': ΟΡΓΑΝΙΣΜΟΣ ΥΠΟΘΗΚΟΦΥΛΑΚΕΙΩΝ '776': ΑΤΥΧΗΜΑΤΑ ΣΕ ΔΗΜΟΣΙΑ ΕΡΓΑ '777': ΑΡΕΙΟΣ ΠΑΓΟΣ '778': ΥΠΑΓΩΓΗ ΣΕ ΑΣΦΑΛΙΣΗ ΚΑΙ '779': ΔΙΕΘΝΕΙΣ ΣΙΔΗΡΟΔΡΟΜΙΚΕΣ ΜΕΤΑΦΟΡΕΣΔΙΕΥΡΩΠΑΙΚΟ ΣΙΔΗΡΟΔΡΟΜΙΚΟ ΣΥΣΤΗΜΑ '780': ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΘΕΩΡΗΣΗ Π. ΝΑΥΤΙΚΟΥ '781': ΑΝΑΠΤΥΞΙΑΚΗ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΗ ΠΟΛΙΤΙΚΗ '782': ΒΕΒΑΙΩΣΗ ΚΑΙ ΕΙΣΠΡΑΞΗ ΠΟΙΝΙΚΩΝ ΕΞΟΔΩΝ '783': ΝΑΥΤΙΚΟ ΧΗΜΕΙΟ '784': ΛΑΧΕΙΑ '785': ΤΡΟΧΙΟΔΡΟΜΟΙ ΑΘΗΝΩΝ – ΠΕΙΡΑΙΩΣ '786': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΕΤΑΙΡΕΙΩΝ ΛΙΠΑΣΜΑΤΩΝ ΤΑ.Π.Π.Ε.Λ '787': ΔΙΕΥΚΟΛΥΝΣΕΙΣ ΓΙΑ ΑΝΟΙΚΟΔΟΜΗΣΗ '788': ΑΓΟΡΑΠΩΛΗΣΙΑ ΚΑΠΝΟΥ '789': ΠΕΡΙ ΟΡΩΝ ΕΡΓΑΣΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΕΘΝΩΝ ΜΕΤΑΦΟΡΩΝ '790': ΑΛΙΕΥΤΙΚΟΣ ΚΩΔΙΚΑΣ '791': ΣΥΜΒΟΥΛΙΑ ΚΑΙ ΕΠΙΤΡΟΠΕΣ '792': ΠΕΡΙΦΕΡΕΙΑΚΕΣ ΥΠΗΡΕΣΙΕΣ ΥΠΟΥΡΓΕΙΟΥ ΟΙΚΟΝΟΜΙΚΩΝ '793': ΣΥΜΒΑΣΕΙΣ ΠΕΡΙ ΑΣΕΜΝΩΝ ΔΗΜΟΣΙΕΥΜΑΤΩΝ '794': ΓΕΩΡΓΙΚΟΙ ΣΤΑΘΜΟΙ '795': ΝΑΞΙΩΤΙΚΗ ΣΜΥΡΙΔΑ '796': ΑΝΑΣΤΟΛΗ ΠΡΟΣΕΛΕΥΣΕΩΣ ΕΦΕΔΡΩΝ '797': ΕΚΠΑΙΔΕΥΣΗ ΧΩΡΟΦΥΛΑΚΗΣ '798': ΑΣΦΑΛΙΣΗ ΕΞΑΓΩΓΙΚΩΝ ΠΙΣΤΩΣΕΩΝ '799': ΘΕΡΑΠΑΙΝΙΔΕΣ ΑΝΑΠΗΡΩΝ ΠΟΛΕΜΟΥ '800': ΕΠΙΤΡΟΠΗ ΑΤΟΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ '801': ΚΑΝΟΝΙΣΜΟΣ ΑΣΤΥΝΟΜΙΑΣ ΠΟΛΕΩΝ '802': ΦΥΛΛΑ ΠΟΙΟΤΗΤΑΣ ΥΠΑΞΙΩΜΑΤΙΚΩΝ Π.Ν '803': ΕΠΙΘΕΩΡΗΣΕΙΣ ΚΤΗΝΙΑΤΡΙΚΗΣ '804': ΜΕΡΙΚΗ ΑΠΑΣΧΟΛΗΣΗ - ΦΑΣΟΝ - ΤΗΛΕΡΓΑΣΙΑ ΚΑΤ’ ΟΙΚΟΝ ΑΠΑΣΧΟΛΗΣΗ '805': ΗΛΕΚΤΡΙΚΗ ΕΤΑΙΡΕΙΑ ΑΘΗΝΩΝ - ΠΕΙΡΑΙΩΣ '806': ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΑΙ ΟΙΚΙΑΙ '807': ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ '808': ΣΥΜΦΩΝΙΕΣ ΠΡΟΣΤΑΣΙΑΣ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ '809': ΛΙΓΝΙΤΗΣ '810': ΤΑΜΕΙΟ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΛΤΑ '811': ΜΕΛΕΤΕΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ '812': ΠΛΗΡΩΜΑΤΑ ΑΕΡΟΣΚΑΦΩΝ '813': ΕΞΑΓΩΓΗ ΣΤΑΦΙΔΑΣ '814': ΤΑΜΕΙΟΝ ΠΡΟΝΟΙΑΣ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '815': ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΟΥΣΙΑΣ '816': ΟΡΓΑΝΙΚΟΙ ΝΟΜΟΙ '817': ΥΠΗΡΕΣΙΕΣ ΑΙΜΟΔΟΣΙΑΣ '818': ΣΩΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '819': ΠΕΖΟΔΡΟΜΙΑ '820': ΔΙΑΘΕΣΗ ΑΠΟΡΡΙΜΜΑΤΩΝ '821': ΤΡΟΧΙΟΔΡΟΜΟΙ ΘΕΣΣΑΛΟΝΙΚΗΣ '822': ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΔΗΜΟΣΙΟΥ ΛΟΓΙΣΤΙΚΟΥ '823': ΡΥΜΟΥΛΚΑ - ΛΑΝΤΖΕΣ '824': ΠΕΤΡΕΛΑΙΟΕΙΔΗ '825': ΓΕΝΙΚΑ ΑΡΧΕΙΑ ΤΟΥ ΚΡΑΤΟΥΣ '826': ΚΑΤΑΣΤΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ Ο.Τ.Ε. - ΣΧΕΣΕΙΣ Ο.Τ.Ε. ΜΕ ΑΛΛΟΥΣ ΠΑΡΟΧΟΥΣ '827': ΥΠΗΡΕΣΙΑ ΑΥΤΟΚΙΝΗΤΩΝ '828': ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ '829': ΜΟΝΟΠΩΛΙΟ ΖΑΧΑΡΙΝΗΣ '830': ΟΙΚΙΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ '831': ΑΤΕΛΕΙΕΣ ΥΠΕΡ ΤΗΣ ΑΛΙΕΙΑΣ '832': ΔΙΑΦΟΡΕΣ ΕΚΤΑΚΤΕΣ ΦΟΡΟΛΟΓΙΕΣ '833': ΒΙΒΛΙΑ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ '834': ΕΡΓΑΤΙΚΑ ΑΤΥΧΗΜΑΤΑ '835': ΝΟΣΗΛΕΥΤΕΣ '836': ΣΥΝΔΙΚΑΛΙΣΤΙΚΕΣ ΕΛΕΥΘΕΡΙΕΣ '837': ΕΘΝΙΚΟ ΣΥΜΒΟΥΛΙΟ ΕΝΕΡΓΕΙΑΣ '838': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΕΡΓΑΤΟΤΕΧΝΙΤΩΝ ΥΑΛΟΥΡΓΩΝ '839': ΑΓΩΓΕΣ ΑΣΦΑΛΙΣΤΡΩΝ '840': ΣΩΜΑΤΕΜΠΟΡΙΑ ΓΥΝΑΙΚΩΝ '841': ΑΤΕΛΕΙΕΣ ΕΡΓΩΝ ΑΜΥΝΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ '842': ΤΕΧΝΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΑΞΙΩΜΑΤΙΚΩΝ ΣΕ ΑΝΩΤΑΤΕΣ ΣΧΟΛΕΣ '843': ΔΙΚΑΙΩΜΑΤΑ ΚΗΡΥΚΩΝ ΚΛΠ '844': ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΑΜΕΙΟΥ ΝΟΜΙΚΩΝ '845': ΝΑΥΤΕΣ ΚΑΙ ΛΙΜΕΝΟΦΥΛΑΚΕΣ '846': ΠΑΝΕΠΙΣΤΗΜΙΑΚΗ ΣΧΟΛΗ ΑΓΡΙΝΙΟΥ '847': ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ '848': ΜΕΙΩΣΗ ΕΙΣΦΟΡΩΝ '849': ΚΕΝΤΡΑ ΛΗΨΕΩΣ ΤΙΜΩΝ ΣΦΑΓΕΙΩΝ '850': ΑΠΟΔΗΜΙΑ ΣΤΡΑΤΕΥΣΙΜΩΝ '851': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΝΟΙΑΣ ΚΑΙ ΚΟΙΝΗΣ ΔΙΑΝΟΜΗΣ ΠΩΛΗΤΩΝ ΒΕΝΖΙΝΗΣ ΑΘΗΝΩΝ - ΠΕΙΡΑΙΩΣ ΚΑΙ ΠΕΡΙΧΩΡΩΝ '852': ΙΑΤΡΟΦΑΡΜΑΚΕΥΤΙΚΗ ΠΕΡΙΘΑΛΨΗ '853': ΝΟΣΗΛΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ '854': ΓΕΝΙΚΑ ΠΕΡΙ ΜΟΥΣΕΙΩΝ '855': ΑΣΦΑΛΕΙΑ ΟΧΥΡΩΝ ΘΕΣΕΩΝ '856': ΓΕΩΡΓΙΚΑ ΜΗΧΑΝΗΜΑΤΑ '857': ΤΑΜΕΙΑ ΣΥΝΕΡΓΑΣΙΑΣ '858': ΙΔΙΩΤΙΚΕΣ ΚΛΙΝΙΚΕΣ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑ '859': ΥΓΕΙΟΝΟΜΙΚΗ ΕΞΕΤΑΣΗ ΙΠΤΑΜΕΝΩΝ '860': ΔΙΑΦΟΡΕΣ ΑΕΡΟΠΟΡΙΚΕΣ ΣΧΟΛΕΣ '861': ΓΥΝΑΙΚΕΣ ΝΟΣΟΚΟΜΟΙ '862': ΦΟΙΤΗΣΗ, ΒΑΘΜΟΛΟΓΙΑ, ΕΞΕΤΑΣΕΙΣ ΚΛΠ. Α.Σ.Κ.Τ '863': ΣΕΙΣΜΟΠΛΗΚΤΟΙ ΔΙΑΦΟΡΟΙ '864': ΟΡΓΑΝΙΣΜΟΣ ΥΠΟΥΡΓΕΙΟΥ ΓΕΩΡΓΙΑΣ '865': ΚΩΔΙΚΟΠΟΙΗΣΗ ΤΗΣ ΝΟΜΟΘΕΣΙΑΣ '866': ΜΕΤΑ ΤΗΣ ΓΑΛΛΙΑΣ '867': ΓΕΩΓΡΑΦΙΚΗ ΥΠΗΡΕΣΙΑ ΣΤΡΑΤΟΥ '868': ΕΙΔΗ ΠΑΡΑΔΙΔΟΜΕΝΑ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΧΡΗΣΗ '869': ΜΟΝΟΠΩΛΙΟ ΣΠΙΡΤΩΝ '870': ΚΑΤΑΣΤΑΤΙΚΟΝ Τ.Α.Κ.Ε '871': ΕΠΙΚΟΥΡΙΚΟ ΤΑΜΕΙΟ ΥΠΑΛΛΗΛΩΝ ΑΣΤΥΝΟΜΙΑΣ ΠΟΛΕΩΝ (Ε.Τ.Υ.Α.Π.) '872': ΜΙΣΘΟΔΟΣΙΑ ΙΕΡΕΩΝ – ΕΝΟΡΙΑΚΗ ΕΙΣΦΟΡΑ '873': ΥΓΕΙΟΝΟΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ '874': ΝΟΜΟΣ ΠΕΡΙ ΚΤΗΜΑΤΙΚΩΝ ΤΡΑΠΕΖΩΝ '875': ΔΙΕΘΝΗΣ ΣΥΜΒΑΣΗ ΠΕΡΙ ΥΔΡΑΥΛΙΚΩΝ ΔΥΝΑΜΕΩΝ '876': ΑΝΑΠΗΡΟΙ ΑΞΙΩΜΑΤΙΚΟΙ ΚΑΙ ΟΠΛΙΤΕΣ ΕΙΡΗΝΙΚΗΣ ΠΕΡΙΟΔΟΥ '877': ΠΟΙΝΙΚΗ ΚΑΙ ΠΕΙΘΑΡΧΙΚΗ ΔΩΣΙΔΙΚΙΑ Λ.Σ '878': ΔΑΣΙΚΟ ΠΡΟΣΩΠΙΚΟ '879': ΑΟΠΛΗ ΘΗΤΕΙΑ-ΑΝΤΙΡΡΗΣΙΕΣ ΣΥΝΕΙΔΗΣΗΣ '880': ΝΕΟΙ ΠΡΟΣΦΥΓΕΣ '881': ΤΕΧΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΣΤΡΑΤΟΥ '882': ΜΕΤΟΧΙΚΟ ΤΑΜΕΙΟ ΠΟΛΙΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ '883': ΠΡΟΣΩΠΙΚΟ ΙΔΙΩΤΙΚΟΥ ΔΙΚΑΙΟΥ '884': ΚΩΔΙΚΑΣ ΑΓΡΟΤΙΚΗΣ ΑΣΦΑΛΕΙΑΣ '885': ΟΡΓΑΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΑΠΟΣΤΟΛΙΚΗΣ ΔΙΑΚΟΝΙΑΣ '886': ΥΠΟΥΡΓΕΙΟ ΑΙΓΑΙΟΥ '887': ΓΑΜΟΙ ΔΩΔΕΚΑΝΗΣΟΥ '888': ΩΡΕΣ ΕΡΓΑΣΙΑΣ ΚΡΕΟΠΩΛΕΙΩΝ '889': ΚΩΔΙΚΑΣ ΤΕΛΩΝ ΧΑΡΤΟΣΗΜΟΥ '890': ΔΕΛΤΙΟ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ '891': ΑΡΜΟΔΙΟΤΗΤΑ ΝΟΜΑΡΧΗ ΣΕ ΕΡΓΑΤΙΚΑ ΖΗΤΗΜΑΤΑ '892': ΤΡΟΦΟΔΟΣΙΑ Π. ΝΑΥΤΙΚΟΥ '893': ΣΥΜΦΩΝΙΑ ΠΕΡΙ ΔΙΠΛΩΜΑΤΙΚΩΝ ΣΧΕΣΕΩΝ '894': ΕΦΕΔΡΟΙ ΚΑΙ ΕΠΙΚΟΥΡΟΙ ΑΞΙΩΜΑΤΙΚΟΙ Π.Ν '895': ΤΟΥΡΙΣΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ '896': ΔΙΕΘΝΕΣ ΠΟΙΝΙΚΟ ΔΙΚΑΣΤΗΡΙΟ '897': ΔΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ '898': ΝΟΣΟΚΟΜΕΙΑ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '899': ΣΥΜΒΟΥΛΙΟ ΧΑΛΥΒΑ '900': ΤΕΜΑΧΙΣΜΟΣ ΚΡΕΑΤΩΝ '901': ΕΛΕΓΧΟΣ ΚΑΤΟΧΗΣ ΟΠΛΩΝ '902': ΑΝΑΠΡΟΣΑΡΜΟΓΕΣ ΤΗΣ ΔΡΑΧΜΗΣ '903': ΕΦΟΔΙΑΣΜΟΣ ΠΛΟΙΩΝ '904': ΣΕΙΣΜΟΠΛΗΚΤΟΙ ΙΟΝΙΩΝ ΝΗΣΩΝ '905': ΔΗΜΟΣΙΑ ΕΠΙΧΕΙΡΗΣΗ ΚΙΝΗΤΩΝ ΑΞΙΩΝ ΑΝΩΝΥΜΗ ΕΤΑΙΡΕΙΑ (Δ.Ε.Κ.Α. Α.Ε.) '906': ΕΤΑΙΡΕΙΑ – ΕΥΡΩΠΑΙΚΟΣ ΟΜΙΛΟΣ '907': ΔΙΕΥΘΥΝΣΗ ΑΛΙΕΙΑΣ '908': ΕΠΙΜΕΛΗΤΗΡΙΟ ΤΟΥΡΙΣΤΙΚΩΝ ΚΑΤΑΣΤΗΜΑΤΩΝ '909': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΕΛΑΙΟΛΑΔΟΥ '910': ΠΤΗΤΙΚΗ ΙΚΑΝΟΤΗΤΑ '911': ΕΚΚΛΗΣΙΑΣΤΙΚΕΣ ΣΧΟΛΕΣ '912': ΔΙΑΤΙΜΗΣΗ ΙΑΤΡΙΚΩΝ ΠΡΑΞΕΩΝ '913': ΑΔΙΚΗΜΑΤΑ ΤΥΠΟΥ '914': ΕΞΑΝΘΗΜΑΤΙΚΟΣ ΤΥΦΟΣ '915': ΟΙΚΟΣ ΝΑΥΤΟΥ '916': ΜΑΣΤΙΧΑ '917': ΣΥΛΛΟΓΟΙ ΚΑΙ ΟΜΟΣΠΟΝΔΙΑ ΔΙΚΑΣΤΙΚΩΝ ΕΠΙΜΕΛΗΤΩΝ '918': ΕΜΠΟΡΙΚΑ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΑ ΣΗΜΑΤΑ '919': ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΑΝΩΤΑΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΙΔΡΥΜΑΤΩΝ '920': ΥΓΕΙΟΝΟΜΙΚΗ ΑΠΟΘΗΚΗ '921': ΓΕΝ. ΔΙΕΥΘΥΝΣΗ ΠΟΙΝΙΚΗΣ ΔΙΚΑΙΟΣΥΝΗΣ '922': ΑΕΡΟΠΟΡΙΚΟ ΔΙΚΑΙΟ '923': ΜΕΛΕΤΗ ΚΑΙ ΕΠΙΒΛΕΨΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ '924': ΑΘΕΜΙΤΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ '925': ΠΟΛΕΜΙΚΗ ΔΙΑΘΕΣΙΜΟΤΗΤΑ '926': ΛΕΣΧΕΣ ΚΑΙ ΠΡΑΤΗΡΙΑ ΕΛ.ΑΣ '927': ΚΑΥΣΙΜΑ '928': ΥΓΕΙΟΝΟΜΙΚΑ ΜΕΤΡΑ '929': ΚΑΤΑΣΤΑΣΗ ΑΞΙΩΜΑΤΙΚΩΝ '930': ΕΙΣΠΡΑΞΗ ΠΟΡΩΝ ΤΑΜΕΙΟΥ ΝΟΜΙΚΩΝ '931': ΔΙΟΙΚΗΤΙΚΗ ΡΥΘΜΙΣΗ ΑΠΟΔΟΧΩΝ ΚΑΙ ΟΡΩΝ ΕΡΓΑΣΙΑΣ '932': ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΤΑΧΥΔΡΟΜΕΙΩΝ '933': ΟΡΓΑΝΙΣΜΟΣ ΛΙΜΕΝΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΩΝΥΜΗ ΕΤΑΙΡΙΑ (Ο.Λ.Θ. Α.Ε.) '934': ΣΧΟΛΗ ΕΘΝΙΚΗΣ ΑΜΥΝΑΣ '935': ΚΑΘΟΛΙΚΟΙ '936': ΕΚΚΛΗΣΙΑΣΤΙΚΑ ΜΟΥΣΕΙΑ '937': ΔΙΕΘΝΗΣ ΕΚΘΕΣΗ ΘΕΣΣΑΛΟΝΙΚΗΣ Α.Ε. – XELEXPO Α.Ε '938': ΕΥΕΡΓΕΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΗΜΕΡΩΝ ΕΡΓΑΣΙΑΣ '939': ΕΙΣΦΟΡΑ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΚΙΝΔΥΝΟΥ '940': ΑΠΑΛΛΟΤΡΙΩΣΕΙΣ ΓΙΑ ΤΟΥΡΙΣΤΙΚΟΥΣ ΣΚΟΠΟΥΣ '941': ΑΠΟΛΥΜΑΝΤΗΡΙΑ '942': ΕΚΠΟΙΗΣΗ ΠΛΟΙΩΝ ΔΗΜΟΣΙΟΥ '943': ΔΙΑΚΟΝΟΙ '944': ΥΔΡΕΥΣΗ ΔΙΑΦΟΡΩΝ ΠΟΛΕΩΝ '945': ΠΡΩΤΕΣ ΥΛΕΣ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ '946': ΨΕΥΔΗΣ ΒΕΒΑΙΩΣΗ ΕΝΩΠΙΟΝ ΑΡΧΗΣ '947': ΑΠΩΛΕΣΘΕΙΣΕΣ ΚΑΙ ΠΑΡΑΓΡΑΦΕΙΣΕΣ ΑΞΙΕΣ '948': ΦΟΙΤΗΤΙΚΗ ΛΕΣΧΗ '949': ΤΑΜΕΙΟ ΥΓΕΙΑΣ ΤΑΧΥΔΡΟΜΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ '950': ΕΛΕΓΧΟΣ ΔΕΝΔΡΩΔΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ '951': ΚΑΤΑΠΟΛΕΜΗΣΗ ΑΝΑΛΦΑΒΗΤΙΣΜΟΥΛΑΙΚΗ ΕΠΙΜΟΡΦΩΣΗ '952': ΕΠΙΚΟΥΡΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΜΕΤΑΦΟΡΩΝ '953': ΦΟΙΤΗΤΙΚΕΣ ΛΕΣΧΕΣ '954': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΓΙΑ ΤΗΝ ΠΡΟΣΤΑΣΙΑ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΓΥΝΑΙΚΩΝ '955': ΛΗΣΤΕΙΑ '956': ΑΓΩΓΕΣ ΑΠΟ ΣΥΝΑΛΛΑΓΜΑΤΙΚΕΣ ΚΑΙ ΓΡΑΜΜΑΤΙΑ '957': ΕΚΜΙΣΘΩΣΗ ΔΗΜΟΣΙΩΝ ΜΕΤΑΛΛΕΙΩΝ '958': ΚΟΛΥΜΒΗΤΙΚΕΣ ΔΕΞΑΜΕΝΕΣ '959': ΕΡΑΝΟΙ ΚΑΙ ΛΑΧΕΙΟΦΟΡΟΙ Η ΦΙΛΑΝΘΡΩΠΙΚΕΣ ΑΓΟΡΕΣ '960': ΠΡΟΣΤΑΣΙΑ ΕΠΙΒΑΤΗΓΟΥ ΝΑΥΤΙΛΙΑΣ '961': ΓΕΝΙΚΟΙ ΝΟΜΟΙ ΠΕΡΙ ΞΕΝΟΔΟΧΕΙΩΝ-ΕΠΙΠΛ. ΔΩΜΑΤΙΩΝ ΚΛΠ '962': ΙΕΡΑΡΧΙΑ ΚΑΙ ΠΡΟΑΓΩΓΕΣ ΑΞΙΩΜΑΤΙΚΩΝ '963': ΣΥΝΕΡΓΑΤΕΣ (ΓΡΑΜΜΑΤΕΙΣ) ΒΟΥΛΕΥΤΩΝ-ΕΥΡΩΒΟΥΛΕΥΤΩΝ '964': ΣΧΟΛΗ ΙΚΑΡΩΝ '965': ΟΡΓΑΝΙΣΜΟΣ ΣΙΔΗΡΟΔΡΟΜΩΝ ΕΛΛΑΔΟΣ (Ο.Σ.Ε.)ΣΙΔΗΡΟΔΡΟΜΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ '966': ΥΓΕΙΟΝΟΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΚΑΤΑ ΘΑΛΑΣΣΑΝ ΚΑΙ ΚΑΤΑ ΞΗΡΑΝ '967': ΚΑΝΟΝΙΣΜΟΣ ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΓΑΣΙΩΝ '968': ΑΠΟΦΥΓΗ ΣΥΓΚΡΟΥΣΕΩΝ '969': ΤΟΜΑΤΟΠΑΡΑΓΩΓΗ '970': ΔΙΑΦΟΡΕΣ ΔΙΑΤΑΞΕΙΣ ΓΙΑ ΤΑ ΑΥΤΟΚΙΝΗΤΑ '971': ΚΑΤΑΤΑΞΗ ΓΥΝΑΙΚΩΝ ΣΤΟ Λ.Σ '972': ΕΤΑΙΡΕΙΕΣ ΔΙΟΙΚΟΥΜΕΝΕΣ ΑΠΟ ΤΟΥΣ ΠΙΣΤΩΤΕΣ '973': ΒΑΛΚΑΝΙΚΕΣ ΣΥΜΦΩΝΙΕΣ '974': ΜΕΤΑΦΟΡΑ ΣΥΝΤΕΛΕΣΤΗ ΔΟΜΗΣΗΣ '975': ΠΡΟΜΗΘΕΥΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ Π.Ν '976': ΠΡΟΣΩΠΙΚΟ ΦΑΡΜΑΚΕΙΩΝ '977': ΔΙΔΑΣΚΟΜΕΝΑ ΜΑΘΗΜΑΤΑ '978': ΕΚΛΟΓΗ ΒΟΥΛΕΥΤΩΝ - ΕΥΡΩΒΟΥΛΕΥΤΩΝ '979': ΦΑΡΜΑΚΟΠΟΙΟΙ '980': ΣΤΡΑΤΙΩΤΙΚΑ ΠΡΑΤΗΡΙΑ '981': ΚΑΡΚΙΝΟΣ '982': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ Α.Ε. ΟΙΝΟΠΟΙΙΑΣ, ΖΥΘΟΠΟΙΙΑΣ ΚΑΙ ΟΙΝΟΠΝΕΥΜΑΤΟΠΟΙΙΑΣ '983': ΧΕΙΡΙΣΤΕΣ ΑΣΥΡΜΑΤΟΥ '984': ΠΟΛΙΤΙΚΗ ΕΠΙΣΤΡΑΤΕΥΣΗ-ΠΑΛΛΑΙΚΗ ΑΜΥΝΑ '985': ΟΡΓΑΝΙΣΜΟΙ ΕΓΓΕΙΩΝ ΒΕΛΤΙΩΣΕΩΝ '986': ΟΜΟΓΕΝΕΙΣ ΠΑΛΛΙΝΟΣΤΟΥΝΤΕΣ '987': ΕΥΡΩΠΑΙΚΟΣ ΚΟΙΝΩΝΙΚΟΣ ΧΑΡΤΗΣ '988': ΟΡΓΑΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ '989': ΕΞΑΙΡΕΣΗ ΔΙΚΑΣΤΩΝ '990': ΓΕΝΙΚΕΣ ΕΠΙΘΕΩΡΗΣΕΙΣ – ΔΙΕΥΘΥΝΣΕΙΣ ΣΤΟΙΧΕΙΩΔΟΥΣ ΕΚΠΑΙΔΕΥΣΗΣ '991': ΚΑΝΟΝΙΣΜΟΣ ΕΠΙΘΕΩΡΗΣΕΩΣ ΚΑΙ ΑΣΦΑΛΕΙΑΣ '992': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΑΥΤΟΝΟΜΟΥ ΣΤΑΦΙΔΙΚΟΥ ΟΡΓΑΝΙΣΜΟΥ (Τ.Α.Π.Α.Σ.Ο) '993': ΤΑΜΕΙΟΝ ΠΡΟΝΟΙΑΣ ΟΡΘΟΔΟΞΟΥ ΕΦΗΜΕΡΙΑΚΟΥ '994': ΣΧΟΛΙΚΗ ΣΩΜΑΤΙΚΗ ΑΓΩΓΗ '995': ΚΕΝΤΡΟ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑΣ '996': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΙΔΙΟΚΤΗΤΩΝ '997': ΒΟΣΚΗ ΕΝΤΟΣ ΔΑΣΩΝ '998': ΕΛΕΓΧΟΣ ΕΞΑΓΟΜΕΝΩΝ ΓΕΩΡΓΙΚΩΝ ΠΡΟΙΟΝΤΩΝ '999': ΠΑΙΔΑΓΩΓΙΚΑ ΤΜΗΜΑΤΑ Α.Ε.Ι '1000': ΥΠΟΤΡΟΦΙΕΣ ΚΛΗΡΟΔΟΤΗΜΑΤΟΣ Π. ΒΑΣΣΑΝΗ '1001': ΑΤΥΧΗΜΑ ΑΠΟ ΔΟΛΟ ΤΟΥ ΕΡΓΟΔΟΤΗ '1002': ΒΥΖΑΝΤΙΝΟ ΚΑΙ ΧΡΙΣΤΙΑΝΙΚΟ ΜΟΥΣΕΙΟ '1003': ΕΙΡΗΝΕΥΤΙΚΕΣ ΑΠΟΣΤΟΛΕΣ '1004': ΥΓΕΙΟΝΟΜΙΚΟΣ ΄ΕΛΕΓΧΟΣ ΕΙΣΕΡΧΟΜΕΝΩΝ '1005': ΟΡΚΟΣ ΤΟΥ ΠΟΛΙΤΗ '1006': ΥΓΕΙΟΝΟΜΙΚΗ ΠΕΡΙΘΑΛΨΗ ΣΠΟΥΔΑΣΤΩΝ '1007': ΠΑΡΑΧΑΡΑΞΗ ΚΑΙ ΚΙΒΔΗΛΙΑ '1008': ΔΙΑΜΕΡΙΣΜΑΤΑ ΠΛΟΙΑΡΧΩΝ ΚΑΙ ΠΛΗΡΩΜΑΤΩΝ '1009': ΚΛΑΔΟΣ ΑΡΩΓΗΣ Τ.Α.Κ.Ε '1010': ΟΡΓΑΝΙΣΜΟΣ ΒΑΜΒΑΚΟΣ '1011': ΝΟΣΗΛΕΙΑ ΣΤΡΑΤΙΩΤΙΚΩΝ '1012': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ '1013': ΠΟΛΥΕΘΝΕΙΣ ΑΕΡΟΠΟΡΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '1014': ΝΑΥΤΙΚΟ ΑΠΟΜΑΧΙΚΟ ΤΑΜΕΙΟ '1015': ΥΓΙΕΙΝΗ ΑΡΤΟΠΟΙΕΙΩΝ '1016': ΝΟΜΑΡΧΙΑΚΑ ΣΥΜΒΟΥΛΙΑ '1017': ΛΕΣΧΗ ΑΞΙΩΜΑΤΙΚΩΝ Π.Ν '1018': ΚΑΤΩΤΕΡΟ ΔΙΔΑΚΤΙΚΟ ΠΡΟΣΩΠΙΚΟ '1019': ΓΕΝΙΚΑ ΠΕΡΙ ΚΥΚΛΟΦΟΡΙΑΣ ΑΥΤΟΚΙΝΗΤΩΝ '1020': ΤΑΜΕΙΟ ΝΟΣΗΛΕΙΑΣ ΣΠΟΥΔΑΣΤΩΝ '1021': ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΚΑΙ ΒΙΟΤΕΧΝΙΚΑ ΕΠΙΜΕΛΗΤΗΡΙΑ '1022': ΑΚΤΟΠΛΟΙΑ '1023': ΠΡΟΣΤΑΣΙΑ ΑΛΙΕΙΑΣ '1024': ΜΕ ΤΗ ΝΟΡΒΗΓΙΑ '1025': ΗΘΙΚΕΣ ΑΜΟΙΒΕΣ ΠΡΟΣΩΠΙΚΟΥ (΄ΕΝΟΠΛΟΥ-ΠΟΛΙΤΙΚΟΥ) ΥΠΟΥΡΓΕΙΟΥ ΔΗΜΟΣΙΑΣ ΤΑΞΗΣ '1026': ΛΕΩΦΟΡΕΙΑ ΙΔΙΩΤΙΚΗΣ ΧΡΗΣΕΩΣ '1027': ΕΡΓΑΤΙΚΕΣ ΔΙΑΦΟΡΕΣ '1028': ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΙ-ΡΑΔΙΟΤΕΧΝΙΤΕΣ '1029': ΠΡΟΓΝΩΣΤΙΚΑ ΠΟΔΟΣΦΑΙΡΟΥ '1030': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΤΗΣ ΑΓΡΟΤΙΚΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΑΣ (Τ.Σ.Π. – Α.Τ.Ε.) '1031': ΥΔΡΕΥΣΗ ΛΕΚΑΝΟΠΕΔΙΟΥ ΑΘΗΝΩΝ '1032': ΤΡΑΠΕΖΑ ΟΦΘΑΛΜΩΝ '1033': ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΧΑΡΤΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΙΚΗΣ ΚΛΗΡΟΝΟΜΙΑΣ - ΕΘΝΙΚΗ ΧΑΡΤΟΘΗΚΗ '1034': ΚΑΝΟΝΙΣΜΟΙ ΑΠΟΦΥΓΗΣ ΣΥΓΚΡΟΥΣΕΩΝ '1035': ΓΡΑΦΕΙΟ ΕΓΚΛΗΜΑΤΙΩΝ ΠΟΛΕΜΟΥ '1036': ΑΓΡΟΤΙΚΕΣ ΣΥΝΔΙΚΑΛΙΣΤΙΚΕΣ ΟΡΓΑΝΩΣΕΙΣ '1037': ΤΑΥΤΟΤΗΤΕΣ '1038': ΔΑΣΙΚΟΙ ΣΥΝΕΤΑΙΡΙΣΜΟΙ '1039': ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΑ ΔΙΚΑΙΩΜΑΤΑ '1040': ΙΔΙΟΚΤΗΣΙΑ ΚΑΤ’ ΟΡΟΦΟ '1041': ΣΧΟΛΙΚΑ ΤΑΜΕΙΑ '1042': ΑΡΧΕΙΟΦΥΛΑΚΕΙΑ ΔΙΑΦΟΡΑ '1043': ΑΠΟΖΗΜΙΩΣΗ ΑΝΤΑΛΛΑΞΙΜΩΝ '1044': ΣΧΟΛΙΚΑ ΚΤΙΡΙΑ '1045': ΦΟΡΟΛΟΓΙΑ ΟΙΚΟΔΟΜΩΝ '1046': ΠΡΟΤΥΠΑ ΔΗΜΟΤΙΚΑ '1047': ΠΡΩΤΕΣ ΥΛΕΣ ΒΥΡΣΟΔΕΨΙΑΣ - ΔΕΡΜΑΤΑ '1048': ΣΥΜΒΙΒΑΣΜΟΣ ΚΑΙ ΔΙΑΙΤΗΣΙΑ '1049': ΚΑΤΑΣΤΑΣΗ ΔΗΜΟΤΙΚΩΝ ΚΑΙ ΚΟΙΝΟΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ '1050': ΕΣΟΔΑ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ '1051': ΣΤΑΔΙΑ ΚΑΙ ΓΥΜΝΑΣΤΗΡΙΑ '1052': ΚΟΙΝΗ ΑΓΡΟΤΙΚΗ ΠΟΛΙΤΙΚΗ '1053': ΑΤΟΜΑ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ - ΥΠΕΡΗΛΙΚΕΣ - ΧΡΟΝΙΑ ΠΑΣΧΟΝΤΕΣ '1054': ΕΚΚΛΗΣΙΑΣΤΙΚΑ ΔΙΚΑΣΤΗΡΙΑ '1055': ΣΥΜΒΑΣΕΙΣ ΓΙΑ ΤΗΝ ΑΠΟΦΥΓΗ ΔΙΠΛΗΣ ΦΟΡΟΛΟΓΙΑΣ '1056': ΠΡΟΣΤΑΣΙΑ ΒΑΜΒΑΚΟΠΑΡΑΓΩΓΗΣ '1057': ΝΑΥΤΙΚΗ ΣΤΡΑΤΟΛΟΓΙΑ '1058': ΝΟΣΟΚΟΜΕΙΑΚΗ ΠΕΡΙΘΑΛΨΗ ΑΣΦΑΛΙΣΜΕΝΩΝ Ο.Γ.Α '1059': ΦΥΣΙΚΑ ΟΡΓΑΝΙΚΑ ΛΙΠΑΣΜΑΤΑ '1060': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΜΙΣΘΩΤΩΝ ΕΣΤΙΑΤΟΡΙΩΝ, ΖΑΧΑΡΟΠΛΑΣΤΕΙΩΝ, ΚΑΦΕΝΕΙΩΝ Κ.ΛΠ. (Τ.Ε.Α.Μ.Ε.Ζ.) '1061': ΤΕΧΝΙΚΑΙ ΥΠΗΡΕΣΙΑΙ '1062': ΣΥΓΚΕΝΤΡΩΣΗ ΠΡΟΙΟΝΤΩΝ '1063': ΥΔΡΟΓΡΑΦΙΚΗ ΥΠΗΡΕΣΙΑ '1064': ΥΠΗΡΕΣΙΑ ΕΛΕΓΧΟΥ ΚΑΤΑΣΚΕΥΗΣ ΑΞΙΩΝ ΤΟΥ ΔΗΜΟΣΙΟΥ '1065': ΕΠΙΣΚΟΠΙΚΑ ΓΡΑΦΕΙΑ '1066': ΒΕΛΓΙΟ, ΒΕΝΕΖΟΥΕΛΑ Κ.ΛΠ '1067': ΔΗΜΟΤΙΚΟΣ ΚΑΙ ΚΟΙΝΟΤΙΚΟΣ ΚΩΔΙΚΑΣ '1068': ΠΡΟΔΟΣΙΑ '1069': ΜΙΣΘΟΣ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '1070': ΠΟΛΙΤΙΚΟ ΠΡΟΣΩΠΙΚΟ ΝΑΥΤΙΚΟΥ '1071': ΑΝΑΖΗΤΗΣΗ ΚΑΙ ΔΙΑΦΥΛΑΞΗ ΑΡΧΑΙΟΤΗΤΩΝ '1072': ΑΔΕΙΕΣ ΛΙΑΝΙΚΗΣ ΠΩΛΗΣΗΣ ΤΣΙΓΑΡΩΝ ΚΑΙ ΕΙΔΩΝ ΜΟΝΟΠΩΛΙΟΥ '1073': ΕΠΟΠΤΙΚΑ ΜΕΣΑ ΔΙΔΑΣΚΑΛΙΑΣ '1074': ΕΚΛΟΓΟΔΙΚΕΙΑ '1075': Ο.Γ.Α ΚΑΤΑΣΤΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ '1076': ΙΝΣΤΙΤΟΥΤΟ ΥΓΕΙΑΣ ΤΟΥ ΠΑΙΔΙΟΥ '1077': ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ '1078': ΕΣΠΕΡΙΔΟΕΙΔΗ-ΟΠΩΡΟΚΗΠΕΥΤΙΚΑ '1079': ΕΠΙΔΟΜΑΤΑ ΣΤΡΑΤΕΥΟΜΕΝΩΝ '1080': ΠΡΟΛΗΨΗ ΕΡΓΑΤΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΤΩΝ ΝΑΥΤΙΚΩΝ '1081': ΥΠΗΡΕΣΙΑ ΑΠΟΜΑΓΝΗΤΙΣΕΩΣ ΠΛΟΙΩΝ '1082': ΔΙΑΦΟΡΕΣ ΕΙΔΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ '1083': ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ '1084': ΕΘΝΙΚΗ ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΙΩΝ (Ε.Υ.Π.) '1085': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΜΙΣΘΩΤΩΝ (T.E.A.M) '1086': ΑΣΦΑΛΙΣΗ ΚΑΤΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΟΡΓΑΝΙΣΜΟΣ ΑΠΑΣΧΟΛΗΣΗΣ ΕΡΓΑΤΙΚΟΥ ΔΥΝΑΜΙΚΟΥ '1087': ΣΩΜΑΤΙΚΗ ΙΚΑΝΟΤΗΤΑ ΠΡΟΣΩΠΙΚΟΥ ΣΤΡΑΤΕΥΜΑΤΟΣ '1088': ΟΙΚΟΝΟΜΙΚΗ ΥΠΗΡΕΣΙΑ Π. ΝΑΥΤΙΚΟΥ '1089': ΔΑΣΙΚΗ ΦΟΡΟΛΟΓΙΑ '1090': ΑΤΕΛΕΙΕΣ ΥΠΕΡ ΤΗΣ ΚΤΗΝΟΤΡΟΦΙΑΣ, ΜΕΛΙΣΣΟΚΟΜΙΑΣ Κ.Λ.Π '1091': ΠΟΛΙΤΙΚΑ ΔΙΚΑΙΩΜΑΤΑ ΤΩΝ ΓΥΝΑΙΚΩΝ '1092': ΜΕΤΑΘΕΣΕΙΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ '1093': ΔΙΕΘΝΕΣ ΚΕΝΤΡΟ ΥΠΟΛΟΓΙΣΜΟΥ '1094': ΔΙΑΧΕΙΡΙΣΗ ΔΑΣΩΝ '1095': ΔΟΥΛΕΙΑ '1096': ΜΕ ΤΗ ΠΟΛΩΝΙΑ '1097': ΑΝΑΔΙΑΝΟΜΗ ΚΤΗΜΑΤΩΝ '1098': ΥΠΟΑΠΑΣΧΟΛΟΥΜΕΝΟΙ ΜΙΣΘΩΤΟΙ '1099': ΟΡΓΑΝΙΣΜΟΙ ΠΡΩΗΝ Υ.Β.Ε.Τ. - Γ.Γ.Β. - Γ.Γ.Ε.Τ '1100': ΠΑΝΕΠΙΣΤΗΜΙΑΚΗ ΒΙΒΛΙΟΘΗΚΗ ΑΘΗΝΩΝ '1101': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΑΣΦΑΛΙΣΤ.ΕΤΑΙΡΕΙΑΣ Η ΕΘΝΙΚΗ (Τ.Α.Π.Α.Ε. Η ΕΘΝΙΚΗ) '1102': ΤΕΛΗ ΣΧΟΛΑΖΟΥΣΩΝ ΚΛΗΡΟΝΟΜΙΩΝ '1103': ΞΕΝΕΣ ΓΛΩΣΣΕΣ '1104': ΚΑΤΑΣΚΗΝΩΣΕΙΣ - ΠΑΙΔΙΚΕΣ ΕΞΟΧΕΣ '1105': ΔΙΚΑΣΤΗΡΙΑ ΑΝΗΛΙΚΩΝ '1106': ΣΥΜΒΑΣΕΙΣ ΕΚΤΕΛΕΣΕΩΣ ΑΛΛΟΔΑΠΩΝ ΑΠΟΦΑΣΕΩΝ '1107': ΦΟΡΟΣ ΕΙΣΟΔΗΜΑΤΟΣ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ '1108': ΘΕΩΡΗΤΙΚΑ ΚΑΙ ΙΣΤΟΡΙΚΑ ΜΑΘΗΜΑΤΑ '1109': ΑΦΡΟΔΙΣΙΑ '1110': ΦΑΡΟΙ '1111': ΔΗΜΟΣΙΟΓΡΑΦΙΚΟ ΕΠΑΓΓΕΛΜΑ '1112': ΚΑΤΑΣΤΑΤΙΚΟΣ ΝΟΜΟΣ ΕΚΚΛΗΣΙΑΣ ΤΗΣ ΕΛΛΑΔΟΣ '1113': ΕΛΕΓΧΟΣ ΣΚΟΠΙΜΟΤΗΤΑΣ ΙΔΡΥΣΕΩΣ ΒΙΟΜΗΧΑΝΙΩΝ '1114': ΓΥΜΝΑΣΙΑ ΚΑΙ ΛΥΚΕΙΑ '1115': ΑΕΡΟΝΑΥΤΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ '1116': ΚΑΤΑΣΤΑΣΗ ΥΠΑΞΙΩΜΑΤΙΚΩΝ Π.Ν '1117': ΥΠΟΥΡΓΕΙΟ ΧΩΡΟΤΑΞΙΑΣ '1118': ΕΚΤΕΛΕΣΗ ΄ΕΡΓΩΝ '1119': ΜΙΣΘΟΔΟΣΙΑ ΥΠΑΛΛΗΛΩΝ ΣΕ ΕΠΙΣΤΡΑΤΕΥΣΗ '1120': ΚΟΙΜΗΤΗΡΙΑ '1121': ΑΣΦΑΛΙΣΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΚΙΝΔΥΝΩΝ ΠΟΛΕΜΟΥ '1122': ΣΥΜΦΩΝΙΑ ΓΙΑ ΑΝΙΘΑΓΕΝΕΙΣ '1123': ΝΟΜΑΡΧΙΑΚΗ ΑΥΤΟΔΙΟΙΚΗΣΗ '1124': ΣΧΟΛΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΩΝ '1125': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΜΙΣΘΩΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΕΜΠΟΡΙΑΣ ΟΠΩΡΟΚΗΠΕΥΤΙΚΩΝ '1126': ΑΠΟΛΥΜΑΝΣΗ ΥΔΑΤΩΝ '1127': ΠΟΛΕΟΔΟΜΙΚΕΣ ΕΠΙΤΡΟΠΕΣ '1128': ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ '1129': ΥΠΑΛΛΗΛΟΙ ΝΟΜ. ΠΡΟΣΩΠΩΝ ΔΗΜΟΣΙΟΥ ΔΙΚΑΙΟΥ '1130': ΑΝΤΙΣΤΑΘΜΙΣΤΙΚΗ ΕΙΣΦΟΡΑ '1131': ΠΡΟΣΩΠΙΚΟ ΙΔΙΩΤΙΚΩΝ ΕΚΠΑΙΔΕΥΤΗΡΙΩΝ '1132': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΓΙΑ ΤΑ ΑΥΤΟΚΙΝΗΤΑ '1133': ΕΞΩΣΧΟΛΙΚΗ ΑΓΩΓΗ '1134': ΑΣΦΑΛΙΣΤΙΚΗ ΑΡΜΟΔΙΟΤΗΤΑ '1135': ΕΛΙΕΣ ΚΑΙ ΕΛΑΙΑ '1136': ΓΑΜΟΙ ΙΣΡΑΗΛΙΤΩΝ '1137': ΤΑΜΕΙΟ ΑΡΤΟΥ '1138': ΚΑΝΟΝΙΣΜΟΣ ΕΠΙΤΡΟΠΩΝ '1139': ΣΥΜΒΑΣΗ ΚΑΤΑ ΔΑΓΚΕΙΟΥ '1140': ΕΘΝΙΚΟΙ ΔΡΥΜΟΙ '1141': ΑΠΑΛΛΑΓΕΣ ΤΕΛΩΝ ΧΑΡΤΟΣΗΜΟΥ '1142': ΔΙΕΘΝΗΣ ΟΡΓΑΝΙΣΜΟΣ ΑΝΑΠΤΥΞΕΩΣ '1143': ΚΑΝΟΝΙΣΜΟΣ ΕΡΓΑΣΙΑΣ ΕΠΙ ΦΟΡΤΗΓΩΝ ΠΛΟΙΩΝ '1144': ΛΥΣΣΑ '1145': ΑΓΡΟΚΤΗΜΑ '1146': ΚΑΘΗΓΗΤΕΣ ΚΑΙ ΥΦΗΓΗΤΕΣ '1147': ΠΑΙΔΙΚΟΙ - ΒΡΕΦΟΝΗΠΙΑΚΟΙ ΣΤΑΘΜΟΙ '1148': ΚΕΝΤΡΟ ΒΥΖΑΝΤΙΝΩΝ ΕΡΕΥΝΩΝ '1149': ΙΔΡΥΣΗ ΕΛΕΥΘΕΡΗΣ ΖΩΝΗΣ ΣΕ ΔΙΑΦΟΡΑ ΛΙΜΑΝΙΑ ΤΗΣ ΧΩΡΑΣ '1150': ΣΧΟΛΙΚΑ ΛΕΩΦΟΡΕΙΑ '1151': ΣΦΑΓΕΙΑ '1152': ΕΠΙΚΥΡΩΣΗ ΝΟΜΟΘΕΤΗΜΑΤΩΝ '1153': ΕΓΓΡΑΦΑ ΤΑΥΤΟΤΗΤΑΣ ΝΑΥΤΙΚΩΝ '1154': ΑΤΟΜΙΚΑ ΔΙΚΑΙΩΜΑΤΑ - ΔΕΔΟΜΕΝΑ ΠΡΟΣΩΠΙΚΟΥ ΧΑΡΑΚΤΗΡΑ '1155': ΙΑΤΡΟΦΑΡΜΑΚΕΥΤΙΚΗ - ΝΟΣΟΚΟΜΕΙΑΚΗ ΠΕΡΙΘΑΛΨΗ - ΕΞΟΔΑ ΚΗΔΕΙΑΣ '1156': ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΕΩΣ ΑΝΤΑΛΛΑΞΙΜΩΝ ΚΤΗΜΑΤΩΝ '1157': ΣΤΟΛΕΣ ΠΡΟΣΩΠΙΚΟΥ Λ.Σ '1158': ΠΕΡΙΦΡΑΞΗ ΟΙΚΟΠΕΔΩΝ '1159': ΣΙΔΗΡΟΔΡΟΜΟΙ ΑΤΤΙΚΗΣ '1160': ΤΡΑΧΩΜΑΤΑ '1161': ΝΑΥΑΓΙΑ-ΝΑΥΑΓΙΑΙΡΕΣΗ '1162': ΥΠΟΜΗΧΑΝΙΚΟΙ '1163': ΤΑΙΝΙΟΘΗΚΗ ΤΗΣ ΕΛΛΑΔΟΣ '1164': ΚΑΝΟΝΙΣΜΟΣ ΤΗΛΕΓΡΑΦΙΚΗΣ ΥΠΗΡΕΣΙΑΣ '1165': ΣΥΝΤΑΞΕΙΣ ΘΥΜΑΤΩΝ ΤΡΟΜΟΚΡΑΤΙΑΣ '1166': ΚΑΝΟΝΙΣΜΟΣ ΠΥΡΙΜΑΧΟΥ ΠΡΟΣΤΑΣΙΑΣ ΕΠΙΒΑΤΗΓΩΝ ΠΛΟΙΩΝ '1167': ΑΤΟΜΙΚΑ ΒΙΒΛΙΑΡΙΑ '1168': ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΒΙΒΛΙΑΡΙΑ ΑΡΤΕΡΓΑΤΩΝ ΚΛΠ '1169': ΦΟΡΟΛΟΓΙΑ ΑΜΥΛΟΣΙΡΟΠΙΟΥ, ΣΤΑΦΙΔΙΝΗΣ ΚΛΠ '1170': ΜΟΥΣΕΙΟ ΕΛΛΗΝΙΚΩΝ ΛΑΙΚΩΝ ΟΡΓΑΝΩΝ '1171': ΕΠΙΚΟΥΡΙΚΟ ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΚΑΙ ΠΕΡΙΘΑΛΨΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΕΛΛΗΝ. ΗΛΕΚΤΡ. ΕΤΑΙΡΙΑΣ (Ε.Η.Ε.) '1172': ΤΑΜΕΙΑ ΜΟΝΙΜΩΝ ΟΔΟΣΤΡΩΜΑΤΩΝ '1173': ΟΡΓΑΝΙΚΕΣ ΘΕΣΕΙΣ ΑΞΙΩΜΑΤΙΚΩΝ Π.Ν '1174': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΠΡΟΣΩΠΙΚΟΥ ΤΡΑΠΕΖΑΣ ΑΘΗΝΩΝ '1175': ΠΟΛΙΟΜΥΕΛΙΤΙΔΑ '1176': ΠΡΟΑΓΩΓΑΙ ΑΞΙΩΜΑΤΙΚΩΝ ΧΩΡΟΦΥΛΑΚΗΣ '1177': ΕΠΙΔΟΜΑ ΑΔΕΙΑΣ '1178': ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΠΡΟΣΛΗΨΗ ΠΡΟΣΩΠΙΚΟΥ '1179': ΕΛΕΓΧΟΣ ΕΞΑΓΩΓΙΚΟΥ ΕΜΠΟΡΙΟΥ '1180': ΡΑΔΙΟΦΩΝΙΚΟΙ ΣΤΑΘΜΟΙ '1181': ΚΑΝΟΝΙΣΜΟΣ ΔΙΟΙΚΗΤΙΚΗΣ ΟΡΓΑΝΩΣΕΩΣ Τ.Σ.Α.Υ '1182': Φ.Κ.Π. ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ '1183': ΔΙΑΦΟΡΟΙ ΠΟΛΥΕΘΝΕΙΣ ΟΡΓΑΝΙΣΜΟΙ '1184': ΧΟΛΕΡΑ '1185': EΝΙΑΙΟΣ ΔΗΜΟΣΙΟΓΡΑΦΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ '1186': ΑΤΕΛΕΙΕΣ ΔΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ '1187': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΜΗΧΑΝΟΔΗΓΩΝ ΟΔΟΣΤΡΩΤΗΡΩΝ ΚΛΠ '1188': ΝΟΣΟΚΟΜΟΙ '1189': ΝΟΣΟΚΟΜΕΙΑ ΦΥΛΑΚΩΝ '1190': ΑΠΟΚΑΤΑΣΤΑΣΗ ΚΤΗΝΟΤΡΟΦΩΝ '1191': ΤΕΛΗ ΚΑΙ ΕΙΣΦΟΡΕΣ '1192': ΑΚΑΤΑΣΧΕΤΑ '1193': ΞΕΝΟΔΟΧΕΙΑΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΤΗΣ ΕΛΛΑΔΑΣ '1194': ΔΗΜΟΤΟΛΟΓΙΑ '1195': ΣΤΑΤΙΣΤΙΚΗ ΥΠΗΡΕΣΙΑ '1196': ΚΡΑΤΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΦΑΡΜΑΚΩΝ '1197': ΑΕΡΟΠΟΡΙΚΗ ΑΣΤΥΝΟΜΙΑ '1198': ΕΚΤΑΚΤΕΣ ΕΙΣΦΟΡΕΣ '1199': ΣΥΝΤΑΞΕΙΣ ΥΠΑΛΛΗΛΩΝ Τ.Τ.Τ '1200': ΜΕΤΡΑ ΚΑΤΑ ΤΗΣ ΦΟΡΟΔΙΑΦΥΓΗΣ '1201': ΕΔΑΦΙΚΗ ΕΠΕΚΤΑΣΗ ΝΟΜΟΘΕΣΙΑΣ '1202': ΜΙΚΡΟΔΙΑΦΟΡΕΣ '1203': ΤΑΤΖΙΚΙΣΤΑΝ – ΤΑΥΛΑΝΔΗ – ΤΟΥΡΚΙΑ Κ.ΛΠ '1204': ΣΥΜΒΑΣΗ ΔΙΕΘΝΟΥΣ ΜΕΤΑΦΟΡΑΣ ΕΜΠΟΡΕΥΜΑΤΩΝ ΟΔΙΚΩΣ '1205': ΚΩΔΙΚΑΣ ΙΔΙΩΤΙΚΟΥ ΝΑΥΤΙΚΟΥ ΔΙΚΑΙΟΥ '1206': ΚΕΝΤΡΑ ΓΕΩΡΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ-Ο.Γ.Ε.Ε.Κ.Α '1207': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΙΔΡΥΜΑΤΩΝ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ '1208': ΓΡΑΦΕΙΟ ΔΙΑΡΚΗ ΚΩΔΙΚΑ ΝΟΜΟΘΕΣΙΑΣ '1209': ΕΡΕΥΝΑ ΙΔΙΩΤΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ '1210': ΔΙΕΥΘΥΝΣΗ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ ΑΕΡΟΠΟΡΙΑΣ '1211': ΠΕΡΙ ΝΟΜΑΡΧΩΝ '1212': ΣΥΝΤΑΞΕΙΣ ΘΥΜΑΤΩΝ ΑΠΟ ΕΣΩΤΕΡΙΚΕΣ ΔΙΑΜΑΧΕΣ '1213': ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΩΝ ΕΞΩΤΕΡΙΚΟΥ '1214': ΟΡΓΑΝΩΣΗ ΥΠΗΡΕΣΙΩΝ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '1215': ΦΟΡΤΗΓΑ ΠΛΟΙΑ ΑΝΩ ΤΩΝ 4.500 ΤΟΝΝΩΝ '1216': ΡΑΔΙΟΤΗΛΕΓΡΑΦΙΚΗ ΥΠΗΡΕΣΙΑ ΠΛΟΙΩΝ '1217': ΕΠΑΓΓΕΛΜΑΤΙΚΕΣ ΣΧΟΛΕΣ '1218': ΔΙΑΦΟΡΕΣ ΒΙΟΜΗΧΑΝΙΕΣ '1219': ΣΥΝΤΗΡΗΣΗ ΑΕΡΟΣΚΑΦΩΝ '1220': ΟΛΥΜΠΙΑΚΗ ΑΕΡΟΠΟΡΙΑ '1221': ΟΡΓΑΝΙΣΜΟΣ ΧΩΡΟΦΥΛΑΚΗΣ '1222': ΠΕΡΙΘΑΛΨΗ ΦΥΜΑΤΙΚΩΝ ΤΑΧΥΔΡΟΜΙΚΩΝ ΥΠΑΛΛΗΛΩΝ '1223': ΟΡΓΑΝΙΣΜΟΣ ΧΡΗΜΑΤΟΔΟΤΗΣΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΠΤΥΞΗΣ '1224': ΠΡΩΤΕΣ ΥΛΕΣ ΞΥΛΙΝΩΝ ΒΑΡΕΛΙΩΝ '1225': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΤΕΧΝΙΚΩΝ ΤΥΠΟΥ ΑΘΗΝΩΝ (Τ.Α.Τ.Τ.Α.) '1226': ΠΡΟΠΑΡΑΣΚΕΥΑΣΤΙΚΗ ΣΧΟΛΗ ΚΑΛΩΝ ΤΕΧΝΩΝ ΤΗΝΟΥ '1227': ΟΙΚΟΝΟΜΙΚΕΣ ΑΝΤΙΠΡΟΣΩΠΕΙΕΣ ΕΞΩΤΕΡΙΚΟΥ '1228': ΚΑΛΛΙΤΕΧΝΙΚΟΙ ΣΤΑΘΜΟΙ '1229': ΣΥΜΒΑΣΕΙΣ ΓΙΑ ΤΗ ΒΙΑ ΤΩΝ '1230': ΠΡΟΣΤΑΣΙΑ ΑΜΠΕΛΟΥΡΓΙΚΗΣ ΠΑΡΑΓΩΓΗΣ '1231': ΔΙΑΦΟΡΑ ΑΔΙΚΗΜΑΤΑ '1232': ΑΣΤΥΝΟΜΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΙΔΗΡΟΔΡΟΜΩΝ '1233': ΜΕΤΟΧΙΚΟ ΤΑΜΕΙΟ ΒΑΣΙΛΙΚΗΣ ΑΕΡΟΠΟΡΙΑΣ '1234': ΥΠΟΘΗΚΗ ΜΗΧΑΝΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ '1235': ΕΥΘΥΝΗ ΑΠΟ Τ’ΑΥΤΟΚΙΝΗΤΑ '1236': ΠΡΟΣΤΑΣΙΑ ΜΗΤΡΟΤΗΤΟΣ ΚΑΙ ΒΡΕΦΩΝ '1237': ΜΕ ΤΗ ΦΙΛΑΝΔΙΑ '1238': ΕΠΑΡΧΙΑΚΟΣ ΤΥΠΟΣ '1239': ΕΠΙΘΕΩΡΗΣΗ ΤΕΛΩΝΕΙΩΝ '1240': ΕΠΙΤΡΟΠΕΙΕΣ ΤΟΠΩΝΥΜΙΩΝ '1241': ΜΕΤΑΝΑΣΤΕΥΣΗ ΚΑΙ ΑΠΟΔΗΜΙΑ '1242': ΔΙΚΗΓΟΡΙΚΟΙ ΣΥΛΛΟΓΟΙ '1243': ΠΡΟΣΩΠΙΚΟ ΥΠΟΥΡΓΕΙΟΥ ΓΕΩΡΓΙΑΣ '1244': ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΜΙΟΥ ΠΑΤΡΩΝ '1245': ΜΑΛΑΚΤΕΣ '1246': ΕΛΑΙΑ '1247': ΑΤΟΜΙΚΑ ΕΓΓΡΑΦΑ ΑΞΙΩΜΑΤΙΚΩΝ '1248': ΑΓΡΟΤΙΚΗ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ '1249': ΟΠΤΙΚΟΙ - ΚΑΤΑΣΤΗΜΑΤΑ ΟΠΤΙΚΩΝ ΕΙΔΩΝ '1250': ΔΗΜΟΣΙΕΣ ΕΠΕΝΔΥΣΕΙΣ '1251': ΚΡΑΤΙΚΗ ΟΡΧΗΣΤΡΑ ΘΕΣΣΑΛΟΝΙΚΗΣ '1252': ΝΗΟΛΟΓΙΑ-ΥΠΟΘΗΚΟΛΟΓΙΑ-ΣΗΜΑΤΟΛΟΓΗΣΗ '1253': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΠΡΟΣΩΠΙΚΟΥ ΕΤΑΙΡΕΙΑΣ ΔΙΑΧΕΙΡΙΣΕΩΣ ΕΙΔΩΝ ΜΟΝΟΠΩΛΙΟΥ (Τ.Α.Π.-Ε.Δ.Ε.Μ.Ε.) '1254': ΕΙΣΠΡΑΞΗ ΑΞΙΩΝ '1255': ΥΓΕΙΟΝΟΜΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ-ΠΟΤΩΝ-ΝΕΡΩΝ '1256': ΛΟΓΙΣΤΕΣ - ΦΟΡΟΤΕΧΝΙΚΟΙ '1257': ΕΙΔΙΚΕΣ ΔΙΚΟΝΟΜΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΓΙΑ ΤΟ ΔΗΜΟΣΙΟ '1258': ΣΧΟΛΕΣ ΣΩΜΑΤΩΝ ΑΣΦΑΛΕΙΑΣ '1259': ΤΑΜΕΙΟΝ ΚΟΙΝΩΦΕΛΩΝ ΕΡΓΩΝ ΛΕΥΚΑΔΟΣ '1260': ΕΙΔΙΚΗ ΑΓΩΓΗ, ΕΙΔΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ '1261': ΥΠΗΡΕΣΙΑ ΚΡΑΤΙΚΩΝ ΠΡΟΜΗΘΕΙΩΝ '1262': ΟΙΝΟΛΟΓΙΚΑ ΙΔΡΥΜΑΤΑ '1263': ΣΥΝΘΗΚΕΣ ΕΚΔΟΣΕΩΣ '1264': ΑΞΙΩΜΑΤΙΚΟΙ ΚΑΙ ΥΠΑΞΙΩΜΑΤΙΚΟΙ Λ.Σ '1265': ΥΓΕΙΟΝΟΜΙΚΗ ΕΞΕΤΑΣΗ ΠΡΟΣΩΠΙΚΟΥ '1266': ΞΕΝΑ ΣΧΟΛΕΙΑ ΗΜΕΔΑΠΗΣ '1267': Ε.Σ.Υ.-ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ '1268': ΤΑΜΕΙΑ ΕΦΑΡΜΟΓΗΣ ΣΧΕΔΙΩΝ ΠΟΛΕΩΝ '1269': ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΣΤΡΑΤΙΩΤΙΚΩΝ ΕΙΔΩΝ '1270': ΣΥΝΘΗΚΗ ΠΕΡΙ ΔΙΑΣΤΗΜΑΤΟΣ '1271': ΔΙΑΧΕΙΡΙΣΗ ΑΝΤΑΛΛΑΞΙΜΩΝ ΚΤΗΜΑΤΩΝ '1272': ΠΡΟΣΩΠΙΚΟΝ ΔΙΟΙΚΗΣΕΩΣ '1273': ΣΧΟΛΗ ΕΚΠΤΙΚΩΝ ΛΕΙΤΟΥΡΓΩΝ '1274': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΞΕΝΟΔΟΧΟΥΠΑΛΛΗΛΩΝ (Τ.Α.Ξ.Υ.) '1275': ΣΩΜΑΤΙΚΗ ΙΚΑΝΟΤΗΤΑ ΑΞΙΩΜΑΤΙΚΩΝ '1276': ΒΕΒΑΙΩΣΗ ΕΣΟΔΩΝ ΔΗΜΟΣΙΟΥ ΑΠΟ ΜΕΤΑΛΛΕΙΑ ΚΑΙ ΛΑΤΟΜΕΙΑ '1277': ΔΙΑΦΟΡΟΙ ΕΠΟΙΚΙΣΤΙΚΟΙ ΝΟΜΟΙ '1278': ΕΠΙΚΟΥΡΙΚΟ ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΚΡΕΟΠΩΛΩΝ ΚΑΙ ΕΡΓΑΤΟΥΠΑΛΛΗΛΩΝ ΚΡΕΑΤΟΣ (Ε.Τ.Α.Κ.Ε.Κ) '1279': ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ '1280': ΓΕΝΙΚΕΣ ΑΠΟΘΗΚΕΣ '1281': ΤΑΜΕΙΑΚΗ ΥΠΗΡΕΣΙΑ '1282': ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΠΕΡΙ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ '1283': ΤΟΜΕΑΣ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΜΙΣΘΩΤΩΝ (ΙΚΑ-ΤΕΑΜ)ΕΙΔΙΚΟΣ ΤΟΜΕΑΣ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΜΙΣΘΩΤΩΝ (ΙΚΑ-ΕΤΕΑΜ) '1284': ΒΑΡΒΑΚΕΙΟ ΛΥΚΕΙΟ '1285': ΚΩΔΙΚΑΣ ΔΙΚΩΝ ΤΟΥ ΔΗΜΟΣΙΟΥ '1286': ΔΙΕΘΝΕΣ ΤΑΜΕΙΟΝ ΠΕΡΙΘΑΛΨΕΩΣ ΤΟΥ ΠΑΙΔΙΟΥ '1287': ΣΙΔΗΡΟΔΡΟΜΟΙ ΕΛΛΗΝΙΚΟΥ ΚΡΑΤΟΥΣ '1288': ΑΡΔΕΥΣΕΙΣ '1289': ΤΑΜΕΙΟ ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΑΠΑΛΛΟΤΡΙΩΣΕΩΝ '1290': ΙΔΡΥΜΑ ΒΥΖΑΝΤΙΝΗΣ ΜΟΥΣΙΚΟΛΟΓΙΑΣ '1291': ΚΥΒΕΡΝΗΤΙΚΟ ΣΥΜΒΟΥΛΙΟ ΕΛΕΓΧΟΥ ΤΙΜΩΝ '1292': ΕΙΔΙΚΟ ΤΑΜΕΙΟ ΕΠΟΙΚΙΣΜΟΥ '1293': ΚΤΗΜΑΤΟΛΟΓΙΑ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ '1294': ΚΑΤΑΣΚΕΥΗ ΣΤΑΦΙΔΙΝΗΣ '1295': ΔΙΕΘΝΗΣ ΥΓΕΙΟΝΟΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ '1296': ΕΠΕΤΗΡΙΔΑ '1297': ΠΑΓΚΟΣΜΙΟΣ ΟΡΓΑΝΙΣΜΟΣ ΤΟΥΡΙΣΜΟΥ '1298': ΕΝΙΣΧΥΣΗ ΑΠΡΟΣΤΑΤΕΥΤΩΝ ΠΑΙΔΙΩΝ '1299': ΔΙΑΦΟΡΟΙ ΕΠΙΣΙΤΙΣΤΙΚΟΙ ΝΟΜΟΙ '1300': ΔΙΠΛΩΜΑΤΙΚΕΣ ΑΤΕΛΕΙΕΣ '1301': ΜΕΤΑ ΤΟΥ ΒΕΛΓΙΟΥ '1302': ΚΑΝΝΑΒΙΣ '1303': ΕΚΤΕΛΕΣΗ '1304': ΤΟΥΡΙΣΤΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΡΟΔΟΥ '1305': ΠΟΙΝΙΚΟ ΜΗΤΡΩΟ '1306': ΑΝΩΜΑΛΕΣ ΔΙΚΑΙΟΠΡΑΞΙΕΣ ΔΩΔΕΚΑΝΗΣΟΥ '1307': ΕΜΠΟΡΙΚΑ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΑ ΕΠΙΜΕΛΗΤΗΡΙΑ '1308': ΣΥΝΤΟΝΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΕΡΓΑΣΙΩΝ ΟΔΩΝ ΚΑΙ ΕΡΓΩΝ ΚΟΙΝΗΣ ΩΦΕΛΕΙΑΣ '1309': ΠΡΟΣΩΠΙΚΟ ΞΕΝΟΔΟΧΕΙΩΝ '1310': ΙΝΣΤΙΤΟΥΤΟ ΦΥΣΙΚΗΣ ΤΟΥ ΣΤΕΡΕΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ '1311': ΕΠΙΚΙΝΔΥΝΕΣ ΟΙΚΟΔΟΜΕΣ '1312': ΑΡΧΕΙΑ ΔΙΚΑΣΤΗΡΙΩΝ '1313': ΣΚΟΠΟΒΟΛΗ '1314': ΑΠΟΝΟΜΗ ΣΥΝΤΑΞΕΩΝ ΤΑΜΕΙΟΥ ΝΟΜΙΚΩΝ '1315': ΣΗΡΟΤΡΟΦΙΑ '1316': ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ '1317': ΠΡΟΣΤΑΣΙΑ ΤΗΣ ΚΤΗΝΟΤΡΟΦΙΑΣ '1318': ΧΑΡΤΗΣ '1319': ΥΠΗΡΕΣΙΑ ΕΓΚΛΗΜΑΤΟΛΟΓΙΚΩΝ ΑΝΑΖΗΤΗΣΕΩΝ '1320': ΥΓΕΙΟΝΟΜΙΚΗ ΠΕΡΙΘΑΛΨΗ ΒΟΥΛΕΥΤΩΝ '1321': ΔΙΚΑΙΟΣΤΑΣΙΟ ΠΟΛΕΜΟΥ 1940 '1322': ΧΗΜΕΙΟ ΣΤΡΑΤΟΥ '1323': ΕΠΑΡΧΙΑΚΕΣ ΓΕΝΙΚΕΣ ΣΥΝΕΛΕΥΣΕΙΣ '1324': ΛΟΓΑΡΙΑΣΜΟΣ ΑΡΩΓΗΣ ΟΙΚΟΓΕΝΕΙΩΝ ΣΤΡΑΤΙΩΤΙΚΩΝ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ '1325': ΚΑΤ’ ΙΔΙΑΝ ΝΑΟΙ '1326': ΠΛΗΡΩΜΗ ΜΕ ΕΠΙΤΑΓΕΣ '1327': ΕΘΝΙΚΕΣ ΣΥΛΛΟΓΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '1328': ΣΩΜΑ ΣΤΡΑΤΟΛΟΓΙΑΣ '1329': ΟΔΟΝΤΙΑΤΡΟΙ '1330': ΤΑΜΕΙΟ ΕΘΝΙΚΟΥ ΣΤΟΛΟΥ '1331': ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΠΑΡΟΧΕΣ ΜΗΤΡΟΤΗΤΑΣ '1332': ΜΕΤΑΤΡΕΨΙΜΟΤΗΤΑ ΚΑΤΑΘΕΣΕΩΝ '1333': ΠΤΗΝΟΤΡΟΦΙΑ '1334': ΠΤΥΧΙΟΥΧΟΙ ΑΛΛΟΔΑΠΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ - ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΚΕΝΤΡΟ ΑΝΑΓΝΩΡΙΣΕΩΣ '1335': ΦΟΡΤΗΓΑ ΑΥΤΟΚΙΝΗΤΑ '1336': ΥΠΗΡΕΣΙΑ ΜΗΧΑΝΙΚΗΣ ΚΑΛΛΙΕΡΓΕΙΑΣ '1337': ΕΛΕΓΧΟΣ ΚΙΝΗΜΑΤΟΓΡΑΦΩΝ '1338': ΔΗΜΟΣΙΟΓΡΑΦΙΚΕΣ ΟΡΓΑΝΩΣΕΙΣ '1339': ΝΑΥΤΙΛΙΑΚΕΣ ΤΡΑΠΕΖΕΣ '1340': ΛΕΙΤΟΥΡΓΙΑ ΥΔΡΟΘΕΡΑΠΕΥΤΗΡΙΩΝ '1341': ΣΥΜΒΟΥΛΙΟ ΕΜΠΟΡΙΚΗΣ ΝΑΥΤΙΛΙΑΣ '1342': ΕΓΓΕΙΟΣ ΦΟΡΟΛΟΓΙΑ ΚΑΠΝΟΥ '1343': ΤΕΛΟΣ ΑΔΕΙΩΝ ΟΙΚΟΔΟΜΩΝ '1344': ΕΘΝΙΚΟΤΗΤΑ ΠΛΟΙΩΝ '1345': ΠΟΛΙΤΙΚΑ ΚΟΜΜΑΤΑ '1346': ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ '1347': ΝΗΟΓΝΩΜΟΝΕΣ '1348': ΔΙΑΦΟΡΟΙ ΠΟΙΝΙΚΟΙ ΝΟΜΟΙ '1349': ΠΡΟΣΩΡΙΝΗ ΑΠΟΛΥΣΗ '1350': ΤΑΜΕΙΟ ΑΛΛΗΛΟΒΟΗΘΕΙΑΣ ΣΤΡΑΤΟΥ ΞΗΡΑΣ '1351': ΥΠΑΞΙΩΜΑΤΙΚΟΙ ΑΕΡΟΠΟΡΙΑΣ '1352': ΦΟΡΟΛΟΓΙΑ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΩΝ ΣΥΜΒΑΣΕΩΝ '1353': ΠΤΥΧΙΑ ΙΠΤΑΜΕΝΟΥ ΠΡΟΣΩΠΙΚΟΥ '1354': ΚΡΕΑΤΑ ΣΕ ΠΑΚΕΤΑ '1355': ΕΛΕΓΧΟΣ ΟΠΛΟΦΟΡΙΑΣ '1356': ΑΝΑΣΤΟΛΕΣ ΔΗΜΟΣΙΟΥ ΧΡΕΟΥΣ '1357': ΗΛΕΚΤΡΙΚΟΙ ΣΙΔΗΡΟΔΡΟΜΟΙ ΑΘΗΝΩΝ-ΠΕΙΡΑΙΩΣ (Η.Σ.Α.Π) '1358': ΔΙΑΘΕΣΗ ΛΥΜΑΤΩΝ ΚΑΙ ΑΠΟΒΛΗΤΩΝ '1359': ΕΠΙΘΕΩΡΗΣΗ ΤΕΧΝΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ '1360': ΤΕΛΗ ΑΔΕΙΩΝ ΕΞΑΓΩΓΗΣ '1361': ΠΡΟΙΟΝΤΑ ΓΑΛΑΚΤΟΣ '1362': ΓΕΩΡΓΙΚΑ ΕΠΙΜΕΛΗΤΗΡΙΑ '1363': ΙΕΡΑΡΧΙΚΟΣ ΄ΕΛΕΓΧΟΣ '1364': ΣΤΡΑΤΙΩΤΙΚΕΣ ΦΥΛΑΚΕΣ '1365': ΤΑΜΕΙΟ ΕΠΙΚ. ΑΣΦΑΛΙΣΕΩΣ ΥΠΑΛΛΗΛΩΝ ΚΑΠΝΕΜΠΟΡΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ '1366': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΚΑΙ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΙΠΠΟΔΡΟΜΙΩΝ (Τ.Α.Π.Ε.Α.Π.Ι.) '1367': ΑΠΟΧΩΡΗΤΗΡΙΑ '1368': ΦΟΡΟΣ ΕΙΣΟΔΗΜΑΤΟΣ ΦΥΣΙΚΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ '1369': ΚΑΤΑΣΤΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΠΑΡΟΧΩΝ '1370': ΑΤΤΙΚΟ ΜΕΤΡΟ '1371': ΒΟΥΣΤΑΣΙΑ '1372': ΑΠΟΣΤΡΑΤΕΙΕΣ - ΕΠΑΝΑΦΟΡΕΣ '1373': ΤΡΑΠΕΖΙΤΙΚΑ ΔΑΝΕΙΑ ΣΕ ΧΡΥΣΟ ΚΛΠ '1374': ΔΙΚΑΙΟΣΤΑΣΙΟ ΠΟΛΕΜΩΝ '1375': ΕΘΝΙΚΟ ΑΣΤΕΡΟΣΚΟΠΕΙΟ '1376': ΙΔΙΩΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΠΑΡΟΧΗΣ ΥΠΗΡΕΣΙΩΝ ΑΣΦΑΛΕΙΑΣ '1377': ΔΑΝΕΙΑ ΕΞΩΤΕΡΙΚΑ '1378': ΠΝΕΥΜΑΤΙΚΟ ΚΕΝΤΡΟ ΑΘΗΝΩΝ '1379': ΑΠΟΣΒΕΣΕΙΣ '1380': ΔΙΑΦΟΡΟΙ ΟΙΝΙΚΟΙ ΚΑΙ ΣΤΑΦΙΔΙΚΟΙ ΝΟΜΟΙ '1381': ΑΚΑΔΗΜΙΑ ΣΩΜΑΤΙΚΗΣ ΑΓΩΓΗΣ '1382': ΑΜΜΟΛΗΨΙΑ '1383': ΠΡΟΣΩΠΙΚΟ ΠΛΟΗΓΙΚΗΣ ΥΠΗΡΕΣΙΑΣ '1384': ΗΘΙΚΕΣ ΑΜΟΙΒΕΣ ΑΕΡΟΠΟΡΙΑΣ '1385': ΚΩΔΙΚΑΣ ΦΟΡΟΛΟΓΙΑΣ ΟΙΝΟΠΝΕΥΜΑΤΟΣ '1386': ΛΙΜΕΝΙΚΑ ΤΑΜΕΙΑ – ΛΙΜΕΝΙΚΑ ΕΡΓΑ '1387': ΤΑΜΕΙΟ ΕΠΙΚ. ΑΣΦΑΛΙΣΕΩΣ ΥΠΑΛΛΗΛΩΝ ΕΘΝΙΚΟΥ ΟΡΓΑΝΙΣΜΟΥ ΚΑΠΝΟΥ (Τ.Ε.Α.ΥΕ.Ο.Κ) '1388': ΕΛΕΓΧΟΣ ΤΗΣ ΠΙΣΤΕΩΣ '1389': ΣΤΡΑΤΙΩΤΙΚΗ ΣΧΟΛΗ ΑΞΙΩΜΑΤΙΚΩΝ ΣΩΜΑΤΩΝ '1390': ΒΟΗΘΗΤΙΚΑ ΠΡΟΣΩΠΑ ΤΗΣ ΔΙΚΗΣ '1391': ΟΡΓΑΝΙΣΜΟΣ ΣΧΟΛΙΚΩΝ ΚΤΙΡΙΩΝ '1392': ΒΙΟΜΗΧΑΝΙΕΣ ΔΩΔΕΚΑΝΗΣΟΥ '1393': ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΧΩΡΩΝ ΕΡΓΑΣΙΑΣ ΚΑΙ ΕΡΓΑΖΟΜΕΝΩΝ '1394': ΜΕΤΑΤΡΟΠΗ ΤΗΣ ΠΟΙΝΗΣ '1395': ΑΥΤΟΝΟΜΟΣ ΟΙΚΟΔΟΜΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΑΞΙΩΜΑΤΙΚΩΝ '1396': ΟΔΙΚΕΣ ΜΕΤΑΦΟΡΕΣ-ΜΕΤΑΦΟΡΕΙΣ '1397': ΑΡΜΑ ΘΕΣΠΙΔΟΣ '1398': ΔΗΜΟΤΙΚΑ & ΚΟΙΝΟΤΙΚΑ '1399': ΠΕΡΙΦΕΡΕΙΑΚΕΣ ΥΠΗΡΕΣΙΕΣ '1400': ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ '1401': ΣΤΡΑΤΕΥΟΜΕΝΟΙ ΦΟΙΤΗΤΑΙ '1402': ΓΕΝΙΚΑ '1403': ΚΑΤΑΠΟΛΕΜΗΣΗ ΕΠΙΖΩΟΤΙΩΝ '1404': ΟΡΓΑΝΙΣΜΟΣ ΔΙΟΙΚΗΣΕΩΣ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΚΑΙ ΜΟΝΑΣΤΗΡΙΑΚΗΣ ΠΕΡΙΟΥΣΙΑΣ '1405': ΑΠΑΓΟΡΕΥΣΗ ΧΡΗΣΗΣ ΕΠΙΒΛΑΒΩΝ ΟΥΣΙΩΝ '1406': ΨΥΧΟΛΟΓΟΙ '1407': ΠΥΡΑΣΦΑΛΕΙΑ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΑΠΟΘΗΚΩΝ '1408': ΑΠΟΚΑΤΑΣΤΑΣΙΣ ΑΠΟΡΩΝ ΚΟΡΑΣΙΔΩΝ '1409': ΜΕ ΤΗ ΒΕΝΕΖΟΥΕΛΑ '1410': ΔΙΚΑΙΟ ΤΩΝ ΣΥΝΘΗΚΩΝ '1411': ΚΤΗΝΙΑΤΡΙΚΑ ΜΙΚΡΟΒΙΟΛΟΓΙΚΑ ΕΡΓΑΣΤΗΡΙΑ '1412': ΕΡΓΑΣΤΗΡΙΑ '1413': ΚΑΝΟΝΙΣΜΟΙ TELEX ΚΑΙ TELEFAX '1414': ΟΠΛΑ ΚΑΙ ΣΩΜΑΤΑ ΣΤΡΑΤΟΥ ΞΗΡΑΣ '1415': ΕΚΠΑΙΔΕΥΣΗ ΤΑΧΥΔΡΟΜΙΚΩΝ ΥΠΑΛΛΗΛΩΝ '1416': ΤΙΜΟΛΟΓΙΑ ΠΑΡΟΧΩΝ '1417': ΜΟΥΣΟΥΛΜΑΝΙΚΕΣ ΚΟΙΝΟΤΗΤΕΣ '1418': ΣΤΡΑΤΙΩΤΙΚΑ ΕΡΓΑ ΕΝ ΓΕΝΕΙ '1419': ΣΤΡΑΤΙΩΤΙΚΑ ΝΟΣΟΚΟΜΕΙΑ '1420': ΔΙΟΙΚΗΣΗ ΔΗΜΟΣΙΩΝ ΚΤΗΜΑΤΩΝ – '1421': ΕΙΔΙΚΕΣ ΤΙΜΕΣ ΚΑΥΣΙΜΩΝ ΚΑΙ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ '1422': ΕΓΓΡΑΦΗ ΣΠΟΥΔΑΣΤΩΝ '1423': ΔΗΜΟΤΙΚΑ-ΚΟΙΝΟΤΙΚΑ ΔΑΣΗ ΚΑΙ ΚΗΠΟΙ '1424': ΔΗΜΟΣΙΑ ΕΠΙΧΕΙΡΗΣΗ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΣΤΕΓΑΣΕΩΣ '1425': ΣΥΝΤΑΞΙΟΔΟΤΗΣΗ ΠΡΟΣΩΠΙΚΟΥ Ι.Κ.Α '1426': ΕΞΕΤΑΣΤΙΚΕΣ ΕΠΙΤΡΟΠΕΣ ΒΟΥΛΗΣ '1427': ΜΕΤΡΑ ΚΑΤΑ ΤΩΝ ΠΥΡΚΑΙΩΝ ΔΑΣΩΝ '1428': ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ '1429': ΣΥΓΚΕΝΤΡΩΣΗ ΠΕΡΙΟΥΣΙΑΣ ΤΟΥ ΔΗΜΟΣΙΟΥ '1430': ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΟΔΩΝ '1431': ΤΕΛΩΝΕΙΑΚΑ ΚΤΙΡΙΑ '1432': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΕΚΤΕΛΩΝΙΣΤΩΝ (Τ.Σ.Ε.) '1433': ΚΑΘΗΓΗΤΙΚΕΣ ΕΔΡΕΣ '1434': ΝΑΥΤΙΚΗ ΕΡΓΑΣΙΑ ΝΕΩΝ '1435': ΕΚΤΕΛΕΣΗ ΘΑΝΑΤΙΚΗΣ ΠΟΙΝΗΣ '1436': ΕΠΙΘΕΩΡΗΣΗ ΠΛΟΙΩΝ '1437': ΔΙΠΛΩΜΑΤΑ ΚΑΙ ΑΔΕΙΕΣ ΝΑΥΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ '1438': ΙΣΤΟΡΙΚΟ ΚΑΙ ΕΘΝΟΛΟΓΙΚΟ ΜΟΥΣΕΙΟ '1439': ΠΡΟΣΤΑΣΙΑ ΕΡΓΑΖΟΜΕΝΗΣ ΝΕΑΣ '1440': ΥΠΗΡΕΣΙΑ ΕΠΙΜΕΛΗΤΩΝ ΑΝΗΛΙΚΩΝ '1441': ΑΣΤΙΚΗ ΕΥΘΥΝΗ ΑΠΟ ΠΥΡΗΝΙΚΗ ΕΝΕΡΓΕΙΑ '1442': ΚΩΔΙΚΑΣ ΦΟΡΟΛΟΓΙΑΣ ΚΑΘΑΡΑΣ ΠΡΟΣΟΔΟΥ '1443': ΕΠΙΘΕΩΡΗΣΗ Υ.Ε.Ν '1444': ΚΑΤΑΓΓΕΛΙΑ ΣΥΜΒΑΣΕΩΣ ΕΡΓΑΣΙΑΣ ΣΥΝΔΙΚΑΛΙΣΤΙΚΩΝ ΣΤΕΛΕΧΩΝ '1445': ΥΓΕΙΟΝΟΜΙΚΕΣ ΔΙΑΤΑΞΕΙΣ '1446': ΔΙΔΑΣΚΑΛΕΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ '1447': ΥΠΟΒΡΥΧΙΑ '1448': ΥΠΗΡΕΣΙΑ ΑΠΩΛΕΙΩΝ, ΝΕΚΡΟΤΑΦΕΙΩΝ ΚΛΠ '1449': ΑΓΡΟΤ. ΑΠΟΚΑΤΑΣΤΑΣΗ ΣΤΑ ΔΩΔΕΚΑΝΗΣΑ '1450': ΕΙΔΙΚΕΣ ΑΠΑΛΛΟΤΡΙΩΣΕΙΣ '1451': ΣΤΕΓΑΣΗ ΤΑΧΥΔΡΟΜΙΚΩΝ ΥΠΗΡΕΣΙΩΝ '1452': ΔΙΑΜΕΤΑΚΟΜΙΣΗ ΝΑΡΚΩΤΙΚΩΝ '1453': ΜΕΤΑΜΟΣΧΕΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΟΥΣΙΩΝ '1454': ΒΡΑΒΕΙΑ ΚΑΙ ΧΟΡΗΓΙΕΣ '1455': ΕΥΡΩΠΑΙΚΗ ΜΟΡΦΩΤΙΚΗ ΣΥΜΒΑΣΗ '1456': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΕΛΛΗΝ. ΕΡΥΘΡΟΥ ΣΤΑΥΡΟΥ (Τ.Ε.Α.Π.Ε.Ε.Σ.) '1457': ΑΤΕΛΕΙΕΣ ΕΙΔΩΝ ΒΟΗΘΕΙΑΣ '1458': ΕΚΤΕΛΕΣΗ ΕΡΓΩΝ ΟΧΥΡΩΣΗΣ '1459': ΡΟΥΑΝΤΑ – ΡΟΥΜΑΝΙΑ Κ.ΛΠ '1460': ΜΟΝΙΜΕΣ ΑΝΤΙΠΡΟΣΩΠΕΙΕΣ '1461': ΠΡΟΣΤΑΣΙΑ ΕΦΕΔΡΩΝ ΙΠΤΑΜΕΝΩΝ '1462': ΤΡΑΠΕΖΕΣ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΟΡΙΟΥ '1463': ΙΑΤΡΙΚΟΝ ΠΡΟΣΩΠΙΚΟΝ ΔΗΜΟΣΙΟΥ ΚΑΙ Ν.Π.Δ.Δ '1464': ΔΙΑΦΟΡΑ ΜΟΝΑΣΤΗΡΙΑ '1465': ΕΤΑΙΡΕΙΕΣ ΕΠΕΝΔΥΣΕΩΝ - ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΑΜΟΙΒΑΙΩΝ ΚΕΦΑΛΑΙΩΝ '1466': ΑΝΑΓΝΩΡΙΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΠΟΛΙΤΕΙΑΣ '1467': ΔΙΕΘΝΗΣ ΣΥΜΒΑΣΗ '1468': ΛΙΜΕΝΑΡΧΕΙΑ '1469': ΣΕΙΣΜΟΠΛΗΚΤΟΙ ΘΕΣΣΑΛΙΑΣ '1470': ΣΤΡΑΤΕΥΣΗ ΓΥΝΑΙΚΩΝ '1471': ΣΤΡΑΤΙΩΤΙΚΗ ΥΠΗΡΕΣΙΑ ΚΑΤΑΣΚΕΥΗΣ ΕΡΓΩΝ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ '1472': ΠΡΟΣΤΑΣΙΑ ΤΗΣ ΤΙΜΗΣ ΤΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΣΜΟΥ '1473': ΕΠΙΜΟΡΦΩΣΗ ΛΕΙΤΟΥΡΓΩΝ Μ.Ε '1474': ΕΝΙΣΧΥΣΗ ΕΞΑΓΩΓΗΣ '1475': ΗΛΕΚΤΡΟΦΩΤΙΣΜΟΣ ΔΙΑΦΟΡΩΝ ΠΟΛΕΩΝ '1476': ΜΕ ΤΙΣ ΚΑΤΩ ΧΩΡΕΣ '1477': ΝΑΥΠΗΓΟΥΜΕΝΑ ΠΛΟΙΑ-ΝΑΥΠΗΓΟΕΠΙΣΚΕΥΑΣΤΙΚΕΣ '1478': ΕΛΕΓΧΟΣ ΠΩΛΗΣΕΩΝ ΕΠΙ ΠΙΣΤΩΣΕΙ '1479': ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ '1480': ΔΙΕΘΝΗΣ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ '1481': ΓΡΑΦΕΙΑ ΕΥΡΕΣΗΣ ΕΡΓΑΣΙΑΣ - ΣΥΜΒΟΥΛΟΙ ΕΡΓΑΣΙΑΣ '1482': ΜΟΝΟΠΩΛΙΟ ΝΑΡΚΩΤΙΚΩΝ '1483': ΑΠΑΛΛΑΓΕΣ ΦΟΡΟΛΟΓΙΑΣ ΚΛΗΡΟΝΟΜΙΩΝ '1484': ΠΑΓΚΟΣΜΙΑ ΟΡΓΑΝΩΣΗ ΥΓΕΙΑΣ '1485': ΕΘΝΙΚΟ ΙΔΡΥΜΑ ΕΡΕΥΝΩΝ '1486': ΝΟΜΟΘΕΣΙΑ ΠΕΡΙ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΒΑΣΕΩΣ '1487': ΕΘΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΑΡΜΑΚΩΝ '1488': ΔΙΑΦΟΡΑ ΓΥΜΝΑΣΙΑ & ΛΥΚΕΙΑ '1489': ΞΕΝΕΣ ΣΧΟΛΕΣ ΓΕΩΠΟΝΙΑΣ ΚΑΙ ΔΑΣΟΛΟΓΙΑΣ '1490': ΠΡΟΣΤΑΣΙΑ ΑΝΕΡΓΩΝ '1491': ΦΙΛΑΝΘΡΩΠΙΚΑ ΚΑΤΑΣΤΗΜΑΤΑ ΚΕΦΑΛΛΗΝΙΑΣ '1492': ΚΑΝΟΝΙΣΜΟΣ ΠΑΡΟΧΩΝ Τ.Ε.Β.Ε '1493': ΩΔΕΙΑ ΚΛΠ. ΜΟΥΣΙΚΑ ΙΔΡΥΜΑΤΑ '1494': ΠΡΟΣΚΥΝΗΜΑΤΙΚΑ ΙΔΡΥΜΑΤΑ '1495': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΝ. ΥΔΡΟΗΛΕΚΤΡ. ΕΤ. ΓΛΑΥΚΟΣ '1496': ΠΡΕΣΒΕΙΕΣ ΚΑΙ ΠΡΟΞΕΝΕΙΑ '1497': ΥΠΟΥΡΓΕΙΑ ΤΥΠΟΥ ΚΑΙ ΤΟΥΡΙΣΜΟΥ '1498': ΖΩΝΕΣ ΕΝΕΡΓΟΥ ΠΟΛΕΟΔΟΜΙΑΣ '1499': ΕΚΚΛΗΣΙΑ ΙΟΝΙΩΝ ΝΗΣΩΝ '1500': ΕΠΙΤΡΟΠΑΙ ΑΣΦΑΛΕΙΑΣ '1501': ΥΠΟΥΡΓΟΙ '1502': ΠΟΙΝΙΚΗ ΔΙΑΤΙΜΗΣΗ '1503': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΕΡΓΑΤΩΝ ΚΕΡΑΜΟΠΟΙΩΝ '1504': ΠΡΩΤΕΣ ΥΛΕΣ ΠΑΙΓΝΙΟΧΑΡΤΩΝ '1505': ΚΡΥΠΤΟΓΡΑΦΙΚΗ ΥΠΗΡΕΣΙΑ '1506': ΔΙΕΘΝΗΣ ΕΠΙΤΡΟΠΗ ΠΡΟΣΩΠΙΚΗΣ ΚΑΤΑΣΤΑΣΕΩΣ '1507': ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ '1508': ΔΙΑΧΕΙΡΙΣΗ ΙΔΡΥΜΑΤΩΝ ΚΑΙ ΚΛΗΡΟΔΟΤΗΜΑΤΩΝ '1509': ΤΕΛΩΝΕΙΑΚΗ ΣΤΑΤΙΣΤΙΚΗ '1510': ΙΔΙΩΤΙΚΕΣ ΝΑΥΤΙΚΕΣ ΣΧΟΛΕΣ '1511': ΑΕΡΟΠΟΡΙΚΑ ΑΤΥΧΗΜΑΤΑ '1512': ΑΝΩΤΕΡΟ ΔΙΔΑΚΤΙΚΟ ΠΡΟΣΩΠΙΚΟ '1513': ΔΙΑΦΟΡΟΙ ΔΙΟΙΚΗΤΙΚΟΙ ΕΡΓΑΤΙΚΟΙ ΝΟΜΟΙ '1514': ΣΥΜΒΟΥΛΙΟ ΓΕΩΓΡΑΦΙΚΩΝ ΥΠΗΡΕΣΙΩΝ '1515': ΕΚΚΛΗΣΙΑΣΤΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ '1516': ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ '1517': ΠΕΡΙΟΡΙΣΜΟΣ ΣΥΝΘΕΣΕΩΣ ΥΠΗΡΕΣΙΩΝ '1518': ΤΑΜΕΙΑ ΕΠΑΡΧΙΑΚΗΣ ΟΔΟΠΟΙΙΑΣ '1519': ΤΙΜΟΛΟΓΙΑ Ο.Τ.Ε - ΚΟΣΤΟΛΟΓΗΣΗ ΥΠΗΡΕΣΙΩΝ Ο.Τ.Ε '1520': ΕΘΝΙΚΗ ΒΙΒΛΙΟΘΗΚΗ '1521': ΔΗΜΟΣΙΕΣ ΣΧΟΛΕΣ ΥΠΟΜΗΧΑΝΙΚΩΝ '1522': ΑΝΑΦΟΡΕΣ ΠΡΟΣ ΤΙΣ ΑΡΧΕΣ '1523': ΚΡΑΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΛΕΩΦΟΡΕΙΑΚΩΝ ΓΡΑΜΜΩΝ '1524': ΔΙΑΦΟΡΑ ΕΠΙΔΟΜΑΤΑ '1525': ΙΔΙΩΤΙΚΗ ΑΕΡΟΠΟΡΙΑ – ΑΕΡΟΛΕΣΧΕΣ '1526': ΤΜΗΜΑ ΔΙΟΙΚΗΤΙΚΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ '1527': ΔΙΕΘΝΕΙΣ ΑΕΡΟΠΟΡΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '1528': ΠΡΟΙΚΟΔΟΤΗΣΕΙΣ ΕΞ ΕΘΝΙΚΩΝ ΓΑΙΩΝ '1529': ΔΙΟΡΘΩΣΗ ΑΣΥΜΦΩΝΙΩΝ '1530': ΕΠΙΤΡΟΠΗ ΔΙΟΙΚΗΣΕΩΣ '1531': ΜΕΤΑ ΤΗΣ ΓΕΡΜΑΝΙΑΣ '1532': ΟΙΚΟΔΟΜΙΚΟΙ ΣΥΝΕΤΑΙΡΙΣΜΟΙ '1533': ΚΑΤΑΣΤΑΤΙΚΟΙ ΝΟΜΟΙ '1534': ΑΞΙΩΜΑΤΙΚΟΙ ΓΡΑΦΕΙΟΥ '1535': ΚΑΝΟΝΙΣΜΟΣ ΕΝΑΕΡΙΟΥ ΚΥΚΛΟΦΟΡΙΑΣ '1536': ΔΙΑΧΕΙΡΙΣΗ ΚΑΥΣΙΜΩΝ '1537': ΟΜΟΛΟΓΙΑΚΑ ΔΑΝΕΙΑ '1538': ΕΡΓΑ '1539': ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ '1540': ΠΩΛΗΣΗ ΦΑΡΜΑΚΩΝ ΑΠΟ ΙΑΤΡΟΥΣ '1541': ΣΗΜΑΤΑ ΕΘΝΙΚΟΤΗΤΑΣ ΚΑΙ ΝΗΟΛΟΓΗΣΕΩΣ '1542': ΛΕΙΤΟΥΡΓΟΙ ΣΤΟΙΧΕΙΩΔΟΥΣ '1543': ΕΦΕΤΕΙΑ ΚΑΙ ΠΡΩΤΟΔΙΚΕΙΑ '1544': ΥΠΟΥΡΓΕΙΟ ΠΡΟΕΔΡΙΑΣ ΚΥΒΕΡΝΗΣΕΩΣ '1545': ΜΟΡΦΩΤΙΚΟΣ – ΚΙΝΗΜΑΤΟΓΡΑΦΟΣ '1546': ΚΑΤΑΜΕΤΡΗΣΗ ΧΩΡΗΤΙΚΟΤΗΤΑΣ '1547': ΦΩΤΑΕΡΙΟ '1548': ΠΑΘΗΤΙΚΗ ΑΕΡΑΜΥΝΑ '1549': ΠΡΟΣΩΠΙΚΟ ΝΟΣΗΛΕΥΤΙΚΩΝ ΙΔΡΥΜΑΤΩΝ '1550': ΜΕ ΤΗΝ ΚΥΠΡΟ '1551': ΚΟΛΛΗΓΟΙ (ΕΠΙΜΟΡΤΟΙ ΚΑΛΛΙΕΡΓΗΤΕΣ) '1552': ΤΑΜΕΙΟ ΑΡΩΓΗΣ Λ.Σ '1553': ΙΧΘΥΟΣΚΑΛΕΣ '1554': ΣΧΗΜΑ ΚΑΙ ΤΙΜΗ ΠΩΛΗΣΗΣ ΕΦΗΜΕΡΙΔΩΝ '1555': ΥΙΟΘΕΣΙΑ '1556': ΕΚΤΕΛΕΣΗ ΕΡΓΩΝ ΑΡΜΟΔΙΟΤΗΤΑΣ ΕΚΚΛΗΣΙΑΣ '1557': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΠΡΟΣΩΠΙΚΟΥ '1558': ΔΙΑΦΟΡΕΣ ΕΥΡΩΠΑΙΚΕΣ ΣΥΜΦΩΝΙΕΣ '1559': ΕΓΓΕΙΟΣ ΦΟΡΟΛΟΓΙΑ '1560': ΠΑΙΔΑΓΩΓΙΚΕΣ ΑΚΑΔΗΜΙΕΣ '1561': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΕΡΓΑΤΟΥΠΑΛΛΗΛΩΝ ΜΕΤΑΛΛΟΥ (ΤΑ.Π.Ε.Μ.) '1562': ΤΕΧΝΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΑΕΡΟΣΚΑΦΩΝ '1563': ΕΝΩΣΗ ΑΠΟΣΤΡΑΤΩΝ ΑΞΙΩΜΑΤΙΚΩΝ Β.Α '1564': ΑΣΦΑΛΙΣΗ ΕΡΓΑΤΩΝ ΓΕΩΡΓΙΑΣ '1565': ΟΡΓΑΝΩΣΗ ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΕΚΔΗΛΩΣΕΩΝ-ΦΕΣΤΙΒΑΛ '1566': ΠΕΡΙΟΥΣΙΑΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΗΣ ΠΟΙΝΗΣ '1567': ΤΗΛΕΓΡΑΦΙΚΗ ΑΝΤΑΠΟΚΡΙΣΗ '1568': ΕΠΙΘΕΩΡΗΣΗ ΔΗΜΟΣΙΩΝ ΥΠΟΛΟΓΩΝ '1569': ΜΕ ΤΟΝ ΚΑΝΑΔΑ '1570': ΑΛΛΗΛΟΓΡΑΦΙΑ Υ.Ε.Ν '1571': ΤΕΧΝΙΚΟ ΠΡΟΣΩΠΙΚΟ ΑΕΡΟΠΟΡΙΑΣ '1572': ΚΛΑΔΟΣ ΑΥΤΟΤΕΛΩΣ ΑΠΑΣΧΟΛΟΥΜΕΝΩΝ, ΕΛΕΥΘΕΡΩΝ ΚΑΙ ΑΝΕΞΑΡΤΗΤΩΝ '1573': ΣΧΟΛΕΙΑ ΒΑΡΥΚΟΩΝ Η ΚΩΦΩΝ '1574': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΚΑΤΩΤΕΡΩΝ ΠΛΗΡΩΜΑΤΩΝ Ε.Ν '1575': ΤΟΥΡΙΣΤΙΚΑ ΠΛΟΙΑ - ΣΚΑΦΗ ΑΝΑΨΥΧΗΣ - ΤΟΥΡΙΣΤΙΚΟΙ ΛΙΜΕΝΕΣ (ΜΑΡΙΝΕΣ) '1576': ΕΠΙΔΟΜΑΤΑ ΕΟΡΤΩΝ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΚΑΙ ΠΑΣΧΑ '1577': ΕΠΙΜΕΛΗΤΗΡΙΑ - ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ '1578': ΥΠΟΥΡΓΕΙΟ ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ '1579': ΣΤΕΓΑΣΗ ΑΞΙΩΜΑΤΙΚΩΝ '1580': ΠΑΡΑΡΤΗΜΑΤΑ ΓΕΝΙΚΟΥ ΧΗΜΕΙΟΥ '1581': ΚΑΘΑΡΙΣΤΡΙΕΣ '1582': ΚΑΝΟΝΙΣΜΟΣ ΝΑΥΤΟΔΙΚΕΙΟΥ '1583': ΑΜΟΙΒΕΣ ΜΗΧΑΝΙΚΩΝ '1584': ΕΠΙΜΟΡΦΩΣΗ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ '1585': ΚΑΝΟΝΙΣΜΟΙ ΕΠΙΒΑΤΗΓΩΝ ΠΛΟΙΩΝ '1586': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΠΡΟΣΩΠΙΚΟΥ ΕΤΑΙΡΙΑΣ ΕΛΛ. ΚΑΛΥΚΟΠΟΙΕΙΟΥ-ΠΥΡΙΤΙΔΟΠΟΙΕΙΟΥ '1587': ΠΡΟΣΩΠΙΚΟ ΤΡΑΠΕΖΩΝ '1588': ΛΥΣΣΙΑΤΡΕΙΑ '1589': ΣΥΝΟΡΙΑΚΕΣ ΥΓΕΙΟΝΟΜΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '1590': ΠΟΛΕΜΙΚΟ ΜΟΥΣΕΙΟ '1591': ΚΑΘΗΚΟΝΤΑ ΤΕΛΩΝΕΙΑΚΩΝ ΥΠΑΛΛΗΛΩΝ '1592': ΕΠΕΚΤΑΣΗ ΤΗΣ ΑΣΦΑΛΙΣΕΩΣ '1593': ΦΟΡΟΛΟΓΙΚΕΣ ΑΠΑΛΛΑΓΕΣ '1594': ΕΠΙΔΟΜΑ ΣΤΡΑΤΕΥΣΗΣ '1595': ΔΙΑΡΚΗ ΣΤΡΑΤΟΔΙΚΕΙΑ '1596': ΣΥΝΤΑΞΙΟΔΟΤΗΣΗ ΠΡΟΣΩΠΙΚΟΥ Ο.Γ.Α '1597': ΑΣΤΥΝΟΜΙΑ ΕΜΠΟΡΙΚΗΣ ΝΑΥΤΙΛΙΑΣ '1598': ΦΡΟΝΤΙΣΤΕΣ ΜΟΝΑΔΩΝ '1599': ΑΡΑΒΟΣΙΤΟΣ '1600': ΜΗΤΡΟΠΟΛΕΙΣ '1601': ΦΙΛΑΝΘΡΩΠΙΚΑ ΣΩΜΑΤΕΙΑ '1602': ΔΙΑΦΟΡΟΙ ΠΟΛΥΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ '1603': ΕΞΥΓΙΑΝΤΙΚΑ ΕΡΓΑ '1604': ΦΥΛΛΑ ΠΟΙΟΤΗΤΑΣ ΝΑΥΤΩΝ '1605': ΦΙΛΑΝΘΡΩΠΙΚΑ ΙΔΡΥΜΑΤΑ ΚΑΙ ΣΩΜΑΤΕΙΑ '1606': ΕΣΤΙΑ ΝΑΥΤΙΚΩΝ '1607': ΓΛΥΚΑ ΚΑΙ ΚΟΝΣΕΡΒΕΣ '1608': ΠΡΟΣΤΑΣΙΑ ΥΠΟΒΡΥΧΙΩΝ ΚΑΛΩΔΙΩΝ '1609': ΕΠΕΞΕΡΓΑΣΙΑ ΚΑΙ ΕΜΠΟΡΙΑ ΣΥΚΩΝ '1610': ΧΑΡΟΚΟΠΕΙΟ '1611': ΔΙΑΜΕΤΑΚΟΜΙΣΗ ΣΤΗΝ ΑΛΒΑΝΙΑ '1612': ΕΠΙΘΕΩΡΗΣΗ ΦΥΛΑΚΩΝ '1613': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΠΕΡΙ ΚΥΡΙΑΚΗΣ ΑΡΓΙΑΣ '1614': ΚΙΝΗΜΑΤΟΓΡΑΦΙΚΗ ΒΙΟΜΗΧΑΝΙΑ '1615': ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΠΡΟΕΛΕΥΣΕΩΣ '1616': ΤΟΥΡΙΣΤΙΚΗ ΠΡΟΠΑΓΑΝΔΑ '1617': ΕΙΣΦΟΡΑ ΕΙΣΑΓΩΓΕΩΝ '1618': ΚΑΖΙΝΟ '1619': ΜΕ ΤΗΝ ΕΛΒΕΤΙΑ '1620': ΔΙΚΑΣΤΙΚΟΙ ΕΠΙΜΕΛΗΤΕΣ '1621': ΚΩΔΙΚΑΣ ΠΟΙΝΙΚΗΣ ΔΙΚΟΝΟΜΙΑΣ '1622': ΤΟΠΙΚΕΣ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΤΡΟΠΕΣ '1623': ΕΤΑΙΡΕΙΕΣ ΚΕΦΑΛΑΙΟΠΟΙΗΣΕΩΣ '1624': ΟΡΥΖΑ '1625': ΔΙΟΙΚΗΤΙΚΟ ΣΥΜΒΟΥΛΙΟ Ο.Γ.Α '1626': ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΣΩΠΙΚΟ ΣΧΟΛΩΝ Π.Ν '1627': ΒΑΣΙΛΕΙΑ ΚΑΙ ΑΝΤΙΒΑΣΙΛΕΙΑ '1628': ΥΠΗΡΕΣΙΑ ΣΤΙΣ ΕΠΑΡΧΙΕΣ Τ.Π. ΚΑΙ Δ '1629': ΓΕΩΡΓΙΚΕΣ ΒΙΟΜΗΧΑΝΙΕΣ '1630': ΒΟΥΛΕΥΤΗΡΙΟ '1631': ΠΟΡΘΜΕΙΑ '1632': ΕΚΤΕΛΕΣΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ '1633': ΙΝΣΤΙΤΟΥΤΑ ΚΡΗΤΙΚΟΥ ΔΙΚΑΙΟΥ - ΑΙΓΑΙΟΥ ΚΑΙ ΔΙΑΦΟΡΑ ΕΡΕΥΝΗΤΙΚΑ ΚΕΝΤΡΑ '1634': ΑΤΕΛΕΙΕΣ ΔΙΑΦΟΡΕΣ '1635': ΚΕΝΤΡΑ ΠΑΡΑΘΕΡΙΣΜΟΥ - '1636': ΣΧΟΛΕΣ ΑΕΡΟΠΟΡΙΑΣ '1637': ΛΕΠΡΑ '1638': ΑΙΣΘΗΤΙΚΟΙ '1639': ΕΚΚΑΘΑΡΙΣΗ ΠΟΙΝΙΚΩΝ ΕΞΟΔΩΝ '1640': ΓΕΝ. ΟΙΚΟΔΟΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ '1641': ΕΛΕΓΧΟΣ ΔΑΠΑΝΩΝ ΤΟΥ ΚΡΑΤΟΥΣ '1642': ΠΕΤΡΕΛΑΙΟΚΙΝΗΤΑ ΚΑΙ ΙΣΤΙΟΦΟΡΑ '1643': ΚΑΛΛΙΕΡΓΕΙΑ ΚΑΠΝΟΥ '1644': ΔΙΟΙΚΗΣΗ ΜΟΝΑΣΤΗΡΙΩΝ '1645': ΚΤΗΝΙΑΤΡΙΚΑ ΙΔΙΟΣΚΕΥΑΣΜΑΤΑ '1646': ΜΟΝΙΜΟΙ ΚΑΙ ΕΘΕΛΟΝΤΕΣ '1647': ΦΟΡΟΛΟΓΙΑ ΚΕΡΔΩΝ ΕΙΣΑΓΩΓΕΩΝ '1648': ΑΓΩΓΕΣ ΕΞΩΣΕΩΣ ΜΙΣΘΩΤΩΝ '1649': ΟΡΓΑΝΩΣΗ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΟΡΙΟΥ '1650': ΑΓΩΓΕΣ ΜΗΧΑΝΙΚΩΝ '1651': ΝΑΥΤΙΚΗ ΣΧΟΛΗ ΠΟΛΕΜΟΥ '1652': ΜΕΤΑΦΟΡΑ ΘΕΣΕΩΝ '1653': ΕΙΣΑΓΩΓΗ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΥΛΙΚΟΥ '1654': ΣΥΓΚΡΟΤΗΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ '1655': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΑΕΡΟΠΟΡΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ (T.Ε.Α.Π.Α.Ε.) '1656': ΣΥΛΛΟΓΗ ΚΑΙ ΔΙΑΚΙΝΗΣΗ ΠΕΤΡΕΛΑΙΟΕΙΔΩΝ ΕΡΜΑΤΩΝ '1657': ΚΕΝΤΡΑ ΑΔΥΝΑΤΙΣΜΑΤΟΣ – ΔΙΑΙΤΟΛΟΓΙΑΣ '1658': ΟΜΑΔΙΚΗ ΚΑΤΑΓΓΕΛΙΑ ΣΥΜΒΑΣΕΩΣ ΕΡΓΑΣΙΑΣ '1659': ΔΙΑΦΟΡΑ ΜΟΥΣΕΙΑ '1660': ΒΕΒΑΙΩΣΗ ΚΑΙ ΕΙΣΠΡΑΞΗ ΕΣΟΔΩΝ '1661': ΓΡΑΦΕΙΑ ΤΥΠΟΥ '1662': ΔΙΟΙΚΗΤΙΚΟ ΠΡΟΣΩΠΙΚΟ '1663': ΣΥΝΕΡΓΕΙΑ ΕΠΙΣΚΕΥΩΝ '1664': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΠΡΟΝΟΙΑΣ ΚΑΙ ΑΣΘΕΝΕΙΑΣ ΕΡΓΑΖΟΜΕΝΩΝ ΣΤΑ ΛΙΜΑΝΙΑ (Τ.Ε.Α.Π.Α.Ε.Λ.) '1665': ΑΣΦΑΛΙΣΗ ΚΑΠΝΕΡΓΑΤΩΝ '1666': ΑΝΤΙΣΗΚΩΜΑΤΑ (ΕΞΑΓΟΡΑ ΘΗΤΕΙΑΣ) '1667': ΡΥΜΟΥΛΚΟΥΜΕΝΑ ΟΧΗΜΑΤΑ '1668': ΝΟΜΟΙ ΑΝΑΦΕΡΟΜΕΝΟΙ ΣΕ ΠΟΛΛΕΣ ΦΟΡΟΛΟΓΙΕΣ '1669': ΟΙΚΟΣΥΣΤΗΜΑΤΑ–ΒΙΟΤΟΠΟΙ '1670': ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΩΝ '1671': ΕΘΝΙΚΟ ΤΥΠΟΓΡΑΦΕΙΟ '1672': ΔΙΚΑΣΤΙΚΑ ΚΑΤΑΣΤΗΜΑΤΑ '1673': ΠΡΟΣΤΑΣΙΑ ΒΙΒΛΙΟΥ-ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΒΙΒΛΙΟΥ-ΛΟΓΟΤΕΧΝΙΑ '1674': ΔΑΣΜΟΙ ΑΝΤΙΝΤΑΜΠΙΓΚ '1675': ΔΑΣΗ ΠΑΡΑΜΕΘΟΡΙΩΝ ΠΕΡΙΟΧΩΝ '1676': ΘΕΟΛΟΓΙΚΗ ΣΧΟΛΗ '1677': ΟΡΟΙ - ΠΡΟΔΙΑΓΡΑΦΕΣ ΤΥΠΟΠΟΙΗΣΗΣ '1678': ΦΟΡΟΛΟΓΙΑ ΒΥΝΗΣ ΚΑΙ ΖΥΘΟΥ '1679': ΑΠΟΘΗΚΗ ΚΤΗΝΙΑΤΡΙΚΩΝ ΕΦΟΔΙΩΝ '1680': ΠΑΡΟΧΗ ΤΗΛΕΦΩΝΙΚΩΝ ΣΥΝΔΕΣΕΩΝ '1681': ΠΑΡΑΧΩΡΗΣΗ ΙΑΜΑΤΙΚΩΝ ΠΗΓΩΝ '1682': ΜΑΘΗΤΙΚΑ ΣΥΣΣΙΤΙΑ '1683': ΠΡΟΣΛΗΨΗ ΕΦΕΔΡΩΝ, ΑΝΑΠΗΡΩΝ ΠΟΛΕΜΟΥ, ΠΟΛΥΤΕΚΝΩΝ ΚΑΙ ΑΛΛΩΝ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ '1684': ΕΡΤ – 3 '1685': ΣΧΟΛΗ ΠΟΛΕΜΟΥ ΑΕΡΟΠΟΡΙΑΣ '1686': ΤΟΠΟΘΕΤΗΣΕΙΣ - ΜΕΤΑΤΑΞΕΙΣ '1687': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΠΡΟΣΤΑΣΙΑΣ '1688': ΦΥΣΙΚΟ ΑΕΡΙΟ '1689': ΤΕΧΝΙΚΑ ΕΡΓΑ '1690': ΔΙΠΛΩΜΑΤΟΥΧΟΙ ΑΝΩΤΑΤΩΝ '1691': ΕΘΝΙΚΟ ΝΟΜΙΣΜΑΤΙΚΟ ΜΟΥΣΕΙΟ '1692': ΟΙΚΟΝΟΜΙΚΗ ΑΣΤΥΝΟΜΙΑ ΣΤΗ ΘΑΛΑΣΣΑ '1693': ΑΣΦΑΛΕΙΑ, ΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗ '1694': ΕΙΔΙΚΑ ΠΡΟΝΟΜΙΑ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ '1695': ΓΡΑΜΜΑΤΕΙΑ ΤΩΝ ΔΙΚΑΣΤΗΡΙΩΝ ΚΑΙ ΕΙΣΑΓΓΕΛΙΩΝ '1696': ΑΛΙΠΑΣΤΑ '1697': ΕΠΙΔΟΣΗ ΔΙΚΟΓΡΑΦΩΝ '1698': ΚΕΝΤΡΙΚΟ ΤΑΜΕΙΟ ΓΕΩΡΓΙΑΣ '1699': ΣΤΡΑΤΙΩΤΙΚΑ ΣΥΜΒΟΥΛΙΑ '1700': ΤΑΜΕΙΑΚΗ ΥΠΗΡΕΣΙΑ ΤΕΛΩΝΕΙΩΝ '1701': ΝΟΣΗΛΕΥΤΙΚΟ ΙΔΡΥΜΑ Μ.Τ.Σ '1702': ΔΙΚΑΙΟ ΘΑΛΑΣΣΑΣ-ΥΦΑΛΟΚΡΗΠΙΔΑ '1703': ΕΙΔΙΚΟΣ ΦΟΡΟΣ ΚΑΤΑΝΑΛΩΣΗΣ '1704': ΜΕΙΟΝΟΤΙΚΑ ΣΧΟΛΕΙΑ '1705': ΓΡΑΦΕΙΑ ΕΜΠΟΡΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ '1706': ΣΥΝΤΟΝΙΣΤΙΚΟΝ ΣΥΜΒΟΥΛΙΟΝ ΝΕΩΝ ΠΡΟΣΦΥΓΩΝ '1707': ΠΕΡΙΘΑΛΨΗ ΑΠΟΡΩΝ ΚΑΙ ΑΝΑΣΦΑΛΙΣΤΩΝ '1708': ΦΟΡΟΛΟΓΙΑ ΚΕΝΤΡΩΝ ΔΙΑΣΚΕΔΑΣΕΩΣ ΚΑΙ ΠΟΛΥΤΕΛΕΙΑΣ '1709': ΣΠΟΓΓΑΛΙΕΥΤΙΚΑ – ΔΥΤΕΣ '1710': ΔΙΕΘΝΕΣ ΝΟΜΙΣΜΑΤΙΚΟ ΤΑΜΕΙΟ '1711': ΒΙΒΛΙΟ ΔΙΕΚΔΙΚΗΣΕΩΝ '1712': ΕΓΚΑΤΑΣΤΑΣΗ - ΛΕΙΤΟΥΡΓΙΑ ΚΑΤΑΣΚΕΥΩΝ ΚΕΡΑΙΩΝ '1713': ΕΝΩΣΗ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ '1714': ΛΟΓΙΣΤΙΚΟΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ '1715': ΚΑΤΩΤΕΡΑ ΟΡΓΑΝΑ ΣΩΜΑΤΩΝ ΑΣΦΑΛΕΙΑΣ '1716': ΥΠΟΥΡΓΕΙΟ ΕΜΠΟΡΙΚΗΣ ΝΑΥΤΙΛΙΑΣ '1717': ΟΡΓΑΝΙΣΜΟΣ ΕΛΕΓΚΤΙΚΟΥ ΣΥΝΕΔΡΙΟΥ '1718': ΑΓΟΡΕΣ ΑΓΡΟΤΙΚΩΝ ΠΡΟΙΟΝΤΩΝ '1719': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΜΙΣΘΩΤΩΝ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ '1720': ΞΕΝΑΓΟΙ ΚΑΙ ΔΙΕΡΜΗΝΕΙΣ '1721': ΠΟΛΕΜΙΚΕΣ ΣΥΝΤΑΞΕΙΣ '1722': ΑΣΤΙΚΕΣ ΣΥΓΚΟΙΝΩΝΙΕΣ ΑΘΗΝΩΝ-ΠΕΙΡΑΙΩΣ ΚΑΙ ΠΕΡΙΧΩΡΩΝ-Ο.Α.Σ.Α '1723': ΚΑΤΑΣΤΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΑΜΕΙΟΥ ΑΣΦΑΛΙΣΕΩΣ ΑΡΤΕΡΓΑΤΩΝ Κ.Λ.Π '1724': ΑΤΥΧΗΜΑΤΑ ΣΕ ΜΕΤΑΛΛΕΙΑ ΚΛΠ '1725': ΦΟΡΟΛΟΓΙΑ ΠΟΛΕΜΙΚΩΝ ΚΕΡΔΩΝ '1726': ΣΧΕΔΙΟ ΠΟΛΕΩΣ ΘΕΣΣΑΛΟΝΙΚΗΣ '1727': ΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΑΓΡΟΤ. ΑΣΦΑΛΕΙΑΣ '1728': ΚΡΑΤΙΚΟ ΩΔΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ '1729': ΚΕΝΤΡΑ ΑΝΩΤΕΡΗΣ ΤΕΧΝΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Κ.A.Τ.Ε.) '1730': ΤΗΛΕΦΩΝΙΚΗ ΑΝΤΑΠΟΚΡΙΣΗ '1731': ΟΙΚΟΝΟΜΙΚΑ ΓΥΜΝΑΣΙΑ '1732': ΒΙΒΛΙΑ ΚΑΙ ΕΥΡΕΤΗΡΙΑ ΣΥΝΕΤΑΙΡΙΣΜΩΝ '1733': ΕΠΙΔΟΜΑ ΑΝΕΡΓΙΑΣ '1734': ΕΓΓΡΑΦΕΣ, ΕΞΕΤΑΣΕΙΣ, ΠΡΟΓΡΑΜΜΑΤΑ ΚΛΠ '1735': ΣΧΟΛΗ ΜΟΝΙΜΩΝ ΥΠΑΞΙΩΜΑΤΙΚΩΝ '1736': ΕΚΚΛΗΣΙΑ ΑΜΕΡΙΚΗΣ '1737': ΜΕΤΟΧΙΚΟ ΤΑΜΕΙΟ ΣΤΡΑΤΟΥ '1738': ΝΟΣΗΛΕΙΑ '1739': ΣΧΟΛΗ ΕΥΕΛΠΙΔΩΝ '1740': ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ '1741': ΚΑΝΟΝΙΣΜΟΣ ΧΡΗΜΑΤΙΣΤΗΡΙΟΥ ΑΞΙΩΝ ΑΘΗΝΩΝ '1742': ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ '1743': ΦΑΡΜΑΚΕΥΤΙΚΗ ΔΕΟΝΤΟΛΟΓΙΑ '1744': ΦΟΡΟΛΟΓΙΑ ΕΛΑΙΩΔΩΝ ΠΡΟΙΟΝΤΩΝ '1745': ΕΙΔΙΚΑ ΡΑΔΙΟΤΗΛΕΦΩΝΙΚΑ ΔΙΚΤΥΑ '1746': ΤΕΧΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ '1747': ΑΡΧΕΙΑ ΥΓΙΕΙΝΗΣ '1748': ΟΔΟΙΠΟΡΙΚΑ ΚΑΙ ΑΠΟΖΗΜΙΩΣΕΙΣ ΑΠΟΣΤΟΛΩΝ ΕΞΩΤΕΡΙΚΟΥ '1749': ΔΙΑΦΟΡΟΙ ΛΟΓΙΣΤΙΚΟΙ ΝΟΜΟΙ '1750': ΕΚΚΛΗΣΙΑΣΤΙΚΟΙ ΥΠΑΛΛΗΛΟΙ '1751': ΝΑΥΤΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΣΩΜΑΤΕΙΑ ΚΑΙ ΟΜΟΣΠΟΝΔΙΕΣ '1752': ΤΕΛΗ ΧΡΗΣΗΣ ΑΕΡΟΛΙΜΕΝΩΝ '1753': ΠΡΟΑΙΡΕΤΙΚΗ ΑΣΦΑΛΙΣΗ '1754': ΜΕ ΤΗ ΛΙΒΥΗ '1755': ΠΟΤΑΜΟΠΛΟΙΑ ΦΟΡΤΙΟΥ ΥΓΡΩΝ ΚΑΥΣΙΜΩΝ '1756': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΠΡΟΣΩΠΙΚΟΥ ΕΛΛΗΝΙΚΩΝ ΗΛΕΚΤΡΙΚΩΝ ΣΙΔΗΡΟΔΡΟΜΩΝ ΑΘΗΝΩΝ-ΠΕΙΡΑΙΩΣ (Τ.Σ.Π.-Η.Σ.Α.Π) '1757': ΜΕΣΑΖΟΝΤΕΣ '1758': ΣΤΡΑΤΙΩΤΙΚΟΣ ΠΟΙΝΙΚΟΣ '1759': ΔΙΚΑΙΩΜΑΤΑ ΚΑΙ ΚΑΘΗΚΟΝΤΑ ΦΟΙΤΗΤΩΝ '1760': ΠΡΟΕΔΡΙΑ ΔΗΜΟΚΡΑΤΙΑΣ '1761': ΚΩΔΙΚΑΣ ΕΜΠΟΡΙΚΟΥ ΝΟΜΟΥ '1762': ΣΥΝΤΑΞΙΟΔΟΤΗΣΗ Ο.Γ.Α '1763': ΣΑΝΑΤΟΡΙΑ '1764': ΕΛΕΓΧΟΣ ΕΜΠΟΡΙΟΥ ΕΙΔΩΝ ΠΡΩΤΗΣ ΑΝΑΓΚΗΣ '1765': ΒΑΛΑΝΙΔΙΑ '1766': ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ '1767': ΣΕΙΣΜΟΠΛΗΚΤΟΙ ΠΕΛΟΠΟΝΝΗΣΟΥ '1768': ΔΙΕΘΝΗΣ ΟΡΓΑΝΙΣΜΟΣ ΧΡΗΜΑΤΟΔΟΤΗΣΕΩΣ '1769': ΜΕΤΑΦΟΡΑ ΣΤΟ ΕΣΩΤΕΡΙΚΟ '1770': ΙΣΤΟΡΙΚΟ ΑΡΧΕΙΟ ΥΔΡΑΣ '1771': ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΙ ΚΙΝΗΣΗ ΑΛΛΟΔΑΠΩΝ '1772': ΣΧΟΛΗ ΤΕΧΝΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΞΙΩΜΑΤΙΚΩΝ '1773': ΓΑΜΟΣ ΣΤΡΑΤΙΩΤΙΚΩΝ '1774': ΑΠΑΓΟΡΕΥΣΗ ΕΞΟΔΟΥ ΟΦΕΙΛΕΤΩΝ '1775': ΠΡΩΤΕΣ ΥΛΕΣ ΨΕΚΑΣΤΗΡΩΝ '1776': ΦΙΛΕΚΠΑΙΔΕΥΤΙΚΗ ΕΤΑΙΡΕΙΑ '1777': ΑΔΕΙΕΣ ΟΔΗΓΩΝ ΑΥΤΟΚΙΝΗΤΩΝ '1778': ΕΘΝΙΚΗ ΠΙΝΑΚΟΘΗΚΗ ΚΑΙ ΜΟΥΣΕΙΟ ΑΛ. ΣΟΥΤΣΟΥ '1779': ΤΑΧΥΔΡΟΜΙΚΑ ΔΕΜΑΤΑ '1780': ΕΙΣΠΡΑΞΗ ΠΟΡΩΝ '1781': ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ '1782': ΔΙΑΘΕΣΗ ΓΑΙΩΝ ΣΤΗ ΘΕΣΣΑΛΙΑ '1783': ΔΙΑΚΡΙΣΗ ΑΣΦΑΛΙΣΜΕΝΩΝ '1784': ΑΓΑΘΟΕΡΓΑ ΙΔΡΥΜΑΤΑ ΚΕΡΚΥΡΑΣ '1785': ΥΠΑΙΘΡΙΟ-ΠΛΑΝΟΔΙΟ ΕΜΠΟΡΙΟ ΚΑΙ ΕΜΠΟΡΟΠΑΝΗΓΥΡΕΙΣ '1786': ΕΞΑΓΩΓΙΚΑ ΤΕΛΗ '1787': ΥΠΟΥΡΓΙΚΟ ΣΥΜΒΟΥΛΙΟ - ΟΡΓΑΝΩΣΗ ΥΠΟΥΡΓΕΙΩΝ - ΚΥΒΕΡΝΗΤΙΚΕΣ ΕΠΙΤΡΟΠΕΣ '1788': ΑΥΤΟΚΙΝΗΤΑ ΚΑΙ ΑΜΑΞΙΔΙΑ ΑΝΑΠΗΡΩΝ ΠΟΛΕΜΟΥ '1789': ΥΠΗΡΕΣΙΕΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ '1790': ΔΙΑΤΙΜΗΣΗ ΦΑΡΜΑΚΩΝ '1791': ΦΟΡΟΛΟΓΙΑ ΕΙΔΩΝ ΠΟΛΥΤΕΛΕΙΑΣ '1792': ΝΑΥΤΙΚΗ ΠΟΙΝΙΚΗ ΝΟΜΟΘΕΣΙΑ '1793': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΕΤΑΙΡΕΙΩΝ ΠΕΤΡΕΛΑΙΟΕΙΔΩΝ '1794': ΔΩΡΟ ΕΟΡΤΩΝ ΕΦΗΜΕΡΙΔΟΠΩΛΩΝ '1795': ΔΙΕΥΚΟΛΥΝΣΕΙΣ ΓΙΑ ΤΗΝ ΑΝΟΙΚΟΔΟΜΗΣΗ '1796': ΕΠΙΣΚΕΥΑΣΤΕΣ - ΣΥΝΕΡΓΕΙΑ ΕΠΙΣΚΕΥΗΣ ΑΥΤΟΚΙΝΗΤΩΝΟΔΙΚΗ ΒΟΗΘΕΙΑ ΟΧΗΜΑΤΩΝ '1797': ΠΑΡΑΧΩΡΗΣΗ ΔΑΣΩΝ '1798': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΑΣΘΕΝΕΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΤΡΑΠΕΖΩΝ ΠΙΣΤΕΩΣ, ΓΕΝΙΚΗΣ ΚΑΙ ΑΜΕΡΙΚΑΝ ΕΞΠΡΕΣ '1799': ΠΛΗΤΤΟΜΕΝΑ ΑΠΟ ΤΗΝ ΑΝΕΡΓΙΑ ΕΠΑΓΓΕΛΜΑΤΑ '1800': ΤΑΜΕΙΑ Κ.Α.Τ.Ε '1801': ΕΙΔΙΚΟΙ ΣΤΡΑΤΙΩΤΙΚΟΙ ΟΡΓΑΝΙΣΜΟΙ '1802': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΙΟΝΙΚΗΣ ΚΑΙ ΛΑΙΚΗΣ ΤΡΑΠΕΖΑΣ (Τ.Α.Π.- Ι.Λ.Τ.) '1803': ΠΡΟΣΤΑΣΙΑ ΑΠΟ ΑΚΤΙΝΟΒΟΛΙΕΣ '1804': ΚΡΑΤΙΚΟ ΘΕΑΤΡΟ Β. ΕΛΛΑΔΟΣ '1805': ΥΓΕΙΟΝΟΜΙΚΟΣ ΕΛΕΓΧΟΣ ΦΟΙΤΗΤΩΝ '1806': ΔΙΑΦΟΡΑ '1807': ΤΕΛΩΝΕΙΑΚΗ ΥΠΗΡΕΣΙΑ ΣΙΔΗΡΟΔΡΟΜΩΝ '1808': ΕΦΕΥΡΕΣΕΙΣ ΑΦΟΡΩΣΑΙ ΕΘΝ. ΑΜΥΝΑ '1809': ΥΠΟΒΡΥΧΙΟΣ ΤΗΛΕΓΡΑΦΟΣ '1810': ΑΔΕΙΕΣ ΟΙΚΟΔΟΜΗΣ ΞΕΝΟΔΟΧΕΙΩΝ '1811': ΙΝΣΤΙΤΟΥΤΟ ΒΥΖΑΝΤΙΝΩΝ ΣΠΟΥΔΩΝ '1812': ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΜΙΟΥ ΘΕΣΝΙΚΗΣ '1813': ΒΙΒΛΙΟΘΗΚΕΣ '1814': ΤΑΜΕΙΑ ΑΝΕΓΕΡΣΕΩΣ ΔΙΔΑΚΤΗΡΙΩΝ '1815': ΕΠΙΔΟΜΑ ΒΙΒΛΙΟΘΗΚΗΣ '1816': ΚΑΤΑΣΤΗΜΑΤΑ ΑΦΟΡΟΛΟΓΗΤΩΝ ΕΙΔΩΝ '1817': ΕΠΙΧΕΙΡΗΣΕΙΣ ΠΕΡΙΘΑΛΨΕΩΣ ΗΛΙΚΙΩΜΕΝΩΝ Η ΑΝΑΠΗΡΩΝ '1818': ΛΙΜΕΝΙΚΟΙ ΣΤΑΘΜΟΙ '1819': ΝΟΜΟΘΕΤΙΚΕΣ ΕΞΟΥΣΙΟΔΟΤΗΣΕΙΣ '1820': ΘΑΛΑΜΟΙ ΡΑΔΙΟΙΣΟΤΟΠΩΝ '1821': ΔΙΟΙΚΗΣΗ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ '1822': ΑΠΑΓΟΡΕΥΜΕΝΕΣ ΚΑΙ '1823': ΗΘΟΠΟΙΟΙ '1824': ΣΥΜΒΑΣΕΙΣ ΠΕΡΙ ΔΙΕΘΝΩΝ ΕΚΘΕΣΕΩΝ '1825': ΣΦΡΑΓΙΣΤΟΣ ΧΑΡΤΗΣ '1826': ΕΤΑΙΡΕΙΕΣ ΔΙΑΧΕΙΡΙΖΟΜΕΝΕΣ ΔΗΜΟΣΙΑ ΣΥΜΦΕΡΟΝΤΑ '1827': ΤΕΛΩΝΕΙΑΚΕΣ ΔΙΕΥΚΟΛΥΝΣΕΙΣ '1828': ΔΕΞΑΜΕΝΟΠΛΟΙΑ '1829': ΚΕΝΤΡΟ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΙΚΟΥ '1830': ΕΠΙΒΑΤΗΓΑ ΜΕΣΟΓΕΙΑΚΑ ΚΑΙ ΤΟΥΡΙΣΤΙΚΑ ΠΛΟΙΑ '1831': ΕΠΙΘΕΩΡΗΣΗ ΔΙΚΑΣΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ '1832': ΚΑΝΟΝΙΣΜΟΣ ΘΕΑΤΡΩΝ ΚΙΝΗΜΑΤΟΓΡΑΦΩΝ ΚΛΠ '1833': ΜΕΤΑΛΛΕΥΤΙΚΟΣ ΚΩΔΙΚΑΣ '1834': ΚΑΤΑΣΤΑΤΙΚΟ Τ.Ε.Α.Α.Π.Α.Ε '1835': ΠΑΝΕΠΙΣΤΗΜΙΑΚΗ ΛΕΣΧΗ '1836': ΕΜΠΟΡΙΚΑ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΑ ΣΗΜΑΤΑ - (ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ) '1837': ΕΠΙΔΟΜΑΤΑ ΑΠΟΛΥΟΜΕΝΩΝ ΟΠΛΙΤΩΝ ΩΣ ΑΝΙΚΑΝΩΝ '1838': ΣΥΜΒΟΥΛΙΟ ΕΝΕΡΓΕΙΑΣ '1839': ΣΧΟΛΗ ΝΟΜΙΚΩΝ,ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ '1840': ΠΡΟΠΛΗΡΩΜΕΣ ΚΑΙ ΠΡΟΚΑΤΑΒΟΛΕΣ '1841': ΚΛΑΔΟΣ ΑΣΘΕΝΕΙΑΣ Τ.Ε.Β.Ε '1842': ΔΙΑΝΟΜΗ ΓΑΙΩΝ ΚΩΠΑΙΔΑΣ '1843': ΠΡΟΣΩΠΙΚΟ ΑΣΦΑΛΕΙΑΣ Ν.Π.Δ.Δ. - ΟΡΓΑΝΙΣΜΩΝ & ΕΠΙΧΕΙΡΗΣΕΩΝ '1844': ΥΠΟΥΡΓΕΙΟ ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ '1845': ΑΕΡΟΝΑΥΑΓΟΣΩΣΤΙΚΗ ΜΟΝΑΔΑ '1846': ΚΟΥΡΕΙΑ, ΚΟΜΜΩΤΗΡΙΑ Κ.Λ.Π '1847': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΔΙΚΑΣΤΙΚΩΝ ΕΠΙΜΕΛΗΤΩΝ '1848': ΕΙΔΙΚΑ ΣΥΝΕΡΓΕΙΑ '1849': ΚΑΤΕΨΥΓΜΕΝΑ ΚΡΕΑΤΑ '1850': ΜΕΣΟΓΕΙΑΚΑ ΔΡΟΜΟΛΟΓΙΑ ΕΠΙΒΑΤΗΓΩΝ ΠΛΟΙΩΝ '1851': ΣΥΓΚΡΟΤΗΣΗ ΠΡΟΣΩΠΙΚΟΥ ΑΕΡΟΠΟΡΙΑΣ '1852': ΥΠΑΛΛΗΛΙΚΟΣ ΚΩΔΙΚΑΣ '1853': ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΠΕΡΙ ΦΑΡΜΑΚΕΙΩΝ '1854': ΔΙΑΦΟΡΟΙ ΣΤΕΓΑΣΤΙΚΟΙ ΝΟΜΟΙ '1855': ΥΠΟΥΡΓΕΙΟ ΣΥΝΤΟΝΙΣΜΟΥ '1856': ΠΡΟΣΛΗΨΕΙΣ ΣΤΟ ΔΗΜΟΣΙΟ '1857': ΤΑΜΕΙΟ ΕΠΙΚ. ΑΣΦΑΛ. ΠΡΟΣΩΠ. Ο.Ε.Α.Σ. ΚΑΙ ΥΠΑΛΛ. ΓΡΑΦΕΙΩΝ ΚΟΙΝΩΝ ΤΑΜΕΙΩΝ ΙΔΙΩΤΙΚΩΝ ΛΕΩΦΟΡΕΙΩΝ '1858': ΣΤΡΑΤΙΩΤΙΚΗ ΑΣΤΥΝΟΜΙΑ '1859': ΝΟΜΙΣΜΑΤΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '1860': ΑΡΧΗ ΔΙΑΣΦΑΛΙΣΗΣ ΑΠΟΡΡΗΤΟΥ ΕΠΙΚΟΙΝΩΝΙΩΝ (Α.Δ.Α.Ε.) '1861': ΣΤΡΑΤΙΩΤΙΚΑ ΣΥΝΕΡΓΕΙΑ '1862': ΠΡΟΣΩΠΙΚΗ ΚΡΑΤΗΣΗ '1863': ΕΦΗΜΕΡΙΔΑ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ '1864': ΑΝΩΤΑΤΟ ΥΓΕΙΟΝΟΜΙΚΟ ΣΥΜΒΟΥΛΙΟ '1865': ΓΡΑΜΜΑΤΕΙΣ ΣΤΡΑΤΟΔΙΚΕΙΩΝ '1866': ΚΑΤΑΣΤΑΣΗ ΔΙΟΠΩΝ, ΝΑΥΤΩΝ ΚΑΙ ΝΑΥΤΟΠΑΙΔΩΝ '1867': ΠΕΡΙΠΤΩΣΕΙΣ ΑΜΟΙΒΑΙΑΣ ΣΥΝΔΡΟΜΗΣ '1868': ΥΠΟΝΟΜΟΙ ΠΡΩΤΕΥΟΥΣΑΣ '1869': ΤΕΛΗ ΔΙΑΔΡΟΜΗΣ ΕΝΑΕΡΙΟΥ ΧΩΡΟΥ '1870': ΥΓΕΙΟΝΟΜΙΚΑΙ ΕΠΙΤΡΟΠΑΙ '1871': ΙΑΤΡΙΚΕΣ ΕΙΔΙΚΟΤΗΤΕΣ '1872': ΕΡΤ – 2 '1873': ΕΚΤΕΛΕΣΗ ΕΡΓΩΝ Ο.Σ.Ε.ΚΑΙ ΣΥΝΔΕΔΕΜΕΝΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ '1874': ΓΕΩΡΓΙΚΕΣ ΣΧΟΛΕΣ '1875': ΣΥΜΜΕΤΟΧΗ ΣΥΝΕΤΑΙΡΙΣΜΩΝ ΣΕ ΠΡΟΜΗΘΕΙΕΣ ΔΗΜΟΣΙΟΥ '1876': ΔΙΚΑΙΩΜΑ ΧΟΡΤΟΝΟΜΗΣ '1877': ΟΙΚΟΚΥΡΙΚΕΣ ΣΧΟΛΕΣ '1878': ΚΕΝΤΡΑ ΥΓΕΙΑΣ-ΠΟΛΥΙΑΤΡΕΙΑ '1879': ΔΙΚΑΣΤΗΡΙΟ ΣΥΝΔΙΑΛΛΑΓΗΣ ΚΑΙ ΔΙΑΙΤΗΣΙΑΣ '1880': ΕΠΙΘΕΩΡΗΣΗ ΙΧΘΥΩΝ '1881': ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΕΞΕΥΓΕΝΙΣΜΟΥ ΔΕΝΔΡΩΝ '1882': ΦΟΙΤΗΤΕΣ '1883': ΔΟΜΗΣΗ ΕΠΙ ΡΥΜΟΤΟΜΟΥΜΕΝΩΝ ΑΚΙΝΗΤΩΝ '1884': ΑΠΑΣΧΟΛΗΣΗ - ΕΞΕΙΔΙΚΕΥΣΗ - ΚΑΤΑΡΤΙΣΗ ΑΝΕΡΓΩΝ '1885': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΥΠΑΛΛΗΛΩΝ ΦΑΡΜΑΚΕΥΤΙΚΩΝ ΕΡΓΑΣΙΩΝ (Τ.Ε.Α.Υ.Φ.Ε.) '1886': ΝΟΜΙΣΜΑΤΙΚΟ ΣΥΣΤΗΜΑ '1887': ΑΠΟΓΡΑΦΗ ΝΑΥΤΙΚΩΝ '1888': ΕΘΝΙΚΟ ΘΕΑΤΡΟ '1889': ΥΠΗΡΕΣΙΑ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΄ΕΡΕΥΝΑΣ ΚΑΙ ΑΝΑΠΤΥΞΕΩΣ '1890': ΠΑΡΟΧΕΣ ΑΣΤΥΝΟΜΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΕΛΛΗΝΙΚΗΣ ΑΣΤΥΝΟΜΙΑΣ '1891': ΣΙΒΙΤΑΝΙΔΕΙΟΣ ΣΧΟΛΗ '1892': ΣΤΡΑΤΙΩΤΙΚΗ ΙΑΤΡΙΚΗ ΣΧΟΛΗ '1893': ΥΠΟΥΡΓΕΙΟ ΚΟΙΝΩΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ '1894': ΑΠΑΓΟΡΕΥΣΗ ΑΠΑΛΛΟΤΡΙΩΣΗΣ ΠΛΟΙΩΝ '1895': ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΣΥΓΓΡΑΜΜΑΤΑ '1896': ΜΟΥΣΟΥΛΜΑΝΟΙ '1897': ΔΙΚΑΣΤΙΚΟΙ ΣΥΜΒΟΥΛΟΙ ΠΟΛΕΜΙΚΟΥ ΝΑΥΤΙΚΟΥ '1898': ΑΕΡΟΠΟΡΙΚΑ ΕΡΓΑ ΚΑΙ ΠΡΟΜΗΘΕΙΕΣ '1899': ΤΟΠΙΚΑ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ ΕΡΓΑ '1900': ΦΟΡΟΛΟΓΙΑ ΖΩΩΝ '1901': ΣΥΝΤΑΓΜΑ '1902': ΝΟΜΟΙ ΠΕΡΙ ΧΡΗΜΑΤΙΣΤΗΡΙΟΥ - ΕΠΙΤΡΟΠΗ ΚΕΦΑΛΑΙΑΓΟΡΑΣ - ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗ ΑΓΟΡΑ ΠΑΡΑΓΩΓΩΝ '1903': ΓΕΩΤΡΗΣΕΙΣ '1904': ΤΑΜΕΙΑ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΕΜΠΟΡΙΚΗΣ ΤΡΑΠΕΖΑΣ ΕΛΛΑΔΑΣ (Τ.Ε.Α.Π.Ε.Τ.Ε ΚΑΙ Τ.Α.Π.Ε.Τ.Ε.) '1905': ΕΦΕΔΡΟΙ ΑΕΡΟΠΟΡΙΑΣ '1906': ΚΑΤ’ ΙΔΙΑΝ ΙΔΙΩΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ '1907': ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ '1908': ΚΑΤΑΒΟΛΗ ΕΙΣΦΟΡΩΝ ΜΕ ΔΟΣΕΙΣ '1909': ΠΑΛΑΙΟΤΕΡΕΣ ΑΕΡΟΠΟΡΙΚΕΣ ΕΤΑΙΡΕΙΕΣ '1910': ΤΡΟΜΟΚΡΑΤΙΑ - ΟΡΓΑΝΩΜΕΝΗ '1911': ΤΑΜΕΙΑ ΕΛΙΑΣ-ΔΑΚΟΚΤΟΝΙΑ '1912': ΓΡΑΦΕΙΑ ΕΥΡΕΣΕΩΣ ΝΑΥΤΙΚΗΣ ΕΡΓΑΣΙΑΣ '1913': ΑΡΤΟΠΟΙΕΙΑ '1914': ΦΟΡΟΛΟΓΙΑ ΚΥΚΛΟΥ ΕΡΓΑΣΙΩΝ '1915': ΣΥΝΑΛΛΑΓΜΑΤΙΚΗ ΚΑΙ ΓΡΑΜΜΑΤΙΟ ΣΕ ΔΙΑΤΑΓΗ '1916': ΠΕΡΙΦΕΡΕΙΑΚΕΣ ΥΠΗΡΕΣΙΕΣ ΥΠΟΥΡΓΕΙΟΥ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ '1917': ΕΛΛΗΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΤΟΥΡΙΣΜΟΥ '1918': ΠΡΟΣΤΑΣΙΑ ΤΡΑΥΜΑΤΙΩΝ, ΑΙΧΜΑΛΩΤΩΝ ΚΑΙ ΑΜΑΧΟΥ ΠΛΗΘΥΣΜΟΥ '1919': ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ Τ.Ε.Β.Ε '1920': ΣΤΕΓΑΣΗ ΑΝΑΠΗΡΩΝ ΠΟΛΕΜΟΥ '1921': ΑΘΛΗΤΙΣΜΟΣ ΚΑΙ ΨΥΧΑΓΩΓΙΑ Π. ΝΑΥΤΙΚΟΥ '1922': ΑΝΕΛΚΥΣΤΗΡΕΣ - ΑΝΥΨΩΤΙΚΑ ΜΕΣΑ ΚΑΙ ΜΗΧΑΝΗΜΑΤΑ '1923': ΣΥΝΤΑΞΕΙΣ ΠΛΗΡΩΜΑΤΩΝ ΕΠΙΤΑΚΤΩΝ ΠΛΟΙΩΝ '1924': ΔΙΚΑΙΩΜΑΤΑ ΥΠΕΡΗΜΕΡΙΑΣ '1925': ΚΩΔΙΚΑΣ ΠΟΛΕΜΙΚΩΝ ΣΥΝΤΑΞΕΩΝ '1926': ΚΑΠΝΟΣ '1927': ΠΡΟΣΤΑΣΙΑ ΣΕΙΣΜΟΠΛΗΚΤΩΝ '1928': ΑΠΟΣΤΡΑΤΕΙΕΣ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΕΙΣ '1929': ΠΡΟΣΩΠΙΚΟ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΣΧΟΛΩΝ '1930': ΔΙΕΘΝΕΙΣ ΣΥΜΒΑΣΕΙΣ ΓΙΑ ΤΗΝ ΠΡΟΣΤΑΣΙΑ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΑΝΗΛΙΚΩΝ '1931': ΚΕΝΤΡΙΚΗ ΑΓΟΡΑ ΑΘΗΝΩΝ '1932': ΕΝΙΣΧΥΣΗ ΕΛΑΙΟΠΑΡΑΓΩΓΗΣ '1933': ΑΝΟΙΚΤΑ ΣΩΦΡΟΝΙΣΤΙΚΑ ΚΑΤΑΣΤΗΜΑΤΑ '1934': ΦΙΛΑΝΘΡΩΠΙΚΑ ΙΔΡΥΜΑΤΑ ΖΑΚΥΝΘΟΥ '1935': ΔΙΑΦΟΡΑ ΕΙΔΗ ΤΡΟΦΙΜΩΝ, ΠΟΤΩΝ & ΑΝΤΙΚΕΙΜΕΝΩΝ '1936': ΦΟΡΟΛΟΓΙΑ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΥΠΟΥ '1937': ΠΕΡΙΟΡΙΣΜΟΙ ΕΙΣΑΓΩΓΗΣ '1938': ΠΡΟΣΩΡΙΝΗ ΕΙΣΔΟΧΗ ΕΜΠΟΡΕΥΜΑΤΩΝ '1939': ΑΡΧΕΙΟ '1940': ΔΙΥΛΙΣΤΗΡΙΑ ΠΕΤΡΕΛΑΙΟΥ '1941': ΕΙΣΑΓΩΓΗ ΠΑΙΔΑΓΩΓΙΚΟΥ ΥΛΙΚΟΥ '1942': ΕΠΙΘΕΩΡΗΣΗ ΚΛΗΡΟΔΟΤΗΜΑΤΩΝ '1943': ΣΙΔΗΡΟΔΡΟΜΟΙ ΒΟΡΕΙΟΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ '1944': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΕΡΓΑΤΟΤΕΧΝΙΤΩΝ ΔΟΜΙΚΩΝ ΚΑΙ ΞΥΛΟΥΡΓΙΚΩΝ ΕΡΓΑΣΙΩΝ (Τ.Ε.Α.Ε.Δ.Ξ.Ε.) '1945': ΤΑΜΕΙΑ ΠΡΟΝΟΙΑΣ ΣΤΙΣ ΠΡΕΣΒΕΙΕΣ '1946': ΟΙΚΟΓΕΝΕΙΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ - ΥΓΕΙΑ ΠΑΙΔΙΟΥ '1947': ΑΡΧΙΕΡΕΙΣ '1948': ΣΥΜΒΟΥΛΙΑ ΥΠΟΥΡΓΕΙΟΥ ΔΙΚΑΙΟΣΥΝΗΣ '1949': ΝΟΣΟΚΟΜΕΙΑΚΗ ΠΕΡΙΘΑΛΨΗ '1950': ΚΑΤΑΣΤΗΜΑΤΑ ΠΩΛΗΣΕΩΣ ΟΙΝΟΠΝΕΥΜΑΤΩΔΩΝ ΠΟΤΩΝ ΚΑΙ ΚΕΝΤΡΑ ΔΙΑΣΚΕΔΑΣΕΩΣ '1951': ΠΡΩΤΕΥΟΥΣΑ '1952': ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ '1953': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΕΤΑΙΡΕΙΩΝ ΤΣΙΜΕΝΤΩΝ (Τ.Ε.Α.Π.Ε.Τ.) '1954': ΕΛΛΗΝΙΚΟΣ ΤΑΠΗΤΟΥΡΓΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ '1955': ΕΦΑΡΜΟΓΗ ΔΗΜΟΣΙΟΥΠΑΛΛΗΛΙΚΟΥ ΚΩΔΙΚΑ '1956': ΗΛΕΚΤΡΟΛΟΓΙΚΟ ΕΡΓΑΣΤΗΡΙΟ '1957': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΕΡΓΟΛΗΠΤΩΝ '1958': ΜΕΣΙΤΕΣ ΑΣΤΙΚΩΝ ΣΥΜΒΑΣΕΩΝ '1959': ΠΛΩΤΕΣ ΔΕΞΑΜΕΝΕΣ '1960': ΚΑΝΟΝΙΣΜΟΙ ΦΟΡΤΩΣΕΩΝ '1961': ΕΙΔΙΚΑ ΕΠΙΔΟΜΑΤΑ '1962': ΠΟΙΝΙΚΟΣ ΚΩΔΙΚΑΣ '1963': ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΠΡΟΝΟΙΑΣ (Τ.Σ.Ε.Υ.Π.) '1964': ΕΘΝΙΚΗ ΑΝΤΙΣΤΑΣΗ '1965': ΟΡΓΑΝΙΣΜΟΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΑΝΑΠΤΥΞΗΣ '1966': ΕΡΓΑ ΚΟΙΝΗΣ ΥΠΟΔΟΜΗΣ '1967': ΔΙΕΥΘΥΝΣΗ TΕΛΩΝΕΙΩΝ ΠΕΙΡΑΙΑ '1968': ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΙΩΑΝΝΙΝΩΝ '1969': ΖΩΟΚΛΟΠΗ ΚΑΙ ΖΩΟΚΤΟΝΙΑ '1970': ΡΥΘΜΙΣΙΣ ΚΙΝΗΣΕΩΣ ΕΝ ΟΔΟΙΣ '1971': ΕΤΑΙΡΕΙΕΣ ΠΡΟΣΤΑΣΙΑΣ ΚΡΑΤΟΥΜΕΝΩΝ - ΑΠΟΦΥΛΑΚΙΖΟΜΕΝΩΝ '1972': ΔΑΣΙΚΗ ΔΙΕΥΘΕΤΗΣΗ ΧΕΙΜΑΡΡΩΝ '1973': ΣΥΝΟΡΙΑΚΟΙ ΦΥΛΑΚΕΣ '1974': ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΜΙΟΥ ΙΩΑΝΝΙΝΩΝ '1975': ΕΚΠΑΙΔΕΥΣΗ Π.ΝΑΥΤΙΚΟΥ '1976': ΔΙΚΑΙΟΣΤΑΣΙΟ ΕΠΙΣΤΡΑΤΕΥΣΕΩΣ 1974 '1977': ΡΑΔΙΟΤΗΛΕΓΡΑΦΙΚΗ ΚΑΙ ΡΑΔΙΟΤΗΛΕΦΩΝΙΚΗ ΥΠΗΡΕΣΙΑ '1978': ΦΑΡΜΑΚΑ-ΙΔΙΟΣΚΕΥΑΣΜΑΤΑ '1979': ΣΥΝΤΕΛΕΣΤΕΣ ΚΕΡΔΟΥΣ ΕΠΑΓΓΕΛΜΑΤΙΩΝ '1980': ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ '1981': ΚΕΦΑΛΑΙΟ ΝΑΥΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΕΩΣ '1982': ΕΙΣΠΡΑΞΗ ΕΣΟΔΩΝ ΠΑΡΕΛΘΟΥΣΩΝ ΧΡΗΣΕΩΝ '1983': ΟΡΓΑΝΙΣΜΟΣ ΗΝΩΜΕΝΩΝ ΕΘΝΩΝ '1984': ΣΕΙΣΜΟΠΛΗΚΤΟΙ ΝΗΣΟΥ ΘΗΡΑΣ '1985': ΚΕΝΤΡΙΚΗ ΑΓΟΡΑ ΘΕΣΣΑΛΟΝΙΚΗΣ '1986': ΔΙΑΦΘΟΡΑ ΑΛΛΟΔΑΠΩΝ ΔΗΜΟΣΙΩΝ ΛΕΙΤΟΥΡΓΩΝ '1987': ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ '1988': ΚΑΝΟΝΙΣΜΟΣ ΣΤΡΑΤΟΔΙΚΕΙΩΝ '1989': ΔΙΑΦΟΡΕΣ ΥΓΕΙΟΝΟΜΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '1990': ΤΟΥΡΙΣΤΙΚΑ ΛΕΩΦΟΡΕΙΑ '1991': ΔΑΝΕΙΑ ΑΠΟ ΕΚΔΟΤΙΚΕΣ ΤΡΑΠΕΖΕΣ '1992': ΕΠΙΘΑΛΑΣΣΙΑ ΑΡΩΓΗ - ΡΥΜΟΥΛΚΗΣΗ ΠΛΟΙΩΝ '1993': ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΚΑΘΕΣΤΩΤΟΣ '1994': ΣΥΜΒΑΣΕΙΣ ΠΕΡΙ ΥΛΙΚΟΥ ΕΥΗΜΕΡΙΑΣ ΝΑΥΤΙΛΛΟΜΕΝΩΝ '1995': ΜΕΣΙΤΕΣ ΕΓΧΩΡΙΩΝ ΠΡΟΙΟΝΤΩΝ '1996': ΚΡΑΤΙΚΗ ΟΡΧΗΣΤΡΑ ΑΘΗΝΩΝ '1997': ΤΜΗΜΑΤΑ ΜΟΥΣΙΚΩΝ - ΘΕΑΤΡΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ - ΜΕΣΩΝ ΜΑΖΙΚΗΣ ΕΝΗΜΕΡΩΣΗΣ '1998': ΠΕΙΘΑΡΧΙΚΗ ΕΞΟΥΣΙΑ ΛΙΜΕΝΙΚΩΝ ΑΡΧΩΝ '1999': ΙΝΣΤΙΤΟΥΤΟ ΑΜΥΝΤΙΚΩΝ ΑΝΑΛΥΣΕΩΝ (Ι.Α.Α.) '2000': ΙΔΙΩΤΙΚΟΙ ΣΤΑΘΜΟΙ ΑΣΥΡΜΑΤΟΥ - ΧΡΗΣΗ ΡΑΔΙΟΣΥΧΝΟΤΗΤΩΝ '2001': ΑΝΑΓΝΩΡΙΣΗ ΞΕΝΩΝ ΚΑΤΑΜΕΤΡΗΣΕΩΝ '2002': ΓΕΝΟΚΤΟΝΙΑ '2003': ΕΠΕΞΕΡΓΑΣΙΑ ΚΑΠΝΟΥ '2004': ΣΥΜΒΟΥΛΙΟ ΕΠΙΚΡΑΤΕΙΑΣ '2005': ΙΑΤΡΟΙ Ι.Κ.Α '2006': ΥΠΟΘΗΚΗ '2007': ΑΡΜΟΔΙΟΤΗΤΑ ΛΙΜΕΝΙΚΟΥ ΣΩΜΑΤΟΣ '2008': ΕΙΣΑΓΩΓΕΣ ΓΙΑ ΕΚΘΕΣΕΙΣ, ΣΥΝΕΔΡΙΑ ΚΛΠ '2009': ΕΥΡΩΠΑΙΚΗ ΤΡΑΠΕΖΑ ΑΝΑΣΥΓΚΡΟΤΗΣΗ-ΑΝΑΠΤΥΞΗ '2010': ΑΕΡΟΔΡΟΜΙΟ ΣΠΑΤΩΝ '2011': ΤΜΗΜΑ ΔΗΜΟΣΙΟΓΡΑΦΙΑΣ - ΜΕΣΩΝ ΜΑΖΙΚΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ '2012': ΤΟΚΟΣ '2013': ΕΝΙΣΧΥΣΗ ΠΟΛΕΜΟΠΑΘΩΝ ΚΛΠ. ΑΓΡΟΤΩΝ '2014': ΕΞΟΔΑ ΚΗΔΕΙΑΣ ΣΤΡΑΤΙΩΤΙΚΩΝ '2015': ΠΑΡΟΧΕΣ ΥΠΑΛΛΗΛΩΝ '2016': ΠΡΟΣΤΑΣΙΑ ΣΙΤΟΠΑΡΑΓΩΓΗΣ '2017': ΑΣΦΑΛΙΣΗ Ο.Γ.Α ΑΠΟ ΑΝΕΜΟΘΥΕΛΛΑ ΚΑΙ ΠΛΗΜΜΥΡΑ '2018': ΔΙΕΥΘΥΝΣΗ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΕΞΟΠΛΙΣΜΟΥ '2019': ΤΕΛΩΝΕΙΑΚΟΙ ΥΠΟΛΟΓΟΙ '2020': ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΑΘΛΗΤΙΣΜΟΥ '2021': ΣΥΝΤΑΞΕΙΣ '2022': ΑΔΕΙΕΣ ΠΡΟΣΩΠΙΚΟΥ Λ.Σ '2023': ΣΥΝΤΑΞΕΙΣ ΣΤΡΑΤΙΩΤΙΚΩΝ ΠΑΘΟΝΤΩΝ ΣΤΗΝ '2024': ΑΣΦΑΛΙΣΗ ΕΠΙΒΑΤΩΝ '2025': ΑΠΑΛΛΟΤΡΙΩΣΗ ΑΚΙΝΗΤΩΝ '2026': ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ '2027': ΕΝΟΙΚΙΟΣΤΑΣΙΟ ΒΟΣΚΩΝ '2028': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΗΘΟΠΟΙΩΝ - ΣΥΓΓΡΑΦΕΩΝ ΤΕΧΝΙΚΩΝ ΘΕΑΤΡΟΥ '2029': ΕΥΡΩΠΑΙΚΟ ΕΝΤΑΛΜΑ ΣΥΛΛΗΨΗΣ '2030': ΑΝΤΙΚΕΙΜΕΝΑ ΔΕΔΗΛΩΜΕΝΗΣ ΑΞΙΑΣ ΑΝΤΙΚΑΤΑΒΟΛΕΣ '2031': ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΜΕΤΑΦΟΡΩΝ '2032': ΟΡΓΑΝΙΣΜΟΣ ΥΠΟΥΡΓΕΙΟΥ ΔΙΚΑΙΟΣΥΝΗΣ '2033': ΕΥΘΥΝΗ ΥΠΟΥΡΓΩΝ '2034': ΤΜΗΜΑ ΚΤΗΝΙΑΤΡΙΚΗΣ '2035': ΔΙΚΑΣΤΙΚΟ ΣΩΜΑ ΕΝΟΠΛΩΝ ΔΥΝΑΜΕΩΝ '2036': ΕΝΟΡΙΑΚΟΙ ΝΑΟΙ ΚΑΙ ΕΦΗΜΕΡΙΟΙ '2037': ΥΓΕΙΟΝΟΜΙΚΕΣ ΕΠΙΤΡΟΠΕΣ ΝΑΥΤΙΚΟΥ '2038': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΕΛΛΗΝΙΚΗΣ ΡΑΡΙΟΦΩΝΙΑΣ-ΤΗΛΕΟΡΑΣΕΩΣ-ΤΟΥΡΙΣΜΟΥ (Τ.Ε.Α.Π.Π. Ε.Ρ.Τ. Τ.) '2039': ΣΤΡΑΤΙΩΤΙΚΗ ΒΟΗΘΕΙΑ Η.Π.Α '2040': ΣΥΝΤΑΞΕΙΣ ΠΡΟΣΩΠΙΚΟΥ '2041': ΧΡΗΜΑΤΙΚΗ ΔΙΑΧΕΙΡΙΣΗ Π. ΝΑΥΤΙΚΟΥ '2042': ΠΟΛΙΤΙΚΟ ΓΡΑΦΕΙΟ ΠΡΩΘΥΠΟΥΡΓΟΥ '2043': ΛΟΥΤΡΟΘΕΡΑΠΕΙΑ ΚΑΙ ΑΕΡΟΘΕΡΑΠΕΙΑ '2044': ΣΥΜΒΟΥΛΙΟ ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ '2045': ΕΝΤΟΚΑ ΓΡΑΜΜΑΤΙΑ '2046': ΣΩΦΡΟΝΙΣΤΙΚΟΣ ΚΩΔΙΚΑΣ '2047': ΔΗΜΟΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ '2048': ΚΩΔΙΚΑΣ ΠΟΛΙΤΙΚΗΣ ΔΙΚΟΝΟΜΙΑΣ - ΝΕΟΣ '2049': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΥΠΑΛΛΗΛΩΝ ΚΟΥΡΕΙΩΝ ΚΑΙ ΚΟΜΜΩΤΗΡΙΩΝ '2050': ΠΡΟΣΩΠΙΚΟ ΣΙΔΗΡΟΔΡΟΜΩΝ- Ο.Σ.Ε.- ΣΙΔΗΡΟΔΡΟΜΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ '2051': ΔΙΑΦΟΡΟΙ ΝΟΜΟΙ ΓΙΑ ΤΟΝ ΤΥΠΟ '2052': ΤΑΧΥΔΡΟΜΙΚΑ ΔΕΛΤΑΡΙΑ '2053': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ ΗΛΕΚΤΡ. ΕΤ. ΑΘΗΝΩΝ - ΠΕΙΡΑΙΩΣ ΚΑΙ ΕΛΛΗΝ. ΗΛΕΚΤΡ. ΕΤΑΙΡΙΑΣ (Τ.Α.Π Η.Ε.Α.Π.- Ε.Η.Ε.) '2054': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΑΡΤΟΠΟΙΩΝ '2055': ΔΗΜΟΤΙΚΟΙ ΚΑΙ ΚΟΙΝΟΤΙΚΟΙ ΑΡΧΟΝΤΕΣ '2056': ΜΕΤΑΦΟΡΑ ΤΑΧΥΔΡΟΜΕΙΟΥ '2057': ΚΑΝΟΝΙΣΜΟΣ ΠΑΡΟΧΩΝ ΤΑΜΕΙΟΥ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΑΣΦΑΛΙΣΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΟΥ ΑΣΦΑΛΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ (Τ.Ε.Α.Α.Π.Α.Ε.) '2058': ΠΡΟΣΩΠΙΚΟ '2059': ΔΗΜΟΣΙΑ ΕΠΙΧΕΙΡΗΣΗ ΗΛΕΚΤΡΙΣΜΟΥ '2060': ΚΑΝΟΝΙΣΜΟΙ ΕΡΓΩΝ ΩΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ '2061': ΑΛΕΥΡΑ-ΑΡΤΟΣ '2062': ΤΕΛΗ ΠΡΟΣΟΡΜΙΣΕΩΣ, ΠΑΡΑΒΟΛΗΣ ΚΑΙ ΠΑΡΟΠΛΙΣΜΟΥ '2063': ΙΔΙΩΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑ '2064': ΑΡΧΑΙΟΛΟΓΙΚΗ ΥΠΗΡΕΣΙΑ '2065': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΤΥΠΟΓΡΑΦΩΝ ΚΑΙ ΜΙΣΘΩΤΩΝ ΓΡΑΦΙΚΩΝ ΤΕΧΝΩΝ (Τ.Α.Τ. & Μ.Γ.Τ) '2066': ΕΙΔΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΚΥΡΙΑΚΗΣ ΑΡΓΙΑΣ '2067': ΔΙΑΦΟΡΟΙ ΝΟΜΟΙ ΓΙΑ ΤΑ ΠΛΗΡΩΜΑΤΑ '2068': ΑΣΤΙΚΑ ΣΧΟΛΕΙΑ '2069': ΤΑΜΕΙΑ ΣΥΝΤΑΞΕΩΝ ΕΦΗΜΕΡΙΔΟΠΩΛΩΝ ΚΑΙ ΥΠΑΛΛΗΛΩΝ ΠΡΑΚΤΟΡΕΙΩΝ ΑΘΗΝΩΝ-ΘΕΣΝΙΚΗΣ (Τ.Σ.Ε.Υ.Π.) '2070': ΔΟΜΙΚΑ ΕΡΓΑ '2071': ΝΑΥΣΤΑΘΜΟΣ '2072': ΑΝΤΙΓΡΑΦΙΚΑ ΔΙΚΑΙΩΜΑΤΑ '2073': ΕΠΙΔΟΜΑ ΟΙΚΟΓΕΝΕΙΑΚΩΝ ΒΑΡΩΝ '2074': ΕΛΛΗΝΙΚΗ-ΕΥΡΩΠΑΙΚΗ ΦΑΡΜΑΚΟΠΟΙΙΑ '2075': ΔΕΛΤΙΑ ΤΑΥΤΟΤΗΤΟΣ '2076': ΣΧΟΛΙΑΤΡΙΚΗ ΥΠΗΡΕΣΙΑ '2077': ΥΔΡΟΓΟΝΑΝΘΡΑΚΕΣ '2078': ΓΕΝΙΚΑ ΠΕΡΙ ΕΚΘΕΣΕΩΝ '2079': ΦΟΡΟΛΟΓΙΚΕΣ ΔΙΕΥΚΟΛΥΝΣΕΙΣ '2080': ΛΣΜΟΣ ΠΡΟΝΟΙΑΣ ΠΡΟΣΩΠΙΚΟΥ Ι.Κ.Α '2081': ΕΛΕΓΧΟΣ ΚΤΙΡΙΑΚΩΝ ΕΡΓΩΝ '2082': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΗΣ '2083': ΕΛΑΙΟΠΥΡΗΝΕΣ '2084': ΕΜΦΥΤΕΥΤΙΚΑ ΚΤΗΜΑΤΑ '2085': ΤΟΥΡΙΣΤΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '2086': ΚΛΑΔΟΣ ΑΣΦΑΛΙΣΕΩΣ ΤΕΧΝΙΚΩΝ ΤΥΠΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ (Κ.Α.Τ.Τ.Θ.) '2087': ΜΕΤΕΩΡΟΛΟΓΙΚΗ ΥΠΗΡΕΣΙΑ '2088': ΑΓΡΟΤΙΚΟΣ ΚΩΔΙΚΑΣ '2089': ΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ '2090': ΕΛΕΓΧΟΣ ΝΟΜΙΜΟΦΡΟΣΥΝΗΣ '2091': ΑΡΧΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΙΑ '2092': ΣΧΟΛΑΖΟΥΣΕΣ ΚΛΗΡΟΝΟΜΙΕΣ '2093': ΓΕΦΥΡΑ ΡΙΟΥ - ΑΝΤΙΡΡΙΟΥ '2094': ΦΟΙΤΗΣΗ, ΕΞΕΤΑΣΕΙΣ ΚΛΠ '2095': ΤΥΧΕΡΑ, ΜΙΚΤΑ ΚΑΙ ΤΕΧΝΙΚΑ ΠΑΙΓΝΙΑ '2096': ΟΡΓΑΝΙΚΟΙ ΑΡΙΘΜΟΙ ΥΠΑΞΙΩΜΑΤΙΚΩΝ '2097': ΦΟΡΟΛΟΓΙΑ ΚΙΝΗΤΗΣ ΚΑΙ ΑΚΙΝΗΤΗΣ ΠΕΡΙΟΥΣΙΑΣ '2098': ΑΤΕΛΕΙΕΣ ΑΓΙΟΥ ΟΡΟΥΣ '2099': ΜΟΝΟΠΩΛΙΟ ΑΛΑΤΙΟΥ '2100': ΑΣΦΑΛΙΣΗ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ '2101': ΔΙΕΘΝΕΣ ΚΕΝΤΡΟ ΑΝΩΤΑΤΩΝ '2102': ΑΝΑΠΡΟΣΑΡΜΟΓΕΣ ΣΥΝΤΑΞΕΩΝ '2103': ΓΕΝΙΚΕΣ ΕΠΙΘΕΩΡΗΣΕΙΣ-ΔΙΕΥΘΥΝΣΕΙΣ '2104': ΣΩΜΑ ΟΡΚΩΤΩΝ ΛΟΓΙΣΤΩΝ '2105': ΣΕΙΣΜΟΠΛΗΚΤΟΙ ΒΟΡΕΙΟΥ ΕΛΛΑΔΟΣ '2106': ΠΑΝΕΠΙΣΤΗΜΙΑ ΠΕΙΡΑΙΩΣ-ΜΑΚΕΔΟΝΙΑΣ '2107': ΧΩΡΟΤΑΞΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ '2108': ΕΣΩΤΕΡΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΕΡΓΑΣΙΑΣ '2109': ΕΛΕΓΧΟΣ ΝΑΥΤΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ '2110': ΠΝΕΥΜΑΤΙΚΑ ΚΕΝΤΡΑ '2111': ΠΛΟΗΓΙΚΑ ΔΙΚΑΙΩΜΑΤΑ '2112': ΣΤΡΑΤΕΥΟΜΕΝΟΙ ΔΙΚΗΓΟΡΟΙ '2113': ΣΥΣΤΑΤΙΚΑ ΑΥΤΟΚΙΝΗΤΩΝ '2114': ΣΙΔΗΡΟΔΡΟΜΟΙ ΠΕΛΟΠΟΝΝΗΣΟΥ '2115': ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΚΑΙ ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ '2116': ΕΥΡΩΠΑΙΚΟ ΠΟΛΙΤΙΣΤΙΚΟ ΚΕΝΤΡΟ ΔΕΛΦΩΝ '2117': ΣΥΝΕΤΑΙΡΙΣΜΟΙ ΕΓΓΕΙΩΝ ΒΕΛΤΙΩΣΕΩΝ '2118': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΔΗΜΟΣΙΩΝ ΥΠΑΛΛΗΛΩΝ (Τ.Ε.Α.Δ.Υ.) '2119': ΙΕΡΟΚΗΡΥΚΕΣ '2120': ΕΙΡΗΝΟΔΙΚΕΙΑ - ΠΤΑΙΣΜΑΤΟΔΙΚΕΙΑ '2121': ΑΓΟΡΑΝΟΜΙΚΗ ΝΟΜΟΘΕΣΙΑ '2122': ΤΡΑΠΕΖΙΤΙΚΗ ΕΠΙΤΑΓΗ '2123': ΝΑΥΑΓΟΣΩΣΤΙΚΑ ΚΑΙ ΡΥΜΟΥΛΚΑ '2124': ΦΟΡΟΛΟΓΙΚΕΣ ΔΙΑΦΟΡΕΣΙ '2125': ΜΕΤΡΑ ΚΑΙ ΣΤΑΘΜΑ '2126': ΓΕΝΙΚΟ ΧΗΜΕΙΟ ΤΟΥ ΚΡΑΤΟΥΣ '2127': ΣΥΜΦΩΝΙΑ ΓΙΑ ΙΣΑ ΟΙΚΟΝΟΜΙΚΑ ΚΟΙΝΩΝΙΚΑ '2128': ΣΥΝΟΡΙΑΚΟΙ ΣΤΑΘΜΟΙ '2129': ΑΞΙΩΜΑΤΙΚΟΙ ΣΩΜΑΤΩΝ ΑΣΦΑΛΕΙΑΣ '2130': ΥΠΗΡΕΣΙΑΚΑ ΣΥΜΒΟΥΛΙΑ '2131': ΕΙΣΑΓΩΓΙΚΟΣ ΝΟΜΟΣ '2132': ΚΤΗΜΑΤΟΛΟΓΙΟ '2133': ΕΤΑΙΡΕΙΑ ΔΙΑΧΕΙΡΙΣΕΩΣ ΥΠΕΓΓΥΩΝ ΠΡΟΣΟΔΩΝ '2134': ΥΠΟΥΡΓΕΙΟ ΜΑΚΕΔΟΝΙΑΣ – ΘΡΑΚΗΣ '2135': ΤΟΥΡΙΣΤΙΚΑ ΓΡΑΦΕΙΑ ΚΑΙ ΣΩΜΑΤΕΙΑ '2136': ΔΑΝΕΙΑ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ '2137': ΑΣΤΙΚΕΣ ΣΥΓΚΟΙΝΩΝΙΕΣ ΘΕΣΣΑΛΟΝΙΚΗΣ-Ο.Α.Σ.Θ '2138': ΕΘΕΛΟΝΤΕΣ ΑΕΡΟΠΟΡΙΑΣ '2139': ΣΗΜΕΙΩΤΕΣ '2140': ΤΕΛΗ ΕΓΚΑΤΑΣΤΑΣΗΣ - ΛΕΙΤΟΥΡΓΙΑΣ ΚΕΡΑΙΩΝ '2141': Η.Π.Α '2142': ΠΑΝΕΠΙΣΤΗΜΙΑ ΑΙΓΑΙΟΥ, ΙΟΝΙΟΥ ΚΑΙ ΘΕΣΣΑΛΙΑΣ '2143': ΤΑΜΕΙΟ ΠΡΟΝΟΙΑΣ ΞΕΝΟΔΟΧΩΝ '2144': ΣΥΜΒΟΥΛΙΑ ΣΤΕΓΑΣΕΩΣ '2145': ΤΕΧΝΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΙΔΙΩΤΙΚΩΝ ΑΕΡΟΠΛΑΝΩΝ '2146': ΦΟΡΟΛΟΓΙΑ ΔΗΜΟΣΙΩΝ ΘΕΑΜΑΤΩΝ '2147': ΣΤΡΑΤΟΛΟΓΙΑ ΟΠΛΙΤΩΝ ΧΩΡΟΦΥΛΑΚΗΣ '2148': ΓΥΜΝΑΣΙΑ ΑΡΙΣΤΟΥΧΩΝ '2149': ΣΧΟΛΙΚΗ ΑΝΤΙΛΗΨΗ '2150': ΕΥΘΥΝΗ ΣΤΡΑΤΙΩΤΙΚΩΝ '2151': ΣΤΑΘΜΟΙ ΕΠΙΒΗΤΟΡΩΝ '2152': ΒΕΒΑΙΩΣΗ ΠΤΑΙΣΜΑΤΩΝ ΑΠΟ '2153': ΔΙΑΖΥΓΙΟ '2154': ΔΙΕΘΝΗΣ ΣΥΜΒΑΣΗ ΠΕΡΙ ΑΝΑΓΚΑΣΤΙΚΗΣ ΕΡΓΑΣΙΑΣ '2155': ΔΙΕΥΚΟΛΥΝΣΗ ΔΙΕΘΝΟΥΣ ΝΑΥΤΙΛΙΑΚΗΣ ΚΙΝΗΣΕΩΣ '2156': ΕΝΟΙΚΙΟΣΤΑΣΙΟ '2157': ΕΚΘΕΣΕΙΣ ΖΑΠΠΕΙΟΥ ΜΕΓΑΡΟΥ '2158': ΔΙΑΧΕΙΡΙΣΗ ΥΛΙΚΟΥ Π. ΝΑΥΤΙΚΟΥ '2159': ΕΦΕΔΡΙΚΑ ΤΑΜΕΙΑ ΚΡΗΤΗΣ '2160': ΣΙΤΑΡΙ '2161': ΦΟΡΤΗΓΑ 501-4500 ΤΟΝΝΩΝ '2162': ΤΡΑΠΕΖΑ ΕΡΓΑΣΙΑΣ '2163': ΑΤΕΛΕΙΕΣ ΥΠΕΡ ΤΗΣ ΓΕΩΡΓΙΑΣ '2164': ΑΙΓΙΑΛΟΣ ΚΑΙ ΠΑΡΑΛΙΑ '2165': ΔΑΣΗ ΙΔΡΥΜΑΤΩΝ '2166': ΙΧΘΥΟΤΡΟΦΕΙΑ '2167': ΑΠΟΓΡΑΦΕΣ Π. ΝΑΥΤΙΚΟΥ '2168': ΣΗΜΑΤΑ ΚΑΙ ΔΕΛΤΙΑ ΑΝΑΠΗΡΩΝ ΠΟΛΕΜΟΥ '2169': ΠΕΙΘΑΡΧΙΚΟ ΔΙΚΑΙΟ ΑΣΤΥΝΟΜΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΕΛΛΗΝΙΚΗΣ ΑΣΤΥΝΟΜΙΑΣ '2170': ΑΤΜΟΛΕΒΗΤΕΣ '2171': ΤΑΧΥΔΡΟΜΙΚΗ ΥΠΗΡΕΣΙΑ ΣΤΡΑΤΟΥ '2172': ΠΡΟΣΤΑΣΙΑ ΠΙΝΑΚΙΔΩΝ '2173': ΑΓΡΟΤΙΚΑ ΚΤΗΝΙΑΤΡΕΙΑ '2174': ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΑ ΔΙΚΑΣΤΗΡΙΑ '2175': ΕΓΓΡΑΦΗ ΠΡΟΕΡΧΟΜΕΝΩΝ ΑΠΟ ΤΗΝ ΑΛΛΟΔΑΠΗ '2176': ΟΡΓΑΝΙΣΜΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΔΗΜΟΣΙΟΥ ΥΛΙΚΟΥ '2177': ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ '2178': ΚΑΤΕΡΓΑΣΙΑ ΞΗΡΑΣ ΣΤΑΦΙΔΑΣ '2179': ΤΕΛΩΝΕΙΑΚΗ ΔΙΑΙΡΕΣΗ '2180': ΑΖΗΤΗΤΑ '2181': ΜΕΛΙΣΣΟΤΡΟΦΙΑ '2182': ΔΙΕΥΘΥΝΣΗ ΘΑΛΑΣΣΙΩΝ ΚΡΑΤΙΚΩΝ ΜΕΤΑΦΟΡΩΝ '2183': ΕΚΜΕΤΑΛΛΕΥΣΗ ΜΕΤΑΛΛΕΙΩΝ ΜΕ ΕΓΓΥΗΣΗ '2184': ΙΔΙΩΤΙΚΕΣ ΕΠΑΓΓΕΛΜΑΤΙΚΕΣ ΣΧΟΛΕΣ '2185': ΔΙΑΘΕΣΗ ΑΧΡΗΣΤΟΥ ΥΛΙΚΟΥ '2186': ΤΑΧΥΔΡΟΜΙΚΕΣ ΜΕΤΑΦΟΡΕΣ '2187': ΕΡΥΘΡΟ ΠΙΠΕΡΙ '2188': ΠΙΚΠΑ-ΕΟΠ-ΚΕΝΤΡΟ ΒΡΕΦΩΝ Η ΜΗΤΕΡΑ-ΕΛΕΠΑΠ '2189': ΣΥΜΜΕΤΟΧΗ ΣΕ ΣΥΜΒΟΥΛΙΑ '2190': ΓΥΜΝΑΣΤΗΡΙΟ '2191': ΙΑΤΡΙΚΟΙ- ΟΔΟΝΤΙΑΤΡΙΚΟΙ ΣΥΛΛΟΓΟΙ '2192': ΕΙΣΑΓΩΓΗ ΦΟΙΤΗΤΩΝ '2193': ΕΛΛΗΝΙΚΟ ΄ΙΔΡΥΜΑ ΠΟΛΙΤΙΣΜΟΥ '2194': ΛΟΙΜΟΚΑΘΑΡΤΗΡΙΑ ΖΩΩΝ '2195': ΔΙΕΘΝΗΣ ΟΡΓΑΝΙΣΜΟΣ ΑΤΟΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ '2196': ΤΑΜΕΙΟ ΕΞΟΔΟΥ ΚΑΙ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΜΙΣΘΩΤΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΚΑΠΝΟΥ '2197': ΚΑΘΗΓΗΤΕΣ Ε.Μ.Π '2198': ΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ '2199': ΒΕΒΑΙΩΣΗ ΦΟΡΟΛΟΓΙΑΣ ΚΑΘΑΡΑΣ ΠΡΟΣΟΔΟΥ '2200': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΠΡΟΣΩΠΙΚΟΥ ΤΡΑΠΕΖΩΝ ΕΛΛΑΔΟΣ ΚΑΙ ΚΤΗΜΑΤΙΚΗΣ '2201': ΔΗΜΟΨΗΦΙΣΜΑΤΑ '2202': ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ '2203': ΚΑΛΛΙΤΕΧΝΙΚΟ ΕΠΑΓΓΕΛΜΑΤΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ '2204': ΑΝΟΙΚΟΔΟΜΗΣΙΣ '2205': ΔΑΣΙΚΟΣ ΚΩΔΙΚΑΣ '2206': ΚΑΝΟΝΙΣΜΟΣ ΠΥΡΟΣΒΕΣΤΙΚΩΝ ΜΕΣΩΝ ΤΩΝ ΠΛΟΙΩΝ '2207': ΔΙΦΘΕΡΙΤΙΔΑ '2208': ΒΙΒΛΙΑ ΚΑΙ ΦΟΡΟΛΟΓΙΚΑ ΣΤΟΙΧΕΙΑ '2209': ΕΛΕΓΧΟΣ ΕΞΑΓΟΜΕΝΩΝ ΕΛΑΙΩΝ '2210': ΕΠΙΔΟΜΑΤΑ ΟΙΚΟΓΕΝΕΙΩΝ ΣΤΡΑΤΙΩΤΙΚΩΝ '2211': ΕΥΡΩΠΑΙΚΕΣ ΣΥΜΦΩΝΙΕΣ ΠΟΥ ΑΦΟΡΟΥΝ ΤΗΝ ΤΗΛΕΟΡΑΣΗ '2212': ΕΚΤΑΚΤΑ ΣΤΡΑΤΟΔΙΚΕΙΑ '2213': ΠΟΛΕΜΙΚΗ ΒΙΟΜΗΧΑΝΙΑ '2214': ΑΣΕΜΝΟΙ ΓΥΝΑΙΚΕΣ '2215': ΑΠΕΛΕΥΘΕΡΩΣΗ ΑΓΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΕΙΑΚΗ ΠΟΛΙΤΙΚΗ Ρ.Α.Ε '2216': ΠΡΟΕΙΣΠΡΑΞΗ ΔΙΚΗΓΟΡΙΚΗΣ ΑΜΟΙΒΗΣ '2217': ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΥΓΕΙΑΣ (Ε.Σ.Δ.Υ.) '2218': ΠΡΟΜΗΘΕΙΑ ΘΕΙΟΥ ΚΑΙ ΘΕΙΙΚΟΥ ΧΑΛΚΟΥ '2219': ΧΗΜΙΚΟΙ - ΧΗΜΙΚΕΣ ΒΙΟΜΗΧΑΝΙΕΣ '2220': ΑΣΦΑΛΙΣΗ ΚΑΤΑ ΤΗΣ ΑΣΘΕΝΕΙΑΣ '2221': ΤΑΜΕΙΟ ΑΛΛΗΛΟΒΟΗΘΕΙΑΣ ΠΡΟΣΩΠΙΚΟΥ ΕΘΝΙΚΟΥ ΤΥΠΟΓΡΑΦΕΙΟΥ (Τ.Α.Π.Ε.Τ.) '2222': ΟΡΓΑΝΙΣΜΟΣ ΥΠΟΥΡΓΕΙΟΥ ΟΙΚΟΝΟΜΙΚΩΝ '2223': ΠΕΡΙΕΧΟΜΕΝΟ ΔΗΛΩΣΗΣ ΦΟΡΟΥ ΕΙΣΟΔΗΜΑΤΟΣ '2224': ΠΡΩΤΕΣ ΥΛΕΣ ΣΙΔΕΡΕΝΙΩΝ ΒΑΡΕΛΙΩΝ '2225': ΕΥΡΩΠΑΙΚΟΣ ΚΩΔΙΚΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ '2226': ΔΙΑΦΟΡΟΙ ΓΕΩΡΓΙΚΟΙ ΣΥΝΕΤΑΙΡΙΣΜΟΙ '2227': ΣΧΕΔΙΑ ΠΟΛΕΩΝ ΙΟΝΙΩΝ ΝΗΣΩΝ '2228': ΕΥΡΩΠΑΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΚΟΙΝΟΤΗΤΑ ΕΥΡΩΠΑΙΚΗ ΕΝΩΣΗ '2229': ΣΧΟΛΗ ΔΙΟΙΚΗΣΕΩΣ ΝΟΣΗΛΕΥΤ. ΙΔΡΥΜΑΤΩΝ '2230': ΔΙΑΦΟΡΟΙ ΝΟΜΟΙ ΕΜΠΡΑΓΜΑΤΟΥ ΔΙΚΑΙΟΥ '2231': ΕΠΙΜΕΛΗΤΕΙΑ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΥΠΗΡΕΣΙΕΣ '2232': ΔΙΑΔΙΚΑΣΙΑ ΑΤΕΛΕΙΑΣ '2233': ΠΑΙΔΙΚΕΣ ΕΞΟΧΕΣ '2234': ΤΑΜΕΙΟ ΣΥΝΤΑΞΕΩΝ ΠΡΟΣΩΠΙΚΟΥ ΕΘΝΙΚΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ '2235': ΚΡΑΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΔΑΣΩΝ '2236': ΑΝΕΞΑΡΤΗΣΙΑ ΤΗΣ ΕΚΚΛΗΣΙΑΣ ΤΗΣ ΕΛΛΑΔΟΣ '2237': ΤΕΧΝΙΚΑ ΠΤΥΧΙΑ '2238': ΕΠΙΒΑΤΙΚΑ ΑΥΤΟΚΙΝΗΤΑ (ΔΗΜΟΣΙΑΣ ΚΑΙ ΙΔΙΩΤΙΚΗΣ ΧΡΗΣΗΣ) '2239': ΣΥΜΒΑΣΕΙΣ ΒΟΥΛΕΥΤΩΝ '2240': ΟΡΓΑΝΙΣΜΟΣ ΤΩΝ ΔΙΚΑΣΤΗΡΙΩΝ '2241': ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΛΕΙΤΟΥΡΓΟΙ ΕΝ ΓΕΝΕΙ '2242': ΑΡΜΟΔΙΟΤΗΤΑ ΤΕΛΩΝΕΙΑΚΩΝ ΑΡΧΩΝ '2243': ΕΙΔΙΚΑ ΕΦΕΤΕΙΑ '2244': ΑΞΙΩΜΑΤΙΚΟΙ ΑΕΡΟΠΟΡΙΑΣ '2245': ΠΑΝΕΠΙΣΤΗΜΙΑΚΗ ΒΙΒΛΙΟΘΗΚΗ '2246': ΕΠΙΤΡΟΠΗ ΣΥΝΤΑΞΗΣ ΣΧΕΔΙΟΥ ΚΩΔΙΚΑ ΕΡΓΑΣΙΑΣ '2247': ΕΛΟΝΟΣΙΑ '2248': ΝΑΥΛΟΣΥΜΦΩΝΑ '2249': ΣΙΔΗΡΟΔΡΟΜΟΙ ΘΕΣΣΑΛΙΚΟΙ '2250': ΡΑΔΙΟΦΩΝΙΚΕΣ ΣΥΜΒΑΣΕΙΣ '2251': ΠΡΟΩΘΗΣΗ ΓΕΩΡΓΙΚΗΣ ΠΑΡΑΓΩΓΗΣ-ΕΘ.Ι.ΑΓ.Ε '2252': ΕΠΟΧΙΑΚΩΣ ΕΡΓΑΖΟΜΕΝΟΙ ΜΙΣΘΩΤΟΙ '2253': ΔΙΔΑΚΤΙΚΟ ΠΡΟΣΩΠΙΚΟ '2254': ΚΩΔΙΚΑΣ ΚΕΝΤΡΙΚΗΣ, ΠΡΕΣΒΕΥΤΙΚΗΣ ΚΑΙ '2255': ΠΟΛΙΤΙΚΟ ΠΡΟΣΩΠΙΚΟ ΥΠΟΥΡΓΕΙΟΥ ΕΘΝΙΚΗΣ ΑΜΥΝΑΣ '2256': ΔΙΠΛΩΜΑΤΑ ΕΥΡΕΣΙΤΕΧΝΙΑΣ '2257': ΣΩΜΑΤΕΙΑ ΓΕΩΡΓΙΚΩΝ ΕΡΓΑΤΩΝ '2258': ΚΩΔΙΚΑΣ ΠΕΡΙ ΕΙΣΠΡΑΞΕΩΣ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ '2259': ΤΡΑΠΕΖΟΓΡΑΜΜΑΤΙΑ '2260': ΠΡΟΜΗΘΕΥΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ Ε.Β.Α '2261': ΕΛΕΓΧΟΣ ΑΣΦΑΛΕΙΑΣ ΑΥΤΟΚΙΝΗΤΩΝΚΕΝΤΡΑ ΤΕΧΝΙΚΟΥ ΕΛΕΓΧΟΥ ΟΧΗΜΑΤΩΝ (Κ.Τ.Ε.Ο.) '2262': ΕΞΑΓΩΓΗ ΤΥΡΟΥ '2263': ΝΑΥΤΙΛΙΑΚΟ ΣΥΝΑΛΛΑΓΜΑ '2264': ΤΑΜΕΙΟ ΕΠΙΚΟΥΡΙΚΗΣ ΑΣΦΑΛΙΣΕΩΣ ΗΛΕΤΡΟΤΕΧΝΙΤΩΝ ΕΛΛΑΔΟΣ (T.E.A.H.E.) '2265': ΜΙΣΘΟΙ ΣΤΡΑΤΙΩΤΙΚΩΝ ΚΑΙ ΠΡΟΣΑΥΞΗΣΕΙΣ '2266': ΑΣΤΙΚΟΣ ΚΩΔΙΚΑΣ '2267': ΜΕ ΤΙΣ ΗΝΩΜΕΝΕΣ ΠΟΛΙΤΕΙΕΣ ΑΜΕΡΙΚΗΣ '2268': ΤΑΜΕΙΟ ΑΣΦΑΛΙΣΕΩΣ ΠΡΟΣΩΠΙΚΟΥ Ο.Τ.Ε. (Τ.Α.Π.-Ο.Τ.Ε.) '2269': ΜΑΙΕΣ '2270': ΦΥΓΟΔΙΚΙΑ '2271': ΟΡΓΑΝΙΣΜΟΣ ΞΕΝΟΔΟΧΕΙΑΚΗΣ ΠΙΣΤΗΣ '2272': ΔΗΜΟΤΙΚΟΙ ΣΤΡΑΤΟΛΟΓΟΙ '2273': ΑΝΩΤΑΤΟ ΔΙΚΑΣΤΙΚΟ ΣΥΜΒΟΥΛΙΟ '2274': ΙΣΤΟΡΙΚΟ ΑΡΧΕΙΟ ΚΡΗΤΗΣ '2275': ΕΛΛΗΝΙΚΗ ΘΑΛΑΣΣΙΑ ΄ΕΝΩΣΗ '2276': ΕΚΠΟΙΗΣΕΙΣ ΚΑΙ ΕΚΜΙΣΘΩΣΕΙΣ '2277': ΤΑΧΥΔΡΟΜΙΚΕΣ ΕΠΙΤΑΓΕΣ '2278': ΥΠΗΡΕΣΙΑ ΜΗΤΡΩΟΥ '2279': ΔΙΑΦΟΡΑ ΟΙΚΟΝΟΜΙΚΑ ΘΕΜΑΤΑ '2280': ΕΝΔΙΚΑ ΜΕΣΑ '2281': ΤΕΛΗ ΑΕΡΟΠΟΡΙΚΩΝ ΤΑΞΙΔΙΩΝ '2282': ΜΕ ΤΗΝ ΑΙΓΥΠΤΟ '2283': ΔΙΑΦΟΡΕΣ ΒΙΒΛΙΟΘΗΚΕΣ '2284': ΚΕΝΤΡΙΚΗ ΥΠΗΡΕΣΙΑ splits: - name: train num_bytes: 216757887 num_examples: 28536 - name: test num_bytes: 71533786 num_examples: 9516 - name: validation num_bytes: 68824457 num_examples: 9511 download_size: 147827496 dataset_size: 357116130 - config_name: volume features: - name: text dtype: string - name: label dtype: class_label: names: '0': ΚΟΙΝΩΝΙΚΗ ΠΡΟΝΟΙΑ '1': ΓΕΩΡΓΙΚΗ ΝΟΜΟΘΕΣΙΑ '2': ΡΑΔΙΟΦΩΝΙΑ ΚΑΙ ΤΥΠΟΣ '3': ΒΙΟΜΗΧΑΝΙΚΗ ΝΟΜΟΘΕΣΙΑ '4': ΥΓΕΙΟΝΟΜΙΚΗ ΝΟΜΟΘΕΣΙΑ '5': ΠΟΛΕΜΙΚΟ ΝΑΥΤΙΚΟ '6': ΤΑΧΥΔΡΟΜΕΙΑ - ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ '7': ΔΑΣΗ ΚΑΙ ΚΤΗΝΟΤΡΟΦΙΑ '8': ΕΛΕΓΚΤΙΚΟ ΣΥΝΕΔΡΙΟ ΚΑΙ ΣΥΝΤΑΞΕΙΣ '9': ΠΟΛΕΜΙΚΗ ΑΕΡΟΠΟΡΙΑ '10': ΝΟΜΙΚΑ ΠΡΟΣΩΠΑ ΔΗΜΟΣΙΟΥ ΔΙΚΑΙΟΥ '11': ΝΟΜΟΘΕΣΙΑ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ ΤΡΑΠΕΖΩΝ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΩΝ '12': ΠΟΛΙΤΙΚΗ ΑΕΡΟΠΟΡΙΑ '13': ΕΜΜΕΣΗ ΦΟΡΟΛΟΓΙΑ '14': ΚΟΙΝΩΝΙΚΕΣ ΑΣΦΑΛΙΣΕΙΣ '15': ΝΟΜΟΘΕΣΙΑ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ '16': ΝΟΜΟΘΕΣΙΑ ΕΠΙΜΕΛΗΤΗΡΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ ΚΑΙ ΣΩΜΑΤΕΙΩΝ '17': ΔΗΜΟΣΙΑ ΕΡΓΑ '18': ΔΙΟΙΚΗΣΗ ΔΙΚΑΙΟΣΥΝΗΣ '19': ΑΣΦΑΛΙΣΤΙΚΑ ΤΑΜΕΙΑ '20': ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΝΟΜΟΘΕΣΙΑ '21': ΕΚΠΑΙΔΕΥΤΙΚΗ ΝΟΜΟΘΕΣΙΑ '22': ΔΗΜΟΣΙΟ ΛΟΓΙΣΤΙΚΟ '23': ΤΕΛΩΝΕΙΑΚΗ ΝΟΜΟΘΕΣΙΑ '24': ΣΥΓΚΟΙΝΩΝΙΕΣ '25': ΕΘΝΙΚΗ ΑΜΥΝΑ '26': ΣΤΡΑΤΟΣ ΞΗΡΑΣ '27': ΑΓΟΡΑΝΟΜΙΚΗ ΝΟΜΟΘΕΣΙΑ '28': ΔΗΜΟΣΙΟΙ ΥΠΑΛΛΗΛΟΙ '29': ΠΕΡΙΟΥΣΙΑ ΔΗΜΟΣΙΟΥ ΚΑΙ ΝΟΜΙΣΜΑ '30': ΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ '31': ΛΙΜΕΝΙΚΗ ΝΟΜΟΘΕΣΙΑ '32': ΑΣΤΙΚΗ ΝΟΜΟΘΕΣΙΑ '33': ΠΟΛΙΤΙΚΗ ΔΙΚΟΝΟΜΙΑ '34': ΔΙΠΛΩΜΑΤΙΚΗ ΝΟΜΟΘΕΣΙΑ '35': ΔΙΟΙΚΗΤΙΚΗ ΝΟΜΟΘΕΣΙΑ '36': ΑΜΕΣΗ ΦΟΡΟΛΟΓΙΑ '37': ΤΥΠΟΣ ΚΑΙ ΤΟΥΡΙΣΜΟΣ '38': ΕΘΝΙΚΗ ΟΙΚΟΝΟΜΙΑ '39': ΑΣΤΥΝΟΜΙΚΗ ΝΟΜΟΘΕΣΙΑ '40': ΑΓΡΟΤΙΚΗ ΝΟΜΟΘΕΣΙΑ '41': ΕΡΓΑΤΙΚΗ ΝΟΜΟΘΕΣΙΑ '42': ΠΟΙΝΙΚΗ ΝΟΜΟΘΕΣΙΑ '43': ΕΜΠΟΡΙΚΗ ΝΟΜΟΘΕΣΙΑ '44': ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΕΣ '45': ΕΜΠΟΡΙΚΗ ΝΑΥΤΙΛΙΑ '46': ΣΥΝΤΑΓΜΑΤΙΚΗ ΝΟΜΟΘΕΣΙΑ splits: - name: train num_bytes: 216757887 num_examples: 28536 - name: test num_bytes: 71533786 num_examples: 9516 - name: validation num_bytes: 68824457 num_examples: 9511 download_size: 145147904 dataset_size: 357116130 configs: - config_name: chapter data_files: - split: train path: chapter/train-* - split: test path: chapter/test-* - split: validation path: chapter/validation-* - config_name: subject data_files: - split: train path: subject/train-* - split: test path: subject/test-* - split: validation path: subject/validation-* - config_name: volume data_files: - split: train path: volume/train-* - split: test path: volume/test-* - split: validation path: volume/validation-* default: true --- # Dataset Card for Greek Legal Code ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** https://github.com/christospi/glc-nllp-21 - **Paper:** https://arxiv.org/abs/2109.15298 - **Data:** https://doi.org/10.5281/zenodo.5528002 - **Leaderboard:** N/A - **Point of Contact:** [Christos Papaloukas](mailto:[email protected]) ### Dataset Summary Greek_Legal_Code (GLC) is a dataset consisting of approx. 47k legal resources from Greek legislation. The origin of GLC is “Permanent Greek Legislation Code - Raptarchis”, a collection of Greek legislative documents classified into multi-level (from broader to more specialized) categories. **Topics** GLC consists of 47 legislative volumes and each volume corresponds to a main thematic topic. Each volume is divided into thematic sub categories which are called chapters and subsequently, each chapter breaks down to subjects which contain the legal resources. The total number of chapters is 389 while the total number of subjects is 2285, creating an interlinked thematic hierarchy. So, for the upper thematic level (volume) GLC has 47 classes. For the next thematic level (chapter) GLC offers 389 classes and for the inner and last thematic level (subject), GLC has 2285 classes. GLC classes are divided into three categories for each thematic level: frequent classes, which occur in more than 10 training documents and can be found in all three subsets (training, development and test); few-shot classes which appear in 1 to 10 training documents and also appear in the documents of the development and test sets, and zero-shot classes which appear in the development and/or test, but not in the training documents. ### Supported Tasks and Leaderboards The dataset supports: **Multi-class Text Classification:** Given the text of a document, a model predicts the corresponding class. **Few-shot and Zero-shot learning:** As already noted, the classes can be divided into three groups: frequent, few-shot, and zero- shot, depending on whether they were assigned to more than 10, fewer than 10 but at least one, or no training documents, respectively. | Level | Total | Frequent | Few-Shot (<10) | Zero-Shot | |---|---|---|---|---| |Volume|47|47|0|0| |Chapter|389|333|53|3| |Subject|2285|712|1431|142| ### Languages All documents are written in Greek. ## Dataset Structure ### Data Instances ```json { "text": "179. ΑΠΟΦΑΣΗ ΥΠΟΥΡΓΟΥ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ Αριθ. Β-οικ. 68425/4765 της 2/17 Νοεμ. 2000 (ΦΕΚ Β΄ 1404) Τροποποίηση της 42000/2030/81 κοιν. απόφασης του Υπουργού Συγκοινωνιών «Κωδικοποίηση και συμπλήρωση καν. Αποφάσεων» που εκδόθηκαν κατ’ εξουσιοδότηση του Ν.Δ. 102/73 «περί οργανώσεως των δια λεωφορείων αυτοκινήτων εκτελουμένων επιβατικών συγκοινωνιών». ", "volume": 24, # "ΣΥΓΚΟΙΝΩΝΙΕΣ" } ``` ### Data Fields The following data fields are provided for documents (`train`, `dev`, `test`): `text`: (**str**) The full content of each document, which is represented by its `header` and `articles` (i.e., the `main_body`).\ `label`: (**class label**): Depending on the configurarion, the volume/chapter/subject of the document. For volume-level class it belongs to specifically: ["ΚΟΙΝΩΝΙΚΗ ΠΡΟΝΟΙΑ", "ΓΕΩΡΓΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΡΑΔΙΟΦΩΝΙΑ ΚΑΙ ΤΥΠΟΣ", "ΒΙΟΜΗΧΑΝΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΥΓΕΙΟΝΟΜΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΠΟΛΕΜΙΚΟ ΝΑΥΤΙΚΟ", "ΤΑΧΥΔΡΟΜΕΙΑ - ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ", "ΔΑΣΗ ΚΑΙ ΚΤΗΝΟΤΡΟΦΙΑ", "ΕΛΕΓΚΤΙΚΟ ΣΥΝΕΔΡΙΟ ΚΑΙ ΣΥΝΤΑΞΕΙΣ", "ΠΟΛΕΜΙΚΗ ΑΕΡΟΠΟΡΙΑ", "ΝΟΜΙΚΑ ΠΡΟΣΩΠΑ ΔΗΜΟΣΙΟΥ ΔΙΚΑΙΟΥ", "ΝΟΜΟΘΕΣΙΑ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ ΤΡΑΠΕΖΩΝ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΩΝ", "ΠΟΛΙΤΙΚΗ ΑΕΡΟΠΟΡΙΑ", "ΕΜΜΕΣΗ ΦΟΡΟΛΟΓΙΑ", "ΚΟΙΝΩΝΙΚΕΣ ΑΣΦΑΛΙΣΕΙΣ", "ΝΟΜΟΘΕΣΙΑ ΔΗΜΩΝ ΚΑΙ ΚΟΙΝΟΤΗΤΩΝ", "ΝΟΜΟΘΕΣΙΑ ΕΠΙΜΕΛΗΤΗΡΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ ΚΑΙ ΣΩΜΑΤΕΙΩΝ", "ΔΗΜΟΣΙΑ ΕΡΓΑ", "ΔΙΟΙΚΗΣΗ ΔΙΚΑΙΟΣΥΝΗΣ", "ΑΣΦΑΛΙΣΤΙΚΑ ΤΑΜΕΙΑ", "ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΕΚΠΑΙΔΕΥΤΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΔΗΜΟΣΙΟ ΛΟΓΙΣΤΙΚΟ", "ΤΕΛΩΝΕΙΑΚΗ ΝΟΜΟΘΕΣΙΑ", "ΣΥΓΚΟΙΝΩΝΙΕΣ", "ΕΘΝΙΚΗ ΑΜΥΝΑ", "ΣΤΡΑΤΟΣ ΞΗΡΑΣ", "ΑΓΟΡΑΝΟΜΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΔΗΜΟΣΙΟΙ ΥΠΑΛΛΗΛΟΙ", "ΠΕΡΙΟΥΣΙΑ ΔΗΜΟΣΙΟΥ ΚΑΙ ΝΟΜΙΣΜΑ", "ΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ", "ΛΙΜΕΝΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΑΣΤΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΠΟΛΙΤΙΚΗ ΔΙΚΟΝΟΜΙΑ", "ΔΙΠΛΩΜΑΤΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΔΙΟΙΚΗΤΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΑΜΕΣΗ ΦΟΡΟΛΟΓΙΑ", "ΤΥΠΟΣ ΚΑΙ ΤΟΥΡΙΣΜΟΣ", "ΕΘΝΙΚΗ ΟΙΚΟΝΟΜΙΑ", "ΑΣΤΥΝΟΜΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΑΓΡΟΤΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΕΡΓΑΤΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΠΟΙΝΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΕΜΠΟΡΙΚΗ ΝΟΜΟΘΕΣΙΑ", "ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΕΣ", "ΕΜΠΟΡΙΚΗ ΝΑΥΤΙΛΙΑ", "ΣΥΝΤΑΓΜΑΤΙΚΗ ΝΟΜΟΘΕΣΙΑ" ] \ The labels can also be a the chapter-level or subject-level class it belongs to. Some chapter labels are omitted due to size (389 classes). Some subject labels are also omitted due to size (2285 classes). ### Data Splits | Split | No of Documents | Avg. words | | ------------------- | ------------------------------------ | --- | | Train | 28,536 | 600 | |Development | 9,511 | 574 | |Test | 9,516 | 595 | ## Dataset Creation ### Curation Rationale The dataset was curated by Papaloukas et al. (2021) with the hope to support and encourage further research in NLP for the Greek language. ### Source Data #### Initial Data Collection and Normalization The ``Permanent Greek Legislation Code - Raptarchis`` is a thorough catalogue of Greek legislation since the creation of the Greek state in 1834 until 2015. It includes Laws, Royal and Presidential Decrees, Regulations and Decisions, retrieved from the Official Government Gazette, where Greek legislation is published. This collection is one of the official, publicly available sources of classified Greek legislation suitable for classification tasks. Currently, the original catalogue is publicly offered in MS Word (.doc) format through the portal e-Themis, the legal database and management service of it, under the administration of the Ministry of the Interior (Affairs). E-Themis is primarily focused on providing legislation on a multitude of predefined thematic categories, as described in the catalogue. The main goal is to help users find legislation of interest using the thematic index. #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information The dataset does not include personal or sensitive information. ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Papaloukas et al. (2021) ### Licensing Information [More Information Needed] ### Citation Information *Christos Papaloukas, Ilias Chalkidis, Konstantinos Athinaios, Despina-Athanasia Pantazi and Manolis Koubarakis.* *Multi-granular Legal Topic Classification on Greek Legislation.* *Proceedings of the 3rd Natural Legal Language Processing (NLLP) Workshop, Punta Cana, Dominican Republic, 2021* ``` @inproceedings{papaloukas-etal-2021-glc, title = "Multi-granular Legal Topic Classification on Greek Legislation", author = "Papaloukas, Christos and Chalkidis, Ilias and Athinaios, Konstantinos and Pantazi, Despina-Athanasia and Koubarakis, Manolis", booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2021", year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2109.15298", doi = "10.48550/arXiv.2109.15298", pages = "63--75" } ``` ### Contributions Thanks to [@christospi](https://github.com/christospi) for adding this dataset.
google-research-datasets/go_emotions
google-research-datasets
2024-01-04T11:56:51Z
13,307
204
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2005.00547", "region:us", "emotion" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - apache-2.0 multilinguality: - monolingual size_categories: - 100K<n<1M - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - multi-class-classification - multi-label-classification paperswithcode_id: goemotions pretty_name: GoEmotions config_names: - raw - simplified tags: - emotion dataset_info: - config_name: raw features: - name: text dtype: string - name: id dtype: string - name: author dtype: string - name: subreddit dtype: string - name: link_id dtype: string - name: parent_id dtype: string - name: created_utc dtype: float32 - name: rater_id dtype: int32 - name: example_very_unclear dtype: bool - name: admiration dtype: int32 - name: amusement dtype: int32 - name: anger dtype: int32 - name: annoyance dtype: int32 - name: approval dtype: int32 - name: caring dtype: int32 - name: confusion dtype: int32 - name: curiosity dtype: int32 - name: desire dtype: int32 - name: disappointment dtype: int32 - name: disapproval dtype: int32 - name: disgust dtype: int32 - name: embarrassment dtype: int32 - name: excitement dtype: int32 - name: fear dtype: int32 - name: gratitude dtype: int32 - name: grief dtype: int32 - name: joy dtype: int32 - name: love dtype: int32 - name: nervousness dtype: int32 - name: optimism dtype: int32 - name: pride dtype: int32 - name: realization dtype: int32 - name: relief dtype: int32 - name: remorse dtype: int32 - name: sadness dtype: int32 - name: surprise dtype: int32 - name: neutral dtype: int32 splits: - name: train num_bytes: 55343102 num_examples: 211225 download_size: 24828322 dataset_size: 55343102 - config_name: simplified features: - name: text dtype: string - name: labels sequence: class_label: names: '0': admiration '1': amusement '2': anger '3': annoyance '4': approval '5': caring '6': confusion '7': curiosity '8': desire '9': disappointment '10': disapproval '11': disgust '12': embarrassment '13': excitement '14': fear '15': gratitude '16': grief '17': joy '18': love '19': nervousness '20': optimism '21': pride '22': realization '23': relief '24': remorse '25': sadness '26': surprise '27': neutral - name: id dtype: string splits: - name: train num_bytes: 4224138 num_examples: 43410 - name: validation num_bytes: 527119 num_examples: 5426 - name: test num_bytes: 524443 num_examples: 5427 download_size: 3464371 dataset_size: 5275700 configs: - config_name: raw data_files: - split: train path: raw/train-* - config_name: simplified data_files: - split: train path: simplified/train-* - split: validation path: simplified/validation-* - split: test path: simplified/test-* default: true --- # Dataset Card for GoEmotions ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://github.com/google-research/google-research/tree/master/goemotions - **Repository:** https://github.com/google-research/google-research/tree/master/goemotions - **Paper:** https://arxiv.org/abs/2005.00547 - **Leaderboard:** - **Point of Contact:** [Dora Demszky](https://nlp.stanford.edu/~ddemszky/index.html) ### Dataset Summary The GoEmotions dataset contains 58k carefully curated Reddit comments labeled for 27 emotion categories or Neutral. The raw data is included as well as the smaller, simplified version of the dataset with predefined train/val/test splits. ### Supported Tasks and Leaderboards This dataset is intended for multi-class, multi-label emotion classification. ### Languages The data is in English. ## Dataset Structure ### Data Instances Each instance is a reddit comment with a corresponding ID and one or more emotion annotations (or neutral). ### Data Fields The simplified configuration includes: - `text`: the reddit comment - `labels`: the emotion annotations - `comment_id`: unique identifier of the comment (can be used to look up the entry in the raw dataset) In addition to the above, the raw data includes: * `author`: The Reddit username of the comment's author. * `subreddit`: The subreddit that the comment belongs to. * `link_id`: The link id of the comment. * `parent_id`: The parent id of the comment. * `created_utc`: The timestamp of the comment. * `rater_id`: The unique id of the annotator. * `example_very_unclear`: Whether the annotator marked the example as being very unclear or difficult to label (in this case they did not choose any emotion labels). In the raw data, labels are listed as their own columns with binary 0/1 entries rather than a list of ids as in the simplified data. ### Data Splits The simplified data includes a set of train/val/test splits with 43,410, 5426, and 5427 examples respectively. ## Dataset Creation ### Curation Rationale From the paper abstract: > Understanding emotion expressed in language has a wide range of applications, from building empathetic chatbots to detecting harmful online behavior. Advancement in this area can be improved using large-scale datasets with a fine-grained typology, adaptable to multiple downstream tasks. ### Source Data #### Initial Data Collection and Normalization Data was collected from Reddit comments via a variety of automated methods discussed in 3.1 of the paper. #### Who are the source language producers? English-speaking Reddit users. ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? Annotations were produced by 3 English-speaking crowdworkers in India. ### Personal and Sensitive Information This dataset includes the original usernames of the Reddit users who posted each comment. Although Reddit usernames are typically disasociated from personal real-world identities, this is not always the case. It may therefore be possible to discover the identities of the individuals who created this content in some cases. ## Considerations for Using the Data ### Social Impact of Dataset Emotion detection is a worthwhile problem which can potentially lead to improvements such as better human/computer interaction. However, emotion detection algorithms (particularly in computer vision) have been abused in some cases to make erroneous inferences in human monitoring and assessment applications such as hiring decisions, insurance pricing, and student attentiveness (see [this article](https://www.unite.ai/ai-now-institute-warns-about-misuse-of-emotion-detection-software-and-other-ethical-issues/)). ### Discussion of Biases From the authors' github page: > Potential biases in the data include: Inherent biases in Reddit and user base biases, the offensive/vulgar word lists used for data filtering, inherent or unconscious bias in assessment of offensive identity labels, annotators were all native English speakers from India. All these likely affect labelling, precision, and recall for a trained model. Anyone using this dataset should be aware of these limitations of the dataset. ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Researchers at Amazon Alexa, Google Research, and Stanford. See the [author list](https://arxiv.org/abs/2005.00547). ### Licensing Information The GitHub repository which houses this dataset has an [Apache License 2.0](https://github.com/google-research/google-research/blob/master/LICENSE). ### Citation Information @inproceedings{demszky2020goemotions, author = {Demszky, Dorottya and Movshovitz-Attias, Dana and Ko, Jeongwoo and Cowen, Alan and Nemade, Gaurav and Ravi, Sujith}, booktitle = {58th Annual Meeting of the Association for Computational Linguistics (ACL)}, title = {{GoEmotions: A Dataset of Fine-Grained Emotions}}, year = {2020} } ### Contributions Thanks to [@joeddav](https://github.com/joeddav) for adding this dataset.
uoft-cs/cifar100
uoft-cs
2024-01-04T06:57:47Z
9,673
46
[ "task_categories:image-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended|other-80-Million-Tiny-Images", "language:en", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|other-80-Million-Tiny-Images task_categories: - image-classification task_ids: [] paperswithcode_id: cifar-100 pretty_name: Cifar100 dataset_info: config_name: cifar100 features: - name: img dtype: image - name: fine_label dtype: class_label: names: '0': apple '1': aquarium_fish '2': baby '3': bear '4': beaver '5': bed '6': bee '7': beetle '8': bicycle '9': bottle '10': bowl '11': boy '12': bridge '13': bus '14': butterfly '15': camel '16': can '17': castle '18': caterpillar '19': cattle '20': chair '21': chimpanzee '22': clock '23': cloud '24': cockroach '25': couch '26': cra '27': crocodile '28': cup '29': dinosaur '30': dolphin '31': elephant '32': flatfish '33': forest '34': fox '35': girl '36': hamster '37': house '38': kangaroo '39': keyboard '40': lamp '41': lawn_mower '42': leopard '43': lion '44': lizard '45': lobster '46': man '47': maple_tree '48': motorcycle '49': mountain '50': mouse '51': mushroom '52': oak_tree '53': orange '54': orchid '55': otter '56': palm_tree '57': pear '58': pickup_truck '59': pine_tree '60': plain '61': plate '62': poppy '63': porcupine '64': possum '65': rabbit '66': raccoon '67': ray '68': road '69': rocket '70': rose '71': sea '72': seal '73': shark '74': shrew '75': skunk '76': skyscraper '77': snail '78': snake '79': spider '80': squirrel '81': streetcar '82': sunflower '83': sweet_pepper '84': table '85': tank '86': telephone '87': television '88': tiger '89': tractor '90': train '91': trout '92': tulip '93': turtle '94': wardrobe '95': whale '96': willow_tree '97': wolf '98': woman '99': worm - name: coarse_label dtype: class_label: names: '0': aquatic_mammals '1': fish '2': flowers '3': food_containers '4': fruit_and_vegetables '5': household_electrical_devices '6': household_furniture '7': insects '8': large_carnivores '9': large_man-made_outdoor_things '10': large_natural_outdoor_scenes '11': large_omnivores_and_herbivores '12': medium_mammals '13': non-insect_invertebrates '14': people '15': reptiles '16': small_mammals '17': trees '18': vehicles_1 '19': vehicles_2 splits: - name: train num_bytes: 112545106.0 num_examples: 50000 - name: test num_bytes: 22564261.0 num_examples: 10000 download_size: 142291368 dataset_size: 135109367.0 configs: - config_name: cifar100 data_files: - split: train path: cifar100/train-* - split: test path: cifar100/test-* default: true --- # Dataset Card for CIFAR-100 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [CIFAR Datasets](https://www.cs.toronto.edu/~kriz/cifar.html) - **Repository:** - **Paper:** [Paper](https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class. There are 500 training images and 100 testing images per class. There are 50000 training images and 10000 test images. The 100 classes are grouped into 20 superclasses. There are two labels per image - fine label (actual class) and coarse label (superclass). ### Supported Tasks and Leaderboards - `image-classification`: The goal of this task is to classify a given image into one of 100 classes. The leaderboard is available [here](https://paperswithcode.com/sota/image-classification-on-cifar-100). ### Languages English ## Dataset Structure ### Data Instances A sample from the training set is provided below: ``` { 'img': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32 at 0x2767F58E080>, 'fine_label': 19, 'coarse_label': 11 } ``` ### Data Fields - `img`: A `PIL.Image.Image` object containing the 32x32 image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `fine_label`: an `int` classification label with the following mapping: `0`: apple `1`: aquarium_fish `2`: baby `3`: bear `4`: beaver `5`: bed `6`: bee `7`: beetle `8`: bicycle `9`: bottle `10`: bowl `11`: boy `12`: bridge `13`: bus `14`: butterfly `15`: camel `16`: can `17`: castle `18`: caterpillar `19`: cattle `20`: chair `21`: chimpanzee `22`: clock `23`: cloud `24`: cockroach `25`: couch `26`: cra `27`: crocodile `28`: cup `29`: dinosaur `30`: dolphin `31`: elephant `32`: flatfish `33`: forest `34`: fox `35`: girl `36`: hamster `37`: house `38`: kangaroo `39`: keyboard `40`: lamp `41`: lawn_mower `42`: leopard `43`: lion `44`: lizard `45`: lobster `46`: man `47`: maple_tree `48`: motorcycle `49`: mountain `50`: mouse `51`: mushroom `52`: oak_tree `53`: orange `54`: orchid `55`: otter `56`: palm_tree `57`: pear `58`: pickup_truck `59`: pine_tree `60`: plain `61`: plate `62`: poppy `63`: porcupine `64`: possum `65`: rabbit `66`: raccoon `67`: ray `68`: road `69`: rocket `70`: rose `71`: sea `72`: seal `73`: shark `74`: shrew `75`: skunk `76`: skyscraper `77`: snail `78`: snake `79`: spider `80`: squirrel `81`: streetcar `82`: sunflower `83`: sweet_pepper `84`: table `85`: tank `86`: telephone `87`: television `88`: tiger `89`: tractor `90`: train `91`: trout `92`: tulip `93`: turtle `94`: wardrobe `95`: whale `96`: willow_tree `97`: wolf `98`: woman `99`: worm - `coarse_label`: an `int` coarse classification label with following mapping: `0`: aquatic_mammals `1`: fish `2`: flowers `3`: food_containers `4`: fruit_and_vegetables `5`: household_electrical_devices `6`: household_furniture `7`: insects `8`: large_carnivores `9`: large_man-made_outdoor_things `10`: large_natural_outdoor_scenes `11`: large_omnivores_and_herbivores `12`: medium_mammals `13`: non-insect_invertebrates `14`: people `15`: reptiles `16`: small_mammals `17`: trees `18`: vehicles_1 `19`: vehicles_2 ### Data Splits | name |train|test| |----------|----:|---------:| |cifar100|50000| 10000| ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @TECHREPORT{Krizhevsky09learningmultiple, author = {Alex Krizhevsky}, title = {Learning multiple layers of features from tiny images}, institution = {}, year = {2009} } ``` ### Contributions Thanks to [@gchhablani](https://github.com/gchablani) for adding this dataset.
uoft-cs/cifar10
uoft-cs
2024-01-04T06:53:11Z
52,877
73
[ "task_categories:image-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended|other-80-Million-Tiny-Images", "language:en", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-classification" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|other-80-Million-Tiny-Images task_categories: - image-classification task_ids: [] paperswithcode_id: cifar-10 pretty_name: Cifar10 dataset_info: config_name: plain_text features: - name: img dtype: image - name: label dtype: class_label: names: '0': airplane '1': automobile '2': bird '3': cat '4': deer '5': dog '6': frog '7': horse '8': ship '9': truck splits: - name: train num_bytes: 113648310.0 num_examples: 50000 - name: test num_bytes: 22731580.0 num_examples: 10000 download_size: 143646105 dataset_size: 136379890.0 configs: - config_name: plain_text data_files: - split: train path: plain_text/train-* - split: test path: plain_text/test-* default: true --- # Dataset Card for CIFAR-10 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://www.cs.toronto.edu/~kriz/cifar.html - **Repository:** - **Paper:** Learning Multiple Layers of Features from Tiny Images by Alex Krizhevsky - **Leaderboard:** - **Point of Contact:** ### Dataset Summary The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. ### Supported Tasks and Leaderboards - `image-classification`: The goal of this task is to classify a given image into one of 10 classes. The leaderboard is available [here](https://paperswithcode.com/sota/image-classification-on-cifar-10). ### Languages English ## Dataset Structure ### Data Instances A sample from the training set is provided below: ``` { 'img': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32 at 0x201FA6EE748>, 'label': 0 } ``` ### Data Fields - img: A `PIL.Image.Image` object containing the 32x32 image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - label: 0-9 with the following correspondence 0 airplane 1 automobile 2 bird 3 cat 4 deer 5 dog 6 frog 7 horse 8 ship 9 truck ### Data Splits Train and Test ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @TECHREPORT{Krizhevsky09learningmultiple, author = {Alex Krizhevsky}, title = {Learning multiple layers of features from tiny images}, institution = {}, year = {2009} } ``` ### Contributions Thanks to [@czabo](https://github.com/czabo) for adding this dataset.
openbmb/UltraFeedback
openbmb
2023-12-29T14:11:19Z
2,366
360
[ "task_categories:text-generation", "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2310.01377", "region:us" ]
[ "text-generation" ]
2023-09-23T15:41:04Z
null
--- license: mit task_categories: - text-generation language: - en size_categories: - 100K<n<1M --- ## Introduction - [GitHub Repo](https://github.com/thunlp/UltraFeedback) - [UltraRM-13b](https://huggingface.co/openbmb/UltraRM-13b) - [UltraCM-13b](https://huggingface.co/openbmb/UltraCM-13b) UltraFeedback is a **large-scale, fine-grained, diverse preference dataset**, used for training powerful reward models and critic models. We collect about 64k prompts from diverse resources (including UltraChat, ShareGPT, Evol-Instruct, TruthfulQA, FalseQA, and FLAN). We then use these prompts to query multiple LLMs (see Table for model lists) and generate 4 different responses for each prompt, resulting in a total of 256k samples. To collect high-quality preference and textual feedback, we design a fine-grained annotation instruction, which contains 4 different aspects, namely **instruction-following**, **truthfulness**, **honesty** and **helpfulness**. We then ask GPT-4 to annotate the collected samples based on the instructions. ## Features - 🆚 **Scale**: UltraFeedback consists of 64k prompts, 256k responses and 380k high-quality feedback. RLHF researchers could further construct around 1 million comparison pairs to train their reward models. - 🌈 **Diversity**: As a preference dataset, diversity is the core requirement for UltraFeedback. We collect prompts from various sources and query a diverse set of state-of-the-art open-source and prestigious models. To further increase diversity, we intended to select different base models, i.e., LLaMA, Falcon, StarChat, MPT, GPT and Bard. We also apply various principles to stimulate models completing instructions in different ways. - 🤯 **High-density**: UltraFeedback provides both numerical and textual feedback. Moreover, we wrote fine-grained annotation documents to help rate responses in all dimensions ## Dataset Construction ### Instruction Sampling We sample 63,967 instructions from 6 public available and high-quality datasets. We include all instructions from TruthfulQA and FalseQA, randomly sampling 10k instructions from Evol-Instruct, 10k from UltraChat, and 20k from ShareGPT. For Flan, we adopt a stratified sampling strtegy, randomly samping 3k instructions from"Co" subset whereas sampling 10 instructions per task for the other three subsets, excluding those with overly long instructions. ```json { "evol_instruct": 10000, "false_qa": 2339, "flan": 20939, "sharegpt": 19949, "truthful_qa": 811, "ultrachat": 9929 } ``` ### Model Sampling To prevent reward model from overfiting to certain text style or capturing spurious correlation between text style and rewards, we select different base models of all levels, with varying sizes, architectures and training data, to complete the instructions. We set up a pool of 17 models: - Commercial Models: GPT-4, GPT-3.5 Turbo, Bard - LLaMA family: 1. LLaMA-2-7B-chat, LLaMA-2-13B-chat, LLaMA-2-70B-chat 2. UltraLM-13B, UltraLM-65B 3. WizardLM-7B, WizardLM-13B, WizardLM-70B 4. Vicuna-33B 5. Alpaca-7B - Non-LLaMA series: 1. Falcon-40B-instruct 2. MPT-30B-chat 3. StarChat-Beta 4. Pythia-12B ### Principle Sampling Following [1] and [2], we define a set of principles to explicitly align model behaviors from different aspects. We set up a pool of 5 principles: Helpfulness, Truthfulness, Honesty, Verbalized Calibration and Harmless. For each instruction, we randomly sample 4 models to complete the instruction, and for each completion, we sample a principle and add it to system prompt to align the model behavior. Considering different datasets outline different characteristics, not all dataset are suitable for all principles. We provide the following table to show the principle distribution for each dataset. | Datset | Principle | | ------------- | ------------------------------------------------------------ | | Evol Instruct | 100% Helpful | | FalseQA | 100% TruthfulQA | | Flan | 60% Helpful, 20% Truthful, 20% Verbalized Calibration | | ShareGPT | 60% Helpful, 20% Truthful, 18% Honesty, 2% Verbalized Calibration | | TruthfulQA | 100% Truthful | | UltraChat | 60% Helpful, 20% Truthful, 18% Honesty, 2% Verbalized Calibration | [1] Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision. Sun et al. [2] Orca: Progressive Learning from Complex Explanation Traces of GPT-4. Mukherjee et al. ## Dataset Format ```JSONC { "source": "sharegpt", // the dataset where the instruction comes from "id": "D2TC9GP_0", // the id of the instruction in the source dataset "instruction": "I am going to cairo in June of this year, thinking of 4-5 days, what are the best things I could do? Going with family of 5, granddad, grandmom, sister, mom and me. No days can have too much walking but sister, me and mom like adventure sports", "models": [ // four models that are randomly sampled from the model pool to complete the instruction "falcon-40b-instruct", "gpt-4", "starchat", "wizardlm-7b" ], "completions": [ // four completions corresponding to the four models { // completion 1 "model": "falcon-40b-instruct", "principle": "helpfulness", // priciple that used to align model behavior "custom_system_prompt": "As an AI assistant, ensure your response offers the perfect blend of accuracy, positivity, and intrigue. Strive to be educational while keeping the user engaged.", // the system prompt corresponding to the principle, sampled from a pool of GPT-4 generated system prompts "response": "Cairo is a city that has something for everyone. Some of the best things you can do are visiting the Pyramids of Giza and the museums housing the ancient Egyptian artifacts, taking a camel ride in the desert, visiting the medieval neighborhoods such as Islamic Cairo or Khan El-Khalili, trying local food in traditional restaurants like Ful medames, or venturing into one of the city's many souks to shop for authentic goods. For adventure sports, you can go whitewater rafting on the Nile, hot air ballooning over the desert, or diving in the Red Sea. Just be mindful of the scorching heat and ensure everyone wears appropriate clothing and drinks enough water. Above all, have fun and enjoy your trip!", "annotations": { "instruction_following": [ { "Rating": "2", "Rationale": "The text only partially addresses the task goal by providing a general list of activities in Cairo without considering the specific needs of the family members, such as limited walking ability and adventure preferences." } ], "honesty": [ { "Rating": "3", "Rationale": "The response is confident but contains subtle mistakes. It suggests whitewater rafting on the Nile and diving in the Red Sea, which are not feasible for a 4-5 day trip to Cairo. The rest of the suggestions are accurate and relevant to the family's preferences." } ], "truthfulness": [ { "Type": [ "1", "2" ], "Rationale": "The text suggests whitewater rafting on the Nile and diving in the Red Sea, which are not available in Cairo. These activities are factually incorrect and not aligned with the instruction.", "Rating": "3", "Rationale For Rating": "The text provides some truthful information, but the inclusion of whitewater rafting and diving in the Red Sea causes partial hallucination and misunderstanding." } ], "helpfulness": [ { "Type": [ "1", "2" ], "Rationale": "The response is clear and relevant, providing useful information, but it does not address the limited walking ability of the grandparents or the adventure sports preferences of the sister, mom, and the user.", "Rating": "3", "Rationale For Rating": "The text is correct and provides useful information, but it does not fully address the specific needs and preferences of the family." } ] } }, { // completion 2 ... }, { // completion 3 ... }, { // completion 4 ... } ] }, ``` ## Dataset Example Here we present an example of UltraFeedback > **User:** I am going to cairo in June of this year, thinking of 4-5 days, what are the best things I could do? Going with family of 5, granddad, grandmom, sister, mom and me. No days can have too much walking but sister, me and mom like adventure sports > **Assisstant 1 (falcon-40b-instruct):** Cairo is a city that has something for everyone. Some of the best things you can do are visiting the Pyramids of Giza and the museums housing the ancient Egyptian artifacts, taking a camel ride in the desert, visiting the medieval neighborhoods such as Islamic Cairo or Khan El-Khalili, trying local food in traditional restaurants like Ful medames, or venturing into one of the city's many souks to shop for authentic goods. For adventure sports, you can go whitewater rafting on the Nile, hot air ballooning over the desert, or diving in the Red Sea. Just be mindful of the scorching heat and ensure everyone wears appropriate clothing and drinks enough water. Above all, have fun and enjoy your trip! > **Assisstant 2 (gpt-4):** In Cairo for 4-5 days, the following activities cater to your family's preferences, with consideration for the limited walking ability of your grandparents:\n\n1. Visit the Pyramids of Giza and the Great Sphinx: A must-see in Cairo, it's an incredible experience for all ages. You can explore the premises using a hired camel, horse, or a horse-drawn carriage which accommodate the needs of your grandparents while keeping the experience enjoyable.\n\n2. Egyptian Museum: This museum in Tahrir Square contains over 120,000 artifacts of Egypt's history. A wheelchair can be arranged for the grandparents to comfortably explore the museum at their own pace.\n\n3. Khan el-Khalili Bazaar: A famous market in Cairo, suitable for souvenir shopping and experiencing the local culture. There are many cafes and restaurants your family can rest at during the visit.\n\n4. Nile River Cruise: Enjoy a dinner cruise with your family on the famous Nile River. It includes entertainment and a beautiful view of the city by night. Boats often have ramps and accessible facilities for limited mobility passangers.\n\n5. Felucca Ride: During the day, go for a more traditional sailboat ride called a Felucca. This can be done on an off-day or as a relaxation activity after an active day.\n\nFor adventure activities, you and your mom and sister can explore these options:\n\n1. Sandboarding: Head to the desert for a thrilling sandboarding experience on the dunes just outside Cairo.\n\n2. Hot Air Balloon Ride: Experience Egypt from above with a hot air balloon ride in Luxor. It would require a day trip from Cairo but is an incredible experience.\n\n3. Quad Biking: Go for a guided quad biking adventure in the desert, enjoying panoramic views of the iconic Pyramids.\n\nSpace the activities according to your family's preferences and ensure rest periods in the afternoon. Consider hiring a private guide or joining a wheelchair-accessible tour since you're concerned about your grandparents' walking ability. > **Assisstant 3 (starchat):** Here are some of the top things to do in Cairo, Egypt, with a family of 5:\n\n- Giza Pyramids: The Giza Pyramids, located just outside Cairo, are a must-see for anyone visiting the city. The Great Pyramid of Khufu, the Great Pyramid of Khafre, and the Great Pyramid of Menkaure make up one of the Seven Wonders of the Ancient World and are an impressive sight to behold.\n\n- Egyptian Museum: The Egyptian Museum, located in the heart of Cairo, is home to one of the world's largest and most impressive collections of ancient Egyptian art and artifacts. Visitors can explore the museum's extensive collection, which includes items such as mummies, sarcophagi, statues, paintings, and more.\n\n- Citadel of Salah El-Din: Located on a hill overlooking Cairo, the Citadel of Salah El-Din offers stunning views of the city and is an excellent place to get a sense of Cairo's rich history. Visitors can explore the various museums and mosques within the citadel, and also take a stroll through the beautiful gardens.\n\n- Khan El-Khalili Bazaar: Khan El-Khalili Bazaar is one of Cairo's most popular attractions, a bustling market where visitors can find everything from spices and pottery to clothes and jewelry. It's a great place to do some shopping and explore the local culture.\n\n- Alexandria: Just an hour's drive from Cairo, Alexandria is a historic city with a rich legacy. Visitors can explore the ancient Roman Amphitheater, the Qaitbay Citadel, and the Catacombs of Kom el-Shoqafa. They can also take a boat trip to the island of Montazah, where they can see the famous Graffiti Wall and other street art.\n\nAll of these attractions are family-friendly, with plenty of things to see and do. The Giza Pyramids in particular are very accessible and well-maintained, making them suitable for all ages. > **Assisstant 4 (wizardlm-7b):** If you are looking for adventure sports, you can explore the pyramids of Giza and go hot air ballooning over the desert. Another option could be to take a camel ride in the desert or go kayaking in the Nile River. For family-friendly activities, you can visit the Egyptian Museum, Cairo Tower, and Khan el-Khalili Bazaar. Additionally, you can take a day trip to the historical city of Alexandria and visit the Pompey's Pillar and the Roman Amphitheater. Another option could be to go on a guided tour of the ancient city of Petra in Jordan, which is a short flight from Cairo. ## Limitations - Although GPT-4 can provide well-aligned annotation and textual feedback for most samples, we must note that GPT-4 also makes mistakes and provides inaccurate feedbacks. ## Citation ```bib @misc{cui2023ultrafeedback, title={UltraFeedback: Boosting Language Models with High-quality Feedback}, author={Ganqu Cui and Lifan Yuan and Ning Ding and Guanming Yao and Wei Zhu and Yuan Ni and Guotong Xie and Zhiyuan Liu and Maosong Sun}, year={2023}, eprint={2310.01377}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ise-uiuc/Magicoder-Evol-Instruct-110K
ise-uiuc
2023-12-28T03:23:17Z
377
161
[ "task_categories:text-generation", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation", "conversational" ]
2023-12-03T20:05:56Z
null
--- license: apache-2.0 size_categories: - 100K<n<1M task_categories: - text-generation - conversational --- A decontaminated version of [evol-codealpaca-v1](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1). Decontamination is done in the same way as StarCoder ([bigcode decontamination process](https://github.com/bigcode-project/bigcode-dataset/tree/main/decontamination)).
TwoAbove/midjourney-messages
TwoAbove
2023-12-26T00:12:42Z
14,307
2
[ "license:apache-2.0", "region:us" ]
[]
2023-11-16T13:10:46Z
null
--- license: apache-2.0 dataset_info: features: - name: id dtype: string - name: channel_id dtype: string - name: content dtype: string - name: timestamp dtype: string - name: image_id dtype: string - name: image dtype: image - name: url dtype: string - name: height dtype: int64 - name: width dtype: int64 - name: size dtype: int64 splits: - name: train num_bytes: 0 num_examples: 0 configs: - config_name: default data_files: - split: train path: data/* --- # midjourney-messages ## Description This dataset contains the raw messages from Midjourney. Initial dataset is https://huggingface.co/datasets/vivym/midjourney-messages, but this one has the images attached.
jmhessel/newyorker_caption_contest
jmhessel
2023-12-22T19:13:58Z
12,134
65
[ "task_categories:image-to-text", "task_categories:multiple-choice", "task_categories:text-classification", "task_categories:text-generation", "task_categories:visual-question-answering", "task_categories:other", "task_categories:text2text-generation", "task_ids:multi-class-classification", "task_ids:language-modeling", "task_ids:visual-question-answering", "task_ids:explanation-generation", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "annotations_creators:found", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2209.06293", "region:us", "humor", "caption contest", "new yorker" ]
[ "image-to-text", "multiple-choice", "text-classification", "text-generation", "visual-question-answering", "other", "text2text-generation" ]
2022-09-29T17:28:05Z
null
--- annotations_creators: - expert-generated - crowdsourced - found language_creators: - crowdsourced - expert-generated language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - image-to-text - multiple-choice - text-classification - text-generation - visual-question-answering - other - text2text-generation task_ids: - multi-class-classification - language-modeling - visual-question-answering - explanation-generation pretty_name: newyorker_caption_contest tags: - humor - caption contest - new yorker dataset_info: - config_name: explanation features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 133827514.64 num_examples: 2340 - name: validation num_bytes: 8039885.0 num_examples: 130 - name: test num_bytes: 6863533.0 num_examples: 131 download_size: 139737042 dataset_size: 148730932.64 - config_name: explanation_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 136614332.45999998 num_examples: 2358 - name: validation num_bytes: 7911995.0 num_examples: 128 - name: test num_bytes: 8039885.0 num_examples: 130 download_size: 134637839 dataset_size: 152566212.45999998 - config_name: explanation_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 138337491.342 num_examples: 2346 - name: validation num_bytes: 7460490.0 num_examples: 132 - name: test num_bytes: 7911995.0 num_examples: 128 download_size: 138271185 dataset_size: 153709976.342 - config_name: explanation_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 138247435.342 num_examples: 2334 - name: validation num_bytes: 7911920.0 num_examples: 130 - name: test num_bytes: 7460490.0 num_examples: 132 download_size: 136862726 dataset_size: 153619845.342 - config_name: explanation_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 141175335.3 num_examples: 2340 - name: validation num_bytes: 6863533.0 num_examples: 131 - name: test num_bytes: 7911920.0 num_examples: 130 download_size: 140501251 dataset_size: 155950788.3 - config_name: explanation_from_pixels features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 23039316.0 num_examples: 390 - name: validation num_bytes: 7956182.0 num_examples: 130 - name: test num_bytes: 6778892.0 num_examples: 131 download_size: 37552582 dataset_size: 37774390.0 - config_name: explanation_from_pixels_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 21986652.0 num_examples: 393 - name: validation num_bytes: 7831556.0 num_examples: 128 - name: test num_bytes: 7956182.0 num_examples: 130 download_size: 37534409 dataset_size: 37774390.0 - config_name: explanation_from_pixels_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 22566608.0 num_examples: 391 - name: validation num_bytes: 7376225.0 num_examples: 132 - name: test num_bytes: 7831556.0 num_examples: 128 download_size: 37544724 dataset_size: 37774389.0 - config_name: explanation_from_pixels_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 22566629.0 num_examples: 389 - name: validation num_bytes: 7831536.0 num_examples: 130 - name: test num_bytes: 7376225.0 num_examples: 132 download_size: 37573931 dataset_size: 37774390.0 - config_name: explanation_from_pixels_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 23163962.0 num_examples: 390 - name: validation num_bytes: 6778892.0 num_examples: 131 - name: test num_bytes: 7831536.0 num_examples: 130 download_size: 37582524 dataset_size: 37774390.0 - config_name: matching features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 618272766.36 num_examples: 9792 - name: validation num_bytes: 34157757.0 num_examples: 531 - name: test num_bytes: 29813118.0 num_examples: 528 download_size: 594460072 dataset_size: 682243641.36 - config_name: matching_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 593200158.116 num_examples: 9684 - name: validation num_bytes: 36712942.0 num_examples: 546 - name: test num_bytes: 34157757.0 num_examples: 531 download_size: 563587231 dataset_size: 664070857.116 - config_name: matching_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 591676321.09 num_examples: 9630 - name: validation num_bytes: 33697178.0 num_examples: 540 - name: test num_bytes: 36712942.0 num_examples: 546 download_size: 571864348 dataset_size: 662086441.09 - config_name: matching_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 615620189.53 num_examples: 9630 - name: validation num_bytes: 34829502.0 num_examples: 546 - name: test num_bytes: 33697178.0 num_examples: 540 download_size: 571744845 dataset_size: 684146869.53 - config_name: matching_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 609696610.648 num_examples: 9702 - name: validation num_bytes: 29813118.0 num_examples: 528 - name: test num_bytes: 34829502.0 num_examples: 546 download_size: 592174904 dataset_size: 674339230.648 - config_name: matching_from_pixels features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 101439044.384 num_examples: 1632 - name: validation num_bytes: 33714551.0 num_examples: 531 - name: test num_bytes: 29368704.0 num_examples: 528 download_size: 139733134 dataset_size: 164522299.384 - config_name: matching_from_pixels_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 94090646.83 num_examples: 1614 - name: validation num_bytes: 36257141.0 num_examples: 546 - name: test num_bytes: 33714551.0 num_examples: 531 download_size: 137278691 dataset_size: 164062338.82999998 - config_name: matching_from_pixels_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 96253584.505 num_examples: 1605 - name: validation num_bytes: 33236000.0 num_examples: 540 - name: test num_bytes: 36257141.0 num_examples: 546 download_size: 137890850 dataset_size: 165746725.505 - config_name: matching_from_pixels_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 99928910.28 num_examples: 1605 - name: validation num_bytes: 34380303.0 num_examples: 546 - name: test num_bytes: 33236000.0 num_examples: 540 download_size: 139585876 dataset_size: 167545213.28 - config_name: matching_from_pixels_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 102509197.79 num_examples: 1617 - name: validation num_bytes: 29368704.0 num_examples: 528 - name: test num_bytes: 34380303.0 num_examples: 546 download_size: 138725891 dataset_size: 166258204.79000002 - config_name: ranking features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 594615535.632 num_examples: 9576 - name: validation num_bytes: 32624105.0 num_examples: 507 - name: test num_bytes: 28907567.0 num_examples: 513 download_size: 571604579 dataset_size: 656147207.632 - config_name: ranking_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 580099188.9 num_examples: 9450 - name: validation num_bytes: 35332200.0 num_examples: 534 - name: test num_bytes: 32624105.0 num_examples: 507 download_size: 546559254 dataset_size: 648055493.9 - config_name: ranking_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 566811450.504 num_examples: 9306 - name: validation num_bytes: 32519173.0 num_examples: 531 - name: test num_bytes: 35332200.0 num_examples: 534 download_size: 544444097 dataset_size: 634662823.504 - config_name: ranking_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 577828323.272 num_examples: 9324 - name: validation num_bytes: 34072817.0 num_examples: 531 - name: test num_bytes: 32519173.0 num_examples: 531 download_size: 548880699 dataset_size: 644420313.272 - config_name: ranking_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 593388719.232 num_examples: 9432 - name: validation num_bytes: 28907567.0 num_examples: 513 - name: test num_bytes: 34072817.0 num_examples: 531 download_size: 562902941 dataset_size: 656369103.232 - config_name: ranking_from_pixels features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 101282973.752 num_examples: 1596 - name: validation num_bytes: 32072331.0 num_examples: 506 - name: test num_bytes: 28550057.0 num_examples: 513 download_size: 134283256 dataset_size: 161905361.752 - config_name: ranking_from_pixels_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 93123370.15 num_examples: 1575 - name: validation num_bytes: 34965110.0 num_examples: 534 - name: test num_bytes: 32072331.0 num_examples: 506 download_size: 130879365 dataset_size: 160160811.15 - config_name: ranking_from_pixels_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 93496576.85 num_examples: 1550 - name: validation num_bytes: 32145436.0 num_examples: 531 - name: test num_bytes: 34965110.0 num_examples: 534 download_size: 131637359 dataset_size: 160607122.85 - config_name: ranking_from_pixels_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 93840620.26 num_examples: 1553 - name: validation num_bytes: 33718821.0 num_examples: 531 - name: test num_bytes: 32145436.0 num_examples: 531 download_size: 133214495 dataset_size: 159704877.26 - config_name: ranking_from_pixels_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 99008131.43 num_examples: 1571 - name: validation num_bytes: 28550057.0 num_examples: 513 - name: test num_bytes: 33718821.0 num_examples: 531 download_size: 136230399 dataset_size: 161277009.43 configs: - config_name: explanation data_files: - split: train path: explanation/train-* - split: validation path: explanation/validation-* - split: test path: explanation/test-* - config_name: explanation_1 data_files: - split: train path: explanation_1/train-* - split: validation path: explanation_1/validation-* - split: test path: explanation_1/test-* - config_name: explanation_2 data_files: - split: train path: explanation_2/train-* - split: validation path: explanation_2/validation-* - split: test path: explanation_2/test-* - config_name: explanation_3 data_files: - split: train path: explanation_3/train-* - split: validation path: explanation_3/validation-* - split: test path: explanation_3/test-* - config_name: explanation_4 data_files: - split: train path: explanation_4/train-* - split: validation path: explanation_4/validation-* - split: test path: explanation_4/test-* - config_name: explanation_from_pixels data_files: - split: train path: explanation_from_pixels/train-* - split: validation path: explanation_from_pixels/validation-* - split: test path: explanation_from_pixels/test-* - config_name: explanation_from_pixels_1 data_files: - split: train path: explanation_from_pixels_1/train-* - split: validation path: explanation_from_pixels_1/validation-* - split: test path: explanation_from_pixels_1/test-* - config_name: explanation_from_pixels_2 data_files: - split: train path: explanation_from_pixels_2/train-* - split: validation path: explanation_from_pixels_2/validation-* - split: test path: explanation_from_pixels_2/test-* - config_name: explanation_from_pixels_3 data_files: - split: train path: explanation_from_pixels_3/train-* - split: validation path: explanation_from_pixels_3/validation-* - split: test path: explanation_from_pixels_3/test-* - config_name: explanation_from_pixels_4 data_files: - split: train path: explanation_from_pixels_4/train-* - split: validation path: explanation_from_pixels_4/validation-* - split: test path: explanation_from_pixels_4/test-* - config_name: matching data_files: - split: train path: matching/train-* - split: validation path: matching/validation-* - split: test path: matching/test-* - config_name: matching_1 data_files: - split: train path: matching_1/train-* - split: validation path: matching_1/validation-* - split: test path: matching_1/test-* - config_name: matching_2 data_files: - split: train path: matching_2/train-* - split: validation path: matching_2/validation-* - split: test path: matching_2/test-* - config_name: matching_3 data_files: - split: train path: matching_3/train-* - split: validation path: matching_3/validation-* - split: test path: matching_3/test-* - config_name: matching_4 data_files: - split: train path: matching_4/train-* - split: validation path: matching_4/validation-* - split: test path: matching_4/test-* - config_name: matching_from_pixels data_files: - split: train path: matching_from_pixels/train-* - split: validation path: matching_from_pixels/validation-* - split: test path: matching_from_pixels/test-* - config_name: matching_from_pixels_1 data_files: - split: train path: matching_from_pixels_1/train-* - split: validation path: matching_from_pixels_1/validation-* - split: test path: matching_from_pixels_1/test-* - config_name: matching_from_pixels_2 data_files: - split: train path: matching_from_pixels_2/train-* - split: validation path: matching_from_pixels_2/validation-* - split: test path: matching_from_pixels_2/test-* - config_name: matching_from_pixels_3 data_files: - split: train path: matching_from_pixels_3/train-* - split: validation path: matching_from_pixels_3/validation-* - split: test path: matching_from_pixels_3/test-* - config_name: matching_from_pixels_4 data_files: - split: train path: matching_from_pixels_4/train-* - split: validation path: matching_from_pixels_4/validation-* - split: test path: matching_from_pixels_4/test-* - config_name: ranking data_files: - split: train path: ranking/train-* - split: validation path: ranking/validation-* - split: test path: ranking/test-* - config_name: ranking_1 data_files: - split: train path: ranking_1/train-* - split: validation path: ranking_1/validation-* - split: test path: ranking_1/test-* - config_name: ranking_2 data_files: - split: train path: ranking_2/train-* - split: validation path: ranking_2/validation-* - split: test path: ranking_2/test-* - config_name: ranking_3 data_files: - split: train path: ranking_3/train-* - split: validation path: ranking_3/validation-* - split: test path: ranking_3/test-* - config_name: ranking_4 data_files: - split: train path: ranking_4/train-* - split: validation path: ranking_4/validation-* - split: test path: ranking_4/test-* - config_name: ranking_from_pixels data_files: - split: train path: ranking_from_pixels/train-* - split: validation path: ranking_from_pixels/validation-* - split: test path: ranking_from_pixels/test-* - config_name: ranking_from_pixels_1 data_files: - split: train path: ranking_from_pixels_1/train-* - split: validation path: ranking_from_pixels_1/validation-* - split: test path: ranking_from_pixels_1/test-* - config_name: ranking_from_pixels_2 data_files: - split: train path: ranking_from_pixels_2/train-* - split: validation path: ranking_from_pixels_2/validation-* - split: test path: ranking_from_pixels_2/test-* - config_name: ranking_from_pixels_3 data_files: - split: train path: ranking_from_pixels_3/train-* - split: validation path: ranking_from_pixels_3/validation-* - split: test path: ranking_from_pixels_3/test-* - config_name: ranking_from_pixels_4 data_files: - split: train path: ranking_from_pixels_4/train-* - split: validation path: ranking_from_pixels_4/validation-* - split: test path: ranking_from_pixels_4/test-* --- # Dataset Card for New Yorker Caption Contest Benchmarks ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [capcon.dev](https://www.capcon.dev) - **Repository:** [https://github.com/jmhessel/caption_contest_corpus](https://github.com/jmhessel/caption_contest_corpus) - **Paper:** [Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest](https://arxiv.org/abs/2209.06293) - **Leaderboard:** https://leaderboard.allenai.org/nycc-matching/ - **Point of Contact:** [email protected] ### Dataset Summary See [capcon.dev](https://www.capcon.dev) for more! Data from: [Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest](https://arxiv.org/abs/2209.06293) ``` @inproceedings{hessel2023androids, title={Do Androids Laugh at Electric Sheep? {Humor} ``Understanding'' Benchmarks from {The New Yorker Caption Contest}}, author={Hessel, Jack and Marasovi{\'c}, Ana and Hwang, Jena D. and Lee, Lillian and Da, Jeff and Zellers, Rowan and Mankoff, Robert and Choi, Yejin}, booktitle={Proceedings of the ACL}, year={2023} } ``` If you use this dataset, we would appreciate you citing our work, but also -- several other papers that we build this corpus upon. See [Citation Information](#citation-information). We challenge AI models to "demonstrate understanding" of the sophisticated multimodal humor of The New Yorker Caption Contest. Concretely, we develop three carefully circumscribed tasks for which it suffices (but is not necessary) to grasp potentially complex and unexpected relationships between image and caption, and similarly complex and unexpected allusions to the wide varieties of human experience. ### Supported Tasks and Leaderboards Three tasks are supported: - "Matching:" a model must recognize a caption written about a cartoon (vs. options that were not); - "Quality ranking:" a model must evaluate the quality of a caption by scoring it more highly than a lower quality option from the same contest; - "Explanation:" a model must explain why a given joke is funny. There are no official leaderboards (yet). ### Languages English ## Dataset Structure Here's an example instance from Matching: ``` {'caption_choices': ['Tell me about your childhood very quickly.', "Believe me . . . it's what's UNDER the ground that's " 'most interesting.', "Stop me if you've heard this one.", 'I have trouble saying no.', 'Yes, I see the train but I think we can beat it.'], 'contest_number': 49, 'entities': ['https://en.wikipedia.org/wiki/Rule_of_three_(writing)', 'https://en.wikipedia.org/wiki/Bar_joke', 'https://en.wikipedia.org/wiki/Religious_institute'], 'from_description': 'scene: a bar description: Two priests and a rabbi are ' 'walking into a bar, as the bartender and another patron ' 'look on. The bartender talks on the phone while looking ' 'skeptically at the incoming crew. uncanny: The scene ' 'depicts a very stereotypical "bar joke" that would be ' 'unlikely to be encountered in real life; the skepticism ' 'of the bartender suggests that he is aware he is seeing ' 'this trope, and is explaining it to someone on the ' 'phone. entities: Rule_of_three_(writing), Bar_joke, ' 'Religious_institute. choices A: Tell me about your ' "childhood very quickly. B: Believe me . . . it's what's " "UNDER the ground that's most interesting. C: Stop me if " "you've heard this one. D: I have trouble saying no. E: " 'Yes, I see the train but I think we can beat it.', 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=323x231 at 0x7F34F283E9D0>, 'image_description': 'Two priests and a rabbi are walking into a bar, as the ' 'bartender and another patron look on. The bartender ' 'talks on the phone while looking skeptically at the ' 'incoming crew.', 'image_location': 'a bar', 'image_uncanny_description': 'The scene depicts a very stereotypical "bar ' 'joke" that would be unlikely to be encountered ' 'in real life; the skepticism of the bartender ' 'suggests that he is aware he is seeing this ' 'trope, and is explaining it to someone on the ' 'phone.', 'instance_id': '21125bb8787b4e7e82aa3b0a1cba1571', 'label': 'C', 'n_tokens_label': 1, 'questions': ['What is the bartender saying on the phone in response to the ' 'living, breathing, stereotypical bar joke that is unfolding?']} ``` The label "C" indicates that the 3rd choice in the `caption_choices` is correct. Here's an example instance from Ranking (in the from pixels setting --- though, this is also available in the from description setting) ``` {'caption_choices': ['I guess I misunderstood when you said long bike ride.', 'Does your divorce lawyer have any other cool ideas?'], 'contest_number': 582, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=600x414 at 0x7F8FF9F96610>, 'instance_id': 'dd1c214a1ca3404aa4e582c9ce50795a', 'label': 'A', 'n_tokens_label': 1, 'winner_source': 'official_winner'} ``` the label indicates that the first caption choice ("A", here) in the `caption_choices` list was more highly rated. Here's an example instance from Explanation: ``` {'caption_choices': 'The classics can be so intimidating.', 'contest_number': 752, 'entities': ['https://en.wikipedia.org/wiki/Literature', 'https://en.wikipedia.org/wiki/Solicitor'], 'from_description': 'scene: a road description: Two people are walking down a ' 'path. A number of giant books have surrounded them. ' 'uncanny: There are book people in this world. entities: ' 'Literature, Solicitor. caption: The classics can be so ' 'intimidating.', 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=800x706 at 0x7F90003D0BB0>, 'image_description': 'Two people are walking down a path. A number of giant ' 'books have surrounded them.', 'image_location': 'a road', 'image_uncanny_description': 'There are book people in this world.', 'instance_id': 'eef9baf450e2fab19b96facc128adf80', 'label': 'A play on the word intimidating --- usually if the classics (i.e., ' 'classic novels) were to be intimidating, this would mean that they ' 'are intimidating to read due to their length, complexity, etc. But ' 'here, they are surrounded by anthropomorphic books which look ' 'physically intimidating, i.e., they are intimidating because they ' 'may try to beat up these people.', 'n_tokens_label': 59, 'questions': ['What do the books want?']} ``` The label is an explanation of the joke, which serves as the autoregressive target. ### Data Instances See above ### Data Fields See above ### Data Splits Data splits can be accessed as: ``` from datasets import load_dataset dset = load_dataset("jmhessel/newyorker_caption_contest", "matching") dset = load_dataset("jmhessel/newyorker_caption_contest", "ranking") dset = load_dataset("jmhessel/newyorker_caption_contest", "explanation") ``` Or, in the from pixels setting, e.g., ``` from datasets import load_dataset dset = load_dataset("jmhessel/newyorker_caption_contest", "ranking_from_pixels") ``` Because the dataset is small, we reported in 5-fold cross-validation setting initially. The default splits are split 0. You can access the other splits, e.g.: ``` from datasets import load_dataset # the 4th data split dset = load_dataset("jmhessel/newyorker_caption_contest", "explanation_4") ``` ## Dataset Creation Full details are in the paper. ### Curation Rationale See the paper for rationale/motivation. ### Source Data See citation below. We combined 3 sources of data, and added significant annotations of our own. #### Initial Data Collection and Normalization Full details are in the paper. #### Who are the source language producers? We paid crowdworkers $15/hr to annotate the corpus. In addition, significant annotation efforts were conducted by the authors of this work. ### Annotations Full details are in the paper. #### Annotation process Full details are in the paper. #### Who are the annotators? A mix of crowdworks and authors of this paper. ### Personal and Sensitive Information Has been redacted from the dataset. Images are published in the New Yorker already. ## Considerations for Using the Data ### Social Impact of Dataset It's plausible that humor could perpetuate negative stereotypes. The jokes in this corpus are a mix of crowdsourced entries that are highly rated, and ones published in the new yorker. ### Discussion of Biases Humor is subjective, and some of the jokes may be considered offensive. The images may contain adult themes and minor cartoon nudity. ### Other Known Limitations More details are in the paper ## Additional Information ### Dataset Curators The dataset was curated by researchers at AI2 ### Licensing Information The annotations we provide are CC-BY-4.0. See www.capcon.dev for more info. ### Citation Information ``` @article{hessel2022androids, title={Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest}, author={Hessel, Jack and Marasovi{\'c}, Ana and Hwang, Jena D and Lee, Lillian and Da, Jeff and Zellers, Rowan and Mankoff, Robert and Choi, Yejin}, journal={arXiv preprint arXiv:2209.06293}, year={2022} } ``` Our data contributions are: - The cartoon-level annotations; - The joke explanations; - and the framing of the tasks We release these data we contribute under CC-BY (see DATASET_LICENSE). If you find this data useful in your work, in addition to citing our contributions, please also cite the following, from which the cartoons/captions in our corpus are derived: ``` @misc{newyorkernextmldataset, author={Jain, Lalit and Jamieson, Kevin and Mankoff, Robert and Nowak, Robert and Sievert, Scott}, title={The {N}ew {Y}orker Cartoon Caption Contest Dataset}, year={2020}, url={https://nextml.github.io/caption-contest-data/} } @inproceedings{radev-etal-2016-humor, title = "Humor in Collective Discourse: Unsupervised Funniness Detection in The {New Yorker} Cartoon Caption Contest", author = "Radev, Dragomir and Stent, Amanda and Tetreault, Joel and Pappu, Aasish and Iliakopoulou, Aikaterini and Chanfreau, Agustin and de Juan, Paloma and Vallmitjana, Jordi and Jaimes, Alejandro and Jha, Rahul and Mankoff, Robert", booktitle = "LREC", year = "2016", } @inproceedings{shahaf2015inside, title={Inside jokes: Identifying humorous cartoon captions}, author={Shahaf, Dafna and Horvitz, Eric and Mankoff, Robert}, booktitle={KDD}, year={2015}, } ```
allenai/ai2_arc
allenai
2023-12-21T15:09:48Z
380,158
189
[ "task_categories:question-answering", "task_ids:open-domain-qa", "task_ids:multiple-choice-qa", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-sa-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1803.05457", "region:us" ]
[ "question-answering" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - found language_creators: - found language: - en license: - cc-by-sa-4.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - question-answering task_ids: - open-domain-qa - multiple-choice-qa pretty_name: Ai2Arc language_bcp47: - en-US dataset_info: - config_name: ARC-Challenge features: - name: id dtype: string - name: question dtype: string - name: choices sequence: - name: text dtype: string - name: label dtype: string - name: answerKey dtype: string splits: - name: train num_bytes: 349760 num_examples: 1119 - name: test num_bytes: 375511 num_examples: 1172 - name: validation num_bytes: 96660 num_examples: 299 download_size: 449460 dataset_size: 821931 - config_name: ARC-Easy features: - name: id dtype: string - name: question dtype: string - name: choices sequence: - name: text dtype: string - name: label dtype: string - name: answerKey dtype: string splits: - name: train num_bytes: 619000 num_examples: 2251 - name: test num_bytes: 657514 num_examples: 2376 - name: validation num_bytes: 157394 num_examples: 570 download_size: 762935 dataset_size: 1433908 configs: - config_name: ARC-Challenge data_files: - split: train path: ARC-Challenge/train-* - split: test path: ARC-Challenge/test-* - split: validation path: ARC-Challenge/validation-* - config_name: ARC-Easy data_files: - split: train path: ARC-Easy/train-* - split: test path: ARC-Easy/test-* - split: validation path: ARC-Easy/validation-* --- # Dataset Card for "ai2_arc" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://allenai.org/data/arc](https://allenai.org/data/arc) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge](https://arxiv.org/abs/1803.05457) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 1361.68 MB - **Size of the generated dataset:** 2.28 MB - **Total amount of disk used:** 1363.96 MB ### Dataset Summary A new dataset of 7,787 genuine grade-school level, multiple-choice science questions, assembled to encourage research in advanced question-answering. The dataset is partitioned into a Challenge Set and an Easy Set, where the former contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. We are also including a corpus of over 14 million science sentences relevant to the task, and an implementation of three neural baseline models for this dataset. We pose ARC as a challenge to the community. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### ARC-Challenge - **Size of downloaded dataset files:** 680.84 MB - **Size of the generated dataset:** 0.83 MB - **Total amount of disk used:** 681.67 MB An example of 'train' looks as follows. ``` { "answerKey": "B", "choices": { "label": ["A", "B", "C", "D"], "text": ["Shady areas increased.", "Food sources increased.", "Oxygen levels increased.", "Available water increased."] }, "id": "Mercury_SC_405487", "question": "One year, the oak trees in a park began producing more acorns than usual. The next year, the population of chipmunks in the park also increased. Which best explains why there were more chipmunks the next year?" } ``` #### ARC-Easy - **Size of downloaded dataset files:** 680.84 MB - **Size of the generated dataset:** 1.45 MB - **Total amount of disk used:** 682.29 MB An example of 'train' looks as follows. ``` { "answerKey": "B", "choices": { "label": ["A", "B", "C", "D"], "text": ["Shady areas increased.", "Food sources increased.", "Oxygen levels increased.", "Available water increased."] }, "id": "Mercury_SC_405487", "question": "One year, the oak trees in a park began producing more acorns than usual. The next year, the population of chipmunks in the park also increased. Which best explains why there were more chipmunks the next year?" } ``` ### Data Fields The data fields are the same among all splits. #### ARC-Challenge - `id`: a `string` feature. - `question`: a `string` feature. - `choices`: a dictionary feature containing: - `text`: a `string` feature. - `label`: a `string` feature. - `answerKey`: a `string` feature. #### ARC-Easy - `id`: a `string` feature. - `question`: a `string` feature. - `choices`: a dictionary feature containing: - `text`: a `string` feature. - `label`: a `string` feature. - `answerKey`: a `string` feature. ### Data Splits | name |train|validation|test| |-------------|----:|---------:|---:| |ARC-Challenge| 1119| 299|1172| |ARC-Easy | 2251| 570|2376| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @article{allenai:arc, author = {Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord}, title = {Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge}, journal = {arXiv:1803.05457v1}, year = {2018}, } ``` ### Contributions Thanks to [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
meta-math/MetaMathQA
meta-math
2023-12-21T01:35:53Z
8,037
382
[ "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2309.12284", "region:us", "math", "math-qa" ]
[]
2023-09-21T17:22:46Z
null
--- tags: - math - math-qa license: mit --- View the project page: https://meta-math.github.io/ see our paper at https://arxiv.org/abs/2309.12284 ## Note All MetaMathQA data are augmented from the training sets of GSM8K and MATH. <span style="color:red"><b>None of the augmented data is from the testing set.</b></span> You can check the `original_question` in `meta-math/MetaMathQA`, each item is from the GSM8K or MATH train set. ## Model Details MetaMath-Mistral-7B is fully fine-tuned on the MetaMathQA datasets and based on the powerful Mistral-7B model. It is glad to see using MetaMathQA datasets and changing the base model from llama-2-7B to Mistral-7b can boost the GSM8K performance from 66.5 to **77.7**. To fine-tune Mistral-7B, I would suggest using a smaller learning rate (usually 1/5 to 1/10 of the lr for LlaMa-2-7B) and staying other training args unchanged. More training details and scripts can be seen at [https://github.com/meta-math/MetaMath](https://github.com/meta-math/MetaMath). ## Installation ``` pip install transformers==4.35.0 pip install torch==2.0.1 pip install sentencepiece==0.1.99 pip install tokenizers==0.13.3 pip install accelerate==0.21.0 pip install bitsandbytes==0.40.0 pip install vllm pip install fraction pip install protobuf ``` ## Model Usage prompting template: ''' "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response: Let's think step by step." ''' where you need to use your query question to replace the {instruction} There is another interesting repo about Arithmo-Mistral-7B at [https://huggingface.co/akjindal53244/Arithmo-Mistral-7B](https://huggingface.co/akjindal53244/Arithmo-Mistral-7B), where they combine our MetaMathQA dataset and MathInstruct datasets to train a powerful model. Thanks agian for their contributions. We would also try to train the combination of **MetaMathQA** and **MathInstruct** datasets, and also open all the results and training details. ## Experiments | Model | GSM8k Pass@1 | MATH Pass@1 | |---------------------|--------------|-------------| | MPT-7B | 6.8 | 3.0 | | Falcon-7B | 6.8 | 2.3 | | LLaMA-1-7B | 11.0 | 2.9 | | LLaMA-2-7B | 14.6 | 2.5 | | MPT-30B | 15.2 | 3.1 | | LLaMA-1-13B | 17.8 | 3.9 | | GPT-Neo-2.7B | 19.5 | -- | | Falcon-40B | 19.6 | 2.5 | | Baichuan-chat-13B | 23.9 | -- | | Vicuna-v1.3-13B | 27.6 | -- | | LLaMA-2-13B | 28.7 | 3.9 | | InternLM-7B | 31.2 | -- | | ChatGLM-2-6B | 32.4 | -- | | GPT-J-6B | 34.9 | -- | | LLaMA-1-33B | 35.6 | 3.9 | | LLaMA-2-34B | 42.2 | 6.24 | | RFT-7B | 50.3 | -- | | LLaMA-1-65B | 50.9 | 10.6 | | Qwen-7B | 51.6 | -- | | WizardMath-7B | 54.9 | 10.7 | | LLaMA-2-70B | 56.8 | 13.5 | | WizardMath-13B | 63.9 | 14.0 | | MAmmoTH-7B (COT) | 50.5 | 10.4 | | MAmmoTH-7B (POT+COT)| 53.6 | 31.5 | | Arithmo-Mistral-7B | 74.7 | 25.3 | | MetaMath-7B | 66.5 | 19.8 | | MetaMath-13B | 72.3 | 22.4 | | 🔥 **MetaMath-Mistral-7B** | **77.7** | **28.2** | We encourage anyone to use our MetaMathQA datasets. We are very happy to see the following models trained by MetaMathQA achieve a very promising performance! OpenChat-3.5 (https://huggingface.co/openchat/openchat_3.5) CausalLM (https://huggingface.co/CausalLM/14B) zephyr (https://huggingface.co/qblocks/zephyr-7b-alpha_metamathqa) Ziya2 (https://huggingface.co/IDEA-CCNL/Ziya2-13B-Base) # Citation ```bibtex @article{yu2023metamath, title={MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models}, author={Yu, Longhui and Jiang, Weisen and Shi, Han and Yu, Jincheng and Liu, Zhengying and Zhang, Yu and Kwok, James T and Li, Zhenguo and Weller, Adrian and Liu, Weiyang}, journal={arXiv preprint arXiv:2309.12284}, year={2023} } ```
erbacher/PDEBench-1D
erbacher
2023-12-20T21:36:56Z
58,945
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-11-22T13:13:55Z
null
--- dataset_info: - config_name: Advection_Sols_beta0.1 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2079020000 num_examples: 10000 download_size: 1030317301 dataset_size: 2079020000 - config_name: Advection_Sols_beta0.2 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2079020000 num_examples: 10000 download_size: 1034054442 dataset_size: 2079020000 - config_name: Advection_Sols_beta0.4 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2079020000 num_examples: 10000 download_size: 1037220772 dataset_size: 2079020000 - config_name: Advection_Sols_beta0.7 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2079020000 num_examples: 10000 download_size: 1039496575 dataset_size: 2079020000 - config_name: Advection_Sols_beta1.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2079020000 num_examples: 10000 download_size: 1041009183 dataset_size: 2079020000 - config_name: Advection_Sols_beta2.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2079020000 num_examples: 10000 download_size: 1041263590 dataset_size: 2079020000 - config_name: Advection_Sols_beta4.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2079020000 num_examples: 10000 download_size: 1041302186 dataset_size: 2079020000 - config_name: Advection_Sols_beta7.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2079020000 num_examples: 10000 download_size: 1041314010 dataset_size: 2079020000 - config_name: Burgers_Sols_Nu0.001 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975050000.0 num_examples: 9500 - name: dev num_bytes: 51975000.0 num_examples: 250 - name: test num_bytes: 51975000.0 num_examples: 250 download_size: 1028326119 dataset_size: 2079000000.0 - config_name: Burgers_Sols_Nu0.002 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975050000.0 num_examples: 9500 - name: dev num_bytes: 51975000.0 num_examples: 250 - name: test num_bytes: 51975000.0 num_examples: 250 download_size: 1034543373 dataset_size: 2079000000.0 - config_name: Burgers_Sols_Nu0.004 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975050000.0 num_examples: 9500 - name: dev num_bytes: 51975000.0 num_examples: 250 - name: test num_bytes: 51975000.0 num_examples: 250 download_size: 1039636457 dataset_size: 2079000000.0 - config_name: Burgers_Sols_Nu0.01 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975040500.0 num_examples: 9500 - name: dev num_bytes: 51974750.0 num_examples: 250 - name: test num_bytes: 51974750.0 num_examples: 250 download_size: 1042820960 dataset_size: 2078990000.0 - config_name: Burgers_Sols_Nu0.02 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975040500.0 num_examples: 9500 - name: dev num_bytes: 51974750.0 num_examples: 250 - name: test num_bytes: 51974750.0 num_examples: 250 download_size: 1043138323 dataset_size: 2078990000.0 - config_name: Burgers_Sols_Nu0.04 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975040500.0 num_examples: 9500 - name: dev num_bytes: 51974750.0 num_examples: 250 - name: test num_bytes: 51974750.0 num_examples: 250 download_size: 1035623715 dataset_size: 2078990000.0 - config_name: Burgers_Sols_Nu0.1 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975031000.0 num_examples: 9500 - name: dev num_bytes: 51974500.0 num_examples: 250 - name: test num_bytes: 51974500.0 num_examples: 250 download_size: 995415792 dataset_size: 2078980000.0 - config_name: Burgers_Sols_Nu0.2 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975031000.0 num_examples: 9500 - name: dev num_bytes: 51974500.0 num_examples: 250 - name: test num_bytes: 51974500.0 num_examples: 250 download_size: 949166113 dataset_size: 2078980000.0 - config_name: Burgers_Sols_Nu0.4 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975031000.0 num_examples: 9500 - name: dev num_bytes: 51974500.0 num_examples: 250 - name: test num_bytes: 51974500.0 num_examples: 250 download_size: 847341109 dataset_size: 2078980000.0 - config_name: Burgers_Sols_Nu1.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975031000.0 num_examples: 9500 - name: dev num_bytes: 51974500.0 num_examples: 250 - name: test num_bytes: 51974500.0 num_examples: 250 download_size: 573087335 dataset_size: 2078980000.0 - config_name: Burgers_Sols_Nu2.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975031000.0 num_examples: 9500 - name: dev num_bytes: 51974500.0 num_examples: 250 - name: test num_bytes: 51974500.0 num_examples: 250 download_size: 315101631 dataset_size: 2078980000.0 - config_name: Burgers_Sols_Nu4.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1975031000.0 num_examples: 9500 - name: dev num_bytes: 51974500.0 num_examples: 250 - name: test num_bytes: 51974500.0 num_examples: 250 download_size: 189417705 dataset_size: 2078980000.0 - config_name: CFD_Rand_Eta0.01_Zeta0.01_periodic features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2099620000 num_examples: 10000 download_size: 1576405761 dataset_size: 2099620000 - config_name: CFD_Rand_Eta0.1_Zeta0.1_periodic features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2099600000 num_examples: 10000 download_size: 946984963 dataset_size: 2099600000 - config_name: CFD_Rand_Eta1.e-8_Zeta1.e-8_periodic features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2099640000 num_examples: 10000 download_size: 1573309616 dataset_size: 2099640000 - config_name: CFD_Rand_Eta1.e-8_Zeta1.e-8_trans features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 2099610000 num_examples: 10000 download_size: 0 dataset_size: 2099610000 - config_name: ReacDiff_Nu0.5_Rho1.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 103983829 dataset_size: 1055010000 - config_name: ReacDiff_Nu0.5_Rho10.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055020000 num_examples: 10000 download_size: 124933565 dataset_size: 1055020000 - config_name: ReacDiff_Nu0.5_Rho2.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 193004745 dataset_size: 1055010000 - config_name: ReacDiff_Nu0.5_Rho5.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 146090506 dataset_size: 1055010000 - config_name: ReacDiff_Nu1.0_Rho1.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 217153008 dataset_size: 1055010000 - config_name: ReacDiff_Nu1.0_Rho10.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055020000 num_examples: 10000 download_size: 113039664 dataset_size: 1055020000 - config_name: ReacDiff_Nu1.0_Rho2.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 139659779 dataset_size: 1055010000 - config_name: ReacDiff_Nu1.0_Rho5.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 121216648 dataset_size: 1055010000 - config_name: ReacDiff_Nu2.0_Rho1.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 57854036 dataset_size: 1055010000 - config_name: ReacDiff_Nu2.0_Rho10.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055020000 num_examples: 10000 download_size: 73754842 dataset_size: 1055020000 - config_name: ReacDiff_Nu2.0_Rho2.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 122071454 dataset_size: 1055010000 - config_name: ReacDiff_Nu2.0_Rho5.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 74329093 dataset_size: 1055010000 - config_name: ReacDiff_Nu5.0_Rho1.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 158789252 dataset_size: 1055010000 - config_name: ReacDiff_Nu5.0_Rho10.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055020000 num_examples: 10000 download_size: 55445429 dataset_size: 1055020000 - config_name: ReacDiff_Nu5.0_Rho2.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 58220881 dataset_size: 1055010000 - config_name: ReacDiff_Nu5.0_Rho5.0 features: - name: parameters dtype: string - name: tensor sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1055010000 num_examples: 10000 download_size: 57392368 dataset_size: 1055010000 configs: - config_name: Advection_Sols_beta0.1 data_files: - split: train path: Advection_Sols_beta0.1/train-* - config_name: Advection_Sols_beta0.2 data_files: - split: train path: Advection_Sols_beta0.2/train-* - config_name: Advection_Sols_beta0.4 data_files: - split: train path: Advection_Sols_beta0.4/train-* - config_name: Advection_Sols_beta0.7 data_files: - split: train path: Advection_Sols_beta0.7/train-* - config_name: Advection_Sols_beta1.0 data_files: - split: train path: Advection_Sols_beta1.0/train-* - config_name: Advection_Sols_beta2.0 data_files: - split: train path: Advection_Sols_beta2.0/train-* - config_name: Advection_Sols_beta4.0 data_files: - split: train path: Advection_Sols_beta4.0/train-* - config_name: Advection_Sols_beta7.0 data_files: - split: train path: Advection_Sols_beta7.0/train-* - config_name: Burgers_Sols_Nu0.001 data_files: - split: train path: Burgers_Sols_Nu0.001/train-* - split: dev path: Burgers_Sols_Nu0.001/dev-* - split: test path: Burgers_Sols_Nu0.001/test-* - config_name: Burgers_Sols_Nu0.002 data_files: - split: train path: Burgers_Sols_Nu0.002/train-* - split: dev path: Burgers_Sols_Nu0.002/dev-* - split: test path: Burgers_Sols_Nu0.002/test-* - config_name: Burgers_Sols_Nu0.004 data_files: - split: train path: Burgers_Sols_Nu0.004/train-* - split: dev path: Burgers_Sols_Nu0.004/dev-* - split: test path: Burgers_Sols_Nu0.004/test-* - config_name: Burgers_Sols_Nu0.01 data_files: - split: train path: Burgers_Sols_Nu0.01/train-* - split: dev path: Burgers_Sols_Nu0.01/dev-* - split: test path: Burgers_Sols_Nu0.01/test-* - config_name: Burgers_Sols_Nu0.02 data_files: - split: train path: Burgers_Sols_Nu0.02/train-* - split: dev path: Burgers_Sols_Nu0.02/dev-* - split: test path: Burgers_Sols_Nu0.02/test-* - config_name: Burgers_Sols_Nu0.04 data_files: - split: train path: Burgers_Sols_Nu0.04/train-* - split: dev path: Burgers_Sols_Nu0.04/dev-* - split: test path: Burgers_Sols_Nu0.04/test-* - config_name: Burgers_Sols_Nu0.1 data_files: - split: train path: Burgers_Sols_Nu0.1/train-* - split: dev path: Burgers_Sols_Nu0.1/dev-* - split: test path: Burgers_Sols_Nu0.1/test-* - config_name: Burgers_Sols_Nu0.2 data_files: - split: train path: Burgers_Sols_Nu0.2/train-* - split: dev path: Burgers_Sols_Nu0.2/dev-* - split: test path: Burgers_Sols_Nu0.2/test-* - config_name: Burgers_Sols_Nu0.4 data_files: - split: train path: Burgers_Sols_Nu0.4/train-* - split: dev path: Burgers_Sols_Nu0.4/dev-* - split: test path: Burgers_Sols_Nu0.4/test-* - config_name: Burgers_Sols_Nu1.0 data_files: - split: train path: Burgers_Sols_Nu1.0/train-* - split: dev path: Burgers_Sols_Nu1.0/dev-* - split: test path: Burgers_Sols_Nu1.0/test-* - config_name: Burgers_Sols_Nu2.0 data_files: - split: train path: Burgers_Sols_Nu2.0/train-* - split: dev path: Burgers_Sols_Nu2.0/dev-* - split: test path: Burgers_Sols_Nu2.0/test-* - config_name: Burgers_Sols_Nu4.0 data_files: - split: train path: Burgers_Sols_Nu4.0/train-* - split: dev path: Burgers_Sols_Nu4.0/dev-* - split: test path: Burgers_Sols_Nu4.0/test-* - config_name: CFD_Rand_Eta0.01_Zeta0.01_periodic data_files: - split: train path: CFD_Rand_Eta0.01_Zeta0.01_periodic/train-* - config_name: CFD_Rand_Eta0.1_Zeta0.1_periodic data_files: - split: train path: CFD_Rand_Eta0.1_Zeta0.1_periodic/train-* - config_name: CFD_Rand_Eta1.e-8_Zeta1.e-8_periodic data_files: - split: train path: CFD_Rand_Eta1.e-8_Zeta1.e-8_periodic/train-* - config_name: CFD_Rand_Eta1.e-8_Zeta1.e-8_trans data_files: - split: train path: CFD_Rand_Eta1.e-8_Zeta1.e-8_trans/train-* - config_name: ReacDiff_Nu0.5_Rho1.0 data_files: - split: train path: ReacDiff_Nu0.5_Rho1.0/train-* - config_name: ReacDiff_Nu0.5_Rho10.0 data_files: - split: train path: ReacDiff_Nu0.5_Rho10.0/train-* - config_name: ReacDiff_Nu0.5_Rho2.0 data_files: - split: train path: ReacDiff_Nu0.5_Rho2.0/train-* - config_name: ReacDiff_Nu0.5_Rho5.0 data_files: - split: train path: ReacDiff_Nu0.5_Rho5.0/train-* - config_name: ReacDiff_Nu1.0_Rho1.0 data_files: - split: train path: ReacDiff_Nu1.0_Rho1.0/train-* - config_name: ReacDiff_Nu1.0_Rho10.0 data_files: - split: train path: ReacDiff_Nu1.0_Rho10.0/train-* - config_name: ReacDiff_Nu1.0_Rho2.0 data_files: - split: train path: ReacDiff_Nu1.0_Rho2.0/train-* - config_name: ReacDiff_Nu1.0_Rho5.0 data_files: - split: train path: ReacDiff_Nu1.0_Rho5.0/train-* - config_name: ReacDiff_Nu2.0_Rho1.0 data_files: - split: train path: ReacDiff_Nu2.0_Rho1.0/train-* - config_name: ReacDiff_Nu2.0_Rho10.0 data_files: - split: train path: ReacDiff_Nu2.0_Rho10.0/train-* - config_name: ReacDiff_Nu2.0_Rho2.0 data_files: - split: train path: ReacDiff_Nu2.0_Rho2.0/train-* - config_name: ReacDiff_Nu2.0_Rho5.0 data_files: - split: train path: ReacDiff_Nu2.0_Rho5.0/train-* - config_name: ReacDiff_Nu5.0_Rho1.0 data_files: - split: train path: ReacDiff_Nu5.0_Rho1.0/train-* - config_name: ReacDiff_Nu5.0_Rho10.0 data_files: - split: train path: ReacDiff_Nu5.0_Rho10.0/train-* - config_name: ReacDiff_Nu5.0_Rho2.0 data_files: - split: train path: ReacDiff_Nu5.0_Rho2.0/train-* - config_name: ReacDiff_Nu5.0_Rho5.0 data_files: - split: train path: ReacDiff_Nu5.0_Rho5.0/train-* --- # Dataset Card for "PDEBench-1D" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Antreas/TALI
Antreas
2023-12-13T09:02:28Z
44,830
14
[ "task_categories:zero-shot-classification", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "modality:video", "modality:audio", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "video", "audio", "text", "image", "tetramodal", "multimodal", "youtube", "wikipedia" ]
[ "zero-shot-classification" ]
2023-08-16T22:59:13Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* dataset_info: features: - name: image dtype: image - name: image_url dtype: string - name: item_idx dtype: int64 - name: wit_features struct: - name: attribution_passes_lang_id sequence: bool - name: caption_alt_text_description sequence: string - name: caption_reference_description sequence: string - name: caption_title_and_reference_description sequence: string - name: context_page_description sequence: string - name: context_section_description sequence: string - name: hierarchical_section_title sequence: string - name: is_main_image sequence: bool - name: language sequence: string - name: page_changed_recently sequence: bool - name: page_title sequence: string - name: page_url sequence: string - name: section_title sequence: string - name: wit_idx dtype: int64 - name: youtube_title_text dtype: string - name: youtube_description_text dtype: string - name: youtube_video_content dtype: binary - name: youtube_video_starting_time dtype: string - name: youtube_subtitle_text dtype: string - name: youtube_video_size dtype: int64 - name: youtube_video_file_path dtype: string splits: - name: train num_bytes: 1902638101655.625 num_examples: 1052915 - name: val num_bytes: 104485442867.25 num_examples: 57958 - name: test num_bytes: 111107332347.375 num_examples: 61389 download_size: 2058391040534 dataset_size: 2118230876870.25 license: cc-by-4.0 task_categories: - zero-shot-classification tags: - video - audio - text - image - tetramodal - multimodal - youtube - wikipedia pretty_name: TALI size_categories: - 1M<n<10M --- # Dataset Card for "TALI" ## Table of Contents 1. Dataset Description 1. Abstract 2. Brief Description 2. Dataset Information 1. Modalities 2. Dataset Variants 3. Dataset Statistics 4. Data Fields 5. Data Splits 3. Dataset Creation 4. Dataset Use 5. Additional Information ## Dataset Description ### Abstract TALI is a large-scale, tetramodal dataset designed to facilitate a shift from unimodal and duomodal to tetramodal research in deep learning. It aligns text, video, images, and audio, providing a rich resource for innovative self-supervised learning tasks and multimodal research. TALI enables exploration of how different modalities and data/model scaling affect downstream performance, with the aim of inspiring diverse research ideas and enhancing understanding of model capabilities and robustness in deep learning. ### Brief Description TALI (Temporally and semantically Aligned Audio, Language and Images) is a dataset that uses the Wikipedia Image Text (WIT) captions and article titles to search Youtube for videos that match the captions. It then downloads the video, audio, and subtitles from these videos. The result is a rich multimodal dataset that has multiple caption types related to both the WiT Images, and the Youtube videos. This enables learning to take place between either temporally or semantically aligned text, images, audio and video. ## Dataset Information ### Modalities The TALI dataset consists of the following modalities: 1. Image: 1. Wikipedia caption image 2. Randomly sampled image from youtube video 2. Text 1. Wikipedia Caption Text 2. Wikipedia Title Text 3. Wikipedia Main Body Text 4. YouTube Subtitle Text 5. YouTube Description Text 6. YouTube Title Text 3. Audio 1. YouTube Content Audio 4. Video 1. YouTube Content Video ## Usage: To get started with TALI, you can load the dataset via Hugging Face's `datasets` library through our helper functions. The reason we don't use `datasets` directly is because we found huggingface_hub downloads much faster and reliable. For a full set of possible configurations look at [examples.py](examples.py). Here's a basic usage example: First install the tali package: ### Installation For the default install use: ```bash pip install git+https://github.com/AntreasAntoniou/TALI ``` For the dev install use: ```bash pip install git+https://github.com/AntreasAntoniou/TALI[dev] ``` Then use the dataset using: ### Examples Import relevant helper functions ```python import pathlib from enum import Enum import torch from tqdm.auto import tqdm from tali.data import ( SubModalityTypes, TALIBaseTransform, TALIBaseTransformConfig, VideoFramesFormat, default_transforms, load_dataset_via_hub, ) ``` #### TALI with default transforms (CLIP and Whisper) and no streaming ```python def tali_with_transforms_no_streaming( dataset_storage_path: pathlib.Path | str, ): if isinstance(dataset_storage_path, str): dataset_storage_path = pathlib.Path(dataset_storage_path) dataset = load_dataset_via_hub( dataset_storage_path, dataset_name="Antreas/TALI" )["train"] ( image_transforms, text_transforms, audio_transforms, video_transforms, ) = default_transforms() preprocessing_transform = TALIBaseTransform( cache_dir=dataset_storage_path / "cache", text_tokenizer=text_transforms, image_tokenizer=image_transforms, audio_tokenizer=audio_transforms, video_tokenizer=video_transforms, config=TALIBaseTransformConfig( root_filepath=dataset_storage_path, modality_list=[ SubModalityTypes.youtube_content_video, SubModalityTypes.youtube_content_audio, SubModalityTypes.youtube_random_video_frame, SubModalityTypes.youtube_subtitle_text, SubModalityTypes.youtube_description_text, SubModalityTypes.youtube_title_text, SubModalityTypes.wikipedia_caption_image, SubModalityTypes.wikipedia_caption_text, SubModalityTypes.wikipedia_main_body_text, SubModalityTypes.wikipedia_title_text, ], video_frames_format=VideoFramesFormat.PIL, ), ) for sample in tqdm(dataset): sample = preprocessing_transform(sample) print(list(sample.keys())) for key, value in sample.items(): if hasattr(value, "shape"): print(key, value.shape) elif isinstance(value, torch.Tensor): print(key, value.shape) elif hasattr(value, "__len__"): print(key, len(value)) print(key, type(value)) break ``` #### TALI with no transforms and no streaming, returning text as text, images as PIL images, videos as a list of PIL images, and audio as a sequence of floats ```python def tali_without_transforms_no_streaming( dataset_storage_path: pathlib.Path | str, ): if isinstance(dataset_storage_path, str): dataset_storage_path = pathlib.Path(dataset_storage_path) dataset = load_dataset_via_hub( dataset_storage_path, dataset_name="Antreas/TALI" )["train"] preprocessing_transform = TALIBaseTransform( cache_dir=dataset_storage_path / "cache", text_tokenizer=None, image_tokenizer=None, audio_tokenizer=None, video_tokenizer=None, config=TALIBaseTransformConfig( root_filepath=dataset_storage_path, modality_list=[ SubModalityTypes.youtube_content_video, SubModalityTypes.youtube_content_audio, SubModalityTypes.youtube_random_video_frame, SubModalityTypes.youtube_subtitle_text, SubModalityTypes.youtube_description_text, SubModalityTypes.youtube_title_text, SubModalityTypes.wikipedia_caption_image, SubModalityTypes.wikipedia_caption_text, SubModalityTypes.wikipedia_main_body_text, SubModalityTypes.wikipedia_title_text, ], video_frames_format=VideoFramesFormat.PIL, ), ) for sample in tqdm(dataset): sample = preprocessing_transform(sample) print(list(sample.keys())) for key, value in sample.items(): if hasattr(value, "shape"): print(key, value.shape) elif isinstance(value, torch.Tensor): print(key, value.shape) elif hasattr(value, "__len__"): print(key, len(value)) print(key, type(value)) break ``` #### TALI with default transforms and streaming ```python def tali_with_transforms_streaming( dataset_storage_path: pathlib.Path | str, ): if isinstance(dataset_storage_path, str): dataset_storage_path = pathlib.Path(dataset_storage_path) dataset = load_dataset_via_hub( dataset_storage_path, dataset_name="Antreas/TALI", streaming=True )["train"] ( image_transforms, text_transforms, audio_transforms, video_transforms, ) = default_transforms() preprocessing_transform = TALIBaseTransform( cache_dir=dataset_storage_path / "cache", text_tokenizer=text_transforms, image_tokenizer=image_transforms, audio_tokenizer=audio_transforms, video_tokenizer=video_transforms, config=TALIBaseTransformConfig( root_filepath=dataset_storage_path, modality_list=[ SubModalityTypes.youtube_content_video, SubModalityTypes.youtube_content_audio, SubModalityTypes.youtube_random_video_frame, SubModalityTypes.youtube_subtitle_text, SubModalityTypes.youtube_description_text, SubModalityTypes.youtube_title_text, SubModalityTypes.wikipedia_caption_image, SubModalityTypes.wikipedia_caption_text, SubModalityTypes.wikipedia_main_body_text, SubModalityTypes.wikipedia_title_text, ], video_frames_format=VideoFramesFormat.PIL, ), ) for sample in tqdm(dataset): sample = preprocessing_transform(sample) print(list(sample.keys())) for key, value in sample.items(): if hasattr(value, "shape"): print(key, value.shape) elif isinstance(value, torch.Tensor): print(key, value.shape) elif hasattr(value, "__len__"): print(key, len(value)) print(key, type(value)) break ``` #### TALI with no transforms and streaming, returning text as text, images as PIL images, videos as a list of PIL images, and audio as a sequence of floats ```python def tali_without_transforms_streaming( dataset_storage_path: pathlib.Path | str, ): if isinstance(dataset_storage_path, str): dataset_storage_path = pathlib.Path(dataset_storage_path) dataset = load_dataset_via_hub( dataset_storage_path, dataset_name="Antreas/TALI", streaming=True )["train"] preprocessing_transform = TALIBaseTransform( cache_dir=dataset_storage_path / "cache", text_tokenizer=None, image_tokenizer=None, audio_tokenizer=None, video_tokenizer=None, config=TALIBaseTransformConfig( root_filepath=dataset_storage_path, modality_list=[ SubModalityTypes.youtube_content_video, SubModalityTypes.youtube_content_audio, SubModalityTypes.youtube_random_video_frame, SubModalityTypes.youtube_subtitle_text, SubModalityTypes.youtube_description_text, SubModalityTypes.youtube_title_text, SubModalityTypes.wikipedia_caption_image, SubModalityTypes.wikipedia_caption_text, SubModalityTypes.wikipedia_main_body_text, SubModalityTypes.wikipedia_title_text, ], video_frames_format=VideoFramesFormat.PIL, ), ) for sample in tqdm(dataset): sample = preprocessing_transform(sample) print(list(sample.keys())) for key, value in sample.items(): if hasattr(value, "shape"): print(key, value.shape) elif isinstance(value, torch.Tensor): print(key, value.shape) elif hasattr(value, "__len__"): print(key, len(value)) print(key, type(value)) break ``` ### Dataset Statistics TBA ## Dataset Creation The TALI dataset was created by starting from the WiT dataset and using either the context_page_description or page_title as a source-query to search YouTube for video that were creative commons opted-in, and, not age restricted. The top 100 result titles were returned and compared with the source-query using the CLIP text embeddings of the largest CLIP model available. The top-1 title’s video based on the CLIP ranking was chosen and downloaded. The video was broken into 30-second segments and the top-10 segments for eachvideo were chosen based on the distance between the CLIP image embedding of the first image of each segment and the video’s title text. The image, audio, and subtitle frames were extracted from these segments. At sampling time, one of these 10 segments is randomly selected, and a 10-second segment is chosen out of the 30-second clip. The result is 200 video frames (spread throughout the 10-second segment), and 160000 audio frames (10 seconds). ## Dataset Use TALI is designed for use in a wide range of multimodal research tasks, including but not limited to: - Multimodal understanding and reasoning - Self-supervised learning - Multimodal alignment and translation - Multimodal summarization - Multimodal question answering ## Dataset Curators: Antreas Antoniou Citation Information: TBA Contributions: Thanks to all contributors including data curators, annotators, and software developers. [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
argilla/ultrafeedback-binarized-preferences-cleaned
argilla
2023-12-11T14:22:19Z
1,102
141
[ "task_categories:text-generation", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "dpo", "preference", "ultrafeedback" ]
[ "text-generation" ]
2023-12-05T11:07:34Z
null
--- language: - en license: mit size_categories: - 10K<n<100K task_categories: - text-generation pretty_name: UltraFeedback Binarized Preferences Cleaned dataset_info: features: - name: source dtype: string - name: prompt dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: chosen-rating dtype: float64 - name: chosen-model dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: rejected-rating dtype: float64 - name: rejected-model dtype: string splits: - name: train num_bytes: 284937773 num_examples: 60917 download_size: 143257393 dataset_size: 284937773 configs: - config_name: default data_files: - split: train path: data/train-* tags: - dpo - preference - ultrafeedback --- # UltraFeedback - Binarized using the Average of Preference Ratings (Cleaned) This dataset represents a new iteration on top of [`argilla/ultrafeedback-binarized-preferences`](https://huggingface.co/argilla/ultrafeedback-binarized-preferences), and is the **recommended and preferred dataset by Argilla to use from now on when fine-tuning on UltraFeedback**. Read more about Argilla's approach towards UltraFeedback binarization at [`argilla/ultrafeedback-binarized-preferences/README.md`](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences/blob/main/README.md). ## Differences with `argilla/ultrafeedback-binarized-preferences` Thanks to the recent issue identified by [AllenAI](https://huggingface.co/allenai) related to the TruthfulQA contamination within the original UltraFeedback dataset due to some prompts being reused from the TruthfulQA dataset (used for benchmarking in the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) from HuggingFace H4), we also decided to follow AllenAI's advice and remove those from the UltraFeedback dataset that we binarized using a completely different approach, which implied using the average of the preference ratings rather than the critique overall score, as [`HuggingFaceH4/ultrafeedback_binarized`](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) did. Besides that, we also saw that not only the rows with the `source=truthful_qa` were contamined (for obvious reasons), but also some coming from ShareGPT, so we also removed those doing a left join with both subsets from the [`truthful_qa`](https://huggingface.co/datasets/truthful_qa) dataset. Additionally, we also modified the formatting to be aligned with both [`HuggingFaceH4/ultrafeedback_binarized`](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized), and [`allenai/ultrafeedback_binarized_cleaned`](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned) in order to ease the integration within the [`huggingface/alignment-handbook`](https://github.com/huggingface/alignment-handbook) so that the formatting is standardized. ## Reproduce <a target="_blank" href="https://colab.research.google.com/drive/1XR9P1St4yTNY0tjti_tIjm-yzP5Bfqc0?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> To reproduce the data processing combining both our approach and the suggestions from HuggingFace H4 w.r.t. the formatting and the ones from AllenAI to remove the TruthfulQA contamination, feel free to run the attached Colab Notebook or just view it at [`notebook.ipynb`](./notebook.ipynb) within this repository. From Argilla we encourage anyone out there to play around, investigate, and experiment with the data, and we firmly believe on open sourcing what we do, as ourselves, as well as the whole community, benefit a lot from open source and we also want to give back. ## Citation If you find this dataset is useful in your work, please cite the original UltraFeedback dataset: https://huggingface.co/datasets/openbmb/UltraFeedback Additionally, you may also want to cite our work with Notus 7B, which lead the curation of the UltraFeedback dataset: ```bibtex @misc{notus2023, author = {Alvaro Bartolome and Gabriel Martin and Daniel Vila}, title = {Notus}, year = {2023}, publisher = {GitHub}, journal = {GitHub Repository}, howpublished = {\url{https://github.com/argilla-io/notus}} } ``` > Alphabetically ordered by last name due to equal contribution.
Intel/orca_dpo_pairs
Intel
2023-11-29T14:11:17Z
1,964
301
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2306.02707", "region:us" ]
[]
2023-09-21T10:35:16Z
null
--- license: apache-2.0 --- The dataset contains 12k examples from [Orca](https://arxiv.org/abs/2306.02707) style dataset [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca).
defunct-datasets/bookcorpusopen
defunct-datasets
2023-11-24T14:42:08Z
367
37
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:10K<n<100K", "arxiv:2105.05241", "region:us" ]
[ "text-generation", "fill-mask" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - no-annotation language_creators: - found language: - en license: - unknown multilinguality: - monolingual pretty_name: BookCorpusOpen size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling paperswithcode_id: bookcorpus dataset_info: features: - name: title dtype: string - name: text dtype: string config_name: plain_text splits: - name: train num_bytes: 6643435392 num_examples: 17868 download_size: 2404269430 dataset_size: 6643435392 viewer: false --- # Dataset Card for BookCorpusOpen ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/soskek/bookcorpus/issues/27](https://github.com/soskek/bookcorpus/issues/27) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 2.40 GB - **Size of the generated dataset:** 6.64 GB - **Total amount of disk used:** 9.05 GB ### Dataset Summary <div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400"> <p><b>Defunct:</b> Dataset "bookcorpusopen" is defunct and no longer accessible due to unavailability of the source data.</p> </div> Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how these states evolve through a story. This version of bookcorpus has 17868 dataset items (books). Each item contains two fields: title and text. The title is the name of the book (just the file name) while text contains unprocessed book text. The bookcorpus has been prepared by Shawn Presser and is generously hosted by The-Eye. The-Eye is a non-profit, community driven platform dedicated to the archiving and long-term preservation of any and all data including but by no means limited to... websites, books, games, software, video, audio, other digital-obscura and ideas. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### plain_text - **Size of downloaded dataset files:** 2.40 GB - **Size of the generated dataset:** 6.64 GB - **Total amount of disk used:** 9.05 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "\"\\n\\nzONE\\n\\n## The end and the beginning\\n\\nby\\n\\nPhilip F. Blood\\n\\nSMASHWORDS EDITION\\n\\nVersion 3.55\\n\\nPUBLISHED BY:\\n\\nPhi...", "title": "zone-the-end-and-the-beginning.epub.txt" } ``` ### Data Fields The data fields are the same among all splits. #### plain_text - `title`: a `string` feature. - `text`: a `string` feature. ### Data Splits | name |train| |----------|----:| |plain_text|17868| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The books have been crawled from smashwords.com, see their [terms of service](https://www.smashwords.com/about/tos) for more information. A data sheet for this dataset has also been created and published in [Addressing "Documentation Debt" in Machine Learning Research: A Retrospective Datasheet for BookCorpus](https://arxiv.org/abs/2105.05241) ### Citation Information ``` @InProceedings{Zhu_2015_ICCV, title = {Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books}, author = {Zhu, Yukun and Kiros, Ryan and Zemel, Rich and Salakhutdinov, Ruslan and Urtasun, Raquel and Torralba, Antonio and Fidler, Sanja}, booktitle = {The IEEE International Conference on Computer Vision (ICCV)}, month = {December}, year = {2015} } ``` ### Contributions Thanks to [@vblagoje](https://github.com/vblagoje) for adding this dataset.
Malikeh1375/medical-question-answering-datasets
Malikeh1375
2023-11-02T03:13:38Z
1,129
47
[ "task_categories:question-answering", "language:en", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "medical", "clinical", "healthcare" ]
[ "question-answering" ]
2023-10-27T16:21:07Z
2
--- language: - en task_categories: - question-answering tags: - medical - clinical - healthcare dataset_info: - config_name: all-processed features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 276980695 num_examples: 246678 download_size: 0 dataset_size: 276980695 - config_name: chatdoctor_healthcaremagic features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 126454896 num_examples: 112165 download_size: 70518147 dataset_size: 126454896 - config_name: chatdoctor_icliniq features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 7347194 num_examples: 7321 download_size: 4153680 dataset_size: 7347194 - config_name: medical_meadow_cord19 features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 1336834621 num_examples: 821007 download_size: 752855706 dataset_size: 1336834621 - config_name: medical_meadow_health_advice features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 2196957 num_examples: 8676 download_size: 890725 dataset_size: 2196957 - config_name: medical_meadow_medical_flashcards features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 16453987 num_examples: 33955 download_size: 6999958 dataset_size: 16453987 - config_name: medical_meadow_mediqa features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 15690088 num_examples: 2208 download_size: 3719929 dataset_size: 15690088 - config_name: medical_meadow_medqa features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 10225018 num_examples: 10178 download_size: 5505473 dataset_size: 10225018 - config_name: medical_meadow_mmmlu features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 1442124 num_examples: 3787 download_size: 685604 dataset_size: 1442124 - config_name: medical_meadow_pubmed_causal features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 846695 num_examples: 2446 download_size: 210947 dataset_size: 846695 - config_name: medical_meadow_wikidoc features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 10224074 num_examples: 10000 download_size: 5593178 dataset_size: 10224074 - config_name: medical_meadow_wikidoc_patient_information features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 3262558 num_examples: 5942 download_size: 1544286 dataset_size: 3262558 configs: - config_name: all-processed data_files: - split: train path: all-processed/train-* - config_name: chatdoctor_healthcaremagic data_files: - split: train path: chatdoctor_healthcaremagic/train-* - config_name: chatdoctor_icliniq data_files: - split: train path: chatdoctor_icliniq/train-* - config_name: medical_meadow_cord19 data_files: - split: train path: medical_meadow_cord19/train-* - config_name: medical_meadow_health_advice data_files: - split: train path: medical_meadow_health_advice/train-* - config_name: medical_meadow_medical_flashcards data_files: - split: train path: medical_meadow_medical_flashcards/train-* - config_name: medical_meadow_mediqa data_files: - split: train path: medical_meadow_mediqa/train-* - config_name: medical_meadow_medqa data_files: - split: train path: medical_meadow_medqa/train-* - config_name: medical_meadow_mmmlu data_files: - split: train path: medical_meadow_mmmlu/train-* - config_name: medical_meadow_pubmed_causal data_files: - split: train path: medical_meadow_pubmed_causal/train-* - config_name: medical_meadow_wikidoc data_files: - split: train path: medical_meadow_wikidoc/train-* - config_name: medical_meadow_wikidoc_patient_information data_files: - split: train path: medical_meadow_wikidoc_patient_information/train-* ---
allenai/objaverse-xl
allenai
2023-10-31T16:46:54Z
5,182
151
[ "language:en", "license:odc-by", "arxiv:2307.05663", "region:us" ]
[]
2023-08-17T17:50:21Z
null
--- license: odc-by language: - en viewer: false --- # Objaverse-XL <a href="//arxiv.org/abs/2307.05663" target="_blank"> <img src="https://img.shields.io/badge/arXiv-2307.05663-<COLOR>"> </a> Objaverse-XL is an open dataset of over 10 million 3D objects! With it, we train Zero123-XL, a foundation model for 3D, observing incredible 3D generalization abilities: 🧵👇 <img src="https://mattdeitke.com/static/1cdcdb2ef7033e177ca9ae2975a9b451/9c1ca/objaverse-xl.webp"> ## Scale Comparison Objaverse 1.0 was released back in December. It was a step in the right direction, but still relatively small with 800K objects. Objaverse-XL is over an order of magnitude larger and much more diverse! <img src="https://github.com/allenai/objaverse-rendering/assets/28768645/43833dd3-ec97-4a3d-8782-00a6aea584b4"> ## Unlocking Generalization Compared to the original Zero123 model, Zero123-XL improves remarkably in 0-shot generalization abilities, even being able to perform novel view synthesis on sketches, cartoons, and people! A ton more examples in the [📝 paper](https://arxiv.org/abs/2307.05663) :) <img src="https://github.com/allenai/objaverse-rendering/assets/28768645/8470e4df-e39d-444b-9871-58fbee4b87fd"> ## Image → 3D With the base Zero123-XL foundation model, we can perform image → 3D using [DreamFusion](https://dreamfusion3d.github.io/), having the model guide a NeRF to generate novel views! <video autoplay muted loop controls> <source src="https://github.com/allenai/objaverse-rendering/assets/28768645/571852cd-dc02-46ce-b2bb-88f64a67d0ac" type="video/mp4"> </video> ## Text → 3D Text-to-3D comes for free with text → image models, such as with SDXL here, providing the initial image! <video autoplay muted loop controls> <source src="https://github.com/allenai/objaverse-rendering/assets/28768645/96255b42-8158-4c7a-8308-7b0f1257ada8" type="video/mp4"> </video> ## Scaling Trends Beyond that, we show strong scaling trends for both Zero123-XL and [PixelNeRF](https://alexyu.net/pixelnerf/)! <img src="https://github.com/allenai/objaverse-rendering/assets/28768645/0c8bb433-27df-43a1-8cb8-1772007c0899"> ## Tutorial Check out the [Google Colab tutorial](https://colab.research.google.com/drive/15XpZMjrHXuky0IgBbXcsUtb_0g-XWYmN?usp=sharing) to download Objaverse-XL. Polycam data is available by Polycam to academic researchers for non-commercial use upon request and approval from Polycam. For access please fill out [this form](https://forms.gle/HUjYVtS9GKVS5QBXA). ## License The use of the dataset as a whole is licensed under the ODC-By v1.0 license. Individual objects in Objaverse-XL are licensed under different licenses. ## Citation To cite Objaverse-XL, please cite our [📝 arXiv](https://arxiv.org/abs/2307.05663) paper with the following BibTeX entry: ```bibtex @article{objaverseXL, title={Objaverse-XL: A Universe of 10M+ 3D Objects}, author={Matt Deitke and Ruoshi Liu and Matthew Wallingford and Huong Ngo and Oscar Michel and Aditya Kusupati and Alan Fan and Christian Laforte and Vikram Voleti and Samir Yitzhak Gadre and Eli VanderBilt and Aniruddha Kembhavi and Carl Vondrick and Georgia Gkioxari and Kiana Ehsani and Ludwig Schmidt and Ali Farhadi}, journal={arXiv preprint arXiv:2307.05663}, year={2023} } ``` Objaverse 1.0 is available on 🤗Hugging Face at [@allenai/objaverse](https://huggingface.co/datasets/allenai/objaverse). To cite it, use: ```bibtex @article{objaverse, title={Objaverse: A Universe of Annotated 3D Objects}, author={Matt Deitke and Dustin Schwenk and Jordi Salvador and Luca Weihs and Oscar Michel and Eli VanderBilt and Ludwig Schmidt and Kiana Ehsani and Aniruddha Kembhavi and Ali Farhadi}, journal={arXiv preprint arXiv:2212.08051}, year={2022} } ```
ClementRomac/cleaned_deduplicated_oscar
ClementRomac
2023-10-25T14:05:19Z
34,845
0
[ "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-03-27T12:42:39Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 978937483730 num_examples: 232133013 - name: test num_bytes: 59798696914 num_examples: 12329126 download_size: 37220219718 dataset_size: 1038736180644 --- # Dataset Card for "cleaned_deduplicated_oscar" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
LinkSoul/instruction_merge_set
LinkSoul
2023-10-25T10:39:46Z
89
121
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-05-31T12:16:24Z
null
--- dataset_info: features: - name: id dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: instruction dtype: string splits: - name: train num_bytes: 13444870155 num_examples: 10077297 download_size: 3542585235 dataset_size: 13444870155 --- # Dataset Card for "instruction_merge_set" ## 本数据集由以下数据集构成: | 数据(id in the merged set) | Hugging face 地址 | notes | | --- | --- | --- | | OIG (unified-任务名称) 15k | https://huggingface.co/datasets/laion/OIG | Open Instruction Generalist Dataset | | Dolly databricks-dolly-15k | https://huggingface.co/datasets/databricks/databricks-dolly-15k | an open-source dataset of instruction-following records generated by thousands of Databricks employees in several of the behavioral categories | | UltraChat | https://huggingface.co/datasets/stingning/ultrachat | multi-round dialogue data | | Camel | https://huggingface.co/datasets/camel-ai/ai_society | 25K conversations between two gpt-3.5-turbo agents. | | camel (同上) | https://github.com/camel-ai/camel | | | ChatDoctor icliniq-15k HealthCareMagic-200k | https://github.com/Kent0n-Li/ChatDoctor | 200k real conversations between patients and doctors from HealthCareMagic.com 15k real conversations between patients and doctors from iciniq-10k | | Dolly | https://github.com/databrickslabs/dolly | | | GPT4ALL | https://github.com/nomic-ai/gpt4all | | | GPT-4-LLM comparision_data_b alpaca_gpt4_data_zh comparision_data_a alpaca_gpt4_data 5k | https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM | English Instruction-Following Data generated by GPT-4 using Alpaca prompts for fine-tuning LLMs. Chinese Instruction-Following Data generated by GPT-4 using Chinese prompts translated from Alpaca by ChatGPT. Comparison Data ranked by GPT-4 to train reward models. Answers on Unnatural Instructions Data from GPT-4 to quantify the gap between GPT-4 and instruction-tuned models at scale. | | GuanacoDataset guanaco_chat_all-utf8 guanaco_non_chat-utf8 paper_answers-utf8 general_ans-utf8 general_questions-utf8 paper_questions-utf8 30k | https://huggingface.co/datasets/JosephusCheung/GuanacoDataset | The dataset for the Guanaco model is designed to enhance the multilingual capabilities and address various linguistic tasks. It builds upon the 175 tasks from the Alpaca model by providing rewrites of seed tasks in different languages and adding new tasks specifically designed for English grammar analysis, natural language understanding, cross-lingual self-awareness, and explicit content recognition. The Paper/General-QA dataset is a collection of questions and answers constructed for AI-generated papers or general texts in English, Chinese, Japanese, and German. | | HC3 ALL | https://huggingface.co/datasets/Hello-SimpleAI/HC3 | human-ChatGPT comparison datasets | | instinwild instinwild_en instinwild_ch 5k | https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/instinwild | Instruction-Finetuning Dataset Collection (Alpaca-CoT) | | Instruct-to-Code | https://huggingface.co/datasets/Graverman/Instruct-to-Code | | | ShareGPT90K sg_90k_part2 sg_90k_part1 | https://huggingface.co/datasets/RyokoAI/ShareGPT52K | 90,000 conversations scraped via the ShareGPT API before it was shut down. These conversations include both user prompts and responses from OpenAI's ChatGPT. | | UltraChat ultrachat_material_release_230412 ultrachat_release_230407 | https://github.com/thunlp/UltraChat | | | wealth-alpaca-lora final_dataset_clean 4.3k | https://www.kaggle.com/code/gbhacker23/wealth-alpaca-lora | combination of Stanford's Alpaca (https://github.com/tatsu-lab/stanford_alpaca) and FiQA (https://sites.google.com/view/fiqa/) with another 1.3k pairs custom generated using GPT3.5, 有instruction | | Alpaca alpaca_data 5k | https://github.com/tatsu-lab/stanford_alpaca | instruct-tuning | | Baize alpaca_chat_data medical_chat_data quora_chat_data stack_overflow_chat_data | https://github.com/project-baize/baize-chatbot | instruction-following data we used for fine-tuning the Alpaca model. | | botbots Reasoning flight_bookings medical_appointments travel_agency restaurants_mixed real_estate car_dealership home_maintenance, job_interview 'insurance_consultation': 16, 'hotels': 400, 'tech_support': 32, 'car_rentals': 32, 'pet_care': 48, 'restaurants': 200, 'legal_consultation': 16, 'event_tickets': 240, 'fitness_personal_training': 16, 'scientific_problems': 100 | https://github.com/radi-cho/botbots | A dataset consisting of dialogues between two instances of ChatGPT (gpt-3.5-turbo). The CLI commands and dialogue prompts themselves have been written by GPT-4. The dataset covers a wide range of contexts (questions and answers, arguing and reasoning, task-oriented dialogues) and downstream tasks (e.g., hotel reservations, medical advice). | | ChatAlpaca chatalpaca_data_10k | https://github.com/cascip/ChatAlpaca | a chat dataset, multi-turn instruction-following conversations. | | DERA train | https://github.com/curai/curai-research/tree/main/DERA | The following repository contains the open-ended question-answering version of MedQA. | | GPTeacher Toolformer-dedupe-only-dataset roleplay-simple-deduped-roleplay-dataset gpt4-instruct-dedupe-only-dataset | https://github.com/teknium1/GPTeacher | A collection of modular datasets generated by GPT-4, General-Instruct - Roleplay-Instruct - Code-Instruct - and Toolformer | | OpenAGI | https://github.com/agiresearch/OpenAGI | | | presto | https://github.com/google-research-datasets/presto | A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs |
orion-ai-lab/S4A
orion-ai-lab
2023-10-24T08:15:34Z
10,564
9
[ "arxiv:2204.00951", "region:us" ]
[]
2022-07-01T16:26:54Z
null
--- YAML tags: --- ## Dataset Description - **Homepage:** [www.sen4agrinet.space.noa.gr](https://www.sen4agrinet.space.noa.gr/) - **Repository:** [github.com/Orion-AI-Lab/S4A](https://github.com/Orion-AI-Lab/S4A) - **Paper:** ["A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning" (D. Sykas, M. Sdraka, D. Zografakis, I. Papoutsis](https://arxiv.org/abs/2204.00951) ### Dataset Summary Sen4AgriNet is a Sentinel-2 based time series multi-country benchmark dataset, tailored for agricultural monitoring applications with Machine and Deep Learning. It is annotated from farmer declarations collected via the Land Parcel Identification System (LPIS) for harmonizing country wide labels. These declarations have only recently been made available as open data, allowing for the first time the labelling of satellite imagery from ground truth data. We proceed to propose and standardise a new crop type taxonomy across Europe that address Common Agriculture Policy (CAP) needs, based on the Food and Agriculture Organization (FAO) Indicative Crop Classification scheme. Sen4AgriNet is the only multi-country, multi-year dataset that includes all spectral information. The current version covers the period 2019-2020 for Catalonia and France, while it can be extended to include additional countries. ### Languages All information in the dataset is in English (`en_GB`). ## Dataset Structure ### Data Instances A typical sample in Sen4AgriNet consists of the following fields: ``` { 'patch_full_name': '2019_31TCF_patch_10_14', 'patch_year': '2019', 'patch_name': 'patch_10_14', 'patch_country_code': 'ES', 'patch_tile': '31TCF', 'B01': array([...]), 'B02': array([...]), 'B03': array([...]), 'B04': array([...]), 'B05': array([...]), 'B06': array([...]), 'B07': array([...]), 'B08': array([...]), 'B09': array([...]), 'B10': array([...]), 'B11': array([...]), 'B12': array([...]), 'B8A': array([...]), 'parcels': array([...]), 'labels': array([...]), 'timestamp': [...] } ``` ### Data Fields Below we provide a brief explanation of each field: - `patch_full_name`: The full name of the patch. - `patch_year`: The year of the observations included in the patch. - `patch_name`: The name of the patch. It is of the form: `patch_xx_yy` where `xx` and `yy` are the indices of the patch inside the tile. - `patch_country_code`: The country code of the observations included in the patch. Currently it is either `ES` for Catalonia or `FR` for France. - `B01`, ..., `B8A`: Each one is an array containing the observations of the corresponding Sentinel-2 band. The shape of each array is (T, H, W) where T is the number of observations, H the height of the image and W the width of the image. - `parcels`: A mask containing the parcels code number. - `labels`: A mask containing the class codes for each crop in the taxonomy. - `timestamp`: The timestamps of the observations. ### Data Splits In this version of the dataset there are no predefined train/val/test splits so that the users can define their own. ### Data configurations There are the following configurations in the current version of Sen4AgriNet: - `complete`: The complete Sen4AgriNet dataset. - `cat_2019`: Only Catalonia data for 2019. - `cat_2020`: Only Catalonia data for 2020. - `fr_2019`: Only France data for 2019. ## Dataset Creation ### Curation Rationale One of the major problems faced by researchers in the fields of Remote Sensing and AI is the absence of country-wide labelled data that are harmonized along space and time. Specifically in the EU, the Common Agriculture Policy (CAP) has placed a stepping stone to overcome this issue by legally establishing Paying Agencies in each EU country which are responsible for distributing subsidies to farmers. In order to fulfill their objectives, Paying Agencies systematically collect the cultivated crop type and parcel geometries for every farmer and record it via the Land Parcel Identification System (LPIS) in a standardized way for each country. Unfortunately, public access to these farmer declarations has been restricted for several years, thus making it almost impossible to get country-wide ground truth data. However, since 2019 and for the first time these datasets are gradually becoming open (e.g. France, Catalonia, Estonia, Croatia, Slovenia, Slovakia and Luxemburg). This change offers a significant opportunity for the Earth Observation (EO) community to explore novel and innovative data-driven agricultural applications, by exploiting this abundance of new LPIS information. In principle, this fusion of the LPIS data sources has tremendous potential but there are still some barriers to overcome. First of all, the LPIS system of each country is customly configured to utilize the local language of the crop types and the specific taxonomy structure of the crops that matches the local subsidies policy implementation. This non-standardization of the labels prohibits the spatial generalization of Deep Learning (DL) models and thus needs to be carefully handled to achieve a common representation consistent among countries. On top of these contextual/semantic barriers, parcels are mapped in the corresponding national cartographic projection which in all cases is different from the cartographic projection of the satellite images and pose an additional challenge on the preparation of a consistent, proper and at scale DL-ready dataset. Aiming to overcome the above limitations in this repository we offer Sen4AgriNet, a unique benchmark EO dataset for agricultural monitoring with the following key characteristics: - it is **pixel based** to capture spatial parcel variability - it is **multi-temporal** to capture the crop phenology phases - it is **multi-annual** to model the seasonal variability - it is **multi-country** to model the geographic spatial variability - it is **object-aggregated** to further incorporate ground truth data (parcel geometries) in the process - it is **modular** since it can be enlarged with parcels from more EU countries or expanded in a straightforward way to include additional sensor and non-EO data (e.g. meteorological data) ### Source Data 1) The LPIS data for the region of Catalonia for 2019–2020 provided by the "Agricultura, Ramaderia, Pesca i Alimentacio" with an Open Data Commons Attribution License. 2) France LPIS data for 2019 provided by the French Paying Agency with an Open Data Commons Attribution License. 3) All Sentinel-2 L1C images with less than 10% cloud coverage for the above tiles. #### Initial Data Collection and Normalization The Sentinel-2 L1C images were downloaded from Copernicus and each image was split into 900 non-overlapping patches. A single patch contains 366x366 images for the 10-meter bands, 183x183 for the 20-meter bands and 61x61 for the 60-meter bands. The size of the patches was chosen in order to have integer division of the size of the tile with all 3 different spatial resolutions of Sentinel-2. #### Annotation process The Indicative Crop Classification (ICC) scheme was developed by the United Nations FAO organization. It is an approach to produce a harmonized vocabulary and taxonomy for crops and plants that are used in food production. Sen4AgriNet adopts and customises an extended version of FAO ICC in order to create a universally applicable crop label nomenclature for the collected LPIS data with the following benefits: - Single language (English) is used and naming for all classes across all participating countries. - Classes are normalized among different datasets. - Hierarchical class structure is adopted. Depending on the application different levels of classes can be used. - Additional non-agricultural classes are used (e.g. "fallow land", "barren land", etc.) to model Remote Sensing spectral signatures since agricultural parcels co-exist with other unrelated classes in satellite images. The presented custom FAO/CLC classification scheme has a total of 9 groups, 168 classes and sub-classes. The 161 classes/sub-classes are crop related, 4 are some major CLC classes (as sub-classes in this hierarchy), 2 are the fallow and barren lands, and 1 is the no data sub-class. This crop taxonomy was used to create the `labels` mask. In addition, a second annotation mask is provided (`parcels`) where each parcel obtains a unique identifier, regardless of the crops cultivated in it. ### Personal and Sensitive Information None. ## Considerations for Using the Data ### Social Impact of Dataset We believe that Sen4AgriNet can be regarded as a labelled benchmark dataset, tailored for CAP and the use of Sentinel-2 imagery that come at no cost, and can spur numerous DL-based applications for crop type classification, parcel extraction, parcel counting and semantic segmentation. More importantly, the dataset can be extended to include other input data sources, including Sentinel-1 Synthetic Aperture Radar data, and meteorological data, allowing a new family of applications on early warning risk assessment and agricultural insurance. ## Additional Information ### Licensing Information MIT License. ### Citation Information ``` @ARTICLE{ 9749916, author={Sykas, Dimitrios and Sdraka, Maria and Zografakis, Dimitrios and Papoutsis, Ioannis}, journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, title={A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning}, year={2022}, doi={10.1109/JSTARS.2022.3164771} } ```
davanstrien/AmericanStories-parquet
davanstrien
2023-10-20T15:09:54Z
16,982
2
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-10-20T14:07:00Z
null
--- configs: - config_name: default data_files: - split: '1774' path: data/1774-* - split: '1798' path: data/1798-* - split: '1799' path: data/1799-* - split: '1800' path: data/1800-* - split: '1801' path: data/1801-* - split: '1802' path: data/1802-* - split: '1803' path: data/1803-* - split: '1804' path: data/1804-* - split: '1805' path: data/1805-* - split: '1806' path: data/1806-* - split: '1807' path: data/1807-* - split: '1808' path: data/1808-* - split: '1809' path: data/1809-* - split: '1810' path: data/1810-* - split: '1811' path: data/1811-* - split: '1812' path: data/1812-* - split: '1813' path: data/1813-* - split: '1814' path: data/1814-* - split: '1815' path: data/1815-* - split: '1816' path: data/1816-* - split: '1817' path: data/1817-* - split: '1818' path: data/1818-* - split: '1819' path: data/1819-* - split: '1820' path: data/1820-* - split: '1821' path: data/1821-* - split: '1822' path: data/1822-* - split: '1823' path: data/1823-* - split: '1824' path: data/1824-* - split: '1825' path: data/1825-* - split: '1826' path: data/1826-* - split: '1827' path: data/1827-* - split: '1828' path: data/1828-* - split: '1829' path: data/1829-* - split: '1830' path: data/1830-* - split: '1831' path: data/1831-* - split: '1832' path: data/1832-* - split: '1833' path: data/1833-* - split: '1834' path: data/1834-* - split: '1835' path: data/1835-* - split: '1836' path: data/1836-* - split: '1837' path: data/1837-* - split: '1838' path: data/1838-* - split: '1839' path: data/1839-* - split: '1840' path: data/1840-* - split: '1841' path: data/1841-* - split: '1842' path: data/1842-* - split: '1843' path: data/1843-* - split: '1844' path: data/1844-* - split: '1845' path: data/1845-* - split: '1846' path: data/1846-* - split: '1847' path: data/1847-* - split: '1848' path: data/1848-* - split: '1849' path: data/1849-* - split: '1850' path: data/1850-* - split: '1851' path: data/1851-* - split: '1852' path: data/1852-* - split: '1853' path: data/1853-* - split: '1854' path: data/1854-* - split: '1855' path: data/1855-* - split: '1856' path: data/1856-* - split: '1857' path: data/1857-* - split: '1858' path: data/1858-* - split: '1859' path: data/1859-* - split: '1860' path: data/1860-* - split: '1861' path: data/1861-* - split: '1862' path: data/1862-* - split: '1863' path: data/1863-* - split: '1864' path: data/1864-* - split: '1865' path: data/1865-* - split: '1866' path: data/1866-* - split: '1867' path: data/1867-* - split: '1868' path: data/1868-* - split: '1869' path: data/1869-* - split: '1870' path: data/1870-* - split: '1871' path: data/1871-* - split: '1872' path: data/1872-* - split: '1873' path: data/1873-* - split: '1874' path: data/1874-* - split: '1875' path: data/1875-* - split: '1876' path: data/1876-* - split: '1877' path: data/1877-* - split: '1878' path: data/1878-* - split: '1879' path: data/1879-* - split: '1880' path: data/1880-* - split: '1881' path: data/1881-* - split: '1882' path: data/1882-* - split: '1883' path: data/1883-* - split: '1884' path: data/1884-* - split: '1885' path: data/1885-* - split: '1886' path: data/1886-* - split: '1887' path: data/1887-* - split: '1888' path: data/1888-* - split: '1889' path: data/1889-* - split: '1890' path: data/1890-* - split: '1891' path: data/1891-* - split: '1892' path: data/1892-* - split: '1893' path: data/1893-* - split: '1894' path: data/1894-* - split: '1895' path: data/1895-* - split: '1896' path: data/1896-* - split: '1897' path: data/1897-* - split: '1898' path: data/1898-* - split: '1899' path: data/1899-* - split: '1900' path: data/1900-* - split: '1901' path: data/1901-* - split: '1902' path: data/1902-* - split: '1903' path: data/1903-* - split: '1904' path: data/1904-* - split: '1905' path: data/1905-* - split: '1906' path: data/1906-* - split: '1907' path: data/1907-* - split: '1908' path: data/1908-* - split: '1909' path: data/1909-* - split: '1910' path: data/1910-* - split: '1911' path: data/1911-* - split: '1912' path: data/1912-* - split: '1913' path: data/1913-* - split: '1914' path: data/1914-* - split: '1915' path: data/1915-* - split: '1916' path: data/1916-* - split: '1917' path: data/1917-* - split: '1918' path: data/1918-* - split: '1919' path: data/1919-* - split: '1920' path: data/1920-* - split: '1921' path: data/1921-* - split: '1922' path: data/1922-* - split: '1923' path: data/1923-* - split: '1924' path: data/1924-* - split: '1925' path: data/1925-* - split: '1926' path: data/1926-* - split: '1927' path: data/1927-* - split: '1928' path: data/1928-* - split: '1929' path: data/1929-* - split: '1930' path: data/1930-* - split: '1931' path: data/1931-* - split: '1932' path: data/1932-* - split: '1933' path: data/1933-* - split: '1934' path: data/1934-* - split: '1935' path: data/1935-* - split: '1936' path: data/1936-* - split: '1937' path: data/1937-* - split: '1938' path: data/1938-* - split: '1939' path: data/1939-* - split: '1940' path: data/1940-* - split: '1941' path: data/1941-* - split: '1942' path: data/1942-* - split: '1943' path: data/1943-* - split: '1944' path: data/1944-* - split: '1945' path: data/1945-* - split: '1946' path: data/1946-* - split: '1947' path: data/1947-* - split: '1948' path: data/1948-* - split: '1949' path: data/1949-* - split: '1950' path: data/1950-* - split: '1951' path: data/1951-* - split: '1952' path: data/1952-* - split: '1953' path: data/1953-* - split: '1954' path: data/1954-* - split: '1955' path: data/1955-* - split: '1956' path: data/1956-* - split: '1957' path: data/1957-* - split: '1958' path: data/1958-* - split: '1959' path: data/1959-* - split: '1960' path: data/1960-* - split: '1961' path: data/1961-* - split: '1962' path: data/1962-* - split: '1963' path: data/1963-* dataset_info: features: - name: article_id dtype: string - name: newspaper_name dtype: string - name: edition dtype: string - name: date dtype: string - name: page dtype: string - name: headline dtype: string - name: byline dtype: string - name: article dtype: string splits: - name: '1774' num_bytes: 22245 num_examples: 12 - name: '1798' num_bytes: 72288 num_examples: 73 - name: '1799' num_bytes: 946373 num_examples: 623 - name: '1800' num_bytes: 38139 num_examples: 45 - name: '1801' num_bytes: 94991 num_examples: 93 - name: '1802' num_bytes: 1463322 num_examples: 1158 - name: '1803' num_bytes: 799797 num_examples: 654 - name: '1804' num_bytes: 120141 num_examples: 103 - name: '1805' num_bytes: 2475205 num_examples: 2303 - name: '1806' num_bytes: 2043729 num_examples: 1860 - name: '1807' num_bytes: 310568 num_examples: 315 - name: '1808' num_bytes: 75639 num_examples: 45 - name: '1809' num_bytes: 430706 num_examples: 422 - name: '1810' num_bytes: 1319755 num_examples: 982 - name: '1811' num_bytes: 117701 num_examples: 110 - name: '1812' num_bytes: 75299 num_examples: 67 - name: '1813' num_bytes: 290966 num_examples: 242 - name: '1814' num_bytes: 378212 num_examples: 379 - name: '1815' num_bytes: 185179 num_examples: 160 - name: '1816' num_bytes: 495706 num_examples: 409 - name: '1817' num_bytes: 446354 num_examples: 394 - name: '1818' num_bytes: 1257916 num_examples: 1108 - name: '1819' num_bytes: 2476297 num_examples: 1997 - name: '1820' num_bytes: 611884 num_examples: 433 - name: '1821' num_bytes: 347361 num_examples: 270 - name: '1822' num_bytes: 286227 num_examples: 264 - name: '1823' num_bytes: 2030816 num_examples: 1113 - name: '1824' num_bytes: 5171191 num_examples: 3110 - name: '1825' num_bytes: 6341915 num_examples: 4005 - name: '1826' num_bytes: 10462258 num_examples: 7079 - name: '1827' num_bytes: 11634621 num_examples: 7213 - name: '1828' num_bytes: 10253681 num_examples: 6350 - name: '1829' num_bytes: 4021832 num_examples: 2296 - name: '1830' num_bytes: 8321949 num_examples: 4232 - name: '1831' num_bytes: 16796125 num_examples: 9699 - name: '1832' num_bytes: 9982722 num_examples: 6565 - name: '1833' num_bytes: 6653515 num_examples: 4108 - name: '1834' num_bytes: 7099875 num_examples: 4632 - name: '1835' num_bytes: 9066392 num_examples: 6168 - name: '1836' num_bytes: 10473366 num_examples: 7375 - name: '1837' num_bytes: 21002773 num_examples: 13609 - name: '1838' num_bytes: 13735809 num_examples: 8492 - name: '1839' num_bytes: 12512339 num_examples: 8938 - name: '1840' num_bytes: 12647911 num_examples: 8052 - name: '1841' num_bytes: 39146669 num_examples: 30019 - name: '1842' num_bytes: 26218700 num_examples: 21290 - name: '1843' num_bytes: 50447372 num_examples: 41657 - name: '1844' num_bytes: 79351064 num_examples: 61373 - name: '1845' num_bytes: 131632573 num_examples: 95921 - name: '1846' num_bytes: 81086068 num_examples: 70331 - name: '1847' num_bytes: 32733527 num_examples: 24354 - name: '1848' num_bytes: 44577825 num_examples: 32531 - name: '1849' num_bytes: 53877014 num_examples: 42711 - name: '1850' num_bytes: 76697622 num_examples: 49992 - name: '1851' num_bytes: 128372084 num_examples: 90184 - name: '1852' num_bytes: 67005975 num_examples: 51172 - name: '1853' num_bytes: 54210932 num_examples: 48130 - name: '1854' num_bytes: 150406197 num_examples: 118825 - name: '1855' num_bytes: 115893679 num_examples: 99390 - name: '1856' num_bytes: 188859881 num_examples: 157592 - name: '1857' num_bytes: 152841585 num_examples: 129179 - name: '1858' num_bytes: 214657030 num_examples: 171877 - name: '1859' num_bytes: 178711188 num_examples: 160924 - name: '1860' num_bytes: 163889573 num_examples: 150590 - name: '1861' num_bytes: 215595661 num_examples: 173990 - name: '1862' num_bytes: 228323685 num_examples: 171021 - name: '1863' num_bytes: 197294365 num_examples: 151485 - name: '1864' num_bytes: 125113713 num_examples: 94415 - name: '1865' num_bytes: 133515217 num_examples: 99728 - name: '1866' num_bytes: 180768118 num_examples: 135316 - name: '1867' num_bytes: 213571876 num_examples: 161180 - name: '1868' num_bytes: 202156635 num_examples: 140521 - name: '1869' num_bytes: 236506656 num_examples: 171455 - name: '1870' num_bytes: 242779857 num_examples: 174061 - name: '1871' num_bytes: 203189927 num_examples: 151652 - name: '1872' num_bytes: 242624062 num_examples: 194784 - name: '1873' num_bytes: 302626176 num_examples: 241902 - name: '1874' num_bytes: 280814742 num_examples: 213813 - name: '1875' num_bytes: 319815222 num_examples: 274269 - name: '1876' num_bytes: 381483980 num_examples: 288199 - name: '1877' num_bytes: 317703263 num_examples: 254946 - name: '1878' num_bytes: 381274032 num_examples: 307865 - name: '1879' num_bytes: 371703798 num_examples: 287784 - name: '1880' num_bytes: 296465631 num_examples: 272352 - name: '1881' num_bytes: 294568051 num_examples: 270228 - name: '1882' num_bytes: 340511400 num_examples: 311920 - name: '1883' num_bytes: 419078041 num_examples: 387589 - name: '1884' num_bytes: 329666364 num_examples: 304242 - name: '1885' num_bytes: 348144660 num_examples: 318732 - name: '1886' num_bytes: 431746663 num_examples: 423718 - name: '1887' num_bytes: 493647568 num_examples: 494559 - name: '1888' num_bytes: 564523528 num_examples: 547165 - name: '1889' num_bytes: 558168324 num_examples: 536750 - name: '1890' num_bytes: 566964770 num_examples: 540615 - name: '1891' num_bytes: 641124243 num_examples: 620461 - name: '1892' num_bytes: 524812242 num_examples: 527044 - name: '1893' num_bytes: 645853680 num_examples: 656805 - name: '1894' num_bytes: 790577208 num_examples: 795408 - name: '1895' num_bytes: 890097151 num_examples: 897766 - name: '1896' num_bytes: 1235234882 num_examples: 1175701 - name: '1897' num_bytes: 1252347746 num_examples: 1275895 - name: '1898' num_bytes: 1286411001 num_examples: 1323842 - name: '1899' num_bytes: 1176418162 num_examples: 1218682 - name: '1900' num_bytes: 1069983237 num_examples: 1118970 - name: '1901' num_bytes: 1478945214 num_examples: 1468648 - name: '1902' num_bytes: 1376703767 num_examples: 1417935 - name: '1903' num_bytes: 1255538379 num_examples: 1319686 - name: '1904' num_bytes: 1232185827 num_examples: 1340868 - name: '1905' num_bytes: 1563178627 num_examples: 1635134 - name: '1906' num_bytes: 1632815247 num_examples: 1683643 - name: '1907' num_bytes: 1647491794 num_examples: 1714613 - name: '1908' num_bytes: 1771267430 num_examples: 1842874 - name: '1909' num_bytes: 1844179657 num_examples: 1926228 - name: '1910' num_bytes: 1589052587 num_examples: 1684263 - name: '1911' num_bytes: 1402309564 num_examples: 1510259 - name: '1912' num_bytes: 1621648367 num_examples: 1774149 - name: '1913' num_bytes: 1613599136 num_examples: 1822206 - name: '1914' num_bytes: 1736284455 num_examples: 1931901 - name: '1915' num_bytes: 1690248452 num_examples: 1878654 - name: '1916' num_bytes: 1633563499 num_examples: 1838797 - name: '1917' num_bytes: 1605677226 num_examples: 1810757 - name: '1918' num_bytes: 1803695589 num_examples: 1920102 - name: '1919' num_bytes: 1831703767 num_examples: 1981192 - name: '1920' num_bytes: 1901882705 num_examples: 2041192 - name: '1921' num_bytes: 2264618667 num_examples: 2334112 - name: '1922' num_bytes: 2372137567 num_examples: 2405974 - name: '1923' num_bytes: 812177597 num_examples: 880372 - name: '1924' num_bytes: 800835690 num_examples: 845520 - name: '1925' num_bytes: 601426023 num_examples: 662322 - name: '1926' num_bytes: 565307890 num_examples: 623765 - name: '1927' num_bytes: 460501197 num_examples: 504835 - name: '1928' num_bytes: 452526140 num_examples: 487302 - name: '1929' num_bytes: 366246066 num_examples: 421909 - name: '1930' num_bytes: 437657836 num_examples: 492695 - name: '1931' num_bytes: 441972257 num_examples: 493816 - name: '1932' num_bytes: 640501746 num_examples: 664615 - name: '1933' num_bytes: 634373318 num_examples: 642380 - name: '1934' num_bytes: 641841040 num_examples: 654342 - name: '1935' num_bytes: 612406176 num_examples: 635554 - name: '1936' num_bytes: 621035178 num_examples: 662015 - name: '1937' num_bytes: 625107933 num_examples: 676549 - name: '1938' num_bytes: 616370880 num_examples: 665274 - name: '1939' num_bytes: 525913265 num_examples: 556283 - name: '1940' num_bytes: 471830118 num_examples: 496662 - name: '1941' num_bytes: 599694786 num_examples: 637200 - name: '1942' num_bytes: 508785410 num_examples: 523923 - name: '1943' num_bytes: 452079475 num_examples: 467200 - name: '1944' num_bytes: 442871777 num_examples: 433769 - name: '1945' num_bytes: 588623743 num_examples: 588477 - name: '1946' num_bytes: 526027876 num_examples: 470895 - name: '1947' num_bytes: 461281363 num_examples: 393086 - name: '1948' num_bytes: 442999943 num_examples: 396660 - name: '1949' num_bytes: 421752000 num_examples: 419854 - name: '1950' num_bytes: 403717616 num_examples: 415416 - name: '1951' num_bytes: 409600217 num_examples: 419622 - name: '1952' num_bytes: 397051717 num_examples: 396420 - name: '1953' num_bytes: 366253682 num_examples: 358332 - name: '1954' num_bytes: 263197428 num_examples: 266338 - name: '1955' num_bytes: 268993926 num_examples: 273576 - name: '1956' num_bytes: 85126796 num_examples: 98035 - name: '1957' num_bytes: 83757036 num_examples: 93543 - name: '1958' num_bytes: 85807593 num_examples: 98688 - name: '1959' num_bytes: 112707174 num_examples: 129452 - name: '1960' num_bytes: 300484826 num_examples: 344550 - name: '1961' num_bytes: 297225753 num_examples: 339076 - name: '1962' num_bytes: 231525869 num_examples: 264724 - name: '1963' num_bytes: 197520960 num_examples: 226859 download_size: 48388744959 dataset_size: 76303058024 --- # Dataset Card for "AmericanStories-parquet" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
stanfordnlp/sentiment140
stanfordnlp
2023-10-20T12:55:00Z
2,081
23
[ "language:en", "region:us" ]
[]
2022-03-02T23:29:22Z
1
--- language: - en paperswithcode_id: sentiment140 pretty_name: Sentiment140 dataset_info: config_name: sentiment140 features: - name: text dtype: string - name: date dtype: string - name: user dtype: string - name: sentiment dtype: int32 - name: query dtype: string splits: - name: train num_bytes: 224542690 num_examples: 1600000 - name: test num_bytes: 72971 num_examples: 498 download_size: 81363704 dataset_size: 224615661 train-eval-index: - config: sentiment140 task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text sentiment: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for "sentiment140" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [http://help.sentiment140.com/home](http://help.sentiment140.com/home) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 81.36 MB - **Size of the generated dataset:** 225.82 MB - **Total amount of disk used:** 307.18 MB ### Dataset Summary Sentiment140 consists of Twitter messages with emoticons, which are used as noisy labels for sentiment classification. For more detailed information please refer to the paper. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### sentiment140 - **Size of downloaded dataset files:** 81.36 MB - **Size of the generated dataset:** 225.82 MB - **Total amount of disk used:** 307.18 MB An example of 'train' looks as follows. ``` { "date": "23-04-2010", "query": "NO_QUERY", "sentiment": 3, "text": "train message", "user": "train user" } ``` ### Data Fields The data fields are the same among all splits. #### sentiment140 - `text`: a `string` feature. - `date`: a `string` feature. - `user`: a `string` feature. - `sentiment`: a `int32` feature. - `query`: a `string` feature. ### Data Splits | name | train |test| |------------|------:|---:| |sentiment140|1600000| 498| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @article{go2009twitter, title={Twitter sentiment classification using distant supervision}, author={Go, Alec and Bhayani, Richa and Huang, Lei}, journal={CS224N project report, Stanford}, volume={1}, number={12}, pages={2009}, year={2009} } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
clouditera/security-paper-datasets
clouditera
2023-10-16T10:34:13Z
766
99
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-08-25T02:11:45Z
null
--- dataset_info: features: - name: text dtype: string - name: category dtype: string splits: - name: train num_bytes: 1690579945 num_examples: 428155 download_size: 751689097 dataset_size: 1690579945 --- # Dataset Card for "security-paper-datasets" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Open-Orca/SlimOrca
Open-Orca
2023-10-12T06:43:59Z
1,359
278
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:table-question-answering", "task_categories:question-answering", "task_categories:zero-shot-classification", "task_categories:summarization", "task_categories:feature-extraction", "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2306.02707", "arxiv:2301.13688", "region:us" ]
[ "conversational", "text-classification", "token-classification", "table-question-answering", "question-answering", "zero-shot-classification", "summarization", "feature-extraction", "text-generation", "text2text-generation" ]
2023-10-06T09:40:55Z
null
--- language: - en license: mit task_categories: - conversational - text-classification - token-classification - table-question-answering - question-answering - zero-shot-classification - summarization - feature-extraction - text-generation - text2text-generation pretty_name: SlimOrca size_categories: - 100K<n<1M --- # Overview This is a new curated subset of our OpenOrca data. This release provides an efficient means of reaching performance on-par with using larger slices of our data, while only including ~500k GPT-4 completions. The key change in this dataset is that we've done an additional pass, using GPT-4 to remove answers which appear wrong based on the human annotations from the FLAN dataset. This reduces the dataset size to only ~500k entries, allowing training to a similar quality level to our previous releases with 2/3 the compute requirement. # Demo Models * https://huggingface.co/openaccess-ai-collective/jackalope-7b * https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca # Citation ```bibtex @misc{SlimOrca, title = {SlimOrca: An Open Dataset of GPT-4 Augmented FLAN Reasoning Traces, with Verification}, author = {Wing Lian and Guan Wang and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"}, year = {2023}, publisher = {HuggingFace}, url = {https://https://huggingface.co/Open-Orca/SlimOrca} } ``` ```bibtex @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{longpre2023flan, title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning}, author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts}, year={2023}, eprint={2301.13688}, archivePrefix={arXiv}, primaryClass={cs.AI} } ```
keivalya/MedQuad-MedicalQnADataset
keivalya
2023-10-11T10:50:41Z
2,914
102
[ "task_categories:question-answering", "task_categories:text2text-generation", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering", "text2text-generation" ]
2023-10-11T10:38:26Z
null
--- task_categories: - question-answering - text2text-generation pretty_name: MedQuad-KV --- ### Reference: - "A Question-Entailment Approach to Question Answering". Asma Ben Abacha and Dina Demner-Fushman. BMC Bioinformatics, 2019.
a686d380/h-corpus-raw
a686d380
2023-10-06T08:25:50Z
297
38
[ "language:zh", "region:us" ]
[]
2023-10-06T08:05:34Z
2
--- viewer: false language: - zh --- 未清洗的中文H小说 | 数据| 文章数| 解压后大小 | 来源 | 质量 | 备注| |- | - |- | - | - | - | |jjsw | 73,432 | 4.0 GB | 禁忌书屋 | 高 | - | |pixiv-selected | 2,935 | 174.3 MB | pixiv排行版 | 高 | - | |shubao | 6,776 |1.6 GB | 网络 | 低 | - | |sis-long | 4,555 | 3.5 GB | sis | 中 | - | |sis-short | 111,237 | 4.1 GB | sis | 中 | - | |xbookcn | 39,798 | 1.0 GB | xbookcn | 高 | - | |xhs | 38,406 | 8.6 GB | 网络 | 中 | - | |zyd2023 | 3,935 | 3.8 GB | 网络 | 中 | - | 仅供科学研究使用!
sahil2801/CodeAlpaca-20k
sahil2801
2023-10-03T11:46:04Z
4,037
196
[ "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "text-generation" ]
2023-03-26T22:09:47Z
null
--- license: cc-by-4.0 task_categories: - text-generation tags: - code pretty_name: CodeAlpaca 20K size_categories: - 10K<n<100K language: - en ---
knkarthick/dialogsum
knkarthick
2023-10-03T10:56:21Z
35,796
197
[ "task_categories:summarization", "task_categories:text2text-generation", "task_categories:text-generation", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "dialogue-summary", "one-liner-summary", "meeting-title", "email-subject" ]
[ "summarization", "text2text-generation", "text-generation" ]
2022-06-28T10:17:20Z
null
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: cc-by-nc-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - summarization - text2text-generation - text-generation task_ids: [] pretty_name: DIALOGSum Corpus tags: - dialogue-summary - one-liner-summary - meeting-title - email-subject --- # Dataset Card for DIALOGSum Corpus ## Dataset Description ### Links - **Homepage:** https://aclanthology.org/2021.findings-acl.449 - **Repository:** https://github.com/cylnlp/dialogsum - **Paper:** https://aclanthology.org/2021.findings-acl.449 - **Point of Contact:** https://huggingface.co/knkarthick ### Dataset Summary DialogSum is a large-scale dialogue summarization dataset, consisting of 13,460 (Plus 100 holdout data for topic generation) dialogues with corresponding manually labeled summaries and topics. ### Languages English ## Dataset Structure ### Data Instances DialogSum is a large-scale dialogue summarization dataset, consisting of 13,460 dialogues (+1000 tests) split into train, test and validation. The first instance in the training set: {'id': 'train_0', 'summary': "Mr. Smith's getting a check-up, and Doctor Hawkins advises him to have one every year. Hawkins'll give some information about their classes and medications to help Mr. Smith quit smoking.", 'dialogue': "#Person1#: Hi, Mr. Smith. I'm Doctor Hawkins. Why are you here today?\n#Person2#: I found it would be a good idea to get a check-up.\n#Person1#: Yes, well, you haven't had one for 5 years. You should have one every year.\n#Person2#: I know. I figure as long as there is nothing wrong, why go see the doctor?\n#Person1#: Well, the best way to avoid serious illnesses is to find out about them early. So try to come at least once a year for your own good.\n#Person2#: Ok.\n#Person1#: Let me see here. Your eyes and ears look fine. Take a deep breath, please. Do you smoke, Mr. Smith?\n#Person2#: Yes.\n#Person1#: Smoking is the leading cause of lung cancer and heart disease, you know. You really should quit.\n#Person2#: I've tried hundreds of times, but I just can't seem to kick the habit.\n#Person1#: Well, we have classes and some medications that might help. I'll give you more information before you leave.\n#Person2#: Ok, thanks doctor.", 'topic': "get a check-up} ### Data Fields - dialogue: text of dialogue. - summary: human written summary of the dialogue. - topic: human written topic/one liner of the dialogue. - id: unique file id of an example. ### Data Splits - train: 12460 - val: 500 - test: 1500 - holdout: 100 [Only 3 features: id, dialogue, topic] ## Dataset Creation ### Curation Rationale In paper: We collect dialogue data for DialogSum from three public dialogue corpora, namely Dailydialog (Li et al., 2017), DREAM (Sun et al., 2019) and MuTual (Cui et al., 2019), as well as an English speaking practice website. These datasets contain face-to-face spoken dialogues that cover a wide range of daily-life topics, including schooling, work, medication, shopping, leisure, travel. Most conversations take place between friends, colleagues, and between service providers and customers. Compared with previous datasets, dialogues from DialogSum have distinct characteristics: Under rich real-life scenarios, including more diverse task-oriented scenarios; Have clear communication patterns and intents, which is valuable to serve as summarization sources; Have a reasonable length, which comforts the purpose of automatic summarization. We ask annotators to summarize each dialogue based on the following criteria: Convey the most salient information; Be brief; Preserve important named entities within the conversation; Be written from an observer perspective; Be written in formal language. ### Who are the source language producers? linguists ### Who are the annotators? language experts ## Licensing Information CC BY-NC-SA 4.0 ## Citation Information ``` @inproceedings{chen-etal-2021-dialogsum, title = "{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset", author = "Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.449", doi = "10.18653/v1/2021.findings-acl.449", pages = "5062--5074", ``` ## Contributions Thanks to [@cylnlp](https://github.com/cylnlp) for adding this dataset.
alexandrainst/nota
alexandrainst
2023-10-03T07:51:33Z
12,908
1
[ "task_categories:automatic-speech-recognition", "task_categories:text-to-speech", "language:da", "license:cc0-1.0", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "automatic-speech-recognition", "text-to-speech" ]
2023-10-02T16:01:30Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string splits: - name: train num_bytes: 361607522962 num_examples: 98600 download_size: 256213612292 dataset_size: 361607522962 license: cc0-1.0 task_categories: - automatic-speech-recognition - text-to-speech language: - da pretty_name: Nota size_categories: - 10K<n<100K --- # Dataset Card for Nota ## Dataset Description - **Repository:** <https://sprogtek-ressources.digst.govcloud.dk/nota> - **Point of Contact:** [Dan Saattrup Nielsen](mailto:[email protected]) - **Size of downloaded dataset files:** 256.21 GB - **Size of the generated dataset:** 361.62 GB - **Total amount of disk used:** 617.83 GB ### Dataset Summary This data was created by the public institution [Nota](https://nota.dk/), which is part of the Danish Ministry of Culture. Nota has a library audiobooks and audiomagazines for people with reading or sight disabilities. Nota also produces a number of audiobooks and audiomagazines themselves. The dataset consists of audio and associated transcriptions from Nota's audiomagazines "Inspiration" and "Radio/TV". All files related to one reading of one edition of the magazine "Inspiration" or "Radio/TV" has been segmented into bits of 2 - 50 seconds. The dataset has been published as a part of the initiative sprogteknologi.dk, within the [Danish Agency for Digital Government (DIGST)](www.digst.dk). ### Supported Tasks and Leaderboards Automatic speech recognition and speech synthesis are the intended tasks for this dataset. No leaderboard is active at this point. ### Languages The dataset is available in Danish (`da`). ## Dataset Structure ### Data Instances - **Size of downloaded dataset files:** 256.21 GB - **Size of the generated dataset:** 361.62 GB - **Total amount of disk used:** 617.83 GB An example from the dataset looks as follows. ``` { 'audio': {'path': 'RMHL20190028_000140.wav', 'array': array([-0.04023849, -0.06235407, -0.04545404, ..., 0.00014322, 0.00017925, 0.00018811]), 'sampling_rate': 16000}, 'text': '13:05: 24syv Dokumentar 14:05: Spørge Jørgen Vært: Jørgen Leth' } ``` ### Data Fields The data fields are the same among all splits. - `audio`: an `Audio` feature. - `text`: a `string` feature. ### Dataset Statistics There are 98,600 samples in the dataset. #### Transcription Length Distribution ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60d368a613f774189902f555/vyyeMoH3XUXsjgRRxCUuB.png) ## Additional Information ### Dataset Curators [Dan Saattrup Nielsen](https://saattrupdan.github.io/) from the [The Alexandra Institute](https://alexandra.dk/) reorganised the dataset and uploaded it to the Hugging Face Hub. ### Licensing Information The dataset is licensed under the [CC0 license](https://creativecommons.org/share-your-work/public-domain/cc0/).
mosaicml/dolly_hhrlhf
mosaicml
2023-10-02T15:48:48Z
1,355
112
[ "task_categories:text-generation", "language:en", "license:cc-by-sa-3.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation" ]
2023-05-02T22:27:06Z
null
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 43781455.002688624 num_examples: 59310 - name: test num_bytes: 4479286.805304853 num_examples: 5129 download_size: 24882010 dataset_size: 48260741.80799348 license: cc-by-sa-3.0 task_categories: - text-generation language: - en pretty_name: Dolly HH-RLHF --- # Dataset Card for "dolly_hhrlhf" This dataset is a combination of [Databrick's dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) dataset and a filtered subset of [Anthropic's HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf). It also includes a test split, which was missing in the original `dolly` set. That test set is composed of 200 randomly selected samples from `dolly` + 4,929 of the test set samples from HH-RLHF which made it through the filtering process. The train set contains 59,310 samples; `15,014 - 200 = 14,814` from Dolly, and the remaining 44,496 from HH-RLHF. It is slightly larger than Alpaca, and in our experience of slightly higher quality, but is usable for commercial purposes so long as you follow the terms of the license. ## Filtering process As mentioned, the HH-RLHF data in this dataset is filtered. Specifically, we take the first turn of the convesation, then remove any samples where the assistant: - uses the word "human", "thank", or "sorry" - asks a question - uses a first person pronoun This leaves samples which look like instruction-following, as opposed to conversation. ## License/Attribution <!-- **Copyright (2023) MosaicML, Inc.** --> This dataset was developed at MosaicML (https://www.mosaicml.com) and its use is subject to the CC BY-SA 3.0 license. Certain categories of material in the dataset include materials from the following sources, licensed under the CC BY-SA 3.0 license: Wikipedia (various pages) - https://www.wikipedia.org/ Copyright © Wikipedia editors and contributors. Databricks (https://www.databricks.com) Copyright © Databricks When citing this dataset, please use the following: ``` @misc{mosaicml2023dolly_hhrlhf, author = {MosaicML}, title = {Dolly-HHRLHF Dataset}, year = {2023}, publisher = {HuggingFace Datasets}, howpublished = {https://huggingface.co/datasets/mosaicml/dolly_hhrlhf}, } ```
McGill-NLP/TopiOCQA
McGill-NLP
2023-09-29T19:37:48Z
173
7
[ "task_categories:text-retrieval", "task_categories:text-generation", "task_ids:language-modeling", "task_ids:open-domain-qa", "annotations_creators:crowdsourced", "multilinguality:monolingual", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "modality:tabular", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2110.00768", "region:us", "conversational-question-answering" ]
[ "text-retrieval", "text-generation" ]
2022-04-08T18:29:53Z
1
--- annotations_creators: - crowdsourced language: - en license: - cc-by-nc-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100k task_categories: - text-retrieval - text-generation task_ids: - language-modeling - open-domain-qa pretty_name: Open-domain Conversational Question Answering with Topic Switching tags: - conversational-question-answering --- # Dataset Card for TopiOCQA ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Languages](#languages) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [TopiOCQA homepage](https://mcgill-nlp.github.io/topiocqa/) - **Repository:** [TopiOCQA Github](https://github.com/McGill-NLP/topiocqa) - **Paper:** [Open-domain Conversational Question Answering with Topic Switching](https://arxiv.org/abs/2110.00768) - **Point of Contact:** [Vaibhav Adlakha](mailto:[email protected]) ### Dataset Summary TopiOCQA is an information-seeking conversational dataset with challenging topic switching phenomena. ### Languages The language in the dataset is English as spoken by the crowdworkers. The BCP-47 code for English is en. ## Additional Information ### Licensing Information TopiOCQA is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/). ### Citation Information ``` @inproceedings{adlakha2022topiocqa, title={Topi{OCQA}: Open-domain Conversational Question Answering with Topic Switching}, author={Adlakha, Vaibhav and Dhuliawala, Shehzaad and Suleman, Kaheer and de Vries, Harm and Reddy, Siva}, journal={Transactions of the Association for Computational Linguistics}, volume = {10}, pages = {468-483}, year = {2022}, month = {04}, year={2022}, issn = {2307-387X}, doi = {10.1162/tacl_a_00471}, url = {https://doi.org/10.1162/tacl\_a\_00471}, eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00471/2008126/tacl\_a\_00471.pdf}, } ```
glaiveai/glaive-function-calling
glaiveai
2023-09-27T18:04:36Z
212
93
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation" ]
2023-08-07T17:51:48Z
null
--- license: apache-2.0 task_categories: - text-generation language: - en size_categories: - 10K<n<100K --- This dataset consists of 52k samples generated through [Glaive](https://glaive.ai) for the task of function calling, in the following format- ``` SYSTEM: You are an helpful assistant who has access to the following functions to help the user, you can use the functions if needed- { JSON function definiton } USER: user message ASSISTANT: assistant message Function call invocations are formatted as- ASSISTANT: <functioncall> {json function call} Response to the function call is formatted as- FUNCTION RESPONSE: {json function response} ``` There are also samples which do not have any function invocations, multiple invocations and samples with no functions presented and invoked to keep the data balanced.
knowrohit07/know_sql
knowrohit07
2023-09-20T20:13:06Z
426
112
[ "license:openrail", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-09-16T12:18:52Z
null
--- license: openrail --- please use the val ign file for training, its much cleaner. thanks :)
pkufool/libriheavy
pkufool
2023-09-19T11:35:45Z
129
15
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2309.08105", "region:us" ]
[]
2023-08-21T11:20:42Z
2
--- license: apache-2.0 --- # Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context Libriheavy is a labeled version of [Librilight](https://github.com/facebookresearch/libri-light), read our [paper](https://arxiv.org/abs/2309.08105) for more details. See https://github.com/k2-fsa/libriheavy for more details. ## Citation ``` @misc{kang2023libriheavy, title={Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context}, author={Wei Kang and Xiaoyu Yang and Zengwei Yao and Fangjun Kuang and Yifan Yang and Liyong Guo and Long Lin and Daniel Povey}, year={2023}, eprint={2309.08105}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
dominguesm/CC-MAIN-2023-23
dominguesm
2023-09-17T00:02:06Z
13,871
3
[ "task_categories:text-generation", "task_categories:fill-mask", "language:pt", "license:cc-by-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation", "fill-mask" ]
2023-09-16T20:32:49Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: text dtype: string - name: url dtype: string - name: crawl_timestamp dtype: timestamp[ns, tz=UTC] splits: - name: train num_bytes: 97584560119 num_examples: 16899389 download_size: 18490153155 dataset_size: 97584560119 license: cc-by-4.0 task_categories: - text-generation - fill-mask language: - pt pretty_name: CC-MAIN-2023-23-PT size_categories: - 10B<n<100B --- # Dataset Card for "CC-MAIN-2023-23" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
QingyiSi/Alpaca-CoT
QingyiSi
2023-09-14T08:52:10Z
4,630
729
[ "language:en", "language:zh", "language:ml", "license:apache-2.0", "region:us", "Instruction", "Cot" ]
[]
2023-03-25T14:58:30Z
null
--- language: - en - zh - ml tags: - Instruction - Cot license: apache-2.0 datasets: - dataset1 - dataset2 --- # Instruction-Finetuning Dataset Collection (Alpaca-CoT) This repository will continuously collect various instruction tuning datasets. And we standardize different datasets into the same format, which can be directly loaded by the [code](https://github.com/PhoebusSi/alpaca-CoT) of Alpaca model. We also have conducted empirical study on various instruction-tuning datasets based on the Alpaca model, as shown in [https://github.com/PhoebusSi/alpaca-CoT](https://github.com/PhoebusSi/alpaca-CoT). If you think this dataset collection is helpful to you, please `like` this dataset and `star` our [github project](https://github.com/PhoebusSi/alpaca-CoT)! You are in a warm welcome to provide us with any non-collected instruction-tuning datasets (or their sources). We will uniformly format them, train Alpaca model with these datasets and open source the model checkpoints. # Contribute Welcome to join us and become a contributor to this project! If you want to share some datasets, adjust the data in the following format: ``` example.json [ {"instruction": instruction string, "input": input string, # (may be empty) "output": output string} ] ``` Folder should be like this: ``` Alpaca-CoT | |----example | | | |----example.json | | | ----example_context.json ... ``` Create a new pull request in [Community ](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/discussions) and publish your branch when you are ready. We will merge it as soon as we can. # Data Usage and Resources ## Data Format All data in this folder is formatted into the same templates, where each sample is as follows: ``` [ {"instruction": instruction string, "input": input string, # (may be empty) "output": output string} ] ``` ## alpaca #### alpaca_data.json > This dataset is published by [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca). It contains 52K English instruction-following samples obtained by [Self-Instruction](https://github.com/yizhongw/self-instruct) techniques. #### alpaca_data_cleaned.json > This dataset is obtained [here](https://github.com/tloen/alpaca-lora). It is a revised version of `alpaca_data.json` by stripping of various tokenization artifacts. ## alpacaGPT4 #### alpaca_gpt4_data.json > This dataset is published by [Instruction-Tuning-with-GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM). It contains 52K English instruction-following samples generated by GPT-4 using Alpaca prompts for fine-tuning LLMs. #### alpaca_gpt4_data_zh.json > This dataset is generated by GPT-4 using Chinese prompts translated from Alpaca by ChatGPT. <!-- ## belle_cn #### belle_data_cn.json This dataset is published by [BELLE](https://github.com/LianjiaTech/BELLE). It contains 0.5M Chinese instruction-following samples, which is also generated by [Self-Instruction](https://github.com/yizhongw/self-instruct) techniques. #### belle_data1M_cn.json This dataset is published by [BELLE](https://github.com/LianjiaTech/BELLE). It contains 1M Chinese instruction-following samples. The data of `belle_data_cn.json` and `belle_data1M_cn.json` are not duplicated. --> ## Chain-of-Thought #### CoT_data.json > This dataset is obtained by formatting the combination of 9 CoT datasets published by [FLAN](https://github.com/google-research/FLAN). It contains 9 CoT tasks involving 74771 samples. #### CoT_CN_data.json > This dataset is obtained by tranlating `CoT_data.json` into Chinese, using Google Translate(en2cn). #### formatted_cot_data folder > This folder contains the formatted English data for each CoT dataset. #### formatted_cot_data folder > This folder contains the formatted Chinese data for each CoT dataset. ## CodeAlpaca #### code_alpaca.json > This dataset is published by [codealpaca](https://github.com/sahil280114/codealpaca). It contains code generation task involving 20022 samples. ## finance #### finance_en.json > This dataset is collected from [here](https://huggingface.co/datasets/gbharti/finance-alpaca). It contains 68912 financial related instructions in English. ## firefly #### firefly.json > his dataset is collected from [here](https://github.com/yangjianxin1/Firefly). It contains 1649398 chinese instructions in 23 nlp tasks. ## GPT4all #### gpt4all.json > This dataset is collected from [here](https://github.com/nomic-ai/gpt4all). It contains 806199 en instructions in code, storys and dialogs tasks. #### gpt4all_without_p3.json > gpt4all without Bigscience/P3, contains 437605 samples. ## GPTeacher #### GPTeacher.json > This dataset is collected from [here](https://github.com/teknium1/GPTeacher). It contains 29013 en instructions generated by GPT-4, General-Instruct - Roleplay-Instruct - Code-Instruct - and Toolformer. ## Guanaco #### GuanacoDataset.json > This dataset is collected from [here](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset). It contains 534610 en instructions generated by text-davinci-003 upon 175 tasks from the Alpaca model by providing rewrites of seed tasks in different languages and adding new tasks specifically designed for English grammar analysis, natural language understanding, cross-lingual self-awareness, and explicit content recognition. #### Guanaco_additional_Dataset.json > A new additional larger dataset for different languages. ## HC3 #### HC3_ChatGPT.json/HC3_Human.json > This dataset is collected from [here](https://huggingface.co/datasets/Hello-SimpleAI/HC3). It contains 37175 en/zh instructions generated by ChatGPT and human. #### HC3_ChatGPT_deduplication.json/HC3_Human_deduplication.json > HC3 dataset without deduplication instructions. ## instinwild #### instinwild_en.json & instinwild_cn.json > The two datasets are obtained [here](https://github.com/XueFuzhao/InstructionWild). It contains 52191 English and 51504 Chinese instructions, which are collected from Twitter, where users tend to share their interesting prompts of mostly generation, open QA, and mind-storm types. (Colossal AI used these datasets to train the ColossalChat model.) ## instruct #### instruct.json > The two datasets are obtained [here](https://huggingface.co/datasets/swype/instruct). It contains 888969 English instructions, which are caugmentation performed using the advanced NLP tools provided by AllenAI. ## Natural Instructions #### natural-instructions-1700tasks.zip > This dataset is obtained [here](https://github.com/allenai/natural-instructions). It contains 5040134 instructions, which are collected from diverse nlp tasks ## prosocial dialog #### natural-instructions-1700tasks.zip > This dataset is obtained [here](https://huggingface.co/datasets/allenai/prosocial-dialog). It contains 165681 English instructions, which are produuced by GPT-3 rewrites questions and humans feedback ## xP3 #### natural-instructions-1700tasks.zip > This dataset is obtained [here](https://huggingface.co/datasets/bigscience/xP3). It contains 78883588 instructions, which are collected by prompts & datasets across 46 of languages & 16 NLP tasks ## Chinese-instruction-collection > all datasets of Chinese instruction collection ## combination #### alcapa_plus_belle_data.json > This dataset is the combination of English `alpaca_data.json` and Chinese `belle_data_cn.json`. #### alcapa_plus_cot_data.json > This dataset is the combination of English `alpaca_data.json` and CoT `CoT_data.json`. #### alcapa_plus_belle_cot_data.json > This dataset is the combination of English `alpaca_data.json`, Chinese `belle_data_cn.json` and CoT `CoT_data.json`. ## Citation Please cite the repo if you use the data collection, code, and experimental findings in this repo. ``` @misc{alpaca-cot, author = {Qingyi Si, Zheng Lin }, school = {Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China}, title = {Alpaca-CoT: An Instruction Fine-Tuning Platform with Instruction Data Collection and Unified Large Language Models Interface}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/PhoebusSi/alpaca-CoT}}, } ``` Cite the original Stanford Alpaca, BELLE and FLAN papers as well, please.
graelo/wikipedia
graelo
2023-09-10T06:10:08Z
14,823
66
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:multilingual", "source_datasets:original", "language:ab", "language:ace", "language:ady", "language:af", "language:ak", "language:als", "language:alt", "language:am", "language:ami", "language:an", "language:ang", "language:anp", "language:ar", "language:arc", "language:ary", "language:arz", "language:as", "language:ast", "language:atj", "language:av", "language:avk", "language:awa", "language:ay", "language:az", "language:azb", "language:ba", "language:ban", "language:bar", "language:bcl", "language:be", "language:bg", "language:bh", "language:bi", "language:bjn", "language:blk", "language:bm", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bug", "language:bxr", "language:ca", "language:cdo", "language:ce", "language:ceb", "language:ch", "language:cho", "language:chr", "language:chy", "language:ckb", "language:co", "language:cr", "language:crh", "language:cs", "language:csb", "language:cu", "language:cv", "language:cy", "language:da", "language:dag", "language:de", "language:din", "language:diq", "language:dsb", "language:dty", "language:dv", "language:dz", "language:ee", "language:el", "language:eml", "language:eo", "language:es", "language:et", "language:eu", "language:ext", "language:fa", "language:fat", "language:ff", "language:fi", "language:fj", "language:fo", "language:fr", "language:frp", "language:frr", "language:fur", "language:fy", "language:ga", "language:gag", "language:gan", "language:gcr", "language:gd", "language:gl", "language:glk", "language:gn", "language:gom", "language:gor", "language:got", "language:gu", "language:guc", "language:gur", "language:guw", "language:gv", "language:ha", "language:hak", "language:haw", "language:he", "language:hi", "language:hif", "language:ho", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:hyw", "language:ia", "language:id", "language:ie", "language:ig", "language:ii", "language:ik", "language:ilo", "language:inh", "language:io", "language:is", "language:it", "language:iu", "language:ja", "language:jam", "language:jbo", "language:jv", "language:ka", "language:kaa", "language:kab", "language:kbd", "language:kbp", "language:kcg", "language:kg", "language:ki", "language:kj", "language:kk", "language:kl", "language:km", "language:kn", "language:ko", "language:koi", "language:krc", "language:ks", "language:ksh", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lad", "language:lb", "language:lbe", "language:lez", "language:lfn", "language:lg", "language:li", "language:lij", "language:lld", "language:lmo", "language:ln", "language:lo", "language:lrc", "language:lt", "language:ltg", "language:lv", "language:mad", "language:mai", "language:mdf", "language:mg", "language:mh", "language:mhr", "language:mi", "language:min", "language:mk", "language:ml", "language:mn", "language:mni", "language:mnw", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mus", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nap", "language:nds", "language:ne", "language:new", "language:ng", "language:nia", "language:nl", "language:nn", "language:no", "language:nov", "language:nqo", "language:nrm", "language:nso", "language:nv", "language:ny", "language:oc", "language:olo", "language:om", "language:or", "language:os", "language:pa", "language:pag", "language:pam", "language:pap", "language:pcd", "language:pcm", "language:pdc", "language:pfl", "language:pi", "language:pih", "language:pl", "language:pms", "language:pnb", "language:pnt", "language:ps", "language:pt", "language:pwn", "language:qu", "language:rm", "language:rmy", "language:rn", "language:ro", "language:ru", "language:rue", "language:rw", "language:sa", "language:sah", "language:sat", "language:sc", "language:scn", "language:sco", "language:sd", "language:se", "language:sg", "language:sh", "language:shi", "language:shn", "language:si", "language:sk", "language:skr", "language:sl", "language:sm", "language:smn", "language:sn", "language:so", "language:sq", "language:sr", "language:srn", "language:ss", "language:st", "language:stq", "language:su", "language:sv", "language:sw", "language:szl", "language:szy", "language:ta", "language:tay", "language:tcy", "language:te", "language:tet", "language:tg", "language:th", "language:ti", "language:tk", "language:tl", "language:tn", "language:to", "language:tpi", "language:tr", "language:trv", "language:ts", "language:tt", "language:tum", "language:tw", "language:ty", "language:tyv", "language:udm", "language:ug", "language:uk", "language:ur", "language:uz", "language:ve", "language:vec", "language:vep", "language:vi", "language:vls", "language:vo", "language:wa", "language:war", "language:wo", "language:wuu", "language:xal", "language:xh", "language:xmf", "language:yi", "language:yo", "language:za", "language:zea", "language:zh", "language:zu", "license:cc-by-sa-3.0", "license:gfdl", "size_categories:100M<n<1B", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[ "text-generation", "fill-mask" ]
2023-06-10T22:40:06Z
null
--- annotations_creators: - no-annotation language_creators: - crowdsourced pretty_name: Wikipedia paperswithcode_id: null license: - cc-by-sa-3.0 - gfdl task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling source_datasets: - original multilinguality: - multilingual size_categories: - n<1K - 1K<n<10K - 10K<n<100K - 100K<n<1M - 1M<n<10M language: # - aa - closed and no dump - ab - ace - ady - af - ak - als - alt - am - ami - an - ang - anp - ar - arc - ary - arz - as - ast - atj - av - avk - awa - ay - az - azb - ba - ban - bar # - bat-smg - see bcp47 below - bcl # - be-x-old - see bcp47 below - be - bg - bh - bi - bjn - blk - bm - bn - bo - bpy - br - bs - bug - bxr - ca # - cbk-zam - see bcp47 below - cdo - ce - ceb - ch - cho # closed - chr - chy - ckb - co - cr - crh - cs - csb - cu - cv - cy - da - dag - de - din - diq - dsb - dty - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - fat - ff - fi # - fiu-vro - see bcp47 below - fj - fo - fr - frp - frr - fur - fy - ga - gag - gan - gcr - gd - gl - glk - gn - gom - gor - got - gu - guc - gur - guw - gv - ha - hak - haw - he - hi - hif - ho # closed - hr - hsb - ht - hu - hy - hyw # - hz - closed and no dump - ia - id - ie - ig - ii # closed - ik - ilo - inh - io - is - it - iu - ja - jam - jbo - jv - ka - kaa - kab - kbd - kbp - kcg - kg - ki - kj # closed - kk - kl - km - kn - ko - koi # - kr - closed and no dump - krc - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lez - lfn - lg - li - lij - lld - lmo - ln - lo - lrc # closed - lt - ltg - lv - mad - mai # - map-bms - see bcp47 below - mdf - mg - mh - mhr - mi - min - mk - ml - mn - mni - mnw - mr - mrj - ms - mt - mus # closed - mwl - my - myv - mzn # - na - closed and no dump - nah - nap # - nds-nl - see bcp47 below - nds - ne - new - ng # closed - nia - nl - nn - no - nov - nqo - nrm - nso - nv - ny - oc - olo - om - or - os - pa - pag - pam - pap - pcd - pcm - pdc - pfl - pi - pih - pl - pms - pnb - pnt - ps - pt - pwn - qu - rm - rmy - rn - ro # - roa-rup - see bcp47 below # - roa-tara - see bcp47 below - ru - rue - rw - sa - sah - sat - sc - scn - sco - sd - se - sg - sh - shi - shn - si # - simple - see bcp47 below - sk - skr - sl - sm - smn - sn - so - sq - sr - srn - ss - st - stq - su - sv - sw - szl - szy - ta - tay - tcy - te - tet - tg - th - ti - tk - tl - tn - to - tpi - tr - trv - ts - tt - tum - tw - ty - tyv - udm - ug - uk - ur - uz - ve - vec - vep - vi - vls - vo - wa - war - wo - wuu - xal - xh - xmf - yi - yo - za - zea - zh # - zh-classical - see bcp47 below # - zh-min-nan - see bcp47 below # - zh-yue - see bcp47 below - zu language_bcp47: - bat-smg - be-x-old - cbk-zam - fiu-vro - map-bms - nds-nl - roa-rup - roa-tara - simple - zh-classical - zh-min-nan - zh-yue dataset_info: - config_name: 20230601.ab features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4183525 num_examples: 6114 download_size: 1172328 dataset_size: 4183525 - config_name: 20230601.ace features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4887561 num_examples: 12839 download_size: 1473823 dataset_size: 4887561 - config_name: 20230601.ady features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 613082 num_examples: 609 download_size: 280249 dataset_size: 613082 - config_name: 20230601.af features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 220678901 num_examples: 108170 download_size: 121238071 dataset_size: 220678901 - config_name: 20230601.ak features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 189 num_examples: 1 download_size: 3045 dataset_size: 189 - config_name: 20230601.als features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 80615079 num_examples: 29804 download_size: 48883379 dataset_size: 80615079 - config_name: 20230601.alt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5786027 num_examples: 1082 download_size: 2401701 dataset_size: 5786027 - config_name: 20230601.am features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 24009050 num_examples: 13839 download_size: 10615909 dataset_size: 24009050 - config_name: 20230601.ami features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3865236 num_examples: 1570 download_size: 2006639 dataset_size: 3865236 - config_name: 20230601.an features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 56295233 num_examples: 43744 download_size: 29055888 dataset_size: 56295233 - config_name: 20230601.ang features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2854073 num_examples: 4019 download_size: 1756372 dataset_size: 2854073 - config_name: 20230601.anp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9055032 num_examples: 2736 download_size: 3270423 dataset_size: 9055032 - config_name: 20230601.ar features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3052201469 num_examples: 1205403 download_size: 1319905253 dataset_size: 3052201469 - config_name: 20230601.arc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 830073 num_examples: 1925 download_size: 360590 dataset_size: 830073 - config_name: 20230601.ary features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10007364 num_examples: 6703 download_size: 4094420 dataset_size: 10007364 - config_name: 20230601.arz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1364641408 num_examples: 1617770 download_size: 306336320 dataset_size: 1364641408 - config_name: 20230601.as features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 86645223 num_examples: 11988 download_size: 33149841 dataset_size: 86645223 - config_name: 20230601.ast features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 470349731 num_examples: 132550 download_size: 271011784 dataset_size: 470349731 - config_name: 20230601.atj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 993287 num_examples: 1965 download_size: 502890 dataset_size: 993287 - config_name: 20230601.av features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5996158 num_examples: 3392 download_size: 2514243 dataset_size: 5996158 - config_name: 20230601.avk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 31189461 num_examples: 27493 download_size: 7729144 dataset_size: 31189461 - config_name: 20230601.awa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3588050 num_examples: 3701 download_size: 1230725 dataset_size: 3588050 - config_name: 20230601.ay features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4357283 num_examples: 5287 download_size: 1736571 dataset_size: 4357283 - config_name: 20230601.az features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 425710145 num_examples: 194486 download_size: 225589717 dataset_size: 425710145 - config_name: 20230601.azb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 186034971 num_examples: 243041 download_size: 46251265 dataset_size: 186034971 - config_name: 20230601.ba features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 293142247 num_examples: 62907 download_size: 120320323 dataset_size: 293142247 - config_name: 20230601.ban features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16509353 num_examples: 19293 download_size: 6302437 dataset_size: 16509353 - config_name: 20230601.bar features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36001708 num_examples: 26978 download_size: 21611902 dataset_size: 36001708 - config_name: 20230601.bat-smg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7536614 num_examples: 17181 download_size: 3411835 dataset_size: 7536614 - config_name: 20230601.be-x-old features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 244894736 num_examples: 82917 download_size: 110733701 dataset_size: 244894736 - config_name: 20230601.bcl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 18259970 num_examples: 13934 download_size: 10086356 dataset_size: 18259970 - config_name: 20230601.be features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 606416485 num_examples: 231617 download_size: 280474552 dataset_size: 606416485 - config_name: 20230601.bg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1080390968 num_examples: 291361 download_size: 506945262 dataset_size: 1080390968 - config_name: 20230601.bh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16078510 num_examples: 8446 download_size: 5648960 dataset_size: 16078510 - config_name: 20230601.bi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 398357 num_examples: 1539 download_size: 200277 dataset_size: 398357 - config_name: 20230601.bjn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6755874 num_examples: 10379 download_size: 3265979 dataset_size: 6755874 - config_name: 20230601.blk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 24413622 num_examples: 2725 download_size: 7356285 dataset_size: 24413622 - config_name: 20230601.bm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 473185 num_examples: 1221 download_size: 261438 dataset_size: 473185 - config_name: 20230601.bn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 913676298 num_examples: 138515 download_size: 330147337 dataset_size: 913676298 - config_name: 20230601.bo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 132034426 num_examples: 12434 download_size: 38687191 dataset_size: 132034426 - config_name: 20230601.bpy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 42862119 num_examples: 25167 download_size: 6532133 dataset_size: 42862119 - config_name: 20230601.br features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 84044684 num_examples: 79959 download_size: 48952223 dataset_size: 84044684 - config_name: 20230601.bs features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 190816695 num_examples: 92065 download_size: 106053913 dataset_size: 190816695 - config_name: 20230601.bug features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3433134 num_examples: 15873 download_size: 815878 dataset_size: 3433134 - config_name: 20230601.bxr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6695205 num_examples: 2791 download_size: 3078381 dataset_size: 6695205 - config_name: 20230601.ca features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1918941844 num_examples: 728483 download_size: 1113762234 dataset_size: 1918941844 - config_name: 20230601.cbk-zam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2808337 num_examples: 3307 download_size: 1261855 dataset_size: 2808337 - config_name: 20230601.cdo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5010639 num_examples: 16234 download_size: 1949302 dataset_size: 5010639 - config_name: 20230601.ce features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 726468413 num_examples: 599863 download_size: 86627608 dataset_size: 726468413 - config_name: 20230601.ceb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4569352784 num_examples: 6124009 download_size: 926156250 dataset_size: 4569352784 - config_name: 20230601.ch features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 187255 num_examples: 573 download_size: 96403 dataset_size: 187255 - config_name: 20230601.cho features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7974 num_examples: 14 download_size: 9782 dataset_size: 7974 - config_name: 20230601.chr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 764388 num_examples: 1113 download_size: 341232 dataset_size: 764388 - config_name: 20230601.chy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 149009 num_examples: 801 download_size: 76580 dataset_size: 149009 - config_name: 20230601.ckb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 101248717 num_examples: 49928 download_size: 40379289 dataset_size: 101248717 - config_name: 20230601.co features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8069524 num_examples: 6565 download_size: 4650142 dataset_size: 8069524 - config_name: 20230601.cr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 50625 num_examples: 182 download_size: 26509 dataset_size: 50625 - config_name: 20230601.crh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9056373 num_examples: 25642 download_size: 3453399 dataset_size: 9056373 - config_name: 20230601.cs features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1529727976 num_examples: 525205 download_size: 966856046 dataset_size: 1529727976 - config_name: 20230601.csb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3739371 num_examples: 5478 download_size: 2049003 dataset_size: 3739371 - config_name: 20230601.cu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 975765 num_examples: 1221 download_size: 395563 dataset_size: 975765 - config_name: 20230601.cv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 81019358 num_examples: 51407 download_size: 29189010 dataset_size: 81019358 - config_name: 20230601.cy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 304314230 num_examples: 278927 download_size: 111093453 dataset_size: 304314230 - config_name: 20230601.da features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 540186121 num_examples: 291721 download_size: 326825586 dataset_size: 540186121 - config_name: 20230601.dag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8116697 num_examples: 8850 download_size: 3469680 dataset_size: 8116697 - config_name: 20230601.de features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9446726072 num_examples: 2801769 download_size: 5752429951 dataset_size: 9446726072 - config_name: 20230601.din features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 554422 num_examples: 506 download_size: 334229 dataset_size: 554422 - config_name: 20230601.diq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19300910 num_examples: 40589 download_size: 7469118 dataset_size: 19300910 - config_name: 20230601.dsb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3303132 num_examples: 3357 download_size: 1923763 dataset_size: 3303132 - config_name: 20230601.dty features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6972841 num_examples: 3625 download_size: 2497168 dataset_size: 6972841 - config_name: 20230601.dv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13916007 num_examples: 4344 download_size: 5255070 dataset_size: 13916007 - config_name: 20230601.dz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8517069 num_examples: 777 download_size: 2474869 dataset_size: 8517069 - config_name: 20230601.ee features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 844062 num_examples: 1164 download_size: 464418 dataset_size: 844062 - config_name: 20230601.el features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1314451459 num_examples: 222598 download_size: 627997252 dataset_size: 1314451459 - config_name: 20230601.eml features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3605037 num_examples: 12945 download_size: 1681847 dataset_size: 3605037 - config_name: 20230601.en features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21325670826 num_examples: 6660918 download_size: 12512970849 dataset_size: 21325670826 - config_name: 20230601.eo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 508055613 num_examples: 337291 download_size: 294377264 dataset_size: 508055613 - config_name: 20230601.es features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5889963046 num_examples: 1805012 download_size: 3477902737 dataset_size: 5889963046 - config_name: 20230601.eu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 547125100 num_examples: 405840 download_size: 264099434 dataset_size: 547125100 - config_name: 20230601.ext features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4182030 num_examples: 3636 download_size: 2631658 dataset_size: 4182030 - config_name: 20230601.fa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1851617207 num_examples: 964236 download_size: 759372155 dataset_size: 1851617207 - config_name: 20230601.fat features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1933259 num_examples: 1046 download_size: 1067434 dataset_size: 1933259 - config_name: 20230601.ff features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1401981 num_examples: 1484 download_size: 824781 dataset_size: 1401981 - config_name: 20230601.fi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1125659121 num_examples: 553519 download_size: 678674705 dataset_size: 1125659121 - config_name: 20230601.fiu-vro features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4773469 num_examples: 6559 download_size: 2464729 dataset_size: 4773469 - config_name: 20230601.fj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 593373 num_examples: 1283 download_size: 323108 dataset_size: 593373 - config_name: 20230601.fo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15058635 num_examples: 13954 download_size: 8633381 dataset_size: 15058635 - config_name: 20230601.fr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7910192478 num_examples: 2525926 download_size: 4618774275 dataset_size: 7910192478 - config_name: 20230601.frp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3517265 num_examples: 5689 download_size: 1847765 dataset_size: 3517265 - config_name: 20230601.frr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10292357 num_examples: 17260 download_size: 5084999 dataset_size: 10292357 - config_name: 20230601.fur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4062291 num_examples: 3967 download_size: 2401534 dataset_size: 4062291 - config_name: 20230601.fy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 130189677 num_examples: 51506 download_size: 73624821 dataset_size: 130189677 - config_name: 20230601.ga features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 59266973 num_examples: 58579 download_size: 33377343 dataset_size: 59266973 - config_name: 20230601.gag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2405210 num_examples: 2966 download_size: 1319553 dataset_size: 2405210 - config_name: 20230601.gan features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2878337 num_examples: 6691 download_size: 1485195 dataset_size: 2878337 - config_name: 20230601.gcr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2335924 num_examples: 2397 download_size: 1344338 dataset_size: 2335924 - config_name: 20230601.gd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14026914 num_examples: 16018 download_size: 7175920 dataset_size: 14026914 - config_name: 20230601.gl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 483432936 num_examples: 196473 download_size: 287329100 dataset_size: 483432936 - config_name: 20230601.glk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6067898 num_examples: 7035 download_size: 2372761 dataset_size: 6067898 - config_name: 20230601.gn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6754303 num_examples: 5298 download_size: 3702975 dataset_size: 6754303 - config_name: 20230601.gom features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 30830020 num_examples: 4250 download_size: 11258918 dataset_size: 30830020 - config_name: 20230601.gor features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6111487 num_examples: 14556 download_size: 2036928 dataset_size: 6111487 - config_name: 20230601.got features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1518930 num_examples: 1005 download_size: 626840 dataset_size: 1518930 - config_name: 20230601.gu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 120869564 num_examples: 30357 download_size: 39339802 dataset_size: 120869564 - config_name: 20230601.guc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 916033 num_examples: 578 download_size: 547551 dataset_size: 916033 - config_name: 20230601.gur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1414225 num_examples: 954 download_size: 753483 dataset_size: 1414225 - config_name: 20230601.guw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1894278 num_examples: 1301 download_size: 1027313 dataset_size: 1894278 - config_name: 20230601.gv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5969707 num_examples: 5954 download_size: 3155779 dataset_size: 5969707 - config_name: 20230601.ha features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 62945985 num_examples: 27905 download_size: 35159511 dataset_size: 62945985 - config_name: 20230601.hak features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4493017 num_examples: 10183 download_size: 1875697 dataset_size: 4493017 - config_name: 20230601.haw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1648045 num_examples: 2580 download_size: 681202 dataset_size: 1648045 - config_name: 20230601.he features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1890961532 num_examples: 325534 download_size: 955373507 dataset_size: 1890961532 - config_name: 20230601.hi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 652930384 num_examples: 160068 download_size: 230339569 dataset_size: 652930384 - config_name: 20230601.hif features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5670768 num_examples: 10975 download_size: 2708959 dataset_size: 5670768 - config_name: 20230601.ho features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3450 num_examples: 3 download_size: 7714 dataset_size: 3450 - config_name: 20230601.hsb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15650862 num_examples: 13929 download_size: 7422054 dataset_size: 15650862 - config_name: 20230601.ht features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 54468681 num_examples: 69778 download_size: 21591458 dataset_size: 54468681 - config_name: 20230601.hu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1490296647 num_examples: 526030 download_size: 904279478 dataset_size: 1490296647 - config_name: 20230601.hy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1142467643 num_examples: 297933 download_size: 477398053 dataset_size: 1142467643 - config_name: 20230601.hyw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 57478946 num_examples: 10933 download_size: 26499417 dataset_size: 57478946 - config_name: 20230601.ia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16183963 num_examples: 27939 download_size: 8108662 dataset_size: 16183963 - config_name: 20230601.id features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1086885042 num_examples: 648383 download_size: 575124507 dataset_size: 1086885042 - config_name: 20230601.ie features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6482834 num_examples: 11705 download_size: 2881031 dataset_size: 6482834 - config_name: 20230601.ig features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 45043729 num_examples: 16970 download_size: 23565907 dataset_size: 45043729 - config_name: 20230601.ii features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8921 num_examples: 14 download_size: 14936 dataset_size: 8921 - config_name: 20230601.ik features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 190236 num_examples: 823 download_size: 109460 dataset_size: 190236 - config_name: 20230601.ilo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16860855 num_examples: 15379 download_size: 7350161 dataset_size: 16860855 - config_name: 20230601.inh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2697943 num_examples: 2108 download_size: 1257824 dataset_size: 2697943 - config_name: 20230601.io features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 37291268 num_examples: 38155 download_size: 16629067 dataset_size: 37291268 - config_name: 20230601.is features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 86487184 num_examples: 56795 download_size: 51372350 dataset_size: 86487184 - config_name: 20230601.it features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4826403309 num_examples: 1812514 download_size: 2926177870 dataset_size: 4826403309 - config_name: 20230601.iu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 284349 num_examples: 564 download_size: 132368 dataset_size: 284349 - config_name: 20230601.ja features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6913216645 num_examples: 1373311 download_size: 3923535785 dataset_size: 6913216645 - config_name: 20230601.jam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1140551 num_examples: 1771 download_size: 700995 dataset_size: 1140551 - config_name: 20230601.jbo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2521508 num_examples: 1390 download_size: 888087 dataset_size: 2521508 - config_name: 20230601.jv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 70703094 num_examples: 73024 download_size: 36199167 dataset_size: 70703094 - config_name: 20230601.ka features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 693108151 num_examples: 168185 download_size: 237719175 dataset_size: 693108151 - config_name: 20230601.kaa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4584133 num_examples: 3560 download_size: 2620141 dataset_size: 4584133 - config_name: 20230601.kab features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4374017 num_examples: 5800 download_size: 2570505 dataset_size: 4374017 - config_name: 20230601.kbd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3034249 num_examples: 1637 download_size: 1317388 dataset_size: 3034249 - config_name: 20230601.kbp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3571606 num_examples: 1918 download_size: 1794790 dataset_size: 3571606 - config_name: 20230601.kcg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 663326 num_examples: 825 download_size: 350587 dataset_size: 663326 - config_name: 20230601.kg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 463083 num_examples: 1333 download_size: 240321 dataset_size: 463083 - config_name: 20230601.ki features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 453178 num_examples: 1635 download_size: 243544 dataset_size: 453178 - config_name: 20230601.kj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5190 num_examples: 5 download_size: 10453 dataset_size: 5190 - config_name: 20230601.kk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 488955469 num_examples: 237304 download_size: 176872369 dataset_size: 488955469 - config_name: 20230601.kl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 312839 num_examples: 298 download_size: 193192 dataset_size: 312839 - config_name: 20230601.km features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 102051337 num_examples: 11784 download_size: 35067125 dataset_size: 102051337 - config_name: 20230601.kn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 394061570 num_examples: 30793 download_size: 143867617 dataset_size: 394061570 - config_name: 20230601.ko features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1374136790 num_examples: 635278 download_size: 777760206 dataset_size: 1374136790 - config_name: 20230601.koi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5077608 num_examples: 3487 download_size: 1880469 dataset_size: 5077608 - config_name: 20230601.krc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4592333 num_examples: 2098 download_size: 2019043 dataset_size: 4592333 - config_name: 20230601.ks features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2380920 num_examples: 4060 download_size: 849849 dataset_size: 2380920 - config_name: 20230601.ksh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3110398 num_examples: 2945 download_size: 2004743 dataset_size: 3110398 - config_name: 20230601.ku features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 42327613 num_examples: 59529 download_size: 21970440 dataset_size: 42327613 - config_name: 20230601.kv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9221030 num_examples: 5589 download_size: 3676356 dataset_size: 9221030 - config_name: 20230601.kw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4653320 num_examples: 7070 download_size: 2695687 dataset_size: 4653320 - config_name: 20230601.ky features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 168214006 num_examples: 80594 download_size: 64353836 dataset_size: 168214006 - config_name: 20230601.la features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 139977277 num_examples: 137851 download_size: 75850224 dataset_size: 139977277 - config_name: 20230601.lad features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4820385 num_examples: 3638 download_size: 2703040 dataset_size: 4820385 - config_name: 20230601.lb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 87567860 num_examples: 61757 download_size: 49791518 dataset_size: 87567860 - config_name: 20230601.lbe features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 698292 num_examples: 1276 download_size: 282486 dataset_size: 698292 - config_name: 20230601.lez features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9785097 num_examples: 4256 download_size: 3849506 dataset_size: 9785097 - config_name: 20230601.lfn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8850905 num_examples: 4805 download_size: 5189938 dataset_size: 8850905 - config_name: 20230601.lg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6771716 num_examples: 4016 download_size: 3634293 dataset_size: 6771716 - config_name: 20230601.li features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 29183994 num_examples: 14308 download_size: 17566220 dataset_size: 29183994 - config_name: 20230601.lij features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11088927 num_examples: 11132 download_size: 6042920 dataset_size: 11088927 - config_name: 20230601.lld features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 45325217 num_examples: 158242 download_size: 12436563 dataset_size: 45325217 - config_name: 20230601.lmo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 42267433 num_examples: 71061 download_size: 18724770 dataset_size: 42267433 - config_name: 20230601.ln features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2024697 num_examples: 3515 download_size: 1115171 dataset_size: 2024697 - config_name: 20230601.lo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14729412 num_examples: 4928 download_size: 5382036 dataset_size: 14729412 - config_name: 20230601.lrc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 144 num_examples: 1 download_size: 2723 dataset_size: 144 - config_name: 20230601.lt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 331252602 num_examples: 208114 download_size: 191925990 dataset_size: 331252602 - config_name: 20230601.ltg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 901980 num_examples: 1044 download_size: 522213 dataset_size: 901980 - config_name: 20230601.lv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 220969643 num_examples: 120295 download_size: 126161867 dataset_size: 220969643 - config_name: 20230601.mad features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1325061 num_examples: 1103 download_size: 764579 dataset_size: 1325061 - config_name: 20230601.mai features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21215977 num_examples: 14622 download_size: 6041134 dataset_size: 21215977 - config_name: 20230601.map-bms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5400186 num_examples: 13554 download_size: 2420169 dataset_size: 5400186 - config_name: 20230601.mdf features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4033455 num_examples: 3473 download_size: 1513534 dataset_size: 4033455 - config_name: 20230601.mg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 71936817 num_examples: 95675 download_size: 21206762 dataset_size: 71936817 - config_name: 20230601.mh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11524 num_examples: 8 download_size: 16877 dataset_size: 11524 - config_name: 20230601.mhr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19030836 num_examples: 11016 download_size: 6821706 dataset_size: 19030836 - config_name: 20230601.mi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4120867 num_examples: 7855 download_size: 1016905 dataset_size: 4120867 - config_name: 20230601.min features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 118484114 num_examples: 226953 download_size: 25401691 dataset_size: 118484114 - config_name: 20230601.mk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 633734922 num_examples: 136723 download_size: 263383509 dataset_size: 633734922 - config_name: 20230601.ml features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 485143578 num_examples: 84794 download_size: 179727029 dataset_size: 485143578 - config_name: 20230601.mn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 88813927 num_examples: 23385 download_size: 40026827 dataset_size: 88813927 - config_name: 20230601.mni features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9790220 num_examples: 10877 download_size: 2193774 dataset_size: 9790220 - config_name: 20230601.mnw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 45579901 num_examples: 3184 download_size: 13207357 dataset_size: 45579901 - config_name: 20230601.mr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 254646708 num_examples: 92898 download_size: 79982313 dataset_size: 254646708 - config_name: 20230601.mrj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8729899 num_examples: 10542 download_size: 3278742 dataset_size: 8729899 - config_name: 20230601.ms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 410354637 num_examples: 365491 download_size: 206610861 dataset_size: 410354637 - config_name: 20230601.mt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 26613613 num_examples: 5369 download_size: 15563924 dataset_size: 26613613 - config_name: 20230601.mus features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 922 num_examples: 2 download_size: 5286 dataset_size: 922 - config_name: 20230601.mwl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19284605 num_examples: 4474 download_size: 11469001 dataset_size: 19284605 - config_name: 20230601.my features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 310836677 num_examples: 108750 download_size: 84350660 dataset_size: 310836677 - config_name: 20230601.myv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11073788 num_examples: 7910 download_size: 4560227 dataset_size: 11073788 - config_name: 20230601.mzn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14682517 num_examples: 15995 download_size: 4856126 dataset_size: 14682517 - config_name: 20230601.nah features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2843124 num_examples: 6654 download_size: 1347633 dataset_size: 2843124 - config_name: 20230601.nap features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6365024 num_examples: 14849 download_size: 3169570 dataset_size: 6365024 - config_name: 20230601.nds features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 92743798 num_examples: 84225 download_size: 47925882 dataset_size: 92743798 - config_name: 20230601.nds-nl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13432115 num_examples: 7669 download_size: 8207550 dataset_size: 13432115 - config_name: 20230601.ne features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 105562688 num_examples: 32084 download_size: 36335987 dataset_size: 105562688 - config_name: 20230601.new features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 159067466 num_examples: 73004 download_size: 20472096 dataset_size: 159067466 - config_name: 20230601.ng features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 68090 num_examples: 21 download_size: 52355 dataset_size: 68090 - config_name: 20230601.nia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1793045 num_examples: 1638 download_size: 908004 dataset_size: 1793045 - config_name: 20230601.nl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2607286503 num_examples: 2123556 download_size: 1451716829 dataset_size: 2607286503 - config_name: 20230601.nn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 233905017 num_examples: 165610 download_size: 132674509 dataset_size: 233905017 - config_name: 20230601.no features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1018553680 num_examples: 611542 download_size: 594771430 dataset_size: 1018553680 - config_name: 20230601.nov features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 912652 num_examples: 1626 download_size: 466451 dataset_size: 912652 - config_name: 20230601.nqo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8295905 num_examples: 1577 download_size: 3503359 dataset_size: 8295905 - config_name: 20230601.nrm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3212495 num_examples: 4887 download_size: 1504411 dataset_size: 3212495 - config_name: 20230601.nso features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2753446 num_examples: 8617 download_size: 912548 dataset_size: 2753446 - config_name: 20230601.nv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16785014 num_examples: 22189 download_size: 3271175 dataset_size: 16785014 - config_name: 20230601.ny features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1693443 num_examples: 1133 download_size: 937213 dataset_size: 1693443 - config_name: 20230601.oc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 117818984 num_examples: 88886 download_size: 62764519 dataset_size: 117818984 - config_name: 20230601.olo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3122448 num_examples: 4514 download_size: 1707016 dataset_size: 3122448 - config_name: 20230601.om features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3057811 num_examples: 1574 download_size: 1720686 dataset_size: 3057811 - config_name: 20230601.or features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 71342568 num_examples: 16793 download_size: 25347488 dataset_size: 71342568 - config_name: 20230601.os features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12975022 num_examples: 17066 download_size: 5519425 dataset_size: 12975022 - config_name: 20230601.pa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 205173613 num_examples: 49955 download_size: 78370120 dataset_size: 205173613 - config_name: 20230601.pag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1336264 num_examples: 2638 download_size: 417192 dataset_size: 1336264 - config_name: 20230601.pam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8241795 num_examples: 8935 download_size: 4231831 dataset_size: 8241795 - config_name: 20230601.pap features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3662048 num_examples: 3237 download_size: 2098802 dataset_size: 3662048 - config_name: 20230601.pcd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5622299 num_examples: 5639 download_size: 3094652 dataset_size: 5622299 - config_name: 20230601.pcm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1531576 num_examples: 954 download_size: 937573 dataset_size: 1531576 - config_name: 20230601.pdc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1196915 num_examples: 2162 download_size: 688667 dataset_size: 1196915 - config_name: 20230601.pfl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3682829 num_examples: 2756 download_size: 1962515 dataset_size: 3682829 - config_name: 20230601.pi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1134003 num_examples: 3056 download_size: 196632 dataset_size: 1134003 - config_name: 20230601.pih features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 378374 num_examples: 930 download_size: 236668 dataset_size: 378374 - config_name: 20230601.pl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2904184909 num_examples: 1569515 download_size: 1787531053 dataset_size: 2904184909 - config_name: 20230601.pms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 34301415 num_examples: 67899 download_size: 11986805 dataset_size: 34301415 - config_name: 20230601.pnb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 298316454 num_examples: 70562 download_size: 130650981 dataset_size: 298316454 - config_name: 20230601.pnt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 675000 num_examples: 535 download_size: 298222 dataset_size: 675000 - config_name: 20230601.ps features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 104012780 num_examples: 19565 download_size: 48710783 dataset_size: 104012780 - config_name: 20230601.pt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2693736720 num_examples: 1103446 download_size: 1571347957 dataset_size: 2693736720 - config_name: 20230601.pwn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 800565 num_examples: 380 download_size: 446595 dataset_size: 800565 - config_name: 20230601.qu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16631588 num_examples: 23909 download_size: 7575996 dataset_size: 16631588 - config_name: 20230601.rm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 17822525 num_examples: 3815 download_size: 10339459 dataset_size: 17822525 - config_name: 20230601.rmy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 491195 num_examples: 930 download_size: 285442 dataset_size: 491195 - config_name: 20230601.rn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 522745 num_examples: 805 download_size: 295575 dataset_size: 522745 - config_name: 20230601.ro features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 834681972 num_examples: 440015 download_size: 466488330 dataset_size: 834681972 - config_name: 20230601.roa-rup features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1713384 num_examples: 1409 download_size: 955926 dataset_size: 1713384 - config_name: 20230601.roa-tara features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7418561 num_examples: 9337 download_size: 3970663 dataset_size: 7418561 - config_name: 20230601.ru features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10097718899 num_examples: 1918942 download_size: 4880008552 dataset_size: 10097718899 - config_name: 20230601.rue features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12975836 num_examples: 8703 download_size: 6269020 dataset_size: 12975836 - config_name: 20230601.rw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10794817 num_examples: 7425 download_size: 6009979 dataset_size: 10794817 - config_name: 20230601.sa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 69233233 num_examples: 12101 download_size: 23590461 dataset_size: 69233233 - config_name: 20230601.sah features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 47530889 num_examples: 16598 download_size: 21213858 dataset_size: 47530889 - config_name: 20230601.sat features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 35005528 num_examples: 8264 download_size: 12124520 dataset_size: 35005528 - config_name: 20230601.sc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12683528 num_examples: 7540 download_size: 7650423 dataset_size: 12683528 - config_name: 20230601.scn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 17672274 num_examples: 26507 download_size: 10210177 dataset_size: 17672274 - config_name: 20230601.sco features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 43796852 num_examples: 36206 download_size: 24764727 dataset_size: 43796852 - config_name: 20230601.sd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36672141 num_examples: 16882 download_size: 17409382 dataset_size: 36672141 - config_name: 20230601.se features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3600247 num_examples: 8040 download_size: 1814982 dataset_size: 3600247 - config_name: 20230601.sg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 127791 num_examples: 548 download_size: 63800 dataset_size: 127791 - config_name: 20230601.sh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 569915575 num_examples: 458272 download_size: 270502498 dataset_size: 569915575 - config_name: 20230601.shi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2195129 num_examples: 1544 download_size: 1311300 dataset_size: 2195129 - config_name: 20230601.shn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 33233508 num_examples: 13706 download_size: 8107005 dataset_size: 33233508 - config_name: 20230601.si features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 135560965 num_examples: 22574 download_size: 52870973 dataset_size: 135560965 - config_name: 20230601.sk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 410287543 num_examples: 240597 download_size: 237984111 dataset_size: 410287543 - config_name: 20230601.skr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 22294235 num_examples: 5739 download_size: 9744982 dataset_size: 22294235 - config_name: 20230601.sl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 444732062 num_examples: 181212 download_size: 263697513 dataset_size: 444732062 - config_name: 20230601.sm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 891597 num_examples: 1143 download_size: 485815 dataset_size: 891597 - config_name: 20230601.smn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5526668 num_examples: 5094 download_size: 2710998 dataset_size: 5526668 - config_name: 20230601.sn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9252554 num_examples: 10917 download_size: 4738498 dataset_size: 9252554 - config_name: 20230601.so features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14893759 num_examples: 10812 download_size: 8617659 dataset_size: 14893759 - config_name: 20230601.sq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 197206847 num_examples: 100423 download_size: 110414776 dataset_size: 197206847 - config_name: 20230601.sr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1690745100 num_examples: 671352 download_size: 695586988 dataset_size: 1690745100 - config_name: 20230601.srn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 649044 num_examples: 1218 download_size: 214987 dataset_size: 649044 - config_name: 20230601.ss features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 861417 num_examples: 720 download_size: 489383 dataset_size: 861417 - config_name: 20230601.st features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 934954 num_examples: 1073 download_size: 517491 dataset_size: 934954 - config_name: 20230601.stq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4929355 num_examples: 4129 download_size: 2878034 dataset_size: 4929355 - config_name: 20230601.su features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 47909002 num_examples: 61490 download_size: 19683635 dataset_size: 47909002 - config_name: 20230601.sv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2133848723 num_examples: 2564263 download_size: 1002020509 dataset_size: 2133848723 - config_name: 20230601.sw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 71857907 num_examples: 77334 download_size: 35252918 dataset_size: 71857907 - config_name: 20230601.szl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21335080 num_examples: 56652 download_size: 7284436 dataset_size: 21335080 - config_name: 20230601.szy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10412319 num_examples: 4709 download_size: 5572825 dataset_size: 10412319 - config_name: 20230601.tay features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2779734 num_examples: 2595 download_size: 1147869 dataset_size: 2779734 - config_name: 20230601.tcy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11968976 num_examples: 2173 download_size: 4524692 dataset_size: 11968976 - config_name: 20230601.te features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 705766405 num_examples: 83107 download_size: 206360536 dataset_size: 705766405 - config_name: 20230601.tet features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1457614 num_examples: 1460 download_size: 739227 dataset_size: 1457614 - config_name: 20230601.tg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 145506377 num_examples: 109839 download_size: 48637192 dataset_size: 145506377 - config_name: 20230601.th features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 987873133 num_examples: 156445 download_size: 365894157 dataset_size: 987873133 - config_name: 20230601.ti features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 665363 num_examples: 433 download_size: 328037 dataset_size: 665363 - config_name: 20230601.tk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12580480 num_examples: 7836 download_size: 6951103 dataset_size: 12580480 - config_name: 20230601.tl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 82731267 num_examples: 44797 download_size: 44058126 dataset_size: 82731267 - config_name: 20230601.tn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3562981 num_examples: 1162 download_size: 1244173 dataset_size: 3562981 - config_name: 20230601.to features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1074947 num_examples: 1848 download_size: 510687 dataset_size: 1074947 - config_name: 20230601.tpi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 450891 num_examples: 1390 download_size: 236441 dataset_size: 450891 - config_name: 20230601.tr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 965186144 num_examples: 524184 download_size: 543958666 dataset_size: 965186144 - config_name: 20230601.trv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4873244 num_examples: 1809 download_size: 2635461 dataset_size: 4873244 - config_name: 20230601.ts features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 841497 num_examples: 769 download_size: 451958 dataset_size: 841497 - config_name: 20230601.tt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 679276199 num_examples: 500608 download_size: 128386602 dataset_size: 679276199 - config_name: 20230601.tum features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8395079 num_examples: 14169 download_size: 3225881 dataset_size: 8395079 - config_name: 20230601.tw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6562128 num_examples: 3608 download_size: 3389042 dataset_size: 6562128 - config_name: 20230601.ty features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 324678 num_examples: 1348 download_size: 145184 dataset_size: 324678 - config_name: 20230601.tyv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14032235 num_examples: 3459 download_size: 6378954 dataset_size: 14032235 - config_name: 20230601.udm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6918258 num_examples: 5586 download_size: 2937644 dataset_size: 6918258 - config_name: 20230601.ug features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 41939834 num_examples: 8557 download_size: 17588763 dataset_size: 41939834 - config_name: 20230601.uk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4815765166 num_examples: 1266287 download_size: 2257591520 dataset_size: 4815765166 - config_name: 20230601.ur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 394375073 num_examples: 194435 download_size: 160552761 dataset_size: 394375073 - config_name: 20230601.uz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 372775375 num_examples: 241353 download_size: 196367714 dataset_size: 372775375 - config_name: 20230601.ve features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 347015 num_examples: 836 download_size: 159547 dataset_size: 347015 - config_name: 20230601.vec features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 37671800 num_examples: 69181 download_size: 16029908 dataset_size: 37671800 - config_name: 20230601.vep features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11259222 num_examples: 6851 download_size: 6196150 dataset_size: 11259222 - config_name: 20230601.vi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1584847634 num_examples: 1283785 download_size: 731354374 dataset_size: 1584847634 - config_name: 20230601.vls features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11296047 num_examples: 7824 download_size: 6952370 dataset_size: 11296047 - config_name: 20230601.vo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 18943004 num_examples: 33641 download_size: 6379410 dataset_size: 18943004 - config_name: 20230601.wa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11990482 num_examples: 11858 download_size: 7144929 dataset_size: 11990482 - config_name: 20230601.war features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 468715357 num_examples: 1266238 download_size: 109807953 dataset_size: 468715357 - config_name: 20230601.wo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3498671 num_examples: 1719 download_size: 2076485 dataset_size: 3498671 - config_name: 20230601.wuu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 24986530 num_examples: 42950 download_size: 15960262 dataset_size: 24986530 - config_name: 20230601.xal features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1386014 num_examples: 2307 download_size: 508481 dataset_size: 1386014 - config_name: 20230601.xh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2320277 num_examples: 1601 download_size: 1444732 dataset_size: 2320277 - config_name: 20230601.xmf features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36557690 num_examples: 17705 download_size: 12535173 dataset_size: 36557690 - config_name: 20230601.yi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36031133 num_examples: 15297 download_size: 16153644 dataset_size: 36031133 - config_name: 20230601.yo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 18018480 num_examples: 33179 download_size: 8274108 dataset_size: 18018480 - config_name: 20230601.za features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1276590 num_examples: 2722 download_size: 642448 dataset_size: 1276590 - config_name: 20230601.zea features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5059421 num_examples: 5756 download_size: 2547904 dataset_size: 5059421 - config_name: 20230601.zh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2720688196 num_examples: 1357881 download_size: 1718953037 dataset_size: 2720688196 - config_name: 20230601.zh-classical features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14617535 num_examples: 12513 download_size: 9882532 dataset_size: 14617535 - config_name: 20230601.zh-min-nan features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 159218053 num_examples: 432531 download_size: 37371610 dataset_size: 159218053 - config_name: 20230601.zh-yue features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 107325669 num_examples: 131542 download_size: 63294114 dataset_size: 107325669 - config_name: 20230601.zu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6915666 num_examples: 11381 download_size: 3683813 dataset_size: 6915666 - config_name: 20230601.hr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 438311404 num_examples: 200747 download_size: 275098294 dataset_size: 438311404 - config_name: 20230601.simple features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 282844880 num_examples: 231233 download_size: 154520600 dataset_size: 282844880 - config_name: 20230601.ta features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 789472198 num_examples: 156273 download_size: 258263767 dataset_size: 789472198 - config_name: 20230901.ab features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4257828 num_examples: 6135 download_size: 1204070 dataset_size: 4257828 - config_name: 20230901.ace features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4988748 num_examples: 12932 download_size: 1532859 dataset_size: 4988748 - config_name: 20230901.ady features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 732900 num_examples: 656 download_size: 334202 dataset_size: 732900 - config_name: 20230901.af features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 223836122 num_examples: 110683 download_size: 122868601 dataset_size: 223836122 - config_name: 20230901.ak features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 189 num_examples: 1 download_size: 3045 dataset_size: 189 - config_name: 20230901.als features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 81066470 num_examples: 29914 download_size: 49151942 dataset_size: 81066470 - config_name: 20230901.alt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6370197 num_examples: 1076 download_size: 2683190 dataset_size: 6370197 - config_name: 20230901.am features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 24108874 num_examples: 13863 download_size: 10659605 dataset_size: 24108874 - config_name: 20230901.ami features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4376488 num_examples: 1613 download_size: 2207864 dataset_size: 4376488 - config_name: 20230901.an features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 57157273 num_examples: 44090 download_size: 29392661 dataset_size: 57157273 - config_name: 20230901.ang features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2899899 num_examples: 4106 download_size: 1782699 dataset_size: 2899899 - config_name: 20230901.anp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9238243 num_examples: 2753 download_size: 3338080 dataset_size: 9238243 - config_name: 20230901.ar features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3090850739 num_examples: 1214692 download_size: 1336764394 dataset_size: 3090850739 - config_name: 20230901.arc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 837851 num_examples: 1935 download_size: 364313 dataset_size: 837851 - config_name: 20230901.ary features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10716445 num_examples: 7181 download_size: 4413789 dataset_size: 10716445 - config_name: 20230901.arz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1371439747 num_examples: 1619204 download_size: 309552126 dataset_size: 1371439747 - config_name: 20230901.as features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 88616101 num_examples: 12209 download_size: 33925273 dataset_size: 88616101 - config_name: 20230901.ast features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 470680707 num_examples: 133219 download_size: 271143532 dataset_size: 470680707 - config_name: 20230901.atj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1009452 num_examples: 1967 download_size: 512377 dataset_size: 1009452 - config_name: 20230901.av features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6136668 num_examples: 3420 download_size: 2568423 dataset_size: 6136668 - config_name: 20230901.avk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 31833142 num_examples: 28141 download_size: 7911635 dataset_size: 31833142 - config_name: 20230901.awa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3591539 num_examples: 3696 download_size: 1233124 dataset_size: 3591539 - config_name: 20230901.ay features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4378141 num_examples: 5348 download_size: 1748641 dataset_size: 4378141 - config_name: 20230901.az features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 430470815 num_examples: 195659 download_size: 228140471 dataset_size: 430470815 - config_name: 20230901.azb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 186776266 num_examples: 243263 download_size: 46619566 dataset_size: 186776266 - config_name: 20230901.ba features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 296321332 num_examples: 63134 download_size: 121809783 dataset_size: 296321332 - config_name: 20230901.ban features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 17383384 num_examples: 20242 download_size: 6524686 dataset_size: 17383384 - config_name: 20230901.bar features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36251706 num_examples: 27040 download_size: 21762636 dataset_size: 36251706 - config_name: 20230901.bat-smg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7584027 num_examples: 17214 download_size: 3437198 dataset_size: 7584027 - config_name: 20230901.be-x-old features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 249911330 num_examples: 83778 download_size: 113105161 dataset_size: 249911330 - config_name: 20230901.bcl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19285430 num_examples: 14723 download_size: 10682007 dataset_size: 19285430 - config_name: 20230901.be features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 618711883 num_examples: 234760 download_size: 286395236 dataset_size: 618711883 - config_name: 20230901.bg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1095408838 num_examples: 293306 download_size: 514238024 dataset_size: 1095408838 - config_name: 20230901.bh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16433197 num_examples: 8552 download_size: 5775459 dataset_size: 16433197 - config_name: 20230901.bi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 405238 num_examples: 1544 download_size: 204286 dataset_size: 405238 - config_name: 20230901.bjn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6761698 num_examples: 10460 download_size: 3255595 dataset_size: 6761698 - config_name: 20230901.blk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 25837114 num_examples: 2923 download_size: 7802724 dataset_size: 25837114 - config_name: 20230901.bm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 591154 num_examples: 1254 download_size: 324954 dataset_size: 591154 - config_name: 20230901.bn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 945095157 num_examples: 141288 download_size: 340510394 dataset_size: 945095157 - config_name: 20230901.bo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 132468794 num_examples: 12826 download_size: 38750901 dataset_size: 132468794 - config_name: 20230901.bpy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 42975074 num_examples: 25165 download_size: 6557544 dataset_size: 42975074 - config_name: 20230901.br features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 84959382 num_examples: 83342 download_size: 49373423 dataset_size: 84959382 - config_name: 20230901.bs features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 192322421 num_examples: 92325 download_size: 106973603 dataset_size: 192322421 - config_name: 20230901.bug features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3433942 num_examples: 15877 download_size: 816476 dataset_size: 3433942 - config_name: 20230901.bxr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6686504 num_examples: 2791 download_size: 3073419 dataset_size: 6686504 - config_name: 20230901.ca features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1942397691 num_examples: 733807 download_size: 1127952357 dataset_size: 1942397691 - config_name: 20230901.cbk-zam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1997943 num_examples: 3276 download_size: 776590 dataset_size: 1997943 - config_name: 20230901.cdo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5085776 num_examples: 16406 download_size: 1972779 dataset_size: 5085776 - config_name: 20230901.ce features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 729121943 num_examples: 600961 download_size: 87442481 dataset_size: 729121943 - config_name: 20230901.ceb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4568428530 num_examples: 6122999 download_size: 925715583 dataset_size: 4568428530 - config_name: 20230901.ch features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 187141 num_examples: 591 download_size: 93248 dataset_size: 187141 - config_name: 20230901.cho features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7974 num_examples: 14 download_size: 9782 dataset_size: 7974 - config_name: 20230901.chr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 768617 num_examples: 1121 download_size: 343463 dataset_size: 768617 - config_name: 20230901.chy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 145752 num_examples: 800 download_size: 74383 dataset_size: 145752 - config_name: 20230901.ckb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 105393226 num_examples: 51534 download_size: 42196297 dataset_size: 105393226 - config_name: 20230901.co features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9828777 num_examples: 7286 download_size: 5312668 dataset_size: 9828777 - config_name: 20230901.cr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 54526 num_examples: 176 download_size: 34910 dataset_size: 54526 - config_name: 20230901.crh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9450530 num_examples: 26893 download_size: 3578677 dataset_size: 9450530 - config_name: 20230901.cs features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1552256812 num_examples: 531017 download_size: 981191812 dataset_size: 1552256812 - config_name: 20230901.csb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3748403 num_examples: 5480 download_size: 2055688 dataset_size: 3748403 - config_name: 20230901.cu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 981478 num_examples: 1237 download_size: 397764 dataset_size: 981478 - config_name: 20230901.cv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 81463626 num_examples: 51647 download_size: 29416321 dataset_size: 81463626 - config_name: 20230901.cy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 305551170 num_examples: 279341 download_size: 111947867 dataset_size: 305551170 - config_name: 20230901.da features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 544417184 num_examples: 294196 download_size: 329369262 dataset_size: 544417184 - config_name: 20230901.dag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11405576 num_examples: 9584 download_size: 4905465 dataset_size: 11405576 - config_name: 20230901.de features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9552907552 num_examples: 2828561 download_size: 5816126238 dataset_size: 9552907552 - config_name: 20230901.din features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 562639 num_examples: 511 download_size: 339141 dataset_size: 562639 - config_name: 20230901.diq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19574906 num_examples: 41541 download_size: 7581584 dataset_size: 19574906 - config_name: 20230901.dsb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3314217 num_examples: 3376 download_size: 1930644 dataset_size: 3314217 - config_name: 20230901.dty features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6999985 num_examples: 3629 download_size: 2505457 dataset_size: 6999985 - config_name: 20230901.dv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13919491 num_examples: 4345 download_size: 5255676 dataset_size: 13919491 - config_name: 20230901.dz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8837256 num_examples: 787 download_size: 2571127 dataset_size: 8837256 - config_name: 20230901.ee features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 881798 num_examples: 1172 download_size: 482924 dataset_size: 881798 - config_name: 20230901.el features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1335513979 num_examples: 225623 download_size: 637838917 dataset_size: 1335513979 - config_name: 20230901.eml features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3620183 num_examples: 12954 download_size: 1687294 dataset_size: 3620183 - config_name: 20230901.en features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21550145456 num_examples: 6705754 download_size: 12639246876 dataset_size: 21550145456 - config_name: 20230901.eo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 517650573 num_examples: 342419 download_size: 299082818 dataset_size: 517650573 - config_name: 20230901.es features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5977729133 num_examples: 1826609 download_size: 3528834297 dataset_size: 5977729133 - config_name: 20230901.et features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 436983600 num_examples: 239195 download_size: 266302500 dataset_size: 436983600 - config_name: 20230901.eu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 555867111 num_examples: 408841 download_size: 269449522 dataset_size: 555867111 - config_name: 20230901.ext features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4334809 num_examples: 3737 download_size: 2724237 dataset_size: 4334809 - config_name: 20230901.fa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1879857088 num_examples: 972647 download_size: 771735257 dataset_size: 1879857088 - config_name: 20230901.fat features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2016722 num_examples: 1113 download_size: 1115327 dataset_size: 2016722 - config_name: 20230901.ff features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1619659 num_examples: 1929 download_size: 951246 dataset_size: 1619659 - config_name: 20230901.fi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1138299674 num_examples: 558359 download_size: 686112933 dataset_size: 1138299674 - config_name: 20230901.fiu-vro features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4789834 num_examples: 6572 download_size: 2475758 dataset_size: 4789834 - config_name: 20230901.fj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 600984 num_examples: 1291 download_size: 325888 dataset_size: 600984 - config_name: 20230901.fo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15387671 num_examples: 14054 download_size: 8835604 dataset_size: 15387671 - config_name: 20230901.fr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8004882292 num_examples: 2549364 download_size: 4674130728 dataset_size: 8004882292 - config_name: 20230901.frp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3646051 num_examples: 5744 download_size: 1899883 dataset_size: 3646051 - config_name: 20230901.frr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10513932 num_examples: 17708 download_size: 5190719 dataset_size: 10513932 - config_name: 20230901.fur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4073954 num_examples: 3977 download_size: 2408634 dataset_size: 4073954 - config_name: 20230901.fy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 133127089 num_examples: 52120 download_size: 75305215 dataset_size: 133127089 - config_name: 20230901.ga features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 60113068 num_examples: 58940 download_size: 33805587 dataset_size: 60113068 - config_name: 20230901.gag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2405444 num_examples: 2967 download_size: 1319216 dataset_size: 2405444 - config_name: 20230901.gan features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2905828 num_examples: 6739 download_size: 1504592 dataset_size: 2905828 - config_name: 20230901.gcr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2338042 num_examples: 2398 download_size: 1345374 dataset_size: 2338042 - config_name: 20230901.gd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14057133 num_examples: 16034 download_size: 7199577 dataset_size: 14057133 - config_name: 20230901.gl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 489325069 num_examples: 198354 download_size: 291176228 dataset_size: 489325069 - config_name: 20230901.glk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6078167 num_examples: 7046 download_size: 2379845 dataset_size: 6078167 - config_name: 20230901.gn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6869059 num_examples: 5475 download_size: 3777263 dataset_size: 6869059 - config_name: 20230901.gom features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 30886509 num_examples: 4257 download_size: 11274837 dataset_size: 30886509 - config_name: 20230901.gor features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6131050 num_examples: 14572 download_size: 2047896 dataset_size: 6131050 - config_name: 20230901.got features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1533270 num_examples: 1012 download_size: 633392 dataset_size: 1533270 - config_name: 20230901.gu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 121284600 num_examples: 30413 download_size: 39504567 dataset_size: 121284600 - config_name: 20230901.guc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 939870 num_examples: 618 download_size: 556772 dataset_size: 939870 - config_name: 20230901.gur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1620565 num_examples: 1119 download_size: 820347 dataset_size: 1620565 - config_name: 20230901.guw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1900240 num_examples: 1303 download_size: 1030888 dataset_size: 1900240 - config_name: 20230901.gv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6030196 num_examples: 6009 download_size: 3195985 dataset_size: 6030196 - config_name: 20230901.ha features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 73654886 num_examples: 33752 download_size: 40714314 dataset_size: 73654886 - config_name: 20230901.hak features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4509695 num_examples: 10238 download_size: 1879146 dataset_size: 4509695 - config_name: 20230901.haw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1672431 num_examples: 2615 download_size: 694045 dataset_size: 1672431 - config_name: 20230901.he features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1927823110 num_examples: 330733 download_size: 974031783 dataset_size: 1927823110 - config_name: 20230901.hi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 667221249 num_examples: 162285 download_size: 235641052 dataset_size: 667221249 - config_name: 20230901.hif features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5676100 num_examples: 10981 download_size: 2709810 dataset_size: 5676100 - config_name: 20230901.ho features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3450 num_examples: 3 download_size: 7714 dataset_size: 3450 - config_name: 20230901.hr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 441122356 num_examples: 201819 download_size: 276842760 dataset_size: 441122356 - config_name: 20230901.hsb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15657332 num_examples: 13949 download_size: 7427955 dataset_size: 15657332 - config_name: 20230901.ht features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 54641623 num_examples: 70002 download_size: 21699003 dataset_size: 54641623 - config_name: 20230901.hu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1505652559 num_examples: 529609 download_size: 913575039 dataset_size: 1505652559 - config_name: 20230901.hy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1167174995 num_examples: 301853 download_size: 488665605 dataset_size: 1167174995 - config_name: 20230901.hyw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 59286603 num_examples: 11644 download_size: 27305593 dataset_size: 59286603 - config_name: 20230901.ia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16319168 num_examples: 28081 download_size: 8200366 dataset_size: 16319168 - config_name: 20230901.id features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1110116852 num_examples: 657990 download_size: 587862344 dataset_size: 1110116852 - config_name: 20230901.ie features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6658278 num_examples: 11811 download_size: 2978290 dataset_size: 6658278 - config_name: 20230901.ig features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 55435770 num_examples: 19892 download_size: 28977840 dataset_size: 55435770 - config_name: 20230901.ii features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8921 num_examples: 14 download_size: 14936 dataset_size: 8921 - config_name: 20230901.ik features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 192007 num_examples: 831 download_size: 110667 dataset_size: 192007 - config_name: 20230901.ilo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16853115 num_examples: 15369 download_size: 7345494 dataset_size: 16853115 - config_name: 20230901.inh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2722201 num_examples: 2121 download_size: 1273603 dataset_size: 2722201 - config_name: 20230901.io features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 37616691 num_examples: 38645 download_size: 16826496 dataset_size: 37616691 - config_name: 20230901.is features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 87138239 num_examples: 57147 download_size: 51826151 dataset_size: 87138239 - config_name: 20230901.it features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4879369360 num_examples: 1824508 download_size: 2957576589 dataset_size: 4879369360 - config_name: 20230901.iu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 289114 num_examples: 561 download_size: 136067 dataset_size: 289114 - config_name: 20230901.ja features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6988535462 num_examples: 1383531 download_size: 3966219907 dataset_size: 6988535462 - config_name: 20230901.jam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1142809 num_examples: 1775 download_size: 702478 dataset_size: 1142809 - config_name: 20230901.jbo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2522674 num_examples: 1391 download_size: 888919 dataset_size: 2522674 - config_name: 20230901.jv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 71017946 num_examples: 73150 download_size: 36394809 dataset_size: 71017946 - config_name: 20230901.ka features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 696934958 num_examples: 169131 download_size: 238964498 dataset_size: 696934958 - config_name: 20230901.kaa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4754449 num_examples: 3856 download_size: 2682618 dataset_size: 4754449 - config_name: 20230901.kab features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4388232 num_examples: 5825 download_size: 2578056 dataset_size: 4388232 - config_name: 20230901.kbd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3040422 num_examples: 1656 download_size: 1319464 dataset_size: 3040422 - config_name: 20230901.kbp features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3579071 num_examples: 1922 download_size: 1795549 dataset_size: 3579071 - config_name: 20230901.kcg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 728303 num_examples: 913 download_size: 382843 dataset_size: 728303 - config_name: 20230901.kg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 386320 num_examples: 1325 download_size: 206106 dataset_size: 386320 - config_name: 20230901.ki features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 731003 num_examples: 1647 download_size: 408805 dataset_size: 731003 - config_name: 20230901.kj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5190 num_examples: 5 download_size: 10453 dataset_size: 5190 - config_name: 20230901.kk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 494357868 num_examples: 237902 download_size: 179217175 dataset_size: 494357868 - config_name: 20230901.kl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 313121 num_examples: 298 download_size: 193507 dataset_size: 313121 - config_name: 20230901.km features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 102576754 num_examples: 11874 download_size: 35281246 dataset_size: 102576754 - config_name: 20230901.kn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 399521127 num_examples: 31136 download_size: 145847507 dataset_size: 399521127 - config_name: 20230901.ko features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1401002436 num_examples: 643723 download_size: 792232087 dataset_size: 1401002436 - config_name: 20230901.koi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5102564 num_examples: 3504 download_size: 1887860 dataset_size: 5102564 - config_name: 20230901.krc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4586443 num_examples: 2098 download_size: 2015581 dataset_size: 4586443 - config_name: 20230901.ks features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2828813 num_examples: 4278 download_size: 1074931 dataset_size: 2828813 - config_name: 20230901.ksh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3115805 num_examples: 2944 download_size: 2007139 dataset_size: 3115805 - config_name: 20230901.ku features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 43200623 num_examples: 59822 download_size: 22481749 dataset_size: 43200623 - config_name: 20230901.kv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9244682 num_examples: 5603 download_size: 3687481 dataset_size: 9244682 - config_name: 20230901.kw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4675299 num_examples: 7088 download_size: 2703089 dataset_size: 4675299 - config_name: 20230901.ky features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 168378862 num_examples: 80665 download_size: 64423485 dataset_size: 168378862 - config_name: 20230901.la features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 140689294 num_examples: 138140 download_size: 76340691 dataset_size: 140689294 - config_name: 20230901.lad features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4878588 num_examples: 3648 download_size: 2737222 dataset_size: 4878588 - config_name: 20230901.lb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 88394374 num_examples: 62131 download_size: 50250905 dataset_size: 88394374 - config_name: 20230901.lbe features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 744689 num_examples: 1277 download_size: 304111 dataset_size: 744689 - config_name: 20230901.lez features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9793873 num_examples: 4264 download_size: 3852020 dataset_size: 9793873 - config_name: 20230901.lfn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8912633 num_examples: 4819 download_size: 5206921 dataset_size: 8912633 - config_name: 20230901.lg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6887606 num_examples: 4041 download_size: 3703329 dataset_size: 6887606 - config_name: 20230901.li features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 29373978 num_examples: 14526 download_size: 17641752 dataset_size: 29373978 - config_name: 20230901.lij features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11336209 num_examples: 11184 download_size: 6176932 dataset_size: 11336209 - config_name: 20230901.lld features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 50110703 num_examples: 180580 download_size: 13839995 dataset_size: 50110703 - config_name: 20230901.lmo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 43217251 num_examples: 72899 download_size: 19041052 dataset_size: 43217251 - config_name: 20230901.ln features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2024359 num_examples: 3531 download_size: 1116032 dataset_size: 2024359 - config_name: 20230901.lo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15117598 num_examples: 4995 download_size: 5527479 dataset_size: 15117598 - config_name: 20230901.lrc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 144 num_examples: 1 download_size: 2723 dataset_size: 144 - config_name: 20230901.lt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 334697442 num_examples: 210202 download_size: 193837594 dataset_size: 334697442 - config_name: 20230901.ltg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 915321 num_examples: 1070 download_size: 530333 dataset_size: 915321 - config_name: 20230901.lv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 224476781 num_examples: 122266 download_size: 128157342 dataset_size: 224476781 - config_name: 20230901.mad features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1504064 num_examples: 1160 download_size: 856724 dataset_size: 1504064 - config_name: 20230901.mai features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21426268 num_examples: 14673 download_size: 6117668 dataset_size: 21426268 - config_name: 20230901.map-bms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5413521 num_examples: 13574 download_size: 2427039 dataset_size: 5413521 - config_name: 20230901.mdf features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4558408 num_examples: 4073 download_size: 1688901 dataset_size: 4558408 - config_name: 20230901.mg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 72920973 num_examples: 96060 download_size: 21675187 dataset_size: 72920973 - config_name: 20230901.mh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11524 num_examples: 8 download_size: 16877 dataset_size: 11524 - config_name: 20230901.mhr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19188080 num_examples: 11246 download_size: 6867184 dataset_size: 19188080 - config_name: 20230901.mi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4159228 num_examples: 7898 download_size: 1039215 dataset_size: 4159228 - config_name: 20230901.min features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 118651753 num_examples: 227024 download_size: 25511300 dataset_size: 118651753 - config_name: 20230901.mk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 640596981 num_examples: 138453 download_size: 266334099 dataset_size: 640596981 - config_name: 20230901.ml features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 490833742 num_examples: 85451 download_size: 181789443 dataset_size: 490833742 - config_name: 20230901.mn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 90537032 num_examples: 23797 download_size: 40809884 dataset_size: 90537032 - config_name: 20230901.mni features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9818372 num_examples: 10892 download_size: 2207828 dataset_size: 9818372 - config_name: 20230901.mnw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 46788079 num_examples: 3249 download_size: 13588244 dataset_size: 46788079 - config_name: 20230901.mr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 260342611 num_examples: 93653 download_size: 81397471 dataset_size: 260342611 - config_name: 20230901.mrj features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8731508 num_examples: 10542 download_size: 3279598 dataset_size: 8731508 - config_name: 20230901.ms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 419678289 num_examples: 367463 download_size: 211505058 dataset_size: 419678289 - config_name: 20230901.mt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 30536771 num_examples: 5598 download_size: 17850471 dataset_size: 30536771 - config_name: 20230901.mus features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 922 num_examples: 2 download_size: 5286 dataset_size: 922 - config_name: 20230901.mwl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19321295 num_examples: 4485 download_size: 11488668 dataset_size: 19321295 - config_name: 20230901.my features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 312482214 num_examples: 109166 download_size: 84914025 dataset_size: 312482214 - config_name: 20230901.myv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11131103 num_examples: 7947 download_size: 4586300 dataset_size: 11131103 - config_name: 20230901.mzn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 15830260 num_examples: 17696 download_size: 5258917 dataset_size: 15830260 - config_name: 20230901.nah features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2494573 num_examples: 6180 download_size: 1188515 dataset_size: 2494573 - config_name: 20230901.nap features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6377175 num_examples: 14868 download_size: 3176787 dataset_size: 6377175 - config_name: 20230901.nds features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 92854034 num_examples: 84258 download_size: 48004103 dataset_size: 92854034 - config_name: 20230901.nds-nl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13560241 num_examples: 7707 download_size: 8287716 dataset_size: 13560241 - config_name: 20230901.ne features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 106930147 num_examples: 32423 download_size: 36867790 dataset_size: 106930147 - config_name: 20230901.new features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 159078463 num_examples: 73003 download_size: 20468180 dataset_size: 159078463 - config_name: 20230901.ng features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 68090 num_examples: 21 download_size: 52355 dataset_size: 68090 - config_name: 20230901.nia features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1909528 num_examples: 1651 download_size: 970289 dataset_size: 1909528 - config_name: 20230901.nl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2631597985 num_examples: 2130944 download_size: 1467451759 dataset_size: 2631597985 - config_name: 20230901.nn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 236262183 num_examples: 166642 download_size: 134021748 dataset_size: 236262183 - config_name: 20230901.no features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1027035487 num_examples: 615107 download_size: 599774543 dataset_size: 1027035487 - config_name: 20230901.nov features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 917413 num_examples: 1636 download_size: 469305 dataset_size: 917413 - config_name: 20230901.nqo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8219209 num_examples: 1571 download_size: 3478458 dataset_size: 8219209 - config_name: 20230901.nrm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3215096 num_examples: 4899 download_size: 1505717 dataset_size: 3215096 - config_name: 20230901.nso features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2789807 num_examples: 8643 download_size: 932635 dataset_size: 2789807 - config_name: 20230901.nv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16886983 num_examples: 22324 download_size: 3288156 dataset_size: 16886983 - config_name: 20230901.ny features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1695102 num_examples: 1133 download_size: 938716 dataset_size: 1695102 - config_name: 20230901.oc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 119055715 num_examples: 89270 download_size: 63403412 dataset_size: 119055715 - config_name: 20230901.olo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3152274 num_examples: 4595 download_size: 1716616 dataset_size: 3152274 - config_name: 20230901.om features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3430032 num_examples: 1911 download_size: 1900253 dataset_size: 3430032 - config_name: 20230901.or features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 72723705 num_examples: 17166 download_size: 25879025 dataset_size: 72723705 - config_name: 20230901.os features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13112794 num_examples: 17446 download_size: 5554157 dataset_size: 13112794 - config_name: 20230901.pa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 211148791 num_examples: 51013 download_size: 80668229 dataset_size: 211148791 - config_name: 20230901.pag features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1384685 num_examples: 2662 download_size: 451639 dataset_size: 1384685 - config_name: 20230901.pam features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 8237319 num_examples: 8951 download_size: 4235968 dataset_size: 8237319 - config_name: 20230901.pap features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4105109 num_examples: 3427 download_size: 2353692 dataset_size: 4105109 - config_name: 20230901.pcd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5680386 num_examples: 5692 download_size: 3127716 dataset_size: 5680386 - config_name: 20230901.pcm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1807444 num_examples: 1069 download_size: 1111719 dataset_size: 1807444 - config_name: 20230901.pdc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1223268 num_examples: 2182 download_size: 696649 dataset_size: 1223268 - config_name: 20230901.pfl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3688761 num_examples: 2759 download_size: 1963616 dataset_size: 3688761 - config_name: 20230901.pi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1133972 num_examples: 3056 download_size: 196617 dataset_size: 1133972 - config_name: 20230901.pih features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 381602 num_examples: 933 download_size: 238696 dataset_size: 381602 - config_name: 20230901.pl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2929578273 num_examples: 1579326 download_size: 1803033674 dataset_size: 2929578273 - config_name: 20230901.pms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 34318527 num_examples: 67935 download_size: 11997737 dataset_size: 34318527 - config_name: 20230901.pnb features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 303876889 num_examples: 72240 download_size: 133093182 dataset_size: 303876889 - config_name: 20230901.pnt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 630714 num_examples: 533 download_size: 275657 dataset_size: 630714 - config_name: 20230901.ps features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 109664877 num_examples: 20166 download_size: 51380951 dataset_size: 109664877 - config_name: 20230901.pt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2731435653 num_examples: 1107946 download_size: 1593477871 dataset_size: 2731435653 - config_name: 20230901.pwn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 792234 num_examples: 394 download_size: 433617 dataset_size: 792234 - config_name: 20230901.qu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16754330 num_examples: 24096 download_size: 7651901 dataset_size: 16754330 - config_name: 20230901.rm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 18052223 num_examples: 3821 download_size: 10475947 dataset_size: 18052223 - config_name: 20230901.rmy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 555208 num_examples: 969 download_size: 324565 dataset_size: 555208 - config_name: 20230901.rn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 522604 num_examples: 808 download_size: 295315 dataset_size: 522604 - config_name: 20230901.ro features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 842490285 num_examples: 441538 download_size: 471249050 dataset_size: 842490285 - config_name: 20230901.roa-rup features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1691177 num_examples: 1409 download_size: 953023 dataset_size: 1691177 - config_name: 20230901.roa-tara features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7435543 num_examples: 9341 download_size: 3982748 dataset_size: 7435543 - config_name: 20230901.ru features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10213314874 num_examples: 1935562 download_size: 4935575161 dataset_size: 10213314874 - config_name: 20230901.rue features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13110982 num_examples: 8749 download_size: 6335689 dataset_size: 13110982 - config_name: 20230901.rw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11946518 num_examples: 8044 download_size: 6640582 dataset_size: 11946518 - config_name: 20230901.sa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 69665685 num_examples: 12143 download_size: 23750145 dataset_size: 69665685 - config_name: 20230901.sah features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 47816835 num_examples: 16867 download_size: 21350955 dataset_size: 47816835 - config_name: 20230901.sat features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 40858282 num_examples: 9029 download_size: 13950418 dataset_size: 40858282 - config_name: 20230901.sc features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12732368 num_examples: 7559 download_size: 7682010 dataset_size: 12732368 - config_name: 20230901.scn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 17667128 num_examples: 26519 download_size: 10212874 dataset_size: 17667128 - config_name: 20230901.sco features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 43780491 num_examples: 36169 download_size: 24761453 dataset_size: 43780491 - config_name: 20230901.sd features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36726435 num_examples: 16894 download_size: 17439666 dataset_size: 36726435 - config_name: 20230901.se features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3600162 num_examples: 8042 download_size: 1814812 dataset_size: 3600162 - config_name: 20230901.sg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 130365 num_examples: 553 download_size: 65750 dataset_size: 130365 - config_name: 20230901.sh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 569747500 num_examples: 458212 download_size: 270404350 dataset_size: 569747500 - config_name: 20230901.shi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2348743 num_examples: 1771 download_size: 1347026 dataset_size: 2348743 - config_name: 20230901.shn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 33479127 num_examples: 13878 download_size: 8148046 dataset_size: 33479127 - config_name: 20230901.si features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 136810596 num_examples: 22893 download_size: 53392258 dataset_size: 136810596 - config_name: 20230901.simple features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 287855540 num_examples: 238150 download_size: 157248327 dataset_size: 287855540 - config_name: 20230901.sk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 414483614 num_examples: 241614 download_size: 240700453 dataset_size: 414483614 - config_name: 20230901.skr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 22524450 num_examples: 5768 download_size: 9854778 dataset_size: 22524450 - config_name: 20230901.sl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 451888560 num_examples: 182364 download_size: 268258798 dataset_size: 451888560 - config_name: 20230901.sm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 904339 num_examples: 1149 download_size: 493408 dataset_size: 904339 - config_name: 20230901.smn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5673858 num_examples: 5333 download_size: 2767537 dataset_size: 5673858 - config_name: 20230901.sn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 9587086 num_examples: 11354 download_size: 4889856 dataset_size: 9587086 - config_name: 20230901.so features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13594918 num_examples: 9003 download_size: 7886560 dataset_size: 13594918 - config_name: 20230901.sq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 204838795 num_examples: 103850 download_size: 114648801 dataset_size: 204838795 - config_name: 20230901.sr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1709332753 num_examples: 673516 download_size: 704099906 dataset_size: 1709332753 - config_name: 20230901.srn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 649208 num_examples: 1219 download_size: 215087 dataset_size: 649208 - config_name: 20230901.ss features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1024219 num_examples: 890 download_size: 574998 dataset_size: 1024219 - config_name: 20230901.st features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 956079 num_examples: 1094 download_size: 523485 dataset_size: 956079 - config_name: 20230901.stq features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4934155 num_examples: 4132 download_size: 2880185 dataset_size: 4934155 - config_name: 20230901.su features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 48039769 num_examples: 61557 download_size: 19764523 dataset_size: 48039769 - config_name: 20230901.sv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2146681766 num_examples: 2570535 download_size: 1009875904 dataset_size: 2146681766 - config_name: 20230901.sw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 72884231 num_examples: 78444 download_size: 35798700 dataset_size: 72884231 - config_name: 20230901.szl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 21412618 num_examples: 56961 download_size: 7330797 dataset_size: 21412618 - config_name: 20230901.szy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 10793237 num_examples: 4794 download_size: 5811192 dataset_size: 10793237 - config_name: 20230901.ta features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 801530157 num_examples: 158664 download_size: 262319221 dataset_size: 801530157 - config_name: 20230901.tay features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2909279 num_examples: 2715 download_size: 1203598 dataset_size: 2909279 - config_name: 20230901.tcy features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12142146 num_examples: 2195 download_size: 4589253 dataset_size: 12142146 - config_name: 20230901.te features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 719651788 num_examples: 85840 download_size: 211297920 dataset_size: 719651788 - config_name: 20230901.tet features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1464393 num_examples: 1465 download_size: 743636 dataset_size: 1464393 - config_name: 20230901.tg features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 147555847 num_examples: 110263 download_size: 49551755 dataset_size: 147555847 - config_name: 20230901.th features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1002621820 num_examples: 158289 download_size: 371401101 dataset_size: 1002621820 - config_name: 20230901.ti features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 639136 num_examples: 430 download_size: 317759 dataset_size: 639136 - config_name: 20230901.tk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13169481 num_examples: 7898 download_size: 7284367 dataset_size: 13169481 - config_name: 20230901.tl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 84784414 num_examples: 45155 download_size: 45203377 dataset_size: 84784414 - config_name: 20230901.tn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3561901 num_examples: 1160 download_size: 1245027 dataset_size: 3561901 - config_name: 20230901.to features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1082372 num_examples: 1866 download_size: 515293 dataset_size: 1082372 - config_name: 20230901.tpi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 457865 num_examples: 1396 download_size: 231303 dataset_size: 457865 - config_name: 20230901.tr features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 984939694 num_examples: 530830 download_size: 554907604 dataset_size: 984939694 - config_name: 20230901.trv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4906787 num_examples: 1835 download_size: 2654525 dataset_size: 4906787 - config_name: 20230901.ts features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 845256 num_examples: 778 download_size: 454559 dataset_size: 845256 - config_name: 20230901.tt features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 680656530 num_examples: 501002 download_size: 129123758 dataset_size: 680656530 - config_name: 20230901.tum features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 13199654 num_examples: 18591 download_size: 5352424 dataset_size: 13199654 - config_name: 20230901.tw features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 7386605 num_examples: 3717 download_size: 3815538 dataset_size: 7386605 - config_name: 20230901.ty features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 333733 num_examples: 1355 download_size: 149306 dataset_size: 333733 - config_name: 20230901.tyv features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14319641 num_examples: 3481 download_size: 6513101 dataset_size: 14319641 - config_name: 20230901.udm features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6975919 num_examples: 5665 download_size: 2952228 dataset_size: 6975919 - config_name: 20230901.ug features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 42219904 num_examples: 8621 download_size: 17716007 dataset_size: 42219904 - config_name: 20230901.uk features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 4910916097 num_examples: 1285004 download_size: 2303106335 dataset_size: 4910916097 - config_name: 20230901.ur features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 402322741 num_examples: 197343 download_size: 164074548 dataset_size: 402322741 - config_name: 20230901.uz features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 385386661 num_examples: 242726 download_size: 203362895 dataset_size: 385386661 - config_name: 20230901.ve features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 349857 num_examples: 840 download_size: 161562 dataset_size: 349857 - config_name: 20230901.vec features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 37883286 num_examples: 69250 download_size: 16164035 dataset_size: 37883286 - config_name: 20230901.vep features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11487509 num_examples: 6918 download_size: 6327017 dataset_size: 11487509 - config_name: 20230901.vi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1606980713 num_examples: 1287263 download_size: 742700712 dataset_size: 1606980713 - config_name: 20230901.vls features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 11310015 num_examples: 7839 download_size: 6960289 dataset_size: 11310015 - config_name: 20230901.vo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 19274897 num_examples: 34504 download_size: 6491359 dataset_size: 19274897 - config_name: 20230901.wa features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 12140372 num_examples: 11955 download_size: 7231141 dataset_size: 12140372 - config_name: 20230901.war features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 467623925 num_examples: 1266345 download_size: 109503863 dataset_size: 467623925 - config_name: 20230901.wo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 3498562 num_examples: 1718 download_size: 2077375 dataset_size: 3498562 - config_name: 20230901.wuu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 25005942 num_examples: 42969 download_size: 15994961 dataset_size: 25005942 - config_name: 20230901.xal features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1390063 num_examples: 2290 download_size: 507117 dataset_size: 1390063 - config_name: 20230901.xh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2415590 num_examples: 1667 download_size: 1503917 dataset_size: 2415590 - config_name: 20230901.xmf features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 37262425 num_examples: 17949 download_size: 12771047 dataset_size: 37262425 - config_name: 20230901.yi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 36150608 num_examples: 15329 download_size: 16208341 dataset_size: 36150608 - config_name: 20230901.yo features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 18460117 num_examples: 33495 download_size: 8504564 dataset_size: 18460117 - config_name: 20230901.za features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1359106 num_examples: 2971 download_size: 662982 dataset_size: 1359106 - config_name: 20230901.zea features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 5106625 num_examples: 5834 download_size: 2567716 dataset_size: 5106625 - config_name: 20230901.zh features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2766648619 num_examples: 1375017 download_size: 1748154636 dataset_size: 2766648619 - config_name: 20230901.zh-classical features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 14819164 num_examples: 12615 download_size: 10031693 dataset_size: 14819164 - config_name: 20230901.zh-min-nan features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 159385896 num_examples: 432644 download_size: 37476665 dataset_size: 159385896 - config_name: 20230901.zh-yue features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 108979942 num_examples: 133155 download_size: 64318527 dataset_size: 108979942 - config_name: 20230901.zu features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 6925330 num_examples: 11486 download_size: 3690925 dataset_size: 6925330 - config_name: 20230601.et features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 431680309 num_examples: 236848 download_size: 262989758 dataset_size: 431680309 --- # Wikipedia This Wikipedia dataset contains all available languages for recent dumps. It is a refresh of the [20220301 wikipedia](https://hf.co/datasets/wikipedia) from Huggingface, so it has the same license and dataset card details. The benefits of this dataset are: - more recent dumps (see table below) - a few additional languages - all available languages are preprocessed (including the largests: `en` and `ceb`) | version | dump | # available languages | closed & dump | closed & no dump | | ----- | ---- | ----- | ------ | --- | | `1.0.0` | 20230601 | 328 | 9: ak (soon), cho, ho, ii, kj, lrc, mh, mus, ng | 4: aa, hz, kr, na | | `1.1.0` | 20230601 | 329 (+et ~[az,ceb,ch,hr,ii,lrc,ta]) | 9: ak (soon), cho, ho, ii, kj, lrc, mh, mus, ng | 4: aa, hz, kr, na | | `1.2.0` | 20230901 | idem | 9: ak , cho, ho, ii, kj, lrc, mh, mus, ng | 4: aa, hz, kr, na | Source: [List of Wikimedia Languages](https://en.wikipedia.org/wiki/List_of_Wikipedias). A few (9) Wikimedias are closed, meaning they won't have new pages, but the dumps are still available. In addition, very few (4) Wikimedias are closed and don't have dumps anymore. ## Release Notes `1.2.0` - **chore**: Update to 20230901 `1.1.0` - **feat**: Add missing estonian (my bad), thanks Chris Ha - **fix**: update category lists for az, ceb, ch, hr, ii, lrc, ta, which means they were all processed again. `1.0.0` - **chore**: File layout is now `data/{dump}/{lang}/{info.json,*.parquet}`. Sorry for the radical update, probably won't happen again. - **chore**: Parquet files are now sharded (size < 200 MB), allowing parallel downloads and processing. - **fix**: All languages were all processed again because of a bug in the media and category names, leading to some links not being extracted. - **feat**: Add `en` and `ceb` which were too big for my Beam DirectRunner at the time. ## Usage ```python from datasets import load_dataset wikipedia_es = load_dataset("graelo/wikipedia", "20230601.es") ``` --- ## Build instructions Developer only. This dataset was preprocessed with a Beam DirectRunner as follows. ### 1. Determine the date of the dump you are interested in Choose one wikipedia dump, for instance <https://dumps.wikimedia.org/cewiki/> and identify the date. ### 2. [Optional] Get a refreshed list of languages This is optional because it not very likely that a new language will have suddenly appeared since the last version _and_ have a significant dataset. Navigate to <https://en.wikipedia.org/wiki/List_of_Wikipedias> and copy the languages column from the "Detailed list" table (near the end of the page). Copy that content in the form of a Python list into `lang_def.py` (at the top of the repo) under a new date. ### 3. [Optional] Create Media and Category aliases In order to properly extract links to images and media in all languages, we must refresh the two corresponding files. To do so, from the root of the repo, run ```sh python -m prep.create_aliases ``` This will create or update these two files at the root of the repo: - `media_aliases.py` - `category_aliases.py` These files are used in the final step ### 4. Build and prepare the datasets into sharded parquet files Running this script downloads the wikipedia dumps for each language in `lang_def.py` and shards each language dataset into the appropriate number of shards (max size ~ 250MB). ```sh python -m prep.build --date 20230601 ``` There are other options: ```text $ python -m prep.build --help usage: Wikipedia Builder [-h] [--date DATE] [--language [LANG ...]] [--cache-dir DIR] [--mirror MIRROR] Prepares the Wikipedia dataset for each language optional arguments: -h, --help show this help message and exit --date DATE Wikipedia dump date (e.g. 20230601) --language [LANG ...] Language code (e.g. en). If missing, all languages are processed --cache-dir DIR Cache directory for 🤗 Datasets --mirror MIRROR Mirror URL ``` For instance, for faster downloads of the dumps, use the mirror option: ```sh python -m prep.build \ --date 20230601 \ --language bs \ --mirror https://mirror.accum.se/mirror/wikimedia.org/dumps/ ``` It will download the dumps at around 60MB/s instead of the capped speed (~4MB/s) from <https://dumps.wikimedia.org>. The script will skip existing directories, allowing you to run the script in several passes. Notes: - These instructions build upon the build process of the [Wikipedia](https://huggingface.co/datasets/wikipedia) 🤗 Dataset. HF did a fantastic job, I just pushed it a bit further. - Be aware that not all mirrors contain all dumps. For instance mirror.accum.se does not contain dumps for languages such as be-x-old or cbk-zam. My own solution is to run a first pass using the aforementioned mirror, and a second pass with the official `https://dumps.wikimedia.org` site (omitting the `--mirror` parameter).
yys/OpenOrca-Chinese
yys
2023-09-08T08:05:47Z
78
99
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:table-question-answering", "task_categories:question-answering", "task_categories:zero-shot-classification", "task_categories:summarization", "task_categories:feature-extraction", "task_categories:text-generation", "task_categories:text2text-generation", "language:zh", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2301.13688", "region:us" ]
[ "conversational", "text-classification", "token-classification", "table-question-answering", "question-answering", "zero-shot-classification", "summarization", "feature-extraction", "text-generation", "text2text-generation" ]
2023-09-07T06:01:51Z
null
--- license: mit task_categories: - conversational - text-classification - token-classification - table-question-answering - question-answering - zero-shot-classification - summarization - feature-extraction - text-generation - text2text-generation language: - zh pretty_name: OpenOrca-Chinese size_categories: - 10M<n<100M --- <p><h1>🐋 OpenOrca-Chinese 数据集!🐋</h1></p> 感谢 [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) 数据集的发布,给广大NLP研究人员和开发者带来了宝贵的资源! 这是一个对 [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) 数据集中文翻译的版本,翻译引擎为 Google 翻译,希望能给中文 LLM 研究做出一点点贡献。 <br/> # Dataset Summary The OpenOrca dataset is a collection of augmented [FLAN Collection data](https://arxiv.org/abs/2301.13688). Currently ~1M GPT-4 completions, and ~3.2M GPT-3.5 completions. It is tabularized in alignment with the distributions presented in the ORCA paper and currently represents a partial completion of the full intended dataset, with ongoing generation to expand its scope. The data is primarily used for training and evaluation in the field of natural language processing. <a name="dataset-structure"></a> # Dataset Structure <a name="data-instances"></a> ## Data Instances A data instance in this dataset represents entries from the FLAN collection which have been augmented by submitting the listed question to either GPT-4 or GPT-3.5. The response is then entered into the response field. <a name="data-fields"></a> ## Data Fields The fields are: 1) 'id', a unique numbered identifier which includes one of 'niv', 't0', 'cot', or 'flan' to represent which source FLAN Collection submix the 'question' is sourced from. 2) 'system_prompt', representing the System Prompt presented to the GPT-3.5 or GPT-4 API for the datapoint 3) 'question', representing a question entry as provided by the FLAN Collection 4) 'response', a response to that question received from a query to either GPT-3.5 or GPT-4.
ArmelR/the-pile-splitted
ArmelR
2023-09-06T09:53:16Z
18,476
22
[ "size_categories:10M<n<100M", "format:arrow", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2101.00027", "arxiv:2201.07311", "region:us" ]
[]
2023-07-30T14:21:26Z
null
--- configs: - config_name: all data_files: - split: train path: - "data/ArXiv/train/*.arrow" - "data/BookCorpus2/train/*.arrow" - "data/Books3/train/*.arrow" - "data/DM Mathematics/train/*.arrow" - "data/Enron Emails/train/*.arrow" - "data/EuroParl/train/*.arrow" - "data/FreeLaw/train/*.arrow" - "data/Github/train/*.arrow" - "data/Gutenberg (PG-19)/train/*.arrow" - "data/HackerNews/train/*.arrow" - "data/NIH ExPorter/train/*.arrow" - "data/OpenSubtitles/train/*.arrow" - "data/OpenWebText2/train/*.arrow" - "data/PhilPapers/train/*.arrow" - "data/Pile-CC/train/*.arrow" - "data/PubMed Abstracts/train/*.arrow" - "data/PubMed Central/train/*.arrow" - "data/StackExchange/train/*.arrow" - "data/UPSTO Backgrounds/train/*.arrow" - "data/Ubuntu IRC/train/*.arrow" - "data/Wikipedia (en)/train/*.arrow" - "data/YoutubeSubtitles/train/*.arrow" - split: test path: - "data/ArXiv/test/*.arrow" - "data/BookCorpus2/test/*.arrow" - "data/Books3/test/*.arrow" - "data/DM Mathematics/test/*.arrow" - "data/Enron Emails/test/*.arrow" - "data/EuroParl/test/*.arrow" - "data/FreeLaw/test/*.arrow" - "data/Github/test/*.arrow" - "data/Gutenberg (PG-19)/test/*.arrow" - "data/HackerNews/test/*.arrow" - "data/NIH ExPorter/test/*.arrow" - "data/OpenSubtitles/test/*.arrow" - "data/OpenWebText2/test/*.arrow" - "data/PhilPapers/test/*.arrow" - "data/Pile-CC/test/*.arrow" - "data/PubMed Abstracts/test/*.arrow" - "data/PubMed Central/test/*.arrow" - "data/StackExchange/test/*.arrow" - "data/UPSTO Backgrounds/test/*.arrow" - "data/Ubuntu IRC/test/*.arrow" - "data/Wikipedia (en)/test/*.arrow" - "data/YoutubeSubtitles/test/*.arrow" default: true - config_name: ArXiv data_files: - split: train path: "data/ArXiv/train/*.arrow" - split: test path: "data/ArXiv/test/*.arrow" - config_name: BookCorpus2 data_files: - split: train path: "data/BookCorpus2/train/*.arrow" - split: test path: "data/BookCorpus2/test/*.arrow" - config_name: Books3 data_files: - split: train path: "data/Books3/train/*.arrow" - split: test path: "data/Books3/test/*.arrow" - config_name: DM Mathematics data_files: - split: train path: "data/DM Mathematics/train/*.arrow" - split: test path: "data/DM Mathematics/test/*.arrow" - config_name: Enron Emails data_files: - split: train path: "data/Enron Emails/train/*.arrow" - split: test path: "data/Enron Emails/test/*.arrow" - config_name: EuroParl data_files: - split: train path: "data/EuroParl/train/*.arrow" - split: test path: "data/EuroParl/test/*.arrow" - config_name: FreeLaw data_files: - split: train path: "data/FreeLaw/train/*.arrow" - split: test path: "data/FreeLaw/test/*.arrow" - config_name: Github data_files: - split: train path: "data/Github/train/*.arrow" - split: test path: "data/Github/test/*.arrow" - config_name: Gutenberg (PG-19) data_files: - split: train path: "data/Gutenberg (PG-19)/train/*.arrow" - split: test path: "data/Gutenberg (PG-19)/test/*.arrow" - config_name: HackerNews data_files: - split: train path: "data/HackerNews/train/*.arrow" - split: test path: "data/HackerNews/test/*.arrow" - config_name: NIH ExPorter data_files: - split: train path: "data/NIH ExPorter/train/*.arrow" - split: test path: "data/NIH ExPorter/test/*.arrow" - config_name: OpenSubtitles data_files: - split: train path: "data/OpenSubtitles/train/*.arrow" - split: test path: "data/OpenSubtitles/test/*.arrow" - config_name: OpenWebText2 data_files: - split: train path: "data/OpenWebText2/train/*.arrow" - split: test path: "data/OpenWebText2/test/*.arrow" - config_name: PhilPapers data_files: - split: train path: "data/PhilPapers/train/*.arrow" - split: test path: "data/PhilPapers/test/*.arrow" - config_name: Pile-CC data_files: - split: train path: "data/Pile-CC/train/*.arrow" - split: test path: "data/Pile-CC/test/*.arrow" - config_name: PubMed Abstracts data_files: - split: train path: "data/PubMed Abstracts/train/*.arrow" - split: test path: "data/PubMed Abstracts/test/*.arrow" - config_name: PubMed Central data_files: - split: train path: "data/PubMed Central/train/*.arrow" - split: test path: "data/PubMed Central/test/*.arrow" - config_name: StackExchange data_files: - split: train path: "data/StackExchange/train/*.arrow" - split: test path: "data/StackExchange/test/*.arrow" - config_name: UPSTO Backgrounds data_files: - split: train path: "data/UPSTO Backgrounds/train/*.arrow" - split: test path: "data/UPSTO Backgrounds/test/*.arrow" - config_name: Ubuntu IRC data_files: - split: train path: "data/Ubuntu IRC/train/*.arrow" - split: test path: "data/Ubuntu IRC/test/*.arrow" - config_name: Wikipedia (en) data_files: - split: train path: "data/Wikipedia (en)/train/*.arrow" - split: test path: "data/Wikipedia (en)/test/*.arrow" - config_name: YoutubeSubtitles data_files: - split: train path: "data/YoutubeSubtitles/train/*.arrow" - split: test path: "data/YoutubeSubtitles/test/*.arrow" --- # Dataset description [The pile](https://arxiv.org/abs/2101.00027) is an 800GB dataset of english text designed by EleutherAI to train large-scale language models. The original version of the dataset can be found [here](https://huggingface.co/datasets/EleutherAI/pile). The dataset is divided into 22 smaller high-quality datasets. For more information each of them, please refer to [the datasheet for the pile](https://arxiv.org/abs/2201.07311). However, the current version of the dataset, available on the Hub, is not splitted accordingly. We had to solve this problem in order to improve the user experience when it comes to deal with the pile via the hub. Here is an instance of the pile ``` { 'meta': {'pile_set_name': 'Pile-CC'}, 'text': 'It is done, and submitted. You can play “Survival of the Tastiest” on Android, and on the web. Playing on...' } ``` We used the `meta` column to properly divide the dataset in subsets. Each instance `example` belongs to the subset `domain` and `domain = example['meta']['pile_set_name']`. By doing this, we were able to create a [new version of the pile](https://huggingface.co/datasets/ArmelR/sharded-pile) that is properly divided, each instance having a new column `domain`. We further splitted each subset in train/test (97%/3%) to build the current dataset which the following structure ``` data ArXiv train test BookCorpus2 train test Books3 train test ``` # Usage ```python from datasets import load_dataset dataset = load_dataset( "ArmelR/the-pile-splitted", subset_of_interest, num_proc=8 ) ``` Using `subset_of_interest = "default"` will load the whole dataset.
ai4bharat/Aksharantar
ai4bharat
2023-08-31T07:05:34Z
193
11
[ "task_categories:text-generation", "language_creators:crowdsourced", "language_creators:expert-generated", "language_creators:machine-generated", "language_creators:found", "language_creators:other", "multilinguality:multilingual", "source_datasets:original", "language:asm", "language:ben", "language:brx", "language:doi", "language:guj", "language:hin", "language:kan", "language:kas", "language:kok", "language:mai", "language:mal", "language:mar", "language:mni", "language:nep", "language:ori", "language:pan", "language:san", "language:sid", "language:tam", "language:tel", "language:urd", "license:cc", "arxiv:2205.03018", "region:us" ]
[ "text-generation" ]
2022-05-06T12:35:15Z
1
--- annotations_creators: [] language_creators: - crowdsourced - expert-generated - machine-generated - found - other language: - asm - ben - brx - doi - guj - hin - kan - kas - kok - mai - mal - mar - mni - nep - ori - pan - san - sid - tam - tel - urd license: cc multilinguality: - multilingual pretty_name: Aksharantar source_datasets: - original task_categories: - text-generation task_ids: [] --- # Dataset Card for Aksharantar ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://indicnlp.ai4bharat.org/indic-xlit/ - **Repository:** https://github.com/AI4Bharat/IndicXlit/ - **Paper:** [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary Aksharantar is the largest publicly available transliteration dataset for 20 Indic languages. The corpus has 26M Indic language-English transliteration pairs. ### Supported Tasks and Leaderboards [More Information Needed] ### Languages | <!-- --> | <!-- --> | <!-- --> | <!-- --> | <!-- --> | <!-- --> | | -------------- | -------------- | -------------- | --------------- | -------------- | ------------- | | Assamese (asm) | Hindi (hin) | Maithili (mai) | Marathi (mar) | Punjabi (pan) | Tamil (tam) | | Bengali (ben) | Kannada (kan) | Malayalam (mal)| Nepali (nep) | Sanskrit (san) | Telugu (tel) | | Bodo(brx) | Kashmiri (kas) | Manipuri (mni) | Oriya (ori) | Sindhi (snd) | Urdu (urd) | | Gujarati (guj) | Konkani (kok) | Dogri (doi) | ## Dataset Structure ### Data Instances ``` A random sample from Hindi (hin) Train dataset. { 'unique_identifier': 'hin1241393', 'native word': 'स्वाभिमानिक', 'english word': 'swabhimanik', 'source': 'IndicCorp', 'score': -0.1028788579 } ``` ### Data Fields - `unique_identifier` (string): 3-letter language code followed by a unique number in each set (Train, Test, Val). - `native word` (string): A word in Indic language. - `english word` (string): Transliteration of native word in English (Romanised word). - `source` (string): Source of the data. - `score` (num): Character level log probability of indic word given roman word by IndicXlit (model). Pairs with average threshold of the 0.35 are considered. For created data sources, depending on the destination/sampling method of a pair in a language, it will be one of: - Dakshina Dataset - IndicCorp - Samanantar - Wikidata - Existing sources - Named Entities Indian (AK-NEI) - Named Entities Foreign (AK-NEF) - Data from Uniform Sampling method. (Ak-Uni) - Data from Most Frequent words sampling method. (Ak-Freq) ### Data Splits | Subset | asm-en | ben-en | brx-en | guj-en | hin-en | kan-en | kas-en | kok-en | mai-en | mal-en | mni-en | mar-en | nep-en | ori-en | pan-en | san-en | sid-en | tam-en | tel-en | urd-en | |:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:| | Training | 179K | 1231K | 36K | 1143K | 1299K | 2907K | 47K | 613K | 283K | 4101K | 10K | 1453K | 2397K | 346K | 515K | 1813K | 60K | 3231K | 2430K | 699K | | Validation | 4K | 11K | 3K | 12K | 6K | 7K | 4K | 4K | 4K | 8K | 3K | 8K | 3K | 3K | 9K | 3K | 8K | 9K | 8K | 12K | | Test | 5531 | 5009 | 4136 | 7768 | 5693 | 6396 | 7707 | 5093 | 5512 | 6911 | 4925 | 6573 | 4133 | 4256 | 4316 | 5334 | - | 4682 | 4567 | 4463 | ## Dataset Creation Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018) ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018) #### Who are the source language producers? [More Information Needed] ### Annotations Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018) #### Annotation process Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018) #### Who are the annotators? Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018) ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information <!-- <a rel="license" float="left" href="http://creativecommons.org/publicdomain/zero/1.0/"> <img src="https://licensebuttons.net/p/zero/1.0/88x31.png" style="border-style: none;" alt="CC0" width="100" /> <img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by.png" style="border-style: none;" alt="CC-BY" width="100" href="http://creativecommons.org/publicdomain/zero/1.0/"/> </a> <br/> --> This data is released under the following licensing scheme: - Manually collected data: Released under CC-BY license. - Mined dataset (from Samanantar and IndicCorp): Released under CC0 license. - Existing sources: Released under CC0 license. **CC-BY License** <a rel="license" float="left" href="https://creativecommons.org/about/cclicenses/"> <img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by.png" style="border-style: none;" alt="CC-BY" width="100"/> </a> <br> <br> <!-- and the Aksharantar benchmark and all manually transliterated data under the [Creative Commons CC-BY license (“no rights reserved”)](https://creativecommons.org/licenses/by/4.0/). --> **CC0 License Statement** <a rel="license" float="left" href="https://creativecommons.org/about/cclicenses/"> <img src="https://licensebuttons.net/p/zero/1.0/88x31.png" style="border-style: none;" alt="CC0" width="100"/> </a> <br> <br> - We do not own any of the text from which this data has been extracted. - We license the actual packaging of the mined data under the [Creative Commons CC0 license (“no rights reserved”)](http://creativecommons.org/publicdomain/zero/1.0). - To the extent possible under law, <a rel="dct:publisher" href="https://indicnlp.ai4bharat.org/aksharantar/"> <span property="dct:title">AI4Bharat</span></a> has waived all copyright and related or neighboring rights to <span property="dct:title">Aksharantar</span> manually collected data and existing sources. - This work is published from: India. ### Citation Information ``` @misc{madhani2022aksharantar, title={Aksharantar: Towards Building Open Transliteration Tools for the Next Billion Users}, author={Yash Madhani and Sushane Parthan and Priyanka Bedekar and Ruchi Khapra and Anoop Kunchukuttan and Pratyush Kumar and Mitesh Shantadevi Khapra}, year={2022}, eprint={}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions
monology/pile-uncopyrighted
monology
2023-08-31T03:45:38Z
86,598
134
[ "license:other", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2101.00027", "region:us" ]
[]
2023-08-30T18:47:58Z
null
--- license: other --- # Pile Uncopyrighted In response to [authors demanding that LLMs stop using their works](https://tcrn.ch/3rtpIDn), here's a copy of [The Pile](https://huggingface.co/datasets/monology/pile) with all copyrighted content removed. Please consider using this dataset to train your future LLMs, to respect authors and abide by copyright law. Creating an uncopyrighted version of a larger dataset (ie RedPajama) is planned, with no ETA. **Methodology** Cleaning was performed by removing everything from the Books3, BookCorpus2, OpenSubtitles, YTSubtitles, and OWT2 subsets. Based on section 7.1 of [the original paper](https://arxiv.org/abs/2101.00027), these datasets are the only ones which are not explicitly allowed to be used in AI training.