text
stringlengths
3
1.04M
lang
stringclasses
4 values
len
int64
3
1.04M
import os import uuid from osipkd.tools import row2dict, xls_reader from datetime import datetime from sqlalchemy import not_, func from pyramid.view import ( view_config, ) from pyramid.httpexceptions import ( HTTPFound, ) import colander from deform import ( Form, widget, ValidationFailure, ) from osipkd.models import ( DBSession, ) from osipkd.models import Route from datatables import ColumnDT, DataTables from osipkd.views.base_view import BaseViews SESS_ADD_FAILED = 'Tambah routes gagal' SESS_EDIT_FAILED = 'Edit routes gagal' def deferred_source_type(node, kw): values = kw.get('perm_choice', []) return widget.SelectWidget(values=values) PERM_CHOICE = ((None,'None'), ('view', 'View'), ('read', 'Read'), ('add', 'Add'), ('edit', 'Edit'), ('delete', 'Delete'),) class AddSchema(colander.Schema): kode = colander.SchemaNode( colander.String()) nama = colander.SchemaNode( colander.String()) path = colander.SchemaNode( colander.String()) factory = colander.SchemaNode( colander.String(), missing=colander.drop) perm_name = colander.SchemaNode( colander.String(), missing=colander.drop, widget=widget.SelectWidget(values=PERM_CHOICE)) disabled = colander.SchemaNode( colander.Boolean()) class EditSchema(AddSchema): id = colander.SchemaNode(colander.String(), missing=colander.drop, widget=widget.HiddenWidget(readonly=True)) class view_routes(BaseViews): ######## # List # ######## @view_config(route_name='routes', renderer='templates/routes/list.pt', permission='read') def view_list(self): return dict(a={}) ########## # Action # ########## @view_config(route_name='routes-act', renderer='json', permission='read') def gaji_routes_act(self): ses = self.request.session req = self.request params = req.params url_dict = req.matchdict if url_dict['act']=='grid': columns = [] columns.append(ColumnDT('id')) columns.append(ColumnDT('kode')) columns.append(ColumnDT('nama')) columns.append(ColumnDT('path')) columns.append(ColumnDT('factory')) columns.append(ColumnDT('perm_name')) columns.append(ColumnDT('disabled')) query = DBSession.query(Route) rowTable = DataTables(req, Route, query, columns) return rowTable.output_result() elif url_dict['act']=='headof': term = 'term' in params and params['term'] or '' rows = DBSession.query(Route.id, Route.nama ).filter( Route.nama.ilike('%%%s%%' % term), Route.perm_name != None).\ order_by(Route.path).all() r = [] for k in rows: d={} d['id'] = k[0] d['value'] = k[1] r.append(d) return r ####### # Add # ####### def form_validator(self, form, value): if 'id' in form.request.matchdict: uid = form.request.matchdict['id'] q = DBSession.query(Route).filter_by(id=uid) routes = q.first() else: routes = None def get_form(self, class_form, row=None): schema = class_form(validator=self.form_validator) schema = schema.bind(perm_choice=PERM_CHOICE) schema.request = self.request if row: schema.deserialize(row) return Form(schema, buttons=('simpan','batal')) def save(self, values, user, row=None): if not row: row = Route() row.created = datetime.now() row.create_uid = user.id row.from_dict(values) row.updated = datetime.now() row.update_uid = user.id row.disabled = 'disabled' in values and values['disabled'] and 1 or 0 DBSession.add(row) DBSession.flush() return row def save_request(self, values, row=None): if 'id' in self.request.matchdict: values['id'] = self.request.matchdict['id'] row = self.save(values, self.request.user, row) self.request.session.flash('routes sudah disimpan.') def routes_list(self): return HTTPFound(location=self.request.route_url('routes')) def session_failed(self, session_name): r = dict(form=self.session[session_name]) del self.session[session_name] return r @view_config(route_name='routes-add', renderer='templates/routes/add.pt', permission='add') def view_routes_add(self): req = self.request ses = self.session form = self.get_form(AddSchema) if req.POST: if 'simpan' in req.POST: controls = req.POST.items() try: c = form.validate(controls) except ValidationFailure, e: req.session[SESS_ADD_FAILED] = e.render() return HTTPFound(location=req.route_url('routes-add')) self.save_request(dict(controls)) return self.routes_list() elif SESS_ADD_FAILED in req.session: return self.session_failed(SESS_ADD_FAILED) return dict(form=form.render()) ######## # Edit # ######## def query_id(self): return DBSession.query(Route).filter_by(id=self.request.matchdict['id']) def id_not_found(self): msg = 'routes ID %s Tidak Ditemukan.' % self.request.matchdict['id'] request.session.flash(msg, 'error') return routes_list() @view_config(route_name='routes-edit', renderer='templates/routes/edit.pt', permission='edit') def view_routes_edit(self): request = self.request row = self.query_id().first() if not row: return id_not_found(request) form = self.get_form(EditSchema) if request.POST: if 'simpan' in request.POST: controls = request.POST.items() print controls try: c = form.validate(controls) except ValidationFailure, e: request.session[SESS_EDIT_FAILED] = e.render() return HTTPFound(location=request.route_url('routes-edit', id=row.id)) self.save_request(dict(controls), row) return self.routes_list() elif SESS_EDIT_FAILED in request.session: return self.session_failed(SESS_EDIT_FAILED) values = row.to_dict() return dict(form=form.render(appstruct=values)) ########## # Delete # ########## @view_config(route_name='routes-delete', renderer='templates/routes/delete.pt', permission='delete') def view_routes_delete(self): request = self.request q = self.query_id() row = q.first() if not row: return self.id_not_found(request) form = Form(colander.Schema(), buttons=('hapus','batal')) if request.POST: if 'hapus' in request.POST: msg = 'routes ID %d %s sudah dihapus.' % (row.id, row.nama) try: q.delete() DBSession.flush() except: msg = 'routes ID %d %s tidak dapat dihapus.' % (row.id, row.nama) request.session.flash(msg) return self.routes_list() return dict(row=row, form=form.render())
python
8,290
#!/usr/bin/env python # coding=utf-8 # [% VIM_TAGS %] # # Author: Hari Sekhon # Date: [% DATE # 2008-10-20 16:18:55 +0100 (Mon, 20 Oct 2008) %] # # [% URL %] # # [% LICENSE %] # # [% MESSAGE %] # # [% LINKEDIN %] # """ TODO """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals #import logging import os #import re import sys #import time import traceback #try: # from bs4 import BeautifulSoup #except ImportError: # print(traceback.format_exc(), end='') # sys.exit(4) srcdir = os.path.abspath(os.path.dirname(__file__)) libdir = os.path.join(srcdir, 'pylib') sys.path.append(libdir) try: # pylint: disable=wrong-import-position from harisekhon.utils import log #from harisekhon.utils import CriticalError, UnknownError from harisekhon.utils import validate_host, validate_port, validate_user, validate_password from harisekhon.utils import isStr from harisekhon import CLI from harisekhon import RestNagiosPlugin except ImportError as _: print(traceback.format_exc(), end='') sys.exit(4) __author__ = 'Hari Sekhon' __version__ = '0.1' class [% NAME %](RestNagiosPlugin): def __init__(self): # Python 2.x super([% NAME %], self).__init__() # Python 3.x # super().__init__() #self.host = None #self.port = None #self.user = None #self.password = None #self.protocol = 'http' #self.request = RequestHandler() self.name = self.default_port = 80 self.path = '/' #self.auth = False self.json = True self.msg = 'Msg not defined yet' def add_options(self): super([% NAME %], self).add_options() # TODO: fill in hostoption name and default port #self.add_hostoption(name='', default_host='localhost', default_port=80) #self.add_useroption(name='', default_user='admin') #self.add_opt('-S', '--ssl', action='store_true', help='Use SSL') #self.add_opt('-f', '--file', dest='file', metavar='<file>', # help='Input file') def process_options(self): super([% NAME %], self).process_options() #self.no_args() #self.host = self.get_opt('host') #self.port = self.get_opt('port') #self.user = self.get_opt('user') #self.password = self.get_opt('password') #validate_host(self.host) #validate_port(self.port) #validate_user(self.user) #validate_password(self.password) #if self.get_opt('ssl'): # self.protocol = 'https' #filename = self.get_opt('file') #if not filename: # self.usage('--file not defined') # def run(self): # url = '{protocol}://{host}:{port}/...'.format(protocol=self.protocol, host=self.host, port=self.port) # start_time = time.time() # req = self.request.get(url) # query_time = time.time() - start_time # soup = BeautifulSoup(req.content, 'html.parser') # if log.isEnabledFor(logging.DEBUG): # log.debug("BeautifulSoup prettified:\n{0}\n{1}".format(soup.prettify(), '='*80)) # # TODO: XXX: soup.find() can return None - do not chain calls - must test each call 'is not None' # # link = soup.find('p')[3] # # link = soup.find('th', text='Uptime:') # # link = soup.find_next_sibling('th', text='Uptime:') # # # link = soup.find('th', text=re.compile('Uptime:?', re.I)) # # if link is None: # # raise UnknownError('failed to find tag') # # link = link.find_next_sibling() # # if link is None: # # raise UnknownError('failed to find tag (next sibling tag not found)') # # _ = link.get_text() # # shorter to just catch NoneType attribute error when tag not found and returns None # try: # uptime = soup.find('th', text=re.compile('Uptime:?', re.I)).find_next_sibling().get_text() # version = soup.find('th', text=re.compile('Version:?', re.I)).find_next_sibling().get_text() # except (AttributeError, TypeError): # #raise UnknownError('failed to find parse output') # qquit('UNKNOWN', 'failed to parse output') # if not _ or not isStr(_) or not re.search(r'...', _): # #raise UnknownError('format not recognized: {0}'.format(_)) # qquit('UNKNOWN', 'format not recognized: {0}'.format(_)) # self.msg += ' | query_time={0:f}s'.format(query_time) def parse_json(self, json_data): _ = json_data['beans'][0] if __name__ == '__main__': [% NAME %]().main()
python
4,707
import inspect, platform, re, tempfile, skia, math from enum import Enum from subprocess import run from pathlib import Path from coldtype.geometry import Rect, Point from coldtype.color import normalize_color from coldtype.animation import Timeable, Frame from coldtype.animation.timeline import Timeline from coldtype.text.reader import normalize_font_prefix, Font from coldtype.pens.datpen import DATPen, DATPenSet from coldtype.pens.svgpen import SVGPen from coldtype.pens.skiapen import SkiaPen try: import drawBot as db import AppKit except ImportError: db = None class Keylayer(Enum): Default = 0 Cmd = 1 Editing = 2 class Action(Enum): Initial = "initial" Resave = "resave" RenderAll = "render_all" RenderWorkarea = "render_workarea" RenderIndices = "render_indices" Release = "release" PreviewStoryboard = "preview_storyboard" PreviewStoryboardReload = "preview_storyboard_reload" PreviewPlay = "preview_play" PreviewIndices = "preview_indices" PreviewStoryboardNext = "preview_storyboard_next" PreviewStoryboardPrev = "preview_storyboard_prev" RenderedPlay = "rendered_play" ArbitraryTyping = "arbitrary_typing" ArbitraryCommand = "arbitrary_command" SaveControllers = "save_controllers" ClearControllers = "clear_controllers" ResetControllers = "reset_controllers" RestartRenderer = "restart_renderer" ToggleMultiplex = "toggle_multiplex" Kill = "kill" class RenderPass(): def __init__(self, render, suffix, args): self.render = render self.fn = self.render.func self.args = args self.suffix = suffix self.path = None self.single_layer = None self.output_path = None def __repr__(self): return f"<RenderPass:f{self.output_path}/>" class renderable(): def __init__(self, rect=(1080, 1080), bg="whitesmoke", fmt="png", name=None, rasterizer=None, prefix=None, dst=None, custom_folder=None, postfn=None, watch=[], watch_restarts=[], layers=[], solo=False, rstate=False, preview_only=False, direct_draw=False, clip=False, style="default", viewBox=True): """Base configuration for a renderable function""" self.rect = Rect(rect) self.bg = normalize_color(bg) self.fmt = fmt self.prefix = prefix self.dst = Path(dst).expanduser().resolve() if dst else None self.custom_folder = custom_folder self.postfn = postfn self.last_passes = [] self.style = style self.watch = [] for w in watch: self.add_watchee(w) self.watch_restarts = [] for w in watch_restarts: self.watch_restarts.append(self.add_watchee(w)) self.name = name self.rasterizer = rasterizer self.self_rasterizing = False self.layers = layers self.hidden = solo == -1 self.solo = solo self.preview_only = preview_only self.rstate = rstate self.clip = clip self.viewBox = viewBox self.direct_draw = direct_draw if not rasterizer: if self.fmt == "svg": self.rasterizer = "svg" elif self.fmt == "pickle": self.rasterizer = "pickle" else: self.rasterizer = "skia" def add_watchee(self, w): try: pw = Path(w).expanduser().resolve() if not pw.exists(): print(w, "<<< does not exist (cannot be watched)") else: self.watch.append(pw) return pw except TypeError: if isinstance(w, Font): self.watch.append(w) else: raise Exception("Can only watch path strings, Paths, and Fonts") def __call__(self, func): self.func = func if not self.name: self.name = self.func.__name__ return self def folder(self, filepath): return "" def layer_folder(self, filepath, layer): return "" def pass_suffix(self): return self.name def passes(self, action, layers, renderer_state, indices=[]): return [RenderPass(self, self.pass_suffix(), [self.rect])] def package(self, filepath, output_folder): pass def run(self, render_pass, renderer_state): if self.rstate: return render_pass.fn(*render_pass.args, renderer_state) else: return render_pass.fn(*render_pass.args) def runpost(self, result, render_pass): if self.postfn: return self.postfn(self, result) else: return result def draw_preview(self, scale, canvas:skia.Canvas, rect, result, render_pass): sr = self.rect.scale(scale, "mnx", "mxx") SkiaPen.CompositeToCanvas(result, sr, canvas, scale, style=self.style) def hide(self): self.hidden = True return self def show(self): self.hidden = False return self class skia_direct(renderable): def __init__(self, rect=(1080, 1080), **kwargs): super().__init__(rect=rect, direct_draw=True, **kwargs) def run(self, render_pass, renderer_state, canvas): if self.rstate: return render_pass.fn(*render_pass.args, renderer_state, canvas) else: return render_pass.fn(*render_pass.args, canvas) class drawbot_script(renderable): def __init__(self, rect=(1080, 1080), scale=1, **kwargs): if not db: raise Exception("DrawBot not installed!") super().__init__(rect=Rect(rect).scale(scale), rasterizer="drawbot", **kwargs) self.self_rasterizing = True def run(self, render_pass, renderer_state): use_pool = True if use_pool: pool = AppKit.NSAutoreleasePool.alloc().init() try: db.newDrawing() if renderer_state.previewing: ps = renderer_state.preview_scale db.size(self.rect.w*ps, self.rect.h*ps) db.scale(ps, ps) DATPen().rect(self.rect).f(self.bg).db_drawPath() else: db.size(self.rect.w, self.rect.h) render_pass.fn(*render_pass.args) result = None if renderer_state.previewing: previews = (render_pass.output_path.parent / "_previews") previews.mkdir(exist_ok=True, parents=True) preview_frame = previews / render_pass.output_path.name db.saveImage(str(preview_frame)) result = preview_frame else: render_pass.output_path.parent.mkdir(exist_ok=True, parents=True) db.saveImage(str(render_pass.output_path)) result = render_pass.output_path db.endDrawing() finally: if use_pool: del pool return result class svgicon(renderable): def __init__(self, **kwargs): super().__init__(fmt="svg", **kwargs) def folder(self, filepath): return filepath.stem class glyph(renderable): def __init__(self, glyphName, width=500, **kwargs): r = Rect(kwargs.get("rect", Rect(1000, 1000))) kwargs.pop("rect", None) self.width = width self.body = r.take(750, "mdy").take(self.width, "mdx") self.glyphName = glyphName super().__init__(rect=r, **kwargs) def passes(self, action, layers, renderer_state, indices=[]): return [RenderPass(self, self.glyphName, [])] class fontpreview(renderable): def __init__(self, font_dir, font_re, rect=(1200, 150), limit=25, **kwargs): super().__init__(rect=rect, **kwargs) self.dir = normalize_font_prefix(font_dir) self.re = font_re self.matches = [] for font in self.dir.iterdir(): if re.search(self.re, str(font)): if len(self.matches) < limit: self.matches.append(font) self.matches.sort() def passes(self, action, layers, renderer_state, indices=[]): return [RenderPass(self, "{:s}".format(m.name), [self.rect, m]) for m in self.matches] class iconset(renderable): valid_sizes = [16, 32, 64, 128, 256, 512, 1024] def __init__(self, sizes=[128, 1024], **kwargs): super().__init__(**kwargs) self.sizes = sizes def folder(self, filepath): return f"{filepath.stem}_source" def passes(self, action, layers, renderer_state, indices=[]): # TODO could use the indices here sizes = self.sizes if action == Action.RenderAll: sizes = self.valid_sizes return [RenderPass(self, str(size), [self.rect, size]) for size in sizes] def package(self, filepath, output_folder): # inspired by https://retifrav.github.io/blog/2018/10/09/macos-convert-png-to-icns/ iconset = output_folder.parent / f"{filepath.stem}.iconset" iconset.mkdir(parents=True, exist_ok=True) system = platform.system() if system == "Darwin": for png in output_folder.glob("*.png"): d = int(png.stem.split("_")[1]) for x in [1, 2]: if x == 2 and d == 16: continue elif x == 1: fn = f"icon_{d}x{d}.png" elif x == 2: fn = f"icon_{int(d/2)}x{int(d/2)}@2x.png" print(fn) run(["sips", "-z", str(d), str(d), str(png), "--out", str(iconset / fn)]) run(["iconutil", "-c", "icns", str(iconset)]) if True: # can be done windows or mac from PIL import Image output = output_folder.parent / f"{filepath.stem}.ico" largest = list(output_folder.glob("*_1024.png"))[0] img = Image.open(str(largest)) icon_sizes = [(x, x) for x in self.valid_sizes] img.save(str(output), sizes=icon_sizes) class animation(renderable, Timeable): def __init__(self, rect=(1080, 1080), duration=10, storyboard=[0], timeline:Timeline=None, **kwargs): super().__init__(**kwargs) self.rect = Rect(rect) self.r = self.rect self.start = 0 self.end = duration #self.duration = duration self.storyboard = storyboard if timeline: self.timeline = timeline self.t = timeline self.start = timeline.start self.end = timeline.end #self.duration = timeline.duration if self.storyboard != [0] and timeline.storyboard == [0]: pass else: self.storyboard = timeline.storyboard.copy() else: self.timeline = Timeline(30) def __call__(self, func): res = super().__call__(func) self.prefix = self.name + "_" return res def folder(self, filepath): return filepath.stem + "/" + self.name # TODO necessary? def layer_folder(self, filepath, layer): return layer def all_frames(self): return list(range(0, self.duration)) def active_frames(self, action, layers, renderer_state, indices): frames = self.storyboard.copy() for fidx, frame in enumerate(frames): frames[fidx] = (frame + renderer_state.frame_index_offset) % self.duration if action == Action.RenderAll: frames = self.all_frames() elif action in [Action.PreviewIndices, Action.RenderIndices]: frames = indices elif action in [Action.RenderWorkarea]: if self.timeline: try: frames = self.workarea() except: frames = self.all_frames() #if hasattr(self.timeline, "find_workarea"): # frames = self.timeline.find_workarea() return frames def workarea(self): return list(self.timeline.workareas[0]) def pass_suffix(self, index): return "{:04d}".format(index) def passes(self, action, layers, renderer_state, indices=[]): frames = self.active_frames(action, layers, renderer_state, indices) return [RenderPass(self, self.pass_suffix(i), [Frame(i, self, layers)]) for i in frames] def package(self, filepath, output_folder): pass def make_gif(self, passes): import imageio path = str(self.output_folder) + "_animation.gif" with imageio.get_writer(path, mode="I") as writer: for p in passes: if p.render == self: image = imageio.imread(str(p.output_path)) writer.append_data(image) print(">>> wrote gif to", path) def contactsheet(self, gx, sl=slice(0, None, None)): try: sliced = True start, stop, step = sl.indices(self.duration) duration = (stop - start) // step except AttributeError: # indices storyboard duration = len(sl) sliced = False ar = self.rect gy = math.ceil(duration / gx) @renderable(rect=(ar.w*gx, ar.h*gy), bg=self.bg, name=self.name + "_contactsheet") def contactsheet(r:Rect): _pngs = list(sorted(self.output_folder.glob("*.png"))) if sliced: pngs = _pngs[sl] else: pngs = [p for i, p in enumerate(_pngs) if i in sl] dps = DATPenSet() dps += DATPen().rect(r).f(self.bg) for idx, g in enumerate(r.grid(columns=gx, rows=gy)): if idx < len(pngs): dps += DATPen().rect(g).f(None).img(pngs[idx], g, pattern=False) return dps return contactsheet class drawbot_animation(drawbot_script, animation): def passes(self, action, layers, renderer_state, indices=[]): if action in [ Action.RenderAll, Action.RenderIndices, Action.RenderWorkarea]: frames = super().active_frames(action, layers, renderer_state, indices) passes = [] if len(layers) > 0: for layer in layers: for i in frames: p = RenderPass(self, "{:04d}".format(i), [Frame(i, self, [layer])]) p.single_layer = layer passes.append(p) else: for i in frames: p = RenderPass(self, "{:04d}".format(i), [Frame(i, self, [])]) #p.single_layer = layer passes.append(p) return passes else: return super().passes(action, layers, renderer_state, indices)
python
15,136
import re patterns = 'xy+?' if re.search(patterns, "xyz"): print('Starts with x and has one z') else: print('No matching') #Starts with x and has one z
python
168
from typing import Tuple from torch.utils.data import DataLoader from .base_dataset import BaseDataset def build_dataset_helper(dataset_name: str, dataset_cfg: dict, is_train: bool, transform=None) -> BaseDataset: return eval(f'{dataset_name}(dataset_cfg, is_train, transform=transform)') def build_dataloader_helper(dataset_name, dataset_cfg: dict, batch_size, transform=None, shuffle=True) -> Tuple[DataLoader, DataLoader]: train_dataset = build_dataset_helper(dataset_name, dataset_cfg, is_train=True, transform=transform) val_dataset = build_dataset_helper(dataset_name, dataset_cfg, is_train=False) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle) val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False) return train_dataloader, val_dataloader
python
858
from ray import tune from ray.tune.registry import register_env from ray.rllib.env.wrappers.pettingzoo_env import PettingZooEnv from pettingzoo.sisl import waterworld_v0 # Based on code from github.com/parametersharingmadrl/parametersharingmadrl if __name__ == "__main__": # RDQN - Rainbow DQN # ADQN - Apex DQN register_env("waterworld", lambda _: PettingZooEnv(waterworld_v0.env())) tune.run( "APEX_DDPG", stop={"episodes_total": 60000}, checkpoint_freq=10, config={ # Enviroment specific. "env": "waterworld", # General "num_gpus": 1, "num_workers": 2, "num_envs_per_worker": 8, "learning_starts": 1000, "buffer_size": int(1e5), "compress_observations": True, "rollout_fragment_length": 20, "train_batch_size": 512, "gamma": .99, "n_step": 3, "lr": .0001, "prioritized_replay_alpha": 0.5, "final_prioritized_replay_beta": 1.0, "target_network_update_freq": 50000, "timesteps_per_iteration": 25000, # Method specific. "multiagent": { # We only have one policy (calling it "shared"). # Class, obs/act-spaces, and config will be derived # automatically. "policies": {"shared_policy"}, # Always use "shared" policy. "policy_mapping_fn": ( lambda agent_id, episode, **kwargs: "shared_policy"), }, }, )
python
1,634
# Copyright 2020 Board of Trustees of the University of Illinois. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
python
626
import imp import os import marshal import struct import sys import types from cStringIO import StringIO from compiler import ast, parse, walk, syntax #from compiler import pyassem, misc, future, symbols from compiler import misc, future, symbols from compiler.consts import SC_LOCAL, SC_GLOBAL, SC_FREE, SC_CELL from compiler.consts import CO_VARARGS, CO_VARKEYWORDS, CO_NEWLOCALS,\ CO_NESTED, CO_GENERATOR, CO_GENERATOR_ALLOWED, CO_FUTURE_DIVISION #from compiler.pyassem import TupleArg TupleArg = None # XXX The version-specific code can go, since this code only works with 2.x. # Do we have Python 1.x or Python 2.x? try: VERSION = sys.version_info[0] except AttributeError: VERSION = 1 callfunc_opcode_info = { # (Have *args, Have **args) : opcode (0,0) : "CALL_FUNCTION", (1,0) : "CALL_FUNCTION_VAR", (0,1) : "CALL_FUNCTION_KW", (1,1) : "CALL_FUNCTION_VAR_KW", } LOOP = 1 EXCEPT = 2 TRY_FINALLY = 3 END_FINALLY = 4 def compileFile(filename, display=0): f = open(filename, 'U') buf = f.read() f.close() mod = Module(buf, filename) try: mod.compile(display) except SyntaxError: raise else: f = open(filename + "c", "wb") mod.dump(f) f.close() def compile(source, filename, mode, flags=None, dont_inherit=None): """Replacement for builtin compile() function""" if flags is not None or dont_inherit is not None: raise RuntimeError, "not implemented yet" if mode == "single": gen = Interactive(source, filename) elif mode == "exec": gen = Module(source, filename) elif mode == "eval": gen = Expression(source, filename) else: raise ValueError("compile() 3rd arg must be 'exec' or " "'eval' or 'single'") gen.compile() return gen.code class AbstractCompileMode: mode = None # defined by subclass def __init__(self, source, filename): self.source = source self.filename = filename self.code = None def _get_tree(self): tree = parse(self.source, self.mode) misc.set_filename(self.filename, tree) syntax.check(tree) return tree def compile(self): pass # implemented by subclass def getCode(self): return self.code class Expression(AbstractCompileMode): mode = "eval" def compile(self): tree = self._get_tree() gen = ExpressionCodeGenerator(tree) self.code = gen.getCode() class Interactive(AbstractCompileMode): mode = "single" def compile(self): tree = self._get_tree() gen = InteractiveCodeGenerator(tree) self.code = gen.getCode() class Module(AbstractCompileMode): mode = "exec" def compile(self, display=0): tree = self._get_tree() gen = ModuleCodeGenerator(tree) if display: import pprint print pprint.pprint(tree) self.code = gen.getCode() def dump(self, f): f.write(self.getPycHeader()) marshal.dump(self.code, f) #MAGIC = imp.get_magic() MAGIC = None def getPycHeader(self): # compile.c uses marshal to write a long directly, with # calling the interface that would also generate a 1-byte code # to indicate the type of the value. simplest way to get the # same effect is to call marshal and then skip the code. mtime = os.path.getmtime(self.filename) mtime = struct.pack('<i', mtime) return self.MAGIC + mtime class LocalNameFinder: """Find local names in scope""" def __init__(self, names=()): self.names = misc.Set() self.globals = misc.Set() for name in names: self.names.add(name) # XXX list comprehensions and for loops def getLocals(self): for elt in self.globals.elements(): if self.names.has_elt(elt): self.names.remove(elt) return self.names def visitDict(self, node): pass def visitGlobal(self, node): for name in node.names: self.globals.add(name) def visitFunction(self, node): self.names.add(node.name) def visitLambda(self, node): pass def visitImport(self, node): for name, alias in node.names: self.names.add(alias or name) def visitFrom(self, node): for name, alias in node.names: self.names.add(alias or name) def visitClass(self, node): self.names.add(node.name) def visitAssName(self, node): self.names.add(node.name) def is_constant_false(node): if isinstance(node, ast.Const): if not node.value: return 1 return 0 class CodeGenerator: """Defines basic code generator for Python bytecode This class is an abstract base class. Concrete subclasses must define an __init__() that defines self.graph and then calls the __init__() defined in this class. The concrete class must also define the class attributes NameFinder, FunctionGen, and ClassGen. These attributes can be defined in the initClass() method, which is a hook for initializing these methods after all the classes have been defined. """ optimized = 0 # is namespace access optimized? __initialized = None class_name = None # provide default for instance variable def __init__(self): if self.__initialized is None: self.initClass() self.__class__.__initialized = 1 self.checkClass() self.locals = misc.Stack() self.setups = misc.Stack() self.curStack = 0 self.maxStack = 0 self.last_lineno = None self._setupGraphDelegation() self._div_op = "BINARY_DIVIDE" # XXX set flags based on future features futures = self.get_module().futures for feature in futures: if feature == "division": self.graph.setFlag(CO_FUTURE_DIVISION) self._div_op = "BINARY_TRUE_DIVIDE" elif feature == "generators": self.graph.setFlag(CO_GENERATOR_ALLOWED) def initClass(self): """This method is called once for each class""" def checkClass(self): """Verify that class is constructed correctly""" try: assert hasattr(self, 'graph') assert getattr(self, 'NameFinder') assert getattr(self, 'FunctionGen') assert getattr(self, 'ClassGen') except AssertionError, msg: intro = "Bad class construction for %s" % self.__class__.__name__ raise AssertionError, intro def _setupGraphDelegation(self): self.emit = self.graph.emit self.newBlock = self.graph.newBlock self.startBlock = self.graph.startBlock self.nextBlock = self.graph.nextBlock self.setDocstring = self.graph.setDocstring def getCode(self): """Return a code object""" return self.graph.getCode() def mangle(self, name): if self.class_name is not None: return misc.mangle(name, self.class_name) else: return name def parseSymbols(self, tree): s = symbols.SymbolVisitor() walk(tree, s) return s.scopes def get_module(self): raise RuntimeError, "should be implemented by subclasses" # Next five methods handle name access def isLocalName(self, name): return self.locals.top().has_elt(name) def storeName(self, name): self._nameOp('STORE', name) def loadName(self, name): self._nameOp('LOAD', name) def delName(self, name): self._nameOp('DELETE', name) def _nameOp(self, prefix, name): name = self.mangle(name) scope = self.scope.check_name(name) if scope == SC_LOCAL: if not self.optimized: self.emit(prefix + '_NAME', name) else: self.emit(prefix + '_FAST', name) elif scope == SC_GLOBAL: if not self.optimized: self.emit(prefix + '_NAME', name) else: self.emit(prefix + '_GLOBAL', name) elif scope == SC_FREE or scope == SC_CELL: self.emit(prefix + '_DEREF', name) else: raise RuntimeError, "unsupported scope for var %s: %d" % \ (name, scope) def _implicitNameOp(self, prefix, name): """Emit name ops for names generated implicitly by for loops The interpreter generates names that start with a period or dollar sign. The symbol table ignores these names because they aren't present in the program text. """ if self.optimized: self.emit(prefix + '_FAST', name) else: self.emit(prefix + '_NAME', name) # The set_lineno() function and the explicit emit() calls for # SET_LINENO below are only used to generate the line number table. # As of Python 2.3, the interpreter does not have a SET_LINENO # instruction. pyassem treats SET_LINENO opcodes as a special case. def set_lineno(self, node, force=False): """Emit SET_LINENO if necessary. The instruction is considered necessary if the node has a lineno attribute and it is different than the last lineno emitted. Returns true if SET_LINENO was emitted. There are no rules for when an AST node should have a lineno attribute. The transformer and AST code need to be reviewed and a consistent policy implemented and documented. Until then, this method works around missing line numbers. """ lineno = getattr(node, 'lineno', None) if lineno is not None and (lineno != self.last_lineno or force): self.emit('SET_LINENO', lineno) self.last_lineno = lineno return True return False # The first few visitor methods handle nodes that generator new # code objects. They use class attributes to determine what # specialized code generators to use. NameFinder = LocalNameFinder FunctionGen = None ClassGen = None def visitModule(self, node): self.scopes = self.parseSymbols(node) self.scope = self.scopes[node] self.emit('SET_LINENO', 0) if node.doc: self.emit('LOAD_CONST', node.doc) self.storeName('__doc__') lnf = walk(node.node, self.NameFinder(), verbose=0) self.locals.push(lnf.getLocals()) self.visit(node.node) self.emit('LOAD_CONST', None) self.emit('RETURN_VALUE') def visitExpression(self, node): self.set_lineno(node) self.scopes = self.parseSymbols(node) self.scope = self.scopes[node] self.visit(node.node) self.emit('RETURN_VALUE') def visitFunction(self, node): self._visitFuncOrLambda(node, isLambda=0) if node.doc: self.setDocstring(node.doc) self.storeName(node.name) def visitLambda(self, node): self._visitFuncOrLambda(node, isLambda=1) def _visitFuncOrLambda(self, node, isLambda=0): gen = self.FunctionGen(node, self.scopes, isLambda, self.class_name, self.get_module()) walk(node.code, gen) gen.finish() self.set_lineno(node) for default in node.defaults: self.visit(default) frees = gen.scope.get_free_vars() if frees: for name in frees: self.emit('LOAD_CLOSURE', name) self.emit('LOAD_CONST', gen) self.emit('MAKE_CLOSURE', len(node.defaults)) else: self.emit('LOAD_CONST', gen) self.emit('MAKE_FUNCTION', len(node.defaults)) def visitClass(self, node): gen = self.ClassGen(node, self.scopes, self.get_module()) walk(node.code, gen) gen.finish() self.set_lineno(node) self.emit('LOAD_CONST', node.name) for base in node.bases: self.visit(base) self.emit('BUILD_TUPLE', len(node.bases)) frees = gen.scope.get_free_vars() for name in frees: self.emit('LOAD_CLOSURE', name) self.emit('LOAD_CONST', gen) if frees: self.emit('MAKE_CLOSURE', 0) else: self.emit('MAKE_FUNCTION', 0) self.emit('CALL_FUNCTION', 0) self.emit('BUILD_CLASS') self.storeName(node.name) # The rest are standard visitor methods # The next few implement control-flow statements def visitIf(self, node): end = self.newBlock() numtests = len(node.tests) for i in range(numtests): test, suite = node.tests[i] if is_constant_false(test): # XXX will need to check generator stuff here continue self.set_lineno(test) self.visit(test) nextTest = self.newBlock() self.emit('JUMP_IF_FALSE', nextTest) self.nextBlock() self.emit('POP_TOP') self.visit(suite) self.emit('JUMP_FORWARD', end) self.startBlock(nextTest) self.emit('POP_TOP') if node.else_: self.visit(node.else_) self.nextBlock(end) def visitWhile(self, node): self.set_lineno(node) loop = self.newBlock() else_ = self.newBlock() after = self.newBlock() self.emit('SETUP_LOOP', after) self.nextBlock(loop) self.setups.push((LOOP, loop)) self.set_lineno(node, force=True) self.visit(node.test) self.emit('JUMP_IF_FALSE', else_ or after) self.nextBlock() self.emit('POP_TOP') self.visit(node.body) self.emit('JUMP_ABSOLUTE', loop) self.startBlock(else_) # or just the POPs if not else clause self.emit('POP_TOP') self.emit('POP_BLOCK') self.setups.pop() if node.else_: self.visit(node.else_) self.nextBlock(after) def visitFor(self, node): start = self.newBlock() anchor = self.newBlock() after = self.newBlock() self.setups.push((LOOP, start)) self.set_lineno(node) self.emit('SETUP_LOOP', after) self.visit(node.list) self.emit('GET_ITER') self.nextBlock(start) self.set_lineno(node, force=1) self.emit('FOR_ITER', anchor) self.visit(node.assign) self.visit(node.body) self.emit('JUMP_ABSOLUTE', start) self.nextBlock(anchor) self.emit('POP_BLOCK') self.setups.pop() if node.else_: self.visit(node.else_) self.nextBlock(after) def visitBreak(self, node): if not self.setups: raise SyntaxError, "'break' outside loop (%s, %d)" % \ (node.filename, node.lineno) self.set_lineno(node) self.emit('BREAK_LOOP') def visitContinue(self, node): if not self.setups: raise SyntaxError, "'continue' outside loop (%s, %d)" % \ (node.filename, node.lineno) kind, block = self.setups.top() if kind == LOOP: self.set_lineno(node) self.emit('JUMP_ABSOLUTE', block) self.nextBlock() elif kind == EXCEPT or kind == TRY_FINALLY: self.set_lineno(node) # find the block that starts the loop top = len(self.setups) while top > 0: top = top - 1 kind, loop_block = self.setups[top] if kind == LOOP: break if kind != LOOP: raise SyntaxError, "'continue' outside loop (%s, %d)" % \ (node.filename, node.lineno) self.emit('CONTINUE_LOOP', loop_block) self.nextBlock() elif kind == END_FINALLY: msg = "'continue' not allowed inside 'finally' clause (%s, %d)" raise SyntaxError, msg % (node.filename, node.lineno) def visitTest(self, node, jump): end = self.newBlock() for child in node.nodes[:-1]: self.visit(child) self.emit(jump, end) self.nextBlock() self.emit('POP_TOP') self.visit(node.nodes[-1]) self.nextBlock(end) def visitAnd(self, node): self.visitTest(node, 'JUMP_IF_FALSE') def visitOr(self, node): self.visitTest(node, 'JUMP_IF_TRUE') def visitCompare(self, node): self.visit(node.expr) cleanup = self.newBlock() for op, code in node.ops[:-1]: self.visit(code) self.emit('DUP_TOP') self.emit('ROT_THREE') self.emit('COMPARE_OP', op) self.emit('JUMP_IF_FALSE', cleanup) self.nextBlock() self.emit('POP_TOP') # now do the last comparison if node.ops: op, code = node.ops[-1] self.visit(code) self.emit('COMPARE_OP', op) if len(node.ops) > 1: end = self.newBlock() self.emit('JUMP_FORWARD', end) self.startBlock(cleanup) self.emit('ROT_TWO') self.emit('POP_TOP') self.nextBlock(end) # list comprehensions __list_count = 0 def visitListComp(self, node): self.set_lineno(node) # setup list append = "$append%d" % self.__list_count self.__list_count = self.__list_count + 1 self.emit('BUILD_LIST', 0) self.emit('DUP_TOP') self.emit('LOAD_ATTR', 'append') self._implicitNameOp('STORE', append) stack = [] for i, for_ in zip(range(len(node.quals)), node.quals): start, anchor = self.visit(for_) cont = None for if_ in for_.ifs: if cont is None: cont = self.newBlock() self.visit(if_, cont) stack.insert(0, (start, cont, anchor)) self._implicitNameOp('LOAD', append) self.visit(node.expr) self.emit('CALL_FUNCTION', 1) self.emit('POP_TOP') for start, cont, anchor in stack: if cont: skip_one = self.newBlock() self.emit('JUMP_FORWARD', skip_one) self.startBlock(cont) self.emit('POP_TOP') self.nextBlock(skip_one) self.emit('JUMP_ABSOLUTE', start) self.startBlock(anchor) self._implicitNameOp('DELETE', append) self.__list_count = self.__list_count - 1 def visitListCompFor(self, node): start = self.newBlock() anchor = self.newBlock() self.visit(node.list) self.emit('GET_ITER') self.nextBlock(start) self.set_lineno(node, force=True) self.emit('FOR_ITER', anchor) self.nextBlock() self.visit(node.assign) return start, anchor def visitListCompIf(self, node, branch): self.set_lineno(node, force=True) self.visit(node.test) self.emit('JUMP_IF_FALSE', branch) self.newBlock() self.emit('POP_TOP') # exception related def visitAssert(self, node): # XXX would be interesting to implement this via a # transformation of the AST before this stage end = self.newBlock() self.set_lineno(node) # XXX __debug__ and AssertionError appear to be special cases # -- they are always loaded as globals even if there are local # names. I guess this is a sort of renaming op. self.emit('LOAD_GLOBAL', '__debug__') self.emit('JUMP_IF_FALSE', end) self.nextBlock() self.emit('POP_TOP') self.visit(node.test) self.emit('JUMP_IF_TRUE', end) self.nextBlock() self.emit('POP_TOP') self.emit('LOAD_GLOBAL', 'AssertionError') if node.fail: self.visit(node.fail) self.emit('RAISE_VARARGS', 2) else: self.emit('RAISE_VARARGS', 1) self.nextBlock(end) self.emit('POP_TOP') def visitRaise(self, node): self.set_lineno(node) n = 0 if node.expr1: self.visit(node.expr1) n = n + 1 if node.expr2: self.visit(node.expr2) n = n + 1 if node.expr3: self.visit(node.expr3) n = n + 1 self.emit('RAISE_VARARGS', n) def visitTryExcept(self, node): body = self.newBlock() handlers = self.newBlock() end = self.newBlock() if node.else_: lElse = self.newBlock() else: lElse = end self.set_lineno(node) self.emit('SETUP_EXCEPT', handlers) self.nextBlock(body) self.setups.push((EXCEPT, body)) self.visit(node.body) self.emit('POP_BLOCK') self.setups.pop() self.emit('JUMP_FORWARD', lElse) self.startBlock(handlers) last = len(node.handlers) - 1 for i in range(len(node.handlers)): expr, target, body = node.handlers[i] self.set_lineno(expr) if expr: self.emit('DUP_TOP') self.visit(expr) self.emit('COMPARE_OP', 'exception match') next = self.newBlock() self.emit('JUMP_IF_FALSE', next) self.nextBlock() self.emit('POP_TOP') self.emit('POP_TOP') if target: self.visit(target) else: self.emit('POP_TOP') self.emit('POP_TOP') self.visit(body) self.emit('JUMP_FORWARD', end) if expr: self.nextBlock(next) else: self.nextBlock() if expr: # XXX self.emit('POP_TOP') self.emit('END_FINALLY') if node.else_: self.nextBlock(lElse) self.visit(node.else_) self.nextBlock(end) def visitTryFinally(self, node): body = self.newBlock() final = self.newBlock() self.set_lineno(node) self.emit('SETUP_FINALLY', final) self.nextBlock(body) self.setups.push((TRY_FINALLY, body)) self.visit(node.body) self.emit('POP_BLOCK') self.setups.pop() self.emit('LOAD_CONST', None) self.nextBlock(final) self.setups.push((END_FINALLY, final)) self.visit(node.final) self.emit('END_FINALLY') self.setups.pop() # misc def visitDiscard(self, node): self.set_lineno(node) self.visit(node.expr) self.emit('POP_TOP') def visitConst(self, node): self.emit('LOAD_CONST', node.value) def visitKeyword(self, node): self.emit('LOAD_CONST', node.name) self.visit(node.expr) def visitGlobal(self, node): # no code to generate pass def visitName(self, node): self.set_lineno(node) self.loadName(node.name) def visitPass(self, node): self.set_lineno(node) def visitImport(self, node): self.set_lineno(node) for name, alias in node.names: if VERSION > 1: self.emit('LOAD_CONST', None) self.emit('IMPORT_NAME', name) mod = name.split(".")[0] if alias: self._resolveDots(name) self.storeName(alias) else: self.storeName(mod) def visitFrom(self, node): self.set_lineno(node) fromlist = map(lambda (name, alias): name, node.names) if VERSION > 1: self.emit('LOAD_CONST', tuple(fromlist)) self.emit('IMPORT_NAME', node.modname) for name, alias in node.names: if VERSION > 1: if name == '*': self.namespace = 0 self.emit('IMPORT_STAR') # There can only be one name w/ from ... import * assert len(node.names) == 1 return else: self.emit('IMPORT_FROM', name) self._resolveDots(name) self.storeName(alias or name) else: self.emit('IMPORT_FROM', name) self.emit('POP_TOP') def _resolveDots(self, name): elts = name.split(".") if len(elts) == 1: return for elt in elts[1:]: self.emit('LOAD_ATTR', elt) def visitGetattr(self, node): self.visit(node.expr) self.emit('LOAD_ATTR', self.mangle(node.attrname)) # next five implement assignments def visitAssign(self, node): self.set_lineno(node) self.visit(node.expr) dups = len(node.nodes) - 1 for i in range(len(node.nodes)): elt = node.nodes[i] if i < dups: self.emit('DUP_TOP') if isinstance(elt, ast.Node): self.visit(elt) def visitAssName(self, node): if node.flags == 'OP_ASSIGN': self.storeName(node.name) elif node.flags == 'OP_DELETE': self.set_lineno(node) self.delName(node.name) else: print "oops", node.flags def visitAssAttr(self, node): self.visit(node.expr) if node.flags == 'OP_ASSIGN': self.emit('STORE_ATTR', self.mangle(node.attrname)) elif node.flags == 'OP_DELETE': self.emit('DELETE_ATTR', self.mangle(node.attrname)) else: print "warning: unexpected flags:", node.flags print node def _visitAssSequence(self, node, op='UNPACK_SEQUENCE'): if findOp(node) != 'OP_DELETE': self.emit(op, len(node.nodes)) for child in node.nodes: self.visit(child) if VERSION > 1: visitAssTuple = _visitAssSequence visitAssList = _visitAssSequence else: def visitAssTuple(self, node): self._visitAssSequence(node, 'UNPACK_TUPLE') def visitAssList(self, node): self._visitAssSequence(node, 'UNPACK_LIST') # augmented assignment def visitAugAssign(self, node): self.set_lineno(node) aug_node = wrap_aug(node.node) self.visit(aug_node, "load") self.visit(node.expr) self.emit(self._augmented_opcode[node.op]) self.visit(aug_node, "store") _augmented_opcode = { '+=' : 'INPLACE_ADD', '-=' : 'INPLACE_SUBTRACT', '*=' : 'INPLACE_MULTIPLY', '/=' : 'INPLACE_DIVIDE', '//=': 'INPLACE_FLOOR_DIVIDE', '%=' : 'INPLACE_MODULO', '**=': 'INPLACE_POWER', '>>=': 'INPLACE_RSHIFT', '<<=': 'INPLACE_LSHIFT', '&=' : 'INPLACE_AND', '^=' : 'INPLACE_XOR', '|=' : 'INPLACE_OR', } def visitAugName(self, node, mode): if mode == "load": self.loadName(node.name) elif mode == "store": self.storeName(node.name) def visitAugGetattr(self, node, mode): if mode == "load": self.visit(node.expr) self.emit('DUP_TOP') self.emit('LOAD_ATTR', self.mangle(node.attrname)) elif mode == "store": self.emit('ROT_TWO') self.emit('STORE_ATTR', self.mangle(node.attrname)) def visitAugSlice(self, node, mode): if mode == "load": self.visitSlice(node, 1) elif mode == "store": slice = 0 if node.lower: slice = slice | 1 if node.upper: slice = slice | 2 if slice == 0: self.emit('ROT_TWO') elif slice == 3: self.emit('ROT_FOUR') else: self.emit('ROT_THREE') self.emit('STORE_SLICE+%d' % slice) def visitAugSubscript(self, node, mode): if len(node.subs) > 1: raise SyntaxError, "augmented assignment to tuple is not possible" if mode == "load": self.visitSubscript(node, 1) elif mode == "store": self.emit('ROT_THREE') self.emit('STORE_SUBSCR') def visitExec(self, node): self.visit(node.expr) if node.locals is None: self.emit('LOAD_CONST', None) else: self.visit(node.locals) if node.globals is None: self.emit('DUP_TOP') else: self.visit(node.globals) self.emit('EXEC_STMT') def visitCallFunc(self, node): pos = 0 kw = 0 self.set_lineno(node) self.visit(node.node) for arg in node.args: self.visit(arg) if isinstance(arg, ast.Keyword): kw = kw + 1 else: pos = pos + 1 if node.star_args is not None: self.visit(node.star_args) if node.dstar_args is not None: self.visit(node.dstar_args) have_star = node.star_args is not None have_dstar = node.dstar_args is not None opcode = callfunc_opcode_info[have_star, have_dstar] self.emit(opcode, kw << 8 | pos) def visitPrint(self, node, newline=0): self.set_lineno(node) if node.dest: self.visit(node.dest) for child in node.nodes: if node.dest: self.emit('DUP_TOP') self.visit(child) if node.dest: self.emit('ROT_TWO') self.emit('PRINT_ITEM_TO') else: self.emit('PRINT_ITEM') if node.dest and not newline: self.emit('POP_TOP') def visitPrintnl(self, node): self.visitPrint(node, newline=1) if node.dest: self.emit('PRINT_NEWLINE_TO') else: self.emit('PRINT_NEWLINE') def visitReturn(self, node): self.set_lineno(node) self.visit(node.value) self.emit('RETURN_VALUE') def visitYield(self, node): self.set_lineno(node) self.visit(node.value) self.emit('YIELD_VALUE') # slice and subscript stuff def visitSlice(self, node, aug_flag=None): # aug_flag is used by visitAugSlice self.visit(node.expr) slice = 0 if node.lower: self.visit(node.lower) slice = slice | 1 if node.upper: self.visit(node.upper) slice = slice | 2 if aug_flag: if slice == 0: self.emit('DUP_TOP') elif slice == 3: self.emit('DUP_TOPX', 3) else: self.emit('DUP_TOPX', 2) if node.flags == 'OP_APPLY': self.emit('SLICE+%d' % slice) elif node.flags == 'OP_ASSIGN': self.emit('STORE_SLICE+%d' % slice) elif node.flags == 'OP_DELETE': self.emit('DELETE_SLICE+%d' % slice) else: print "weird slice", node.flags raise def visitSubscript(self, node, aug_flag=None): self.visit(node.expr) for sub in node.subs: self.visit(sub) if aug_flag: self.emit('DUP_TOPX', 2) if len(node.subs) > 1: self.emit('BUILD_TUPLE', len(node.subs)) if node.flags == 'OP_APPLY': self.emit('BINARY_SUBSCR') elif node.flags == 'OP_ASSIGN': self.emit('STORE_SUBSCR') elif node.flags == 'OP_DELETE': self.emit('DELETE_SUBSCR') # binary ops def binaryOp(self, node, op): self.visit(node.left) self.visit(node.right) self.emit(op) def visitAdd(self, node): return self.binaryOp(node, 'BINARY_ADD') def visitSub(self, node): return self.binaryOp(node, 'BINARY_SUBTRACT') def visitMul(self, node): return self.binaryOp(node, 'BINARY_MULTIPLY') def visitDiv(self, node): return self.binaryOp(node, self._div_op) def visitFloorDiv(self, node): return self.binaryOp(node, 'BINARY_FLOOR_DIVIDE') def visitMod(self, node): return self.binaryOp(node, 'BINARY_MODULO') def visitPower(self, node): return self.binaryOp(node, 'BINARY_POWER') def visitLeftShift(self, node): return self.binaryOp(node, 'BINARY_LSHIFT') def visitRightShift(self, node): return self.binaryOp(node, 'BINARY_RSHIFT') # unary ops def unaryOp(self, node, op): self.visit(node.expr) self.emit(op) def visitInvert(self, node): return self.unaryOp(node, 'UNARY_INVERT') def visitUnarySub(self, node): return self.unaryOp(node, 'UNARY_NEGATIVE') def visitUnaryAdd(self, node): return self.unaryOp(node, 'UNARY_POSITIVE') def visitUnaryInvert(self, node): return self.unaryOp(node, 'UNARY_INVERT') def visitNot(self, node): return self.unaryOp(node, 'UNARY_NOT') def visitBackquote(self, node): return self.unaryOp(node, 'UNARY_CONVERT') # bit ops def bitOp(self, nodes, op): self.visit(nodes[0]) for node in nodes[1:]: self.visit(node) self.emit(op) def visitBitand(self, node): return self.bitOp(node.nodes, 'BINARY_AND') def visitBitor(self, node): return self.bitOp(node.nodes, 'BINARY_OR') def visitBitxor(self, node): return self.bitOp(node.nodes, 'BINARY_XOR') # object constructors def visitEllipsis(self, node): self.emit('LOAD_CONST', Ellipsis) def visitTuple(self, node): self.set_lineno(node) for elt in node.nodes: self.visit(elt) self.emit('BUILD_TUPLE', len(node.nodes)) def visitList(self, node): self.set_lineno(node) for elt in node.nodes: self.visit(elt) self.emit('BUILD_LIST', len(node.nodes)) def visitSliceobj(self, node): for child in node.nodes: self.visit(child) self.emit('BUILD_SLICE', len(node.nodes)) def visitDict(self, node): self.set_lineno(node) self.emit('BUILD_MAP', 0) for k, v in node.items: self.emit('DUP_TOP') self.visit(k) self.visit(v) self.emit('ROT_THREE') self.emit('STORE_SUBSCR') class NestedScopeMixin: """Defines initClass() for nested scoping (Python 2.2-compatible)""" def initClass(self): self.__class__.NameFinder = LocalNameFinder self.__class__.FunctionGen = FunctionCodeGenerator self.__class__.ClassGen = ClassCodeGenerator class ModuleCodeGenerator(NestedScopeMixin, CodeGenerator): __super_init = CodeGenerator.__init__ scopes = None def __init__(self, tree): self.graph = pyassem.PyFlowGraph("<module>", tree.filename) self.futures = future.find_futures(tree) self.__super_init() walk(tree, self) def get_module(self): return self class ExpressionCodeGenerator(NestedScopeMixin, CodeGenerator): __super_init = CodeGenerator.__init__ scopes = None futures = () def __init__(self, tree): self.graph = pyassem.PyFlowGraph("<expression>", tree.filename) self.__super_init() walk(tree, self) def get_module(self): return self class InteractiveCodeGenerator(NestedScopeMixin, CodeGenerator): __super_init = CodeGenerator.__init__ scopes = None futures = () def __init__(self, tree): self.graph = pyassem.PyFlowGraph("<interactive>", tree.filename) self.__super_init() self.set_lineno(tree) walk(tree, self) self.emit('RETURN_VALUE') def get_module(self): return self def visitDiscard(self, node): # XXX Discard means it's an expression. Perhaps this is a bad # name. self.visit(node.expr) self.emit('PRINT_EXPR') class AbstractFunctionCode: optimized = 1 lambdaCount = 0 def __init__(self, func, scopes, isLambda, class_name, mod): self.class_name = class_name self.module = mod if isLambda: klass = FunctionCodeGenerator name = "<lambda.%d>" % klass.lambdaCount klass.lambdaCount = klass.lambdaCount + 1 else: name = func.name args, hasTupleArg = generateArgList(func.argnames) self.graph = pyassem.PyFlowGraph(name, func.filename, args, optimized=1) self.isLambda = isLambda self.super_init() if not isLambda and func.doc: self.setDocstring(func.doc) lnf = walk(func.code, self.NameFinder(args), verbose=0) self.locals.push(lnf.getLocals()) if func.varargs: self.graph.setFlag(CO_VARARGS) if func.kwargs: self.graph.setFlag(CO_VARKEYWORDS) self.set_lineno(func) if hasTupleArg: self.generateArgUnpack(func.argnames) def get_module(self): return self.module def finish(self): self.graph.startExitBlock() if not self.isLambda: self.emit('LOAD_CONST', None) self.emit('RETURN_VALUE') def generateArgUnpack(self, args): for i in range(len(args)): arg = args[i] if type(arg) == types.TupleType: self.emit('LOAD_FAST', '.%d' % (i * 2)) self.unpackSequence(arg) def unpackSequence(self, tup): if VERSION > 1: self.emit('UNPACK_SEQUENCE', len(tup)) else: self.emit('UNPACK_TUPLE', len(tup)) for elt in tup: if type(elt) == types.TupleType: self.unpackSequence(elt) else: self._nameOp('STORE', elt) unpackTuple = unpackSequence class FunctionCodeGenerator(NestedScopeMixin, AbstractFunctionCode, CodeGenerator): super_init = CodeGenerator.__init__ # call be other init scopes = None __super_init = AbstractFunctionCode.__init__ def __init__(self, func, scopes, isLambda, class_name, mod): self.scopes = scopes self.scope = scopes[func] self.__super_init(func, scopes, isLambda, class_name, mod) self.graph.setFreeVars(self.scope.get_free_vars()) self.graph.setCellVars(self.scope.get_cell_vars()) if self.scope.generator is not None: self.graph.setFlag(CO_GENERATOR) class AbstractClassCode: def __init__(self, klass, scopes, module): self.class_name = klass.name self.module = module self.graph = pyassem.PyFlowGraph(klass.name, klass.filename, optimized=0, klass=1) self.super_init() lnf = walk(klass.code, self.NameFinder(), verbose=0) self.locals.push(lnf.getLocals()) self.graph.setFlag(CO_NEWLOCALS) if klass.doc: self.setDocstring(klass.doc) def get_module(self): return self.module def finish(self): self.graph.startExitBlock() self.emit('LOAD_LOCALS') self.emit('RETURN_VALUE') class ClassCodeGenerator(NestedScopeMixin, AbstractClassCode, CodeGenerator): super_init = CodeGenerator.__init__ scopes = None __super_init = AbstractClassCode.__init__ def __init__(self, klass, scopes, module): self.scopes = scopes self.scope = scopes[klass] self.__super_init(klass, scopes, module) self.graph.setFreeVars(self.scope.get_free_vars()) self.graph.setCellVars(self.scope.get_cell_vars()) self.set_lineno(klass) self.emit("LOAD_GLOBAL", "__name__") self.storeName("__module__") if klass.doc: self.emit("LOAD_CONST", klass.doc) self.storeName('__doc__') def generateArgList(arglist): """Generate an arg list marking TupleArgs""" args = [] extra = [] count = 0 for i in range(len(arglist)): elt = arglist[i] if type(elt) == types.StringType: args.append(elt) elif type(elt) == types.TupleType: args.append(TupleArg(i * 2, elt)) extra.extend(misc.flatten(elt)) count = count + 1 else: raise ValueError, "unexpect argument type:", elt return args + extra, count def findOp(node): """Find the op (DELETE, LOAD, STORE) in an AssTuple tree""" v = OpFinder() walk(node, v, verbose=0) return v.op class OpFinder: def __init__(self): self.op = None def visitAssName(self, node): if self.op is None: self.op = node.flags elif self.op != node.flags: raise ValueError, "mixed ops in stmt" visitAssAttr = visitAssName visitSubscript = visitAssName class Delegator: """Base class to support delegation for augmented assignment nodes To generator code for augmented assignments, we use the following wrapper classes. In visitAugAssign, the left-hand expression node is visited twice. The first time the visit uses the normal method for that node . The second time the visit uses a different method that generates the appropriate code to perform the assignment. These delegator classes wrap the original AST nodes in order to support the variant visit methods. """ def __init__(self, obj): self.obj = obj def __getattr__(self, attr): return getattr(self.obj, attr) class AugGetattr(Delegator): pass class AugName(Delegator): pass class AugSlice(Delegator): pass class AugSubscript(Delegator): pass wrapper = { ast.Getattr: AugGetattr, ast.Name: AugName, ast.Slice: AugSlice, ast.Subscript: AugSubscript, } def wrap_aug(node): return wrapper[node.__class__](node) if __name__ == "__main__": for file in sys.argv[1:]: compileFile(file)
python
43,718
from pyrogram import filters from pyrogram.types import Message from megumin import megux, Config from megumin.utils import ( check_bot_rights, check_rights, is_admin, is_dev, is_self, sed_sticker, get_collection, get_string ) from megumin.utils.decorators import input_str @megux.on_message(filters.command("setgrouppic", prefixes=["/", "!"])) async def set_chat_photo(_, message: Message): chat_id = message.chat.id user_id = message.from_user.id reply = message.reply_to_message if not reply: return await message.reply_text( "Marque uma foto ou documento para que eu possa alterar a foto do Grupo" ) if not await check_rights(chat_id, message.from_user.id, "can_change_info"): await message.reply("Você não tem direitos administrativos suficientes para alterar dados do grupo!") return file = reply.document or reply.photo if not file: return await message.reply_text( "Marque uma foto ou documento para que eu possa alterar a foto do Grupo" ) if file.file_size > 5000000: return await message.reply("__Esse arquivo é muito grande__") photo = await reply.download() sucess = await message.chat.set_photo(photo) await message.reply_text(f"Foto alterada com sucesso no grupo <b>{message.chat.title}</b>") @megux.on_message(filters.command("setrules", Config.TRIGGER)) async def rules_set(_, m: Message): x = "" if input_str(m): x += m.text.split(None, 1)[1] if m.reply_to_message: x += m.reply_to_message.text data = get_collection(f"RULES {m.chat.id}") if x in "": return await m.reply(await get_string(m.chat.id, "RULES_NO_ARGS")) else: if await check_rights(m.chat.id, m.from_user.id, "can_change_info"): await data.drop() await data.insert_one({"_rules": x}) await m.reply(await get_string(m.chat.id, "RULES_UPDATED")) @megux.on_message(filters.command("clearrules", Config.TRIGGER)) async def del_rules_(_, m: Message): if await check_rights(m.chat.id, m.from_user.id, "can_change_info"): RULES = get_collection(f"RULES {m.chat.id}") i = await RULES.find_one() res = i["_rules"] await RULES.delete_one({"_rules": res}) await m.reply(await get_string(m.chat.id, "RULES_CLEAR_SUCCESS")) @megux.on_message(filters.command("setlog", prefixes=["/", "!"])) async def set_log(_, m: Message): chat_log = "" chat_log += input_str(m) if not "-100" in chat_log: return await m.reply("Isso não é um grupo!") if chat_log == f"{m.chat.id}": return await m.reply("Você não pode definir o grupo de registro nesse grupo!") if await check_rights(m.chat.id, m.from_user.id, "can_change_info"): if input_str(m): data = get_collection(f"LOGS {m.chat.id}") to_chat = int(chat_log) if await check_rights(to_chat, m.from_user.id, "can_promote_members"): await data.drop() await data.insert_one({"log_id": chat_log}) chat = await data.find_one() await megux.send_message(chat["log_id"], (await get_string(m.chat.id, "LOGS_DEFINED")).format(m.chat.title)) await m.reply(await get_string(m.chat.id, "LOGS_DEFINED_MESSAGE")) else: return
python
3,408
"""Herewithin lies the ability to have ansible-runner run a command in a synchronous manner """ from typing import Tuple from ansible_runner import run_command # type: ignore[import] from .command_base import CommandBase class Command(CommandBase): """a runner wrapper""" def run(self) -> Tuple[str, str, int]: """run""" self.generate_run_command_args() out, err, ret_code = run_command(**self._runner_args) return out, err, ret_code
python
481
import math import random import time import re from queue import Queue import urllib.request import urllib.error import jieba from bs4 import BeautifulSoup urlSet = set() urlList = [] doc = 0 que = Queue() user_agents = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1', 'Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1', 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50', 'Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:6.0) Gecko/20100101 Firefox/6.0' ] ipList = ["112.85.129.100:9999", "112.85.175.4:9999", "112.87.70.92:9999"] # proxy_support = urllib.request.ProxyHandler({"http": random.choice(ipList)}) # opener = urllib.request.build_opener(proxy_support) # urllib.request.install_opener(opener) def get_html(url): req = urllib.request.Request(url=url, headers={'User-Agent': random.choice(user_agents)}) link = urllib.request.urlopen(req, timeout=1) return link.read() def getSave(url): soup = BeautifulSoup(get_html(url), 'html.parser') # 初始化BeautifulSoup库,并设置解析器 # 提取超链接 for a in soup.findAll('a', href=True): u = a.get("href") if u and ('@suda.edu.cn' not in u) and ("javascript" not in u): if u[0:4] == "http" and "suda" not in u: break if u[0:4] != "http": if u[0] == '/': u = re.findall("http.*edu.cn", url)[0]+u else: site = re.findall("http.*/", url)[0] if site[-2] == '/': site = re.findall("http.*/", url+'/')[0] u = site+u if u[-1] == '/': u = u[0:len(u)-1] if u not in urlSet: que.put(u) urlSet.add(u) # 提取正文 [script.extract() for script in soup.findAll('script')] [style.extract() for style in soup.findAll('style')] soup.prettify() content = re.sub("<[^>]*>", '', soup.prettify()) content = re.sub("\s{2,}", "\n", content) with open("{}".format(doc), "w", encoding='utf-8') as f: f.write(content) def search(): query = input("网站爬取完毕,请输入查询:").split() # 输入查询 queryDict = {} # 单词在查询中的出现次数 for i in query: if i in queryDict: queryDict[i] += 1 else: queryDict[i] = 1 queryDf = {i: 0 for i in queryDict} # 用来之后记录查询词的df值,默认不存在为0 fenciDict = [] # 各个文档分词结果的单词计数 for i in range(len(urlList)): with open("{}".format(i), "r", encoding='utf-8') as f: s = f.read() fenci = jieba.lcut_for_search(s) fenciSet = set(fenci) fenciDict.append({i: fenci.count(i) for i in fenciSet}) # 与上面对query的处理类似 for word in queryDf: if word in fenciDict[i]: queryDf[word] += 1 # 若关键词在文档中出现,则df加1 similarList = [] for i in range(len(urlList)): sum_qd = 0.0 # 作分子 sum_q2 = 0.0 sum_d2 = 0.0 # sum_q2*sum_d2的平方根作分母 for word in queryDict: w_query = 1.0 + math.log10(queryDict[word]) # word在query中的tf-idf权重 w_doc = 0 # word在第i个文档中的tf-idf权重 if word in fenciDict[i]: w_doc = (1.0 + math.log10(fenciDict[i][word])) * math.log10(10000.0 / queryDf[word]) sum_qd += w_query * w_doc sum_q2 += w_query ** 2 sum_d2 += w_doc ** 2 similar = 0.0 # 余弦相似度 len_q2d2 = math.sqrt(sum_q2 * sum_d2) if math.fabs(len_q2d2) > 1e-5: similar = sum_qd / len_q2d2 similarList.append((i, similar)) # 文档编号和余弦相似度的元祖 similarList.sort(key=lambda x: x[1], reverse=True) for i in range(min(10,len(similarList))): d = similarList[i][0] print(urlList[d], similarList[i][1]) if __name__ == "__main__": que.put("http://www.suda.edu.cn") #while not que.empty(): for i in range(100): #可以选择for控制循环次数进行测试 url = que.get() urlList.append(url) #print(url) #打印出访问的网站 flag = False for i in range(3): # 超时超过三次即认为访问失败 try: getSave(url) flag = True break except: pass if flag: doc += 1 else: #print("false") # 可体现出什么网站访问失败 pass # 控制访问时间间隔,可调整 time.sleep(0.2) if doc % 10 == 0: time.sleep(1.5) search()
python
4,686
#!/usr/bin/python # -*- coding: utf-8 -*- # thumbor imaging service # https://github.com/thumbor/thumbor/wiki # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2011 globo.com [email protected] import base64 import hmac import hashlib from unittest import TestCase from preggy import expect from thumbor.url_signers.base64_hmac_sha1 import UrlSigner try: unicode # Python 2 except NameError: unicode = str # Python 3 class Base64HmacSha1UrlSignerTestCase(TestCase): def test_can_create_signer(self): signer = UrlSigner(security_key="something") expect(signer).to_be_instance_of(UrlSigner) expect(signer.security_key).to_equal('something') def test_can_sign_url(self): signer = UrlSigner(security_key="something") url = '10x11:12x13/-300x-300/center/middle/smart/some/image.jpg' expected = base64.urlsafe_b64encode( hmac.new( 'something', unicode(url).encode('utf-8'), hashlib.sha1 ).digest() ) actual = signer.signature(url) expect(actual).to_equal(expected)
python
1,158
import pyimgur import sys im = pyimgur.Imgur('37a3379f24710f8') uploaded_image = im.upload_image(sys.argv[1], title="") #print(uploaded_image.title) print(uploaded_image.link) #print(uploaded_image.size) #print(uploaded_image.type)
python
232
print 10**5,2 n = 10**5 for i in xrange(n): print n-i,
python
56
# from sqlalchemy.orm import relationship from app.db.base_class import Base from sqlalchemy import Column, String # from app.models.world_tag import world_tag class Tag(Base): """ Tags used to search for worlds. """ name = Column(String(30), primary_key=True)
python
282
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import re import nltk import matplotlib.pyplot as plt # In[2]: from nltk.corpus import stopwords from nltk.tokenize import sent_tokenize,word_tokenize from nltk.corpus import state_union from nltk.stem import WordNetLemmatizer # In[3]: lemma=WordNetLemmatizer() stop_words = set(stopwords.words('english')) # In[148]: text1=state_union.raw('2005-GWBush.txt') # In[149]: text1 # In[6]: words_token=word_tokenize(text) # In[10]: words_token=[w.lower() for w in words_token] words_token=[w for w in words_token if w.isalpha()] words_token=[w for w in words_token if not w in stop_words] words_token=[lemma.lemmatize(w) for w in words_token] # In[230]: from wordcloud import WordCloud plt.figure(figsize = (20,20)) # Text Reviews with Poor Ratings wc = WordCloud(min_font_size = 3, max_words = 2000 , width = 1600 , height = 800).generate(" ".join(words_token)) plt.imshow(wc,interpolation = 'bilinear') # In[18]: import keras from keras.preprocessing import text from keras.utils import np_utils from keras.preprocessing import sequence from keras.layers import * import keras.backend as K from keras.models import Sequential # In[60]: tokenizer = text.Tokenizer() tokenizer.fit_on_texts(words_token) word2id = tokenizer.word_index # build vocabulary of unique words word2id['PAD'] = 0 id2word = {v:k for k, v in word2id.items()} wids=[word2id[w] for w in words_token] vocab_size = len(word2id) embed_size = 100 window_size = 2 # context window size print('Vocabulary Size:', vocab_size) print('Vocabulary Sample:', list(word2id.items())[:10]) # In[96]: def generates(corpus,window_size,vocab_size): context_length = window_size*2 for index, word in enumerate(corpus): context_words = [] label_word = [] start = index - window_size end = index + window_size + 1 context_words.append([corpus[i] for i in range(start, end) if 0 <= i < len(corpus) and i != index]) label_word.append(word) x = sequence.pad_sequences(context_words, maxlen=context_length) y = np_utils.to_categorical(label_word, vocab_size) #print(context_words) yield (x, y) # In[97]: i = 0 for x, y in generates(corpus=wids, window_size=window_size, vocab_size=vocab_size): if 0 not in x[0]: print('Context (X):', [id2word[w] for w in x[0]], '-> Target (Y):', id2word[np.argwhere(y[0])[0][0]]) if i == 10: break i += 1 # In[98]: cbow = Sequential() cbow.add(Embedding(input_dim=vocab_size, output_dim=embed_size, input_length=window_size*2)) cbow.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(embed_size,))) cbow.add(Dense(vocab_size, activation='softmax')) cbow.compile(loss='categorical_crossentropy', optimizer='rmsprop') print(cbow.summary()) # In[99]: for epoch in range(1, 6): loss = 0. i = 0 for x, y in generates(corpus=wids, window_size=window_size, vocab_size=vocab_size): i += 1 loss += cbow.train_on_batch(x, y) if i % 1000 == 0: print('Processed {} (context, word) pairs'.format(i)) print('Epoch:', epoch, '\tLoss:', loss) print() # In[106]: weights = cbow.get_weights()[0] weights = weights[1:] print(weights.shape) pd.DataFrame(weights, index=list(id2word.values())[1:]).head() # In[116]: from sklearn.manifold import TSNE tsne = TSNE(n_components=2, random_state=0, n_iter=10000, perplexity=3) np.set_printoptions(suppress=True) T = tsne.fit_transform(weights) labels = list(id2word.values()) plt.figure(figsize=(24, 14)) plt.scatter(T[:80, 0], T[:80, 1], c='steelblue', edgecolors='k') for label, x, y in zip(labels, T[:80, 0], T[:, 1]): plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset points') # In[192]: from gensim.models import word2vec x=[] x.append([w for w in words_token]) # Set values for various parameters feature_size = 100 # Word vector dimensionality window_context = 5 # Context window size min_word_count = 1 # Minimum word count sample = 1e-3 # Downsample setting for frequent words w2v_model = word2vec.Word2Vec(x, size=feature_size, window=window_context, min_count=min_word_count, sample=sample, iter=50) # In[193]: w2v_model.similarity('terror','terrorist') # In[218]: model2_skip = gensim.models.Word2Vec(x, min_count = 1, size = 100, window = 5,iter=50, sg = 1) # In[219]: model2_skip.similarity('terror','terrorist') # In[224]: words = w2v_model.wv.index2word wvs = w2v_model.wv[words] tsne = TSNE(n_components=2, random_state=0, n_iter=10000, perplexity=2) np.set_printoptions(suppress=True) T = tsne.fit_transform(wvs) labels = words plt.figure(figsize=(24, 14)) plt.scatter(T[:40, 0], T[:40, 1], c='orange', edgecolors='r') for label, x, y in zip(labels, T[:40, 0], T[:40, 1]): plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset points') # In[222]: words =model2_skip.wv.index2word wvs = model2_skip.wv[words] tsne = TSNE(n_components=2, random_state=0, n_iter=5000, perplexity=2) np.set_printoptions(suppress=True) T = tsne.fit_transform(wvs) labels = words plt.figure(figsize=(24, 14)) plt.scatter(T[:40, 0], T[:40, 1], c='orange', edgecolors='r') for label, x, y in zip(labels, T[:40, 0], T[:40, 1]): plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset points') # In[ ]:
python
5,777
# # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Models for OCP on AWS tables.""" from django.contrib.postgres.fields import ArrayField from django.contrib.postgres.indexes import GinIndex from django.db import models from django.db.models import JSONField VIEWS = ( "reporting_ocpallcostlineitem_daily_summary", "reporting_ocpallcostlineitem_project_daily_summary", "reporting_ocpall_compute_summary", "reporting_ocpall_storage_summary", "reporting_ocpall_cost_summary", "reporting_ocpall_cost_summary_by_account", "reporting_ocpall_cost_summary_by_region", "reporting_ocpall_cost_summary_by_service", "reporting_ocpall_database_summary", "reporting_ocpall_network_summary", ) class OCPAllCostLineItemDailySummary(models.Model): """A summarized view of OCP on All infrastructure cost.""" class Meta: """Meta for OCPAllCostLineItemDailySummary.""" db_table = "reporting_ocpallcostlineitem_daily_summary" managed = False indexes = [ models.Index(fields=["usage_start"], name="ocpall_usage_idx"), models.Index(fields=["namespace"], name="ocpall_namespace_idx"), models.Index(fields=["node"], name="ocpall_node_idx", opclasses=["varchar_pattern_ops"]), models.Index(fields=["resource_id"], name="ocpall_resource_idx"), GinIndex(fields=["tags"], name="ocpall_tags_idx"), models.Index(fields=["product_family"], name="ocpall_product_family_idx"), models.Index(fields=["instance_type"], name="ocpall_instance_type_idx"), # A GIN functional index named "ocpall_product_code_ilike" was created manually # via RunSQL migration operation # Function: (upper(product_code) gin_trgm_ops) # A GIN functional index named "ocpall_product_family_ilike" was created manually # via RunSQL migration operation # Function: (upper(product_family) gin_trgm_ops) ] id = models.IntegerField(primary_key=True) # The infrastructure provider type source_type = models.TextField() # OCP Fields cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) # Kubernetes objects by convention have a max name length of 253 chars namespace = ArrayField(models.CharField(max_length=253, null=False)) node = models.CharField(max_length=253, null=True) resource_id = models.CharField(max_length=253, null=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) # Infrastructure source fields usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.SET_NULL, null=True) product_code = models.CharField(max_length=50, null=False) product_family = models.CharField(max_length=150, null=True) instance_type = models.CharField(max_length=50, null=True) region = models.CharField(max_length=50, null=True) availability_zone = models.CharField(max_length=50, null=True) tags = JSONField(null=True) usage_amount = models.DecimalField(max_digits=24, decimal_places=9, null=True) unit = models.CharField(max_length=63, null=True) # Cost breakdown can be done by cluster, node, project, and pod. # Cluster and node cost can be determined by summing the AWS unblended_cost # with a GROUP BY cluster/node. # Project cost is a summation of pod costs with a GROUP BY project # The cost of un-utilized resources = sum(unblended_cost) - sum(project_cost) unblended_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) markup_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) currency_code = models.CharField(max_length=10, null=True) # This is a count of the number of projects that share an AWS resource # It is used to divide cost evenly among projects shared_projects = models.IntegerField(null=False, default=1) source_uuid = models.UUIDField(unique=False, null=True) tags_hash = models.TextField(max_length=512) # Materialized Views for UI Reporting class OCPAllCostSummary(models.Model): """A MATERIALIZED VIEW specifically for UI API queries. This table gives a daily breakdown of total cost. """ class Meta: """Meta for OCPAllCostSummary.""" db_table = "reporting_ocpall_cost_summary" managed = False id = models.IntegerField(primary_key=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) unblended_cost = models.DecimalField(max_digits=24, decimal_places=9, null=True) markup_cost = models.DecimalField(max_digits=24, decimal_places=9, null=True) currency_code = models.CharField(max_length=10) source_uuid = models.UUIDField(unique=False, null=True) class OCPAllCostSummaryByAccount(models.Model): """A MATERIALIZED VIEW specifically for UI API queries. This table gives a daily breakdown of total cost by account. """ class Meta: """Meta for OCPAllCostSummaryByAccount.""" db_table = "reporting_ocpall_cost_summary_by_account" managed = False id = models.IntegerField(primary_key=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.DO_NOTHING, null=True) unblended_cost = models.DecimalField(max_digits=24, decimal_places=9, null=True) markup_cost = models.DecimalField(max_digits=24, decimal_places=9, null=True) currency_code = models.CharField(max_length=10) source_uuid = models.UUIDField(unique=False, null=True) class OCPAllCostSummaryByService(models.Model): """A MATERIALIZED VIEW specifically for UI API queries. This table gives a daily breakdown of total cost by account. """ class Meta: """Meta for OCPAllCostSummaryByService.""" db_table = "reporting_ocpall_cost_summary_by_service" managed = False id = models.IntegerField(primary_key=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.DO_NOTHING, null=True) product_code = models.CharField(max_length=50, null=False) product_family = models.CharField(max_length=150, null=True) unblended_cost = models.DecimalField(max_digits=24, decimal_places=9, null=True) markup_cost = models.DecimalField(max_digits=24, decimal_places=9, null=True) currency_code = models.CharField(max_length=10) source_uuid = models.UUIDField(unique=False, null=True) class OCPAllCostSummaryByRegion(models.Model): """A MATERIALIZED VIEW specifically for UI API queries. This table gives a daily breakdown of total cost by region. """ class Meta: """Meta for OCPAllCostSummaryByRegion.""" db_table = "reporting_ocpall_cost_summary_by_region" managed = False id = models.IntegerField(primary_key=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.DO_NOTHING, null=True) region = models.CharField(max_length=50, null=True) availability_zone = models.CharField(max_length=50, null=True) unblended_cost = models.DecimalField(max_digits=24, decimal_places=9, null=True) markup_cost = models.DecimalField(max_digits=24, decimal_places=9, null=True) currency_code = models.CharField(max_length=10) source_uuid = models.UUIDField(unique=False, null=True) class OCPAllComputeSummary(models.Model): """A summarized view of OCP on All infrastructure cost for products in the compute service category.""" class Meta: """Meta for OCPAllComputeSummary.""" db_table = "reporting_ocpall_compute_summary" managed = False id = models.IntegerField(primary_key=True) cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.DO_NOTHING, null=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) product_code = models.CharField(max_length=50, null=False) instance_type = models.CharField(max_length=50) resource_id = models.CharField(max_length=253) usage_amount = models.DecimalField(max_digits=30, decimal_places=15, null=True) unit = models.CharField(max_length=63, null=True) unblended_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) markup_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) currency_code = models.CharField(max_length=10, null=True) source_uuid = models.UUIDField(unique=False, null=True) class OCPAllDatabaseSummary(models.Model): """A summarized view of OCP on All infrastructure cost for products in the database service category.""" class Meta: """Meta for OCPAllDatabaseSummary.""" db_table = "reporting_ocpall_database_summary" managed = False id = models.IntegerField(primary_key=True) # OCP Fields cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.DO_NOTHING, null=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) product_code = models.CharField(max_length=50, null=False) usage_amount = models.DecimalField(max_digits=30, decimal_places=15, null=True) unit = models.CharField(max_length=63, null=True) unblended_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) markup_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) currency_code = models.CharField(max_length=10, null=True) source_uuid = models.UUIDField(unique=False, null=True) class OCPAllNetworkSummary(models.Model): """A summarized view of OCP on All infrastructure cost for products in the network service category.""" class Meta: """Meta for OCPAllNetworkSummary.""" db_table = "reporting_ocpall_network_summary" managed = False id = models.IntegerField(primary_key=True) cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.DO_NOTHING, null=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) product_code = models.CharField(max_length=50, null=False) usage_amount = models.DecimalField(max_digits=30, decimal_places=15, null=True) unit = models.CharField(max_length=63, null=True) unblended_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) markup_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) currency_code = models.CharField(max_length=10, null=True) source_uuid = models.UUIDField(unique=False, null=True) class OCPAllStorageSummary(models.Model): """A summarized view of OCP on All infrastructure cost for products in the storage service category.""" class Meta: """Meta for OCPAllStorageSummary.""" db_table = "reporting_ocpall_storage_summary" managed = False id = models.IntegerField(primary_key=True) # OCP Fields cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.DO_NOTHING, null=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) product_family = models.CharField(max_length=150, null=True) product_code = models.CharField(max_length=50, null=False) usage_amount = models.DecimalField(max_digits=30, decimal_places=15, null=True) unit = models.CharField(max_length=63, null=True) unblended_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) markup_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) currency_code = models.CharField(max_length=10, null=True) source_uuid = models.UUIDField(unique=False, null=True) class OCPAllCostLineItemProjectDailySummary(models.Model): """A summarized view of OCP on AWS cost by OpenShift project.""" class Meta: """Meta for OCPAllCostLineItemProjectDailySummary.""" db_table = "reporting_ocpallcostlineitem_project_daily_summary" managed = False indexes = [ models.Index(fields=["usage_start"], name="ocpall_proj_usage_idx"), models.Index(fields=["namespace"], name="ocpall_proj_namespace_idx"), models.Index(fields=["node"], name="ocpall_proj_node_idx"), models.Index(fields=["resource_id"], name="ocpall_proj_resource_idx"), GinIndex(fields=["pod_labels"], name="ocpall_proj_pod_labels_idx"), models.Index(fields=["product_family"], name="ocpall_proj_prod_fam_idx"), models.Index(fields=["instance_type"], name="ocpall_proj_inst_type_idx"), ] id = models.IntegerField(primary_key=True) # The infrastructure provider type source_type = models.TextField() # OCP Fields cluster_id = models.CharField(max_length=50, null=True) cluster_alias = models.CharField(max_length=256, null=True) # Whether the data comes from a pod or volume report data_source = models.CharField(max_length=64, null=True) # Kubernetes objects by convention have a max name length of 253 chars namespace = models.CharField(max_length=253, null=False) node = models.CharField(max_length=253, null=True) pod_labels = JSONField(null=True) resource_id = models.CharField(max_length=253, null=True) usage_start = models.DateField(null=False) usage_end = models.DateField(null=False) # AWS Fields usage_account_id = models.CharField(max_length=50, null=False) account_alias = models.ForeignKey("AWSAccountAlias", on_delete=models.SET_NULL, null=True) product_code = models.CharField(max_length=50, null=False) product_family = models.CharField(max_length=150, null=True) instance_type = models.CharField(max_length=50, null=True) region = models.CharField(max_length=50, null=True) availability_zone = models.CharField(max_length=50, null=True) # Need more precision on calculated fields, otherwise there will be # Rounding errors usage_amount = models.DecimalField(max_digits=30, decimal_places=15, null=True) unit = models.CharField(max_length=63, null=True) unblended_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) project_markup_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) pod_cost = models.DecimalField(max_digits=30, decimal_places=15, null=True) currency_code = models.CharField(max_length=10, null=True) source_uuid = models.UUIDField(unique=False, null=True)
python
16,437
import json import logging import mimetypes import os import re import subprocess from datetime import datetime from dateutil.parser import parse from dateutil.tz import UTC from pie.domain import MediaFile, ScannedFile, ScannedFileType from pie.util import MiscUtils class ExifHelper: __logger = logging.getLogger('ExifHelper') @staticmethod def create_media_file(path_exiftool: str, index_time: datetime, scanned_file: ScannedFile, existing_media_file: MediaFile) -> MediaFile: file_path = scanned_file.file_path exif = ExifHelper.__get_exif_dict(path_exiftool, file_path) error_str = ExifHelper.__get_exif(exif, "Error") exif_file_type_str = ExifHelper.__get_exif(exif, "FileType") if error_str: ExifHelper.__logger.error("Error processing file. EXIF: %s", exif) if error_str == 'File is empty' or error_str == 'File format error' or 'file is binary' in error_str: return None if exif_file_type_str == "TXT": ExifHelper.__logger.error("Possibly corrupt file. EXIF: %s", exif) return None media_file = existing_media_file if existing_media_file else MediaFile() media_file.parent_dir_path = scanned_file.parent_dir_path media_file.file_path = file_path media_file.extension = scanned_file.extension media_file.file_type = scanned_file.file_type.name media_file.is_raw = scanned_file.is_raw media_file.mime = ExifHelper.__get_mime(file_path, exif) media_file.original_size = os.path.getsize(file_path) media_file.creation_time = scanned_file.creation_time media_file.last_modification_time = scanned_file.last_modification_time media_file.original_file_hash = scanned_file.hash if (scanned_file.hash is not None) else MiscUtils.generate_hash(file_path) media_file.converted_file_hash = None media_file.conversion_settings_hash = None media_file.index_time = index_time ExifHelper.__append_dimentions(media_file, exif) media_file.capture_date = ExifHelper.__get_capture_date(scanned_file, exif) media_file.camera_make = ExifHelper.__get_exif(exif, "Make") media_file.camera_model = ExifHelper.__get_exif(exif, "CameraModelName", "Model") media_file.lens_model = ExifHelper.__get_exif(exif, "LensModel", "LensType", "LensInfo") gps_info = ExifHelper.__get_gps_info(exif) media_file.gps_alt = gps_info.get('altitude') media_file.gps_lat = gps_info.get('latitude') media_file.gps_long = gps_info.get('longitude') exif_orientation = ExifHelper.__get_exif(exif, "Orientation", "CameraOrientation") media_file.view_rotation = ExifHelper.__get_view_rotation(exif_orientation) media_file.image_orientation = exif_orientation media_file.video_duration = ExifHelper.__get_video_duration(exif) ExifHelper.__append_video_rotation(media_file, exif) return media_file @staticmethod def __get_exif_dict(path_exiftool: str, file_path: str): json = ExifHelper.__get_json_from_exiftool(path_exiftool, file_path)[0] exif = {} for key, value in json.items(): key_parts = key.split(":") modified_key = key_parts[1] if len(key_parts) > 1 else key_parts[0] exif[modified_key] = value return exif @staticmethod def __get_json_from_exiftool(path_exiftool: str, filename: str): """ Return a json value of the exif Get a filename and return a JSON object Arguments: filename {string} -- your filename Returns: [JSON] -- Return a JSON object """ #Process this function filename = os.path.abspath(filename) output = ExifHelper.__run_exiftool_command_line([path_exiftool, '-G', '-j', '-sort', filename]) if output: #convert bytes to string output = output.decode('utf-8').rstrip('\r\n') return json.loads(output) else: return output @staticmethod def __run_exiftool_command_line(cmd): """Handle the command line call keyword arguments: cmd = a list return 0 if error or a string for the command line output """ try: output = subprocess.Popen(cmd, **MiscUtils.subprocess_args()) output = output.stdout.read() return output.strip() except subprocess.CalledProcessError: return 0 @staticmethod def __get_mime(file_path: str, exif: dict): exif_mime = ExifHelper.__get_exif(exif, "MIMEType") if exif_mime: return exif_mime else: mime_type = mimetypes.guess_type(file_path, False) return mime_type[0] @staticmethod def __get_capture_date(scanned_file: ScannedFile, exif: dict): # Candidates: "GPSDateTime", "DateTimeOriginal", "DateTimeDigitized", "CreateDate", "CreationDate" date_str = None if scanned_file.file_type == ScannedFileType.IMAGE: date_str = ExifHelper.__get_exif(exif, "DateTimeOriginal") if scanned_file.file_type == ScannedFileType.VIDEO: date_str = ExifHelper.__get_exif(exif, "MediaCreateDate", "TrackCreateDate") if date_str and not re.search(": +:|0000:00:00 00:00:00", date_str): # Possible formats are yyyy:MM:dd HH:mm / yyyy.MM.dd HH:mm:ss / iPhoneImage: yyyy.MM.dd HH:mm:ss.FFF / iPhone 5: yyyy.MM.dd HH:mm:ss.XXZ # iPhoneVideo: yyyy.MM.dd HH:mm:sszzz, etc. To work with the automatic parser, we modify the date part a bit. date_str_parts = date_str.split(" ") if len(date_str_parts) > 1: date_str_parts[0] = date_str_parts[0].replace(':', ".") if re.match(r"^.+\.\d{1,2}Z$", date_str_parts[1]): # Removing XX from yyyy.MM.dd HH:mm:ss.XXZ time_str_parts = re.split(r"\.", date_str_parts[1]) date_str_parts[1] = time_str_parts[0] + "Z" date_str = " ".join(date_str_parts) capture_datetime = parse(date_str) return capture_datetime.astimezone(UTC) # TODO date gets messed up when timeZone is not specified. Sometimes it is local, sometimes UTC. @staticmethod def __append_dimentions(media_file: MediaFile, exif: dict): default_crop_size_str = ExifHelper.__get_exif(exif, "DefaultCropSize") if default_crop_size_str: default_crop_size_str_parts = default_crop_size_str.split(" ") width = default_crop_size_str_parts[0] height = default_crop_size_str_parts[1] else: width = ExifHelper.__get_exif(exif, "ImageWidth", "ExifImageWidth") height = ExifHelper.__get_exif(exif, "ImageHeight", "ExifImageHeight") media_file.width = int(width) media_file.height = int(height) @staticmethod def __get_gps_info(exif: dict): gps_info = {} altitude_str = ExifHelper.__get_exif(exif, "GPSAltitude") if altitude_str: altitude = float(altitude_str.split(" ")[0]) altitude_ref_str = ExifHelper.__get_exif(exif, "GPSAltitudeRef") below_sea_level = "Below Sea Level" # "Above Sea Level" is not used for anything yet if (below_sea_level in altitude_str or (altitude_ref_str and below_sea_level in altitude_ref_str)): altitude = altitude * -1.0 gps_info['altitude'] = altitude longitude = ExifHelper.__gps_coordinate_str_to_float(ExifHelper.__get_exif(exif, "GPSLongitude")) latitude = ExifHelper.__gps_coordinate_str_to_float(ExifHelper.__get_exif(exif, "GPSLatitude")) if (longitude and latitude): gps_info['longitude'] = longitude gps_info['latitude'] = latitude return gps_info @staticmethod def __gps_coordinate_str_to_float(coordinate_str: str): if coordinate_str: # Expects string to be in a format like 77 33 25.070000 or 77 33 25.070000 N or 47 deg 36' 27.90" N coordinate_str_parts = re.sub("deg |'|\"", "", coordinate_str).split(" ") degrees = float(coordinate_str_parts[0]) minutes = float(coordinate_str_parts[1]) seconds = float(coordinate_str_parts[2]) float_value = (degrees + (minutes / 60) + (seconds / 3600)) if len(coordinate_str_parts) == 4: # This means direction is also present. Exceptions are possible due to software issues. if coordinate_str_parts[3] == "S" or coordinate_str_parts[3] == "W": float_value = float_value * -1 return float_value return None @staticmethod def __get_view_rotation(exif_orientation: str): rotations = { "Horizontal (normal)": "0", "Mirror horizontal": "!0", "Rotate 180": "180", "Mirror vertical": "!180", "Mirror horizontal and rotate 270 CW": "!270", "Rotate 90 CW": "90", "Mirror horizontal and rotate 90 CW": "!90", "Rotate 270 CW": "270" } if (exif_orientation and exif_orientation in rotations): return rotations[exif_orientation] else: # viewRoation for movies is 0 since their thumbnails don't need rotation return "0" @staticmethod def __get_video_duration(exif: dict): video_duration_str = ExifHelper.__get_exif(exif, "Duration", "MediaDuration", "TrackDuration") if video_duration_str: if re.match(r"^\d{1,2}:\d{2}:\d{2}$", video_duration_str): # 0:00:46 duration_parts = video_duration_str.split(":") return ((int(duration_parts[0]) * 60 * 60) + (int(duration_parts[1]) * 60) + int(duration_parts[2])) * 1000 elif re.match(r"^\d{1,2}\.\d{1,3} s$", video_duration_str): # 14.44 s duration_parts = re.split(r"\.| ", video_duration_str) return (int(duration_parts[0]) * 1000) + int(duration_parts[1]) else: raise RuntimeError('Unknown video duration format: ' + video_duration_str) return None @staticmethod def __append_video_rotation(media_file: MediaFile, exif: dict): video_rotation_str = str(ExifHelper.__get_exif(exif, "Rotation")) media_file.video_rotation = video_rotation_str # TODO Following logic messes with ffmpeg. Need to explore. # if ("90" == video_rotation_str or "270" == video_rotation_str): # # If rotation is 90 or 270 flip recorded hight/width # temp = media_file.width # media_file.width = media_file.height # media_file.height = temp @staticmethod def __get_exif(exif: dict, *keys): if len(keys) < 1: raise ValueError('get_exif() takes at least 1 key for looking up exif') for key in keys: if key in exif: return exif[key] return None
python
11,156
"""RestProfile URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path('api/', include('Profiles_api.urls')), ]
python
809
''' Program Documentation: Objective: Suppose we have two files with either "txt/text/xls/xlsx/xlsm" extensions. One file contains Twitter tweets by various users and the other (must be a text file with extensions "txt/text") file contains a set of "bad" (foul) words indicating racial slurs and/or abuses. The purose of this program is to identify and output the number of abusive words/racial slurs per "@user_handle" and the degree of profanity. Degree of profanity is indicated by the ratio of the (number of profanity words in a tweet) to (total word count of the tweet) x 100. Args: 1. A file in txt/text/csv/xls/xlsx/xlsm format containing Twitter handles and their tweets. Can be with/without a header. 2. A text file (txt/text format) the "bad words" that needs to be searched - see requirement section of docstring for the correct way of creating this file Outputs: A CSV file containing the user handles, original tweets, abuses/racial slurs, and degree of profanity Reqs: 1. The following libraries are needed for this program: a. pandas b. openpyxl 2. The file containing tweets should be a single column file with the Twitter handles of the users (posting the tweets) and the tweet itself, i.e., each line has the format, "@user_handle tweet". See file "tweets.txt" for correct format. 3. The file containing the abusive/racial slurs should have one "bad" word per line. See file "search_words.txt" for correct format. ''' import re, os, sys, platform import pandas as pd import openpyxl from platform import python_version env_path = sys.executable py_version = python_version() print() print("working env: %s" % (env_path)) print("python --version: %s" %(py_version)) print("re --version: %s" % (re.__version__)) print("pandas --version: %s" % (pd.__version__)) print("openpyxl --version: %s" % (openpyxl.__version__)) print() tweet_file_name = input("give name of the tweet file: ") print() abuses_file_name = input("give name of the search (abuses) file: ") print() def get_file_path(file_name): pwd = os.getcwd() abs_file_path = [] for root, dir, files in os.walk(pwd): if file_name in files: abs_file_path.append(os.path.join(root, file_name)) return abs_file_path[0] def get_input_file(header, file_path, file_ext): header = header.lower() if header == 'y': header_option = "infer" else: header_option = None if file_ext in ["txt", "text", "csv"]: input_file = pd.read_csv(file_path, header=header_option, \ delimiter="\n") elif file_ext == "xls": input_file = pd.read_excel(file_path, header=header_option) else: input_file = pd.read_excel(tweet_file_path, header=header_option, \ engine="openpyxl") return input_file tweet_file_path = get_file_path(tweet_file_name) abuses_file_path = get_file_path(abuses_file_name) print("path of the tweet file: %s" %(tweet_file_path)) print() print("path of the search (abuses) file: %s" %(abuses_file_path)) print() if not os.path.isfile(tweet_file_path): print("path of tweet file incorrect - check file path and try again!") elif not os.path.isfile(abuses_file_path): print("path of search (abuses) file incorrect - check file path and try again!") sys.exit() else: if abuses_file_path.split("\\")[-1].split(".")[-1] not in ['txt', "text"]: print("file with abuses/racial slurs must be a text file with extension txt/text - create file with correct extension and try again") sys.exit() else: if os.stat(abuses_file_path).st_size > 0: with open(abuses_file_path, "r") as f_bad_words: list_of_abuses = [] for line in f_bad_words: line = line.strip("\n") list_of_abuses.append(line) if os.stat(tweet_file_path).st_size > 0: tweet_file_ext = tweet_file_path.split("\\")[-1].split(".")[-1] allowed_extensions = ["txt", "csv", "xls", "xlsm", "xlsx"] if tweet_file_ext not in allowed_extensions: print(f'input file extension is not allowed - allowed extensions:, {allowed_extensions} \n') print("convert file to allowed extension only and try again!") print() sys.exit() else: file_header_option = input("does the tweet file has any header? [y/n] ") print() input_file = get_input_file(file_header_option, tweet_file_path, tweet_file_ext) num_cols = input_file.shape[1] old_col0 = input_file.columns.to_list()[0] input_file = input_file.rename(columns={old_col0: "Tweets"}) print("first 3 lines of the input file:") print(input_file.head(3)) print() print("tweet file has %d rows and %d columns" %(input_file.shape[0], input_file.shape[1])) input_file["User"] = input_file["Tweets"].apply(lambda x: [x for x \ in x.split(" ") if x.startswith("@")][0]) input_file["User"] = input_file["User"].apply(lambda x: str(x)) input_file["Tweets"] = input_file["Tweets"].apply(lambda x: [x for x \ in x.split(" ") ][1:]) input_file["Tweets"] = input_file["Tweets"].apply(lambda x: " ".join(x)) def search_foul_words(x): tmp_list = [] for y in list_of_abuses: if re.search(y, x, re.IGNORECASE) is not None: tmp_list.append(y) else: pass another_tmp_list = [] for item in tmp_list: if len(item) == 0: pass else: another_tmp_list.append(item) foul_words = ", ".join(another_tmp_list) return foul_words input_file["Foul Words"] = input_file["Tweets"].apply(search_foul_words) input_file.insert(0, "User Handle", input_file["User"].values) input_file = input_file.drop(["User"], axis=1) input_file["Num. Foul Words"] = input_file["Foul Words"].apply(\ lambda x: len(re.findall(r'\w+', x))) input_file['Total Word Count'] = input_file['Tweets'].apply(lambda x: \ len(re.findall(r'\w+', x))) input_file["Deg. Profanity"] = input_file["Num. Foul Words"]/input_file["Total Word Count"] print("final output after analysis:") print(input_file) print() input_file.to_csv("tweets_analysis.csv", index=False)
python
6,901
# web_app/classifier.py import os import pickle from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression # for example MODEL_FILEPATH = os.path.join(os.path.dirname(__file__), "..", "models", "latest_model.pkl") def train_and_save_model(): print("TRAINING THE MODEL...") X, y = load_iris(return_X_y=True) #print(type(X), X.shape) #> <class 'numpy.ndarray'> (150, 4) #print(type(y), y.shape) #> <class 'numpy.ndarray'> (150,) classifier = LogisticRegression() # for example classifier.fit(X, y) print("SAVING THE MODEL...") # save our classifier model to a new filepath we specified above # "wb" stands for: "write binary" with open(MODEL_FILEPATH, "wb") as model_file: pickle.dump(classifier, model_file) return classifier def load_model(): print("LOADING THE MODEL...") # "rb" stands for read binary with open(MODEL_FILEPATH, "rb") as model_file: saved_model = pickle.load(model_file) return saved_model if __name__ == "__main__": train_and_save_model() clf = load_model() print("CLASSIFIER:", clf) breakpoint() X, y = load_iris(return_X_y=True) # just to have some data to use when predicting inputs = X[:2, :] print(type(inputs), inputs) result = clf.predict(inputs) print("RESULT:", result)
python
1,357
#!/usr/bin/env python3 #----------------------------------------------------------------------------------------------------------------------# # # # Tuplex: Blazing Fast Python Data Science # # # # # # (c) 2017 - 2021, Tuplex team # # Created by Leonhard Spiegelberg first on 1/1/2021 # # License: Apache 2.0 # #----------------------------------------------------------------------------------------------------------------------# import types import inspect import re # ALWAYS import cloudpickle before dill, b.c. of https://github.com/uqfoundation/dill/issues/383 import cloudpickle import dill import ast import weakref import dis import opcode import types import itertools import sys from tuplex.utils.errors import TuplexException from tuplex.utils.globs import get_globals from tuplex.utils.source_vault import SourceVault, supports_lambda_closure from tuplex.utils.common import in_jupyter_notebook, in_google_colab, is_in_interactive_mode # only export get_source function, rest shall be private. __all__ = ['get_source', 'get_globals', 'supports_lambda_closure'] def get_jupyter_raw_code(function_name): # ignore here unresolved reference history_manager = get_ipython().history_manager hist = history_manager.get_range() regex = r"def\s*{}\(.*\)\s*:[\t ]*\n".format(function_name) signature = 'hist = history_manager.get_range()' prog = re.compile(regex) matched_cells = [] for session, lineno, inline in hist: test_str = inline # skip history referring to this if signature in inline: continue if 'get_function_code' in inline: continue if prog.search(test_str): matched_cells.append((session, lineno, inline)) return matched_cells[-1][2] def extractFunctionByName(code, func_name, return_linenos=False): class FunctionVisitor(ast.NodeVisitor): def __init__(self): self.lastStmtLineno = 0 self.funcInfo = [] def visit_FunctionDef(self, node): print(self.lastStmtLineno) self.generic_visit(node) print(self.lastStmtLineno) def visit(self, node): funcStartLineno = -1 if hasattr(node, 'lineno'): self.lastStmtLineno = node.lineno if isinstance(node, ast.FunctionDef): funcStartLineno = node.lineno self.generic_visit(node) if isinstance(node, ast.FunctionDef): self.funcInfo.append({'name': node.name, 'start': funcStartLineno - 1, 'end': self.lastStmtLineno - 1}) root = ast.parse(code) fv = FunctionVisitor() fv.visit(root) # find function with name candidates = filter(lambda x: x['name'] == func_name, fv.funcInfo) def indent(s): return len(s) - len(s.lstrip(' \t')) lines = code.split('\n') # find out level candidates = map(lambda x: {**x, 'level': indent(lines[x['start']])}, candidates) info = sorted(candidates, key=lambda x: x['level'])[0] func_code = '\n'.join(lines[info['start']:info['end'] + 1]) if return_linenos: return func_code, info['start'], info['end'] else: return func_code def extract_function_code(function_name, raw_code): # remove greedily up to num_tabs and num_spaces def remove_tabs_and_spaces(line, num_tabs, num_spaces): t = 0 s = 0 pos = 0 while pos < len(line): c = line[pos] if c == ' ': s += 1 elif c == '\t': t += 1 else: break pos += 1 return ' ' * max(s - num_spaces, 0) + '\t' * max(t - num_tabs, 0) + line[pos:] # remove leading spaces / tabs assert len(raw_code) >= 1 # let's first check whether the function starts that needs to be extracted regex = r"[\t ]*def\s*{}\(.*\)\s*:[\t ]*\n".format(function_name) start_idx = 0 for match in re.finditer(regex, raw_code, re.MULTILINE): start_idx = match.start() first_line = raw_code[start_idx:] first_line_num_tabs = len(first_line) - len(first_line.lstrip('\t')) first_line_num_spaces = len(first_line) - len(first_line.lstrip(' ')) func_lines = [remove_tabs_and_spaces(line, first_line_num_tabs, first_line_num_spaces) \ for line in raw_code[start_idx:].split('\n')] # greedily remove for each line tabs/spaces out = '\n'.join(func_lines) return extractFunctionByName(out, function_name) def get_function_code(f): """ jupyter notebook, retrieve function history """ assert isinstance(f, types.FunctionType) function_name = f.__code__.co_name assert isinstance(function_name, str) if in_jupyter_notebook() or in_google_colab(): return extract_function_code(function_name, get_jupyter_raw_code(function_name)) else: return extract_function_code(function_name, dill.source.getsource(f)) vault = SourceVault() def get_source(f): """ Jupyter notebook code reflection """ if isinstance(f, types.FunctionType): # lambda function? # use inspect module # need to clean out lambda... if f.__name__ == '<lambda>': # interpreter in interactive mode or not? # beware jupyter notebook also returns true for interactive mode! if is_in_interactive_mode() and not in_jupyter_notebook() and not in_google_colab(): # import here, avoids also trouble with jupyter notebooks from tuplex.utils.interactive_shell import TuplexShell # for this to work, a dummy shell has to be instantiated # through which all typing occurs. Thus, the history can # be properly captured for source code lookup. # shell is a borg object, i.e. singleton alike behaviour shell = TuplexShell() return shell.get_lambda_source(f) else: # does lambda have globals? # if yes, then extract won't work IFF there's more than one lambda per line! # => display warning then. # => change hashing method... f_globs = get_globals(f) f_filename = f.__code__.co_filename f_lineno = f.__code__.co_firstlineno f_colno = f.__code__.co_firstcolno if hasattr(f.__code__, 'co_firstcolno') else None # special case: some unknown jupyter magic has been used... if (in_jupyter_notebook() or in_google_colab()) and (f_filename == '<timed exec>' or f_filename == '<timed eval>'): raise TuplexException('%%time magic not supported for Tuplex code') src_info = inspect.getsourcelines(f) vault.extractAndPutAllLambdas(src_info, f_filename, f_lineno, f_colno, f_globs) return vault.get(f, f_filename, f_lineno, f_colno, f_globs) else: # works always, because functions can be only defined on a single line! return get_function_code(f) else: # TODO: for constants, create dummy source code, i.e. lambda x: 20 # when desired to retrieve a constant or so! return ''
python
8,234
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, \ PermissionsMixin class UserManager (BaseUserManager): def create_user(self, email, password=None, **extra_fields): """Creates and save new user""" if not email: raise ValueError('User must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """Creates and saves new superuser""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """ Custom user model that supports using email instead of username """ email = models.EmailField(max_length=254, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email'
python
1,213
reddit_data = { "post": { "title": [], "flair": [], "created_at": [], "body": [], "url": [], "score": [] }, "comment": { "body": [], "created_at": [], "score": [] } }
python
210
import typing import sys from math import gcd def solve( ab: typing.Iterator[ typing.Tuple[int, int], ], ) -> typing.NoReturn: s = {(0, 0)} g = 0 for a, b in ab: ns = set() for gx, gy in s: ns.add(( gcd(gx, a), gcd(gy, b), )) ns.add(( gcd(gx, b), gcd(gy, a), )) s = ns g = gcd(gcd(g, a), b) mx = 0 for gx, gy in s: mx = max(mx, gx * gy) print(mx // g) def main() -> typing.NoReturn: n = int(input()) ab = map( int, sys.stdin.read().split(), ) ab = zip(*[ab] * 2) solve(ab) main()
python
603
import io from unittest import TestCase from followthemoney import model from followthemoney.types import registry from followthemoney.export.graph import NXGraphExporter ENTITIES = [ { 'id': 'person', 'schema': 'Person', 'properties': { 'name': 'Ralph Tester', 'birthDate': '1972-05-01', 'idNumber': ['9177171', '8e839023'], 'website': 'https://ralphtester.me', 'phone': '+12025557612', 'email': '[email protected]' } }, { 'id': 'sanction', 'schema': 'Sanction', 'properties': { 'entity': 'person', 'program': 'Hateys' } }, { 'id': 'company', 'schema': 'Company', 'properties': { 'name': 'Ralph Industries, Inc.', } }, { 'id': 'owner', 'schema': 'Ownership', 'properties': { 'startDate': '2003-04-01', 'owner': 'person', 'asset': 'company' } } ] class ExportTestCase(TestCase): def test_nxgraph_simple(self): sio = io.StringIO() exporter = NXGraphExporter(sio) for entity in ENTITIES: proxy = model.get_proxy(entity) exporter.write(proxy) self.assertEqual(len(exporter.graph.nodes), 3) self.assertEqual(len(exporter.graph.edges), 2) exporter.finalize() value = sio.getvalue() assert len(value), len(value) def test_nxgraph_full(self): sio = io.StringIO() edge_types = (registry.entity.name, registry.email.name, registry.phone.name,) exporter = NXGraphExporter(sio, edge_types=edge_types) for entity in ENTITIES: proxy = model.get_proxy(entity) exporter.write(proxy) self.assertEqual(len(exporter.graph.nodes), 5) self.assertEqual(len(exporter.graph.edges), 4)
python
1,989
from __future__ import unicode_literals from django.apps import AppConfig class RendafixaConfig(AppConfig): name = 'rendafixa'
python
134
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim
python
94
import unittest from arangodb.api import Database from arangodb.orm.fields import DictField from arangodb.orm.models import CollectionModel class DictFieldTestCase(unittest.TestCase): def setUp(self): self.database_name = 'test_case_dict_field_123' self.db = Database.create(name=self.database_name) def tearDown(self): Database.remove(name=self.database_name) def test_field_not_null_without_default(self): class TestModel(CollectionModel): dict_field = DictField(null=False) # Init collections TestModel.init() # Create model model = TestModel() model.dict_field = { 'test_1': 'foo', 'test_2': 'bar', } model.save() documents = TestModel.collection_instance.documents() self.assertEqual(len(documents), 1) doc1 = documents[0] self.assertTrue(isinstance(doc1.dict_field, dict)) self.assertTrue('test_1' in doc1.dict_field) self.assertEqual(doc1.dict_field['test_1'], 'foo') self.assertTrue('test_2' in doc1.dict_field) self.assertEqual(doc1.dict_field['test_2'], 'bar') # Destroy TestModel.destroy() def test_field_with_special_values(self): class TestModel(CollectionModel): dict_field = DictField(null=False) # Init collections TestModel.init() # Create model model = TestModel() model.dict_field = { 'number': 13, 'a_dict': {'test': 'foo'}, 'a_list': [50, 60] } model.save() documents = TestModel.collection_instance.documents() self.assertEqual(len(documents), 1) doc1 = documents[0] self.assertTrue(isinstance(doc1.dict_field, dict)) self.assertEqual(len(doc1.dict_field.keys()), 3) val1 = doc1.dict_field['number'] val2 = doc1.dict_field['a_dict'] val3 = doc1.dict_field['a_list'] self.assertTrue(isinstance(val1, int)) self.assertTrue(isinstance(val2, dict)) self.assertTrue(isinstance(val3, list)) # Destroy TestModel.destroy()
python
2,197
# Generated by Django 3.1.1 on 2020-09-28 14:13 from django.db import migrations def create_cabins(apps, schema_editor): Cabin = apps.get_model("cabins", "Cabin") Cabin.objects.create(name="Oksen") Cabin.objects.create(name="Bjørnen") class Migration(migrations.Migration): dependencies = [ ("cabins", "0001_initial"), ] operations = []
python
376
"""Hisense TV config flow.""" import json from json.decoder import JSONDecodeError import logging import voluptuous as vol from homeassistant import config_entries from homeassistant.components import mqtt from homeassistant.const import CONF_MAC, CONF_NAME, CONF_PIN from homeassistant.data_entry_flow import FlowResult from .const import ( CONF_MQTT_IN, CONF_MQTT_OUT, DEFAULT_CLIENT_ID, DEFAULT_MQTT_PREFIX, DEFAULT_NAME, DOMAIN, ) _LOGGER = logging.getLogger(__name__) class HisenseTvFlow(config_entries.ConfigFlow, domain=DOMAIN): """Hisense TV config flow.""" VERSION = 1 task_mqtt = None task_auth = None def __init__(self): """Initialize the config flow.""" self._mac = None self._name = None self._mqtt_in = None self._mqtt_out = None self._unsubscribe_auth = None self._unsubscribe_sourcelist = None async def _async_pin_needed(self, message): _LOGGER.debug("_async_pin_needed") self._unsubscribe() self.task_auth = False self.hass.async_create_task( self.hass.config_entries.flow.async_configure(flow_id=self.flow_id) ) async def _async_pin_not_needed(self, message): _LOGGER.debug("_async_pin_not_needed") self._unsubscribe() self.task_auth = True self.hass.async_create_task( self.hass.config_entries.flow.async_configure(flow_id=self.flow_id) ) async def _async_authcode_response(self, message): self._unsubscribe() try: payload = json.loads(message.payload) except JSONDecodeError: payload = {} _LOGGER.debug("_async_authcode_respone %s", payload) self.task_auth = payload.get("result") == 1 self.hass.async_create_task( self.hass.config_entries.flow.async_configure(flow_id=self.flow_id) ) def _unsubscribe(self): if self._unsubscribe_auth is not None: self._unsubscribe_auth() self._unsubscribe_auth = None if self._unsubscribe_sourcelist is not None: self._unsubscribe_sourcelist() self._unsubscribe_sourcelist = None async def async_step_user(self, user_input) -> FlowResult: if self.task_auth is True: return self.async_show_progress_done(next_step_id="finish") if self.task_auth is False: self.task_auth = None return self.async_show_progress_done(next_step_id="auth") if user_input is None: _LOGGER.debug("async_step_user INFO None") return self.async_show_form( step_id="user", data_schema=vol.Schema( { vol.Required(CONF_NAME, default=DEFAULT_NAME): str, vol.Required(CONF_MAC): str, vol.Optional(CONF_MQTT_IN, default=DEFAULT_MQTT_PREFIX): str, vol.Optional(CONF_MQTT_OUT, default=DEFAULT_MQTT_PREFIX): str, } ), ) _LOGGER.debug("async_step_user NOT task_mqtt") self.task_mqtt = { CONF_MAC: user_input.get(CONF_MAC), CONF_NAME: user_input.get(CONF_NAME), CONF_MQTT_IN: user_input.get(CONF_MQTT_IN), CONF_MQTT_OUT: user_input.get(CONF_MQTT_OUT), } await self._check_authentication(client_id=DEFAULT_CLIENT_ID) return self.async_show_progress( step_id="user", progress_action="progress_action", ) async def _check_authentication(self, client_id): self._unsubscribe_auth = await mqtt.async_subscribe( hass=self.hass, topic="%s/remoteapp/mobile/%s/ui_service/data/authentication" % (self.task_mqtt.get(CONF_MQTT_IN), client_id), msg_callback=self._async_pin_needed, ) self._unsubscribe_sourcelist = await mqtt.async_subscribe( hass=self.hass, topic="%s/remoteapp/mobile/%s/ui_service/data/sourcelist" % (self.task_mqtt.get(CONF_MQTT_IN), client_id), msg_callback=self._async_pin_not_needed, ) mqtt.publish( hass=self.hass, topic="%s/remoteapp/tv/ui_service/%s/actions/gettvstate" % (self.task_mqtt.get(CONF_MQTT_OUT), client_id), payload="", ) mqtt.publish( hass=self.hass, topic="%s/remoteapp/tv/ui_service/%s/actions/sourcelist" % (self.task_mqtt.get(CONF_MQTT_OUT), client_id), payload="", ) async def async_step_reauth(self, user_input=None): """Reauth handler.""" self.task_auth = None return await self.async_step_auth(user_input=user_input) async def async_step_auth(self, user_input=None): """Auth handler.""" if self.task_auth is True: _LOGGER.debug("async_step_auth finish") return self.async_show_progress_done(next_step_id="finish") if self.task_auth is False: _LOGGER.debug("async_step_auth reauth") return self.async_show_progress_done(next_step_id="reauth") if user_input is None: self.task_auth = None _LOGGER.debug("async_step_auth show form") return self.async_show_form( step_id="auth", data_schema=vol.Schema( { vol.Required(CONF_PIN): int, } ), ) else: _LOGGER.debug("async_step_auth send authentication") client_id = DEFAULT_CLIENT_ID self._unsubscribe_auth = await mqtt.async_subscribe( hass=self.hass, topic="%s/remoteapp/mobile/%s/ui_service/data/authenticationcode" % (self.task_mqtt.get(CONF_MQTT_IN), client_id), msg_callback=self._async_authcode_response, ) payload = json.dumps({"authNum": user_input.get(CONF_PIN)}) mqtt.publish( hass=self.hass, topic="%s/remoteapp/tv/ui_service/%s/actions/authenticationcode" % (self.task_mqtt.get(CONF_MQTT_OUT), client_id), payload=payload, ) return self.async_show_progress( step_id="auth", progress_action="progress_action", ) async def async_step_finish(self, user_input=None): """Finish config flow.""" _LOGGER.debug("async_step_finish") return self.async_create_entry(title=self._name, data=self.task_mqtt) async def async_step_import(self, data): """Handle import from YAML.""" _LOGGER.debug("async_step_import") return self.async_create_entry(title=data[CONF_NAME], data=data)
python
6,943
from typing import Dict, Optional from great_expectations.core import ExpectationConfiguration from great_expectations.exceptions import InvalidExpectationConfigurationError from great_expectations.execution_engine import ExecutionEngine from great_expectations.expectations.expectation import TableExpectation from great_expectations.render.renderer.renderer import renderer from great_expectations.render.types import RenderedStringTemplateContent from great_expectations.render.util import substitute_none_for_missing class ExpectTableColumnsToMatchSet(TableExpectation): metric_dependencies = ("table.columns",) success_keys = ( "column_set", "exact_match", ) default_kwarg_values = { "column_set": None, "exact_match": True, "result_format": "BASIC", "include_config": True, "catch_exceptions": False, } def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): """ Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: True if the configuration has been validated successfully. Otherwise, raises an exception """ # Setting up a configuration super().validate_configuration(configuration) if configuration is None: configuration = self.configuration # Ensuring that a proper value has been provided try: assert "column_set" in configuration.kwargs, "column_set is required" assert ( isinstance(configuration.kwargs["column_set"], (list, set)) or configuration.kwargs["column_set"] is None ), "column_set must be a list, set, or None" except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) return True @classmethod @renderer(renderer_type="renderer.prescriptive") def _prescriptive_renderer( cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs, ): runtime_configuration = runtime_configuration or {} include_column_name = runtime_configuration.get("include_column_name", True) include_column_name = ( include_column_name if include_column_name is not None else True ) styling = runtime_configuration.get("styling") params = substitute_none_for_missing( configuration.kwargs, ["column_set", "exact_match"] ) if params["column_set"] is None: template_str = "Must specify a set or list of columns." else: # standardize order of the set for output params["column_list"] = list(params["column_set"]) column_list_template_str = ", ".join( [f"$column_list_{idx}" for idx in range(len(params["column_list"]))] ) exact_match_str = "exactly" if params["exact_match"] is True else "at least" template_str = f"Must have {exact_match_str} these columns (in any order): {column_list_template_str}" for idx in range(len(params["column_list"])): params["column_list_" + str(idx)] = params["column_list"][idx] return [ RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": template_str, "params": params, "styling": styling, }, } ) ] def _validate( self, configuration: ExpectationConfiguration, metrics: Dict, runtime_configuration: dict = None, execution_engine: ExecutionEngine = None, ): # Obtaining columns and ordered list for sake of comparison expected_column_set = self.get_success_kwargs(configuration).get("column_set") expected_column_set = ( set(expected_column_set) if expected_column_set is not None else set() ) actual_column_list = metrics.get("table.columns") actual_column_set = set(actual_column_list) exact_match = self.get_success_kwargs(configuration).get("exact_match") if ( (expected_column_set is None) and (exact_match is not True) ) or actual_column_set == expected_column_set: return {"success": True, "result": {"observed_value": actual_column_list}} else: # Convert to lists and sort to lock order for testing and output rendering # unexpected_list contains items from the dataset columns that are not in expected_column_set unexpected_list = sorted(list(actual_column_set - expected_column_set)) # missing_list contains items from expected_column_set that are not in the dataset columns missing_list = sorted(list(expected_column_set - actual_column_set)) # observed_value contains items that are in the dataset columns observed_value = sorted(actual_column_list) mismatched = {} if len(unexpected_list) > 0: mismatched["unexpected"] = unexpected_list if len(missing_list) > 0: mismatched["missing"] = missing_list result = { "observed_value": observed_value, "details": {"mismatched": mismatched}, } return_success = { "success": True, "result": result, } return_failed = { "success": False, "result": result, } if exact_match: return return_failed else: # Failed if there are items in the missing list (but OK to have unexpected_list) if len(missing_list) > 0: return return_failed # Passed if there are no items in the missing list else: return return_success
python
6,490
"""Support for device tracking of Huawei LTE routers.""" from __future__ import annotations from dataclasses import dataclass, field import logging import re from typing import Any, cast from stringcase import snakecase from homeassistant.components.device_tracker.config_entry import ScannerEntity from homeassistant.components.device_tracker.const import ( DOMAIN as DEVICE_TRACKER_DOMAIN, SOURCE_TYPE_ROUTER, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers import entity_registry from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import Entity from homeassistant.helpers.entity_platform import AddEntitiesCallback from . import HuaweiLteBaseEntity, Router from .const import ( CONF_TRACK_WIRED_CLIENTS, DEFAULT_TRACK_WIRED_CLIENTS, DOMAIN, KEY_LAN_HOST_INFO, KEY_WLAN_HOST_LIST, UPDATE_SIGNAL, ) _LOGGER = logging.getLogger(__name__) _DEVICE_SCAN = f"{DEVICE_TRACKER_DOMAIN}/device_scan" _HostType = dict[str, Any] def _get_hosts( router: Router, ignore_subscriptions: bool = False ) -> list[_HostType] | None: for key in KEY_LAN_HOST_INFO, KEY_WLAN_HOST_LIST: if not ignore_subscriptions and key not in router.subscriptions: continue try: return cast(list[_HostType], router.data[key]["Hosts"]["Host"]) except KeyError: _LOGGER.debug("%s[%s][%s] not in data", key, "Hosts", "Host") return None async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up from config entry.""" # Grab hosts list once to examine whether the initial fetch has got some data for # us, i.e. if wlan host list is supported. Only set up a subscription and proceed # with adding and tracking entities if it is. router = hass.data[DOMAIN].routers[config_entry.unique_id] if (hosts := _get_hosts(router, True)) is None: return # Initialize already tracked entities tracked: set[str] = set() registry = entity_registry.async_get(hass) known_entities: list[Entity] = [] track_wired_clients = router.config_entry.options.get( CONF_TRACK_WIRED_CLIENTS, DEFAULT_TRACK_WIRED_CLIENTS ) for entity in registry.entities.values(): if ( entity.domain == DEVICE_TRACKER_DOMAIN and entity.config_entry_id == config_entry.entry_id ): mac = entity.unique_id.partition("-")[2] # Do not add known wired clients if not tracking them (any more) skip = False if not track_wired_clients: for host in hosts: if host.get("MacAddress") == mac: skip = not _is_wireless(host) break if not skip: tracked.add(entity.unique_id) known_entities.append(HuaweiLteScannerEntity(router, mac)) async_add_entities(known_entities, True) # Tell parent router to poll hosts list to gather new devices router.subscriptions[KEY_LAN_HOST_INFO].add(_DEVICE_SCAN) router.subscriptions[KEY_WLAN_HOST_LIST].add(_DEVICE_SCAN) async def _async_maybe_add_new_entities(unique_id: str) -> None: """Add new entities if the update signal comes from our router.""" if config_entry.unique_id == unique_id: async_add_new_entities(router, async_add_entities, tracked) # Register to handle router data updates disconnect_dispatcher = async_dispatcher_connect( hass, UPDATE_SIGNAL, _async_maybe_add_new_entities ) config_entry.async_on_unload(disconnect_dispatcher) # Add new entities from initial scan async_add_new_entities(router, async_add_entities, tracked) def _is_wireless(host: _HostType) -> bool: # LAN host info entries have an "InterfaceType" property, "Ethernet" / "Wireless". # WLAN host list ones don't, but they're expected to be all wireless. return cast(str, host.get("InterfaceType", "Wireless")) != "Ethernet" def _is_connected(host: _HostType | None) -> bool: # LAN host info entries have an "Active" property, "1" or "0". # WLAN host list ones don't, but that call appears to return active hosts only. return False if host is None else cast(str, host.get("Active", "1")) != "0" def _is_us(host: _HostType) -> bool: """Try to determine if the host entry is us, the HA instance.""" # LAN host info entries have an "isLocalDevice" property, "1" / "0"; WLAN host list ones don't. return cast(str, host.get("isLocalDevice", "0")) == "1" @callback def async_add_new_entities( router: Router, async_add_entities: AddEntitiesCallback, tracked: set[str], ) -> None: """Add new entities that are not already being tracked.""" if not (hosts := _get_hosts(router)): return track_wired_clients = router.config_entry.options.get( CONF_TRACK_WIRED_CLIENTS, DEFAULT_TRACK_WIRED_CLIENTS ) new_entities: list[Entity] = [] for host in ( x for x in hosts if not _is_us(x) and _is_connected(x) and x.get("MacAddress") and (track_wired_clients or _is_wireless(x)) ): entity = HuaweiLteScannerEntity(router, host["MacAddress"]) if entity.unique_id in tracked: continue tracked.add(entity.unique_id) new_entities.append(entity) async_add_entities(new_entities, True) def _better_snakecase(text: str) -> str: # Awaiting https://github.com/okunishinishi/python-stringcase/pull/18 if text == text.upper(): # All uppercase to all lowercase to get http for HTTP, not h_t_t_p text = text.lower() else: # Three or more consecutive uppercase with middle part lowercased # to get http_response for HTTPResponse, not h_t_t_p_response text = re.sub( r"([A-Z])([A-Z]+)([A-Z](?:[^A-Z]|$))", lambda match: f"{match.group(1)}{match.group(2).lower()}{match.group(3)}", text, ) return cast(str, snakecase(text)) @dataclass class HuaweiLteScannerEntity(HuaweiLteBaseEntity, ScannerEntity): """Huawei LTE router scanner entity.""" _mac_address: str _ip_address: str | None = field(default=None, init=False) _is_connected: bool = field(default=False, init=False) _hostname: str | None = field(default=None, init=False) _extra_state_attributes: dict[str, Any] = field(default_factory=dict, init=False) @property def _entity_name(self) -> str: return self.hostname or self.mac_address @property def _device_unique_id(self) -> str: return self.mac_address @property def source_type(self) -> str: """Return SOURCE_TYPE_ROUTER.""" return SOURCE_TYPE_ROUTER @property def ip_address(self) -> str | None: """Return the primary ip address of the device.""" return self._ip_address @property def mac_address(self) -> str: """Return the mac address of the device.""" return self._mac_address @property def hostname(self) -> str | None: """Return hostname of the device.""" return self._hostname @property def is_connected(self) -> bool: """Get whether the entity is connected.""" return self._is_connected @property def extra_state_attributes(self) -> dict[str, Any]: """Get additional attributes related to entity state.""" return self._extra_state_attributes async def async_update(self) -> None: """Update state.""" if (hosts := _get_hosts(self.router)) is None: self._available = False return self._available = True host = next( (x for x in hosts if x.get("MacAddress") == self._mac_address), None ) self._is_connected = _is_connected(host) if host is not None: # IpAddress can contain multiple semicolon separated addresses. # Pick one for model sanity; e.g. the dhcp component to which it is fed, parses and expects to see just one. self._ip_address = (host.get("IpAddress") or "").split(";", 2)[0] or None self._hostname = host.get("HostName") self._extra_state_attributes = { _better_snakecase(k): v for k, v in host.items() if k in { "AddressSource", "AssociatedSsid", "InterfaceType", } }
python
8,723
import torch import torch.nn as nn class SiameseNetwork(nn.Module): def __init__(self): super(SiameseNetwork, self).__init__() # Outputs batch X 512 X 1 X 1 self.net = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.BatchNorm2d(32), # nn.Dropout2d(p=0.4), nn.Conv2d(32, 64, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.BatchNorm2d(64), # nn.Dropout2d(p=0.4), nn.Conv2d(64, 128, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.BatchNorm2d(128), # nn.Dropout2d(p=0.4), nn.Conv2d(128, 256, kernel_size=1, stride=2), nn.ReLU(inplace=True), nn.BatchNorm2d(256), # nn.Dropout2d(p=0.4), nn.Conv2d(256, 256, kernel_size=1, stride=2), nn.ReLU(inplace=True), nn.BatchNorm2d(256), # nn.Dropout2d(p=0.4), nn.Conv2d(256, 512, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.BatchNorm2d(512), # 1X1 filters to increase dimensions nn.Conv2d(512, 1024, kernel_size=1, stride=1), nn.ReLU(inplace=True), nn.BatchNorm2d(1024), ) def forward_once(self, x: torch.Tensor): output = self.net(x) output = torch.squeeze(output) return output def forward(self, input1: torch.Tensor, input2: torch.Tensor, input3: torch.Tensor = None): output1 = self.forward_once(input1) output2 = self.forward_once(input2) if input3 is not None: output3 = self.forward_once(input3) return output1, output2, output3 return output1, output2
python
1,810
# -*- coding: utf-8 -*- """ @Time : 2019/04/17 10:08 @Author : Yuppie """ import torch import torch.nn as nn from Sublayers import General_Attention, Inception_Temporal_Layer, Non_local_gcn, Local_gcn from Normalize import Switch_Norm_2D class Prediction_Model(nn.Module): def __init__(self, Ks, encoder_in_channel, encoder_out_channel, num_stations, switch): super(Prediction_Model, self).__init__() self.encoder = Prediction_Encoder(Ks, encoder_in_channel, encoder_out_channel, num_stations, switch) self.decoder = Prediction_Decoder(encoder_out_channel, encoder_in_channel) def forward(self, inputs, graph): st_outputs = self.encoder(inputs, graph[0], graph[1]) predictions = self.decoder(inputs=st_outputs[:, :, -1, :].unsqueeze(-2), key=st_outputs[:, :, :-1, :], value=inputs[:, :, 1:, :]) return predictions class Prediction_Encoder(nn.Module): def __init__(self, K, in_channels, out_channels, num_stations, switch='gaussian'): super(Prediction_Encoder, self).__init__() self.tc_1 = Inception_Temporal_Layer(num_stations, in_channels, 4*in_channels, out_channels) self.sa_1 = Non_local_gcn(K, out_channels, out_channels, num_stations, switch) # self.sa_1 = Local_gcn(K, out_channels, out_channels) self.tc_2 = Inception_Temporal_Layer(num_stations, out_channels, out_channels, out_channels) self.sa_2 = Non_local_gcn(K, out_channels, out_channels, num_stations, switch) # self.sa_2 = Local_gcn(K, out_channels, out_channels) # self.conv1_1 = CausalConv1d(in_channels, out_channels, 1) self.norm_1 = Switch_Norm_2D(out_channels) self.norm_2 = Switch_Norm_2D(out_channels) self.norm_3 = Switch_Norm_2D(out_channels) self.norm_4 = Switch_Norm_2D(out_channels) self.act = nn.LeakyReLU(inplace=True) self.dropout = nn.Dropout(p=0.1) self.num_stations = num_stations self.in_channels = in_channels def forward(self, inputs, c_graph, s_graph): c_graph = c_graph if c_graph.dim() == 3 else c_graph.squeeze(0) s_graph = s_graph if s_graph.dim() == 3 else s_graph.squeeze(0) batch_size, num_stations, seq_len, temporal_in_channel = inputs.size() assert num_stations == self.num_stations assert temporal_in_channel == self.in_channels # inputs = torch.cat([self.conv1_1(inputs[:, s_i].transpose(1, 2)).transpose(1, 2).unsqueeze(1) # for s_i in range(self.num_stations)], dim=1) temporal_feature = self.norm_1(self.tc_1(inputs)) spatial_feature = torch.cat([self.sa_1(temporal_feature[:, :, i], c_graph, s_graph).unsqueeze(2) for i in range(seq_len)], dim=2) spatial_feature = self.act(self.norm_2(spatial_feature)) temporal_feature = self.norm_3(self.tc_2(spatial_feature)) spatial_feature = torch.cat([self.sa_2(temporal_feature[:, :, i], c_graph, s_graph).unsqueeze(2) for i in range(seq_len)], dim=2) spatial_feature = self.act(self.norm_4(spatial_feature)) return spatial_feature class Prediction_Decoder(nn.Module): def __init__(self, spatial_out_channel, temporal_in_channel): super(Prediction_Decoder, self).__init__() self.attention = General_Attention(spatial_out_channel) self.hidden_dim = spatial_out_channel self.W_q = nn.Linear(spatial_out_channel, self.hidden_dim, bias=False) self.W_k = nn.Linear(spatial_out_channel, self.hidden_dim, bias=False) nn.init.xavier_normal_(self.W_q.weight) nn.init.xavier_normal_(self.W_k.weight) def forward(self, inputs, key, value): batch_size, num_stations, new_len, spatial_out_channel = inputs.size() batch_size, num_stations, seq_len, temporal_in_channel = value.size() inputs = self.W_q(inputs).view(-1, new_len, self.hidden_dim) key = self.W_k(key).view(-1, seq_len, self.hidden_dim) value = value.view(-1, seq_len, temporal_in_channel) outputs, _ = self.attention(inputs, key, value) outputs = torch.cat([batch_i.unsqueeze(0) for batch_i in torch.chunk(outputs, batch_size, dim=0)], dim=0) return outputs
python
4,403
from SublimeLinter.lint import NodeLinter class XO(NodeLinter): npm_name = 'xo' cmd = ('xo', '--stdin', '--reporter', 'compact', '--filename', '${file}') regex = ( r'^.+?: line (?P<line>\d+), col (?P<col>\d+), ' r'(?:(?P<error>Error)|(?P<warning>Warning)) - ' r'(?P<message>.+)' r' \((?P<code>.+)\)$' ) defaults = { 'selector': 'source.js - meta.attribute-with-value', 'disable_if_not_dependency': True }
python
424
from unittest.mock import patch from django.core.management import call_command from django.db.utils import OperationalError from django.test import TestCase class CommandTests(TestCase): def test_wait_for_db_ready(self): with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.return_value = True call_command("wait_for_db") self.assertEqual(gi.call_count,1) @patch('time.sleep',return_value=True) def test_wait_for_db(self,ts): with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.side_effect = [OperationalError] * 5 + [True] call_command('wait_for_db') self.assertEqual(gi.call_count,6)
python
727
import time from datetime import timedelta from django.db.backends.postgresql.operations import ( DatabaseOperations as PostgresDatabaseOperations, ) from django.db.utils import OperationalError from psycopg2 import errorcodes from pytz import timezone class DatabaseOperations(PostgresDatabaseOperations): integer_field_ranges = { 'SmallIntegerField': (-32768, 32767), 'IntegerField': (-9223372036854775808, 9223372036854775807), 'BigIntegerField': (-9223372036854775808, 9223372036854775807), 'PositiveSmallIntegerField': (0, 32767), 'PositiveBigIntegerField': (0, 9223372036854775807), 'PositiveIntegerField': (0, 9223372036854775807), 'SmallAutoField': (-32768, 32767), 'AutoField': (-9223372036854775808, 9223372036854775807), 'BigAutoField': (-9223372036854775808, 9223372036854775807), } def deferrable_sql(self): # Deferrable constraints aren't supported: # https://github.com/cockroachdb/cockroach/issues/31632 return '' def adapt_datetimefield_value(self, value): """ Add a timezone to datetimes so that psycopg2 will cast it to TIMESTAMPTZ (as cockroach expects) rather than TIMESTAMP. """ # getattr() guards against F() objects which don't have tzinfo. if value and getattr(value, 'tzinfo', '') is None and self.connection.timezone_name is not None: connection_timezone = timezone(self.connection.timezone_name) try: value = connection_timezone.localize(value) except OverflowError: # Localizing datetime.datetime.max (used to cache a value # forever, for example) may overflow. Subtract a day to prevent # that. value -= timedelta(days=1) value = connection_timezone.localize(value) return value def sequence_reset_by_name_sql(self, style, sequences): # Not implemented: https://github.com/cockroachdb/cockroach/issues/20956 return [] def sequence_reset_sql(self, style, model_list): return [] def explain_query_prefix(self, format=None, **options): if format: raise ValueError("CockroachDB's EXPLAIN doesn't support any formats.") prefix = self.explain_prefix extra = [name for name, value in options.items() if value] if extra: prefix += ' (%s)' % ', '.join(extra) return prefix def execute_sql_flush(self, sql_list): # Retry TRUNCATE if it fails with a serialization error. num_retries = 10 initial_retry_delay = 0.5 # The initial retry delay, in seconds. backoff_ = 1.5 # For each retry, the last delay is multiplied by this. next_retry_delay = initial_retry_delay for retry in range(1, num_retries + 1): try: return super().execute_sql_flush(sql_list) except OperationalError as exc: if (getattr(exc.__cause__, 'pgcode', '') != errorcodes.SERIALIZATION_FAILURE or retry >= num_retries): raise time.sleep(next_retry_delay) next_retry_delay *= backoff_ def sql_flush(self, style, tables, *, reset_sequences=False, allow_cascade=False): # CockroachDB doesn't support resetting sequences. return super().sql_flush(style, tables, reset_sequences=False, allow_cascade=allow_cascade)
python
3,515
# Copyright 2016 Leon Poon and Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from xml.dom import minidom from test import res dtsx_res = res.pydtsxplode.dtsx # @UndefinedVariable class TestXml(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def testMakeXmlNs(self): pass def testReadPackage(self): f = dtsx_res['Package.dtsx']('rb') dom = minidom.parse(f) self.assertIs(dom.documentElement.ownerDocument, dom) self.assertIs(dom.documentElement.parentNode, dom) if __name__ == "__main__": unittest.main()
python
1,191
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """CorrelationCholesky bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import bijector from tensorflow_probability.python.bijectors import fill_triangular from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import tensorshape_util __all__ = [ 'CorrelationCholesky', ] class CorrelationCholesky(bijector.AutoCompositeTensorBijector): """Maps unconstrained reals to Cholesky-space correlation matrices. #### Mathematical Details This bijector provides a change of variables from unconstrained reals to a parameterization of the CholeskyLKJ distribution. The CholeskyLKJ distribution [1] is a distribution on the set of Cholesky factors of positive definite correlation matrices. The CholeskyLKJ probability density function is obtained from the LKJ density on n x n matrices as follows: 1 = int p(A | eta) dA = int Z(eta) * det(A) ** (eta - 1) dA = int Z(eta) L_ii ** {(n - i - 1) + 2 * (eta - 1)} ^dL_ij (0 <= i < j < n) where Z(eta) is the normalizer; the matrix L is the Cholesky factor of the correlation matrix A; and ^dL_ij denotes the wedge product (or differential) of the strictly lower triangular entries of L. The entries L_ij are constrained such that each entry lies in [-1, 1] and the norm of each row is 1. The norm includes the diagonal; which is not included in the wedge product. To preserve uniqueness, we further specify that the diagonal entries are positive. The image of unconstrained reals under the `CorrelationCholesky` bijector is the set of correlation matrices which are positive definite. A [correlation matrix](https://en.wikipedia.org/wiki/Correlation_and_dependence#Correlation_matrices) can be characterized as a symmetric positive semidefinite matrix with 1s on the main diagonal. For a lower triangular matrix `L` to be a valid Cholesky-factor of a positive definite correlation matrix, it is necessary and sufficient that each row of `L` have unit Euclidean norm [1]. To see this, observe that if `L_i` is the `i`th row of the Cholesky factor corresponding to the correlation matrix `R`, then the `i`th diagonal entry of `R` satisfies: 1 = R_i,i = L_i . L_i = ||L_i||^2 where '.' is the dot product of vectors and `||...||` denotes the Euclidean norm. Furthermore, observe that `R_i,j` lies in the interval `[-1, 1]`. By the Cauchy-Schwarz inequality: |R_i,j| = |L_i . L_j| <= ||L_i|| ||L_j|| = 1 This is a consequence of the fact that `R` is symmetric positive definite with 1s on the main diagonal. We choose the mapping from x in `R^{m}` to `R^{n^2}` where `m` is the `(n - 1)`th triangular number; i.e. `m = 1 + 2 + ... + (n - 1)`. L_ij = x_i,j / s_i (for i < j) L_ii = 1 / s_i where s_i = sqrt(1 + x_i,0^2 + x_i,1^2 + ... + x_(i,i-1)^2). We can check that the required constraints on the image are satisfied. #### Examples ```python bijector.CorrelationCholesky().forward([2., 2., 1.]) # Result: [[ 1. , 0. , 0. ], [ 0.70710678, 0.70710678, 0. ], [ 0.66666667, 0.66666667, 0.33333333]] bijector.CorrelationCholesky().inverse( [[ 1. , 0. , 0. ], [ 0.70710678, 0.70710678, 0. ], [ 0.66666667, 0.66666667, 0.33333333]]) # Result: [2., 2., 1.] ``` #### References [1] Stan Manual. Section 24.2. Cholesky LKJ Correlation Distribution. https://mc-stan.org/docs/2_18/functions-reference/cholesky-lkj-correlation-distribution.html [2] Daniel Lewandowski, Dorota Kurowicka, and Harry Joe, "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis 100 (2009), pp 1989-2001. """ def __init__(self, validate_args=False, name='correlation_cholesky'): parameters = dict(locals()) with tf.name_scope(name) as name: super(CorrelationCholesky, self).__init__( validate_args=validate_args, forward_min_event_ndims=1, inverse_min_event_ndims=2, parameters=parameters, name=name) @classmethod def _parameter_properties(cls, dtype): return dict() def _forward_event_shape(self, input_shape): if tensorshape_util.rank(input_shape) is None: return input_shape tril_shape = fill_triangular.FillTriangular().forward_event_shape( input_shape) n = tril_shape[-1] if n is not None: n += 1 return tril_shape[:-2].concatenate([n, n]) def _forward_event_shape_tensor(self, input_shape): tril_shape = fill_triangular.FillTriangular().forward_event_shape_tensor( input_shape) n = tril_shape[-1] + 1 return tf.concat([tril_shape[:-2], [n, n]], axis=-1) def _inverse_event_shape(self, input_shape): if not input_shape.rank: return input_shape n = input_shape[-1] if n is not None: n -= 1 y_shape = input_shape[:-2].concatenate([n, n]) return fill_triangular.FillTriangular().inverse_event_shape(y_shape) def _inverse_event_shape_tensor(self, input_shape): n = input_shape[-1] - 1 y_shape = tf.concat([input_shape[:-2], [n, n]], axis=-1) return fill_triangular.FillTriangular().inverse_event_shape_tensor(y_shape) def _forward(self, x): x = tf.convert_to_tensor(x, name='x') batch_shape = ps.shape(x)[:-1] # Pad zeros on the top row and right column. y = fill_triangular.FillTriangular().forward(x) rank = ps.rank(y) paddings = ps.concat( [ps.zeros([rank - 2, 2], dtype=tf.int32), [[1, 0], [0, 1]]], axis=0) y = tf.pad(y, paddings) # Set diagonal to 1s. n = ps.shape(y)[-1] diag = tf.ones(ps.concat([batch_shape, [n]], axis=-1), dtype=x.dtype) y = tf.linalg.set_diag(y, diag) # Normalize each row to have Euclidean (L2) norm 1. y /= tf.norm(y, axis=-1)[..., tf.newaxis] return y def _inverse(self, y): n = ps.shape(y)[-1] batch_shape = ps.shape(y)[:-2] # Extract the reciprocal of the row norms from the diagonal. diag = tf.linalg.diag_part(y)[..., tf.newaxis] # Set the diagonal to 0s. y = tf.linalg.set_diag( y, tf.zeros(ps.concat([batch_shape, [n]], axis=-1), dtype=y.dtype)) # Multiply with the norm (or divide by its reciprocal) to recover the # unconstrained reals in the (strictly) lower triangular part. x = y / diag # Remove the first row and last column before inverting the FillTriangular # transformation. return fill_triangular.FillTriangular().inverse(x[..., 1:, :-1]) def _forward_log_det_jacobian(self, x): # TODO(b/133442896): It should be possible to use the fallback # implementation of _forward_log_det_jacobian in terms of # _inverse_log_det_jacobian in the base Bijector class. return -self._inverse_log_det_jacobian(self.forward(x)) def _inverse_log_det_jacobian(self, y): # The inverse log det jacobian (ILDJ) of the entire mapping is the sum of # the ILDJs of each row's mapping. # # To compute the ILDJ for each row's mapping, consider the forward mapping # `f_k` restricted to the `k`th (0-indexed) row. It maps unconstrained reals # in `R^k` to the unit disk in `R^k`. `f_k : R^k -> R^k` is: # # f(x_1, x_2, ... x_k) = (x_1/s, x_2/s, ..., x_k/s) # # where `s = norm(x_1, x_2, ..., x_k, 1)`. # # The change in infinitesimal `k`-dimensional volume is given by # |det(J)|; where J is the `k x k` Jacobian matrix. # # Claim: |det(J)| = s^{-(k + 2)}. # # Proof: We compute the entries of the Jacobian matrix J: # # J_ij = (s^2 - x_i^2) / s^3 if i == j # J_ij = -(x_i * x_j) / s^3 if i != j # # We multiply each row by s^3, which contributes a factor of s^{-3k} to # det(J). The remaining matrix can be written as s^2 I - xx^T. By the # matrix determinant lemma # (https://en.wikipedia.org/wiki/Matrix_determinant_lemma), # det(s^2 I - xx^T) = s^{2k} (1 - (x^Tx / s^2)) = s^{2k - 2}. The last # equality follows from s^2 - x^Tx = s^2 - sum x_i^2 = 1. Hence, # det(J) = s^{-3k} s^{2k - 2} = s^{-(k + 2)}. # n = ps.shape(y)[-1] return -tf.reduce_sum( tf.range(2, n + 2, dtype=y.dtype) * tf.math.log(tf.linalg.diag_part(y)), axis=-1)
python
9,230
# Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from graphlearn import pywrap_graphlearn as pywrap from graphlearn.python.config import * # pylint: disable=wildcard-import from graphlearn.python.graph import Graph from graphlearn.python.values import Nodes, Edges, Layer, Layers, \ SparseNodes, SparseEdges from graphlearn.python.errors import * # pylint: disable=wildcard-import from graphlearn.python.decoder import Decoder from graphlearn.python.topology import Topology from graphlearn.python.sampler import * # model from graphlearn.python.model.base_encoder import * from graphlearn.python.model.ego_graph import * from graphlearn.python.model.ego_spec import * from graphlearn.python.model.learning_based_model import * from graphlearn.python.model.utils import * # tf based model from graphlearn.python.model.tf import aggregators from graphlearn.python.model.tf import encoders from graphlearn.python.model.tf import layers from graphlearn.python.model.tf import utils from graphlearn.python.model.tf.trainer import * from graphlearn.python.model.tf.optimizer import * from graphlearn.python.model.tf.loss_fn import * from graphlearn.python.model.tf.ego_tensor import * from graphlearn.python.model.tf.ego_flow import * EDGE_SRC = pywrap.NodeFrom.EDGE_SRC EDGE_DST = pywrap.NodeFrom.EDGE_DST NODE = pywrap.NodeFrom.NODE REPLICATE = pywrap.PaddingMode.REPLICATE CIRCULAR = pywrap.PaddingMode.CIRCULAR
python
2,064
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 20 16:25:08 2020 @author: admangli """ import numpy as np import pandas as pd import matplotlib.pyplot as plt dataset = pd.read_csv("Social_Network_Ads.csv") X = dataset.iloc[:, 2:-1].values y = dataset.iloc[:, -1].values #%% from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) #%% Fitting logistic regression to training set from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) #%% Visualize predictions using confusion matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) print(cm) #%% from matplotlib.colors import ListedColormap X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = .01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = .01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('darkred', 'darkgreen'))(i), label = j) plt.title('Logistic Regression (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()
python
1,685
#!/usr/bin/env python import csv from datetime import date, datetime, timedelta import sys def read_csv_data(csvfilename): dates = {} with open(csvfilename) as csvfile: insightreader = csv.reader(csvfile) for index, row in enumerate(insightreader): # skip the first two lines if index < 2: continue # the date is formatted like 08/16/2014 11:33:11 sitting_date = datetime.strptime(row[0], "%m/%d/%Y %H:%M:%S").date() duration = int(row[1]) if sitting_date not in dates: dates[sitting_date] = [] dates[sitting_date].append(duration) return dates def percent_sat_in_last_year(dates): days_sat = 0 for i in xrange(365): olddate = date.today() - timedelta(i) if olddate in dates: days_sat += 1 return days_sat / 365.0 def main(): dates = read_csv_data("insight_connect_export_20140816.csv") #import pprint #pprint.pprint(dates, width=2) print "Sat %.1f%% days in last year" % (100 * percent_sat_in_last_year(dates)) return 0 if __name__ == "__main__": sys.exit(main())
python
1,181
from ._person import Person as _Person __all__ = ["People"] def _generate_person_uid(): import uuid as _uuid uid = _uuid.uuid4() return "P" + str(uid)[:7] class People: """This holds a registry of individual Persons""" def __init__(self, props=None, getHook=None): self._getHook = getHook self.state = { "registry": {}, } self._names = {} self.load(props) self._log = [] def addLog(self, log): self._log.append(log) def add(self, person: _Person): if person is None: return if isinstance(person, str): # try to find an existing person with this name try: return self.getByName(person) except Exception: return self.add(_Person({"name": person})) if not isinstance(person, _Person): raise TypeError("Can only add a Person to People") existing = None try: existing = self.getByName(person.getName()) except Exception: existing = None if existing is None: try: existing = self.getByFuzzyName(person) except Exception: existing = None if existing: self.addLog( f"Have fuzzy matched {person.getName()} " f"to {existing.getName()}" ) if existing: del self._names[existing.getName()] existing = existing.merge(person) self._names[existing.getName()] = existing.getID() self.state["registry"][existing.getID()] = existing return existing id = person.getID() if id: if id in self.state["registry"]: raise KeyError(f"Duplicate Person ID {person}") self.state["registry"][id] = person else: uid = _generate_person_uid() while uid in self.state["registry"]: uid = _generate_person_uid() person.state["id"] = uid self.state["registry"][uid] = person person._getHook = self._getHook self._names[person.getName()] = person.getID() return person def getLog(self): if len(self._log) == 0: return None else: return "\n".join(self._log) def values(self): return self.state["registry"].values() def get(self, id): try: return self.state["registry"][id] except Exception: raise KeyError(f"No Person with ID {id}") def getByFuzzyName(self, person): for (pid, p) in self.state["registry"].items(): if p.couldBe(person): y = input( f"Is {person.getName()} the same person " f"as {p.getName()}? (y/n) " ) if y and y.lower()[0] == "y": return p return None def getByName(self, name): try: return self.get(self._names[name]) except Exception: raise KeyError(f"No Person with name {name}") def getAll(self): """ Returns all the names stored in this object Returns: dict: Dictionary of people as name: ID pairs """ return {v: k for k, v in self._names.items()} def getAllForImages(self): """ Returns all the names stored in this object Returns: dict: Dictionary of people as name: ID pairs """ imageDict = {} for id, name in self.getAll().items(): imageDict[id] = {} imageDict[id]["name"] = name imageDict[id]["filename"] = "The_Steamer_Great_Western_small.jpg" return imageDict def find(self, value, best_match=False): if isinstance(value, _Person): return self.get(value.getID()) value = value.lstrip().rstrip().lower() results = [] shortest = None shortest_length = None for name in self._names.keys(): if name.lower().find(value) != -1: if shortest is None: shortest = name shortest_length = len(name) elif len(name) < shortest_length: shortest_length = len(name) shortest = name results.append(self.get(self._names[name])) if len(results) == 1: return results[0] elif len(results) > 1: if best_match: return self.get(self._names[shortest]) else: return results keys = "', '".join(self._names.keys()) raise KeyError( f"No person matches '{value}'. Available people " + f"are '{keys}'" ) def load(self, data): if data: for item in data: person = _Person.load(item) self.add(person) def toDry(self): return self.state @staticmethod def unDry(value): people = People() people.state = value return people
python
5,205
from astropy.coordinates import SkyCoord, EarthLocation #from astropy import coordinates as coord #from astropy.coordinates.tests.utils import randomly_sample_sphere from astropy.time import Time from astropy import units as u #import numpy as np #import matplotlib.pyplot as plt #coos = SkyCoord.from_name('M1') # 300 times over the space of 10 hours time = Time.now()# + np.linspace(-5, 5, 300)*u.hour # note the use of broadcasting so that 300 times are broadcast against 1000 positions home = EarthLocation.from_geodetic(51.023, 0.31, 100) #aa_frame = coord.AltAz(obstime=times[:, np.newaxis], location=home) # calculate alt-az of each object at each time. #aa_coos = coos.transform_to(aa_frame) newAltAzcoordiantes = SkyCoord(alt = 45*u.deg, az = 100*u.deg, obstime = time, frame = 'altaz', location = home) print(newAltAzcoordiantes.icrs)
python
853
# Generated by Django 2.2.1 on 2019-08-31 12:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("core", "0010_auto_20190831_1021")] operations = [ migrations.AddField( model_name="activeplugin", name="type", field=models.CharField(default="", max_length=50, verbose_name="Type"), preserve_default=False, ) ]
python
438
from __future__ import absolute_import from datetime import timedelta import operator from rest_framework import serializers from django.db import transaction from sentry.api.serializers.rest_framework.base import CamelSnakeModelSerializer from sentry.api.serializers.rest_framework.environment import EnvironmentField from sentry.api.serializers.rest_framework.project import ProjectField from sentry.incidents.logic import ( AlertRuleNameAlreadyUsedError, AlertRuleTriggerLabelAlreadyUsedError, InvalidTriggerActionError, create_alert_rule, create_alert_rule_trigger, create_alert_rule_trigger_action, update_alert_rule, update_alert_rule_trigger, update_alert_rule_trigger_action, delete_alert_rule_trigger_action, delete_alert_rule_trigger, ) from sentry.incidents.models import ( AlertRule, AlertRuleThresholdType, AlertRuleTrigger, AlertRuleTriggerAction, ) from sentry.models.organizationmember import OrganizationMember from sentry.models.team import Team from sentry.models.user import User from sentry.snuba.models import QueryAggregations from sentry.utils.compat import zip string_to_action_type = { registration.slug: registration.type for registration in AlertRuleTriggerAction.get_registered_types() } action_target_type_to_string = { AlertRuleTriggerAction.TargetType.USER: "user", AlertRuleTriggerAction.TargetType.TEAM: "team", AlertRuleTriggerAction.TargetType.SPECIFIC: "specific", } string_to_action_target_type = {v: k for (k, v) in action_target_type_to_string.items()} CRITICAL_TRIGGER_LABEL = "critical" WARNING_TRIGGER_LABEL = "warning" class AlertRuleTriggerActionSerializer(CamelSnakeModelSerializer): """ Serializer for creating/updating a trigger action. Required context: - `trigger`: The trigger related to this action. - `alert_rule`: The alert_rule related to this action. - `organization`: The organization related to this action. - `access`: An access object (from `request.access`) """ id = serializers.IntegerField(required=False) type = serializers.CharField() target_type = serializers.CharField() class Meta: model = AlertRuleTriggerAction fields = ["id", "type", "target_type", "target_identifier", "integration"] extra_kwargs = { "target_identifier": {"required": True}, "target_display": {"required": False}, "integration": {"required": False, "allow_null": True}, } def validate_type(self, type): if type not in string_to_action_type: raise serializers.ValidationError( "Invalid type, valid values are [%s]" % ", ".join(string_to_action_type.keys()) ) return string_to_action_type[type] def validate_target_type(self, target_type): if target_type not in string_to_action_target_type: raise serializers.ValidationError( "Invalid targetType, valid values are [%s]" % ", ".join(string_to_action_target_type.keys()) ) return string_to_action_target_type[target_type] def validate(self, attrs): if ("type" in attrs) != ("target_type" in attrs) != ("target_identifier" in attrs): raise serializers.ValidationError( "type, targetType and targetIdentifier must be passed together" ) type = attrs.get("type") target_type = attrs.get("target_type") access = self.context["access"] identifier = attrs.get("target_identifier") if type is not None: type_info = AlertRuleTriggerAction.get_registered_type(type) if target_type not in type_info.supported_target_types: allowed_target_types = ",".join( [ action_target_type_to_string[type_name] for type_name in type_info.supported_target_types ] ) raise serializers.ValidationError( { "target_type": "Invalid target type for %s. Valid types are [%s]" % (type_info.slug, allowed_target_types) } ) if attrs.get("type") == AlertRuleTriggerAction.Type.EMAIL: if target_type == AlertRuleTriggerAction.TargetType.TEAM: try: team = Team.objects.get(id=identifier) except Team.DoesNotExist: raise serializers.ValidationError("Team does not exist") if not access.has_team(team): raise serializers.ValidationError("Team does not exist") elif target_type == AlertRuleTriggerAction.TargetType.USER: try: user = User.objects.get(id=identifier) except User.DoesNotExist: raise serializers.ValidationError("User does not exist") if not OrganizationMember.objects.filter( organization=self.context["organization"], user=user ).exists(): raise serializers.ValidationError("User does not belong to this organization") elif attrs.get("type") == AlertRuleTriggerAction.Type.SLACK: if not attrs.get("integration"): raise serializers.ValidationError( {"integration": "Integration must be provided for slack"} ) return attrs def create(self, validated_data): try: return create_alert_rule_trigger_action( trigger=self.context["trigger"], **validated_data ) except InvalidTriggerActionError as e: raise serializers.ValidationError(e.message) def update(self, instance, validated_data): if "id" in validated_data: validated_data.pop("id") try: return update_alert_rule_trigger_action(instance, **validated_data) except InvalidTriggerActionError as e: raise serializers.ValidationError(e.message) class AlertRuleTriggerSerializer(CamelSnakeModelSerializer): """ Serializer for creating/updating an alert rule trigger. Required context: - `alert_rule`: The alert_rule related to this trigger. - `organization`: The organization related to this trigger. - `access`: An access object (from `request.access`) """ id = serializers.IntegerField(required=False) # TODO: These might be slow for many projects, since it will query for each # individually. If we find this to be a problem then we can look into batching. excluded_projects = serializers.ListField(child=ProjectField(), required=False) actions = serializers.ListField(required=True) class Meta: model = AlertRuleTrigger fields = [ "id", "label", "threshold_type", "alert_threshold", "resolve_threshold", "excluded_projects", "actions", ] extra_kwargs = {"label": {"min_length": 1, "max_length": 64}} def validate_threshold_type(self, threshold_type): try: return AlertRuleThresholdType(threshold_type) except ValueError: raise serializers.ValidationError( "Invalid threshold type, valid values are %s" % [item.value for item in AlertRuleThresholdType] ) def create(self, validated_data): try: actions = validated_data.pop("actions") alert_rule_trigger = create_alert_rule_trigger( alert_rule=self.context["alert_rule"], **validated_data ) self._handle_actions(alert_rule_trigger, actions) return alert_rule_trigger except AlertRuleTriggerLabelAlreadyUsedError: raise serializers.ValidationError("This label is already in use for this alert rule") def update(self, instance, validated_data): actions = validated_data.pop("actions") if "id" in validated_data: validated_data.pop("id") try: alert_rule_trigger = update_alert_rule_trigger(instance, **validated_data) self._handle_actions(alert_rule_trigger, actions) return alert_rule_trigger except AlertRuleTriggerLabelAlreadyUsedError: raise serializers.ValidationError("This label is already in use for this alert rule") def _handle_actions(self, alert_rule_trigger, actions): if actions is not None: # Delete actions we don't have present in the updated data. action_ids = [x["id"] for x in actions if "id" in x] actions_to_delete = AlertRuleTriggerAction.objects.filter( alert_rule_trigger=alert_rule_trigger ).exclude(id__in=action_ids) for action in actions_to_delete: delete_alert_rule_trigger_action(action) for action_data in actions: if "integration_id" in action_data: action_data["integration"] = action_data.pop("integration_id") if "id" in action_data: action_instance = AlertRuleTriggerAction.objects.get( alert_rule_trigger=alert_rule_trigger, id=action_data["id"] ) else: action_instance = None action_serializer = AlertRuleTriggerActionSerializer( context={ "alert_rule": alert_rule_trigger.alert_rule, "trigger": alert_rule_trigger, "organization": self.context["organization"], "access": self.context["access"], }, instance=action_instance, data=action_data, ) if action_serializer.is_valid(): action_serializer.save() else: raise serializers.ValidationError(action_serializer.errors) class ObjectField(serializers.Field): def to_internal_value(self, data): return data class AlertRuleSerializer(CamelSnakeModelSerializer): """ Serializer for creating/updating an alert rule. Required context: - `organization`: The organization related to this alert rule. - `access`: An access object (from `request.access`) """ environment = EnvironmentField(required=False, allow_null=True) # TODO: These might be slow for many projects, since it will query for each # individually. If we find this to be a problem then we can look into batching. projects = serializers.ListField(child=ProjectField(), required=False) excluded_projects = serializers.ListField(child=ProjectField(), required=False) triggers = serializers.ListField(required=True) class Meta: model = AlertRule fields = [ "name", "query", "time_window", "environment", "threshold_period", "aggregation", "projects", "include_all_projects", "excluded_projects", "triggers", ] extra_kwargs = { "query": {"allow_blank": True, "required": True}, "threshold_period": {"default": 1, "min_value": 1, "max_value": 20}, "time_window": { "min_value": 1, "max_value": int(timedelta(days=1).total_seconds() / 60), "required": True, }, "aggregation": {"required": False}, "name": {"min_length": 1, "max_length": 64}, "include_all_projects": {"default": False}, } def validate_aggregation(self, aggregation): try: return QueryAggregations(aggregation) except ValueError: raise serializers.ValidationError( "Invalid aggregation, valid values are %s" % [item.value for item in QueryAggregations] ) def validate(self, data): """Performs validation on an alert rule's data This includes ensuring there is either 1 or 2 triggers, which each have actions, and have proper thresholds set. The critical trigger should both alert and resolve 'after' the warning trigger (whether that means > or < the value depends on threshold type). """ triggers = data.get("triggers", []) if not triggers: raise serializers.ValidationError("Must include at least one trigger") if len(triggers) > 2: raise serializers.ValidationError( "Must send 1 or 2 triggers - A critical trigger, and an optional warning trigger" ) for i, (trigger, expected_label) in enumerate( zip(triggers, (CRITICAL_TRIGGER_LABEL, WARNING_TRIGGER_LABEL)) ): if trigger.get("label", None) != expected_label: raise serializers.ValidationError( 'Trigger {} must be labeled "{}"'.format(i + 1, expected_label) ) critical = triggers[0] self._validate_trigger_thresholds(critical) if len(triggers) == 2: warning = triggers[1] if critical["threshold_type"] != warning["threshold_type"]: raise serializers.ValidationError( "Must have matching threshold types (i.e. critical and warning " "triggers must both be an upper or lower bound)" ) self._validate_trigger_thresholds(warning) self._validate_critical_warning_triggers(critical, warning) # Triggers have passed checks. Check that all triggers have at least one action now. for trigger in triggers: actions = trigger.get("actions") if not actions: raise serializers.ValidationError( '"' + trigger["label"] + '" trigger must have an action.' ) return data def _validate_trigger_thresholds(self, trigger): if trigger.get("resolve_threshold") is None: return # Since we're comparing non-inclusive thresholds here (>, <), we need # to modify the values when we compare. An example of why: # Alert > 0, resolve < 1. This means that we want to alert on values # of 1 or more, and resolve on values of 0 or less. This is valid, but # without modifying the values, this boundary case will fail. if trigger["threshold_type"] == AlertRuleThresholdType.ABOVE.value: alert_op, alert_add, resolve_add = operator.lt, 1, -1 else: alert_op, alert_add, resolve_add = operator.gt, -1, 1 if alert_op( trigger["alert_threshold"] + alert_add, trigger["resolve_threshold"] + resolve_add ): raise serializers.ValidationError( "{} alert threshold must be above resolution threshold".format(trigger["label"]) ) def _validate_critical_warning_triggers(self, critical, warning): if critical["threshold_type"] == AlertRuleThresholdType.ABOVE.value: alert_op = operator.lt threshold_type = "above" elif critical["threshold_type"] == AlertRuleThresholdType.BELOW.value: alert_op = operator.gt threshold_type = "below" if alert_op(critical["alert_threshold"], warning["alert_threshold"]): raise serializers.ValidationError( "Critical trigger must have an alert threshold {} warning trigger".format( threshold_type ) ) elif alert_op(critical["resolve_threshold"], warning["resolve_threshold"]): raise serializers.ValidationError( "Critical trigger must have a resolution threshold {} (or equal to) " "warning trigger".format(threshold_type) ) def create(self, validated_data): try: with transaction.atomic(): triggers = validated_data.pop("triggers") alert_rule = create_alert_rule( organization=self.context["organization"], **validated_data ) self._handle_triggers(alert_rule, triggers) return alert_rule except AlertRuleNameAlreadyUsedError: raise serializers.ValidationError("This name is already in use for this project") def update(self, instance, validated_data): triggers = validated_data.pop("triggers") if "id" in validated_data: validated_data.pop("id") try: with transaction.atomic(): alert_rule = update_alert_rule(instance, **validated_data) self._handle_triggers(alert_rule, triggers) return alert_rule except AlertRuleNameAlreadyUsedError: raise serializers.ValidationError("This name is already in use for this project") def _handle_triggers(self, alert_rule, triggers): if triggers is not None: # Delete triggers we don't have present in the incoming data trigger_ids = [x["id"] for x in triggers if "id" in x] triggers_to_delete = AlertRuleTrigger.objects.filter(alert_rule=alert_rule).exclude( id__in=trigger_ids ) for trigger in triggers_to_delete: delete_alert_rule_trigger(trigger) for trigger_data in triggers: if "id" in trigger_data: trigger_instance = AlertRuleTrigger.objects.get( alert_rule=alert_rule, id=trigger_data["id"] ) else: trigger_instance = None trigger_serializer = AlertRuleTriggerSerializer( context={ "alert_rule": alert_rule, "organization": self.context["organization"], "access": self.context["access"], }, instance=trigger_instance, data=trigger_data, ) if trigger_serializer.is_valid(): trigger_serializer.save() else: raise serializers.ValidationError(trigger_serializer.errors)
python
18,588
# Copyright (C) 2018 Garth N. Wells # # SPDX-License-Identifier: MIT from floodsystem.stationdata import build_station_list def run(): """Requirements for Task 1A""" # Build list of stations stations = build_station_list() # Print number of stations print("Number of stations: {}".format(len(stations))) # Display data from 3 stations: for station in stations: if station.name in [ 'Bourton Dickler', 'Surfleet Sluice', 'Gaw Bridge' ]: print(station) if __name__ == "__main__": print("*** Task 1A: CUED Part IA Flood Warning System ***") run()
python
631
# Generated by Django 3.1.7 on 2021-04-04 18:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('records', '0019_auto_20210401_1524'), ] operations = [ migrations.AddField( model_name='animalhealth', name='food_refused', field=models.BooleanField(default=False), ), migrations.AddField( model_name='animalhealth', name='shed', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='animalhealth', name='food_regurgitated', field=models.BooleanField(default=False), ), ]
python
730
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, division import unittest import numpy as np import pytest from pytest import approx import allel from allel.test.tools import assert_array_equal as aeq, assert_array_almost_equal from allel.util import ignore_invalid from allel import GenotypeArray, HaplotypeArray, SortedIndex, AlleleCountsArray class TestWindowUtilities(unittest.TestCase): def test_moving_statistic(self): f = allel.moving_statistic values = [2, 5, 8, 16] expect = [7, 24] actual = f(values, statistic=np.sum, size=2) aeq(expect, actual) values = [2, 5, 8, 16] expect = [7, 13, 24] actual = f(values, statistic=np.sum, size=2, step=1) aeq(expect, actual) def test_windowed_statistic(self): f = allel.windowed_statistic pos = [1, 12, 15, 27] # boolean array, all true b = [True, True, True, True] expected_nnz = [1, 2, 1] expected_windows = [[1, 10], [11, 20], [21, 27]] expected_counts = [1, 2, 1] actual_nnz, actual_windows, actual_counts = \ f(pos, b, np.count_nonzero, 10) aeq(expected_nnz, actual_nnz) aeq(expected_windows, actual_windows) aeq(expected_counts, actual_counts) # boolean array, not all true b = [False, True, False, True] expected_nnz = [0, 1, 1] expected_windows = [[1, 10], [11, 20], [21, 27]] expected_counts = [1, 2, 1] actual_nnz, actual_windows, actual_counts = \ f(pos, b, np.count_nonzero, 10) aeq(expected_windows, actual_windows) aeq(expected_nnz, actual_nnz) aeq(expected_counts, actual_counts) # explicit start and stop b = [False, True, False, True] expected_nnz = [1, 0, 1] expected_windows = [[5, 14], [15, 24], [25, 29]] expected_counts = [1, 1, 1] actual_nnz, actual_windows, actual_counts = \ f(pos, b, np.count_nonzero, 10, start=5, stop=29) aeq(expected_windows, actual_windows) aeq(expected_nnz, actual_nnz) aeq(expected_counts, actual_counts) # boolean array, bad length b = [False, True, False] with pytest.raises(ValueError): f(pos, b, np.count_nonzero, 10) # 2D, 4 variants, 2 samples b = [[True, False], [True, True], [True, False], [True, True]] expected_nnz = [[1, 0], [2, 1], [1, 1]] expected_windows = [[1, 10], [11, 20], [21, 27]] expected_counts = [1, 2, 1] actual_nnz, actual_windows, actual_counts = \ f(pos, b, statistic=lambda x: np.sum(x, axis=0), size=10) aeq(expected_nnz, actual_nnz) aeq(expected_windows, actual_windows) aeq(expected_counts, actual_counts) def test_per_base(self): pos = [1, 12, 15, 27] # boolean array, all true b = [True, True, True, True] # N.B., final bin includes right edge expected_nnz = [1, 2, 1] expected_windows = [[1, 10], [11, 20], [21, 27]] expected_counts = [1, 2, 1] expected_densities = [1/10, 2/10, 1/7] expected_n_bases = [10, 10, 7] nnz, windows, counts = allel.windowed_statistic( pos, b, statistic=np.count_nonzero, size=10, start=1 ) densities, n_bases = allel.per_base(nnz, windows) aeq(expected_nnz, nnz) aeq(expected_windows, windows) aeq(expected_counts, counts) aeq(expected_densities, densities) aeq(expected_n_bases, n_bases) # boolean array, not all true b = [False, True, False, True] expected_densities = [0/10, 1/10, 1/7] expected_n_bases = [10, 10, 7] nnz, windows, counts = allel.windowed_statistic( pos, b, statistic=np.count_nonzero, size=10, start=1 ) densities, n_bases = allel.per_base(nnz, windows) aeq(expected_densities, densities) aeq(expected_n_bases, n_bases) # 2D, 4 variants, 2 samples b = [[True, False], [True, True], [True, False], [True, True]] expected_densities = [[1/10, 0/10], [2/10, 1/10], [1/7, 1/7]] expected_n_bases = [10, 10, 7] nnz, windows, counts = allel.windowed_statistic( pos, b, statistic=lambda x: np.sum(x, axis=0), size=10, start=1 ) densities, n_bases = allel.per_base(nnz, windows) aeq(expected_densities, densities) aeq(expected_n_bases, n_bases) # include is_accessible array option is_accessible = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=bool) b = [False, True, False, True] expected_densities = [-1, 1/6, 1/7] expected_n_bases = [0, 6, 7] nnz, windows, counts = allel.windowed_statistic( pos, b, statistic=np.count_nonzero, size=10, start=1 ) densities, n_bases = allel.per_base(nnz, windows, is_accessible=is_accessible, fill=-1) aeq(expected_densities, densities) aeq(expected_n_bases, n_bases) def test_equally_accessible_windows(self): is_accessible = np.array([1, 0, 0, 1, 1, 0, 1, 0, 1]) # default options actual = allel.equally_accessible_windows(is_accessible, size=2) expect = np.array([[1, 4], [5, 7]]) aeq(expect, actual) # with step actual = allel.equally_accessible_windows(is_accessible, size=2, step=1) expect = np.array([[1, 4], [4, 5], [5, 7], [7, 9]]) aeq(expect, actual) # with start and stop actual = allel.equally_accessible_windows(is_accessible, size=2, start=4, stop=5) expect = np.array([[4, 5]]) aeq(expect, actual) class TestDiversityDivergence(unittest.TestCase): def test_mean_pairwise_diversity(self): # start with simplest case, two haplotypes, one pairwise comparison h = HaplotypeArray([[0, 0], [1, 1], [0, 1], [1, 2], [0, -1], [-1, -1]]) ac = h.count_alleles() expect = [0, 0, 1, 1, -1, -1] actual = allel.mean_pairwise_difference(ac, fill=-1) aeq(expect, actual) # four haplotypes, 6 pairwise comparison h = HaplotypeArray([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 2], [0, 1, 1, 2], [0, 1, -1, -1], [-1, -1, -1, -1]]) ac = h.count_alleles() expect = [0, 3/6, 4/6, 3/6, 0, 5/6, 5/6, 1, -1] actual = allel.mean_pairwise_difference(ac, fill=-1) assert_array_almost_equal(expect, actual) def test_sequence_divergence(self): from allel import sequence_divergence pos = [2, 4, 8] ac1 = AlleleCountsArray([[2, 0], [2, 0], [2, 0]]) ac2 = AlleleCountsArray([[0, 2], [0, 2], [0, 2]]) # all variants e = 3 / 7 a = sequence_divergence(pos, ac1, ac2) assert e == a # start/stop e = 2 / 6 a = sequence_divergence(pos, ac1, ac2, start=0, stop=5) assert e == a # start/stop, an provided an1 = ac1.sum(axis=1) an2 = ac2.sum(axis=1) e = 2 / 6 a = sequence_divergence(pos, ac1, ac2, start=0, stop=5, an1=an1, an2=an2) assert e == a def test_windowed_diversity(self): # four haplotypes, 6 pairwise comparison h = HaplotypeArray([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 2], [0, 1, 1, 2], [0, 1, -1, -1], [-1, -1, -1, -1]]) ac = h.count_alleles() # mean pairwise diversity # expect = [0, 3/6, 4/6, 3/6, 0, 5/6, 5/6, 1, -1] pos = SortedIndex([2, 4, 7, 14, 15, 18, 19, 25, 27]) expect = [(7/6)/10, (13/6)/10, 1/11] actual, _, _, _ = allel.windowed_diversity(pos, ac, size=10, start=1, stop=31) assert_array_almost_equal(expect, actual) def test_mean_pairwise_divergence(self): # simplest case, two haplotypes in each population h = HaplotypeArray([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 2], [0, 1, 1, 2], [0, 1, -1, -1], [-1, -1, -1, -1]]) h1 = h.take([0, 1], axis=1) h2 = h.take([2, 3], axis=1) ac1 = h1.count_alleles() ac2 = h2.count_alleles() expect = [0/4, 2/4, 4/4, 2/4, 0/4, 4/4, 3/4, -1, -1] actual = allel.mean_pairwise_difference_between(ac1, ac2, fill=-1) aeq(expect, actual) def test_windowed_divergence(self): # simplest case, two haplotypes in each population h = HaplotypeArray([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 2], [0, 1, 1, 2], [0, 1, -1, -1], [-1, -1, -1, -1]]) h1 = h.take([0, 1], axis=1) h2 = h.take([2, 3], axis=1) ac1 = h1.count_alleles() ac2 = h2.count_alleles() # mean pairwise divergence # expect = [0/4, 2/4, 4/4, 2/4, 0/4, 4/4, 3/4, -1, -1] pos = SortedIndex([2, 4, 7, 14, 15, 18, 19, 25, 27]) expect = [(6/4)/10, (9/4)/10, 0/11] actual, _, _, _ = allel.windowed_divergence( pos, ac1, ac2, size=10, start=1, stop=31 ) assert_array_almost_equal(expect, actual) def test_tajima_d(self): from allel import tajima_d # example with calculable value ac = AlleleCountsArray([[1, 3], [2, 2], [3, 1]]) expect = approx(0.168, 0.01) actual = tajima_d(ac) assert expect == actual # too few sites ac = AlleleCountsArray([[2, 2], [3, 1]]) assert np.nan is tajima_d(ac) # too few segregating sites ac = AlleleCountsArray([[4, 0], [2, 2], [3, 1]]) assert np.nan is tajima_d(ac) # allow people to override if they really want to assert approx(0.592, 0.01) == tajima_d(ac, min_sites=2) def test_moving_tajima_d(self): from allel import moving_tajima_d # example with calculable value ac = AlleleCountsArray([[1, 3], [2, 2], [3, 1], [1, 3], [2, 2]]) expect = np.array([0.168] * 3) actual = moving_tajima_d(ac, size=3, step=1) assert_array_almost_equal(expect, actual, decimal=3) # too few sites actual = moving_tajima_d(ac, size=2, step=1) assert 4 == len(actual) assert np.all(np.isnan(actual)) # too few segregating sites ac = AlleleCountsArray([[4, 0], [2, 2], [3, 1], [4, 0], [2, 2]]) actual = moving_tajima_d(ac, size=3, step=1) assert 3 == len(actual) assert np.all(np.isnan(actual)) # allow people to override if they really want to expect = np.array([0.592] * 3) actual = moving_tajima_d(ac, size=3, step=1, min_sites=2) assert_array_almost_equal(expect, actual, decimal=3) def test_windowed_tajima_d(self): from allel import windowed_tajima_d pos = np.array([1, 11, 21, 31, 41]) # example with calculable value ac = AlleleCountsArray([[1, 3], [2, 2], [3, 1], [1, 3], [2, 2]]) expect = np.array([0.168] * 3) actual, _, _ = windowed_tajima_d(pos, ac, size=25, step=10) assert_array_almost_equal(expect, actual, decimal=3) # too few sites actual, _, _ = windowed_tajima_d(pos, ac, size=15, step=10) assert 4 == len(actual) assert np.all(np.isnan(actual)) # too few segregating sites ac = AlleleCountsArray([[4, 0], [2, 2], [3, 1], [4, 0], [2, 2]]) actual, _, _ = windowed_tajima_d(pos, ac, size=25, step=10) assert 3 == len(actual) assert np.all(np.isnan(actual)) # allow people to override if they really want to expect = np.array([0.592] * 3) actual, _, _ = windowed_tajima_d(pos, ac, size=25, step=10, min_sites=2) assert_array_almost_equal(expect, actual, decimal=3) class TestHardyWeinberg(unittest.TestCase): def test_heterozygosity_observed(self): # diploid g = GenotypeArray([[[0, 0], [0, 0]], [[1, 1], [1, 1]], [[1, 1], [2, 2]], [[0, 0], [0, 1]], [[0, 0], [0, 2]], [[1, 1], [1, 2]], [[0, 1], [0, 1]], [[0, 1], [1, 2]], [[0, 0], [-1, -1]], [[0, 1], [-1, -1]], [[-1, -1], [-1, -1]]], dtype='i1') expect = [0, 0, 0, .5, .5, .5, 1, 1, 0, 1, -1] actual = allel.heterozygosity_observed(g, fill=-1) aeq(expect, actual) # polyploid g = GenotypeArray([[[0, 0, 0], [0, 0, 0]], [[1, 1, 1], [1, 1, 1]], [[1, 1, 1], [2, 2, 2]], [[0, 0, 0], [0, 0, 1]], [[0, 0, 0], [0, 0, 2]], [[1, 1, 1], [0, 1, 2]], [[0, 0, 1], [0, 1, 1]], [[0, 1, 1], [0, 1, 2]], [[0, 0, 0], [-1, -1, -1]], [[0, 0, 1], [-1, -1, -1]], [[-1, -1, -1], [-1, -1, -1]]], dtype='i1') expect = [0, 0, 0, .5, .5, .5, 1, 1, 0, 1, -1] actual = allel.heterozygosity_observed(g, fill=-1) aeq(expect, actual) def test_heterozygosity_expected(self): def refimpl(f, ploidy, fill=0): """Limited reference implementation for testing purposes.""" # check allele frequencies sum to 1 af_sum = np.sum(f, axis=1) # assume three alleles p = f[:, 0] q = f[:, 1] r = f[:, 2] out = 1 - p**ploidy - q**ploidy - r**ploidy with ignore_invalid(): out[(af_sum < 1) | np.isnan(af_sum)] = fill return out # diploid g = GenotypeArray([[[0, 0], [0, 0]], [[1, 1], [1, 1]], [[1, 1], [2, 2]], [[0, 0], [0, 1]], [[0, 0], [0, 2]], [[1, 1], [1, 2]], [[0, 1], [0, 1]], [[0, 1], [1, 2]], [[0, 0], [-1, -1]], [[0, 1], [-1, -1]], [[-1, -1], [-1, -1]]], dtype='i1') expect1 = [0, 0, 0.5, .375, .375, .375, .5, .625, 0, .5, -1] af = g.count_alleles().to_frequencies() expect2 = refimpl(af, ploidy=g.ploidy, fill=-1) actual = allel.heterozygosity_expected(af, ploidy=g.ploidy, fill=-1) assert_array_almost_equal(expect1, actual) assert_array_almost_equal(expect2, actual) expect3 = [0, 0, 0.5, .375, .375, .375, .5, .625, 0, .5, 0] actual = allel.heterozygosity_expected(af, ploidy=g.ploidy, fill=0) assert_array_almost_equal(expect3, actual) # polyploid g = GenotypeArray([[[0, 0, 0], [0, 0, 0]], [[1, 1, 1], [1, 1, 1]], [[1, 1, 1], [2, 2, 2]], [[0, 0, 0], [0, 0, 1]], [[0, 0, 0], [0, 0, 2]], [[1, 1, 1], [0, 1, 2]], [[0, 0, 1], [0, 1, 1]], [[0, 1, 1], [0, 1, 2]], [[0, 0, 0], [-1, -1, -1]], [[0, 0, 1], [-1, -1, -1]], [[-1, -1, -1], [-1, -1, -1]]], dtype='i1') af = g.count_alleles().to_frequencies() expect = refimpl(af, ploidy=g.ploidy, fill=-1) actual = allel.heterozygosity_expected(af, ploidy=g.ploidy, fill=-1) assert_array_almost_equal(expect, actual) def test_inbreeding_coefficient(self): # diploid g = GenotypeArray([[[0, 0], [0, 0]], [[1, 1], [1, 1]], [[1, 1], [2, 2]], [[0, 0], [0, 1]], [[0, 0], [0, 2]], [[1, 1], [1, 2]], [[0, 1], [0, 1]], [[0, 1], [1, 2]], [[0, 0], [-1, -1]], [[0, 1], [-1, -1]], [[-1, -1], [-1, -1]]], dtype='i1') # ho = np.array([0, 0, 0, .5, .5, .5, 1, 1, 0, 1, -1]) # he = np.array([0, 0, 0.5, .375, .375, .375, .5, .625, 0, .5, -1]) # expect = 1 - (ho/he) expect = [-1, -1, 1-0, 1-(.5/.375), 1-(.5/.375), 1-(.5/.375), 1-(1/.5), 1-(1/.625), -1, 1-(1/.5), -1] actual = allel.inbreeding_coefficient(g, fill=-1) assert_array_almost_equal(expect, actual) class TestDistance(unittest.TestCase): def test_pdist(self): from allel.stats.distance import pdist h = HaplotypeArray([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 2], [0, 1, 1, 2], [0, 1, -1, -1], [-1, -1, -1, -1]]) import scipy.spatial d1 = scipy.spatial.distance.pdist(h.T, 'hamming') d2 = pdist(h, 'hamming') aeq(d1, d2) def test_pairwise_distance_multidim(self): g = GenotypeArray([[[0, 0], [0, 0]], [[1, 1], [1, 1]], [[1, 1], [2, 2]], [[0, 0], [0, 1]], [[0, 0], [0, 2]], [[1, 1], [1, 2]], [[0, 1], [0, 1]], [[0, 1], [1, 2]], [[0, 0], [-1, -1]], [[0, 1], [-1, -1]], [[-1, -1], [-1, -1]]], dtype='i1') gac = g.to_allele_counts() def metric(ac1, ac2): mpd = allel.mean_pairwise_difference_between(ac1, ac2, fill=0) return mpd.sum() expect = [allel.mean_pairwise_difference_between(gac[:, 0], gac[:, 1], fill=0).sum()] actual = allel.pairwise_distance(gac, metric) aeq(expect, actual) def test_condensed_coords(self): from allel import condensed_coords assert 0 == condensed_coords(0, 1, 2) assert 0 == condensed_coords(1, 0, 2) assert 0 == condensed_coords(0, 1, 3) assert 0 == condensed_coords(1, 0, 3) assert 1 == condensed_coords(0, 2, 3) assert 1 == condensed_coords(2, 0, 3) assert 2 == condensed_coords(1, 2, 3) assert 2 == condensed_coords(2, 1, 3) with pytest.raises(ValueError): condensed_coords(0, 0, 1) condensed_coords(0, 1, 1) condensed_coords(1, 0, 1) condensed_coords(0, 0, 2) condensed_coords(0, 2, 2) condensed_coords(2, 0, 2) condensed_coords(1, 1, 2) condensed_coords(0, 0, 3) condensed_coords(1, 1, 3) condensed_coords(2, 2, 3) def test_condensed_coords_within(self): from allel import condensed_coords_within pop = [0, 1] n = 3 expect = [0] actual = condensed_coords_within(pop, n) assert expect == actual pop = [0, 2] n = 3 expect = [1] actual = condensed_coords_within(pop, n) assert expect == actual pop = [1, 2] n = 3 expect = [2] actual = condensed_coords_within(pop, n) assert expect == actual pop = [0, 1, 3] n = 4 expect = [0, 2, 4] actual = condensed_coords_within(pop, n) assert expect == actual pop = [0, 0] with pytest.raises(ValueError): condensed_coords_within(pop, n) def test_condensed_coords_between(self): from allel import condensed_coords_between pop1 = [0, 1] pop2 = [2, 3] n = 4 expect = [1, 2, 3, 4] actual = condensed_coords_between(pop1, pop2, n) assert expect == actual pop1 = [0, 2] pop2 = [1, 3] n = 4 expect = [0, 2, 3, 5] actual = condensed_coords_between(pop1, pop2, n) assert expect == actual with pytest.raises(ValueError): condensed_coords_between(pop1, pop1, n) class TestLinkageDisequilibrium(unittest.TestCase): def test_rogers_huff_r(self): gn = [[0, 1, 2], [0, 1, 2]] expect = 1. actual = allel.rogers_huff_r(gn) assert expect == actual gn = [[0, 1, 2], [2, 1, 0]] expect = -1. actual = allel.rogers_huff_r(gn) assert expect == actual gn = [[0, 0, 0], [0, 0, 0]] actual = allel.rogers_huff_r(gn) assert np.isnan(actual) gn = [[0, 0, 0], [1, 1, 1]] actual = allel.rogers_huff_r(gn) assert np.isnan(actual) gn = [[1, 1, 1], [1, 1, 1]] actual = allel.rogers_huff_r(gn) assert np.isnan(actual) gn = [[0, -1, 0], [-1, 1, -1]] actual = allel.rogers_huff_r(gn) assert np.isnan(actual) gn = [[0, 1, 0], [-1, -1, -1]] actual = allel.rogers_huff_r(gn) assert np.isnan(actual) gn = [[0, 1, 0, 1], [0, 1, 1, 0]] expect = 0 actual = allel.rogers_huff_r(gn) assert expect == actual gn = [[0, 1, 2, -1], [0, 1, 2, 2]] expect = 1. actual = allel.rogers_huff_r(gn) assert expect == actual gn = [[0, 1, 2, 2], [0, 1, 2, -1]] expect = 1. actual = allel.rogers_huff_r(gn) assert expect == actual gn = [[0, 1, 2], [0, 1, -1]] expect = 1. actual = allel.rogers_huff_r(gn) assert expect == actual gn = [[0, 2], [2, 0], [0, 1]] expect = [-1, 1, -1] actual = allel.rogers_huff_r(gn) assert_array_almost_equal(expect, actual) gn = [[0, 2, 0], [0, 2, 0], [2, 0, 2], [0, 2, -1]] expect = [1, -1, 1, -1, 1, -1] actual = allel.rogers_huff_r(gn) assert_array_almost_equal(expect, actual) def test_rogers_huff_r_between(self): gna = [[0, 1, 2]] gnb = [[0, 1, 2]] expect = 1. actual = allel.rogers_huff_r_between(gna, gnb) assert expect == actual gna = [[0, 1, 2]] gnb = [[2, 1, 0]] expect = -1. actual = allel.rogers_huff_r_between(gna, gnb) assert expect == actual gna = [[0, 0, 0]] gnb = [[1, 1, 1]] actual = allel.rogers_huff_r_between(gna, gnb) assert np.isnan(actual) def test_locate_unlinked(self): gn = [[0, 1, 2], [0, 1, 2]] expect = [True, False] actual = allel.locate_unlinked(gn, size=2, step=2, threshold=.5) aeq(expect, actual) gn = [[0, 1, 1, 2], [0, 1, 1, 2], [1, 1, 0, 2], [1, 1, 0, 2]] actual = allel.locate_unlinked(gn, size=2, step=1, threshold=.5) expect = [True, False, True, False] aeq(expect, actual) gn = [[0, 1, 1, 2], [0, 1, 1, 2], [0, 1, 1, 2], [1, 1, 0, 2], [1, 1, 0, 2]] actual = allel.locate_unlinked(gn, size=2, step=1, threshold=.5) expect = [True, False, True, True, False] aeq(expect, actual) actual = allel.locate_unlinked(gn, size=3, step=1, threshold=.5) expect = [True, False, False, True, False] aeq(expect, actual) # test with bcolz carray import bcolz gnz = bcolz.carray(gn, chunklen=2) actual = allel.locate_unlinked(gnz, size=2, step=1, threshold=.5, blen=2) expect = [True, False, True, True, False] aeq(expect, actual) class TestAdmixture(unittest.TestCase): def test_patterson_f2(self): aca = [[0, 2], [2, 0], [1, 1], [0, 0]] acb = [[0, 2], [0, 2], [0, 2], [0, 2]] expect = [0., 1., 0., np.nan] actual = allel.patterson_f2(aca, acb) assert_array_almost_equal(expect, actual) def test_patterson_f3(self): aca = [[0, 2], [2, 0], [0, 2], [0, 2], [0, 0]] acb = [[2, 0], [0, 2], [0, 2], [0, 2], [0, 2]] acc = [[1, 1], [1, 1], [0, 2], [2, 0], [1, 1]] expect_f3 = [-.5, -.5, 0., 1., np.nan] actual_f3, actual_hzc = allel.patterson_f3(acc, aca, acb) assert_array_almost_equal(expect_f3, actual_f3) expect_hzc = [1., 1., 0., 0., 1.] assert_array_almost_equal(expect_hzc, actual_hzc) def test_patterson_d(self): aca = [[0, 2], [2, 0], [2, 0], [1, 1], [0, 0]] acb = [[0, 2], [0, 2], [0, 2], [1, 1], [0, 2]] acc = [[2, 0], [2, 0], [0, 2], [1, 1], [0, 2]] acd = [[2, 0], [0, 2], [2, 0], [1, 1], [0, 2]] num, den = allel.patterson_d(aca, acb, acc, acd) expect_num = [0., 1., -1., 0., np.nan] expect_den = [0., 1., 1., 0.25, np.nan] assert_array_almost_equal(expect_num, num) assert_array_almost_equal(expect_den, den)
python
28,231
#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test Hierarchical Deterministic wallet function.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( start_nodes, start_node, assert_equal, connect_nodes_bi, ) import os import shutil class WalletHDTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 2 self.node_args = [['-usehd=0'], ['-usehd=1', '-keypool=0']] def setup_network(self): self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, self.node_args) self.is_network_split = False connect_nodes_bi(self.nodes, 0, 1) def run_test (self): tmpdir = self.options.tmpdir # Make sure we use hd, keep masterkeyid masterkeyid = self.nodes[1].getwalletinfo()['hdmasterkeyid'] assert_equal(len(masterkeyid), 40) # Import a non-HD private key in the HD wallet non_hd_add = self.nodes[0].getnewaddress() self.nodes[1].importprivkey(self.nodes[0].dumpprivkey(non_hd_add)) # This should be enough to keep the master key and the non-HD key self.nodes[1].backupwallet(tmpdir + "/hd.bak") #self.nodes[1].dumpwallet(tmpdir + "/hd.dump") # Derive some HD addresses and remember the last # Also send funds to each add self.nodes[0].generate(101) hd_add = None num_hd_adds = 300 for i in range(num_hd_adds): hd_add = self.nodes[1].getnewaddress() hd_info = self.nodes[1].validateaddress(hd_add) assert_equal(hd_info["hdkeypath"], "m/0'/0'/"+str(i+1)+"'") assert_equal(hd_info["hdmasterkeyid"], masterkeyid) self.nodes[0].sendtoaddress(hd_add, 1) self.nodes[0].generate(1) self.nodes[0].sendtoaddress(non_hd_add, 1) self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[1].getbalance(), num_hd_adds + 1) print("Restore backup ...") self.stop_node(1) os.remove(self.options.tmpdir + "/node1/regtest/wallet.dat") shutil.copyfile(tmpdir + "/hd.bak", tmpdir + "/node1/regtest/wallet.dat") self.nodes[1] = start_node(1, self.options.tmpdir, self.node_args[1]) #connect_nodes_bi(self.nodes, 0, 1) # Assert that derivation is deterministic hd_add_2 = None for _ in range(num_hd_adds): hd_add_2 = self.nodes[1].getnewaddress() hd_info_2 = self.nodes[1].validateaddress(hd_add_2) assert_equal(hd_info_2["hdkeypath"], "m/0'/0'/"+str(_+1)+"'") assert_equal(hd_info_2["hdmasterkeyid"], masterkeyid) assert_equal(hd_add, hd_add_2) # Needs rescan self.stop_node(1) self.nodes[1] = start_node(1, self.options.tmpdir, self.node_args[1] + ['-rescan']) #connect_nodes_bi(self.nodes, 0, 1) assert_equal(self.nodes[1].getbalance(), num_hd_adds + 1) if __name__ == '__main__': WalletHDTest().main ()
python
3,260
# -*- coding: utf-8 -*- import scrapy class GithubSpider(scrapy.Spider): name = 'github' allowed_domains = ['github.com'] start_urls = [] def parse(self, response): url = response.request.url.replace("https://github.com/", "") if len(response.css("#raw-url")): pieces = response.request.url.split('/') extensions_file_url = pieces[-1].split('.')[-1] quantity_lines = response.\ css("div.file-info::text").\ re_first(r"(\d+) lines") size_file, unit = response.\ css("div.file-info::text").\ re(r"(\d+\.*\d*)+ (Bytes|KB|MB)") yield { 'url': url, 'qty_lines': quantity_lines or 0, 'size_files': size_file, 'unit': unit, 'is_file': 1, 'extensions_file_url': extensions_file_url } else: yield { 'url': url, 'qty_lines': 0, 'size_files': 0, 'unit': '-', 'is_file': 0, 'extensions_file_url': '-' } seletor_link = 'table.files.js-navigation-container tbody' \ ' tr.js-navigation-item td.content a' for a in response.css(seletor_link): yield response.follow(a, callback=self.parse) if response.url in self.start_urls and self.scrapy_branches: seletor_branch = 'a.select-menu-item.js-navigation-item' \ '.js-navigation-open' for a in response.css(seletor_branch): if a.re_first(r'data-name="(\w+-\w+)+"') != "master": yield response.follow(a, callback=self.parse)
python
1,782
from database import * from emulator import * import tensorflow as tf import numpy as np import time from ale_python_interface import ALEInterface import cv2 from scipy import misc import gc #garbage collector import _thread gc.enable() params = { 'visualize' : True, 'network_type':'nature', 'ckpt_file':None, 'steps_per_epoch': 50000, 'num_epochs': 100, 'eval_freq':50000, 'steps_per_eval':10000, 'copy_freq' : 10000, 'disp_freq':10000, 'save_interval':10000, 'db_size': 1000000, 'batch': 32, 'num_act': 0, 'input_dims' : [210, 160, 3], 'input_dims_proc' : [84, 84, 4], 'learning_interval': 1, 'eps': 1.0, 'eps_step':1000000, 'eps_min' : 0.1, 'eps_eval' : 0.05, 'discount': 0.95, 'lr': 0.0002, 'rms_decay':0.99, 'rms_eps':1e-6, 'train_start':100, 'img_scale':255.0, 'clip_delta' : 1, 'gpu_fraction' : 0.6, 'batch_accumulator':'mean', 'record_eval' : True, 'only_eval' : 'n' } class deep_atari: def __init__(self,params): print ('Initializing Module...') self.params = params self.gpu_config = tf.ConfigProto(gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=self.params['gpu_fraction'])) self.sess = tf.Session(config=self.gpu_config) self.DB = database(self.params) self.engine = emulator(rom_name='breakout.bin', vis=self.params['visualize'],windowname=self.params['network_type']+'_preview') self.params['num_act'] = len(self.engine.legal_actions) self.build_net() self.training = True def build_net(self): print ('Building QNet and targetnet...') self.qnet = DQN(self.params,'qnet') self.targetnet = DQN(self.params,'targetnet') self.sess.run(tf.initialize_all_variables()) saver_dict = {'qw1':self.qnet.w1,'qb1':self.qnet.b1, 'qw2':self.qnet.w2,'qb2':self.qnet.b2, 'qw3':self.qnet.w3,'qb3':self.qnet.b3, 'qw4':self.qnet.w4,'qb4':self.qnet.b4, 'qw5':self.qnet.w5,'qb5':self.qnet.b5, 'tw1':self.targetnet.w1,'tb1':self.targetnet.b1, 'tw2':self.targetnet.w2,'tb2':self.targetnet.b2, 'tw3':self.targetnet.w3,'tb3':self.targetnet.b3, 'tw4':self.targetnet.w4,'tb4':self.targetnet.b4, 'tw5':self.targetnet.w5,'tb5':self.targetnet.b5, 'step':self.qnet.global_step} self.saver = tf.train.Saver(saver_dict) #self.saver = tf.train.Saver() self.cp_ops = [ self.targetnet.w1.assign(self.qnet.w1),self.targetnet.b1.assign(self.qnet.b1), self.targetnet.w2.assign(self.qnet.w2),self.targetnet.b2.assign(self.qnet.b2), self.targetnet.w3.assign(self.qnet.w3),self.targetnet.b3.assign(self.qnet.b3), self.targetnet.w4.assign(self.qnet.w4),self.targetnet.b4.assign(self.qnet.b4), self.targetnet.w5.assign(self.qnet.w5),self.targetnet.b5.assign(self.qnet.b5)] self.sess.run(self.cp_ops) if self.params['ckpt_file'] is not None: print ('loading checkpoint : ' + self.params['ckpt_file']) self.saver.restore(self.sess,self.params['ckpt_file']) temp_train_cnt = self.sess.run(self.qnet.global_step) temp_step = temp_train_cnt * self.params['learning_interval'] print ('Continue from') print (' -> Steps : ' + str(temp_step)) print (' -> Minibatch update : ' + str(temp_train_cnt)) def start(self): self.reset_game() self.step = 0 self.reset_statistics('all') self.train_cnt = self.sess.run(self.qnet.global_step) if self.train_cnt > 0 : self.step = self.train_cnt * self.params['learning_interval'] try: self.log_train = open('log_training_'+self.params['network_type']+'.csv','a') except: self.log_train = open('log_training_'+self.params['network_type']+'.csv','w') self.log_train.write('step,epoch,train_cnt,avg_reward,avg_q,epsilon,time\n') try: self.log_eval = open('log_eval_'+self.params['network_type']+'.csv','a') except: self.log_eval = open('log_eval_'+self.params['network_type']+'.csv','w') self.log_eval.write('step,epoch,train_cnt,avg_reward,avg_q,epsilon,time\n') else: self.log_train = open('log_training_'+self.params['network_type']+'.csv','w') self.log_train.write('step,epoch,train_cnt,avg_reward,avg_q,epsilon,time\n') self.log_eval = open('log_eval_'+self.params['network_type']+'.csv','w') self.log_eval.write('step,epoch,train_cnt,avg_reward,avg_q,epsilon,time\n') self.s = time.time() print (self.params) print ('Start training!') print ('Collecting replay memory for ' + str(self.params['train_start']) + ' steps') while self.step < (self.params['steps_per_epoch'] * self.params['num_epochs'] * self.params['learning_interval'] + self.params['train_start']): if self.training : if self.DB.get_size() >= self.params['train_start'] : self.step += 1 ; self.steps_train += 1 else : self.step_eval += 1 if self.state_gray_old is not None and self.training: self.DB.insert(self.state_gray_old[26:110,:],self.reward_scaled,self.action_idx,self.terminal) if self.training and self.params['copy_freq'] > 0 and self.step % self.params['copy_freq'] == 0 and self.DB.get_size() > self.params['train_start']: print ('&&& Copying Qnet to targetnet\n') self.sess.run(self.cp_ops) if self.training and self.step % self.params['learning_interval'] == 0 and self.DB.get_size() > self.params['train_start'] : bat_s,bat_a,bat_t,bat_n,bat_r = self.DB.get_batches() bat_a = self.get_onehot(bat_a) if self.params['copy_freq'] > 0 : feed_dict={self.targetnet.x: bat_n} q_t = self.sess.run(self.targetnet.y,feed_dict=feed_dict) else: feed_dict={self.qnet.x: bat_n} q_t = self.sess.run(self.qnet.y,feed_dict=feed_dict) q_t = np.amax(q_t,axis=1) feed_dict={self.qnet.x: bat_s, self.qnet.q_t: q_t, self.qnet.actions: bat_a, self.qnet.terminals:bat_t, self.qnet.rewards: bat_r} _,self.train_cnt,self.cost = self.sess.run([self.qnet.rmsprop,self.qnet.global_step,self.qnet.cost],feed_dict=feed_dict) self.total_cost_train += np.sqrt(self.cost) self.train_cnt_for_disp += 1 if self.training : self.params['eps'] = max(self.params['eps_min'],1.0 - float(self.train_cnt * self.params['learning_interval'])/float(self.params['eps_step'])) else: self.params['eps'] = 0.05 if self.DB.get_size() > self.params['train_start'] and self.step % self.params['save_interval'] == 0 and self.training: save_idx = self.train_cnt self.saver.save(self.sess,'ckpt/model_'+self.params['network_type']+'_'+str(save_idx)) sys.stdout.write('$$$ Model saved : %s\n\n' % ('ckpt/model_'+self.params['network_type']+'_'+str(save_idx))) sys.stdout.flush() if self.training and self.step > 0 and self.step % self.params['disp_freq'] == 0 and self.DB.get_size() > self.params['train_start'] : self.write_log_train() if self.training and self.step > 0 and self.step % self.params['eval_freq'] == 0 and self.DB.get_size() > self.params['train_start'] : self.reset_game() if self.step % self.params['steps_per_epoch'] == 0 : self.reset_statistics('all') else: self.reset_statistics('eval') self.training = False #TODO : add video recording continue if self.training and self.step > 0 and self.step % self.params['steps_per_epoch'] == 0 and self.DB.get_size() > self.params['train_start']: self.reset_game() self.reset_statistics('all') #self.training = False continue if not self.training and self.step_eval >= self.params['steps_per_eval'] : self.write_log_eval() self.reset_game() self.reset_statistics('eval') self.training = True continue if self.terminal : self.reset_game() if self.training : self.num_epi_train += 1 self.total_reward_train += self.epi_reward_train self.epi_reward_train = 0 else : self.num_epi_eval += 1 self.total_reward_eval += self.epi_reward_eval self.epi_reward_eval = 0 continue self.action_idx,self.action, self.maxQ = self.select_action(self.state_proc) self.state, self.reward, self.terminal = self.engine.next(self.action) self.reward_scaled = self.reward // max(1,abs(self.reward)) if self.training : self.epi_reward_train += self.reward ; self.total_Q_train += self.maxQ else : self.epi_reward_eval += self.reward ; self.total_Q_eval += self.maxQ self.state_gray_old = np.copy(self.state_gray) self.state_proc[:,:,0:3] = self.state_proc[:,:,1:4] self.state_resized = cv2.resize(self.state,(84,110)) self.state_gray = cv2.cvtColor(self.state_resized, cv2.COLOR_BGR2GRAY) self.state_proc[:,:,3] = self.state_gray[26:110,:]/self.params['img_scale'] def reset_game(self): self.state_proc = np.zeros((84,84,4)); self.action = -1; self.terminal = False; self.reward = 0 self.state = self.engine.newGame() self.state_resized = cv2.resize(self.state,(84,110)) self.state_gray = cv2.cvtColor(self.state_resized, cv2.COLOR_BGR2GRAY) self.state_gray_old = None self.state_proc[:,:,3] = self.state_gray[26:110,:]/self.params['img_scale'] def reset_statistics(self,mode): if mode == 'all': self.epi_reward_train = 0 self.epi_Q_train = 0 self.num_epi_train = 0 self.total_reward_train = 0 self.total_Q_train = 0 self.total_cost_train = 0 self.steps_train = 0 self.train_cnt_for_disp = 0 self.step_eval = 0 self.epi_reward_eval = 0 self.epi_Q_eval = 0 self.num_epi_eval = 0 self.total_reward_eval = 0 self.total_Q_eval = 0 def write_log_train(self): sys.stdout.write('### Training (Step : %d , Minibatch update : %d , Epoch %d)\n' % (self.step,self.train_cnt,self.step//self.params['steps_per_epoch'] )) sys.stdout.write(' Num.Episodes : %d , Avg.reward : %.3f , Avg.Q : %.3f, Avg.loss : %.3f\n' % (self.num_epi_train,float(self.total_reward_train)/max(1,self.num_epi_train),float(self.total_Q_train)/max(1,self.steps_train),self.total_cost_train/max(1,self.train_cnt_for_disp))) sys.stdout.write(' Epsilon : %.3f , Elapsed time : %.1f\n\n' % (self.params['eps'],time.time()-self.s)) sys.stdout.flush() self.log_train.write(str(self.step) + ',' + str(self.step//self.params['steps_per_epoch']) + ',' + str(self.train_cnt) + ',') self.log_train.write(str(float(self.total_reward_train)/max(1,self.num_epi_train)) +','+ str(float(self.total_Q_train)/max(1,self.steps_train)) +',') self.log_train.write(str(self.params['eps']) +','+ str(time.time()-self.s) + '\n') self.log_train.flush() def write_log_eval(self): sys.stdout.write('@@@ Evaluation (Step : %d , Minibatch update : %d , Epoch %d)\n' % (self.step,self.train_cnt,self.step//self.params['steps_per_epoch'] )) sys.stdout.write(' Num.Episodes : %d , Avg.reward : %.3f , Avg.Q : %.3f\n' % (self.num_epi_eval,float(self.total_reward_eval)/max(1,self.num_epi_eval),float(self.total_Q_eval)/max(1,self.params['steps_per_eval']))) sys.stdout.write(' Epsilon : %.3f , Elapsed time : %.1f\n\n' % (self.params['eps'],time.time()-self.s)) sys.stdout.flush() self.log_eval.write(str(self.step) + ',' + str(self.step//self.params['steps_per_epoch']) + ',' + str(self.train_cnt) + ',') self.log_eval.write(str(float(self.total_reward_eval)/max(1,self.num_epi_eval)) +','+ str(float(self.total_Q_eval)/max(1,self.params['steps_per_eval'])) +',') self.log_eval.write(str(self.params['eps']) +','+ str(time.time()-self.s) + '\n') self.log_eval.flush() def select_action(self,st): if np.random.rand() > self.params['eps']: #greedy with random tie-breaking Q_pred = self.sess.run(self.qnet.y, feed_dict = {self.qnet.x: np.reshape(st, (1,84,84,4))})[0] a_winner = np.argwhere(Q_pred == np.amax(Q_pred)) if len(a_winner) > 1: act_idx = a_winner[np.random.randint(0, len(a_winner))][0] return act_idx,self.engine.legal_actions[act_idx], np.amax(Q_pred) else: act_idx = a_winner[0][0] return act_idx,self.engine.legal_actions[act_idx], np.amax(Q_pred) else: #random act_idx = np.random.randint(0,len(self.engine.legal_actions)) Q_pred = self.sess.run(self.qnet.y, feed_dict = {self.qnet.x: np.reshape(st, (1,84,84,4))})[0] return act_idx,self.engine.legal_actions[act_idx], Q_pred[act_idx] def get_onehot(self,actions): actions_onehot = np.zeros((self.params['batch'], self.params['num_act'])) actions = actions.astype(int) for i in range(self.params['batch']): actions_onehot[i,actions[i]] = 1 return actions_onehot if __name__ == "__main__": dict_items = params.items() for i in range(1,len(sys.argv),2): if sys.argv[i] == '-weight' :params['ckpt_file'] = sys.argv[i+1] elif sys.argv[i] == '-network_type' :params['network_type'] = sys.argv[i+1] elif sys.argv[i] == '-visualize' : if sys.argv[i+1] == 'y' : params['visualize'] = True elif sys.argv[i+1] == 'n' : params['visualize'] = False else: print ('Invalid visualization argument!!! Available arguments are') print (' y or n') raise ValueError() elif sys.argv[i] == '-gpu_fraction' : params['gpu_fraction'] = float(sys.argv[i+1]) elif sys.argv[i] == '-db_size' : params['db_size'] = int(sys.argv[i+1]) elif sys.argv[i] == '-only_eval' : params['only_eval'] = sys.argv[i+1] else : print ('Invalid arguments!!! Available arguments are') #print ' -weight (filename)' #print ' -network_type (nips or nature)' #print ' -visualize (y or n)' #print ' -gpu_fraction (0.1~0.9)' #print ' -db_size (integer)' raise ValueError() if params['network_type'] == 'nips': from DQN_nips import * elif params['network_type'] == 'nature': from DQN_nature import * params['steps_per_epoch']= 200000 params['eval_freq'] = 100000 params['steps_per_eval'] = 10000 params['copy_freq'] = 10000 params['disp_freq'] = 20000 params['save_interval'] = 20000 params['learning_interval'] = 1 params['discount'] = 0.99 params['lr'] = 0.00025 params['rms_decay'] = 0.95 params['rms_eps']=0.01 params['clip_delta'] = 1.0 params['train_start']=50000 params['batch_accumulator'] = 'sum' params['eps_step'] = 1000000 params['num_epochs'] = 250 params['batch'] = 32 else : print ('Invalid network type! Available network types are') #print ' nips or nature' raise ValueError() if params['only_eval'] == 'y' : only_eval = True elif params['only_eval'] == 'n' : only_eval = False else : print ('Invalid only_eval option! Available options are') #print ' y or n' raise ValueError() if only_eval: params['eval_freq'] = 1 params['train_start'] = 100 da = deep_atari(params) da.start()
python
14,411
from sqlalchemy import create_engine from sqlalchemy import Column, Integer, String from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy.sql.expression import exists # DB Table configuration BASE = declarative_base() class Pokemon(BASE): __tablename__ = 'pokemon' id = Column(Integer, primary_key=True) name = Column(String(40)) base_xp = Column(Integer) weight = Column(Integer) height = Column(Integer) image = Column(String) def __repr__(self): return "<Pokemon(name='%s', base_experience='%s', weight='%s', " \ "height='%s', sprite_url='%s'>" \ % (self.name, self.base_xp, self.weight, self.height, self.image)
python
749
import re import os import sys import six import json from future.utils import iteritems from liveconfigparser.LiveConfigParser import LiveConfigParser # get ConfigParser tmpConf = LiveConfigParser() # URL for config file if any configEnv = 'HARVESTER_INSTANCE_CONFIG_URL' if configEnv in os.environ: configURL = os.environ[configEnv] else: configURL = None # read tmpConf.read('panda_harvester.cfg', configURL) # dummy section class class _SectionClass: def __init__(self): pass # load configmap config_map_data = {} if 'PANDA_HOME' in os.environ: config_map_name = 'panda_harvester_configmap.json' config_map_path = os.path.join(os.environ['PANDA_HOME'], 'etc/configmap', config_map_name) if os.path.exists(config_map_path): with open(config_map_path) as f: config_map_data = json.load(f) # loop over all sections for tmpSection in tmpConf.sections(): # read section tmpDict = getattr(tmpConf, tmpSection) # load configmap if tmpSection in config_map_data: tmpDict.update(config_map_data[tmpSection]) # make section class tmpSelf = _SectionClass() # update module dict sys.modules[__name__].__dict__[tmpSection] = tmpSelf # expand all values for tmpKey, tmpVal in iteritems(tmpDict): # use env vars if isinstance(tmpVal, str) and tmpVal.startswith('$'): tmpMatch = re.search('\$\{*([^\}]+)\}*', tmpVal) envName = tmpMatch.group(1) if envName not in os.environ: raise KeyError('{0} in the cfg is an undefined environment variable.'.format(envName)) tmpVal = os.environ[envName] # convert string to bool/int if not isinstance(tmpVal, six.string_types): pass elif tmpVal == 'True': tmpVal = True elif tmpVal == 'False': tmpVal = False elif tmpVal == 'None': tmpVal = None elif re.match('^\d+$', tmpVal): tmpVal = int(tmpVal) elif '\n' in tmpVal and ( re.match(r'^\W*\[.*\]\W*$', tmpVal.replace('\n', '')) or re.match(r'^\W*\{.*\}\W*$', tmpVal.replace('\n', ''))): tmpVal = json.loads(tmpVal) elif '\n' in tmpVal: tmpVal = tmpVal.split('\n') # remove empty tmpVal = [x.strip() for x in tmpVal if x.strip()] # update dict setattr(tmpSelf, tmpKey, tmpVal)
python
2,461
import random from utils.dirs import create_dirs from utils.config import process_config from utils.utils import get_args, get_logger from models.aux_model import AuxModel from data.data_loader import get_train_val_dataloader from data.data_loader import get_target_dataloader import wandb # from torchsummary import summary def main(): args = get_args() config = process_config(args.config) # create the experiments dirs create_dirs([config.cache_dir, config.model_dir, config.log_dir, config.img_dir]) # logging to the file and stdout logger = get_logger(config.log_dir, config.exp_name) # Intialize wandb model run = wandb.init(project="SemiSupervised", config=args) run.save() args.run_name = wandb.run.name # fix random seed to reproduce results random.seed(config.random_seed) logger.info('Random seed: {:d}'.format(config.random_seed)) if config.method in ['src', 'jigsaw', 'rotate']: model = AuxModel(config, logger) else: raise ValueError("Unknown method: %s" % config.method) src_loader, val_loader = get_train_val_dataloader(config.datasets.src) # test_loader = get_test_dataloader(config.datasets.test) test_loader = None tar_loader = None if config.datasets.get('tar', None): tar_loader = get_target_dataloader(config.datasets.tar) if config.mode == 'train': model.train(src_loader, tar_loader, val_loader, test_loader) # elif config.mode == 'test': # model.test(test_loader) if __name__ == '__main__': main()
python
1,583
from pathlib import Path from typing import Optional, List, Dict, Text, Type import tensorflow as tf import numpy as np import pytest from _pytest.monkeypatch import MonkeyPatch from _pytest.logging import LogCaptureFixture import logging from rasa.core.featurizers.single_state_featurizer import ( IntentTokenizerSingleStateFeaturizer, ) from rasa.core.featurizers.tracker_featurizers import ( TrackerFeaturizer, IntentMaxHistoryTrackerFeaturizer, ) from rasa.shared.core.generator import TrackerWithCachedStates from rasa.core.policies.ted_policy import PREDICTION_FEATURES, TEDPolicy from rasa.core.policies.unexpected_intent_policy import UnexpecTEDIntentPolicy from rasa.shared.core.constants import ACTION_UNLIKELY_INTENT_NAME, ACTION_LISTEN_NAME from rasa.shared.core.domain import Domain from rasa.shared.core.events import ( ActionExecuted, UserUttered, EntitiesAdded, SlotSet, ActionExecutionRejected, ActiveLoop, ) from rasa.shared.core.trackers import DialogueStateTracker from rasa.shared.nlu.interpreter import RegexInterpreter from rasa.utils.tensorflow.constants import ( IGNORE_INTENTS_LIST, LABEL, MASK, SENTENCE, IDS, POSITIVE_SCORES_KEY, NEGATIVE_SCORES_KEY, RANKING_KEY, SCORE_KEY, THRESHOLD_KEY, SEVERITY_KEY, QUERY_INTENT_KEY, NAME, RANKING_LENGTH, ) from rasa.shared.nlu.constants import INTENT from rasa.shared.core.events import Event from rasa.utils.tensorflow import model_data_utils from tests.core.test_policies import train_trackers from tests.core.policies.test_ted_policy import TestTEDPolicy class TestUnexpecTEDIntentPolicy(TestTEDPolicy): @staticmethod def _policy_class_to_test() -> Type[TEDPolicy]: return UnexpecTEDIntentPolicy def create_policy( self, featurizer: Optional[TrackerFeaturizer], priority: int ) -> UnexpecTEDIntentPolicy: return UnexpecTEDIntentPolicy(featurizer=featurizer, priority=priority) @pytest.fixture(scope="class") def featurizer(self) -> TrackerFeaturizer: featurizer = IntentMaxHistoryTrackerFeaturizer( IntentTokenizerSingleStateFeaturizer(), max_history=self.max_history ) return featurizer @staticmethod def persist_and_load_policy(trained_policy: UnexpecTEDIntentPolicy, tmp_path: Path): trained_policy.persist(tmp_path) return UnexpecTEDIntentPolicy.load(tmp_path) @pytest.mark.skip def test_normalization( self, trained_policy: UnexpecTEDIntentPolicy, tracker: DialogueStateTracker, default_domain: Domain, monkeypatch: MonkeyPatch, ): # No normalization is done for UnexpecTEDIntentPolicy and # hence this test is overridden to do nothing. assert True def test_label_data_assembly( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain ): interpreter = RegexInterpreter() # Construct input data state_featurizer = trained_policy.featurizer.state_featurizer encoded_all_labels = state_featurizer.encode_all_labels( default_domain, interpreter ) attribute_data, _ = model_data_utils.convert_to_data_format(encoded_all_labels) assembled_label_data = trained_policy._assemble_label_data( attribute_data, default_domain ) assembled_label_data_signature = assembled_label_data.get_signature() assert list(assembled_label_data_signature.keys()) == [ f"{LABEL}_{INTENT}", LABEL, ] assert assembled_label_data.num_examples == len(default_domain.intents) assert list(assembled_label_data_signature[f"{LABEL}_{INTENT}"].keys()) == [ MASK, SENTENCE, ] assert list(assembled_label_data_signature[LABEL].keys()) == [IDS] assert assembled_label_data_signature[f"{LABEL}_{INTENT}"][SENTENCE][ 0 ].units == len(default_domain.intents) async def test_training_with_no_intent( self, featurizer: Optional[TrackerFeaturizer], priority: int, default_domain: Domain, tmp_path: Path, caplog: LogCaptureFixture, ): stories = tmp_path / "stories.yml" stories.write_text( """ version: "2.0" stories: - story: test path steps: - action: utter_greet """ ) policy = self.create_policy(featurizer=featurizer, priority=priority) import tests.core.test_policies training_trackers = await tests.core.test_policies.train_trackers( default_domain, str(stories), augmentation_factor=20 ) with pytest.warns(UserWarning): policy.train(training_trackers, default_domain, RegexInterpreter()) async def test_prepared_data_for_threshold_prediction( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, stories_path: Path, ): training_trackers = await train_trackers( default_domain, stories_path, augmentation_factor=0 ) interpreter = RegexInterpreter() training_model_data, _ = trained_policy._prepare_for_training( training_trackers, default_domain, interpreter ) data_for_prediction = trained_policy._prepare_data_for_prediction( training_model_data ) assert set(data_for_prediction.data.keys()).issubset(PREDICTION_FEATURES) def test_similarities_collection_for_label_ids(self): label_ids = np.array([[0, 1], [1, -1], [2, -1]]) outputs = { "similarities": np.array( [[[1.2, 0.3, 0.2]], [[0.5, 0.2, 1.6]], [[0.01, 0.1, 1.7]],] ) } label_id_similarities = UnexpecTEDIntentPolicy._collect_label_id_grouped_scores( outputs, label_ids ) # Should contain similarities for all label ids except padding token. assert sorted(list(label_id_similarities.keys())) == [0, 1, 2] # Cross-check that the collected similarities are correct for each label id. assert label_id_similarities[0] == { POSITIVE_SCORES_KEY: [1.2], NEGATIVE_SCORES_KEY: [0.5, 0.01], } assert label_id_similarities[1] == { POSITIVE_SCORES_KEY: [0.3, 0.2], NEGATIVE_SCORES_KEY: [0.1], } assert label_id_similarities[2] == { POSITIVE_SCORES_KEY: [1.7], NEGATIVE_SCORES_KEY: [0.2, 1.6], } def test_label_quantiles_computation(self): label_id_scores = { 0: { POSITIVE_SCORES_KEY: [1.3, 0.2], NEGATIVE_SCORES_KEY: [ -0.1, -1.2, -2.3, -4.1, -0.5, 0.2, 0.8, 0.9, -3.2, -2.7, ], }, 3: {POSITIVE_SCORES_KEY: [1.3, 0.2], NEGATIVE_SCORES_KEY: [-0.1]}, 6: {POSITIVE_SCORES_KEY: [1.3, 0.2], NEGATIVE_SCORES_KEY: []}, } expected_thresholds = { 0: [ 0.2, 0.2, 0.2, 0.2, 0.2, -0.1, -0.1, -0.5, -0.5, -1.2, -1.2, -1.2, -2.3, -2.3, -2.7, -2.7, -3.2, -3.2, -4.1, -4.1, ], 3: [ -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, ], 6: [ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, ], } thresholds = UnexpecTEDIntentPolicy._compute_label_quantiles(label_id_scores) assert sorted(list(thresholds.keys())) == sorted( list(expected_thresholds.keys()) ) for label_id, tolerance_thresholds in thresholds.items(): assert expected_thresholds[label_id] == tolerance_thresholds async def test_post_training_threshold_computation( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, stories_path: Path, ): training_trackers = await train_trackers( default_domain, stories_path, augmentation_factor=0 ) interpreter = RegexInterpreter() training_model_data, label_ids = trained_policy._prepare_for_training( training_trackers, default_domain, interpreter ) trained_policy.compute_label_quantiles_post_training( training_model_data, label_ids ) computed_thresholds = trained_policy.label_quantiles # -1 is used for padding and hence is not expected in the keys expected_keys = list(np.unique(label_ids)) expected_keys.remove(-1) assert sorted(list(computed_thresholds.keys())) == sorted(expected_keys) @pytest.mark.parametrize( "tolerance, expected_thresholds", [ (0.0, [0.2, -0.1, 0.2]), (0.75, [-2.9, -0.1, -4.3]), (0.72, [-2.7, -0.1, -4.0]), (0.78, [-2.9, -0.1, -4.3]), (1.0, [-4.1, -0.1, -5.5]), ], ) def test_pick_thresholds_for_labels( self, tolerance: float, expected_thresholds: List[float] ): label_id_tolerance_thresholds = { 0: [ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, -0.1, -0.1, -0.5, -0.5, -1.2, -1.2, -2.3, -2.3, -2.7, -2.9, -3.2, -3.2, -4.1, -4.1, ], 3: [ -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, ], 4: [0.2 - (index * 0.3) for index in range(20)], } thresholds = UnexpecTEDIntentPolicy._pick_thresholds( label_id_tolerance_thresholds, tolerance ) assert sorted(list(thresholds.keys())) == sorted( list(label_id_tolerance_thresholds.keys()) ) computed_values = list(thresholds.values()) assert expected_thresholds == computed_values @pytest.mark.parametrize( "predicted_similarity, threshold_value, is_unlikely", [(1.2, 0.2, False), (0.3, -0.1, False), (-1.5, 0.03, True)], ) def test_unlikely_intent_check( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, predicted_similarity: float, threshold_value: float, is_unlikely: bool, tmp_path: Path, ): loaded_policy = self.persist_and_load_policy(trained_policy, tmp_path) # Construct dummy similarities similarities = np.array([[0.0] * len(default_domain.intents)]) dummy_intent_index = 4 similarities[0, dummy_intent_index] = predicted_similarity loaded_policy.label_thresholds[dummy_intent_index] = threshold_value query_intent = default_domain.intents[dummy_intent_index] unlikely_intent_prediction = loaded_policy._check_unlikely_intent( default_domain, similarities, query_intent ) assert is_unlikely == unlikely_intent_prediction def test_should_check_for_intent( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, tmp_path: Path, ): loaded_policy = self.persist_and_load_policy(trained_policy, tmp_path) intent_index = 0 assert ( loaded_policy._should_check_for_intent( default_domain.intents[intent_index], default_domain ) is False ) intent_index = 4 assert loaded_policy._should_check_for_intent( default_domain.intents[intent_index], default_domain ) loaded_policy.config[IGNORE_INTENTS_LIST] = [ default_domain.intents[intent_index] ] assert ( loaded_policy._should_check_for_intent( default_domain.intents[intent_index], default_domain ) is False ) def test_no_action_unlikely_intent_prediction( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, tmp_path: Path, ): loaded_policy = self.persist_and_load_policy(trained_policy, tmp_path) expected_probabilities = [0] * default_domain.num_actions interpreter = RegexInterpreter() tracker = DialogueStateTracker(sender_id="init", slots=default_domain.slots) prediction = loaded_policy.predict_action_probabilities( tracker, default_domain, interpreter ) assert prediction.probabilities == expected_probabilities tracker.update_with_events( [ UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted(action_name="utter_greet"), ], default_domain, ) prediction = loaded_policy.predict_action_probabilities( tracker, default_domain, interpreter ) assert prediction.probabilities == expected_probabilities loaded_policy.model = None prediction = loaded_policy.predict_action_probabilities( tracker, default_domain, interpreter ) assert prediction.probabilities == expected_probabilities @pytest.mark.parametrize( "predicted_similarity, threshold_value, is_unlikely", [(1.2, 0.2, False), (0.3, -0.1, False), (-1.5, 0.03, True)], ) def test_action_unlikely_intent_prediction( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, predicted_similarity, threshold_value, is_unlikely, monkeypatch: MonkeyPatch, tmp_path: Path, ): loaded_policy = self.persist_and_load_policy(trained_policy, tmp_path) similarities = np.array([[[0.0] * len(default_domain.intents)]]) dummy_intent_index = 4 similarities[0, 0, dummy_intent_index] = predicted_similarity query_intent = default_domain.intents[dummy_intent_index] loaded_policy.label_thresholds[dummy_intent_index] = threshold_value interpreter = RegexInterpreter() tracker = DialogueStateTracker(sender_id="init", slots=default_domain.slots) tracker.update_with_events( [UserUttered(text="hello", intent={"name": query_intent})], default_domain, ) # Preset the model predictions to the similarity values # so that we don't need to hardcode for particular model predictions. monkeypatch.setattr( loaded_policy.model, "run_inference", lambda data: {"similarities": similarities}, ) prediction = loaded_policy.predict_action_probabilities( tracker, default_domain, interpreter ) if not is_unlikely: assert prediction.probabilities == [0.0] * default_domain.num_actions else: assert ( prediction.probabilities[ default_domain.index_for_action(ACTION_UNLIKELY_INTENT_NAME) ] == 1.0 ) # Make sure metadata is set. The exact structure # of the metadata is tested separately and # not as part of this test. assert prediction.action_metadata is not None @pytest.mark.parametrize( "tracker_events, should_skip", [ ([], True), ([ActionExecuted("action_listen")], True), ( [ ActionExecuted("action_listen"), UserUttered("hi", intent={"name": "greet"}), ], False, ), ( [ ActionExecuted("action_listen"), UserUttered("hi", intent={"name": "greet"}), EntitiesAdded([{"name": "dummy"}]), ], False, ), ( [ ActionExecuted("action_listen"), UserUttered("hi", intent={"name": "greet"}), SlotSet("name"), ], False, ), ( [ ActiveLoop("loop"), ActionExecuted("action_listen"), UserUttered("hi", intent={"name": "greet"}), ActionExecutionRejected("loop"), ], False, ), ( [ ActionExecuted("action_listen"), UserUttered("hi", intent={"name": "greet"}), ActionExecuted("utter_greet"), ], True, ), ], ) def test_skip_predictions_to_prevent_loop( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, caplog: LogCaptureFixture, tracker_events: List[Event], should_skip: bool, tmp_path: Path, ): caplog.set_level(logging.DEBUG) loaded_policy = self.persist_and_load_policy(trained_policy, tmp_path) interpreter = RegexInterpreter() tracker = DialogueStateTracker(sender_id="init", slots=default_domain.slots) tracker.update_with_events(tracker_events, default_domain) prediction = loaded_policy.predict_action_probabilities( tracker, default_domain, interpreter ) assert ( "Skipping predictions for UnexpecTEDIntentPolicy" in caplog.text ) == should_skip if should_skip: assert prediction.probabilities == loaded_policy._default_predictions( default_domain ) @pytest.mark.parametrize( "tracker_events_with_action, tracker_events_without_action", [ ( [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted(ACTION_UNLIKELY_INTENT_NAME), ActionExecuted("utter_greet"), UserUttered(text="sad", intent={"name": "thank_you"}), ], [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), UserUttered(text="sad", intent={"name": "thank_you"}), ], ), ( [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), EntitiesAdded(entities=[{"entity": "name", "value": "Peter"},]), ActionExecuted(ACTION_UNLIKELY_INTENT_NAME), ActionExecuted("utter_greet"), UserUttered(text="sad", intent={"name": "thank_you"}), ], [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), EntitiesAdded(entities=[{"entity": "name", "value": "Peter"},]), ActionExecuted("utter_greet"), UserUttered(text="sad", intent={"name": "thank_you"}), ], ), ( [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted(ACTION_UNLIKELY_INTENT_NAME), ActionExecuted("some_form"), ActiveLoop("some_form"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="default", intent={"name": "default"}), ActionExecuted(ACTION_UNLIKELY_INTENT_NAME), UserUttered(text="sad", intent={"name": "thank_you"}), ], [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted(ACTION_UNLIKELY_INTENT_NAME), ActionExecuted("some_form"), ActiveLoop("some_form"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="default", intent={"name": "default"}), UserUttered(text="sad", intent={"name": "thank_you"}), ], ), ], ) def test_ignore_action_unlikely_intent( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, tracker_events_with_action: List[Event], tracker_events_without_action: List[Event], tmp_path: Path, ): loaded_policy = self.persist_and_load_policy(trained_policy, tmp_path) interpreter = RegexInterpreter() tracker_with_action = DialogueStateTracker.from_events( "test 1", evts=tracker_events_with_action ) tracker_without_action = DialogueStateTracker.from_events( "test 2", evts=tracker_events_without_action ) prediction_with_action = loaded_policy.predict_action_probabilities( tracker_with_action, default_domain, interpreter ) prediction_without_action = loaded_policy.predict_action_probabilities( tracker_without_action, default_domain, interpreter ) # If the weights didn't change then both trackers # should result in same prediction. For `UnexpecTEDIntentPolicy`, the real # prediction is inside action metadata. assert ( prediction_with_action.action_metadata == prediction_without_action.action_metadata ) def test_label_embedding_collection(self, trained_policy: UnexpecTEDIntentPolicy): label_ids = tf.constant([[[2], [-1]], [[1], [2]], [[0], [-1]]], dtype=tf.int32) all_label_embeddings = np.random.random((10, 20)) # `-1` is used as padding label id. The embedding for it # will be the same as `label_id=0` expected_extracted_label_embeddings = tf.constant( np.concatenate( [ all_label_embeddings[2], all_label_embeddings[0], all_label_embeddings[1], all_label_embeddings[2], all_label_embeddings[0], all_label_embeddings[0], ] ).reshape((3, 2, 20)), dtype=tf.float32, ) actual_extracted_label_embeddings = trained_policy.model._get_labels_embed( label_ids, tf.constant(all_label_embeddings, dtype=tf.float32) ) assert np.all( expected_extracted_label_embeddings == actual_extracted_label_embeddings ) @pytest.mark.parametrize( "query_intent_index, ranking_length", [(0, 0), (1, 3), (2, 1), (5, 0)] ) def test_collect_action_metadata( self, trained_policy: UnexpecTEDIntentPolicy, default_domain: Domain, tmp_path: Path, query_intent_index: int, ranking_length: int, ): loaded_policy = self.persist_and_load_policy(trained_policy, tmp_path) def test_individual_label_metadata( label_metadata: Dict[Text, Optional[float]], all_thresholds: Dict[int, float], all_similarities: np.array, label_index: int, ): expected_score = all_similarities[0][label_index] expected_threshold = ( all_thresholds[label_index] if label_index in all_thresholds else None ) expected_severity = ( expected_threshold - expected_score if expected_threshold else None ) assert label_metadata.get(SCORE_KEY) == expected_score assert label_metadata.get(THRESHOLD_KEY) == expected_threshold assert label_metadata.get(SEVERITY_KEY) == expected_severity # Monkey-patch certain attributes of the policy to make the testing easier. label_thresholds = {0: 1.2, 1: -0.3, 4: -2.3, 5: 0.2} loaded_policy.label_thresholds = label_thresholds loaded_policy.config[RANKING_LENGTH] = ranking_length # Some dummy similarities similarities = np.array([[3.2, 0.2, -1.2, -4.3, -5.1, 2.3]]) query_intent = default_domain.intents[query_intent_index] metadata = loaded_policy._collect_action_metadata( default_domain, similarities, query_intent=query_intent ) # Expected outer-most keys assert sorted(list(metadata.keys())) == sorted([QUERY_INTENT_KEY, RANKING_KEY]) # Schema validation for query intent key assert sorted(list(metadata[QUERY_INTENT_KEY].keys())) == sorted( [NAME, SCORE_KEY, THRESHOLD_KEY, SEVERITY_KEY] ) # Test all elements of metadata for query intent assert metadata[QUERY_INTENT_KEY].get(NAME) == query_intent test_individual_label_metadata( metadata.get(QUERY_INTENT_KEY), label_thresholds, similarities, query_intent_index, ) # Check if ranking is sorted correctly and truncated to `ranking_length` sorted_label_similarities = sorted( [(index, score) for index, score in enumerate(similarities[0])], key=lambda x: -x[1], ) sorted_label_similarities = ( sorted_label_similarities[:ranking_length] if ranking_length else sorted_label_similarities ) expected_label_rankings = [ default_domain.intents[index] for index, _ in sorted_label_similarities ] collected_label_rankings = [ label_metadata.get(NAME) for label_metadata in metadata.get(RANKING_KEY) ] assert collected_label_rankings == expected_label_rankings # Test all elements of metadata for all labels in ranking for label_metadata in metadata.get(RANKING_KEY): label_index = default_domain.intents.index(label_metadata.get(NAME)) test_individual_label_metadata( label_metadata, label_thresholds, similarities, label_index ) @pytest.mark.parametrize( "tracker_events_for_training, expected_trackers_with_events", [ # Filter because of no intent and action name ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello"), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="happy to make it work"), ActionExecuted(action_text="Great!"), ActionExecuted(ACTION_LISTEN_NAME), ], ], [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], ], ), # Filter because of no action name ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello"), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted(action_text="Great!"), ActionExecuted(ACTION_LISTEN_NAME), ], ], [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], ], ), # Filter because of no intent ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello"), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="happy to make it work"), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], ], [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], ], ), # No filter needed ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], ], [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], ], ), # Filter to return empty list of trackers ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted(action_text="Great!"), ActionExecuted(ACTION_LISTEN_NAME), ], ], [], ), ], ) def test_filter_training_trackers( self, tracker_events_for_training: List[List[Event]], expected_trackers_with_events: List[List[Event]], domain: Domain, ): trackers_for_training = [ TrackerWithCachedStates.from_events( sender_id=f"{tracker_index}", evts=events, domain=domain ) for tracker_index, events in enumerate(tracker_events_for_training) ] filtered_trackers = UnexpecTEDIntentPolicy._get_trackers_for_training( trackers_for_training ) assert len(filtered_trackers) == len(expected_trackers_with_events) for collected_tracker, expected_tracker_events in zip( filtered_trackers, expected_trackers_with_events ): collected_tracker_events = list(collected_tracker.events) assert collected_tracker_events == expected_tracker_events @pytest.mark.parametrize( "tracker_events, skip_training", [ ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello", intent={"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello"), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="happy to make it work"), ActionExecuted(action_text="Great!"), ActionExecuted(ACTION_LISTEN_NAME), ], ], False, ), ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello"), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="happy to make it work"), ActionExecuted(action_text="Great!"), ActionExecuted(ACTION_LISTEN_NAME), ], ], True, ), ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello"), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="happy to make it work"), ActionExecuted("utter_goodbye"), ActionExecuted(ACTION_LISTEN_NAME), ], ], True, ), ( [ [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered(text="hello"), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), UserUttered( text="happy to make it work", intent={"name": "goodbye"} ), ActionExecuted(action_text="Great!"), ActionExecuted(ACTION_LISTEN_NAME), ], ], True, ), ], ) def test_train_with_e2e_data( tracker_events: List[List[Event]], skip_training: bool, domain: Domain, ): policy = UnexpecTEDIntentPolicy( featurizer=IntentMaxHistoryTrackerFeaturizer( IntentTokenizerSingleStateFeaturizer() ) ) trackers_for_training = [ TrackerWithCachedStates.from_events( sender_id=f"{tracker_index}", evts=events, domain=domain ) for tracker_index, events in enumerate(tracker_events) ] if skip_training: with pytest.warns(UserWarning): policy.train(trackers_for_training, domain, interpreter=RegexInterpreter()) else: policy.train(trackers_for_training, domain, interpreter=RegexInterpreter())
python
39,919
import datetime from unittest import skipUnless from django.db import connection from django.db.models import CASCADE, ForeignKey, Index, Q from django.db.models.functions import Lower from django.test import ( TestCase, TransactionTestCase, skipIfDBFeature, skipUnlessDBFeature, ) from django.test.utils import override_settings from django.utils import timezone from .models import ( Article, ArticleTranslation, IndexedArticle2, IndexTogetherSingleList, ) class SchemaIndexesTests(TestCase): """ Test index handling by the db.backends.schema infrastructure. """ def test_index_name_hash(self): """ Index names should be deterministic. """ editor = connection.schema_editor() index_name = editor._create_index_name( table_name=Article._meta.db_table, column_names=("c1",), suffix="123", ) self.assertEqual(index_name, "indexes_article_c1_a52bd80b123") def test_index_name(self): """ Index names on the built-in database backends:: * Are truncated as needed. * Include all the column names. * Include a deterministic hash. """ long_name = 'l%sng' % ('o' * 100) editor = connection.schema_editor() index_name = editor._create_index_name( table_name=Article._meta.db_table, column_names=('c1', 'c2', long_name), suffix='ix', ) expected = { 'mysql': 'indexes_article_c1_c2_looooooooooooooooooo_255179b2ix', 'oracle': 'indexes_a_c1_c2_loo_255179b2ix', 'postgresql': 'indexes_article_c1_c2_loooooooooooooooooo_255179b2ix', 'sqlite': 'indexes_article_c1_c2_l%sng_255179b2ix' % ('o' * 100), } if connection.vendor not in expected: self.skipTest('This test is only supported on the built-in database backends.') self.assertEqual(index_name, expected[connection.vendor]) def test_index_together(self): editor = connection.schema_editor() index_sql = [str(statement) for statement in editor._model_indexes_sql(Article)] self.assertEqual(len(index_sql), 1) # Ensure the index name is properly quoted self.assertIn( connection.ops.quote_name( editor._create_index_name(Article._meta.db_table, ['headline', 'pub_date'], suffix='_idx') ), index_sql[0] ) def test_index_together_single_list(self): # Test for using index_together with a single list (#22172) index_sql = connection.schema_editor()._model_indexes_sql(IndexTogetherSingleList) self.assertEqual(len(index_sql), 1) def test_columns_list_sql(self): index = Index(fields=['headline'], name='whitespace_idx') editor = connection.schema_editor() self.assertIn( '(%s)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), ) def test_descending_columns_list_sql(self): index = Index(fields=['-headline'], name='whitespace_idx') editor = connection.schema_editor() self.assertIn( '(%s DESC)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), ) class SchemaIndexesNotPostgreSQLTests(TransactionTestCase): available_apps = ['indexes'] def test_create_index_ignores_opclasses(self): index = Index( name='test_ops_class', fields=['headline'], opclasses=['varchar_pattern_ops'], ) with connection.schema_editor() as editor: # This would error if opclasses weren't ignored. editor.add_index(IndexedArticle2, index) # The `condition` parameter is ignored by databases that don't support partial # indexes. @skipIfDBFeature('supports_partial_indexes') class PartialIndexConditionIgnoredTests(TransactionTestCase): available_apps = ['indexes'] def test_condition_ignored(self): index = Index( name='test_condition_ignored', fields=['published'], condition=Q(published=True), ) with connection.schema_editor() as editor: # This would error if condition weren't ignored. editor.add_index(Article, index) self.assertNotIn( 'WHERE %s' % editor.quote_name('published'), str(index.create_sql(Article, editor)) ) @skipUnless(connection.vendor == 'postgresql', 'PostgreSQL tests') class SchemaIndexesPostgreSQLTests(TransactionTestCase): available_apps = ['indexes'] get_opclass_query = ''' SELECT opcname, c.relname FROM pg_opclass AS oc JOIN pg_index as i on oc.oid = ANY(i.indclass) JOIN pg_class as c on c.oid = i.indexrelid WHERE c.relname = '%s' ''' def test_text_indexes(self): """Test creation of PostgreSQL-specific text indexes (#12234)""" from .models import IndexedArticle index_sql = [str(statement) for statement in connection.schema_editor()._model_indexes_sql(IndexedArticle)] self.assertEqual(len(index_sql), 5) self.assertIn('("headline" varchar_pattern_ops)', index_sql[1]) self.assertIn('("body" text_pattern_ops)', index_sql[3]) # unique=True and db_index=True should only create the varchar-specific # index (#19441). self.assertIn('("slug" varchar_pattern_ops)', index_sql[4]) def test_virtual_relation_indexes(self): """Test indexes are not created for related objects""" index_sql = connection.schema_editor()._model_indexes_sql(Article) self.assertEqual(len(index_sql), 1) def test_ops_class(self): index = Index( name='test_ops_class', fields=['headline'], opclasses=['varchar_pattern_ops'], ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % 'test_ops_class') self.assertEqual(cursor.fetchall(), [('varchar_pattern_ops', 'test_ops_class')]) def test_ops_class_multiple_columns(self): index = Index( name='test_ops_class_multiple', fields=['headline', 'body'], opclasses=['varchar_pattern_ops', 'text_pattern_ops'], ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % 'test_ops_class_multiple') expected_ops_classes = ( ('varchar_pattern_ops', 'test_ops_class_multiple'), ('text_pattern_ops', 'test_ops_class_multiple'), ) self.assertCountEqual(cursor.fetchall(), expected_ops_classes) def test_ops_class_partial(self): index = Index( name='test_ops_class_partial', fields=['body'], opclasses=['text_pattern_ops'], condition=Q(headline__contains='China'), ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % 'test_ops_class_partial') self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', 'test_ops_class_partial')]) def test_ops_class_partial_tablespace(self): indexname = 'test_ops_class_tblspace' index = Index( name=indexname, fields=['body'], opclasses=['text_pattern_ops'], condition=Q(headline__contains='China'), db_tablespace='pg_default', ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) self.assertIn('TABLESPACE "pg_default" ', str(index.create_sql(IndexedArticle2, editor))) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % indexname) self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', indexname)]) def test_ops_class_descending(self): indexname = 'test_ops_class_ordered' index = Index( name=indexname, fields=['-body'], opclasses=['text_pattern_ops'], ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % indexname) self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', indexname)]) def test_ops_class_descending_partial(self): indexname = 'test_ops_class_ordered_partial' index = Index( name=indexname, fields=['-body'], opclasses=['text_pattern_ops'], condition=Q(headline__contains='China'), ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % indexname) self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', indexname)]) @skipUnlessDBFeature('supports_covering_indexes') def test_ops_class_include(self): index_name = 'test_ops_class_include' index = Index( name=index_name, fields=['body'], opclasses=['text_pattern_ops'], include=['headline'], ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % index_name) self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', index_name)]) @skipUnlessDBFeature('supports_covering_indexes') def test_ops_class_include_tablespace(self): index_name = 'test_ops_class_include_tblspace' index = Index( name=index_name, fields=['body'], opclasses=['text_pattern_ops'], include=['headline'], db_tablespace='pg_default', ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) self.assertIn( 'TABLESPACE "pg_default"', str(index.create_sql(IndexedArticle2, editor)), ) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % index_name) self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', index_name)]) def test_ops_class_columns_lists_sql(self): index = Index( fields=['headline'], name='whitespace_idx', opclasses=['text_pattern_ops'], ) with connection.schema_editor() as editor: self.assertIn( '(%s text_pattern_ops)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), ) def test_ops_class_descending_columns_list_sql(self): index = Index( fields=['-headline'], name='whitespace_idx', opclasses=['text_pattern_ops'], ) with connection.schema_editor() as editor: self.assertIn( '(%s text_pattern_ops DESC)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), ) @skipUnless(connection.vendor == 'mysql', 'MySQL tests') class SchemaIndexesMySQLTests(TransactionTestCase): available_apps = ['indexes'] def test_no_index_for_foreignkey(self): """ MySQL on InnoDB already creates indexes automatically for foreign keys. (#14180). An index should be created if db_constraint=False (#26171). """ with connection.cursor() as cursor: storage = connection.introspection.get_storage_engine( cursor, ArticleTranslation._meta.db_table, ) if storage != "InnoDB": self.skip("This test only applies to the InnoDB storage engine") index_sql = [str(statement) for statement in connection.schema_editor()._model_indexes_sql(ArticleTranslation)] self.assertEqual(index_sql, [ 'CREATE INDEX `indexes_articletranslation_article_no_constraint_id_d6c0806b` ' 'ON `indexes_articletranslation` (`article_no_constraint_id`)' ]) # The index also shouldn't be created if the ForeignKey is added after # the model was created. field_created = False try: with connection.schema_editor() as editor: new_field = ForeignKey(Article, CASCADE) new_field.set_attributes_from_name('new_foreign_key') editor.add_field(ArticleTranslation, new_field) field_created = True # No deferred SQL. The FK constraint is included in the # statement to add the field. self.assertFalse(editor.deferred_sql) finally: if field_created: with connection.schema_editor() as editor: editor.remove_field(ArticleTranslation, new_field) @skipUnlessDBFeature('supports_partial_indexes') # SQLite doesn't support timezone-aware datetimes when USE_TZ is False. @override_settings(USE_TZ=True) class PartialIndexTests(TransactionTestCase): # Schema editor is used to create the index to test that it works. available_apps = ['indexes'] def test_partial_index(self): with connection.schema_editor() as editor: index = Index( name='recent_article_idx', fields=['pub_date'], condition=Q( pub_date__gt=datetime.datetime( year=2015, month=1, day=1, # PostgreSQL would otherwise complain about the lookup # being converted to a mutable function (by removing # the timezone in the cast) which is forbidden. tzinfo=timezone.get_current_timezone(), ), ) ) self.assertIn( 'WHERE %s' % editor.quote_name('pub_date'), str(index.create_sql(Article, schema_editor=editor)) ) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) def test_integer_restriction_partial(self): with connection.schema_editor() as editor: index = Index( name='recent_article_idx', fields=['id'], condition=Q(pk__gt=1), ) self.assertIn( 'WHERE %s' % editor.quote_name('id'), str(index.create_sql(Article, schema_editor=editor)) ) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) def test_boolean_restriction_partial(self): with connection.schema_editor() as editor: index = Index( name='published_index', fields=['published'], condition=Q(published=True), ) self.assertIn( 'WHERE %s' % editor.quote_name('published'), str(index.create_sql(Article, schema_editor=editor)) ) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) @skipUnlessDBFeature('supports_functions_in_partial_indexes') def test_multiple_conditions(self): with connection.schema_editor() as editor: index = Index( name='recent_article_idx', fields=['pub_date', 'headline'], condition=( Q(pub_date__gt=datetime.datetime( year=2015, month=1, day=1, tzinfo=timezone.get_current_timezone(), )) & Q(headline__contains='China') ), ) sql = str(index.create_sql(Article, schema_editor=editor)) where = sql.find('WHERE') self.assertIn( 'WHERE (%s' % editor.quote_name('pub_date'), sql ) # Because each backend has different syntax for the operators, # check ONLY the occurrence of headline in the SQL. self.assertGreater(sql.rfind('headline'), where) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) def test_is_null_condition(self): with connection.schema_editor() as editor: index = Index( name='recent_article_idx', fields=['pub_date'], condition=Q(pub_date__isnull=False), ) self.assertIn( 'WHERE %s IS NOT NULL' % editor.quote_name('pub_date'), str(index.create_sql(Article, schema_editor=editor)) ) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) @skipUnlessDBFeature('supports_expression_indexes') def test_partial_func_index(self): index_name = 'partial_func_idx' index = Index( Lower('headline').desc(), name=index_name, condition=Q(pub_date__isnull=False), ) with connection.schema_editor() as editor: editor.add_index(index=index, model=Article) sql = index.create_sql(Article, schema_editor=editor) table = Article._meta.db_table self.assertIs(sql.references_column(table, 'headline'), True) sql = str(sql) self.assertIn('LOWER(%s)' % editor.quote_name('headline'), sql) self.assertIn( 'WHERE %s IS NOT NULL' % editor.quote_name('pub_date'), sql, ) self.assertGreater(sql.find('WHERE'), sql.find('LOWER')) with connection.cursor() as cursor: constraints = connection.introspection.get_constraints( cursor=cursor, table_name=table, ) self.assertIn(index_name, constraints) if connection.features.supports_index_column_ordering: self.assertEqual(constraints[index_name]['orders'], ['DESC']) with connection.schema_editor() as editor: editor.remove_index(Article, index) with connection.cursor() as cursor: self.assertNotIn(index_name, connection.introspection.get_constraints( cursor=cursor, table_name=table, )) @skipUnlessDBFeature('supports_covering_indexes') class CoveringIndexTests(TransactionTestCase): available_apps = ['indexes'] def test_covering_index(self): index = Index( name='covering_headline_idx', fields=['headline'], include=['pub_date', 'published'], ) with connection.schema_editor() as editor: self.assertIn( '(%s) INCLUDE (%s, %s)' % ( editor.quote_name('headline'), editor.quote_name('pub_date'), editor.quote_name('published'), ), str(index.create_sql(Article, editor)), ) editor.add_index(Article, index) with connection.cursor() as cursor: constraints = connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, ) self.assertIn(index.name, constraints) self.assertEqual( constraints[index.name]['columns'], ['headline', 'pub_date', 'published'], ) editor.remove_index(Article, index) with connection.cursor() as cursor: self.assertNotIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) def test_covering_partial_index(self): index = Index( name='covering_partial_headline_idx', fields=['headline'], include=['pub_date'], condition=Q(pub_date__isnull=False), ) with connection.schema_editor() as editor: self.assertIn( '(%s) INCLUDE (%s) WHERE %s ' % ( editor.quote_name('headline'), editor.quote_name('pub_date'), editor.quote_name('pub_date'), ), str(index.create_sql(Article, editor)), ) editor.add_index(Article, index) with connection.cursor() as cursor: constraints = connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, ) self.assertIn(index.name, constraints) self.assertEqual( constraints[index.name]['columns'], ['headline', 'pub_date'], ) editor.remove_index(Article, index) with connection.cursor() as cursor: self.assertNotIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) @skipUnlessDBFeature('supports_expression_indexes') def test_covering_func_index(self): index_name = 'covering_func_headline_idx' index = Index(Lower('headline'), name=index_name, include=['pub_date']) with connection.schema_editor() as editor: editor.add_index(index=index, model=Article) sql = index.create_sql(Article, schema_editor=editor) table = Article._meta.db_table self.assertIs(sql.references_column(table, 'headline'), True) sql = str(sql) self.assertIn('LOWER(%s)' % editor.quote_name('headline'), sql) self.assertIn('INCLUDE (%s)' % editor.quote_name('pub_date'), sql) self.assertGreater(sql.find('INCLUDE'), sql.find('LOWER')) with connection.cursor() as cursor: constraints = connection.introspection.get_constraints( cursor=cursor, table_name=table, ) self.assertIn(index_name, constraints) self.assertIn('pub_date', constraints[index_name]['columns']) with connection.schema_editor() as editor: editor.remove_index(Article, index) with connection.cursor() as cursor: self.assertNotIn(index_name, connection.introspection.get_constraints( cursor=cursor, table_name=table, )) @skipIfDBFeature('supports_covering_indexes') class CoveringIndexIgnoredTests(TransactionTestCase): available_apps = ['indexes'] def test_covering_ignored(self): index = Index( name='test_covering_ignored', fields=['headline'], include=['pub_date'], ) with connection.schema_editor() as editor: editor.add_index(Article, index) self.assertNotIn( 'INCLUDE (%s)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), )
python
24,822
from urllib.parse import urlparse from abeja.common.http_file import HTTPFile from abeja.common.source_data import SourceData from abeja.datalake.api.client import APIClient from abeja.datalake.file import DatalakeFile from abeja.exceptions import UnsupportedURI def file_factory( client: APIClient, uri: str, type: str, **kwargs) -> SourceData: """generate file for the given uri :param client: :param uri: :param type: :param kwargs: :return: :raises: UnsupportedURI if given uri is not supported """ pr = urlparse(uri) if pr.scheme == 'datalake': return DatalakeFile(client, uri=uri, type=type, **kwargs) elif pr.scheme == "http" or pr.scheme == "https": return HTTPFile(client, uri=uri) raise UnsupportedURI('{} is not supported.'.format(uri))
python
848
from os import path from easy_thumbnails import files, utils, signals from easy_thumbnails.tests import utils as test_utils from easy_thumbnails.conf import settings try: from PIL import Image except ImportError: import Image class FilesTest(test_utils.BaseTest): def setUp(self): super(FilesTest, self).setUp() self.storage = test_utils.TemporaryStorage() self.remote_storage = test_utils.FakeRemoteStorage() # Save a test image in both storages. filename = self.create_image(self.storage, 'test.jpg') self.thumbnailer = files.get_thumbnailer(self.storage, filename) self.thumbnailer.thumbnail_storage = self.storage filename = self.create_image(self.remote_storage, 'test.jpg') self.remote_thumbnailer = files.get_thumbnailer(self.remote_storage, filename) self.remote_thumbnailer.thumbnail_storage = self.remote_storage # Create another thumbnailer for extension test. self.ext_thumbnailer = files.get_thumbnailer(self.storage, filename) self.ext_thumbnailer.thumbnail_storage = self.storage # Generate test transparent images. filename = self.create_image(self.storage, 'transparent.png', image_mode='RGBA', image_format='PNG') self.transparent_thumbnailer = files.get_thumbnailer(self.storage, filename) self.transparent_thumbnailer.thumbnail_storage = self.storage filename = self.create_image(self.storage, 'transparent-greyscale.png', image_mode='LA', image_format='PNG') self.transparent_greyscale_thumbnailer = files.get_thumbnailer( self.storage, filename) self.transparent_greyscale_thumbnailer.thumbnail_storage = self.storage def tearDown(self): self.storage.delete_temporary_storage() self.remote_storage.delete_temporary_storage() super(FilesTest, self).tearDown() def test_tag(self): local = self.thumbnailer.get_thumbnail({'size': (100, 100)}) remote = self.remote_thumbnailer.get_thumbnail({'size': (100, 100)}) self.assertEqual(local.tag(), '<img alt="" height="75" ' 'src="%s" width="100" />' % local.url) self.assertEqual(local.tag(alt='A & B'), '<img alt="A &amp; B" ' 'height="75" src="%s" width="100" />' % local.url) # Can turn off dimensions. self.assertEqual(remote.tag(use_size=False), '<img alt="" ' 'src="%s" />' % remote.url) # Thumbnails on remote storage don't get dimensions... self.assertEqual(remote.tag(), '<img alt="" ' 'src="%s" />' % remote.url) # ...unless explicitly requested. self.assertEqual(remote.tag(use_size=True), '<img alt="" height="75" ' 'src="%s" width="100" />' % remote.url) # All other arguments are passed through as attributes. self.assertEqual(local.tag(**{'rel': 'A&B', 'class': 'fish'}), '<img alt="" class="fish" height="75" rel="A&amp;B" ' 'src="%s" width="100" />' % local.url) def test_transparent_thumbnailing(self): thumb_file = self.thumbnailer.get_thumbnail( {'size': (100, 100)}) thumb_file.seek(0) thumb = Image.open(thumb_file) self.assertFalse(utils.is_transparent(thumb), "%s shouldn't be transparent." % thumb_file.name) thumb_file = self.transparent_thumbnailer.get_thumbnail( {'size': (100, 100)}) thumb_file.seek(0) thumb = Image.open(thumb_file) self.assertTrue(utils.is_transparent(thumb), "%s should be transparent." % thumb_file.name) thumb_file = self.transparent_greyscale_thumbnailer.get_thumbnail( {'size': (100, 100)}) thumb_file.seek(0) thumb = Image.open(thumb_file) self.assertTrue(utils.is_transparent(thumb), "%s should be transparent." % thumb_file.name) def test_extensions(self): self.ext_thumbnailer.thumbnail_extension = 'png' thumb = self.ext_thumbnailer.get_thumbnail({'size': (100, 100)}) self.assertEqual(path.splitext(thumb.name)[1], '.png') self.ext_thumbnailer.thumbnail_preserve_extensions = ('foo',) thumb = self.ext_thumbnailer.get_thumbnail({'size': (100, 100)}) self.assertEqual(path.splitext(thumb.name)[1], '.png') self.ext_thumbnailer.thumbnail_preserve_extensions = True thumb = self.ext_thumbnailer.get_thumbnail({'size': (100, 100)}) self.assertEqual(path.splitext(thumb.name)[1], '.jpg') self.ext_thumbnailer.thumbnail_preserve_extensions = ('foo', 'jpg') thumb = self.ext_thumbnailer.get_thumbnail({'size': (100, 100)}) self.assertEqual(path.splitext(thumb.name)[1], '.jpg') def test_USE_TZ(self): settings.USE_TZ = True self.thumbnailer.get_thumbnail({'size': (10, 20)}) settings.USE_TZ = False self.thumbnailer.get_thumbnail({'size': (20, 40)}) def test_thumbnailfile_options(self): opts = {'size': (50, 50), 'crop': True, 'upscale': True} thumb = self.thumbnailer.get_thumbnail(opts) self.assertEqual(thumb.thumbnail_options, opts) def test_default_options_setting(self): settings.THUMBNAIL_DEFAULT_OPTIONS = {'crop': True} opts = {'size': (50, 50)} thumb = self.thumbnailer.get_thumbnail(opts) self.assertEqual((thumb.width, thumb.height), (50, 50)) def test_thumbnail_created_signal(self): def signal_handler(sender, *args, **kwargs): sender.signal_received = True signals.thumbnail_created.connect(signal_handler) try: thumb = self.thumbnailer.get_thumbnail({'size': (10, 20)}) self.assertTrue(hasattr(thumb, 'signal_received')) finally: signals.thumbnail_created.disconnect(signal_handler)
python
5,945
""" pysteps.nowcasts.steps ====================== Implementation of the STEPS stochastic nowcasting method as described in :cite:`Seed2003`, :cite:`BPS2006` and :cite:`SPN2013`. .. autosummary:: :toctree: ../generated/ forecast """ import sys import time import numpy as np import scipy.ndimage from pysteps import cascade from pysteps import extrapolation from pysteps import noise from pysteps import utils from pysteps.postprocessing import probmatching from pysteps.timeseries import autoregression, correlation from pysteps.nowcasts import utils as nowcast_utils try: import dask DASK_IMPORTED = True except ImportError: DASK_IMPORTED = False def forecast(R, V, n_timesteps, n_ens_members=24, n_cascade_levels=6, R_thr=None, kmperpixel=None, timestep=None, extrap_method="semilagrangian", decomp_method="fft", bandpass_filter_method="gaussian", noise_method="nonparametric", noise_stddev_adj=None, ar_order=2, vel_pert_method="bps", conditional=False, probmatching_method="cdf", mask_method="incremental", callback=None, return_output=True, seed=None, num_workers=1, fft_method="numpy", domain="spatial", extrap_kwargs=None, filter_kwargs=None, noise_kwargs=None, vel_pert_kwargs=None, mask_kwargs=None, measure_time=False): """Generate a nowcast ensemble by using the Short-Term Ensemble Prediction System (STEPS) method. Parameters ---------- R : array-like Array of shape (ar_order+1,m,n) containing the input precipitation fields ordered by timestamp from oldest to newest. The time steps between the inputs are assumed to be regular, and the inputs are required to have finite values. V : array-like Array of shape (2,m,n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. All values are required to be finite. n_timesteps : int Number of time steps to forecast. n_ens_members : int, optional The number of ensemble members to generate. n_cascade_levels : int, optional The number of cascade levels to use. R_thr : float, optional Specifies the threshold value for minimum observable precipitation intensity. Required if mask_method is not None or conditional is True. kmperpixel : float, optional Spatial resolution of the input data (kilometers/pixel). Required if vel_pert_method is not None or mask_method is 'incremental'. timestep : float, optional Time step of the motion vectors (minutes). Required if vel_pert_method is not None or mask_method is 'incremental'. extrap_method : str, optional Name of the extrapolation method to use. See the documentation of pysteps.extrapolation.interface. decomp_method : {'fft'}, optional Name of the cascade decomposition method to use. See the documentation of pysteps.cascade.interface. bandpass_filter_method : {'gaussian', 'uniform'}, optional Name of the bandpass filter method to use with the cascade decomposition. See the documentation of pysteps.cascade.interface. noise_method : {'parametric','nonparametric','ssft','nested',None}, optional Name of the noise generator to use for perturbating the precipitation field. See the documentation of pysteps.noise.interface. If set to None, no noise is generated. noise_stddev_adj : {'auto','fixed',None}, optional Optional adjustment for the standard deviations of the noise fields added to each cascade level. This is done to compensate incorrect std. dev. estimates of casace levels due to presence of no-rain areas. 'auto'=use the method implemented in pysteps.noise.utils.compute_noise_stddev_adjs. 'fixed'= use the formula given in :cite:`BPS2006` (eq. 6), None=disable noise std. dev adjustment. ar_order : int, optional The order of the autoregressive model to use. Must be >= 1. vel_pert_method : {'bps',None}, optional Name of the noise generator to use for perturbing the advection field. See the documentation of pysteps.noise.interface. If set to None, the advection field is not perturbed. conditional : bool, optional If set to True, compute the statistics of the precipitation field conditionally by excluding pixels where the values are below the threshold R_thr. mask_method : {'obs','sprog','incremental',None}, optional The method to use for masking no precipitation areas in the forecast field. The masked pixels are set to the minimum value of the observations. 'obs' = apply R_thr to the most recently observed precipitation intensity field, 'sprog' = use the smoothed forecast field from S-PROG, where the AR(p) model has been applied, 'incremental' = iteratively buffer the mask with a certain rate (currently it is 1 km/min), None=no masking. probmatching_method : {'cdf','mean',None}, optional Method for matching the statistics of the forecast field with those of the most recently observed one. 'cdf'=map the forecast CDF to the observed one, 'mean'=adjust only the conditional mean value of the forecast field in precipitation areas, None=no matching applied. Using 'mean' requires that mask_method is not None. callback : function, optional Optional function that is called after computation of each time step of the nowcast. The function takes one argument: a three-dimensional array of shape (n_ens_members,h,w), where h and w are the height and width of the input field R, respectively. This can be used, for instance, writing the outputs into files. return_output : bool, optional Set to False to disable returning the outputs as numpy arrays. This can save memory if the intermediate results are written to output files using the callback function. seed : int, optional Optional seed number for the random generators. num_workers : int, optional The number of workers to use for parallel computation. Applicable if dask is enabled or pyFFTW is used for computing the FFT. When num_workers>1, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. fft_method : str, optional A string defining the FFT method to use (see utils.fft.get_method). Defaults to 'numpy' for compatibility reasons. If pyFFTW is installed, the recommended method is 'pyfftw'. domain : {"spatial", "spectral"} If "spatial", all computations are done in the spatial domain (the classical STEPS model). If "spectral", the AR(2) models and stochastic perturbations are applied directly in the spectral domain to reduce memory footprint and improve performance :cite:`PCH2019b`. extrap_kwargs : dict, optional Optional dictionary containing keyword arguments for the extrapolation method. See the documentation of pysteps.extrapolation. filter_kwargs : dict, optional Optional dictionary containing keyword arguments for the filter method. See the documentation of pysteps.cascade.bandpass_filters.py. noise_kwargs : dict, optional Optional dictionary containing keyword arguments for the initializer of the noise generator. See the documentation of pysteps.noise.fftgenerators. vel_pert_kwargs : dict, optional Optional dictionary containing keyword arguments 'p_par' and 'p_perp' for the initializer of the velocity perturbator. The choice of the optimal parameters depends on the domain and the used optical flow method. Default parameters from :cite:`BPS2006`: p_par = [10.88, 0.23, -7.68] p_perp = [5.76, 0.31, -2.72] Parameters fitted to the data (optical flow/domain): darts/fmi: p_par = [13.71259667, 0.15658963, -16.24368207] p_perp = [8.26550355, 0.17820458, -9.54107834] darts/mch: p_par = [24.27562298, 0.11297186, -27.30087471] p_perp = [-7.80797846e+01, -3.38641048e-02, 7.56715304e+01] darts/fmi+mch: p_par = [16.55447057, 0.14160448, -19.24613059] p_perp = [14.75343395, 0.11785398, -16.26151612] lucaskanade/fmi: p_par = [2.20837526, 0.33887032, -2.48995355] p_perp = [2.21722634, 0.32359621, -2.57402761] lucaskanade/mch: p_par = [2.56338484, 0.3330941, -2.99714349] p_perp = [1.31204508, 0.3578426, -1.02499891] lucaskanade/fmi+mch: p_par = [2.31970635, 0.33734287, -2.64972861] p_perp = [1.90769947, 0.33446594, -2.06603662] vet/fmi: p_par = [0.25337388, 0.67542291, 11.04895538] p_perp = [0.02432118, 0.99613295, 7.40146505] vet/mch: p_par = [0.5075159, 0.53895212, 7.90331791] p_perp = [0.68025501, 0.41761289, 4.73793581] vet/fmi+mch: p_par = [0.29495222, 0.62429207, 8.6804131 ] p_perp = [0.23127377, 0.59010281, 5.98180004] fmi=Finland, mch=Switzerland, fmi+mch=both pooled into the same data set The above parameters have been fitten by using run_vel_pert_analysis.py and fit_vel_pert_params.py located in the scripts directory. See pysteps.noise.motion for additional documentation. mask_kwargs : dict Optional dictionary containing mask keyword arguments 'mask_f' and 'mask_rim', the factor defining the the mask increment and the rim size, respectively. The mask increment is defined as mask_f*timestep/kmperpixel. measure_time : bool If set to True, measure, print and return the computation time. Returns ------- out : ndarray If return_output is True, a four-dimensional array of shape (n_ens_members,n_timesteps,m,n) containing a time series of forecast precipitation fields for each ensemble member. Otherwise, a None value is returned. The time series starts from t0+timestep, where timestep is taken from the input precipitation fields R. If measure_time is True, the return value is a three-element tuple containing the nowcast array, the initialization time of the nowcast generator and the time used in the main loop (seconds). See also -------- pysteps.extrapolation.interface, pysteps.cascade.interface, pysteps.noise.interface, pysteps.noise.utils.compute_noise_stddev_adjs References ---------- :cite:`Seed2003`, :cite:`BPS2006`, :cite:`SPN2013`, :cite:`PCH2019b` """ _check_inputs(R, V, ar_order) if extrap_kwargs is None: extrap_kwargs = dict() if filter_kwargs is None: filter_kwargs = dict() if noise_kwargs is None: noise_kwargs = dict() if vel_pert_kwargs is None: vel_pert_kwargs = dict() if mask_kwargs is None: mask_kwargs = dict() if np.any(~np.isfinite(R)): raise ValueError("R contains non-finite values") if np.any(~np.isfinite(V)): raise ValueError("V contains non-finite values") if mask_method not in ["obs", "sprog", "incremental", None]: raise ValueError("unknown mask method %s: must be 'obs', 'sprog' or 'incremental' or None" % mask_method) if conditional and R_thr is None: raise ValueError("conditional=True but R_thr is not set") if mask_method is not None and R_thr is None: raise ValueError("mask_method!=None but R_thr=None") if noise_stddev_adj not in ['auto', 'fixed', None]: raise ValueError("unknown noise_std_dev_adj method %s: must be 'auto', 'fixed', or None" % noise_stddev_adj) if kmperpixel is None: if vel_pert_method is not None: raise ValueError("vel_pert_method is set but kmperpixel=None") if mask_method == "incremental": raise ValueError("mask_method='incremental' but kmperpixel=None") if timestep is None: if vel_pert_method is not None: raise ValueError("vel_pert_method is set but timestep=None") if mask_method == "incremental": raise ValueError("mask_method='incremental' but timestep=None") print("Computing STEPS nowcast:") print("------------------------") print("") print("Inputs:") print("-------") print("input dimensions: %dx%d" % (R.shape[1], R.shape[2])) if kmperpixel is not None: print("km/pixel: %g" % kmperpixel) if timestep is not None: print("time step: %d minutes" % timestep) print("") print("Methods:") print("--------") print("extrapolation: %s" % extrap_method) print("bandpass filter: %s" % bandpass_filter_method) print("decomposition: %s" % decomp_method) print("noise generator: %s" % noise_method) print("noise adjustment: %s" % ("yes" if noise_stddev_adj else "no")) print("velocity perturbator: %s" % vel_pert_method) print("conditional statistics: %s" % ("yes" if conditional else "no")) print("precip. mask method: %s" % mask_method) print("probability matching: %s" % probmatching_method) print("FFT method: %s" % fft_method) print("domain: %s" % domain) print("") print("Parameters:") print("-----------") print("number of time steps: %d" % n_timesteps) print("ensemble size: %d" % n_ens_members) print("parallel threads: %d" % num_workers) print("number of cascade levels: %d" % n_cascade_levels) print("order of the AR(p) model: %d" % ar_order) if vel_pert_method == "bps": vp_par = vel_pert_kwargs.get("p_par", noise.motion.get_default_params_bps_par()) vp_perp = vel_pert_kwargs.get("p_perp", noise.motion.get_default_params_bps_perp()) print("velocity perturbations, parallel: %g,%g,%g" % \ (vp_par[0], vp_par[1], vp_par[2])) print("velocity perturbations, perpendicular: %g,%g,%g" % \ (vp_perp[0], vp_perp[1], vp_perp[2])) if conditional or mask_method is not None: print("precip. intensity threshold: %g" % R_thr) num_ensemble_workers = n_ens_members if num_workers > n_ens_members \ else num_workers if measure_time: starttime_init = time.time() fft = utils.get_method(fft_method, shape=R.shape[1:], n_threads=num_workers) M, N = R.shape[1:] # initialize the band-pass filter filter_method = cascade.get_method(bandpass_filter_method) filter = filter_method((M, N), n_cascade_levels, **filter_kwargs) decomp_method, recomp_method = cascade.get_method(decomp_method) extrapolator_method = extrapolation.get_method(extrap_method) x_values, y_values = np.meshgrid(np.arange(R.shape[2]), np.arange(R.shape[1])) xy_coords = np.stack([x_values, y_values]) R = R[-(ar_order + 1):, :, :].copy() if conditional: MASK_thr = np.logical_and.reduce([R[i, :, :] >= R_thr for i in range(R.shape[0])]) else: MASK_thr = None # advect the previous precipitation fields to the same position with the # most recent one (i.e. transform them into the Lagrangian coordinates) extrap_kwargs = extrap_kwargs.copy() extrap_kwargs['xy_coords'] = xy_coords res = list() def f(R, i): return extrapolator_method(R[i, :, :], V, ar_order - i, "min", **extrap_kwargs)[-1] for i in range(ar_order): if not DASK_IMPORTED: R[i, :, :] = f(R, i) else: res.append(dask.delayed(f)(R, i)) if DASK_IMPORTED: num_workers_ = len(res) if num_workers > len(res) else num_workers R = np.stack(list(dask.compute(*res, num_workers=num_workers_)) + [R[-1, :, :]]) if noise_method is not None: # get methods for perturbations init_noise, generate_noise = noise.get_method(noise_method) # initialize the perturbation generator for the precipitation field pp = init_noise(R, fft_method=fft, **noise_kwargs) if noise_stddev_adj == "auto": print("Computing noise adjustment coefficients... ", end="") sys.stdout.flush() if measure_time: starttime = time.time() R_min = np.min(R) noise_std_coeffs = noise.utils.compute_noise_stddev_adjs(R[-1, :, :], R_thr, R_min, filter, decomp_method, pp, generate_noise, 20, conditional=True, num_workers=num_workers) if measure_time: print("%.2f seconds." % (time.time() - starttime)) else: print("done.") elif noise_stddev_adj == "fixed": f = lambda k: 1.0 / (0.75 + 0.09 * k) noise_std_coeffs = [f(k) for k in range(1, n_cascade_levels + 1)] else: noise_std_coeffs = np.ones(n_cascade_levels) if noise_stddev_adj is not None: print("noise std. dev. coeffs: %s" % str(noise_std_coeffs)) # compute the cascade decompositions of the input precipitation fields R_d = [] for i in range(ar_order + 1): R_ = decomp_method(R[i, :, :], filter, mask=MASK_thr, fft_method=fft, output_domain=domain, normalize=True, compute_stats=True, compact_output=True) R_d.append(R_) # normalize the cascades and rearrange them into a four-dimensional array # of shape (n_cascade_levels,ar_order+1,m,n) for the autoregressive model R_c = nowcast_utils.stack_cascades(R_d, n_cascade_levels) R_d = R_d[-1] R_d = [R_d.copy() for j in range(n_ens_members)] # compute lag-l temporal autocorrelation coefficients for each cascade level GAMMA = np.empty((n_cascade_levels, ar_order)) for i in range(n_cascade_levels): GAMMA[i, :] = correlation.temporal_autocorrelation(R_c[i], mask=MASK_thr) nowcast_utils.print_corrcoefs(GAMMA) if ar_order == 2: # adjust the lag-2 correlation coefficient to ensure that the AR(p) # process is stationary for i in range(n_cascade_levels): GAMMA[i, 1] = autoregression.adjust_lag2_corrcoef2(GAMMA[i, 0], GAMMA[i, 1]) # estimate the parameters of the AR(p) model from the autocorrelation # coefficients PHI = np.empty((n_cascade_levels, ar_order + 1)) for i in range(n_cascade_levels): PHI[i, :] = autoregression.estimate_ar_params_yw(GAMMA[i, :]) nowcast_utils.print_ar_params(PHI) # discard all except the p-1 last cascades because they are not needed for # the AR(p) model R_c = [R_c[i][-ar_order:] for i in range(n_cascade_levels)] # stack the cascades into a list containing all ensemble members R_c = [[R_c[j].copy() for j in range(n_cascade_levels)] for i in range(n_ens_members)] # initialize the random generators if noise_method is not None: randgen_prec = [] randgen_motion = [] np.random.seed(seed) for j in range(n_ens_members): rs = np.random.RandomState(seed) randgen_prec.append(rs) seed = rs.randint(0, high=1e9) rs = np.random.RandomState(seed) randgen_motion.append(rs) seed = rs.randint(0, high=1e9) if vel_pert_method is not None: init_vel_noise, generate_vel_noise = noise.get_method(vel_pert_method) # initialize the perturbation generators for the motion field vps = [] for j in range(n_ens_members): kwargs = {"randstate": randgen_motion[j], "p_par": vp_par, "p_perp": vp_perp} vp_ = init_vel_noise(V, 1. / kmperpixel, timestep, **kwargs) vps.append(vp_) D = [None for j in range(n_ens_members)] R_f = [[] for j in range(n_ens_members)] if probmatching_method == "mean": mu_0 = np.mean(R[-1, :, :][R[-1, :, :] >= R_thr]) R_m = None if mask_method is not None: MASK_prec = R[-1, :, :] >= R_thr if mask_method == "obs": pass elif mask_method == "sprog": # compute the wet area ratio and the precipitation mask war = 1.0 * np.sum(MASK_prec) / (R.shape[1] * R.shape[2]) R_m = [R_c[0][i].copy() for i in range(n_cascade_levels)] R_m_d = R_d[0].copy() elif mask_method == "incremental": # get mask parameters mask_rim = mask_kwargs.get("mask_rim", 10) mask_f = mask_kwargs.get("mask_f", 1.) # initialize the structuring element struct = scipy.ndimage.generate_binary_structure(2, 1) # iterate it to expand it nxn n = mask_f * timestep / kmperpixel struct = scipy.ndimage.iterate_structure(struct, int((n - 1) / 2.)) # initialize precip mask for each member MASK_prec = _compute_incremental_mask(MASK_prec, struct, mask_rim) MASK_prec = [MASK_prec.copy() for j in range(n_ens_members)] if noise_method is None and R_m is None: R_m = [R_c[0][i].copy() for i in range(n_cascade_levels)] fft_objs = [] for i in range(n_ens_members): fft_objs.append(utils.get_method(fft_method, shape=R.shape[1:])) if measure_time: init_time = time.time() - starttime_init R = R[-1, :, :] print("Starting nowcast computation.") if measure_time: starttime_mainloop = time.time() # iterate each time step for t in range(n_timesteps): print("Computing nowcast for time step %d... " % (t + 1), end="") sys.stdout.flush() if measure_time: starttime = time.time() if noise_method is None or mask_method == "sprog": for i in range(n_cascade_levels): # use a separate AR(p) model for the non-perturbed forecast, # from which the mask is obtained R_m[i] = autoregression.iterate_ar_model(R_m[i], PHI[i, :]) #R_m_ = nowcast_utils.recompose_cascade(R_m[:, -1, :, :], mu, sigma) R_m_d["cascade_levels"] = [R_m[i][-1] for i in range(n_cascade_levels)] if domain == "spatial": R_m_d["cascade_levels"] = np.stack(R_m_d["cascade_levels"]) R_m_ = recomp_method(R_m_d) if domain == "spectral": R_m_ = fft.irfft2(R_m_) if mask_method == "sprog": MASK_prec = _compute_sprog_mask(R_m_, war) # the nowcast iteration for each ensemble member def worker(j): if noise_method is not None: # generate noise field EPS = generate_noise(pp, randstate=randgen_prec[j], fft_method=fft_objs[j], domain=domain) # decompose the noise field into a cascade EPS = decomp_method(EPS, filter, fft_method=fft_objs[j], input_domain=domain, output_domain=domain, compute_stats=True, normalize=True, compact_output=True) else: EPS = None # iterate the AR(p) model for each cascade level for i in range(n_cascade_levels): # normalize the noise cascade if EPS is not None: EPS_ = EPS["cascade_levels"][i] EPS_ *= noise_std_coeffs[i] else: EPS_ = None # apply AR(p) process to cascade level if EPS is not None or vel_pert_method is not None: R_c[j][i] = \ autoregression.iterate_ar_model(R_c[j][i], PHI[i, :], eps=EPS_) else: # use the deterministic AR(p) model computed above if # perturbations are disabled R_c[j][i] = R_m[i] EPS = None EPS_ = None # compute the recomposed precipitation field(s) from the cascades # obtained from the AR(p) model(s) R_d[j]["cascade_levels"] = [R_c[j][i][-1, :] for i in range(n_cascade_levels)] if domain == "spatial": R_d[j]["cascade_levels"] = np.stack(R_d[j]["cascade_levels"]) R_c_ = recomp_method(R_d[j]) if domain == "spectral": R_c_ = fft_objs[j].irfft2(R_c_) if mask_method is not None: # apply the precipitation mask to prevent generation of new # precipitation into areas where it was not originally # observed R_cmin = R_c_.min() if mask_method == "incremental": R_c_ = R_cmin + (R_c_ - R_cmin) * MASK_prec[j] MASK_prec_ = R_c_ > R_cmin else: MASK_prec_ = MASK_prec # Set to min value outside of mask R_c_[~MASK_prec_] = R_cmin if probmatching_method == "cdf": # adjust the CDF of the forecast to match the most recently # observed precipitation field R_c_ = probmatching.nonparam_match_empirical_cdf(R_c_, R) elif probmatching_method == "mean": MASK = R_c_ >= R_thr mu_fct = np.mean(R_c_[MASK]) R_c_[MASK] = R_c_[MASK] - mu_fct + mu_0 if mask_method == "incremental": MASK_prec[j] = _compute_incremental_mask(R_c_ >= R_thr, struct, mask_rim) # compute the perturbed motion field if vel_pert_method is not None: V_ = V + generate_vel_noise(vps[j], (t + 1) * timestep) else: V_ = V # advect the recomposed precipitation field to obtain the forecast # for time step t extrap_kwargs.update({"D_prev": D[j], "return_displacement": True}) R_f_, D_ = extrapolator_method(R_c_, V_, 1, **extrap_kwargs) D[j] = D_ R_f_ = R_f_[0] return R_f_ res = [] for j in range(n_ens_members): if not DASK_IMPORTED or n_ens_members == 1: res.append(worker(j)) else: res.append(dask.delayed(worker)(j)) R_f_ = dask.compute(*res, num_workers=num_ensemble_workers) \ if DASK_IMPORTED and n_ens_members > 1 else res res = None if measure_time: print("%.2f seconds." % (time.time() - starttime)) else: print("done.") if callback is not None: callback(np.stack(R_f_)) R_f_ = None if return_output: for j in range(n_ens_members): R_f[j].append(R_f_[j]) if measure_time: mainloop_time = time.time() - starttime_mainloop if return_output: outarr = np.stack([np.stack(R_f[j]) for j in range(n_ens_members)]) if measure_time: return outarr, init_time, mainloop_time else: return outarr else: return None def _check_inputs(R, V, ar_order): if len(R.shape) != 3: raise ValueError("R must be a three-dimensional array") if R.shape[0] < ar_order + 1: raise ValueError("R.shape[0] < ar_order+1") if len(V.shape) != 3: raise ValueError("V must be a three-dimensional array") if R.shape[1:3] != V.shape[1:3]: raise ValueError("dimension mismatch between R and V: shape(R)=%s, shape(V)=%s" % \ (str(R.shape), str(V.shape))) def _compute_incremental_mask(Rbin, kr, r): # buffer the observation mask Rbin using the kernel kr # add a grayscale rim r (for smooth rain/no-rain transition) # buffer observation mask Rbin = np.ndarray.astype(Rbin.copy(), "uint8") Rd = scipy.ndimage.morphology.binary_dilation(Rbin, kr) # add grayscale rim kr1 = scipy.ndimage.generate_binary_structure(2, 1) mask = Rd.astype(float) for n in range(r): Rd = scipy.ndimage.morphology.binary_dilation(Rd, kr1) mask += Rd # normalize between 0 and 1 return mask / mask.max() def _compute_sprog_mask(R, war): # obtain the CDF from the non-perturbed forecast that is # scale-filtered by the AR(p) model R_s = R.flatten() # compute the threshold value R_pct_thr corresponding to the # same fraction of precipitation pixels (forecast values above # R_thr) as in the most recently observed precipitation field R_s.sort(kind="quicksort") x = 1.0 * np.arange(1, len(R_s) + 1)[::-1] / len(R_s) i = np.argmin(abs(x - war)) # handle ties if R_s[i] == R_s[i + 1]: i = np.where(R_s == R_s[i])[0][-1] + 1 R_pct_thr = R_s[i] # determine a mask using the above threshold value to preserve the # wet-area ratio return R >= R_pct_thr
python
29,447
# Copyright 2020 Antonio Macaluso # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### Experiments ### from Utils_Spline import * lower = -1. upper = 1. step = .1 ## Definition of the interval of B-Spline c=.5 label = 'relu' def relu(x, c = 0): """ Compute the value of the relu function with parameter c, for a given point x. :param x: (float) input coordinate :param c: (float) shifting parameter :return: (float) the value of the relu function """ return c + max(0.0, x) x = np.arange(lower, upper + .03, step).tolist() y = [ relu(value, c) for value in x] data_coef = coeff_splines_estimation(x, y, label) # data_coef = pd.read_csv('results/relu_full.csv') data_est = estimate_function(data_coef, relu, label, c=0, step=step) data_est.hybrid_quantum = data_est.hybrid_quantum-c data_est.classical_spline = data_est.classical_spline -c data_est.to_csv('results/' + label + '_estimates.csv', index=False) plot_activation(label, data_est, data_coef, full = True) plot_activation(label, data_est, data_coef, full = False)
python
1,552
import django.core.validators from django.db import migrations, models import django.utils.timezone import model_utils.fields import sorl.thumbnail.fields class Migration(migrations.Migration): replaces = [('photo', '0001_initial'), ('photo', '0002_imagefile_crop_diameter'), ('photo', '0003_auto_20150228_2151')] dependencies = [ ('contributors', '0001_initial'), ] operations = [ migrations.CreateModel( name='ImageFile', fields=[ ( 'id', models.AutoField( serialize=False, primary_key=True, verbose_name='ID', auto_created=True ) ), ( 'created', model_utils.fields.AutoCreatedField( default=django.utils.timezone.now, verbose_name='created', editable=False ) ), ( 'modified', model_utils.fields.AutoLastModifiedField( default=django.utils.timezone.now, verbose_name='modified', editable=False ) ), ( 'source_file', sorl.thumbnail.fields.ImageField( max_length=1024, upload_to='', height_field='full_height', width_field='full_width' ) ), ( 'full_height', models.PositiveIntegerField( verbose_name='full height', editable=False, help_text='full height in pixels' ) ), ( 'full_width', models.PositiveIntegerField( verbose_name='full height', editable=False, help_text='full height in pixels' ) ), ( 'from_top', models.PositiveSmallIntegerField( validators=[ django.core.validators.MaxValueValidator(100), django.core.validators.MinValueValidator(0) ], default=50, help_text='image crop vertical. Between 0% and 100%.' ) ), ( 'from_left', models.PositiveSmallIntegerField( validators=[ django.core.validators.MaxValueValidator(100), django.core.validators.MinValueValidator(0) ], default=50, help_text='image crop horizontal. Between 0% and 100%.' ) ), ( 'cropping_method', models.PositiveSmallIntegerField( default=0, help_text='How this image has been cropped.', choices=[(0, 'center'), (5, 'corner detection'), (10, 'multiple faces'), (15, 'single face'), (100, 'manual crop')] ) ), ( 'old_file_path', models.CharField( help_text='previous path if the image has been moved.', max_length=1000, blank=True, null=True ) ), ( 'copyright_information', models.CharField( help_text= 'extra information about license and attribution if needed.', max_length=1000, blank=True, null=True ) ), ( 'contributor', models.ForeignKey( on_delete=models.CASCADE, to='contributors.Contributor', blank=True, help_text='who made this', null=True ) ), ( 'crop_diameter', models.PositiveSmallIntegerField( validators=[ django.core.validators.MaxValueValidator(100), django.core.validators.MinValueValidator(0) ], default=100, help_text= 'area containing most relevant content. Area is considered a circle with center x,y and diameter d where x and y are the values "from_left" and "from_right" and d is a percentage of the shortest axis. This is used for close cropping of some images, for instance byline photos.' ) ), ], options={ 'verbose_name': 'ImageFile', 'verbose_name_plural': 'ImageFiles', }, bases=(models.Model, ), ), ]
python
5,725
# Generated by Django 3.2 on 2021-05-04 13:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('reman', '0009_auto_20210329_1352'), ] operations = [ migrations.RemoveField( model_name='ecurefbase', name='cal_ktag', ), migrations.RemoveField( model_name='ecurefbase', name='open_diag', ), migrations.RemoveField( model_name='ecurefbase', name='ref_cal_out', ), migrations.RemoveField( model_name='ecurefbase', name='ref_comp', ), migrations.RemoveField( model_name='ecurefbase', name='ref_mat', ), migrations.RemoveField( model_name='ecurefbase', name='ref_psa_out', ), migrations.RemoveField( model_name='ecurefbase', name='status', ), migrations.RemoveField( model_name='sparepart', name='repairs', ), migrations.AddField( model_name='ecutype', name='cal_ktag', field=models.CharField(blank=True, max_length=10, verbose_name='CAL_KTAG'), ), migrations.AddField( model_name='ecutype', name='open_diag', field=models.CharField(blank=True, max_length=16, verbose_name='OPENDIAG'), ), migrations.AddField( model_name='ecutype', name='ref_cal_out', field=models.CharField(blank=True, max_length=10, verbose_name='REF_CAL_OUT'), ), migrations.AddField( model_name='ecutype', name='ref_comp', field=models.CharField(blank=True, max_length=10, verbose_name='REF_COMP'), ), migrations.AddField( model_name='ecutype', name='ref_mat', field=models.CharField(blank=True, max_length=10, verbose_name='REF_MAT'), ), migrations.AddField( model_name='ecutype', name='ref_psa_out', field=models.CharField(blank=True, max_length=10, verbose_name='REF_PSA_OUT'), ), migrations.AddField( model_name='ecutype', name='status', field=models.CharField(blank=True, max_length=16, verbose_name='STATUT'), ), migrations.AlterField( model_name='ecutype', name='hw_reference', field=models.CharField(max_length=20, verbose_name='hardware'), ), migrations.AlterField( model_name='ecutype', name='technical_data', field=models.CharField(max_length=50, verbose_name='modèle produit'), ), migrations.AlterUniqueTogether( name='ecutype', unique_together={('hw_reference', 'technical_data')}, ), ]
python
2,970
import typing import numpy as np from gym import spaces from stable_baselines3.common.preprocessing import is_image_space from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvWrapper if typing.TYPE_CHECKING: from stable_baselines3.common.type_aliases import GymStepReturn # noqa: F401 class VecTransposeImage(VecEnvWrapper): """ Re-order channels, from HxWxC to CxHxW. It is required for PyTorch convolution layers. :param venv: (VecEnv) """ def __init__(self, venv: VecEnv): assert is_image_space(venv.observation_space), "The observation space must be an image" observation_space = self.transpose_space(venv.observation_space) super(VecTransposeImage, self).__init__(venv, observation_space=observation_space) @staticmethod def transpose_space(observation_space: spaces.Box) -> spaces.Box: """ Transpose an observation space (re-order channels). :param observation_space: (spaces.Box) :return: (spaces.Box) """ assert is_image_space(observation_space), "The observation space must be an image" width, height, channels = observation_space.shape new_shape = (channels, width, height) return spaces.Box(low=0, high=255, shape=new_shape, dtype=observation_space.dtype) @staticmethod def transpose_image(image: np.ndarray) -> np.ndarray: """ Transpose an image or batch of images (re-order channels). :param image: (np.ndarray) :return: (np.ndarray) """ if len(image.shape) == 3: return np.transpose(image, (2, 0, 1)) return np.transpose(image, (0, 3, 1, 2)) def step_wait(self) -> "GymStepReturn": observations, rewards, dones, infos = self.venv.step_wait() return self.transpose_image(observations), rewards, dones, infos def reset(self) -> np.ndarray: """ Reset all environments """ return self.transpose_image(self.venv.reset()) def close(self) -> None: self.venv.close()
python
2,084
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class Webbench(MakefilePackage): """Webbench is a simple website pressure test tool used in Linux.""" homepage = "http://home.tiscali.cz/~cz210552/webbench.html" git = "https://github.com/EZLippi/WebBench.git" version('1.5', commit='b1acf3c01cc914729fe188dfc8ed761858028d4f') depends_on('ntirpc') def setup_build_environment(self, env): env.prepend_path('CPATH', self.spec['ntirpc'].prefix.include.ntirpc) def edit(self, spec, prefix): makefile = FileFilter('Makefile') makefile.filter('$(DESTDIR)/usr/local/man/man1', self.prefix.man.man1, string=True) def install(self, spec, prefix): make('install', 'PREFIX={0}'.format(prefix))
python
959
class Leapx_org(): def __init__(self,first,last,pay): self.f_name = first self.l_name = last self.pay_amt = pay self.full_name = first+" "+last def make_email(self): return self.f_name+ "."+self.l_name+"@xyz.com" L_obj1 = Leapx_org('mohit', 'RAJ',60000) print L_obj1 print "\n" print "Lenght is ",len(L_obj1)
python
335
from datetime import datetime from Counter import Counter from DateTools import DateTools from Ssh import Ssh from XmlReader import XmlReader class Ctrl: compt = 0 comptIte = 0 comptVide = 0 comptIgn = 0 comptIgnList = 0 comptNotInRange = 0 comptError = 0 comptOk = 0 addAutomaticallyIp = False configReader = None ignoredIpReader = None addressSubnet = None controllerAntenna = None ignoredIp = [] newIgnoredIp = [] counter = None sshConnector = None dateStart = None dateEnd = None def __init__(self): self.configReader = XmlReader("config") self.addressSubnet = self.configReader.readConfigAddresses() self.controllerAntenna = self.configReader.readConfigController() self.ignoredIpReader = XmlReader("ignoredIp") self.ignoredIp = self.ignoredIpReader.readIgnoredIp() def load(self): print( 'Addresses: ' + str(self.addressSubnet.ip1) + '.' + str(self.addressSubnet.ip2) + '.' + str( self.addressSubnet.ip3) + '.' + str( self.addressSubnet.ip4) + ' /' + str(self.addressSubnet.mask)) print( 'Range: ' + str(self.addressSubnet.rangeStart1) + '.' + str(self.addressSubnet.rangeStart2) + '.' + str( self.addressSubnet.rangeStart3) + '.' + str(self.addressSubnet.rangeStart4) + '-' + str( self.addressSubnet.rangeEnd1) + '.' + str(self.addressSubnet.rangeEnd2) + '.' + str( self.addressSubnet.rangeEnd3) + '.' + str(self.addressSubnet.rangeEnd4)) print('User: ' + self.controllerAntenna.user) print('Password: ' + self.controllerAntenna.mdp) print('Url: http://unifi.' + self.controllerAntenna.url + ':' + str(self.controllerAntenna.port) + '/inform') print('Timeout: ' + str( self.controllerAntenna.timeout) + ' (Number of seconds before an address is set as empty)') print('Ignored ip: ' + str(len(self.ignoredIp))) def prestart(self): modify = input('Would you like to modify the informations ? (y/n) [n]: ') if modify.__eq__('y'): subnet = input( 'subnet [' + str(self.addressSubnet.ip1) + '.' + str(self.addressSubnet.ip2) + '.' + str( self.addressSubnet.ip3) + '.' + str(self.addressSubnet.ip4) + ']: ') if subnet: ip1, ip2, ip3, ip4 = subnet.split('.', 4) self.addressSubnet.ip1 = int(ip1) self.addressSubnet.ip2 = int(ip2) self.addressSubnet.ip3 = int(ip3) self.addressSubnet.ip4 = int(ip4) mask = input('Mask [' + str(self.addressSubnet.mask) + ']: ') if mask: self.addressSubnet.mask = int(mask) rangeStart = input( 'Range start [' + str(self.addressSubnet.rangeStart1) + '.' + str( self.addressSubnet.rangeStart2) + '.' + str( self.addressSubnet.rangeStart3) + '.' + str(self.addressSubnet.rangeStart4) + ']: ') if rangeStart: rsip1, rsip2, rsip3, rsip4 = rangeStart.split('.', 4) self.addressSubnet.rangeStart1 = int(rsip1) self.addressSubnet.rangeStart2 = int(rsip2) self.addressSubnet.rangeStart3 = int(rsip3) self.addressSubnet.rangeStart4 = int(rsip4) rangeEnd = input( 'Range end [' + str(self.addressSubnet.rangeEnd1) + '.' + str( self.addressSubnet.rangeEnd2) + '.' + str( self.addressSubnet.rangeEnd3) + '.' + str(self.addressSubnet.rangeEnd4) + ']: ') if rangeEnd: reip1, reip2, reip3, reip4 = rangeEnd.split('.', 4) self.addressSubnet.rangeEnd1 = int(reip1) self.addressSubnet.rangeEnd2 = int(reip2) self.addressSubnet.rangeEnd3 = int(reip3) self.addressSubnet.rangeEnd4 = int(reip4) user = input('User [' + self.controllerAntenna.user + ']: ') if user: self.controllerAntenna.user = user password = input('Password [' + self.controllerAntenna.mdp + ']: ') if password: self.controllerAntenna.mdp = password url = input('Url http://unifi.[' + self.controllerAntenna.url + ']/inform: ') if url: self.controllerAntenna.url = url port = input('Port [' + str(self.controllerAntenna.port) + ']: ') if port: self.controllerAntenna.port = int(port) timeout = input('Timeout: [' + str(self.controllerAntenna.timeout) + ']: ') if timeout: self.controllerAntenna.timeout = int(timeout) overwriteConfigFile = input('Would you like to overwrite config files ? (y/n) [n]: ') if overwriteConfigFile.__eq__('y'): if not self.configReader.writeConfig(self.addressSubnet, self.controllerAntenna): print('Error when writing the configuration files') elif modify.__eq__('kebab83'): print('Hummm, très bon kebab') seeAddressesIgnored = input('Would you like to see the ignored ip ? (y/n) [n]: ') if seeAddressesIgnored.__eq__('y'): for ip in self.ignoredIp: print(ip) modifAddressesIgnored = input('Would you like to modify the ignored ip list? (y/n) [n]: ') if modifAddressesIgnored.__eq__('y'): print('Writes the replacement address (None = no change / - = delete / -all = delete all): ') delete = False self.newIgnoredIp = [] for ip in self.ignoredIp: if not delete: newAddress = input(ip + ' :') if newAddress == '-all': delete = True elif newAddress == '': self.newIgnoredIp.append(ip) elif not newAddress == '-': self.newIgnoredIp.append(newAddress) if delete: self.newIgnoredIp = [] print('Writes new range (None = no): ') addRange = input('') while addRange: for rangeIp in self.ignoredIpReader.readRange(addRange): self.newIgnoredIp.append(rangeIp) addRange = input('') print('Writes new address (None = no): ') addIp = input('') while addIp: self.newIgnoredIp.append(addIp) addIp = input('') self.ignoredIp = self.newIgnoredIp overwriteIpfile = input('Would you like to overwrite the ignored ip files ? (y/n) [n]: ') if overwriteIpfile.__eq__('y'): if not self.ignoredIpReader.writeIgnoredIp(self.ignoredIp): print('Error when writing the IP files') runScan = input('Would you like to run the scan ? (y/n) [y]: ') if runScan.__eq__('n'): return False addressesIgnored = input('Would you like to add automatically the non-valid ip to the files ? (y/n) [n]: ') if addressesIgnored.__eq__('y'): self.addAutomaticallyIp = True return True def start(self): self.compt = 2 ** (32 - self.addressSubnet.mask) - 2 self.counter = Counter(self.addressSubnet) self.sshConnector = Ssh(self.controllerAntenna) print( '#########################################################################################################') self.dateStart = datetime.now() dtS_string = self.dateStart.strftime("%d/%m/%Y %H:%M:%S") print('Start at ' + dtS_string) def isInRange(self, ip): result = False ip1, ip2, ip3, ip4 = ip.split('.', 4) ip1 = int(ip1) ip2 = int(ip2) ip3 = int(ip3) ip4 = int(ip4) if self.addressSubnet.rangeStart1 <= ip1 and ip1 <= self.addressSubnet.rangeEnd1: if self.addressSubnet.rangeStart2 <= ip2 and ip2 <= self.addressSubnet.rangeEnd2: if self.addressSubnet.rangeStart3 <= ip3 and ip3 <= self.addressSubnet.rangeEnd3: if self.addressSubnet.rangeStart4 <= ip4 and ip4 <= self.addressSubnet.rangeEnd4: result = True return result def scan(self): while self.compt > 0: ip = self.counter.counter() print(ip, end=': ', flush=True) if self.isInRange(ip): try: self.ignoredIp.index(ip) self.comptIgn = self.comptIgn + 1 self.comptIgnList = self.comptIgnList + 1 print("Ignored from the list") except ValueError: result = self.sshConnector.addtocontroller(ip) if result.__eq__('Ok'): self.comptOk = self.comptOk + 1 elif result.__eq__('Empty'): if self.addAutomaticallyIp: self.ignoredIp.append(ip) self.comptVide = self.comptVide + 1 elif result.__eq__('Ignored'): if self.addAutomaticallyIp: self.ignoredIp.append(ip) self.comptIgn = self.comptIgn + 1 else: if self.addAutomaticallyIp: self.ignoredIp.append(ip) self.comptError = self.comptError + 1 print(result) else: self.comptIgn = self.comptIgn + 1 self.comptNotInRange = self.comptNotInRange + 1 print("Not in range") self.compt = self.compt - 1 self.comptIte = self.comptIte + 1 def finish(self): print( '#########################################################################################################') if self.addAutomaticallyIp: self.ignoredIpReader.writeIgnoredIp(self.ignoredIp) self.dateEnd = datetime.now() dtE_string = self.dateEnd.strftime("%d/%m/%Y %H:%M:%S") print("Finish at " + dtE_string + " with " + str(self.comptIte) + " addresses tested: " + str( self.comptVide) + " empty, " + str( self.comptIgn) + " ignored (" + str( self.comptIgnList) + " from the list, " + str(self.comptNotInRange) + " not in range), " + str( self.comptError) + " with error and " + str(self.comptOk) + " ok") hours, minutes, seconds = DateTools.convert_timedelta(abs(self.dateStart - self.dateEnd)) print("Time: " + str(hours) + " hours " + str(minutes) + " minutes " + str(seconds) + " seconds")
python
11,077
from fabric.api import env env.client = 'zsoobhan' env.project_code = 'prometheus' env.web_dir = 'www' # Environment-agnostic folders env.project_dir = '/var/www/%(client)s/%(project_code)s' % env env.static_dir = '/mnt/static/%(client)s/%(project_code)s' % env env.builds_dir = '%(project_dir)s/builds' % env def _configure(build_name): env.build = build_name env.virtualenv = '%(project_dir)s/virtualenvs/%(build)s/' % env env.data_dir = '%(project_dir)s/data/%(build)s/' % env env.nginx_conf = 'www/deploy/nginx/%(build)s.conf' % env env.supervisord_conf = 'www/deploy/supervisord/%(build)s.conf' % env env.wsgi = 'deploy/wsgi/%(build)s.wsgi' % env env.webserver_user = 'www-data' def prod(): _configure('prod') env.hosts = ['46.101.74.134'] env.remote_user = 'root' def test(): _configure('test') env.remote_user = 'ubuntu'
python
885
# Copyright 2018-2022 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Version information. Version number (major.minor.patch[-label]) """ __version__ = "0.24.0"
python
697
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange # ----------------------------------------------------------------------------- try: basestring # Python 3 except NameError: basestring = str # Python 2 import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import NotSupported from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import OnMaintenance from ccxt.base.errors import InvalidNonce from ccxt.base.precise import Precise class exmo(Exchange): def describe(self): return self.deep_extend(super(exmo, self).describe(), { 'id': 'exmo', 'name': 'EXMO', 'countries': ['ES', 'RU'], # Spain, Russia 'rateLimit': 350, # once every 350 ms ≈ 180 requests per minute ≈ 3 requests per second 'version': 'v1.1', 'has': { 'cancelOrder': True, 'CORS': False, 'createOrder': True, 'fetchBalance': True, 'fetchCurrencies': True, 'fetchDepositAddress': True, 'fetchFundingFees': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': 'emulated', 'fetchOrderBook': True, 'fetchOrderBooks': True, 'fetchOrderTrades': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTrades': True, 'fetchTradingFee': True, 'fetchTradingFees': True, 'fetchTransactions': True, 'withdraw': True, }, 'timeframes': { '1m': '1', '5m': '5', '15m': '15', '30m': '30', '45m': '45', '1h': '60', '2h': '120', '3h': '180', '4h': '240', '1d': 'D', '1w': 'W', '1M': 'M', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27766491-1b0ea956-5eda-11e7-9225-40d67b481b8d.jpg', 'api': { 'public': 'https://api.exmo.com', 'private': 'https://api.exmo.com', 'web': 'https://exmo.me', }, 'www': 'https://exmo.me', 'referral': 'https://exmo.me/?ref=131685', 'doc': [ 'https://exmo.me/en/api_doc?ref=131685', 'https://github.com/exmo-dev/exmo_api_lib/tree/master/nodejs', ], 'fees': 'https://exmo.com/en/docs/fees', }, 'api': { 'web': { 'get': [ 'ctrl/feesAndLimits', 'en/docs/fees', ], }, 'public': { 'get': [ 'currency', 'currency/list/extended', 'order_book', 'pair_settings', 'ticker', 'trades', 'candles_history', 'required_amount', 'payments/providers/crypto/list', ], }, 'private': { 'post': [ 'user_info', 'order_create', 'order_cancel', 'stop_market_order_create', 'stop_market_order_cancel', 'user_open_orders', 'user_trades', 'user_cancelled_orders', 'order_trades', 'deposit_address', 'withdraw_crypt', 'withdraw_get_txid', 'excode_create', 'excode_load', 'code_check', 'wallet_history', 'wallet_operations', ], }, }, 'fees': { 'trading': { 'feeSide': 'get', 'tierBased': False, 'percentage': True, 'maker': 0.2 / 100, 'taker': 0.2 / 100, }, 'funding': { 'tierBased': False, 'percentage': False, # fixed funding fees for crypto, see fetchFundingFees below }, }, 'options': { 'useWebapiForFetchingFees': False, # TODO: figure why Exmo bans us when we try to fetch() their web urls 'feesAndLimits': { 'success': 1, 'ctlr': 'feesAndLimits', 'error': '', 'data': { 'limits': [ {'pair': 'BTC/USD', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '1', 'max_p': '30000', 'min_a': '1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTC/RUB', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '1', 'max_p': '2000000', 'min_a': '10', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTC/EUR', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '1', 'max_p': '30000', 'min_a': '1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTC/GBP', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '1', 'max_p': '30000', 'min_a': '1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTC/UAH', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '1', 'max_p': '15000000', 'min_a': '10', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTC/PLN', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '1', 'max_p': '20000000', 'min_a': '50', 'max_a': '2000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTC/TRY', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '1', 'max_p': '800000', 'min_a': '40', 'max_a': '6000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTC/KZT', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '1000', 'max_p': '12000000', 'min_a': '1000', 'max_a': '100000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTC/USDT', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '0.01', 'max_p': '30000', 'min_a': '3', 'max_a': '500000', 'taker': '0', 'maker': '0'}, {'pair': 'ETH/BTC', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.00000001', 'max_p': '10', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/USD', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/RUB', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '150', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XRP/BTC', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.0000001', 'max_p': '1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XRP/USD', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.001', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XRP/RUB', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.000001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ADA/BTC', 'min_q': '1', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ADA/ETH', 'min_q': '0.01', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '10', 'min_a': '0.001', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ADA/USD', 'min_q': '0.01', 'max_q': '10000000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ALGO/EXM', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.001', 'max_p': '10000', 'min_a': '1', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ALGO/BTC', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.000001', 'max_a': '50', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ALGO/USDT', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '1', 'max_a': '500000', 'taker': '0', 'maker': '0'}, {'pair': 'ALGO/RUB', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.000001', 'max_p': '10000', 'min_a': '1', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ALGO/EUR', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ATOM/EXM', 'min_q': '1', 'max_q': '500000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '200', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ATOM/BTC', 'min_q': '1', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ATOM/USD', 'min_q': '1', 'max_q': '500000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.5', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ATOM/EUR', 'min_q': '1', 'max_q': '500000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.5', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BCH/USD', 'min_q': '0.003', 'max_q': '5000', 'min_p': '0.00000001', 'max_p': '30000', 'min_a': '0.0001', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BCH/RUB', 'min_q': '0.003', 'max_q': '5000', 'min_p': '0.00000001', 'max_p': '2000000', 'min_a': '0.0001', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BCH/EUR', 'min_q': '0.003', 'max_q': '5000', 'min_p': '0.01', 'max_p': '300000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BCH/UAH', 'min_q': '0.003', 'max_q': '5000', 'min_p': '0.1', 'max_p': '30000', 'min_a': '10', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BCH/BTC', 'min_q': '0.003', 'max_q': '5000', 'min_p': '0.00000001', 'max_p': '5', 'min_a': '0.0001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BCH/ETH', 'min_q': '0.003', 'max_q': '5000', 'min_p': '0.0000001', 'max_p': '200', 'min_a': '0.0001', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BCH/USDT', 'min_q': '0.003', 'max_q': '5000', 'min_p': '0.01', 'max_p': '5000', 'min_a': '3', 'max_a': '500000', 'taker': '0', 'maker': '0'}, {'pair': 'BTG/USD', 'min_q': '0.01', 'max_q': '100000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTG/BTC', 'min_q': '0.01', 'max_q': '100000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTG/ETH', 'min_q': '0.01', 'max_q': '100000', 'min_p': '0.0001', 'max_p': '100', 'min_a': '0.01', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTT/RUB', 'min_q': '1', 'max_q': '500000000', 'min_p': '0.000001', 'max_p': '1000', 'min_a': '0.000001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTT/UAH', 'min_q': '1', 'max_q': '500000000', 'min_p': '0.000001', 'max_p': '1000', 'min_a': '0.000001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'BTT/BTC', 'min_q': '1', 'max_q': '500000000', 'min_p': '0.00000001', 'max_p': '0.1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'CRON/BTC', 'min_q': '1', 'max_q': '100000', 'min_p': '0.0000001', 'max_p': '1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'CRON/ETH', 'min_q': '1', 'max_q': '100000', 'min_p': '0.0000001', 'max_p': '10', 'min_a': '0.00001', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'CRON/USDT', 'min_q': '1', 'max_q': '100000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.001', 'max_a': '500000', 'taker': '0', 'maker': '0'}, {'pair': 'CRON/EXM', 'min_q': '1', 'max_q': '100000000', 'min_p': '0.00000001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '100000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DAI/USD', 'min_q': '1', 'max_q': '500000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DAI/RUB', 'min_q': '1', 'max_q': '500000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '0.5', 'max_a': '30000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DAI/BTC', 'min_q': '1', 'max_q': '500000', 'min_p': '0.0000001', 'max_p': '0.1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DAI/ETH', 'min_q': '1', 'max_q': '500000', 'min_p': '0.000001', 'max_p': '10', 'min_a': '0.0001', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DASH/USD', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.01', 'max_p': '10000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DASH/RUB', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '150', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DASH/UAH', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.01', 'max_p': '200000', 'min_a': '10', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DASH/BTC', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.0001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DASH/USDT', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.01', 'max_p': '5000', 'min_a': '3', 'max_a': '500000', 'taker': '0', 'maker': '0'}, {'pair': 'DCR/RUB', 'min_q': '0.01', 'max_q': '50000', 'min_p': '0.00001', 'max_p': '100000', 'min_a': '0.5', 'max_a': '3000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DCR/UAH', 'min_q': '0.01', 'max_q': '50000', 'min_p': '0.00001', 'max_p': '100000', 'min_a': '0.25', 'max_a': '1000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DCR/BTC', 'min_q': '0.01', 'max_q': '50000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DOGE/USD', 'min_q': '100', 'max_q': '500000000', 'min_p': '0.0000001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'DOGE/BTC', 'min_q': '100', 'max_q': '500000000', 'min_p': '0.0000001', 'max_p': '1', 'min_a': '0.0001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'EOS/USD', 'min_q': '0.01', 'max_q': '500000', 'min_p': '0.01', 'max_p': '1000', 'min_a': '0.5', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'EOS/EUR', 'min_q': '0.01', 'max_q': '500000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.5', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'EOS/BTC', 'min_q': '0.01', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETC/USD', 'min_q': '0.2', 'max_q': '100000', 'min_p': '0.01', 'max_p': '10000', 'min_a': '0.01', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETC/RUB', 'min_q': '0.2', 'max_q': '100000', 'min_p': '0.01', 'max_p': '10000', 'min_a': '0.01', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETC/BTC', 'min_q': '0.2', 'max_q': '100000', 'min_p': '0.0001', 'max_p': '0.5', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/EUR', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/GBP', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/UAH', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.01', 'max_p': '1000000', 'min_a': '90', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/PLN', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '50', 'max_a': '2000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/TRY', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.1', 'max_p': '80000', 'min_a': '10', 'max_a': '6000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/KZT', 'min_q': '0.001', 'max_q': '5000', 'min_p': '4', 'max_p': '40000000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETH/USDT', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '3', 'max_a': '500000', 'taker': '0', 'maker': '0'}, {'pair': 'ETH/LTC', 'min_q': '0.001', 'max_q': '5000', 'min_p': '0.00000001', 'max_p': '100000', 'min_a': '0.05', 'max_a': '100000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETZ/BTC', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.0001', 'max_a': '10', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETZ/ETH', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.00000001', 'max_p': '100', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ETZ/USDT', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.000001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '1000', 'taker': '0', 'maker': '0'}, {'pair': 'EXM/USDT', 'min_q': '1', 'max_q': '100000000', 'min_p': '0.00000001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '100000', 'taker': '0', 'maker': '0'}, {'pair': 'EXM/ETH', 'min_q': '1', 'max_q': '100000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.0001', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'GAS/USD', 'min_q': '0.01', 'max_q': '500000', 'min_p': '0.01', 'max_p': '50000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'GAS/BTC', 'min_q': '0.01', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'GNT/BTC', 'min_q': '1', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'GNT/ETH', 'min_q': '0.01', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '10', 'min_a': '0.01', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'GUSD/USD', 'min_q': '1', 'max_q': '500000', 'min_p': '0.1', 'max_p': '10', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'GUSD/RUB', 'min_q': '1', 'max_q': '500000', 'min_p': '0.01', 'max_p': '1000', 'min_a': '10', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'GUSD/BTC', 'min_q': '1', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.0015', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'HP/BTC', 'min_q': '1', 'max_q': '100000000', 'min_p': '0.00000001', 'max_p': '0.1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'HB/BTC', 'min_q': '10', 'max_q': '100000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.000001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'LSK/USD', 'min_q': '0.1', 'max_q': '500000', 'min_p': '0.1', 'max_p': '1000', 'min_a': '1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'LSK/RUB', 'min_q': '0.1', 'max_q': '500000', 'min_p': '0.001', 'max_p': '100000', 'min_a': '0.5', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'LSK/BTC', 'min_q': '1', 'max_q': '500000', 'min_p': '0.0000001', 'max_p': '1', 'min_a': '0.0015', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'LTC/USD', 'min_q': '0.05', 'max_q': '10000', 'min_p': '0.01', 'max_p': '10000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'LTC/RUB', 'min_q': '0.05', 'max_q': '10000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '150', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'LTC/EUR', 'min_q': '0.05', 'max_q': '10000', 'min_p': '0.01', 'max_p': '10000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'LTC/UAH', 'min_q': '0.05', 'max_q': '10000', 'min_p': '0.01', 'max_p': '300000', 'min_a': '5', 'max_a': '18000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'LTC/BTC', 'min_q': '0.05', 'max_q': '10000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'MKR/BTC', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '0.0001', 'max_p': '100', 'min_a': '0.000001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'MKR/DAI', 'min_q': '0.0001', 'max_q': '1000', 'min_p': '0.5', 'max_p': '500000', 'min_a': '0.005', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'MNC/USD', 'min_q': '10', 'max_q': '500000000', 'min_p': '0.000001', 'max_p': '10000', 'min_a': '0.01', 'max_a': '100000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'MNC/BTC', 'min_q': '10', 'max_q': '500000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.000001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'MNC/ETH', 'min_q': '10', 'max_q': '500000000', 'min_p': '0.0000001', 'max_p': '10', 'min_a': '0.00001', 'max_a': '1000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'NEO/USD', 'min_q': '0.01', 'max_q': '100000', 'min_p': '0.01', 'max_p': '50000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'NEO/RUB', 'min_q': '0.01', 'max_q': '100000', 'min_p': '0.001', 'max_p': '1500000', 'min_a': '50', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'NEO/BTC', 'min_q': '0.1', 'max_q': '100000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'OMG/USD', 'min_q': '0.01', 'max_q': '500000', 'min_p': '0.01', 'max_p': '1000', 'min_a': '0.5', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'OMG/BTC', 'min_q': '1', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'OMG/ETH', 'min_q': '0.01', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '10', 'min_a': '0.01', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ONG/EXM', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '100', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ONG/BTC', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.00001', 'max_a': '10', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ONG/RUB', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '100', 'max_a': '250000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ONG/UAH', 'min_q': '1', 'max_q': '1000000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '50', 'max_a': '6000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ONT/EXM', 'min_q': '1', 'max_q': '500000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '200', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ONT/BTC', 'min_q': '1', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.00001', 'max_a': '10', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ONT/RUB', 'min_q': '1', 'max_q': '500000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '100', 'max_a': '6000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ONT/UAH', 'min_q': '1', 'max_q': '500000', 'min_p': '0.01', 'max_p': '100000', 'min_a': '200', 'max_a': '250000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'PTI/RUB', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.00000001', 'max_p': '600000', 'min_a': '10', 'max_a': '600000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'PTI/BTC', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.000001', 'max_a': '10', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'PTI/EOS', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.0000001', 'max_p': '5000', 'min_a': '0.01', 'max_a': '20000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'PTI/USDT', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.000001', 'max_p': '10000', 'min_a': '0.01', 'max_a': '100000', 'taker': '0', 'maker': '0'}, {'pair': 'QTUM/USD', 'min_q': '0.1', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '10000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'QTUM/BTC', 'min_q': '0.1', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.0001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'QTUM/ETH', 'min_q': '0.1', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '100', 'min_a': '0.001', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ROOBEE/BTC', 'min_q': '1', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '0.1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'SMART/USD', 'min_q': '10', 'max_q': '100000000', 'min_p': '0.000001', 'max_p': '1000', 'min_a': '1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'SMART/RUB', 'min_q': '10', 'max_q': '100000000', 'min_p': '0.0001', 'max_p': '100000', 'min_a': '10', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'SMART/EUR', 'min_q': '10', 'max_q': '100000000', 'min_p': '0.000001', 'max_p': '1000', 'min_a': '1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'SMART/BTC', 'min_q': '10', 'max_q': '100000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'TRX/USD', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'TRX/EUR', 'min_q': '0.01', 'max_q': '50000000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'TRX/RUB', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.000001', 'max_p': '100000', 'min_a': '0.1', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'TRX/UAH', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.000001', 'max_p': '100000', 'min_a': '0.1', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'TRX/BTC', 'min_q': '1', 'max_q': '50000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDC/USD', 'min_q': '1', 'max_q': '500000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '3', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDC/BTC', 'min_q': '1', 'max_q': '500000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.0001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDC/ETH', 'min_q': '1', 'max_q': '500000', 'min_p': '0.0000001', 'max_p': '100', 'min_a': '0.001', 'max_a': '1000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDC/USDT', 'min_q': '1', 'max_q': '500000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '3', 'max_a': '500000', 'taker': '0', 'maker': '0'}, {'pair': 'USDT/USD', 'min_q': '1', 'max_q': '500000', 'min_p': '0.5', 'max_p': '10', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDT/RUB', 'min_q': '1', 'max_q': '500000', 'min_p': '0.01', 'max_p': '1000', 'min_a': '10', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDT/EUR', 'min_q': '0.01', 'max_q': '500000', 'min_p': '0.1', 'max_p': '10', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDT/GBP', 'min_q': '1', 'max_q': '500000', 'min_p': '0.5', 'max_p': '10', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDT/UAH', 'min_q': '0.01', 'max_q': '500000', 'min_p': '1', 'max_p': '3000', 'min_a': '2', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USDT/KZT', 'min_q': '1', 'max_q': '500000', 'min_p': '200', 'max_p': '4000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'VLX/BTC', 'min_q': '1', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '0.1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'WAVES/USD', 'min_q': '0.5', 'max_q': '500000', 'min_p': '0.001', 'max_p': '3500', 'min_a': '0.5', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'WAVES/RUB', 'min_q': '0.5', 'max_q': '500000', 'min_p': '0.01', 'max_p': '10000', 'min_a': '1', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'WAVES/BTC', 'min_q': '0.5', 'max_q': '500000', 'min_p': '0.000001', 'max_p': '1', 'min_a': '0.0001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'WAVES/ETH', 'min_q': '0.5', 'max_q': '500000', 'min_p': '0.00001', 'max_p': '30', 'min_a': '0.0035', 'max_a': '3500', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XEM/USD', 'min_q': '10', 'max_q': '10000000', 'min_p': '0.00001', 'max_p': '1000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XEM/EUR', 'min_q': '10', 'max_q': '10000000', 'min_p': '0.00001', 'max_p': '1000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XEM/UAH', 'min_q': '1', 'max_q': '10000000', 'min_p': '0.0001', 'max_p': '30000', 'min_a': '10', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XEM/BTC', 'min_q': '10', 'max_q': '10000000', 'min_p': '0.0000001', 'max_p': '1', 'min_a': '0.00015', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XLM/USD', 'min_q': '0.01', 'max_q': '5000000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XLM/RUB', 'min_q': '0.01', 'max_q': '5000000', 'min_p': '0.00001', 'max_p': '100000', 'min_a': '0.1', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XLM/TRY', 'min_q': '0.01', 'max_q': '5000000', 'min_p': '0.00001', 'max_p': '100000', 'min_a': '0.1', 'max_a': '6000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XLM/BTC', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XMR/USD', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XMR/RUB', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.001', 'max_p': '600000', 'min_a': '10', 'max_a': '16000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XMR/EUR', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XMR/UAH', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.001', 'max_p': '300000', 'min_a': '5', 'max_a': '16000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XMR/BTC', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.0001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XMR/ETH', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.00000001', 'max_p': '100', 'min_a': '0.001', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XRP/EUR', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.001', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XRP/GBP', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.001', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XRP/TRY', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '6000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XRP/UAH', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '0.01', 'max_a': '15000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XRP/USDT', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.001', 'max_p': '1000', 'min_a': '0.001', 'max_a': '500000', 'taker': '0', 'maker': '0'}, {'pair': 'XRP/ETH', 'min_q': '1', 'max_q': '5000000', 'min_p': '0.00000001', 'max_p': '10', 'min_a': '0.00001', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XTZ/USD', 'min_q': '0.1', 'max_q': '100000', 'min_p': '0.0001', 'max_p': '1000', 'min_a': '0.1', 'max_a': '100000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XTZ/RUB', 'min_q': '0.1', 'max_q': '100000', 'min_p': '0.00001', 'max_p': '100000', 'min_a': '0.5', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XTZ/BTC', 'min_q': '0.1', 'max_q': '100000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.00001', 'max_a': '10', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'XTZ/ETH', 'min_q': '0.1', 'max_q': '100000', 'min_p': '0.0000001', 'max_p': '10', 'min_a': '0.0001', 'max_a': '1000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ZEC/USD', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.001', 'max_p': '5000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ZEC/RUB', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.001', 'max_p': '100000', 'min_a': '0.1', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ZEC/EUR', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.001', 'max_p': '5000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ZEC/BTC', 'min_q': '0.01', 'max_q': '10000', 'min_p': '0.00001', 'max_p': '10', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ZRX/USD', 'min_q': '0.01', 'max_q': '10000000', 'min_p': '0.00001', 'max_p': '1000', 'min_a': '0.1', 'max_a': '500000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ZRX/BTC', 'min_q': '1', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ZRX/ETH', 'min_q': '0.01', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '10', 'min_a': '0.01', 'max_a': '5000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'ZAG/BTC', 'min_q': '1', 'max_q': '10000000', 'min_p': '0.00000001', 'max_p': '0.1', 'min_a': '0.00001', 'max_a': '100', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'USD/RUB', 'min_q': '1', 'max_q': '500000', 'min_p': '0.01', 'max_p': '1000', 'min_a': '10', 'max_a': '50000000', 'taker': '0.4', 'maker': '0.4'}, {'pair': 'EXM/BTC', 'min_q': '1', 'max_q': '100000000', 'min_p': '0.00000001', 'max_p': '1', 'min_a': '0.0000001', 'max_a': '1', 'taker': '0.4', 'maker': '0.4'}, ], 'fees': [ { 'group': 'crypto', 'title': 'Cryptocurrency', 'items': [ {'prov': 'EXM', 'dep': '0%', 'wd': '1 EXM'}, {'prov': 'BTC', 'dep': '0%', 'wd': '0.0004 BTC'}, {'prov': 'LTC', 'dep': '0%', 'wd': '0.01 LTC'}, {'prov': 'DOGE', 'dep': '0%', 'wd': '1 Doge'}, {'prov': 'DASH', 'dep': '0%', 'wd': '0.002 DASH'}, {'prov': 'ETH', 'dep': '0%', 'wd': '0.003 ETH'}, {'prov': 'WAVES', 'dep': '0%', 'wd': '0.001 WAVES'}, {'prov': 'ZEC', 'dep': '0%', 'wd': '0.001 ZEC'}, {'prov': 'USDT', 'dep': '0%', 'wd': ''}, {'prov': 'XMR', 'dep': '0%', 'wd': '0.001 XMR'}, {'prov': 'XRP', 'dep': '0%', 'wd': '0.02 XRP'}, {'prov': 'ETC', 'dep': '0%', 'wd': '0.01 ETC'}, {'prov': 'BCH', 'dep': '0%', 'wd': '0.001 BCH'}, {'prov': 'BTG', 'dep': '0%', 'wd': '0.001 BTG'}, {'prov': 'EOS', 'dep': '0%', 'wd': '0.05 EOS'}, {'prov': 'XLM', 'dep': '0%', 'wd': '0.01 XLM'}, {'prov': 'OMG', 'dep': '0.1 OMG', 'wd': '0.5 OMG'}, {'prov': 'TRX', 'dep': '0%', 'wd': '1 TRX'}, {'prov': 'ADA', 'dep': '0%', 'wd': '1 ADA'}, {'prov': 'NEO', 'dep': '0%', 'wd': '0%'}, {'prov': 'GAS', 'dep': '0%', 'wd': '0%'}, {'prov': 'ZRX', 'dep': '0%', 'wd': '1 ZRX'}, {'prov': 'GNT', 'dep': '0%', 'wd': '1 GNT'}, {'prov': 'GUSD', 'dep': '0%', 'wd': '0.5 GUSD'}, {'prov': 'LSK', 'dep': '0%', 'wd': '0.1 LSK'}, {'prov': 'XEM', 'dep': '0%', 'wd': '5 XEM'}, {'prov': 'SMART', 'dep': '0%', 'wd': '0.5 SMART'}, {'prov': 'QTUM', 'dep': '0%', 'wd': '0.01 QTUM'}, {'prov': 'HB', 'dep': '0%', 'wd': '10 HB'}, {'prov': 'DAI', 'dep': '0%', 'wd': '1 DAI'}, {'prov': 'MKR', 'dep': '0%', 'wd': '0.005 MKR'}, {'prov': 'MNC', 'dep': '0%', 'wd': '15 MNC'}, {'prov': 'PTI', 'dep': '-', 'wd': '10 PTI'}, {'prov': 'ETZ', 'dep': '0%', 'wd': '1 ETZ'}, {'prov': 'USDC', 'dep': '0%', 'wd': '0.5 USDC'}, {'prov': 'ROOBEE', 'dep': '0%', 'wd': '200 ROOBEE'}, {'prov': 'DCR', 'dep': '0%', 'wd': '0.01 DCR'}, {'prov': 'ZAG', 'dep': '0%', 'wd': '0%'}, {'prov': 'BTT', 'dep': '0 BTT', 'wd': '100 BTT'}, {'prov': 'VLX', 'dep': '0%', 'wd': '1 VLX'}, {'prov': 'CRON', 'dep': '0%', 'wd': '5 CRON'}, {'prov': 'ONT', 'dep': '0%', 'wd': '1 ONT'}, {'prov': 'ONG', 'dep': '0%', 'wd': '5 ONG'}, {'prov': 'ALGO', 'dep': '0%', 'wd': '0.01 ALGO'}, {'prov': 'ATOM', 'dep': '0%', 'wd': '0.05 ATOM'}, ], }, { 'group': 'usd', 'title': 'USD', 'items': [ {'prov': 'Payeer', 'dep': '3.95%', 'wd': '-'}, {'prov': 'EX-CODE', 'dep': '', 'wd': '0.2%'}, {'prov': 'AdvCash', 'dep': '0%', 'wd': '2.49%'}, {'prov': 'Visa/MasterCard(Simplex)', 'dep': '4.5% + 0.5 USD', 'wd': '-'}, {'prov': 'Visa', 'dep': '3.45%', 'wd': '-'}, {'prov': 'Frick Bank', 'dep': '0 USD', 'wd': '-'}, ], }, { 'group': 'eur', 'title': 'EUR', 'items': [ {'prov': 'Visa/MasterCard', 'dep': '4.5% + 0.5 EUR', 'wd': '-'}, {'prov': 'EX-CODE', 'dep': '', 'wd': '0.2%'}, {'prov': 'Visa', 'dep': '2.95%', 'wd': '-'}, {'prov': 'Frick Internal Transfer', 'dep': '0 EUR', 'wd': '-'}, {'prov': 'SEPA Frick Bank', 'dep': '0 EUR', 'wd': '1 EUR'}, {'prov': 'WIRE Frick Bank', 'dep': '0%', 'wd': '20 EUR'}, {'prov': 'SEPA Weg Ag', 'dep': '-', 'wd': '1 EUR'}, ], }, { 'group': 'gbp', 'title': 'GBP', 'items': [ {'prov': 'EX-CODE', 'dep': '', 'wd': '0.2%'}, {'prov': 'WIRE Frick Bank', 'dep': '10 GBP', 'wd': '-'}, ], }, { 'group': 'rub', 'title': 'RUB', 'items': [ {'prov': 'Payeer', 'dep': '2.49%', 'wd': '3.49%'}, {'prov': 'EX-CODE', 'dep': '', 'wd': '0.2%'}, {'prov': 'Qiwi', 'dep': '1.49%', 'wd': '2.49%'}, {'prov': 'Yandex Money', 'dep': '1.49%', 'wd': '1.95 %'}, {'prov': 'AdvCash', 'dep': '0.99%', 'wd': '0.99%'}, {'prov': 'Visa/MasterCard', 'dep': '2.99%', 'wd': '3.99% + 60 RUB'}, ], }, { 'group': 'pln', 'title': 'PLN', 'items': [ {'prov': 'EX-CODE', 'dep': '', 'wd': '0.2%'}, ], }, { 'group': 'try', 'title': 'TRY', 'items': [ {'prov': 'EX-CODE', 'dep': '', 'wd': '0.2%'}, {'prov': 'Visa', 'dep': '3.05%', 'wd': '-'}, {'prov': 'Visa/MasterCard(Simplex)', 'dep': '4.5% + 2 TRY', 'wd': '-'}, {'prov': 'AdvCash', 'dep': '0%', 'wd': '-'}, ], }, { 'group': 'uah', 'title': 'UAH', 'items': [ {'prov': 'EX-CODE', 'dep': '', 'wd': '0.2%'}, {'prov': 'Terminal', 'dep': '2.6%', 'wd': '-'}, {'prov': 'Visa/MasterCard EasyTransfer', 'dep': '-', 'wd': '2.99%'}, {'prov': 'Visa/MasterCard', 'dep': '1% + 5 UAH', 'wd': '-'}, ], }, { 'group': 'kzt', 'title': 'KZT', 'items': [ {'prov': 'Visa/MasterCard', 'dep': '3.5%', 'wd': '2.99% + 450 KZT'}, {'prov': 'EX-CODE', 'dep': '', 'wd': '0.2%'}, {'prov': 'AdvCash', 'dep': '0%', 'wd': '-'}, ], }, ], }, }, }, 'exceptions': { 'exact': { '40005': AuthenticationError, # Authorization error, incorrect signature '40009': InvalidNonce, # '40015': ExchangeError, # API function do not exist '40016': OnMaintenance, # {"result":false,"error":"Error 40016: Maintenance work in progress"} '40017': AuthenticationError, # Wrong API Key '40032': PermissionDenied, # {"result":false,"error":"Error 40032: Access is denied for self API key"} '40034': RateLimitExceeded, # {"result":false,"error":"Error 40034: Access is denied, rate limit is exceeded"} '50052': InsufficientFunds, '50054': InsufficientFunds, '50304': OrderNotFound, # "Order was not found '123456789'"(fetching order trades for an order that does not have trades yet) '50173': OrderNotFound, # "Order with id X was not found."(cancelling non-existent, closed and cancelled order) '50277': InvalidOrder, '50319': InvalidOrder, # Price by order is less than permissible minimum for self pair '50321': InvalidOrder, # Price by order is more than permissible maximum for self pair }, 'broad': { 'range period is too long': BadRequest, 'invalid syntax': BadRequest, 'API rate limit exceeded': RateLimitExceeded, # {"result":false,"error":"API rate limit exceeded for x.x.x.x. Retry after 60 sec.","history":[],"begin":1579392000,"end":1579478400} }, }, 'orders': {}, # orders cache / emulation }) async def fetch_trading_fees(self, params={}): if self.options['useWebapiForFetchingFees']: response = await self.webGetEnDocsFees(params) parts = response.split('<td class="th_fees_2" colspan="2">') numParts = len(parts) if numParts != 2: raise NotSupported(self.id + ' fetchTradingFees format has changed') rest = parts[1] parts = rest.split('</td>') numParts = len(parts) if numParts < 2: raise NotSupported(self.id + ' fetchTradingFees format has changed') fee = float(parts[0].replace('%', '')) * 0.01 taker = fee maker = fee return { # 'info': response, 'maker': maker, 'taker': taker, } else: return { 'maker': self.fees['trading']['maker'], 'taker': self.fees['trading']['taker'], } def parse_fixed_float_value(self, input): if (input is None) or (input == '-'): return None if input == '': return 0 isPercentage = (input.find('%') >= 0) parts = input.split(' ') value = parts[0].replace('%', '') result = float(value) if (result > 0) and isPercentage: raise ExchangeError(self.id + ' parseFixedFloatValue detected an unsupported non-zero percentage-based fee ' + input) return result async def fetch_funding_fees(self, params={}): response = None if self.options['useWebapiForFetchingFees']: response = await self.webGetCtrlFeesAndLimits(params) else: response = self.options['feesAndLimits'] # the code below assumes all non-zero crypto fees are fixed(for now) withdraw = {} deposit = {} groups = self.safe_value(response['data'], 'fees') groupsByGroup = self.index_by(groups, 'group') items = groupsByGroup['crypto']['items'] for i in range(0, len(items)): item = items[i] code = self.safe_currency_code(self.safe_string(item, 'prov')) withdrawalFee = self.safe_string(item, 'wd') depositFee = self.safe_string(item, 'dep') if withdrawalFee is not None: withdraw[code] = self.parse_fixed_float_value(withdrawalFee) if depositFee is not None: deposit[code] = self.parse_fixed_float_value(depositFee) # sets fiat fees to None fiatGroups = self.to_array(self.omit(groupsByGroup, 'crypto')) for i in range(0, len(fiatGroups)): code = self.safe_currency_code(self.safe_string(fiatGroups[i], 'title')) withdraw[code] = None deposit[code] = None result = { 'info': response, 'withdraw': withdraw, 'deposit': deposit, } # cache them for later use self.options['fundingFees'] = result return result async def fetch_currencies(self, params={}): fees = await self.fetch_funding_fees(params) # todo redesign the 'fee' property in currencies ids = list(fees['withdraw'].keys()) limitsByMarketId = self.index_by(fees['info']['data']['limits'], 'pair') marketIds = list(limitsByMarketId.keys()) minAmounts = {} minPrices = {} minCosts = {} maxAmounts = {} maxPrices = {} maxCosts = {} for i in range(0, len(marketIds)): marketId = marketIds[i] limit = limitsByMarketId[marketId] baseId, quoteId = marketId.split('/') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) maxAmount = self.safe_number(limit, 'max_q') maxPrice = self.safe_number(limit, 'max_p') maxCost = self.safe_number(limit, 'max_a') minAmount = self.safe_number(limit, 'min_q') minPrice = self.safe_number(limit, 'min_p') minCost = self.safe_number(limit, 'min_a') minAmounts[base] = min(self.safe_number(minAmounts, base, minAmount), minAmount) maxAmounts[base] = max(self.safe_number(maxAmounts, base, maxAmount), maxAmount) minPrices[quote] = min(self.safe_number(minPrices, quote, minPrice), minPrice) minCosts[quote] = min(self.safe_number(minCosts, quote, minCost), minCost) maxPrices[quote] = max(self.safe_number(maxPrices, quote, maxPrice), maxPrice) maxCosts[quote] = max(self.safe_number(maxCosts, quote, maxCost), maxCost) result = {} for i in range(0, len(ids)): id = ids[i] code = self.safe_currency_code(id) fee = self.safe_value(fees['withdraw'], code) active = True result[code] = { 'id': id, 'code': code, 'name': code, 'active': active, 'fee': fee, 'precision': 8, 'limits': { 'amount': { 'min': self.safe_number(minAmounts, code), 'max': self.safe_number(maxAmounts, code), }, 'price': { 'min': self.safe_number(minPrices, code), 'max': self.safe_number(maxPrices, code), }, 'cost': { 'min': self.safe_number(minCosts, code), 'max': self.safe_number(maxCosts, code), }, }, 'info': id, } return result async def fetch_markets(self, params={}): response = await self.publicGetPairSettings(params) # # { # "BTC_USD":{ # "min_quantity":"0.0001", # "max_quantity":"1000", # "min_price":"1", # "max_price":"30000", # "max_amount":"500000", # "min_amount":"1", # "price_precision":8, # "commission_taker_percent":"0.4", # "commission_maker_percent":"0.4" # }, # } # keys = list(response.keys()) result = [] for i in range(0, len(keys)): id = keys[i] market = response[id] symbol = id.replace('_', '/') baseId, quoteId = symbol.split('/') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) takerString = self.safe_string(market, 'commission_taker_percent') makerString = self.safe_string(market, 'commission_maker_percent') taker = self.parse_number(Precise.string_div(takerString, '100')) maker = self.parse_number(Precise.string_div(makerString, '100')) result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': True, 'taker': taker, 'maker': maker, 'limits': { 'amount': { 'min': self.safe_number(market, 'min_quantity'), 'max': self.safe_number(market, 'max_quantity'), }, 'price': { 'min': self.safe_number(market, 'min_price'), 'max': self.safe_number(market, 'max_price'), }, 'cost': { 'min': self.safe_number(market, 'min_amount'), 'max': self.safe_number(market, 'max_amount'), }, }, 'precision': { 'amount': 8, 'price': self.safe_integer(market, 'price_precision'), }, 'info': market, }) return result async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], 'resolution': self.timeframes[timeframe], } options = self.safe_value(self.options, 'fetchOHLCV') maxLimit = self.safe_integer(options, 'maxLimit', 3000) duration = self.parse_timeframe(timeframe) now = self.milliseconds() if since is None: if limit is None: raise ArgumentsRequired(self.id + ' fetchOHLCV() requires a since argument or a limit argument') else: if limit > maxLimit: raise BadRequest(self.id + ' fetchOHLCV will serve ' + str(maxLimit) + ' candles at most') request['from'] = int(now / 1000) - limit * duration - 1 request['to'] = int(now / 1000) else: request['from'] = int(since / 1000) - 1 if limit is None: request['to'] = int(now / 1000) else: if limit > maxLimit: raise BadRequest(self.id + ' fetchOHLCV will serve ' + str(maxLimit) + ' candles at most') to = self.sum(since, limit * duration * 1000) request['to'] = int(to / 1000) response = await self.publicGetCandlesHistory(self.extend(request, params)) # # { # "candles":[ # {"t":1584057600000,"o":0.02235144,"c":0.02400233,"h":0.025171,"l":0.02221,"v":5988.34031761}, # {"t":1584144000000,"o":0.0240373,"c":0.02367413,"h":0.024399,"l":0.0235,"v":2027.82522329}, # {"t":1584230400000,"o":0.02363458,"c":0.02319242,"h":0.0237948,"l":0.02223196,"v":1707.96944997}, # ] # } # candles = self.safe_value(response, 'candles', []) return self.parse_ohlcvs(candles, market, timeframe, since, limit) def parse_ohlcv(self, ohlcv, market=None): # # { # "t":1584057600000, # "o":0.02235144, # "c":0.02400233, # "h":0.025171, # "l":0.02221, # "v":5988.34031761 # } # return [ self.safe_integer(ohlcv, 't'), self.safe_number(ohlcv, 'o'), self.safe_number(ohlcv, 'h'), self.safe_number(ohlcv, 'l'), self.safe_number(ohlcv, 'c'), self.safe_number(ohlcv, 'v'), ] async def fetch_balance(self, params={}): await self.load_markets() response = await self.privatePostUserInfo(params) result = {'info': response} free = self.safe_value(response, 'balances', {}) used = self.safe_value(response, 'reserved', {}) codes = list(free.keys()) for i in range(0, len(codes)): code = codes[i] currencyId = self.currency_id(code) account = self.account() if currencyId in free: account['free'] = self.safe_string(free, currencyId) if currencyId in used: account['used'] = self.safe_string(used, currencyId) result[code] = account return self.parse_balance(result, False) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], } if limit is not None: request['limit'] = limit response = await self.publicGetOrderBook(self.extend(request, params)) result = self.safe_value(response, market['id']) return self.parse_order_book(result, symbol, None, 'bid', 'ask') async def fetch_order_books(self, symbols=None, limit=None, params={}): await self.load_markets() ids = None if symbols is None: ids = ','.join(self.ids) # max URL length is 2083 symbols, including http schema, hostname, tld, etc... if len(ids) > 2048: numIds = len(self.ids) raise ExchangeError(self.id + ' has ' + str(numIds) + ' symbols exceeding max URL length, you are required to specify a list of symbols in the first argument to fetchOrderBooks') else: ids = self.market_ids(symbols) ids = ','.join(ids) request = { 'pair': ids, } if limit is not None: request['limit'] = limit response = await self.publicGetOrderBook(self.extend(request, params)) result = {} marketIds = list(response.keys()) for i in range(0, len(marketIds)): marketId = marketIds[i] symbol = marketId if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] result[symbol] = self.parse_order_book(response[marketId], None, 'bid', 'ask') return result def parse_ticker(self, ticker, market=None): timestamp = self.safe_timestamp(ticker, 'updated') symbol = None if market is not None: symbol = market['symbol'] last = self.safe_number(ticker, 'last_trade') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'high'), 'low': self.safe_number(ticker, 'low'), 'bid': self.safe_number(ticker, 'buy_price'), 'bidVolume': None, 'ask': self.safe_number(ticker, 'sell_price'), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': self.safe_number(ticker, 'avg'), 'baseVolume': self.safe_number(ticker, 'vol'), 'quoteVolume': self.safe_number(ticker, 'vol_curr'), 'info': ticker, } async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() response = await self.publicGetTicker(params) result = {} ids = list(response.keys()) for i in range(0, len(ids)): id = ids[i] market = self.markets_by_id[id] symbol = market['symbol'] ticker = response[id] result[symbol] = self.parse_ticker(ticker, market) return self.filter_by_array(result, 'symbol', symbols) async def fetch_ticker(self, symbol, params={}): await self.load_markets() response = await self.publicGetTicker(params) market = self.market(symbol) return self.parse_ticker(response[market['id']], market) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # "trade_id":165087520, # "date":1587470005, # "type":"buy", # "quantity":"1.004", # "price":"0.02491461", # "amount":"0.02501426" # }, # # fetchMyTrades, fetchOrderTrades # # { # "trade_id": 3, # "date": 1435488248, # "type": "buy", # "pair": "BTC_USD", # "order_id": 12345, # "quantity": 1, # "price": 100, # "amount": 100, # "exec_type": "taker", # "commission_amount": "0.02", # "commission_currency": "BTC", # "commission_percent": "0.2" # } # timestamp = self.safe_timestamp(trade, 'date') symbol = None id = self.safe_string(trade, 'trade_id') orderId = self.safe_string(trade, 'order_id') price = self.safe_number(trade, 'price') amount = self.safe_number(trade, 'quantity') cost = self.safe_number(trade, 'amount') side = self.safe_string(trade, 'type') type = None marketId = self.safe_string(trade, 'pair') if marketId is not None: if marketId in self.markets_by_id: market = self.markets_by_id[marketId] else: baseId, quoteId = marketId.split('_') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote if (symbol is None) and (market is not None): symbol = market['symbol'] takerOrMaker = self.safe_string(trade, 'exec_type') fee = None feeCost = self.safe_number(trade, 'commission_amount') if feeCost is not None: feeCurrencyId = self.safe_string(trade, 'commission_currency') feeCurrencyCode = self.safe_currency_code(feeCurrencyId) feeRate = self.safe_number(trade, 'commission_percent') if feeRate is not None: feeRate /= 1000 fee = { 'cost': feeCost, 'currency': feeCurrencyCode, 'rate': feeRate, } return { 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': orderId, 'type': type, 'side': side, 'takerOrMaker': takerOrMaker, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], } response = await self.publicGetTrades(self.extend(request, params)) # # { # "ETH_BTC":[ # { # "trade_id":165087520, # "date":1587470005, # "type":"buy", # "quantity":"1.004", # "price":"0.02491461", # "amount":"0.02501426" # }, # { # "trade_id":165087369, # "date":1587469938, # "type":"buy", # "quantity":"0.94", # "price":"0.02492348", # "amount":"0.02342807" # } # ] # } # data = self.safe_value(response, market['id'], []) return self.parse_trades(data, market, since, limit) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): # a symbol is required but it can be a single string, or a non-empty array if symbol is None: raise ArgumentsRequired(self.id + ' fetchMyTrades() requires a symbol argument(a single symbol or an array)') await self.load_markets() pair = None market = None if isinstance(symbol, list): numSymbols = len(symbol) if numSymbols < 1: raise ArgumentsRequired(self.id + ' fetchMyTrades() requires a non-empty symbol array') marketIds = self.market_ids(symbol) pair = ','.join(marketIds) else: market = self.market(symbol) pair = market['id'] request = { 'pair': pair, } if limit is not None: request['limit'] = limit response = await self.privatePostUserTrades(self.extend(request, params)) result = [] marketIds = list(response.keys()) for i in range(0, len(marketIds)): marketId = marketIds[i] symbol = None if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] else: baseId, quoteId = marketId.split('_') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote items = response[marketId] trades = self.parse_trades(items, market, since, limit, { 'symbol': symbol, }) result = self.array_concat(result, trades) return self.filter_by_since_limit(result, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() prefix = (type + '_') if (type == 'market') else '' market = self.market(symbol) if (type == 'market') and (price is None): price = 0 request = { 'pair': market['id'], 'quantity': self.amount_to_precision(symbol, amount), 'type': prefix + side, 'price': self.price_to_precision(symbol, price), } response = await self.privatePostOrderCreate(self.extend(request, params)) id = self.safe_string(response, 'order_id') timestamp = self.milliseconds() amount = float(amount) price = float(price) status = 'open' return { 'id': id, 'info': response, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'cost': price * amount, 'amount': amount, 'remaining': amount, 'filled': 0.0, 'fee': None, 'trades': None, 'clientOrderId': None, 'average': None, } async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() request = {'order_id': id} return await self.privatePostOrderCancel(self.extend(request, params)) async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() request = { 'order_id': str(id), } response = await self.privatePostOrderTrades(self.extend(request, params)) # # { # "type": "buy", # "in_currency": "BTC", # "in_amount": "1", # "out_currency": "USD", # "out_amount": "100", # "trades": [ # { # "trade_id": 3, # "date": 1435488248, # "type": "buy", # "pair": "BTC_USD", # "order_id": 12345, # "quantity": 1, # "price": 100, # "amount": 100 # } # ] # } # order = self.parse_order(response) return self.extend(order, { 'id': str(id), }) async def fetch_order_trades(self, id, symbol=None, since=None, limit=None, params={}): market = None if symbol is not None: market = self.market(symbol) request = { 'order_id': str(id), } response = await self.privatePostOrderTrades(self.extend(request, params)) # # { # "type": "buy", # "in_currency": "BTC", # "in_amount": "1", # "out_currency": "USD", # "out_amount": "100", # "trades": [ # { # "trade_id": 3, # "date": 1435488248, # "type": "buy", # "pair": "BTC_USD", # "order_id": 12345, # "quantity": 1, # "price": 100, # "amount": 100, # "exec_type": "taker", # "commission_amount": "0.02", # "commission_currency": "BTC", # "commission_percent": "0.2" # } # ] # } # trades = self.safe_value(response, 'trades') return self.parse_trades(trades, market, since, limit) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() response = await self.privatePostUserOpenOrders(params) marketIds = list(response.keys()) orders = [] for i in range(0, len(marketIds)): marketId = marketIds[i] market = None if marketId in self.markets_by_id: market = self.markets_by_id[marketId] parsedOrders = self.parse_orders(response[marketId], market) orders = self.array_concat(orders, parsedOrders) return self.filter_by_symbol_since_limit(orders, symbol, since, limit) def parse_order(self, order, market=None): # # fetchOrders, fetchOpenOrders, fetchClosedOrders # # { # "order_id": "14", # "created": "1435517311", # "type": "buy", # "pair": "BTC_USD", # "price": "100", # "quantity": "1", # "amount": "100" # } # # fetchOrder # # { # "type": "buy", # "in_currency": "BTC", # "in_amount": "1", # "out_currency": "USD", # "out_amount": "100", # "trades": [ # { # "trade_id": 3, # "date": 1435488248, # "type": "buy", # "pair": "BTC_USD", # "order_id": 12345, # "quantity": 1, # "price": 100, # "amount": 100 # } # ] # } # id = self.safe_string(order, 'order_id') timestamp = self.safe_timestamp(order, 'created') symbol = None side = self.safe_string(order, 'type') if market is None: marketId = None if 'pair' in order: marketId = order['pair'] elif ('in_currency' in order) and ('out_currency' in order): if side == 'buy': marketId = order['in_currency'] + '_' + order['out_currency'] else: marketId = order['out_currency'] + '_' + order['in_currency'] if (marketId is not None) and (marketId in self.markets_by_id): market = self.markets_by_id[marketId] amount = self.safe_number(order, 'quantity') if amount is None: amountField = 'in_amount' if (side == 'buy') else 'out_amount' amount = self.safe_number(order, amountField) price = self.safe_number(order, 'price') cost = self.safe_number(order, 'amount') filled = 0.0 trades = [] transactions = self.safe_value(order, 'trades', []) feeCost = None lastTradeTimestamp = None average = None numTransactions = len(transactions) if numTransactions > 0: feeCost = 0 for i in range(0, numTransactions): trade = self.parse_trade(transactions[i], market) if id is None: id = trade['order'] if timestamp is None: timestamp = trade['timestamp'] if timestamp > trade['timestamp']: timestamp = trade['timestamp'] filled = self.sum(filled, trade['amount']) feeCost = self.sum(feeCost, trade['fee']['cost']) trades.append(trade) lastTradeTimestamp = trades[numTransactions - 1]['timestamp'] status = self.safe_string(order, 'status') # in case we need to redefine it for canceled orders remaining = None if amount is not None: remaining = amount - filled if filled >= amount: status = 'closed' else: status = 'open' if market is None: market = self.get_market_from_trades(trades) feeCurrency = None if market is not None: symbol = market['symbol'] feeCurrency = market['quote'] if cost is None: if price is not None: cost = price * filled else: if filled > 0: if average is None: average = cost / filled if price is None: price = cost / filled fee = { 'cost': feeCost, 'currency': feeCurrency, } return { 'id': id, 'clientOrderId': None, 'datetime': self.iso8601(timestamp), 'timestamp': timestamp, 'lastTradeTimestamp': lastTradeTimestamp, 'status': status, 'symbol': symbol, 'type': 'limit', 'timeInForce': None, 'postOnly': None, 'side': side, 'price': price, 'stopPrice': None, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'average': average, 'trades': trades, 'fee': fee, 'info': order, } async def fetch_deposit_address(self, code, params={}): await self.load_markets() response = await self.privatePostDepositAddress(params) depositAddress = self.safe_string(response, code) address = None tag = None if depositAddress: addressAndTag = depositAddress.split(',') address = addressAndTag[0] numParts = len(addressAndTag) if numParts > 1: tag = addressAndTag[1] self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': response, } def get_market_from_trades(self, trades): tradesBySymbol = self.index_by(trades, 'pair') symbols = list(tradesBySymbol.keys()) numSymbols = len(symbols) if numSymbols == 1: return self.markets[symbols[0]] return None async def withdraw(self, code, amount, address, tag=None, params={}): await self.load_markets() currency = self.currency(code) request = { 'amount': amount, 'currency': currency['id'], 'address': address, } if tag is not None: request['invoice'] = tag response = await self.privatePostWithdrawCrypt(self.extend(request, params)) return { 'info': response, 'id': response['task_id'], } def parse_transaction_status(self, status): statuses = { 'transferred': 'ok', 'paid': 'ok', 'pending': 'pending', 'processing': 'pending', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # fetchTransactions # # { # "dt": 1461841192, # "type": "deposit", # "curr": "RUB", # "status": "processing", # "provider": "Qiwi(LA) [12345]", # "amount": "1", # "account": "", # "txid": "ec46f784ad976fd7f7539089d1a129fe46...", # } # timestamp = self.safe_timestamp(transaction, 'dt') amount = self.safe_number(transaction, 'amount') if amount is not None: amount = abs(amount) status = self.parse_transaction_status(self.safe_string(transaction, 'status')) txid = self.safe_string(transaction, 'txid') type = self.safe_string(transaction, 'type') currencyId = self.safe_string(transaction, 'curr') code = self.safe_currency_code(currencyId, currency) address = None tag = None comment = None account = self.safe_string(transaction, 'account') if type == 'deposit': comment = account elif type == 'withdrawal': address = account if address is not None: parts = address.split(':') numParts = len(parts) if numParts == 2: address = self.safe_string(parts, 1) address = address.replace(' ', '') fee = None # fixed funding fees only(for now) if not self.fees['funding']['percentage']: key = 'withdraw' if (type == 'withdrawal') else 'deposit' feeCost = self.safe_number(self.options['fundingFees'][key], code) # users don't pay for cashbacks, no fees for that provider = self.safe_string(transaction, 'provider') if provider == 'cashback': feeCost = 0 if feeCost is not None: # withdrawal amount includes the fee if type == 'withdrawal': amount = amount - feeCost fee = { 'cost': feeCost, 'currency': code, 'rate': None, } return { 'info': transaction, 'id': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'currency': code, 'amount': amount, 'address': address, 'addressTo': address, 'addressFrom': None, 'tag': tag, 'tagTo': tag, 'tagFrom': None, 'status': status, 'type': type, 'updated': None, 'comment': comment, 'txid': txid, 'fee': fee, } async def fetch_transactions(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} if since is not None: request['date'] = int(since / 1000) currency = None if code is not None: currency = self.currency(code) response = await self.privatePostWalletHistory(self.extend(request, params)) # # { # "result": True, # "error": "", # "begin": "1493942400", # "end": "1494028800", # "history": [ # { # "dt": 1461841192, # "type": "deposit", # "curr": "RUB", # "status": "processing", # "provider": "Qiwi(LA) [12345]", # "amount": "1", # "account": "", # "txid": "ec46f784ad976fd7f7539089d1a129fe46...", # }, # { # "dt": 1463414785, # "type": "withdrawal", # "curr": "USD", # "status": "paid", # "provider": "EXCODE", # "amount": "-1", # "account": "EX-CODE_19371_USDda...", # "txid": "", # }, # ], # } # return self.parse_transactions(response['history'], currency, since, limit) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'][api] + '/' if api != 'web': url += self.version + '/' url += path if (api == 'public') or (api == 'web'): if params: url += '?' + self.urlencode(params) elif api == 'private': self.check_required_credentials() nonce = self.nonce() body = self.urlencode(self.extend({'nonce': nonce}, params)) headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Key': self.apiKey, 'Sign': self.hmac(self.encode(body), self.encode(self.secret), hashlib.sha512), } return {'url': url, 'method': method, 'body': body, 'headers': headers} def nonce(self): return self.milliseconds() def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if ('result' in response) or ('errmsg' in response): # # {"result":false,"error":"Error 50052: Insufficient funds"} # {"s":"error","errmsg":"strconv.ParseInt: parsing \"\": invalid syntax"} # success = self.safe_value(response, 'result', False) if isinstance(success, basestring): if (success == 'true') or (success == '1'): success = True else: success = False if not success: code = None message = self.safe_string_2(response, 'error', 'errmsg') errorParts = message.split(':') numParts = len(errorParts) if numParts > 1: errorSubParts = errorParts[0].split(' ') numSubParts = len(errorSubParts) code = errorSubParts[1] if (numSubParts > 1) else errorSubParts[0] feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions['exact'], code, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], message, feedback) raise ExchangeError(feedback)
python
88,866
from snappy.lambda_handler import set_handler # noqa: F401
python
60
#!/usr/bin/python # Copyright (c) 2017 Alibaba Group Holding Limited. He Guimin <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see http://www.gnu.org/licenses/. from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['deprecated'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: alicloud_ess_configuration version_added: "1.0.9" short_description: Create or Terminate an scaling configuration in ESS. description: - Scaling configuration defines the configuration of ECS instances used for Auto Scaling. When adding ECS instances to a scaling group, Auto Scaling creates the ECS instances according to the scaling configuration. deprecated: removed_in: "1.5.0" why: Alibaba Cloud module name prefix "ali" will be more concise. alternative: Use M(ali_ess_configuration) instead. options: state: description: - The state of the scaling configuration after operating. default: 'present' choices: [ 'present', 'active', 'inactive', 'absent' ] name: description: - The name of scaling configuration. The name must contain 2-40 English or Chinese characters, and start with a number, a letter in upper or lower case or a Chinese character. The name can contain numbers, "_", "-" or ".". Default to configuration Id. aliases: ['configuration_name' ] image_id: description: - Image ID used to scale ECS instances. Required when C(state=present). aliases: [ 'image' ] instance_type: description: - Instance type used to scale ECS instances. Required when C(state=present). aliases: [ 'type' ] security_group_id: description: - Security Group id used to scale ECS instances. group_id: description: - ID of the scaling group of a scaling configuration. aliases: [ 'scaling_group_id' ] internet_charge_type: description: - Internet charge type of scaling ECS instance. default: "PayByBandwidth" choices: ["PayByBandwidth", "PayByTraffic"] max_bandwidth_in: description: - For scaling ECS instance, maximum incoming bandwidth from the public network, measured in Mbps (Mega bit per second). Valid values range [1,200]. default: 200 max_bandwidth_out: description: - For scaling ECS instance, maximum outgoing bandwidth to the public network, measured in Mbps (Mega bit per second). Valid values range [0,100]. default: 0 system_disk_category: description: - Category of the system disk. default: "cloud_efficiency" choices: ["cloud_efficiency", "cloud_ssd"] system_disk_size: description: - Size of the system disk, in GB. The valid value range [40, 500]. Default to maximum of specified value and image size. id: description: - The ID of existing scaling configuration. aliases: [ 'configuration_id' ] data_disks: description: - List of hash/dictionaries data disks for scaling ECS instances. A maximum of four items can be entered. suboptions: size: description: - Size of data disk, in GB. The valid value range [20, 32768]. Ignored when I(snapshot_id). category: description: - Category of data disk. default: "cloud_efficiency" choices: ["cloud_efficiency", "cloud_ssd"] snapshot_id: description: - Snapshot used for creating the data disk. delete_with_instance: description: - Whether the data disk will be released along with the instance. type: bool default: True tags: description: - A hash/dictionaries of instance tags, to add to the new instance or for starting/stopping instance by tag. C({"key":"value"}) key_name: description: - The name of key pair which is used to access ECS instance in SSH. aliases: ['keypair'] user_data: description: - User-defined data to customize the startup behaviors of an ECS instance and to pass data into an ECS instance. It only will take effect when launching the new ECS instances. ram_role_name: description: - The name of the instance RAM role. aliases: ['ram_role'] author: - "He Guimin (@xiaozhu36)" requirements: - "python >= 2.6" - "footmark >= 1.3.0" extends_documentation_fragment: - alicloud ''' EXAMPLES = ''' # basic provisioning example scaling configuration - name: basic provisioning example hosts: localhost vars: alicloud_access_key: <your-alicloud-access-key-id> alicloud_secret_key: <your-alicloud-access-secret-key> alicloud_region: cn-beijing image: ubuntu1404_64_40G_cloudinit_20160727.raw instance_type: ecs.n4.small max_bandwidth_out: 10 system_disk_category: cloud_efficiency system_disk_size: 100 internet_charge_type: PayByBandwidth security_group_id: sg-f2rwnfh23r group_id: asg-2zebnrbt206pex key_name: key-pair-for-ess name: configuration-from-ansible data_disks: - size: 50 category: cloud_efficiency - snapshot_id: s-w3cif22r2rd category: cloud_efficiency tags: CreatedBy: 'Ansible' Version: '1' tasks: - name: launch scaling configuration alicloud_ess_configuration: alicloud_access_key: '{{ alicloud_access_key }}' alicloud_secret_key: '{{ alicloud_secret_key }}' alicloud_region: '{{ alicloud_region }}' image: '{{ image }}' system_disk_category: '{{ system_disk_category }}' system_disk_size: '{{ system_disk_size }}' instance_type: '{{ instance_type }}' internet_charge_type: '{{ internet_charge_type }}' max_bandwidth_out: '{{ max_bandwidth_out }}' key_name: '{{ key_name }}' - name: launch scaling configuration with data disks and tags alicloud_ess_configuration: alicloud_access_key: '{{ alicloud_access_key }}' alicloud_secret_key: '{{ alicloud_secret_key }}' alicloud_region: '{{ alicloud_region }}' image: '{{ image }}' system_disk_category: '{{ system_disk_category }}' system_disk_size: '{{ system_disk_size }}' instance_type: '{{ instance_type }}' internet_charge_type: '{{ internet_charge_type }}' max_bandwidth_out: '{{ max_bandwidth_out }}' key_name: '{{ key_name }}' data_disks: '{{ data_disks }}' tags: '{{ tags }}' - name: delete specified scaling configuration alicloud_ess_configuration: alicloud_access_key: '{{ alicloud_access_key }}' alicloud_secret_key: '{{ alicloud_secret_key }}' alicloud_region: '{{ alicloud_region }}' name: '{{ image }}' state: absent ''' RETURN = ''' id: description: Scaling Configuration ID. returned: expect absent type: str sample: "asc-2zeimuvzeil1ybfd2lt3" name: description: Scaling Configuration name. returned: expect absent type: str sample: ess-configuration-foo group_id: description: ID of the scaling group of a scaling configuration. returned: expect absent type: str sample: "asg-2zeimuvzeil1xfuor9ej" configuration: description: The details of a scaling configuration. returned: expect absent type: dict sample: { "creation_time": "2018-01-05T14:03Z", "group_id": "asg-2zeimuvzeil1xfuor9ej", "id": "asc-2zeimuvzeil1ybfd2lt3", "image_id": "centos_6_09_64_20G_alibase_20170825.vhd", "instance_type": "ecs.n4.small", "name": "test-for-ansible", "security_group_id": "sg-2zeb86qfocdo7pvk41tt", "status": "inactive" } ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.alicloud_ecs import ecs_argument_spec, ess_connect HAS_FOOTMARK = False try: from footmark.exception import ECSResponseError HAS_FOOTMARK = True except ImportError: HAS_FOOTMARK = False def get_details(configuration): return dict(id=configuration.id, name=configuration.name, group_id=configuration.scaling_group_id, status=configuration.status, image_id=configuration.image_id, instance_type=configuration.instance_type, security_group_id=configuration.security_group_id, data_disks=getattr(configuration,'data_disks', None), creation_time=configuration.creation_time) def main(): argument_spec = ecs_argument_spec() argument_spec.update(dict( group_id=dict(type='str', aliases=['scaling_group_id']), instance_type=dict(type='str', aliases=['type']), image_id=dict(type='str', aliases=['image']), name=dict(type='str', aliases=['configuration_name']), internet_charge_type=dict(type='str', default="PayByBandwidth", choices=["PayByBandwidth", "PayByTraffic"]), max_bandwidth_in=dict(type='int', default=200), max_bandwidth_out=dict(type='int', default=0), system_disk_category=dict(type='str', default='cloud_efficiency'), system_disk_size=dict(type='int', default='40'), tags=dict(type='dict'), state=dict(default='present', choices=['present', 'absent']), id=dict(type='str', aliases=['configuration_id']), key_name=dict(type='str', aliases=['keypair']), user_data=dict(type='str'), data_disks=dict(type='list'), security_group_id=dict(type='str'), ram_role_name=dict(type='str', aliases=['ram_role']) )) module = AnsibleModule(argument_spec=argument_spec) if HAS_FOOTMARK is False: module.fail_json(msg="Package 'footmark' required for the module alicloud_ess_configuration.") ess = ess_connect(module) state = module.params['state'] cfg_id = module.params['id'] cfg_name = module.params['name'] scaling_group = module.params['group_id'] changed = False current = None all_cfgs = [] if cfg_id or cfg_name: cfgs = ess.describe_configurations(scaling_group_id=scaling_group, scaling_configuration_ids=[cfg_id], scaling_configuration_names=[cfg_name]) if cfgs: if len(cfgs) > 1: for cfg in cfgs: all_cfgs.append(cfg.id) module.fail_json(msg="There are several scaling configurations in our record based on name {0}: {1}. " "Please specified one using 'id' and try again.".format(cfg_name, all_cfgs)) current = cfgs[0] if state == 'present': if current is None: try: data_disks = module.params['data_disks'] if not isinstance(data_disks, list): module.fail_json(msg="Filed 'data_disks' should be a list, aborting.") if not isinstance(module.params['tags'], dict): module.fail_json(msg="Filed 'tags' should be a dict, aborting.") current = ess.create_configuration(scaling_group_id=scaling_group, image_id=module.params['image_id'], instance_type=module.params['instance_type'], security_group_id=module.params['security_group_id'], name=cfg_name, internet_charge_type=module.params['internet_charge_type'], max_bandwidth_in=module.params['max_bandwidth_in'], max_bandwidth_out=module.params['max_bandwidth_out'], system_disk_category=module.params['system_disk_category'], system_disk_size=module.params['system_disk_size'], data_disks=data_disks, tags=module.params['tags'], key_pair_name=module.params['key_name'], ram_role_name=module.params['ram_role_name'], user_data=module.params['user_data']) changed = True except Exception as e: module.fail_json(msg="Create scaling configuration got an error: {0}".format(e)) module.exit_json(changed=changed, id=current.id, name=current.name, group_id=current.group_id, configuration=get_details(current)) if current is None: if cfg_id or cfg_name: module.fail_json(msg="There are no scaling configuration in our record based on id {0} or name {1}. " "Please check it and try again.".format(cfg_id, cfg_name)) module.fail_json(msg='Please specify a scaling configuration that you want to terminate by parameters id or name, aborting') try: module.exit_json(changed=current.terminate()) except Exception as e: module.fail_json(msg='Delete scaling configuration {0} got an error: {1}'.format(current.id, e)) if __name__ == '__main__': main()
python
14,315
from django.db import models from django.contrib.auth.base_user import AbstractBaseUser from django.contrib.auth.models import Group, PermissionsMixin, UserManager from django.contrib.auth.validators import UnicodeUsernameValidator from django.core.mail import send_mail from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from ..managers import TenantGroupManager from .mixins import TenantSpecificModel from .tenant import Tenant class TenantGroup(TenantSpecificModel): """ This class has a OneToOne relation on django.contrib.auth.models.Group. It gives us a ForeignKey on our Tenant object, allowing us to have users that are in the Django Group only for specific tenants. """ objects = TenantGroupManager() group = models.OneToOneField(Group, on_delete=models.CASCADE, related_name="tenant_group") def __str__(self): return f'{self.name}:{self.tenant.public_domain}' def natural_key(self): return (self.name, self.tenant.site.domain,) class Meta: verbose_name = _('tenant group') verbose_name_plural = _('tenant groups') class UserTenantProfile(models.Model): tenant_groups = models.ManyToManyField( TenantGroup, related_name='user_tenant_profiles' ) tenants = models.ManyToManyField( Tenant, through='multitenancy.TenantMembership' ) class Meta: verbose_name = _('user tenant profile') verbose_name_plural = _('user tenant profiles') class TenantMembership(models.Model): tenant = models.ForeignKey( Tenant, on_delete=models.CASCADE, related_name='tenant_membership' ) user = models.ForeignKey( UserTenantProfile, on_delete=models.CASCADE, related_name="tenant_membership" ) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) class Meta: verbose_name = _('tenant membership') verbose_name_plural = _('tenant memberships') unique_together = ('tenant', 'user',) class AbstractTenantUser(AbstractBaseUser, PermissionsMixin): """ Our own AbstractUser model. We need this primarily to properly handle the `is_active` and `is_staff` fields, which are used often by auth backends and by the Django admin. """ username_validator = UnicodeUsernameValidator() tenant_profile = models.OneToOneField(UserTenantProfile, on_delete=models.CASCADE, related_name="user") username = models.CharField( _('username'), max_length=150, unique=True, help_text=_('Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.'), validators=[username_validator], error_messages={ 'unique': _("A user with that username already exists."), }, ) first_name = models.CharField(_('first name'), max_length=150, blank=True) last_name = models.CharField(_('last name'), max_length=150, blank=True) email = models.EmailField(_('email address'), blank=True) _is_staff = models.BooleanField( _('staff status'), default=False, help_text=_('Designates whether the user can log into this admin site.'), ) _is_active = models.BooleanField( _('active'), default=True, help_text=_( 'Designates whether this user should be treated as active. ' 'Unselect this instead of deleting accounts.' ), ) date_joined = models.DateTimeField(_('date joined'), default=timezone.now) objects = UserManager() @property def is_active(self): is_active = self._is_active or self._is_active is None return is_active and self.is_active_for_tenant() @is_active.setter def is_active(self, value): """ We're just setting `self._is_active` here. To manage a user for a particular `Tenant`, use `User.activate()` and `User.deactivate()`. """ self._is_active = value # is_staff @property def is_staff(self): return self._is_staff and self.is_staff_for_tenant() @is_staff.setter def is_staff(self, value): """ We're just setting `self._is_staff` here. To manage a user for a particular `Tenant`, use `User.make_staff()` and `User.remove_staff()`. """ self._is_staff = value def add_to_tenant(self, tenant=None): if not tenant: tenant = Tenant.objects.get_current() try: self.tenants.get(tenant=tenant) except TenantMembership.DoesNotExist: membership = TenantMembership( tenant=tenant, user=self.tenant_profile ) membership.save() @property def is_super_admin(self): """ A user is a super admin if they are in one of the Django Groups associated with our TenantGroups. """ group_ids = TenantGroup.objects.django_groups().values_list('id', flat=True) return self.groups.filter(id__in=group_ids).exists() def is_member(self, tenant=None): # First, see if this user is a super admin. Super admins are people # who are in any of the root Django Groups for our TenantGrouops if self.is_super_admin: return True if not tenant: tenant = Tenant.objects.get_current() try: TenantMembership.objects.get( tenant=tenant, user=self.tenant_profile ) except TenantMembership.DoesNotExist: return False return True def is_staff_for_tenant(self, tenant=None): if self.is_super_admin and self._is_staff: return True if not tenant: tenant = Tenant.objects.get_current() membership = TenantMembership.objects.get( tenant=tenant, user=self.tenant_profile ) return membership.is_staff def make_staff(self, tenant=None): """ Set is_staff to True for this user on Tenant. """ if not tenant: tenant = Tenant.objects.get_current() membership = TenantMembership.objects.get( tenant=tenant, user=self.tenant_profile ) membership.is_staff = True membership.save() def remove_staff(self, tenant=None): """ Set is_staff to True for this user on Tenant. """ if not tenant: tenant = Tenant.objects.get_current() membership = TenantMembership.objects.get( tenant=tenant, user=self.tenant_profile ) membership.is_staff = False membership.save() # is_active def is_active_for_tenant(self, tenant=None): if self.is_super_admin and self._is_active: return True if not tenant: tenant = Tenant.objects.get_current() membership = TenantMembership.objects.get( tenant=tenant, user=self.tenant_profile ) return membership.is_active def activate(self, tenant=None): """ Set is_active to True for this user on Tenant. """ if not tenant: tenant = Tenant.objects.get_current() membership = TenantMembership.objects.get( tenant=tenant, user=self.tenant_profile ) membership.is_active = True membership.save() def deactivate(self, tenant=None): """ Set is_active to False for this user on Tenant. """ if not tenant: tenant = Tenant.objects.get_current() membership = TenantMembership.objects.get(tenant=tenant, user=self) membership.is_active = False membership.save() EMAIL_FIELD = 'email' USERNAME_FIELD = 'username' REQUIRED_FIELDS = ['email'] class Meta: verbose_name = _('user') verbose_name_plural = _('users') abstract = True def clean(self): super().clean() self.email = self.__class__.objects.normalize_email(self.email) def get_full_name(self): """ Return the first_name plus the last_name, with a space in between. """ full_name = '%s %s' % (self.first_name, self.last_name) return full_name.strip() def get_short_name(self): """Return the short name for the user.""" return self.first_name def email_user(self, subject, message, from_email=None, **kwargs): """Send an email to this user.""" send_mail(subject, message, from_email, [self.email], **kwargs)
python
8,731
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.TWI/Serif_16/udhr_Latn.TWI_Serif_16.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
python
305
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: api.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='api.proto', package='api', syntax='proto3', serialized_pb=_b('\n\tapi.proto\x12\x03\x61pi\"7\n\rFeasibleSpace\x12\x0b\n\x03max\x18\x01 \x01(\t\x12\x0b\n\x03min\x18\x02 \x01(\t\x12\x0c\n\x04list\x18\x03 \x03(\t\"q\n\x0fParameterConfig\x12\x0c\n\x04name\x18\x01 \x01(\t\x12*\n\x0eparameter_type\x18\x02 \x01(\x0e\x32\x12.api.ParameterType\x12$\n\x08\x66\x65\x61sible\x18\x03 \x01(\x0b\x32\x12.api.FeasibleSpace\"T\n\tParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12*\n\x0eparameter_type\x18\x02 \x01(\x0e\x32\x12.api.ParameterType\x12\r\n\x05value\x18\x03 \x01(\t\"l\n\rMetricsLogSet\x12\x11\n\tworker_id\x18\x01 \x01(\t\x12%\n\x0cmetrics_logs\x18\x02 \x03(\x0b\x32\x0f.api.MetricsLog\x12!\n\rworker_status\x18\x03 \x01(\x0e\x32\n.api.State\"&\n\x07Metrics\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t\"*\n\nMetricsLog\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06values\x18\x02 \x03(\t\"2\n\x13SuggestionParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t\"5\n\x16\x45\x61rlyStoppingParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t\"\"\n\x03Tag\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t\"&\n\tMountConf\x12\x0b\n\x03pvc\x18\x01 \x01(\t\x12\x0c\n\x04path\x18\x02 \x01(\t\"M\n\rStudyOverview\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05owner\x18\x02 \x01(\t\x12\n\n\x02id\x18\x03 \x01(\t\x12\x13\n\x0b\x64\x65scription\x18\x04 \x01(\t\"\x83\x01\n\x05Trial\x12\x10\n\x08trial_id\x18\x01 \x01(\t\x12\x10\n\x08study_id\x18\x02 \x01(\t\x12%\n\rparameter_set\x18\x03 \x03(\x0b\x32\x0e.api.Parameter\x12\x17\n\x0fobjective_value\x18\x04 \x01(\t\x12\x16\n\x04tags\x18\x05 \x03(\x0b\x32\x08.api.Tag\"\x82\x01\n\x0cWorkerConfig\x12\r\n\x05image\x18\x01 \x01(\t\x12\x0f\n\x07\x63ommand\x18\x02 \x03(\t\x12\x0b\n\x03gpu\x18\x03 \x01(\x05\x12\x11\n\tscheduler\x18\x04 \x01(\t\x12\x1d\n\x05mount\x18\x05 \x01(\x0b\x32\x0e.api.MountConf\x12\x13\n\x0bpull_secret\x18\x06 \x01(\t\"\xa7\x01\n\x06Worker\x12\x11\n\tworker_id\x18\x01 \x01(\t\x12\x10\n\x08study_id\x18\x02 \x01(\t\x12\x10\n\x08trial_id\x18\x03 \x01(\t\x12\x0f\n\x07runtime\x18\x04 \x01(\t\x12\x1a\n\x06status\x18\x05 \x01(\x0e\x32\n.api.State\x12!\n\x06\x63onfig\x18\x06 \x01(\x0b\x32\x11.api.WorkerConfig\x12\x16\n\x04tags\x18\x07 \x03(\x0b\x32\x08.api.Tag\"\xd3\x02\n\x0bStudyConfig\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05owner\x18\x02 \x01(\t\x12\x30\n\x11optimization_type\x18\x03 \x01(\x0e\x32\x15.api.OptimizationType\x12\x19\n\x11optimization_goal\x18\x04 \x01(\x01\x12<\n\x11parameter_configs\x18\x05 \x01(\x0b\x32!.api.StudyConfig.ParameterConfigs\x12\x1a\n\x12\x61\x63\x63\x65ss_permissions\x18\x06 \x03(\t\x12\x16\n\x04tags\x18\x07 \x03(\x0b\x32\x08.api.Tag\x12\x1c\n\x14objective_value_name\x18\x08 \x01(\t\x12\x0f\n\x07metrics\x18\t \x03(\t\x1a\x39\n\x10ParameterConfigs\x12%\n\x07\x63onfigs\x18\x01 \x03(\x0b\x32\x14.api.ParameterConfig\"<\n\x12\x43reateStudyRequest\x12&\n\x0cstudy_config\x18\x01 \x01(\x0b\x32\x10.api.StudyConfig\"$\n\x10\x43reateStudyReply\x12\x10\n\x08study_id\x18\x01 \x01(\t\"$\n\x10StopStudyRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\"\x10\n\x0eStopStudyReply\"#\n\x0fGetStudyRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\"7\n\rGetStudyReply\x12&\n\x0cstudy_config\x18\x01 \x01(\x0b\x32\x10.api.StudyConfig\"\x15\n\x13GetStudyListRequest\"@\n\x11GetStudyListReply\x12+\n\x0fstudy_overviews\x18\x01 \x03(\x0b\x32\x12.api.StudyOverview\"/\n\x12\x43reateTrialRequest\x12\x19\n\x05trial\x18\x01 \x01(\x0b\x32\n.api.Trial\"$\n\x10\x43reateTrialReply\x12\x10\n\x08trial_id\x18\x01 \x01(\t\"$\n\x10GetTrialsRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\",\n\x0eGetTrialsReply\x12\x1a\n\x06trials\x18\x01 \x03(\x0b\x32\n.api.Trial\"p\n\x0fRunTrialRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\x12\x10\n\x08trial_id\x18\x02 \x01(\t\x12\x0f\n\x07runtime\x18\x03 \x01(\t\x12(\n\rworker_config\x18\x04 \x01(\x0b\x32\x11.api.WorkerConfig\"\"\n\rRunTrialReply\x12\x11\n\tworker_id\x18\x01 \x01(\t\"O\n\x12StopWorkersRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\x12\x12\n\nworker_ids\x18\x02 \x03(\t\x12\x13\n\x0bis_complete\x18\x03 \x01(\x08\"\x12\n\x10StopWorkersReply\"J\n\x11GetWorkersRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\x12\x10\n\x08trial_id\x18\x02 \x01(\t\x12\x11\n\tworker_id\x18\x03 \x01(\t\"/\n\x0fGetWorkersReply\x12\x1c\n\x07workers\x18\x01 \x03(\x0b\x32\x0b.api.Worker\"\x89\x01\n\x15GetSuggestionsRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\x12\x1c\n\x14suggestion_algorithm\x18\x02 \x01(\t\x12\x16\n\x0erequest_number\x18\x03 \x01(\x05\x12\x16\n\x0elog_worker_ids\x18\x04 \x03(\t\x12\x10\n\x08param_id\x18\x05 \x01(\t\"1\n\x13GetSuggestionsReply\x12\x1a\n\x06trials\x18\x01 \x03(\x0b\x32\n.api.Trial\"c\n\x1bGetShouldStopWorkersRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\x12 \n\x18\x65\x61rly_stopping_algorithm\x18\x02 \x01(\t\x12\x10\n\x08param_id\x18\x05 \x01(\t\";\n\x19GetShouldStopWorkersReply\x12\x1e\n\x16should_stop_worker_ids\x18\x01 \x03(\t\"P\n\x11GetMetricsRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\x12\x12\n\nworker_ids\x18\x02 \x03(\t\x12\x15\n\rmetrics_names\x18\x03 \x03(\t\"?\n\x0fGetMetricsReply\x12,\n\x10metrics_log_sets\x18\x01 \x03(\x0b\x32\x12.api.MetricsLogSet\"\x89\x01\n\tModelInfo\x12\x12\n\nstudy_name\x18\x01 \x01(\t\x12\x11\n\tworker_id\x18\x02 \x01(\t\x12\"\n\nparameters\x18\x03 \x03(\x0b\x32\x0e.api.Parameter\x12\x1d\n\x07metrics\x18\x04 \x03(\x0b\x32\x0c.api.Metrics\x12\x12\n\nmodel_path\x18\x05 \x01(\t\")\n\x0b\x44\x61taSetInfo\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0c\n\x04path\x18\x02 \x01(\t\"J\n\x10SaveStudyRequest\x12\x12\n\nstudy_name\x18\x01 \x01(\t\x12\r\n\x05owner\x18\x02 \x01(\t\x12\x13\n\x0b\x64\x65scription\x18\x03 \x01(\t\"\x10\n\x0eSaveStudyReply\"k\n\x10SaveModelRequest\x12\x1d\n\x05model\x18\x01 \x01(\x0b\x32\x0e.api.ModelInfo\x12\"\n\x08\x64\x61ta_set\x18\x02 \x01(\x0b\x32\x10.api.DataSetInfo\x12\x14\n\x0ctensor_board\x18\x03 \x01(\x08\"\x10\n\x0eSaveModelReply\"\x18\n\x16GetSavedStudiesRequest\";\n\x14GetSavedStudiesReply\x12#\n\x07studies\x18\x01 \x03(\x0b\x32\x12.api.StudyOverview\"+\n\x15GetSavedModelsRequest\x12\x12\n\nstudy_name\x18\x01 \x01(\t\"5\n\x13GetSavedModelsReply\x12\x1e\n\x06models\x18\x01 \x03(\x0b\x32\x0e.api.ModelInfo\"=\n\x14GetSavedModelRequest\x12\x12\n\nstudy_name\x18\x01 \x01(\t\x12\x11\n\tworker_id\x18\x02 \x01(\t\"3\n\x12GetSavedModelReply\x12\x1d\n\x05model\x18\x01 \x01(\x0b\x32\x0e.api.ModelInfo\"\x9b\x01\n\x1eSetSuggestionParametersRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\x12\x1c\n\x14suggestion_algorithm\x18\x02 \x01(\t\x12\x10\n\x08param_id\x18\x03 \x01(\t\x12\x37\n\x15suggestion_parameters\x18\x04 \x03(\x0b\x32\x18.api.SuggestionParameter\"0\n\x1cSetSuggestionParametersReply\x12\x10\n\x08param_id\x18\x01 \x01(\t\"2\n\x1eGetSuggestionParametersRequest\x12\x10\n\x08param_id\x18\x01 \x01(\t\"W\n\x1cGetSuggestionParametersReply\x12\x37\n\x15suggestion_parameters\x18\x01 \x03(\x0b\x32\x18.api.SuggestionParameter\"5\n!GetSuggestionParameterListRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\"\x81\x01\n\x16SuggestionParameterSet\x12\x10\n\x08param_id\x18\x01 \x01(\t\x12\x1c\n\x14suggestion_algorithm\x18\x02 \x01(\t\x12\x37\n\x15suggestion_parameters\x18\x03 \x03(\x0b\x32\x18.api.SuggestionParameter\"a\n\x1fGetSuggestionParameterListReply\x12>\n\x19suggestion_parameter_sets\x18\x01 \x03(\x0b\x32\x1b.api.SuggestionParameterSet\")\n\x15StopSuggestionRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\"\x15\n\x13StopSuggestionReply\"\xa9\x01\n!SetEarlyStoppingParametersRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\x12 \n\x18\x65\x61rly_stopping_algorithm\x18\x02 \x01(\t\x12\x10\n\x08param_id\x18\x03 \x01(\t\x12>\n\x19\x65\x61rly_stopping_parameters\x18\x04 \x03(\x0b\x32\x1b.api.EarlyStoppingParameter\"3\n\x1fSetEarlyStoppingParametersReply\x12\x10\n\x08param_id\x18\x01 \x01(\t\"5\n!GetEarlyStoppingParametersRequest\x12\x10\n\x08param_id\x18\x01 \x01(\t\"a\n\x1fGetEarlyStoppingParametersReply\x12>\n\x19\x65\x61rly_stopping_parameters\x18\x01 \x03(\x0b\x32\x1b.api.EarlyStoppingParameter\"8\n$GetEarlyStoppingParameterListRequest\x12\x10\n\x08study_id\x18\x01 \x01(\t\"\x8f\x01\n\x19\x45\x61rlyStoppingParameterSet\x12\x10\n\x08param_id\x18\x01 \x01(\t\x12 \n\x18\x65\x61rly_stopping_algorithm\x18\x02 \x01(\t\x12>\n\x19\x65\x61rly_stopping_parameters\x18\x03 \x03(\x0b\x32\x1b.api.EarlyStoppingParameter\"k\n\"GetEarlyStoppingParameterListReply\x12\x45\n\x1d\x65\x61rly_stopping_parameter_sets\x18\x01 \x03(\x0b\x32\x1e.api.EarlyStoppingParameterSet*U\n\rParameterType\x12\x10\n\x0cUNKNOWN_TYPE\x10\x00\x12\n\n\x06\x44OUBLE\x10\x01\x12\x07\n\x03INT\x10\x02\x12\x0c\n\x08\x44ISCRETE\x10\x03\x12\x0f\n\x0b\x43\x41TEGORICAL\x10\x04*H\n\x10OptimizationType\x12\x18\n\x14UNKNOWN_OPTIMIZATION\x10\x00\x12\x0c\n\x08MINIMIZE\x10\x01\x12\x0c\n\x08MAXIMIZE\x10\x02*G\n\x05State\x12\x0b\n\x07PENDING\x10\x00\x12\x0b\n\x07RUNNING\x10\x01\x12\r\n\tCOMPLETED\x10\x02\x12\n\n\x06KILLED\x10\x03\x12\t\n\x05\x45RROR\x10x2\x84\r\n\x07Manager\x12=\n\x0b\x43reateStudy\x12\x17.api.CreateStudyRequest\x1a\x15.api.CreateStudyReply\x12\x37\n\tStopStudy\x12\x15.api.StopStudyRequest\x1a\x13.api.StopStudyReply\x12\x34\n\x08GetStudy\x12\x14.api.GetStudyRequest\x1a\x12.api.GetStudyReply\x12@\n\x0cGetStudyList\x12\x18.api.GetStudyListRequest\x1a\x16.api.GetStudyListReply\x12=\n\x0b\x43reateTrial\x12\x17.api.CreateTrialRequest\x1a\x15.api.CreateTrialReply\x12\x37\n\tGetTrials\x12\x15.api.GetTrialsRequest\x1a\x13.api.GetTrialsReply\x12\x34\n\x08RunTrial\x12\x14.api.RunTrialRequest\x1a\x12.api.RunTrialReply\x12=\n\x0bStopWorkers\x12\x17.api.StopWorkersRequest\x1a\x15.api.StopWorkersReply\x12:\n\nGetWorkers\x12\x16.api.GetWorkersRequest\x1a\x14.api.GetWorkersReply\x12\x46\n\x0eGetSuggestions\x12\x1a.api.GetSuggestionsRequest\x1a\x18.api.GetSuggestionsReply\x12X\n\x14GetShouldStopWorkers\x12 .api.GetShouldStopWorkersRequest\x1a\x1e.api.GetShouldStopWorkersReply\x12:\n\nGetMetrics\x12\x16.api.GetMetricsRequest\x1a\x14.api.GetMetricsReply\x12\x61\n\x17SetSuggestionParameters\x12#.api.SetSuggestionParametersRequest\x1a!.api.SetSuggestionParametersReply\x12\x61\n\x17GetSuggestionParameters\x12#.api.GetSuggestionParametersRequest\x1a!.api.GetSuggestionParametersReply\x12j\n\x1aGetSuggestionParameterList\x12&.api.GetSuggestionParameterListRequest\x1a$.api.GetSuggestionParameterListReply\x12j\n\x1aSetEarlyStoppingParameters\x12&.api.SetEarlyStoppingParametersRequest\x1a$.api.SetEarlyStoppingParametersReply\x12j\n\x1aGetEarlyStoppingParameters\x12&.api.GetEarlyStoppingParametersRequest\x1a$.api.GetEarlyStoppingParametersReply\x12s\n\x1dGetEarlyStoppingParameterList\x12).api.GetEarlyStoppingParameterListRequest\x1a\'.api.GetEarlyStoppingParameterListReply\x12\x37\n\tSaveStudy\x12\x15.api.SaveStudyRequest\x1a\x13.api.SaveStudyReply\x12\x37\n\tSaveModel\x12\x15.api.SaveModelRequest\x1a\x13.api.SaveModelReply\x12I\n\x0fGetSavedStudies\x12\x1b.api.GetSavedStudiesRequest\x1a\x19.api.GetSavedStudiesReply\x12\x46\n\x0eGetSavedModels\x12\x1a.api.GetSavedModelsRequest\x1a\x18.api.GetSavedModelsReply2T\n\nSuggestion\x12\x46\n\x0eGetSuggestions\x12\x1a.api.GetSuggestionsRequest\x1a\x18.api.GetSuggestionsReply2i\n\rEarlyStopping\x12X\n\x14GetShouldStopWorkers\x12 .api.GetShouldStopWorkersRequest\x1a\x1e.api.GetShouldStopWorkersReplyb\x06proto3') ) _PARAMETERTYPE = _descriptor.EnumDescriptor( name='ParameterType', full_name='api.ParameterType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNKNOWN_TYPE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='DOUBLE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='INT', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='DISCRETE', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='CATEGORICAL', index=4, number=4, options=None, type=None), ], containing_type=None, options=None, serialized_start=4997, serialized_end=5082, ) _sym_db.RegisterEnumDescriptor(_PARAMETERTYPE) ParameterType = enum_type_wrapper.EnumTypeWrapper(_PARAMETERTYPE) _OPTIMIZATIONTYPE = _descriptor.EnumDescriptor( name='OptimizationType', full_name='api.OptimizationType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNKNOWN_OPTIMIZATION', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='MINIMIZE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='MAXIMIZE', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=5084, serialized_end=5156, ) _sym_db.RegisterEnumDescriptor(_OPTIMIZATIONTYPE) OptimizationType = enum_type_wrapper.EnumTypeWrapper(_OPTIMIZATIONTYPE) _STATE = _descriptor.EnumDescriptor( name='State', full_name='api.State', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='PENDING', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='RUNNING', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='COMPLETED', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='KILLED', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='ERROR', index=4, number=120, options=None, type=None), ], containing_type=None, options=None, serialized_start=5158, serialized_end=5229, ) _sym_db.RegisterEnumDescriptor(_STATE) State = enum_type_wrapper.EnumTypeWrapper(_STATE) UNKNOWN_TYPE = 0 DOUBLE = 1 INT = 2 DISCRETE = 3 CATEGORICAL = 4 UNKNOWN_OPTIMIZATION = 0 MINIMIZE = 1 MAXIMIZE = 2 PENDING = 0 RUNNING = 1 COMPLETED = 2 KILLED = 3 ERROR = 120 _FEASIBLESPACE = _descriptor.Descriptor( name='FeasibleSpace', full_name='api.FeasibleSpace', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='max', full_name='api.FeasibleSpace.max', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min', full_name='api.FeasibleSpace.min', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='list', full_name='api.FeasibleSpace.list', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=18, serialized_end=73, ) _PARAMETERCONFIG = _descriptor.Descriptor( name='ParameterConfig', full_name='api.ParameterConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.ParameterConfig.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='parameter_type', full_name='api.ParameterConfig.parameter_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='feasible', full_name='api.ParameterConfig.feasible', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=75, serialized_end=188, ) _PARAMETER = _descriptor.Descriptor( name='Parameter', full_name='api.Parameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.Parameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='parameter_type', full_name='api.Parameter.parameter_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='api.Parameter.value', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=190, serialized_end=274, ) _METRICSLOGSET = _descriptor.Descriptor( name='MetricsLogSet', full_name='api.MetricsLogSet', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='worker_id', full_name='api.MetricsLogSet.worker_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='metrics_logs', full_name='api.MetricsLogSet.metrics_logs', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='worker_status', full_name='api.MetricsLogSet.worker_status', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=276, serialized_end=384, ) _METRICS = _descriptor.Descriptor( name='Metrics', full_name='api.Metrics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.Metrics.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='api.Metrics.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=386, serialized_end=424, ) _METRICSLOG = _descriptor.Descriptor( name='MetricsLog', full_name='api.MetricsLog', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.MetricsLog.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='values', full_name='api.MetricsLog.values', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=426, serialized_end=468, ) _SUGGESTIONPARAMETER = _descriptor.Descriptor( name='SuggestionParameter', full_name='api.SuggestionParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.SuggestionParameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='api.SuggestionParameter.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=470, serialized_end=520, ) _EARLYSTOPPINGPARAMETER = _descriptor.Descriptor( name='EarlyStoppingParameter', full_name='api.EarlyStoppingParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.EarlyStoppingParameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='api.EarlyStoppingParameter.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=522, serialized_end=575, ) _TAG = _descriptor.Descriptor( name='Tag', full_name='api.Tag', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.Tag.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='api.Tag.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=577, serialized_end=611, ) _MOUNTCONF = _descriptor.Descriptor( name='MountConf', full_name='api.MountConf', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pvc', full_name='api.MountConf.pvc', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='path', full_name='api.MountConf.path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=613, serialized_end=651, ) _STUDYOVERVIEW = _descriptor.Descriptor( name='StudyOverview', full_name='api.StudyOverview', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.StudyOverview.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='owner', full_name='api.StudyOverview.owner', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='id', full_name='api.StudyOverview.id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='description', full_name='api.StudyOverview.description', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=653, serialized_end=730, ) _TRIAL = _descriptor.Descriptor( name='Trial', full_name='api.Trial', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='trial_id', full_name='api.Trial.trial_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='study_id', full_name='api.Trial.study_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='parameter_set', full_name='api.Trial.parameter_set', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='objective_value', full_name='api.Trial.objective_value', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tags', full_name='api.Trial.tags', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=733, serialized_end=864, ) _WORKERCONFIG = _descriptor.Descriptor( name='WorkerConfig', full_name='api.WorkerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='image', full_name='api.WorkerConfig.image', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='command', full_name='api.WorkerConfig.command', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='gpu', full_name='api.WorkerConfig.gpu', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scheduler', full_name='api.WorkerConfig.scheduler', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mount', full_name='api.WorkerConfig.mount', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pull_secret', full_name='api.WorkerConfig.pull_secret', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=867, serialized_end=997, ) _WORKER = _descriptor.Descriptor( name='Worker', full_name='api.Worker', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='worker_id', full_name='api.Worker.worker_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='study_id', full_name='api.Worker.study_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='trial_id', full_name='api.Worker.trial_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='runtime', full_name='api.Worker.runtime', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='status', full_name='api.Worker.status', index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='config', full_name='api.Worker.config', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tags', full_name='api.Worker.tags', index=6, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1000, serialized_end=1167, ) _STUDYCONFIG_PARAMETERCONFIGS = _descriptor.Descriptor( name='ParameterConfigs', full_name='api.StudyConfig.ParameterConfigs', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='configs', full_name='api.StudyConfig.ParameterConfigs.configs', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1452, serialized_end=1509, ) _STUDYCONFIG = _descriptor.Descriptor( name='StudyConfig', full_name='api.StudyConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.StudyConfig.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='owner', full_name='api.StudyConfig.owner', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='optimization_type', full_name='api.StudyConfig.optimization_type', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='optimization_goal', full_name='api.StudyConfig.optimization_goal', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='parameter_configs', full_name='api.StudyConfig.parameter_configs', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='access_permissions', full_name='api.StudyConfig.access_permissions', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tags', full_name='api.StudyConfig.tags', index=6, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='objective_value_name', full_name='api.StudyConfig.objective_value_name', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='metrics', full_name='api.StudyConfig.metrics', index=8, number=9, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_STUDYCONFIG_PARAMETERCONFIGS, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1170, serialized_end=1509, ) _CREATESTUDYREQUEST = _descriptor.Descriptor( name='CreateStudyRequest', full_name='api.CreateStudyRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_config', full_name='api.CreateStudyRequest.study_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1511, serialized_end=1571, ) _CREATESTUDYREPLY = _descriptor.Descriptor( name='CreateStudyReply', full_name='api.CreateStudyReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.CreateStudyReply.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1573, serialized_end=1609, ) _STOPSTUDYREQUEST = _descriptor.Descriptor( name='StopStudyRequest', full_name='api.StopStudyRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.StopStudyRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1611, serialized_end=1647, ) _STOPSTUDYREPLY = _descriptor.Descriptor( name='StopStudyReply', full_name='api.StopStudyReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1649, serialized_end=1665, ) _GETSTUDYREQUEST = _descriptor.Descriptor( name='GetStudyRequest', full_name='api.GetStudyRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.GetStudyRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1667, serialized_end=1702, ) _GETSTUDYREPLY = _descriptor.Descriptor( name='GetStudyReply', full_name='api.GetStudyReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_config', full_name='api.GetStudyReply.study_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1704, serialized_end=1759, ) _GETSTUDYLISTREQUEST = _descriptor.Descriptor( name='GetStudyListRequest', full_name='api.GetStudyListRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1761, serialized_end=1782, ) _GETSTUDYLISTREPLY = _descriptor.Descriptor( name='GetStudyListReply', full_name='api.GetStudyListReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_overviews', full_name='api.GetStudyListReply.study_overviews', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1784, serialized_end=1848, ) _CREATETRIALREQUEST = _descriptor.Descriptor( name='CreateTrialRequest', full_name='api.CreateTrialRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='trial', full_name='api.CreateTrialRequest.trial', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1850, serialized_end=1897, ) _CREATETRIALREPLY = _descriptor.Descriptor( name='CreateTrialReply', full_name='api.CreateTrialReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='trial_id', full_name='api.CreateTrialReply.trial_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1899, serialized_end=1935, ) _GETTRIALSREQUEST = _descriptor.Descriptor( name='GetTrialsRequest', full_name='api.GetTrialsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.GetTrialsRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1937, serialized_end=1973, ) _GETTRIALSREPLY = _descriptor.Descriptor( name='GetTrialsReply', full_name='api.GetTrialsReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='trials', full_name='api.GetTrialsReply.trials', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1975, serialized_end=2019, ) _RUNTRIALREQUEST = _descriptor.Descriptor( name='RunTrialRequest', full_name='api.RunTrialRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.RunTrialRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='trial_id', full_name='api.RunTrialRequest.trial_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='runtime', full_name='api.RunTrialRequest.runtime', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='worker_config', full_name='api.RunTrialRequest.worker_config', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2021, serialized_end=2133, ) _RUNTRIALREPLY = _descriptor.Descriptor( name='RunTrialReply', full_name='api.RunTrialReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='worker_id', full_name='api.RunTrialReply.worker_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2135, serialized_end=2169, ) _STOPWORKERSREQUEST = _descriptor.Descriptor( name='StopWorkersRequest', full_name='api.StopWorkersRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.StopWorkersRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='worker_ids', full_name='api.StopWorkersRequest.worker_ids', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='is_complete', full_name='api.StopWorkersRequest.is_complete', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2171, serialized_end=2250, ) _STOPWORKERSREPLY = _descriptor.Descriptor( name='StopWorkersReply', full_name='api.StopWorkersReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2252, serialized_end=2270, ) _GETWORKERSREQUEST = _descriptor.Descriptor( name='GetWorkersRequest', full_name='api.GetWorkersRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.GetWorkersRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='trial_id', full_name='api.GetWorkersRequest.trial_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='worker_id', full_name='api.GetWorkersRequest.worker_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2272, serialized_end=2346, ) _GETWORKERSREPLY = _descriptor.Descriptor( name='GetWorkersReply', full_name='api.GetWorkersReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='workers', full_name='api.GetWorkersReply.workers', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2348, serialized_end=2395, ) _GETSUGGESTIONSREQUEST = _descriptor.Descriptor( name='GetSuggestionsRequest', full_name='api.GetSuggestionsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.GetSuggestionsRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='suggestion_algorithm', full_name='api.GetSuggestionsRequest.suggestion_algorithm', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='request_number', full_name='api.GetSuggestionsRequest.request_number', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='log_worker_ids', full_name='api.GetSuggestionsRequest.log_worker_ids', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='param_id', full_name='api.GetSuggestionsRequest.param_id', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2398, serialized_end=2535, ) _GETSUGGESTIONSREPLY = _descriptor.Descriptor( name='GetSuggestionsReply', full_name='api.GetSuggestionsReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='trials', full_name='api.GetSuggestionsReply.trials', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2537, serialized_end=2586, ) _GETSHOULDSTOPWORKERSREQUEST = _descriptor.Descriptor( name='GetShouldStopWorkersRequest', full_name='api.GetShouldStopWorkersRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.GetShouldStopWorkersRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='early_stopping_algorithm', full_name='api.GetShouldStopWorkersRequest.early_stopping_algorithm', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='param_id', full_name='api.GetShouldStopWorkersRequest.param_id', index=2, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2588, serialized_end=2687, ) _GETSHOULDSTOPWORKERSREPLY = _descriptor.Descriptor( name='GetShouldStopWorkersReply', full_name='api.GetShouldStopWorkersReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='should_stop_worker_ids', full_name='api.GetShouldStopWorkersReply.should_stop_worker_ids', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2689, serialized_end=2748, ) _GETMETRICSREQUEST = _descriptor.Descriptor( name='GetMetricsRequest', full_name='api.GetMetricsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.GetMetricsRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='worker_ids', full_name='api.GetMetricsRequest.worker_ids', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='metrics_names', full_name='api.GetMetricsRequest.metrics_names', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2750, serialized_end=2830, ) _GETMETRICSREPLY = _descriptor.Descriptor( name='GetMetricsReply', full_name='api.GetMetricsReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='metrics_log_sets', full_name='api.GetMetricsReply.metrics_log_sets', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2832, serialized_end=2895, ) _MODELINFO = _descriptor.Descriptor( name='ModelInfo', full_name='api.ModelInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_name', full_name='api.ModelInfo.study_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='worker_id', full_name='api.ModelInfo.worker_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='parameters', full_name='api.ModelInfo.parameters', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='metrics', full_name='api.ModelInfo.metrics', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='model_path', full_name='api.ModelInfo.model_path', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2898, serialized_end=3035, ) _DATASETINFO = _descriptor.Descriptor( name='DataSetInfo', full_name='api.DataSetInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='api.DataSetInfo.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='path', full_name='api.DataSetInfo.path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3037, serialized_end=3078, ) _SAVESTUDYREQUEST = _descriptor.Descriptor( name='SaveStudyRequest', full_name='api.SaveStudyRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_name', full_name='api.SaveStudyRequest.study_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='owner', full_name='api.SaveStudyRequest.owner', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='description', full_name='api.SaveStudyRequest.description', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3080, serialized_end=3154, ) _SAVESTUDYREPLY = _descriptor.Descriptor( name='SaveStudyReply', full_name='api.SaveStudyReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3156, serialized_end=3172, ) _SAVEMODELREQUEST = _descriptor.Descriptor( name='SaveModelRequest', full_name='api.SaveModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='model', full_name='api.SaveModelRequest.model', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='data_set', full_name='api.SaveModelRequest.data_set', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tensor_board', full_name='api.SaveModelRequest.tensor_board', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3174, serialized_end=3281, ) _SAVEMODELREPLY = _descriptor.Descriptor( name='SaveModelReply', full_name='api.SaveModelReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3283, serialized_end=3299, ) _GETSAVEDSTUDIESREQUEST = _descriptor.Descriptor( name='GetSavedStudiesRequest', full_name='api.GetSavedStudiesRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3301, serialized_end=3325, ) _GETSAVEDSTUDIESREPLY = _descriptor.Descriptor( name='GetSavedStudiesReply', full_name='api.GetSavedStudiesReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='studies', full_name='api.GetSavedStudiesReply.studies', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3327, serialized_end=3386, ) _GETSAVEDMODELSREQUEST = _descriptor.Descriptor( name='GetSavedModelsRequest', full_name='api.GetSavedModelsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_name', full_name='api.GetSavedModelsRequest.study_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3388, serialized_end=3431, ) _GETSAVEDMODELSREPLY = _descriptor.Descriptor( name='GetSavedModelsReply', full_name='api.GetSavedModelsReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='models', full_name='api.GetSavedModelsReply.models', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3433, serialized_end=3486, ) _GETSAVEDMODELREQUEST = _descriptor.Descriptor( name='GetSavedModelRequest', full_name='api.GetSavedModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_name', full_name='api.GetSavedModelRequest.study_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='worker_id', full_name='api.GetSavedModelRequest.worker_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3488, serialized_end=3549, ) _GETSAVEDMODELREPLY = _descriptor.Descriptor( name='GetSavedModelReply', full_name='api.GetSavedModelReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='model', full_name='api.GetSavedModelReply.model', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3551, serialized_end=3602, ) _SETSUGGESTIONPARAMETERSREQUEST = _descriptor.Descriptor( name='SetSuggestionParametersRequest', full_name='api.SetSuggestionParametersRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.SetSuggestionParametersRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='suggestion_algorithm', full_name='api.SetSuggestionParametersRequest.suggestion_algorithm', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='param_id', full_name='api.SetSuggestionParametersRequest.param_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='suggestion_parameters', full_name='api.SetSuggestionParametersRequest.suggestion_parameters', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3605, serialized_end=3760, ) _SETSUGGESTIONPARAMETERSREPLY = _descriptor.Descriptor( name='SetSuggestionParametersReply', full_name='api.SetSuggestionParametersReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='param_id', full_name='api.SetSuggestionParametersReply.param_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3762, serialized_end=3810, ) _GETSUGGESTIONPARAMETERSREQUEST = _descriptor.Descriptor( name='GetSuggestionParametersRequest', full_name='api.GetSuggestionParametersRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='param_id', full_name='api.GetSuggestionParametersRequest.param_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3812, serialized_end=3862, ) _GETSUGGESTIONPARAMETERSREPLY = _descriptor.Descriptor( name='GetSuggestionParametersReply', full_name='api.GetSuggestionParametersReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='suggestion_parameters', full_name='api.GetSuggestionParametersReply.suggestion_parameters', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3864, serialized_end=3951, ) _GETSUGGESTIONPARAMETERLISTREQUEST = _descriptor.Descriptor( name='GetSuggestionParameterListRequest', full_name='api.GetSuggestionParameterListRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.GetSuggestionParameterListRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3953, serialized_end=4006, ) _SUGGESTIONPARAMETERSET = _descriptor.Descriptor( name='SuggestionParameterSet', full_name='api.SuggestionParameterSet', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='param_id', full_name='api.SuggestionParameterSet.param_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='suggestion_algorithm', full_name='api.SuggestionParameterSet.suggestion_algorithm', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='suggestion_parameters', full_name='api.SuggestionParameterSet.suggestion_parameters', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4009, serialized_end=4138, ) _GETSUGGESTIONPARAMETERLISTREPLY = _descriptor.Descriptor( name='GetSuggestionParameterListReply', full_name='api.GetSuggestionParameterListReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='suggestion_parameter_sets', full_name='api.GetSuggestionParameterListReply.suggestion_parameter_sets', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4140, serialized_end=4237, ) _STOPSUGGESTIONREQUEST = _descriptor.Descriptor( name='StopSuggestionRequest', full_name='api.StopSuggestionRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.StopSuggestionRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4239, serialized_end=4280, ) _STOPSUGGESTIONREPLY = _descriptor.Descriptor( name='StopSuggestionReply', full_name='api.StopSuggestionReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4282, serialized_end=4303, ) _SETEARLYSTOPPINGPARAMETERSREQUEST = _descriptor.Descriptor( name='SetEarlyStoppingParametersRequest', full_name='api.SetEarlyStoppingParametersRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.SetEarlyStoppingParametersRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='early_stopping_algorithm', full_name='api.SetEarlyStoppingParametersRequest.early_stopping_algorithm', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='param_id', full_name='api.SetEarlyStoppingParametersRequest.param_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='early_stopping_parameters', full_name='api.SetEarlyStoppingParametersRequest.early_stopping_parameters', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4306, serialized_end=4475, ) _SETEARLYSTOPPINGPARAMETERSREPLY = _descriptor.Descriptor( name='SetEarlyStoppingParametersReply', full_name='api.SetEarlyStoppingParametersReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='param_id', full_name='api.SetEarlyStoppingParametersReply.param_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4477, serialized_end=4528, ) _GETEARLYSTOPPINGPARAMETERSREQUEST = _descriptor.Descriptor( name='GetEarlyStoppingParametersRequest', full_name='api.GetEarlyStoppingParametersRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='param_id', full_name='api.GetEarlyStoppingParametersRequest.param_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4530, serialized_end=4583, ) _GETEARLYSTOPPINGPARAMETERSREPLY = _descriptor.Descriptor( name='GetEarlyStoppingParametersReply', full_name='api.GetEarlyStoppingParametersReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='early_stopping_parameters', full_name='api.GetEarlyStoppingParametersReply.early_stopping_parameters', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4585, serialized_end=4682, ) _GETEARLYSTOPPINGPARAMETERLISTREQUEST = _descriptor.Descriptor( name='GetEarlyStoppingParameterListRequest', full_name='api.GetEarlyStoppingParameterListRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='study_id', full_name='api.GetEarlyStoppingParameterListRequest.study_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4684, serialized_end=4740, ) _EARLYSTOPPINGPARAMETERSET = _descriptor.Descriptor( name='EarlyStoppingParameterSet', full_name='api.EarlyStoppingParameterSet', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='param_id', full_name='api.EarlyStoppingParameterSet.param_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='early_stopping_algorithm', full_name='api.EarlyStoppingParameterSet.early_stopping_algorithm', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='early_stopping_parameters', full_name='api.EarlyStoppingParameterSet.early_stopping_parameters', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4743, serialized_end=4886, ) _GETEARLYSTOPPINGPARAMETERLISTREPLY = _descriptor.Descriptor( name='GetEarlyStoppingParameterListReply', full_name='api.GetEarlyStoppingParameterListReply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='early_stopping_parameter_sets', full_name='api.GetEarlyStoppingParameterListReply.early_stopping_parameter_sets', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4888, serialized_end=4995, ) _PARAMETERCONFIG.fields_by_name['parameter_type'].enum_type = _PARAMETERTYPE _PARAMETERCONFIG.fields_by_name['feasible'].message_type = _FEASIBLESPACE _PARAMETER.fields_by_name['parameter_type'].enum_type = _PARAMETERTYPE _METRICSLOGSET.fields_by_name['metrics_logs'].message_type = _METRICSLOG _METRICSLOGSET.fields_by_name['worker_status'].enum_type = _STATE _TRIAL.fields_by_name['parameter_set'].message_type = _PARAMETER _TRIAL.fields_by_name['tags'].message_type = _TAG _WORKERCONFIG.fields_by_name['mount'].message_type = _MOUNTCONF _WORKER.fields_by_name['status'].enum_type = _STATE _WORKER.fields_by_name['config'].message_type = _WORKERCONFIG _WORKER.fields_by_name['tags'].message_type = _TAG _STUDYCONFIG_PARAMETERCONFIGS.fields_by_name['configs'].message_type = _PARAMETERCONFIG _STUDYCONFIG_PARAMETERCONFIGS.containing_type = _STUDYCONFIG _STUDYCONFIG.fields_by_name['optimization_type'].enum_type = _OPTIMIZATIONTYPE _STUDYCONFIG.fields_by_name['parameter_configs'].message_type = _STUDYCONFIG_PARAMETERCONFIGS _STUDYCONFIG.fields_by_name['tags'].message_type = _TAG _CREATESTUDYREQUEST.fields_by_name['study_config'].message_type = _STUDYCONFIG _GETSTUDYREPLY.fields_by_name['study_config'].message_type = _STUDYCONFIG _GETSTUDYLISTREPLY.fields_by_name['study_overviews'].message_type = _STUDYOVERVIEW _CREATETRIALREQUEST.fields_by_name['trial'].message_type = _TRIAL _GETTRIALSREPLY.fields_by_name['trials'].message_type = _TRIAL _RUNTRIALREQUEST.fields_by_name['worker_config'].message_type = _WORKERCONFIG _GETWORKERSREPLY.fields_by_name['workers'].message_type = _WORKER _GETSUGGESTIONSREPLY.fields_by_name['trials'].message_type = _TRIAL _GETMETRICSREPLY.fields_by_name['metrics_log_sets'].message_type = _METRICSLOGSET _MODELINFO.fields_by_name['parameters'].message_type = _PARAMETER _MODELINFO.fields_by_name['metrics'].message_type = _METRICS _SAVEMODELREQUEST.fields_by_name['model'].message_type = _MODELINFO _SAVEMODELREQUEST.fields_by_name['data_set'].message_type = _DATASETINFO _GETSAVEDSTUDIESREPLY.fields_by_name['studies'].message_type = _STUDYOVERVIEW _GETSAVEDMODELSREPLY.fields_by_name['models'].message_type = _MODELINFO _GETSAVEDMODELREPLY.fields_by_name['model'].message_type = _MODELINFO _SETSUGGESTIONPARAMETERSREQUEST.fields_by_name['suggestion_parameters'].message_type = _SUGGESTIONPARAMETER _GETSUGGESTIONPARAMETERSREPLY.fields_by_name['suggestion_parameters'].message_type = _SUGGESTIONPARAMETER _SUGGESTIONPARAMETERSET.fields_by_name['suggestion_parameters'].message_type = _SUGGESTIONPARAMETER _GETSUGGESTIONPARAMETERLISTREPLY.fields_by_name['suggestion_parameter_sets'].message_type = _SUGGESTIONPARAMETERSET _SETEARLYSTOPPINGPARAMETERSREQUEST.fields_by_name['early_stopping_parameters'].message_type = _EARLYSTOPPINGPARAMETER _GETEARLYSTOPPINGPARAMETERSREPLY.fields_by_name['early_stopping_parameters'].message_type = _EARLYSTOPPINGPARAMETER _EARLYSTOPPINGPARAMETERSET.fields_by_name['early_stopping_parameters'].message_type = _EARLYSTOPPINGPARAMETER _GETEARLYSTOPPINGPARAMETERLISTREPLY.fields_by_name['early_stopping_parameter_sets'].message_type = _EARLYSTOPPINGPARAMETERSET DESCRIPTOR.message_types_by_name['FeasibleSpace'] = _FEASIBLESPACE DESCRIPTOR.message_types_by_name['ParameterConfig'] = _PARAMETERCONFIG DESCRIPTOR.message_types_by_name['Parameter'] = _PARAMETER DESCRIPTOR.message_types_by_name['MetricsLogSet'] = _METRICSLOGSET DESCRIPTOR.message_types_by_name['Metrics'] = _METRICS DESCRIPTOR.message_types_by_name['MetricsLog'] = _METRICSLOG DESCRIPTOR.message_types_by_name['SuggestionParameter'] = _SUGGESTIONPARAMETER DESCRIPTOR.message_types_by_name['EarlyStoppingParameter'] = _EARLYSTOPPINGPARAMETER DESCRIPTOR.message_types_by_name['Tag'] = _TAG DESCRIPTOR.message_types_by_name['MountConf'] = _MOUNTCONF DESCRIPTOR.message_types_by_name['StudyOverview'] = _STUDYOVERVIEW DESCRIPTOR.message_types_by_name['Trial'] = _TRIAL DESCRIPTOR.message_types_by_name['WorkerConfig'] = _WORKERCONFIG DESCRIPTOR.message_types_by_name['Worker'] = _WORKER DESCRIPTOR.message_types_by_name['StudyConfig'] = _STUDYCONFIG DESCRIPTOR.message_types_by_name['CreateStudyRequest'] = _CREATESTUDYREQUEST DESCRIPTOR.message_types_by_name['CreateStudyReply'] = _CREATESTUDYREPLY DESCRIPTOR.message_types_by_name['StopStudyRequest'] = _STOPSTUDYREQUEST DESCRIPTOR.message_types_by_name['StopStudyReply'] = _STOPSTUDYREPLY DESCRIPTOR.message_types_by_name['GetStudyRequest'] = _GETSTUDYREQUEST DESCRIPTOR.message_types_by_name['GetStudyReply'] = _GETSTUDYREPLY DESCRIPTOR.message_types_by_name['GetStudyListRequest'] = _GETSTUDYLISTREQUEST DESCRIPTOR.message_types_by_name['GetStudyListReply'] = _GETSTUDYLISTREPLY DESCRIPTOR.message_types_by_name['CreateTrialRequest'] = _CREATETRIALREQUEST DESCRIPTOR.message_types_by_name['CreateTrialReply'] = _CREATETRIALREPLY DESCRIPTOR.message_types_by_name['GetTrialsRequest'] = _GETTRIALSREQUEST DESCRIPTOR.message_types_by_name['GetTrialsReply'] = _GETTRIALSREPLY DESCRIPTOR.message_types_by_name['RunTrialRequest'] = _RUNTRIALREQUEST DESCRIPTOR.message_types_by_name['RunTrialReply'] = _RUNTRIALREPLY DESCRIPTOR.message_types_by_name['StopWorkersRequest'] = _STOPWORKERSREQUEST DESCRIPTOR.message_types_by_name['StopWorkersReply'] = _STOPWORKERSREPLY DESCRIPTOR.message_types_by_name['GetWorkersRequest'] = _GETWORKERSREQUEST DESCRIPTOR.message_types_by_name['GetWorkersReply'] = _GETWORKERSREPLY DESCRIPTOR.message_types_by_name['GetSuggestionsRequest'] = _GETSUGGESTIONSREQUEST DESCRIPTOR.message_types_by_name['GetSuggestionsReply'] = _GETSUGGESTIONSREPLY DESCRIPTOR.message_types_by_name['GetShouldStopWorkersRequest'] = _GETSHOULDSTOPWORKERSREQUEST DESCRIPTOR.message_types_by_name['GetShouldStopWorkersReply'] = _GETSHOULDSTOPWORKERSREPLY DESCRIPTOR.message_types_by_name['GetMetricsRequest'] = _GETMETRICSREQUEST DESCRIPTOR.message_types_by_name['GetMetricsReply'] = _GETMETRICSREPLY DESCRIPTOR.message_types_by_name['ModelInfo'] = _MODELINFO DESCRIPTOR.message_types_by_name['DataSetInfo'] = _DATASETINFO DESCRIPTOR.message_types_by_name['SaveStudyRequest'] = _SAVESTUDYREQUEST DESCRIPTOR.message_types_by_name['SaveStudyReply'] = _SAVESTUDYREPLY DESCRIPTOR.message_types_by_name['SaveModelRequest'] = _SAVEMODELREQUEST DESCRIPTOR.message_types_by_name['SaveModelReply'] = _SAVEMODELREPLY DESCRIPTOR.message_types_by_name['GetSavedStudiesRequest'] = _GETSAVEDSTUDIESREQUEST DESCRIPTOR.message_types_by_name['GetSavedStudiesReply'] = _GETSAVEDSTUDIESREPLY DESCRIPTOR.message_types_by_name['GetSavedModelsRequest'] = _GETSAVEDMODELSREQUEST DESCRIPTOR.message_types_by_name['GetSavedModelsReply'] = _GETSAVEDMODELSREPLY DESCRIPTOR.message_types_by_name['GetSavedModelRequest'] = _GETSAVEDMODELREQUEST DESCRIPTOR.message_types_by_name['GetSavedModelReply'] = _GETSAVEDMODELREPLY DESCRIPTOR.message_types_by_name['SetSuggestionParametersRequest'] = _SETSUGGESTIONPARAMETERSREQUEST DESCRIPTOR.message_types_by_name['SetSuggestionParametersReply'] = _SETSUGGESTIONPARAMETERSREPLY DESCRIPTOR.message_types_by_name['GetSuggestionParametersRequest'] = _GETSUGGESTIONPARAMETERSREQUEST DESCRIPTOR.message_types_by_name['GetSuggestionParametersReply'] = _GETSUGGESTIONPARAMETERSREPLY DESCRIPTOR.message_types_by_name['GetSuggestionParameterListRequest'] = _GETSUGGESTIONPARAMETERLISTREQUEST DESCRIPTOR.message_types_by_name['SuggestionParameterSet'] = _SUGGESTIONPARAMETERSET DESCRIPTOR.message_types_by_name['GetSuggestionParameterListReply'] = _GETSUGGESTIONPARAMETERLISTREPLY DESCRIPTOR.message_types_by_name['StopSuggestionRequest'] = _STOPSUGGESTIONREQUEST DESCRIPTOR.message_types_by_name['StopSuggestionReply'] = _STOPSUGGESTIONREPLY DESCRIPTOR.message_types_by_name['SetEarlyStoppingParametersRequest'] = _SETEARLYSTOPPINGPARAMETERSREQUEST DESCRIPTOR.message_types_by_name['SetEarlyStoppingParametersReply'] = _SETEARLYSTOPPINGPARAMETERSREPLY DESCRIPTOR.message_types_by_name['GetEarlyStoppingParametersRequest'] = _GETEARLYSTOPPINGPARAMETERSREQUEST DESCRIPTOR.message_types_by_name['GetEarlyStoppingParametersReply'] = _GETEARLYSTOPPINGPARAMETERSREPLY DESCRIPTOR.message_types_by_name['GetEarlyStoppingParameterListRequest'] = _GETEARLYSTOPPINGPARAMETERLISTREQUEST DESCRIPTOR.message_types_by_name['EarlyStoppingParameterSet'] = _EARLYSTOPPINGPARAMETERSET DESCRIPTOR.message_types_by_name['GetEarlyStoppingParameterListReply'] = _GETEARLYSTOPPINGPARAMETERLISTREPLY DESCRIPTOR.enum_types_by_name['ParameterType'] = _PARAMETERTYPE DESCRIPTOR.enum_types_by_name['OptimizationType'] = _OPTIMIZATIONTYPE DESCRIPTOR.enum_types_by_name['State'] = _STATE _sym_db.RegisterFileDescriptor(DESCRIPTOR) FeasibleSpace = _reflection.GeneratedProtocolMessageType('FeasibleSpace', (_message.Message,), dict( DESCRIPTOR = _FEASIBLESPACE, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.FeasibleSpace) )) _sym_db.RegisterMessage(FeasibleSpace) ParameterConfig = _reflection.GeneratedProtocolMessageType('ParameterConfig', (_message.Message,), dict( DESCRIPTOR = _PARAMETERCONFIG, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.ParameterConfig) )) _sym_db.RegisterMessage(ParameterConfig) Parameter = _reflection.GeneratedProtocolMessageType('Parameter', (_message.Message,), dict( DESCRIPTOR = _PARAMETER, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.Parameter) )) _sym_db.RegisterMessage(Parameter) MetricsLogSet = _reflection.GeneratedProtocolMessageType('MetricsLogSet', (_message.Message,), dict( DESCRIPTOR = _METRICSLOGSET, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.MetricsLogSet) )) _sym_db.RegisterMessage(MetricsLogSet) Metrics = _reflection.GeneratedProtocolMessageType('Metrics', (_message.Message,), dict( DESCRIPTOR = _METRICS, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.Metrics) )) _sym_db.RegisterMessage(Metrics) MetricsLog = _reflection.GeneratedProtocolMessageType('MetricsLog', (_message.Message,), dict( DESCRIPTOR = _METRICSLOG, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.MetricsLog) )) _sym_db.RegisterMessage(MetricsLog) SuggestionParameter = _reflection.GeneratedProtocolMessageType('SuggestionParameter', (_message.Message,), dict( DESCRIPTOR = _SUGGESTIONPARAMETER, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SuggestionParameter) )) _sym_db.RegisterMessage(SuggestionParameter) EarlyStoppingParameter = _reflection.GeneratedProtocolMessageType('EarlyStoppingParameter', (_message.Message,), dict( DESCRIPTOR = _EARLYSTOPPINGPARAMETER, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.EarlyStoppingParameter) )) _sym_db.RegisterMessage(EarlyStoppingParameter) Tag = _reflection.GeneratedProtocolMessageType('Tag', (_message.Message,), dict( DESCRIPTOR = _TAG, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.Tag) )) _sym_db.RegisterMessage(Tag) MountConf = _reflection.GeneratedProtocolMessageType('MountConf', (_message.Message,), dict( DESCRIPTOR = _MOUNTCONF, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.MountConf) )) _sym_db.RegisterMessage(MountConf) StudyOverview = _reflection.GeneratedProtocolMessageType('StudyOverview', (_message.Message,), dict( DESCRIPTOR = _STUDYOVERVIEW, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StudyOverview) )) _sym_db.RegisterMessage(StudyOverview) Trial = _reflection.GeneratedProtocolMessageType('Trial', (_message.Message,), dict( DESCRIPTOR = _TRIAL, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.Trial) )) _sym_db.RegisterMessage(Trial) WorkerConfig = _reflection.GeneratedProtocolMessageType('WorkerConfig', (_message.Message,), dict( DESCRIPTOR = _WORKERCONFIG, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.WorkerConfig) )) _sym_db.RegisterMessage(WorkerConfig) Worker = _reflection.GeneratedProtocolMessageType('Worker', (_message.Message,), dict( DESCRIPTOR = _WORKER, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.Worker) )) _sym_db.RegisterMessage(Worker) StudyConfig = _reflection.GeneratedProtocolMessageType('StudyConfig', (_message.Message,), dict( ParameterConfigs = _reflection.GeneratedProtocolMessageType('ParameterConfigs', (_message.Message,), dict( DESCRIPTOR = _STUDYCONFIG_PARAMETERCONFIGS, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StudyConfig.ParameterConfigs) )) , DESCRIPTOR = _STUDYCONFIG, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StudyConfig) )) _sym_db.RegisterMessage(StudyConfig) _sym_db.RegisterMessage(StudyConfig.ParameterConfigs) CreateStudyRequest = _reflection.GeneratedProtocolMessageType('CreateStudyRequest', (_message.Message,), dict( DESCRIPTOR = _CREATESTUDYREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.CreateStudyRequest) )) _sym_db.RegisterMessage(CreateStudyRequest) CreateStudyReply = _reflection.GeneratedProtocolMessageType('CreateStudyReply', (_message.Message,), dict( DESCRIPTOR = _CREATESTUDYREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.CreateStudyReply) )) _sym_db.RegisterMessage(CreateStudyReply) StopStudyRequest = _reflection.GeneratedProtocolMessageType('StopStudyRequest', (_message.Message,), dict( DESCRIPTOR = _STOPSTUDYREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StopStudyRequest) )) _sym_db.RegisterMessage(StopStudyRequest) StopStudyReply = _reflection.GeneratedProtocolMessageType('StopStudyReply', (_message.Message,), dict( DESCRIPTOR = _STOPSTUDYREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StopStudyReply) )) _sym_db.RegisterMessage(StopStudyReply) GetStudyRequest = _reflection.GeneratedProtocolMessageType('GetStudyRequest', (_message.Message,), dict( DESCRIPTOR = _GETSTUDYREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetStudyRequest) )) _sym_db.RegisterMessage(GetStudyRequest) GetStudyReply = _reflection.GeneratedProtocolMessageType('GetStudyReply', (_message.Message,), dict( DESCRIPTOR = _GETSTUDYREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetStudyReply) )) _sym_db.RegisterMessage(GetStudyReply) GetStudyListRequest = _reflection.GeneratedProtocolMessageType('GetStudyListRequest', (_message.Message,), dict( DESCRIPTOR = _GETSTUDYLISTREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetStudyListRequest) )) _sym_db.RegisterMessage(GetStudyListRequest) GetStudyListReply = _reflection.GeneratedProtocolMessageType('GetStudyListReply', (_message.Message,), dict( DESCRIPTOR = _GETSTUDYLISTREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetStudyListReply) )) _sym_db.RegisterMessage(GetStudyListReply) CreateTrialRequest = _reflection.GeneratedProtocolMessageType('CreateTrialRequest', (_message.Message,), dict( DESCRIPTOR = _CREATETRIALREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.CreateTrialRequest) )) _sym_db.RegisterMessage(CreateTrialRequest) CreateTrialReply = _reflection.GeneratedProtocolMessageType('CreateTrialReply', (_message.Message,), dict( DESCRIPTOR = _CREATETRIALREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.CreateTrialReply) )) _sym_db.RegisterMessage(CreateTrialReply) GetTrialsRequest = _reflection.GeneratedProtocolMessageType('GetTrialsRequest', (_message.Message,), dict( DESCRIPTOR = _GETTRIALSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetTrialsRequest) )) _sym_db.RegisterMessage(GetTrialsRequest) GetTrialsReply = _reflection.GeneratedProtocolMessageType('GetTrialsReply', (_message.Message,), dict( DESCRIPTOR = _GETTRIALSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetTrialsReply) )) _sym_db.RegisterMessage(GetTrialsReply) RunTrialRequest = _reflection.GeneratedProtocolMessageType('RunTrialRequest', (_message.Message,), dict( DESCRIPTOR = _RUNTRIALREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.RunTrialRequest) )) _sym_db.RegisterMessage(RunTrialRequest) RunTrialReply = _reflection.GeneratedProtocolMessageType('RunTrialReply', (_message.Message,), dict( DESCRIPTOR = _RUNTRIALREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.RunTrialReply) )) _sym_db.RegisterMessage(RunTrialReply) StopWorkersRequest = _reflection.GeneratedProtocolMessageType('StopWorkersRequest', (_message.Message,), dict( DESCRIPTOR = _STOPWORKERSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StopWorkersRequest) )) _sym_db.RegisterMessage(StopWorkersRequest) StopWorkersReply = _reflection.GeneratedProtocolMessageType('StopWorkersReply', (_message.Message,), dict( DESCRIPTOR = _STOPWORKERSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StopWorkersReply) )) _sym_db.RegisterMessage(StopWorkersReply) GetWorkersRequest = _reflection.GeneratedProtocolMessageType('GetWorkersRequest', (_message.Message,), dict( DESCRIPTOR = _GETWORKERSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetWorkersRequest) )) _sym_db.RegisterMessage(GetWorkersRequest) GetWorkersReply = _reflection.GeneratedProtocolMessageType('GetWorkersReply', (_message.Message,), dict( DESCRIPTOR = _GETWORKERSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetWorkersReply) )) _sym_db.RegisterMessage(GetWorkersReply) GetSuggestionsRequest = _reflection.GeneratedProtocolMessageType('GetSuggestionsRequest', (_message.Message,), dict( DESCRIPTOR = _GETSUGGESTIONSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSuggestionsRequest) )) _sym_db.RegisterMessage(GetSuggestionsRequest) GetSuggestionsReply = _reflection.GeneratedProtocolMessageType('GetSuggestionsReply', (_message.Message,), dict( DESCRIPTOR = _GETSUGGESTIONSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSuggestionsReply) )) _sym_db.RegisterMessage(GetSuggestionsReply) GetShouldStopWorkersRequest = _reflection.GeneratedProtocolMessageType('GetShouldStopWorkersRequest', (_message.Message,), dict( DESCRIPTOR = _GETSHOULDSTOPWORKERSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetShouldStopWorkersRequest) )) _sym_db.RegisterMessage(GetShouldStopWorkersRequest) GetShouldStopWorkersReply = _reflection.GeneratedProtocolMessageType('GetShouldStopWorkersReply', (_message.Message,), dict( DESCRIPTOR = _GETSHOULDSTOPWORKERSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetShouldStopWorkersReply) )) _sym_db.RegisterMessage(GetShouldStopWorkersReply) GetMetricsRequest = _reflection.GeneratedProtocolMessageType('GetMetricsRequest', (_message.Message,), dict( DESCRIPTOR = _GETMETRICSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetMetricsRequest) )) _sym_db.RegisterMessage(GetMetricsRequest) GetMetricsReply = _reflection.GeneratedProtocolMessageType('GetMetricsReply', (_message.Message,), dict( DESCRIPTOR = _GETMETRICSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetMetricsReply) )) _sym_db.RegisterMessage(GetMetricsReply) ModelInfo = _reflection.GeneratedProtocolMessageType('ModelInfo', (_message.Message,), dict( DESCRIPTOR = _MODELINFO, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.ModelInfo) )) _sym_db.RegisterMessage(ModelInfo) DataSetInfo = _reflection.GeneratedProtocolMessageType('DataSetInfo', (_message.Message,), dict( DESCRIPTOR = _DATASETINFO, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.DataSetInfo) )) _sym_db.RegisterMessage(DataSetInfo) SaveStudyRequest = _reflection.GeneratedProtocolMessageType('SaveStudyRequest', (_message.Message,), dict( DESCRIPTOR = _SAVESTUDYREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SaveStudyRequest) )) _sym_db.RegisterMessage(SaveStudyRequest) SaveStudyReply = _reflection.GeneratedProtocolMessageType('SaveStudyReply', (_message.Message,), dict( DESCRIPTOR = _SAVESTUDYREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SaveStudyReply) )) _sym_db.RegisterMessage(SaveStudyReply) SaveModelRequest = _reflection.GeneratedProtocolMessageType('SaveModelRequest', (_message.Message,), dict( DESCRIPTOR = _SAVEMODELREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SaveModelRequest) )) _sym_db.RegisterMessage(SaveModelRequest) SaveModelReply = _reflection.GeneratedProtocolMessageType('SaveModelReply', (_message.Message,), dict( DESCRIPTOR = _SAVEMODELREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SaveModelReply) )) _sym_db.RegisterMessage(SaveModelReply) GetSavedStudiesRequest = _reflection.GeneratedProtocolMessageType('GetSavedStudiesRequest', (_message.Message,), dict( DESCRIPTOR = _GETSAVEDSTUDIESREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSavedStudiesRequest) )) _sym_db.RegisterMessage(GetSavedStudiesRequest) GetSavedStudiesReply = _reflection.GeneratedProtocolMessageType('GetSavedStudiesReply', (_message.Message,), dict( DESCRIPTOR = _GETSAVEDSTUDIESREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSavedStudiesReply) )) _sym_db.RegisterMessage(GetSavedStudiesReply) GetSavedModelsRequest = _reflection.GeneratedProtocolMessageType('GetSavedModelsRequest', (_message.Message,), dict( DESCRIPTOR = _GETSAVEDMODELSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSavedModelsRequest) )) _sym_db.RegisterMessage(GetSavedModelsRequest) GetSavedModelsReply = _reflection.GeneratedProtocolMessageType('GetSavedModelsReply', (_message.Message,), dict( DESCRIPTOR = _GETSAVEDMODELSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSavedModelsReply) )) _sym_db.RegisterMessage(GetSavedModelsReply) GetSavedModelRequest = _reflection.GeneratedProtocolMessageType('GetSavedModelRequest', (_message.Message,), dict( DESCRIPTOR = _GETSAVEDMODELREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSavedModelRequest) )) _sym_db.RegisterMessage(GetSavedModelRequest) GetSavedModelReply = _reflection.GeneratedProtocolMessageType('GetSavedModelReply', (_message.Message,), dict( DESCRIPTOR = _GETSAVEDMODELREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSavedModelReply) )) _sym_db.RegisterMessage(GetSavedModelReply) SetSuggestionParametersRequest = _reflection.GeneratedProtocolMessageType('SetSuggestionParametersRequest', (_message.Message,), dict( DESCRIPTOR = _SETSUGGESTIONPARAMETERSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SetSuggestionParametersRequest) )) _sym_db.RegisterMessage(SetSuggestionParametersRequest) SetSuggestionParametersReply = _reflection.GeneratedProtocolMessageType('SetSuggestionParametersReply', (_message.Message,), dict( DESCRIPTOR = _SETSUGGESTIONPARAMETERSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SetSuggestionParametersReply) )) _sym_db.RegisterMessage(SetSuggestionParametersReply) GetSuggestionParametersRequest = _reflection.GeneratedProtocolMessageType('GetSuggestionParametersRequest', (_message.Message,), dict( DESCRIPTOR = _GETSUGGESTIONPARAMETERSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSuggestionParametersRequest) )) _sym_db.RegisterMessage(GetSuggestionParametersRequest) GetSuggestionParametersReply = _reflection.GeneratedProtocolMessageType('GetSuggestionParametersReply', (_message.Message,), dict( DESCRIPTOR = _GETSUGGESTIONPARAMETERSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSuggestionParametersReply) )) _sym_db.RegisterMessage(GetSuggestionParametersReply) GetSuggestionParameterListRequest = _reflection.GeneratedProtocolMessageType('GetSuggestionParameterListRequest', (_message.Message,), dict( DESCRIPTOR = _GETSUGGESTIONPARAMETERLISTREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSuggestionParameterListRequest) )) _sym_db.RegisterMessage(GetSuggestionParameterListRequest) SuggestionParameterSet = _reflection.GeneratedProtocolMessageType('SuggestionParameterSet', (_message.Message,), dict( DESCRIPTOR = _SUGGESTIONPARAMETERSET, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SuggestionParameterSet) )) _sym_db.RegisterMessage(SuggestionParameterSet) GetSuggestionParameterListReply = _reflection.GeneratedProtocolMessageType('GetSuggestionParameterListReply', (_message.Message,), dict( DESCRIPTOR = _GETSUGGESTIONPARAMETERLISTREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetSuggestionParameterListReply) )) _sym_db.RegisterMessage(GetSuggestionParameterListReply) StopSuggestionRequest = _reflection.GeneratedProtocolMessageType('StopSuggestionRequest', (_message.Message,), dict( DESCRIPTOR = _STOPSUGGESTIONREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StopSuggestionRequest) )) _sym_db.RegisterMessage(StopSuggestionRequest) StopSuggestionReply = _reflection.GeneratedProtocolMessageType('StopSuggestionReply', (_message.Message,), dict( DESCRIPTOR = _STOPSUGGESTIONREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.StopSuggestionReply) )) _sym_db.RegisterMessage(StopSuggestionReply) SetEarlyStoppingParametersRequest = _reflection.GeneratedProtocolMessageType('SetEarlyStoppingParametersRequest', (_message.Message,), dict( DESCRIPTOR = _SETEARLYSTOPPINGPARAMETERSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SetEarlyStoppingParametersRequest) )) _sym_db.RegisterMessage(SetEarlyStoppingParametersRequest) SetEarlyStoppingParametersReply = _reflection.GeneratedProtocolMessageType('SetEarlyStoppingParametersReply', (_message.Message,), dict( DESCRIPTOR = _SETEARLYSTOPPINGPARAMETERSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.SetEarlyStoppingParametersReply) )) _sym_db.RegisterMessage(SetEarlyStoppingParametersReply) GetEarlyStoppingParametersRequest = _reflection.GeneratedProtocolMessageType('GetEarlyStoppingParametersRequest', (_message.Message,), dict( DESCRIPTOR = _GETEARLYSTOPPINGPARAMETERSREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetEarlyStoppingParametersRequest) )) _sym_db.RegisterMessage(GetEarlyStoppingParametersRequest) GetEarlyStoppingParametersReply = _reflection.GeneratedProtocolMessageType('GetEarlyStoppingParametersReply', (_message.Message,), dict( DESCRIPTOR = _GETEARLYSTOPPINGPARAMETERSREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetEarlyStoppingParametersReply) )) _sym_db.RegisterMessage(GetEarlyStoppingParametersReply) GetEarlyStoppingParameterListRequest = _reflection.GeneratedProtocolMessageType('GetEarlyStoppingParameterListRequest', (_message.Message,), dict( DESCRIPTOR = _GETEARLYSTOPPINGPARAMETERLISTREQUEST, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetEarlyStoppingParameterListRequest) )) _sym_db.RegisterMessage(GetEarlyStoppingParameterListRequest) EarlyStoppingParameterSet = _reflection.GeneratedProtocolMessageType('EarlyStoppingParameterSet', (_message.Message,), dict( DESCRIPTOR = _EARLYSTOPPINGPARAMETERSET, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.EarlyStoppingParameterSet) )) _sym_db.RegisterMessage(EarlyStoppingParameterSet) GetEarlyStoppingParameterListReply = _reflection.GeneratedProtocolMessageType('GetEarlyStoppingParameterListReply', (_message.Message,), dict( DESCRIPTOR = _GETEARLYSTOPPINGPARAMETERLISTREPLY, __module__ = 'api_pb2' # @@protoc_insertion_point(class_scope:api.GetEarlyStoppingParameterListReply) )) _sym_db.RegisterMessage(GetEarlyStoppingParameterListReply) _MANAGER = _descriptor.ServiceDescriptor( name='Manager', full_name='api.Manager', file=DESCRIPTOR, index=0, options=None, serialized_start=5232, serialized_end=6900, methods=[ _descriptor.MethodDescriptor( name='CreateStudy', full_name='api.Manager.CreateStudy', index=0, containing_service=None, input_type=_CREATESTUDYREQUEST, output_type=_CREATESTUDYREPLY, options=None, ), _descriptor.MethodDescriptor( name='StopStudy', full_name='api.Manager.StopStudy', index=1, containing_service=None, input_type=_STOPSTUDYREQUEST, output_type=_STOPSTUDYREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetStudy', full_name='api.Manager.GetStudy', index=2, containing_service=None, input_type=_GETSTUDYREQUEST, output_type=_GETSTUDYREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetStudyList', full_name='api.Manager.GetStudyList', index=3, containing_service=None, input_type=_GETSTUDYLISTREQUEST, output_type=_GETSTUDYLISTREPLY, options=None, ), _descriptor.MethodDescriptor( name='CreateTrial', full_name='api.Manager.CreateTrial', index=4, containing_service=None, input_type=_CREATETRIALREQUEST, output_type=_CREATETRIALREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetTrials', full_name='api.Manager.GetTrials', index=5, containing_service=None, input_type=_GETTRIALSREQUEST, output_type=_GETTRIALSREPLY, options=None, ), _descriptor.MethodDescriptor( name='RunTrial', full_name='api.Manager.RunTrial', index=6, containing_service=None, input_type=_RUNTRIALREQUEST, output_type=_RUNTRIALREPLY, options=None, ), _descriptor.MethodDescriptor( name='StopWorkers', full_name='api.Manager.StopWorkers', index=7, containing_service=None, input_type=_STOPWORKERSREQUEST, output_type=_STOPWORKERSREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetWorkers', full_name='api.Manager.GetWorkers', index=8, containing_service=None, input_type=_GETWORKERSREQUEST, output_type=_GETWORKERSREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetSuggestions', full_name='api.Manager.GetSuggestions', index=9, containing_service=None, input_type=_GETSUGGESTIONSREQUEST, output_type=_GETSUGGESTIONSREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetShouldStopWorkers', full_name='api.Manager.GetShouldStopWorkers', index=10, containing_service=None, input_type=_GETSHOULDSTOPWORKERSREQUEST, output_type=_GETSHOULDSTOPWORKERSREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetMetrics', full_name='api.Manager.GetMetrics', index=11, containing_service=None, input_type=_GETMETRICSREQUEST, output_type=_GETMETRICSREPLY, options=None, ), _descriptor.MethodDescriptor( name='SetSuggestionParameters', full_name='api.Manager.SetSuggestionParameters', index=12, containing_service=None, input_type=_SETSUGGESTIONPARAMETERSREQUEST, output_type=_SETSUGGESTIONPARAMETERSREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetSuggestionParameters', full_name='api.Manager.GetSuggestionParameters', index=13, containing_service=None, input_type=_GETSUGGESTIONPARAMETERSREQUEST, output_type=_GETSUGGESTIONPARAMETERSREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetSuggestionParameterList', full_name='api.Manager.GetSuggestionParameterList', index=14, containing_service=None, input_type=_GETSUGGESTIONPARAMETERLISTREQUEST, output_type=_GETSUGGESTIONPARAMETERLISTREPLY, options=None, ), _descriptor.MethodDescriptor( name='SetEarlyStoppingParameters', full_name='api.Manager.SetEarlyStoppingParameters', index=15, containing_service=None, input_type=_SETEARLYSTOPPINGPARAMETERSREQUEST, output_type=_SETEARLYSTOPPINGPARAMETERSREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetEarlyStoppingParameters', full_name='api.Manager.GetEarlyStoppingParameters', index=16, containing_service=None, input_type=_GETEARLYSTOPPINGPARAMETERSREQUEST, output_type=_GETEARLYSTOPPINGPARAMETERSREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetEarlyStoppingParameterList', full_name='api.Manager.GetEarlyStoppingParameterList', index=17, containing_service=None, input_type=_GETEARLYSTOPPINGPARAMETERLISTREQUEST, output_type=_GETEARLYSTOPPINGPARAMETERLISTREPLY, options=None, ), _descriptor.MethodDescriptor( name='SaveStudy', full_name='api.Manager.SaveStudy', index=18, containing_service=None, input_type=_SAVESTUDYREQUEST, output_type=_SAVESTUDYREPLY, options=None, ), _descriptor.MethodDescriptor( name='SaveModel', full_name='api.Manager.SaveModel', index=19, containing_service=None, input_type=_SAVEMODELREQUEST, output_type=_SAVEMODELREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetSavedStudies', full_name='api.Manager.GetSavedStudies', index=20, containing_service=None, input_type=_GETSAVEDSTUDIESREQUEST, output_type=_GETSAVEDSTUDIESREPLY, options=None, ), _descriptor.MethodDescriptor( name='GetSavedModels', full_name='api.Manager.GetSavedModels', index=21, containing_service=None, input_type=_GETSAVEDMODELSREQUEST, output_type=_GETSAVEDMODELSREPLY, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_MANAGER) DESCRIPTOR.services_by_name['Manager'] = _MANAGER _SUGGESTION = _descriptor.ServiceDescriptor( name='Suggestion', full_name='api.Suggestion', file=DESCRIPTOR, index=1, options=None, serialized_start=6902, serialized_end=6986, methods=[ _descriptor.MethodDescriptor( name='GetSuggestions', full_name='api.Suggestion.GetSuggestions', index=0, containing_service=None, input_type=_GETSUGGESTIONSREQUEST, output_type=_GETSUGGESTIONSREPLY, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_SUGGESTION) DESCRIPTOR.services_by_name['Suggestion'] = _SUGGESTION _EARLYSTOPPING = _descriptor.ServiceDescriptor( name='EarlyStopping', full_name='api.EarlyStopping', file=DESCRIPTOR, index=2, options=None, serialized_start=6988, serialized_end=7093, methods=[ _descriptor.MethodDescriptor( name='GetShouldStopWorkers', full_name='api.EarlyStopping.GetShouldStopWorkers', index=0, containing_service=None, input_type=_GETSHOULDSTOPWORKERSREQUEST, output_type=_GETSHOULDSTOPWORKERSREPLY, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_EARLYSTOPPING) DESCRIPTOR.services_by_name['EarlyStopping'] = _EARLYSTOPPING # @@protoc_insertion_point(module_scope)
python
124,827
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import subprocess import unittest import warnings from concurrent.futures import Future from magma.pipelined.bridge_util import BridgeTools from magma.pipelined.tests.app.start_pipelined import ( PipelinedController, TestSetup, ) from magma.pipelined.tests.pipelined_test_util import ( assert_bridge_snapshot_match, create_service_manager, get_iface_gw_ipv4, get_iface_ipv4, get_ovsdb_port_tag, start_ryu_app_thread, stop_ryu_app_thread, ) from ryu.lib import hub class UplinkBridgeTest(unittest.TestCase): BRIDGE = 'testing_br' MAC_DEST = "5e:cc:cc:b1:49:4b" BRIDGE_IP = '192.168.128.1' UPLINK_BRIDGE = 'upt_br0' @classmethod def setUpClass(cls): """ Starts the thread which launches ryu apps Create a testing bridge, add a port, setup the port interfaces. Then launch the ryu apps for testing pipelined. Gets the references to apps launched by using futures. """ super(UplinkBridgeTest, cls).setUpClass() warnings.simplefilter('ignore') cls.service_manager = create_service_manager([]) uplink_bridge_controller_reference = Future() testing_controller_reference = Future() test_setup = TestSetup( apps=[ PipelinedController.UplinkBridge, PipelinedController.Testing, PipelinedController.StartupFlows, ], references={ PipelinedController.UplinkBridge: uplink_bridge_controller_reference, PipelinedController.Testing: testing_controller_reference, PipelinedController.StartupFlows: Future(), }, config={ 'bridge_name': cls.BRIDGE, 'bridge_ip_address': cls.BRIDGE_IP, 'ovs_gtp_port_number': 32768, 'clean_restart': True, 'enable_nat': True, }, mconfig=None, loop=None, service_manager=cls.service_manager, integ_test=False, ) BridgeTools.create_bridge(cls.BRIDGE, cls.BRIDGE) BridgeTools.create_bridge(cls.UPLINK_BRIDGE, cls.UPLINK_BRIDGE) cls.thread = start_ryu_app_thread(test_setup) cls.uplink_br_controller = uplink_bridge_controller_reference.result() cls.testing_controller = testing_controller_reference.result() @classmethod def tearDownClass(cls): stop_ryu_app_thread(cls.thread) BridgeTools.destroy_bridge(cls.BRIDGE) BridgeTools.destroy_bridge(cls.UPLINK_BRIDGE) def testFlowSnapshotMatch(self): assert_bridge_snapshot_match(self, self.UPLINK_BRIDGE, self.service_manager) class UplinkBridgeWithNonNATTest(unittest.TestCase): BRIDGE = 'testing_br' MAC_DEST = "5e:cc:cc:b1:49:4b" BRIDGE_IP = '192.168.128.1' UPLINK_BRIDGE = 'upt_br0' UPLINK_DHCP = 'test_dhcp0' UPLINK_PATCH = 'test_patch_p2' UPLINK_ETH_PORT = 'test_eth3' VLAN_DEV_IN = "test_v_in" VLAN_DEV_OUT = "test_v_out" @classmethod def setUpClass(cls): """ Starts the thread which launches ryu apps Create a testing bridge, add a port, setup the port interfaces. Then launch the ryu apps for testing pipelined. Gets the references to apps launched by using futures. """ super(UplinkBridgeWithNonNATTest, cls).setUpClass() warnings.simplefilter('ignore') cls.service_manager = create_service_manager([]) uplink_bridge_controller_reference = Future() testing_controller_reference = Future() test_setup = TestSetup( apps=[ PipelinedController.UplinkBridge, PipelinedController.Testing, PipelinedController.StartupFlows, ], references={ PipelinedController.UplinkBridge: uplink_bridge_controller_reference, PipelinedController.Testing: testing_controller_reference, PipelinedController.StartupFlows: Future(), }, config={ 'bridge_name': cls.BRIDGE, 'bridge_ip_address': cls.BRIDGE_IP, 'ovs_gtp_port_number': 32768, 'clean_restart': True, 'enable_nat': False, 'uplink_bridge': cls.UPLINK_BRIDGE, 'uplink_eth_port_name': cls.UPLINK_ETH_PORT, 'virtual_mac': '02:bb:5e:36:06:4b', 'uplink_patch': cls.UPLINK_PATCH, 'uplink_dhcp_port': cls.UPLINK_DHCP, 'sgi_management_iface_vlan': "", 'dev_vlan_in': cls.VLAN_DEV_IN, 'dev_vlan_out': cls.VLAN_DEV_OUT, 'ovs_vlan_workaround': False, 'sgi_management_iface_ip_addr': '1.1.11.1', }, mconfig=None, loop=None, service_manager=cls.service_manager, integ_test=False, ) BridgeTools.create_bridge(cls.BRIDGE, cls.BRIDGE) BridgeTools.create_bridge(cls.UPLINK_BRIDGE, cls.UPLINK_BRIDGE) BridgeTools.create_veth_pair( cls.VLAN_DEV_IN, cls.VLAN_DEV_OUT, ) # Add to OVS, BridgeTools.add_ovs_port( cls.UPLINK_BRIDGE, cls.VLAN_DEV_IN, "70", ) BridgeTools.add_ovs_port( cls.UPLINK_BRIDGE, cls.VLAN_DEV_OUT, "71", ) # dummy uplink interface vlan = "10" BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_DHCP, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_PATCH, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_ETH_PORT, None, ) cls.thread = start_ryu_app_thread(test_setup) cls.uplink_br_controller = uplink_bridge_controller_reference.result() cls.testing_controller = testing_controller_reference.result() @classmethod def tearDownClass(cls): stop_ryu_app_thread(cls.thread) BridgeTools.destroy_bridge(cls.BRIDGE) BridgeTools.destroy_bridge(cls.UPLINK_BRIDGE) def testFlowSnapshotMatch(self): cls = self.__class__ assert_bridge_snapshot_match( self, self.UPLINK_BRIDGE, self.service_manager, include_stats=False, ) class UplinkBridgeWithNonNATTestVlan(unittest.TestCase): BRIDGE = 'testing_br' MAC_DEST = "5e:cc:cc:b1:49:4b" BRIDGE_IP = '192.168.128.1' UPLINK_BRIDGE = 'upt_br0' UPLINK_DHCP = 'test_dhcp0' UPLINK_PATCH = 'test_patch_p2' UPLINK_ETH_PORT = 'test_eth3' VLAN_TAG = '100' VLAN_DEV_IN = "test_v_in" VLAN_DEV_OUT = "test_v_out" @classmethod def setUpClass(cls): """ Starts the thread which launches ryu apps Create a testing bridge, add a port, setup the port interfaces. Then launch the ryu apps for testing pipelined. Gets the references to apps launched by using futures. """ super(UplinkBridgeWithNonNATTestVlan, cls).setUpClass() warnings.simplefilter('ignore') cls.service_manager = create_service_manager([]) uplink_bridge_controller_reference = Future() testing_controller_reference = Future() test_setup = TestSetup( apps=[ PipelinedController.UplinkBridge, PipelinedController.Testing, PipelinedController.StartupFlows, ], references={ PipelinedController.UplinkBridge: uplink_bridge_controller_reference, PipelinedController.Testing: testing_controller_reference, PipelinedController.StartupFlows: Future(), }, config={ 'bridge_name': cls.BRIDGE, 'bridge_ip_address': cls.BRIDGE_IP, 'ovs_gtp_port_number': 32768, 'clean_restart': True, 'enable_nat': False, 'uplink_bridge': cls.UPLINK_BRIDGE, 'uplink_eth_port_name': cls.UPLINK_ETH_PORT, 'virtual_mac': '02:bb:5e:36:06:4b', 'uplink_patch': cls.UPLINK_PATCH, 'uplink_dhcp_port': cls.UPLINK_DHCP, 'sgi_management_iface_vlan': cls.VLAN_TAG, 'dev_vlan_in': cls.VLAN_DEV_IN, 'dev_vlan_out': cls.VLAN_DEV_OUT, 'sgi_management_iface_ip_addr': '1.1.11.1', }, mconfig=None, loop=None, service_manager=cls.service_manager, integ_test=False, ) BridgeTools.create_bridge(cls.BRIDGE, cls.BRIDGE) BridgeTools.create_bridge(cls.UPLINK_BRIDGE, cls.UPLINK_BRIDGE) BridgeTools.create_veth_pair( cls.VLAN_DEV_IN, cls.VLAN_DEV_OUT, ) # Add to OVS, BridgeTools.add_ovs_port( cls.UPLINK_BRIDGE, cls.VLAN_DEV_IN, "70", ) BridgeTools.add_ovs_port( cls.UPLINK_BRIDGE, cls.VLAN_DEV_OUT, "71", ) # validate vlan id set vlan = "10" BridgeTools.create_bridge(cls.UPLINK_BRIDGE, cls.UPLINK_BRIDGE) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_DHCP, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_PATCH, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_ETH_PORT, None, ) cls.thread = start_ryu_app_thread(test_setup) cls.uplink_br_controller = uplink_bridge_controller_reference.result() cls.testing_controller = testing_controller_reference.result() @classmethod def tearDownClass(cls): stop_ryu_app_thread(cls.thread) BridgeTools.destroy_bridge(cls.BRIDGE) BridgeTools.destroy_bridge(cls.UPLINK_BRIDGE) def testFlowSnapshotMatch(self): cls = self.__class__ assert_bridge_snapshot_match( self, self.UPLINK_BRIDGE, self.service_manager, include_stats=False, ) @unittest.skip # this reset default GW class UplinkBridgeWithNonNATTest_IP_VLAN(unittest.TestCase): BRIDGE = 'testing_br' MAC_DEST = "5e:cc:cc:b1:49:4b" BRIDGE_IP = '192.168.128.1' UPLINK_BRIDGE = 'upt_br0' UPLINK_DHCP = 'test_dhcp0' UPLINK_PATCH = 'test_patch_p2' UPLINK_ETH_PORT = 'test_eth3' VLAN_TAG = '500' SGi_IP = "1.6.5.7" @classmethod def setUpClass(cls): """ Starts the thread which launches ryu apps Create a testing bridge, add a port, setup the port interfaces. Then launch the ryu apps for testing pipelined. Gets the references to apps launched by using futures. """ super(UplinkBridgeWithNonNATTest_IP_VLAN, cls).setUpClass() warnings.simplefilter('ignore') cls.service_manager = create_service_manager([]) uplink_bridge_controller_reference = Future() testing_controller_reference = Future() test_setup = TestSetup( apps=[ PipelinedController.UplinkBridge, PipelinedController.Testing, PipelinedController.StartupFlows, ], references={ PipelinedController.UplinkBridge: uplink_bridge_controller_reference, PipelinedController.Testing: testing_controller_reference, PipelinedController.StartupFlows: Future(), }, config={ 'bridge_name': cls.BRIDGE, 'bridge_ip_address': cls.BRIDGE_IP, 'ovs_gtp_port_number': 32768, 'clean_restart': True, 'enable_nat': False, 'uplink_bridge': cls.UPLINK_BRIDGE, 'uplink_eth_port_name': cls.UPLINK_ETH_PORT, 'virtual_mac': '02:bb:5e:36:06:4b', 'uplink_patch': cls.UPLINK_PATCH, 'uplink_dhcp_port': cls.UPLINK_DHCP, 'sgi_management_iface_vlan': cls.VLAN_TAG, 'sgi_management_iface_ip_addr': cls.SGi_IP, 'dev_vlan_in': "test_v_in", 'dev_vlan_out': "test_v_out", }, mconfig=None, loop=None, service_manager=cls.service_manager, integ_test=False, ) BridgeTools.create_bridge(cls.BRIDGE, cls.BRIDGE) # validate vlan id set vlan = "10" BridgeTools.create_bridge(cls.UPLINK_BRIDGE, cls.UPLINK_BRIDGE) set_ip_cmd = [ "ip", "addr", "replace", "2.33.44.6", "dev", cls.UPLINK_BRIDGE, ] subprocess.check_call(set_ip_cmd) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_DHCP, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_PATCH, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_ETH_PORT, None, ) cls.thread = start_ryu_app_thread(test_setup) cls.uplink_br_controller = uplink_bridge_controller_reference.result() cls.testing_controller = testing_controller_reference.result() @classmethod def tearDownClass(cls): stop_ryu_app_thread(cls.thread) BridgeTools.destroy_bridge(cls.BRIDGE) BridgeTools.destroy_bridge(cls.UPLINK_BRIDGE) def testFlowSnapshotMatch(self): cls = self.__class__ assert_bridge_snapshot_match( self, self.UPLINK_BRIDGE, self.service_manager, include_stats=False, ) self.assertIn(cls.SGi_IP, get_iface_ipv4(cls.UPLINK_BRIDGE), "ip not found") @unittest.skip # this reset default GW class UplinkBridgeWithNonNATTest_IP_VLAN_GW(unittest.TestCase): BRIDGE = 'testing_br' MAC_DEST = "5e:cc:cc:b1:49:4b" BRIDGE_IP = '192.168.128.1' UPLINK_BRIDGE = 'upt_br0' UPLINK_DHCP = 'test_dhcp0' UPLINK_PATCH = 'test_patch_p2' UPLINK_ETH_PORT = 'test_eth3' VLAN_TAG = '100' SGi_IP = "1.6.5.7/24" SGi_GW = "1.6.5.1" @classmethod def setUpClass(cls): """ Starts the thread which launches ryu apps Create a testing bridge, add a port, setup the port interfaces. Then launch the ryu apps for testing pipelined. Gets the references to apps launched by using futures. """ super(UplinkBridgeWithNonNATTest_IP_VLAN_GW, cls).setUpClass() warnings.simplefilter('ignore') cls.service_manager = create_service_manager([]) uplink_bridge_controller_reference = Future() testing_controller_reference = Future() test_setup = TestSetup( apps=[ PipelinedController.UplinkBridge, PipelinedController.Testing, PipelinedController.StartupFlows, ], references={ PipelinedController.UplinkBridge: uplink_bridge_controller_reference, PipelinedController.Testing: testing_controller_reference, PipelinedController.StartupFlows: Future(), }, config={ 'bridge_name': cls.BRIDGE, 'bridge_ip_address': cls.BRIDGE_IP, 'ovs_gtp_port_number': 32768, 'clean_restart': True, 'enable_nat': False, 'uplink_bridge': cls.UPLINK_BRIDGE, 'uplink_eth_port_name': cls.UPLINK_ETH_PORT, 'virtual_mac': '02:bb:5e:36:06:4b', 'uplink_patch': cls.UPLINK_PATCH, 'uplink_dhcp_port': cls.UPLINK_DHCP, 'sgi_management_iface_vlan': cls.VLAN_TAG, 'sgi_management_iface_ip_addr': cls.SGi_IP, 'sgi_management_iface_gw': cls.SGi_GW, 'dev_vlan_in': "test_v_in", 'dev_vlan_out': "test_v_out", }, mconfig=None, loop=None, service_manager=cls.service_manager, integ_test=False, ) BridgeTools.create_bridge(cls.BRIDGE, cls.BRIDGE) # validate vlan id set vlan = "10" BridgeTools.create_bridge(cls.UPLINK_BRIDGE, cls.UPLINK_BRIDGE) subprocess.Popen([ "ovs-vsctl", "set", "port", cls.UPLINK_BRIDGE, "tag=" + vlan, ]).wait() assert get_ovsdb_port_tag(cls.UPLINK_BRIDGE) == vlan set_ip_cmd = [ "ip", "addr", "replace", "2.33.44.6", "dev", cls.UPLINK_BRIDGE, ] subprocess.check_call(set_ip_cmd) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_DHCP, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_PATCH, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_ETH_PORT, None, ) cls.thread = start_ryu_app_thread(test_setup) cls.uplink_br_controller = uplink_bridge_controller_reference.result() cls.testing_controller = testing_controller_reference.result() @classmethod def tearDownClass(cls): stop_ryu_app_thread(cls.thread) BridgeTools.destroy_bridge(cls.BRIDGE) BridgeTools.destroy_bridge(cls.UPLINK_BRIDGE) def testFlowSnapshotMatch(self): cls = self.__class__ assert_bridge_snapshot_match( self, self.UPLINK_BRIDGE, self.service_manager, include_stats=False, ) self.assertIn( cls.SGi_GW, get_iface_gw_ipv4(cls.UPLINK_BRIDGE), "gw not found", ) @unittest.skip class UplinkBridgeWithNonNatUplinkConnect_Test(unittest.TestCase): BRIDGE = 'testing_br' IFACE = 'testing_br' MAC_DEST = "5e:cc:cc:b1:49:4b" BRIDGE_IP = '192.168.128.1' SCRIPT_PATH = "/home/vagrant/magma/lte/gateway/python/magma/mobilityd/" NET_SW_BR = "net_sw_up1" UPLINK_DHCP = "tino_dhcp" SCRIPT_PATH = "/home/vagrant/magma/lte/gateway/python/magma/mobilityd/" UPLINK_ETH_PORT = "upb_ul_0" UPLINK_BRIDGE = 'upt_br0' UPLINK_PATCH = 'test_patch_p2' ROUTER_IP = "10.55.0.211" @classmethod def _setup_vlan_network(cls, vlan: str): setup_vlan_switch = cls.SCRIPT_PATH + "scripts/setup-uplink-vlan-sw.sh" subprocess.check_call([setup_vlan_switch, cls.NET_SW_BR, "upb"]) cls._setup_vlan(vlan) @classmethod def _setup_vlan(cls, vlan): setup_vlan_switch = cls.SCRIPT_PATH + "scripts/setup-uplink-vlan-srv.sh" subprocess.check_call([setup_vlan_switch, cls.NET_SW_BR, vlan, "55"]) @classmethod def setUpClass(cls): """ Starts the thread which launches ryu apps Create a testing bridge, add a port, setup the port interfaces. Then launch the ryu apps for testing pipelined. Gets the references to apps launched by using futures. """ super(UplinkBridgeWithNonNatUplinkConnect_Test, cls).setUpClass() warnings.simplefilter('ignore') cls.service_manager = create_service_manager([]) cls._setup_vlan_network("0") BridgeTools.create_bridge(cls.UPLINK_BRIDGE, cls.UPLINK_BRIDGE) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_DHCP, None, ) BridgeTools.create_internal_iface( cls.UPLINK_BRIDGE, cls.UPLINK_PATCH, None, ) check_connectivity(cls.ROUTER_IP, cls.UPLINK_ETH_PORT) BridgeTools.add_ovs_port(cls.UPLINK_BRIDGE, cls.UPLINK_ETH_PORT, "200") # this is setup after AGW boot up in NATed mode. uplink_bridge_controller_reference = Future() testing_controller_reference = Future() test_setup = TestSetup( apps=[ PipelinedController.UplinkBridge, PipelinedController.Testing, PipelinedController.StartupFlows, ], references={ PipelinedController.UplinkBridge: uplink_bridge_controller_reference, PipelinedController.Testing: testing_controller_reference, PipelinedController.StartupFlows: Future(), }, config={ 'bridge_name': cls.BRIDGE, 'bridge_ip_address': cls.BRIDGE_IP, 'ovs_gtp_port_number': 32768, 'clean_restart': True, 'enable_nat': False, 'uplink_bridge': cls.UPLINK_BRIDGE, 'uplink_eth_port_name': cls.UPLINK_ETH_PORT, 'virtual_mac': '02:bb:5e:36:06:4b', 'uplink_patch': cls.UPLINK_PATCH, 'uplink_dhcp_port': cls.UPLINK_DHCP, 'sgi_management_iface_vlan': "", 'ovs_vlan_workaround': True, 'dev_vlan_in': "testv1_in", 'dev_vlan_out': "testv1_out", }, mconfig=None, loop=None, service_manager=cls.service_manager, integ_test=False, ) BridgeTools.create_bridge(cls.BRIDGE, cls.BRIDGE) cls.thread = start_ryu_app_thread(test_setup) cls.uplink_br_controller = uplink_bridge_controller_reference.result() cls.testing_controller = testing_controller_reference.result() @classmethod def tearDownClass(cls): stop_ryu_app_thread(cls.thread) BridgeTools.destroy_bridge(cls.BRIDGE) BridgeTools.destroy_bridge(cls.UPLINK_BRIDGE) BridgeTools.destroy_bridge(cls.NET_SW_BR) def testFlowSnapshotMatch(self): cls = self.__class__ assert_bridge_snapshot_match( self, self.UPLINK_BRIDGE, self.service_manager, include_stats=False, ) self.assertEqual(get_ovsdb_port_tag(cls.UPLINK_BRIDGE), '[]') # after Non NAT init, router shld be accessible. # manually start DHCP client on up-br check_connectivity(cls.ROUTER_IP, cls.UPLINK_BRIDGE) class UplinkBridgeTestNatIPAddr(unittest.TestCase): BRIDGE = 'testing_br' MAC_DEST = "5e:cc:cc:b1:49:4b" BRIDGE_IP = '192.168.128.1' BRIDGE_ETH_PORT = "eth_t1" UPLINK_BRIDGE = 'upt_br0' SGi_IP = "1.6.5.77" @classmethod def setUpClass(cls): """ Starts the thread which launches ryu apps Create a testing bridge, add a port, setup the port interfaces. Then launch the ryu apps for testing pipelined. Gets the references to apps launched by using futures. """ super(UplinkBridgeTestNatIPAddr, cls).setUpClass() warnings.simplefilter('ignore') cls.service_manager = create_service_manager([]) uplink_bridge_controller_reference = Future() testing_controller_reference = Future() test_setup = TestSetup( apps=[ PipelinedController.UplinkBridge, PipelinedController.Testing, PipelinedController.StartupFlows, ], references={ PipelinedController.UplinkBridge: uplink_bridge_controller_reference, PipelinedController.Testing: testing_controller_reference, PipelinedController.StartupFlows: Future(), }, config={ 'bridge_name': cls.BRIDGE, 'bridge_ip_address': cls.BRIDGE_IP, 'ovs_gtp_port_number': 32768, 'clean_restart': True, 'enable_nat': True, 'uplink_bridge': cls.UPLINK_BRIDGE, 'sgi_management_iface_ip_addr': cls.SGi_IP, 'uplink_eth_port_name': cls.BRIDGE_ETH_PORT, }, mconfig=None, loop=None, service_manager=cls.service_manager, integ_test=False, ) BridgeTools.create_bridge(cls.BRIDGE, cls.BRIDGE) BridgeTools.create_bridge(cls.UPLINK_BRIDGE, cls.UPLINK_BRIDGE) BridgeTools.create_internal_iface( cls.BRIDGE, cls.BRIDGE_ETH_PORT, '2.2.2.2', ) cls.thread = start_ryu_app_thread(test_setup) cls.uplink_br_controller = uplink_bridge_controller_reference.result() cls.testing_controller = testing_controller_reference.result() @classmethod def tearDownClass(cls): stop_ryu_app_thread(cls.thread) BridgeTools.destroy_bridge(cls.BRIDGE) BridgeTools.destroy_bridge(cls.UPLINK_BRIDGE) def testFlowSnapshotMatch(self): cls = self.__class__ assert_bridge_snapshot_match(self, self.UPLINK_BRIDGE, self.service_manager) self.assertIn(cls.SGi_IP, get_iface_ipv4(cls.BRIDGE_ETH_PORT), "ip not found") if __name__ == "__main__": unittest.main() def check_connectivity(dst: str, dev_name: str): try: ifdown_if = ["dhclient", dev_name] subprocess.check_call(ifdown_if) except subprocess.SubprocessError as e: logging.warning( "Error while setting dhcl IP: %s: %s", dev_name, e, ) return hub.sleep(1) try: ping_cmd = ["ping", "-c", "3", dst] subprocess.check_call(ping_cmd) except subprocess.SubprocessError as e: logging.warning("Error while ping: %s", e) # for now dont assert here. validate_routing_table(dst, dev_name) def validate_routing_table(dst: str, dev_name: str) -> str: dump1 = subprocess.Popen( ["ip", "r", "get", dst], stdout=subprocess.PIPE, ) for line in dump1.stdout.readlines(): if "dev" not in str(line): continue try: if dev_name in str(line): return except ValueError: pass logging.error("could not find route to %s via %s", dst, dev_name) dump1 = subprocess.Popen( ["ovs-ofctl", "dump-flows", cls.UPLINK_BRIDGE], stdout=subprocess.PIPE, ) for line in dump1.stdout.readlines(): print("pbs: %s", line) assert 0
python
27,481
#!/usr/bin/env python """ Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import os import sys import warnings import keras import keras.preprocessing.image import tensorflow as tf # Allow relative imports when being executed as script. if __name__ == "__main__" and __package__ is None: sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) import keras_retinanet.bin # noqa: F401 __package__ = "keras_retinanet.bin" # Change these to absolute imports if you copy this script outside the keras_retinanet package. from .. import layers # noqa: F401 from .. import losses from .. import models from ..callbacks import RedirectModel from ..callbacks.eval import Evaluate from ..models.retinanet import retinanet_bbox from ..preprocessing.csv_generator import CSVGenerator from ..preprocessing.kitti import KittiGenerator from ..preprocessing.open_images import OpenImagesGenerator from ..preprocessing.pascal_voc import PascalVocGenerator from ..utils.anchors import make_shapes_callback from ..utils.config import read_config_file, parse_anchor_parameters from ..utils.keras_version import check_keras_version from ..utils.model import freeze as freeze_model from ..utils.transform import random_transform_generator from ..utils.image import random_visual_effect_generator from ..utils.gpu import setup_gpu def makedirs(path): # Intended behavior: try to create the directory, # pass if the directory exists already, fails otherwise. # Meant for Python 2.7/3.n compatibility. try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise def model_with_weights(model, weights, skip_mismatch): """ Load weights for model. Args model : The model to load weights for. weights : The weights to load. skip_mismatch : If True, skips layers whose shape of weights doesn't match with the model. """ if weights is not None: model.load_weights(weights, by_name=True, skip_mismatch=skip_mismatch) return model def create_models(backbone_retinanet, num_classes, weights, multi_gpu=0, freeze_backbone=False, lr=1e-5, config=None): """ Creates three models (model, training_model, prediction_model). Args backbone_retinanet : A function to call to create a retinanet model with a given backbone. num_classes : The number of classes to train. weights : The weights to load into the model. multi_gpu : The number of GPUs to use for training. freeze_backbone : If True, disables learning for the backbone. config : Config parameters, None indicates the default configuration. Returns model : The base model. This is also the model that is saved in snapshots. training_model : The training model. If multi_gpu=0, this is identical to model. prediction_model : The model wrapped with utility functions to perform object detection (applies regression values and performs NMS). """ modifier = freeze_model if freeze_backbone else None # load anchor parameters, or pass None (so that defaults will be used) anchor_params = None num_anchors = None if config and 'anchor_parameters' in config: anchor_params = parse_anchor_parameters(config) num_anchors = anchor_params.num_anchors() # Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors. # optionally wrap in a parallel model if multi_gpu > 1: from keras.utils import multi_gpu_model with tf.device('/cpu:0'): model = model_with_weights(backbone_retinanet(num_classes, num_anchors=num_anchors, modifier=modifier), weights=weights, skip_mismatch=True) training_model = multi_gpu_model(model, gpus=multi_gpu) else: model = model_with_weights(backbone_retinanet(num_classes, num_anchors=num_anchors, modifier=modifier), weights=weights, skip_mismatch=True) training_model = model # make prediction model prediction_model = retinanet_bbox(model=model, anchor_params=anchor_params) # compile model training_model.compile( loss={ 'regression' : losses.smooth_l1(), 'classification': losses.focal() }, optimizer=keras.optimizers.adam(lr=lr, clipnorm=0.001) ) return model, training_model, prediction_model def create_callbacks(model, training_model, prediction_model, validation_generator, args): """ Creates the callbacks to use during training. Args model: The base model. training_model: The model that is used for training. prediction_model: The model that should be used for validation. validation_generator: The generator for creating validation data. args: parseargs args object. Returns: A list of callbacks used for training. """ callbacks = [] tensorboard_callback = None if args.tensorboard_dir: tensorboard_callback = keras.callbacks.TensorBoard( log_dir = args.tensorboard_dir, histogram_freq = 0, batch_size = args.batch_size, write_graph = True, write_grads = False, write_images = False, embeddings_freq = 0, embeddings_layer_names = None, embeddings_metadata = None ) if args.evaluation and validation_generator: if args.dataset_type == 'coco': from ..callbacks.coco import CocoEval # use prediction model for evaluation evaluation = CocoEval(validation_generator, tensorboard=tensorboard_callback) else: evaluation = Evaluate(validation_generator, tensorboard=tensorboard_callback, weighted_average=args.weighted_average) evaluation = RedirectModel(evaluation, prediction_model) callbacks.append(evaluation) # save the model if args.snapshots: # ensure directory created first; otherwise h5py will error after epoch. makedirs(args.snapshot_path) checkpoint = keras.callbacks.ModelCheckpoint( os.path.join( args.snapshot_path, '{backbone}_{dataset_type}_{{epoch:02d}}.h5'.format(backbone=args.backbone, dataset_type=args.dataset_type) ), verbose=1, # save_best_only=True, # monitor="mAP", # mode='max' ) checkpoint = RedirectModel(checkpoint, model) callbacks.append(checkpoint) callbacks.append(keras.callbacks.ReduceLROnPlateau( monitor = 'loss', factor = 0.1, patience = 2, verbose = 1, mode = 'auto', min_delta = 0.0001, cooldown = 0, min_lr = 0 )) if args.tensorboard_dir: callbacks.append(tensorboard_callback) return callbacks def create_generators(args, preprocess_image): """ Create generators for training and validation. Args args : parseargs object containing configuration for generators. preprocess_image : Function that preprocesses an image for the network. """ common_args = { 'batch_size' : args.batch_size, 'config' : args.config, 'image_min_side' : args.image_min_side, 'image_max_side' : args.image_max_side, 'no_resize' : args.no_resize, 'preprocess_image' : preprocess_image, } # create random transform generator for augmenting training data if args.random_transform: transform_generator = random_transform_generator( min_rotation=-0.1, max_rotation=0.1, min_translation=(-0.1, -0.1), max_translation=(0.1, 0.1), min_shear=-0.1, max_shear=0.1, min_scaling=(0.9, 0.9), max_scaling=(1.1, 1.1), flip_x_chance=0.5, flip_y_chance=0.5, ) visual_effect_generator = random_visual_effect_generator( contrast_range=(0.9, 1.1), brightness_range=(-.1, .1), hue_range=(-0.05, 0.05), saturation_range=(0.95, 1.05) ) else: transform_generator = random_transform_generator(flip_x_chance=0.5) visual_effect_generator = None if args.dataset_type == 'coco': # import here to prevent unnecessary dependency on cocoapi from ..preprocessing.coco import CocoGenerator train_generator = CocoGenerator( args.coco_path, 'train2017', transform_generator=transform_generator, visual_effect_generator=visual_effect_generator, **common_args ) validation_generator = CocoGenerator( args.coco_path, 'val2017', shuffle_groups=False, **common_args ) elif args.dataset_type == 'pascal': train_generator = PascalVocGenerator( args.pascal_path, 'trainval', transform_generator=transform_generator, visual_effect_generator=visual_effect_generator, **common_args ) validation_generator = PascalVocGenerator( args.pascal_path, 'test', shuffle_groups=False, **common_args ) elif args.dataset_type == 'csv': train_generator = CSVGenerator( args.annotations, args.classes, transform_generator=transform_generator, visual_effect_generator=visual_effect_generator, **common_args ) if args.val_annotations: validation_generator = CSVGenerator( args.val_annotations, args.classes, shuffle_groups=False, **common_args ) else: validation_generator = None elif args.dataset_type == 'oid': train_generator = OpenImagesGenerator( args.main_dir, subset='train', version=args.version, labels_filter=args.labels_filter, annotation_cache_dir=args.annotation_cache_dir, parent_label=args.parent_label, transform_generator=transform_generator, visual_effect_generator=visual_effect_generator, **common_args ) validation_generator = OpenImagesGenerator( args.main_dir, subset='validation', version=args.version, labels_filter=args.labels_filter, annotation_cache_dir=args.annotation_cache_dir, parent_label=args.parent_label, shuffle_groups=False, **common_args ) elif args.dataset_type == 'kitti': train_generator = KittiGenerator( args.kitti_path, subset='train', transform_generator=transform_generator, visual_effect_generator=visual_effect_generator, **common_args ) validation_generator = KittiGenerator( args.kitti_path, subset='val', shuffle_groups=False, **common_args ) else: raise ValueError('Invalid data type received: {}'.format(args.dataset_type)) return train_generator, validation_generator def check_args(parsed_args): """ Function to check for inherent contradictions within parsed arguments. For example, batch_size < num_gpus Intended to raise errors prior to backend initialisation. Args parsed_args: parser.parse_args() Returns parsed_args """ if parsed_args.multi_gpu > 1 and parsed_args.batch_size < parsed_args.multi_gpu: raise ValueError( "Batch size ({}) must be equal to or higher than the number of GPUs ({})".format(parsed_args.batch_size, parsed_args.multi_gpu)) if parsed_args.multi_gpu > 1 and parsed_args.snapshot: raise ValueError( "Multi GPU training ({}) and resuming from snapshots ({}) is not supported.".format(parsed_args.multi_gpu, parsed_args.snapshot)) if parsed_args.multi_gpu > 1 and not parsed_args.multi_gpu_force: raise ValueError("Multi-GPU support is experimental, use at own risk! Run with --multi-gpu-force if you wish to continue.") if 'resnet' not in parsed_args.backbone: warnings.warn('Using experimental backbone {}. Only resnet50 has been properly tested.'.format(parsed_args.backbone)) return parsed_args def parse_args(args): """ Parse the arguments. """ parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.') subparsers = parser.add_subparsers(help='Arguments for specific dataset types.', dest='dataset_type') subparsers.required = True coco_parser = subparsers.add_parser('coco') coco_parser.add_argument('coco_path', help='Path to dataset directory (ie. /tmp/COCO).') pascal_parser = subparsers.add_parser('pascal') pascal_parser.add_argument('pascal_path', help='Path to dataset directory (ie. /tmp/VOCdevkit).') kitti_parser = subparsers.add_parser('kitti') kitti_parser.add_argument('kitti_path', help='Path to dataset directory (ie. /tmp/kitti).') def csv_list(string): return string.split(',') oid_parser = subparsers.add_parser('oid') oid_parser.add_argument('main_dir', help='Path to dataset directory.') oid_parser.add_argument('--version', help='The current dataset version is v4.', default='v4') oid_parser.add_argument('--labels-filter', help='A list of labels to filter.', type=csv_list, default=None) oid_parser.add_argument('--annotation-cache-dir', help='Path to store annotation cache.', default='.') oid_parser.add_argument('--parent-label', help='Use the hierarchy children of this label.', default=None) csv_parser = subparsers.add_parser('csv') csv_parser.add_argument('annotations', help='Path to CSV file containing annotations for training.') csv_parser.add_argument('classes', help='Path to a CSV file containing class label mapping.') csv_parser.add_argument('--val-annotations', help='Path to CSV file containing annotations for validation (optional).') group = parser.add_mutually_exclusive_group() group.add_argument('--snapshot', help='Resume training from a snapshot.') group.add_argument('--imagenet-weights', help='Initialize the model with pretrained imagenet weights. This is the default behaviour.', action='store_const', const=True, default=True) group.add_argument('--weights', help='Initialize the model with weights from a file.') group.add_argument('--no-weights', help='Don\'t initialize the model with any weights.', dest='imagenet_weights', action='store_const', const=False) parser.add_argument('--backbone', help='Backbone model used by retinanet.', default='resnet50', type=str) parser.add_argument('--batch-size', help='Size of the batches.', default=1, type=int) parser.add_argument('--gpu', help='Id of the GPU to use (as reported by nvidia-smi).') parser.add_argument('--multi-gpu', help='Number of GPUs to use for parallel processing.', type=int, default=0) parser.add_argument('--multi-gpu-force', help='Extra flag needed to enable (experimental) multi-gpu support.', action='store_true') parser.add_argument('--epochs', help='Number of epochs to train.', type=int, default=50) parser.add_argument('--steps', help='Number of steps per epoch.', type=int, default=10000) parser.add_argument('--lr', help='Learning rate.', type=float, default=1e-5) parser.add_argument('--snapshot-path', help='Path to store snapshots of models during training (defaults to \'./snapshots\')', default='./snapshots') parser.add_argument('--tensorboard-dir', help='Log directory for Tensorboard output', default='./logs') parser.add_argument('--no-snapshots', help='Disable saving snapshots.', dest='snapshots', action='store_false') parser.add_argument('--no-evaluation', help='Disable per epoch evaluation.', dest='evaluation', action='store_false') parser.add_argument('--freeze-backbone', help='Freeze training of backbone layers.', action='store_true') parser.add_argument('--random-transform', help='Randomly transform image and annotations.', action='store_true') parser.add_argument('--image-min-side', help='Rescale the image so the smallest side is min_side.', type=int, default=400) parser.add_argument('--image-max-side', help='Rescale the image if the largest side is larger than max_side.', type=int, default=1333) parser.add_argument('--no-resize', help='Don''t rescale the image.', action='store_true') parser.add_argument('--config', help='Path to a configuration parameters .ini file.') parser.add_argument('--weighted-average', help='Compute the mAP using the weighted average of precisions among classes.', action='store_true') parser.add_argument('--compute-val-loss', help='Compute validation loss during training', dest='compute_val_loss', action='store_true') # Fit generator arguments parser.add_argument('--multiprocessing', help='Use multiprocessing in fit_generator.', action='store_true') parser.add_argument('--workers', help='Number of generator workers.', type=int, default=1) parser.add_argument('--max-queue-size', help='Queue length for multiprocessing workers in fit_generator.', type=int, default=10) return check_args(parser.parse_args(args)) def main(args=None): # parse arguments if args is None: args = sys.argv[1:] args = parse_args(args) # create object that stores backbone information backbone = models.backbone(args.backbone) # make sure keras is the minimum required version check_keras_version() # optionally choose specific GPU if args.gpu: setup_gpu(args.gpu) # optionally load config parameters if args.config: args.config = read_config_file(args.config) # create the generators train_generator, validation_generator = create_generators(args, backbone.preprocess_image) # create the model if args.snapshot is not None: print('Loading model, this may take a second...') model = models.load_model(args.snapshot, backbone_name=args.backbone) training_model = model anchor_params = None if args.config and 'anchor_parameters' in args.config: anchor_params = parse_anchor_parameters(args.config) prediction_model = retinanet_bbox(model=model, anchor_params=anchor_params) else: weights = args.weights # default to imagenet if nothing else is specified if weights is None and args.imagenet_weights: weights = backbone.download_imagenet() print('Creating model, this may take a second...') model, training_model, prediction_model = create_models( backbone_retinanet=backbone.retinanet, num_classes=train_generator.num_classes(), weights=weights, multi_gpu=args.multi_gpu, freeze_backbone=args.freeze_backbone, lr=args.lr, config=args.config ) # print model summary print(model.summary()) # this lets the generator compute backbone layer shapes using the actual backbone model if 'vgg' in args.backbone or 'densenet' in args.backbone: train_generator.compute_shapes = make_shapes_callback(model) if validation_generator: validation_generator.compute_shapes = train_generator.compute_shapes # create the callbacks callbacks = create_callbacks( model, training_model, prediction_model, validation_generator, args, ) if not args.compute_val_loss: validation_generator = None # start training training_model.fit_generator( generator=train_generator, steps_per_epoch=args.steps, epochs=args.epochs, verbose=1, callbacks=callbacks, workers=args.workers, use_multiprocessing=args.multiprocessing, max_queue_size=args.max_queue_size, validation_data=validation_generator ) #return model return training_model if __name__ == '__main__': main()
python
21,487
# -*- coding: utf-8 -*- # Copyright (c) 2019, Bravo Logistics and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestVehicleInspection(unittest.TestCase): pass
python
223
from distutils.core import setup setup( name='sportplot', version='0.1', packages=['sportplot'], author="Elliott Barcikowski", )
python
146