metadata
tags:
- ocr
- text-extraction
- rolmocr
- uv-script
- generated
OCR Text Extraction using RolmOCR
This dataset contains extracted text from images in davanstrien/playbills-pdf-images-text using RolmOCR.
Processing Details
- Source Dataset: davanstrien/playbills-pdf-images-text
- Model: reducto/RolmOCR
- Number of Samples: 10
- Processing Time: 5.8 minutes
- Processing Date: 2025-08-04 17:08 UTC
Configuration
- Image Column:
image - Output Column:
rolmocr_text - Dataset Split:
train - Batch Size: 16
- Max Model Length: 24,000 tokens
- Max Output Tokens: 16,000
- GPU Memory Utilization: 80.0%
Model Information
RolmOCR is a fast, general-purpose OCR model based on Qwen2.5-VL-7B architecture. It extracts plain text from document images with high accuracy and efficiency.
Dataset Structure
The dataset contains all original columns plus:
rolmocr_text: The extracted text from each imageinference_info: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the extracted text
for example in dataset:
print(example["rolmocr_text"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr RolmOCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/rolm-ocr.py \
davanstrien/playbills-pdf-images-text \
<output-dataset> \
--image-column image \
--batch-size 16 \
--max-model-len 24000 \
--max-tokens 16000 \
--gpu-memory-utilization 0.8
Performance
- Processing Speed: ~0.0 images/second
- GPU Configuration: vLLM with 80% GPU memory utilization
Generated with 🤖 UV Scripts