text
stringlengths
3
1.04M
lang
stringclasses
4 values
len
int64
3
1.04M
""" Define the base window object and the constants/"globals" used by the file of this module. A window is a little part of the screen, for example the input window, the text window, the roster window, etc. A Tab (see the src/tabs module) is composed of multiple Windows """ import logging log = logging.getLogger(__name__) import collections import curses import string import core import singleton from theming import to_curses_attr, read_tuple FORMAT_CHAR = '\x19' # These are non-printable chars, so they should never appear in the input, # I guess. But maybe we can find better chars that are even less risky. format_chars = ['\x0E', '\x0F', '\x10', '\x11', '\x12', '\x13', '\x14', '\x15', '\x16', '\x17', '\x18'] # different colors allowed in the input allowed_color_digits = ('0', '1', '2', '3', '4', '5', '6', '7') # msg is a reference to the corresponding Message tuple. text_start and # text_end are the position delimiting the text in this line. Line = collections.namedtuple('Line', 'msg start_pos end_pos prepend') LINES_NB_LIMIT = 4096 class DummyWin(object): def __getattribute__(self, name): if name != '__bool__': return lambda *args, **kwargs: (0, 0) else: return object.__getattribute__(self, name) def __bool__(self): return False class Win(object): _win_core = None _tab_win = None def __init__(self): self._win = None self.height, self.width = 0, 0 def _resize(self, height, width, y, x): if height == 0 or width == 0: self.height, self.width = height, width return self.height, self.width, self.x, self.y = height, width, x, y try: self._win = Win._tab_win.derwin(height, width, y, x) except: log.debug('DEBUG: mvwin returned ERR. Please investigate') if self._win is None: self._win = DummyWin() def resize(self, height, width, y, x): """ Override if something has to be done on resize """ self._resize(height, width, y, x) def _refresh(self): self._win.noutrefresh() def addnstr(self, *args): """ Safe call to addnstr """ try: self._win.addnstr(*args) except: # this actually mostly returns ERR, but works. # more specifically, when the added string reaches the end # of the screen. pass def addstr(self, *args): """ Safe call to addstr """ try: self._win.addstr(*args) except: pass def move(self, y, x): try: self._win.move(y, x) except: self._win.move(0, 0) def addstr_colored(self, text, y=None, x=None): """ Write a string on the window, setting the attributes as they are in the string. For example: \x19bhello → hello in bold \x191}Bonj\x192}our → 'Bonj' in red and 'our' in green next_attr_char is the \x19 delimiter attr_char is the char following it, it can be one of 'u', 'b', 'c[0-9]' """ if y is not None and x is not None: self.move(y, x) next_attr_char = text.find(FORMAT_CHAR) while next_attr_char != -1 and text: if next_attr_char + 1 < len(text): attr_char = text[next_attr_char+1].lower() else: attr_char = str() if next_attr_char != 0: self.addstr(text[:next_attr_char]) if attr_char == 'o': self._win.attrset(0) elif attr_char == 'u': self._win.attron(curses.A_UNDERLINE) elif attr_char == 'b': self._win.attron(curses.A_BOLD) if (attr_char in string.digits or attr_char == '-') and attr_char != '': color_str = text[next_attr_char+1:text.find('}', next_attr_char)] if ',' in color_str: tup, char = read_tuple(color_str) self._win.attron(to_curses_attr(tup)) if char: if char == 'o': self._win.attrset(0) elif char == 'u': self._win.attron(curses.A_UNDERLINE) elif char == 'b': self._win.attron(curses.A_BOLD) else: # this will reset previous bold/uderline sequences if any was used self._win.attroff(curses.A_UNDERLINE) self._win.attroff(curses.A_BOLD) elif color_str: self._win.attron(to_curses_attr((int(color_str), -1))) text = text[next_attr_char+len(color_str)+2:] else: text = text[next_attr_char+2:] next_attr_char = text.find(FORMAT_CHAR) self.addstr(text) def finish_line(self, color=None): """ Write colored spaces until the end of line """ (y, x) = self._win.getyx() size = self.width - x if color: self.addnstr(' '*size, size, to_curses_attr(color)) else: self.addnstr(' '*size, size) @property def core(self): if not Win._win_core: Win._win_core = singleton.Singleton(core.Core) return Win._win_core
python
5,516
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "homepage.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
python
251
#!/usr/bin/env/python from __future__ import print_function from typing import List, Any, Sequence import tensorflow as tf import time import os import json import numpy as np import pickle import random from utils import MLP, ThreadedIterator print(tf.__version__) class ChemModel(object): @classmethod def default_params(cls): return { 'num_epochs': 200, 'patience': 150, 'learning_rate': 0.002, 'clamp_gradient_norm': 1, # 1.0->0.8 'out_layer_dropout_keep_prob': 0.8, # 1.0->0.8 'hidden_size': 256, # 256/512/1024/2048 'num_timesteps': 4, # 4->6 'use_graph': True, 'tie_fwd_bkwd': False, # True->False 'task_ids': [0], # 'random_seed': 6600, # 'threshold': 0.5, 'train_file': 'train_data/reentrancy/train_corenodes.json', 'valid_file': 'train_data/reentrancy/valid_corenodes.json' # 'train_file': 'train_data/infinite_loop/train_corenodes.json', # 'valid_file': 'train_data/infinite_loop/valid_corenodes.json' } def __init__(self, args): self.args = args # Collect argument things: data_dir = '' if '--data_dir' in args and args['--data_dir'] is not None: data_dir = args['--data_dir'] self.data_dir = data_dir # random_seed = None random_seed = args.get('--random_seed') self.random_seed = int(9930) threshold = args.get('--thresholds') self.threshold = float(0.352) self.run_id = "_".join([time.strftime("%Y-%m-%d-%H-%M-%S"), str(os.getpid())]) log_dir = args.get('--log_dir') or '.' self.log_file = os.path.join(log_dir, "%s_log.json" % self.run_id) self.best_model_file = os.path.join(log_dir, "%s_model_best.pickle" % self.run_id) # Collect parameters: params = self.default_params() config_file = args.get('--config-file') if config_file is not None: with open(config_file, 'r') as f: params.update(json.load(f)) config = args.get('--config') if config is not None: params.update(json.loads(config)) self.params = params print("Run %s starting with following parameters:\n%s" % (self.run_id, json.dumps(self.params))) random.seed(self.random_seed) np.random.seed(self.random_seed) print("Run with current seed %s " % self.random_seed) # Load baseline: self.max_num_vertices = 0 self.num_edge_types = 0 self.annotation_size = 0 self.num_graph = 1 self.train_num_graph = 0 self.valid_num_graph = 0 self.train_data, self.train_num_graph = self.load_data(params['train_file'], is_training_data=True) self.valid_data, self.valid_num_graph = self.load_data(params['valid_file'], is_training_data=False) # Build the actual model config = tf.ConfigProto() config.gpu_options.allow_growth = True self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph, config=config) with self.graph.as_default(): tf.set_random_seed(self.random_seed) self.placeholders = {} self.weights = {} self.ops = {} self.make_model() self.make_train_step() # Restore/initialize variables: restore_file = args.get('--restore') if restore_file is not None: self.restore_model(restore_file) else: self.initialize_model() def load_data(self, file_name, is_training_data: bool): full_path = os.path.join(self.data_dir, file_name) print("Loading baseline from %s" % full_path) with open(full_path, 'r') as f: data = json.load(f) restrict = self.args.get("--restrict_data") if restrict is not None and restrict > 0: data = data[:restrict] # Get some common baseline out: num_fwd_edge_types = 0 for g in data: self.max_num_vertices = max(self.max_num_vertices, max([v for e in g['graph'] for v in [e[0], e[2]]])) num_fwd_edge_types = max(num_fwd_edge_types, max([e[1] for e in g['graph']])) self.num_edge_types = max(self.num_edge_types, num_fwd_edge_types * (1 if self.params['tie_fwd_bkwd'] else 2)) self.annotation_size = max(self.annotation_size, len(data[0]["node_features"][0])) return self.process_raw_graphs(data, is_training_data) @staticmethod def graph_string_to_array(graph_string: str) -> List[List[int]]: return [[int(v) for v in s.split(' ')] for s in graph_string.split('\n')] def process_raw_graphs(self, raw_data: Sequence[Any], is_training_data: bool) -> Any: raise Exception("Models have to implement process_raw_graphs!") def make_model(self): self.placeholders['target_values'] = tf.placeholder(tf.float32, [len(self.params['task_ids']), None], name='target_values') self.placeholders['target_mask'] = tf.placeholder(tf.float32, [len(self.params['task_ids']), None], name='target_mask') self.placeholders['num_graphs'] = tf.placeholder(tf.int32, [], name='num_graphs') self.placeholders['out_layer_dropout_keep_prob'] = tf.placeholder(tf.float32, [], name='out_layer_dropout_keep_prob') with tf.variable_scope("graph_model"): self.prepare_specific_graph_model() # This does the actual graph work: if self.params['use_graph']: self.ops['final_node_representations'] = self.compute_final_node_representations() else: self.ops['final_node_representations'] = tf.zeros_like(self.placeholders['process_raw_graphs']) self.ops['losses'] = [] for (internal_id, task_id) in enumerate(self.params['task_ids']): with tf.variable_scope("out_layer_task%i" % task_id): with tf.variable_scope("regression_gate"): self.weights['regression_gate_task%i' % task_id] = MLP(2 * self.params['hidden_size'], 1, [], self.placeholders[ 'out_layer_dropout_keep_prob']) with tf.variable_scope("regression"): self.weights['regression_transform_task%i' % task_id] = MLP(self.params['hidden_size'], 1, [], self.placeholders[ 'out_layer_dropout_keep_prob']) computed_values, sigm_val = self.gated_regression(self.ops['final_node_representations'], self.weights['regression_gate_task%i' % task_id], self.weights['regression_transform_task%i' % task_id]) def f(x): x = 1 * x x = x.astype(np.float32) return x new_computed_values = tf.nn.sigmoid(computed_values) new_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=computed_values, labels=self.placeholders[ 'target_values'][ internal_id, :])) a = tf.math.greater_equal(new_computed_values, self.threshold) a = tf.py_func(f, [a], tf.float32) correct_pred = tf.equal(a, self.placeholders['target_values'][internal_id, :]) self.ops['new_computed_values'] = new_computed_values self.ops['sigm_val'] = sigm_val self.ops['accuracy_task%i' % task_id] = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) b = tf.multiply(self.placeholders['target_values'][internal_id, :], 2) b = tf.py_func(f, [b], tf.float32) c = tf.cast(a, tf.float32) d = tf.math.add(b, c) self.ops['sigm_c'] = correct_pred d_TP = tf.math.equal(d, 3) TP = tf.reduce_sum(tf.cast(d_TP, tf.float32)) # true positive d_FN = tf.math.equal(d, 2) FN = tf.reduce_sum(tf.cast(d_FN, tf.float32)) # false negative d_FP = tf.math.equal(d, 1) FP = tf.reduce_sum(tf.cast(d_FP, tf.float32)) # false positive d_TN = tf.math.equal(d, 0) TN = tf.reduce_sum(tf.cast(d_TN, tf.float32)) # true negative self.ops['sigm_sum'] = tf.add_n([TP, FN, FP, TN]) self.ops['sigm_TP'] = TP self.ops['sigm_FN'] = FN self.ops['sigm_FP'] = FP self.ops['sigm_TN'] = TN R = tf.cast(tf.divide(TP, tf.add(TP, FN)), tf.float32) # Recall P = tf.cast(tf.divide(TP, tf.add(TP, FP)), tf.float32) # Precision FPR = tf.cast(tf.divide(FP, tf.add(TN, FP)), tf.float32) # FPR: false positive rate D_TP = tf.add(TP, TP) F1 = tf.cast(tf.divide(D_TP, tf.add_n([D_TP, FP, FN])), tf.float32) # F1 self.ops['sigm_Recall'] = R self.ops['sigm_Precision'] = P self.ops['sigm_F1'] = F1 self.ops['sigm_FPR'] = FPR self.ops['losses'].append(new_loss) self.ops['loss'] = tf.reduce_sum(self.ops['losses']) def make_train_step(self): trainable_vars = self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if self.args.get('--freeze-graph-model'): graph_vars = set(self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="graph_model")) filtered_vars = [] for var in trainable_vars: if var not in graph_vars: filtered_vars.append(var) else: print("Freezing weights of variable %s." % var.name) trainable_vars = filtered_vars optimizer = tf.train.AdamOptimizer(self.params['learning_rate']) grads_and_vars = optimizer.compute_gradients(self.ops['loss'], var_list=trainable_vars) clipped_grads = [] for grad, var in grads_and_vars: if grad is not None: clipped_grads.append((tf.clip_by_norm(grad, self.params['clamp_gradient_norm']), var)) else: clipped_grads.append((grad, var)) self.ops['train_step'] = optimizer.apply_gradients(clipped_grads) # Initialize newly-introduced variables: self.sess.run(tf.local_variables_initializer()) def gated_regression(self, last_h, regression_gate, regression_transform): raise Exception("Models have to implement gated_regression!") def prepare_specific_graph_model(self) -> None: raise Exception("Models have to implement prepare_specific_graph_model!") def compute_final_node_representations(self) -> tf.Tensor: raise Exception("Models have to implement compute_final_node_representations!") def make_minibatch_iterator(self, data: Any, is_training: bool): raise Exception("Models have to implement make_minibatch_iterator!") def run_epoch(self, epoch_name: str, data, is_training: bool): chemical_accuracies = np.array([0.066513725, 0.012235489, 0.071939046, 0.033730778, 0.033486113, 0.004278493, 0.001330901, 0.004165489, 0.004128926, 0.00409976, 0.004527465, 0.012292586, 0.037467458]) loss = 0 accuracies = [] start_time = time.time() processed_graphs = 0 accuracy_ops = [self.ops['accuracy_task%i' % task_id] for task_id in self.params['task_ids']] batch_iterator = ThreadedIterator(self.make_minibatch_iterator(data, is_training), max_queue_size=5) for step, batch_data in enumerate(batch_iterator): num_graphs = batch_data[self.placeholders['num_graphs']] processed_graphs += num_graphs if is_training: batch_data[self.placeholders['out_layer_dropout_keep_prob']] = self.params[ 'out_layer_dropout_keep_prob'] fetch_list = [self.ops['loss'], accuracy_ops, self.ops['train_step']] else: batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 1.0 fetch_list = [self.ops['loss'], accuracy_ops] val_1, val_2, val_3, val_4, val_5, val_6 = self.sess.run( [self.ops['sigm_c'], self.ops['sigm_TP'], self.ops['sigm_FN'], self.ops['sigm_FP'], self.ops['sigm_TN'], self.ops['sigm_sum']], feed_dict=batch_data) val_R, val_P, val_F1, val_FPR = self.sess.run( [self.ops['sigm_Recall'], self.ops['sigm_Precision'], self.ops['sigm_F1'], self.ops['sigm_FPR']], feed_dict=batch_data) result = self.sess.run(fetch_list, feed_dict=batch_data) (batch_loss, batch_accuracies) = (result[0], result[1]) loss += batch_loss * num_graphs accuracies.append(np.array(batch_accuracies) * num_graphs) print("random seed: {}".format(self.random_seed)) print("sum: {}".format(val_6)) print("TP: {}".format(val_2)) print("FN: {}".format(val_3)) print("FP: {}".format(val_4)) print("TN: {}".format(val_5)) print("Recall: {}".format(val_R)) print("Precision: {}".format(val_P)) print("F1: {}".format(val_F1)) print("FPR: {}".format(val_FPR)) print("Running %s, batch %i (has %i graphs). " "Loss so far: %.4f" % (epoch_name, step, num_graphs, loss / processed_graphs), end='\r') accuracies = np.sum(accuracies, axis=0) / processed_graphs loss = loss / processed_graphs error_ratios = accuracies / chemical_accuracies[self.params["task_ids"]] instance_per_sec = processed_graphs / (time.time() - start_time) return loss, accuracies, error_ratios, instance_per_sec def train(self): val_acc1 = [] log_to_save = [] total_time_start = time.time() with self.graph.as_default(): if self.args.get('--restore') is not None: _, valid_accs, _, _ = self.run_epoch("Resumed (validation)", self.valid_data, False) best_val_acc = np.sum(valid_accs) best_val_acc_epoch = 0 print("\r\x1b[KResumed operation, initial cum. val. acc: %.5f" % best_val_acc) else: (best_val_acc, best_val_acc_epoch) = (float("+inf"), 0) for epoch in range(1, self.params['num_epochs'] + 1): print("== Epoch %i" % epoch) train_start = time.time() self.num_graph = self.train_num_graph train_loss, train_accs, train_errs, train_speed = self.run_epoch("epoch %i (training)" % epoch, self.train_data, True) accs_str = " ".join(["%i:%.5f" % (id, acc) for (id, acc) in zip(self.params['task_ids'], train_accs)]) errs_str = " ".join(["%i:%.5f" % (id, err) for (id, err) in zip(self.params['task_ids'], train_errs)]) print("\r\x1b[K Train: loss: %.5f | acc: %s | error_ratio: %s | instances/sec: %.2f" % (train_loss, accs_str, errs_str, train_speed)) epoch_time_train = time.time() - train_start print(epoch_time_train) valid_start = time.time() self.num_graph = self.valid_num_graph valid_loss, valid_accs, valid_errs, valid_speed = self.run_epoch("epoch %i (validation)" % epoch, self.valid_data, False) accs_str = " ".join(["%i:%.5f" % (id, acc) for (id, acc) in zip(self.params['task_ids'], valid_accs)]) errs_str = " ".join(["%i:%.5f" % (id, err) for (id, err) in zip(self.params['task_ids'], valid_errs)]) print("\r\x1b[K Valid: loss: %.5f | acc: %s | error_ratio: %s | instances/sec: %.2f" % (valid_loss, accs_str, errs_str, valid_speed)) epoch_time_valid = time.time() - valid_start print(epoch_time_valid) val_acc1.append(valid_accs) epoch_time_total = time.time() - total_time_start print(epoch_time_total) log_entry = { 'epoch': epoch, 'time': epoch_time_total, 'train_results': (train_loss, train_accs.tolist(), train_errs.tolist(), train_speed), 'valid_results': (valid_loss, valid_accs.tolist(), valid_errs.tolist(), valid_speed), } log_to_save.append(log_entry) val_acc = np.sum(valid_accs) # type: float if val_acc < best_val_acc: print(" (Best epoch so far, cum. val. acc decreased to %.5f from %.5f. Saving to '%s')" % ( val_acc, best_val_acc, self.best_model_file)) best_val_acc = val_acc best_val_acc_epoch = epoch elif epoch - best_val_acc_epoch >= self.params['patience']: print("Stopping training after %i epochs without improvement on validation accuracy." % self.params[ 'patience']) break print(max(val_acc1)) def save_model(self, path: str) -> None: weights_to_save = {} for variable in self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): assert variable.name not in weights_to_save weights_to_save[variable.name] = self.sess.run(variable) data_to_save = { "params": self.params, "weights": weights_to_save } with open(path, 'wb') as out_file: pickle.dump(data_to_save, out_file, pickle.HIGHEST_PROTOCOL) def initialize_model(self) -> None: init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) self.sess.run(init_op) def restore_model(self, path: str) -> None: print("Restoring weights from file %s." % path) with open(path, 'rb') as in_file: data_to_load = pickle.load(in_file) # Assert that we got the same model configuration assert len(self.params) == len(data_to_load['params']) for (par, par_value) in self.params.items(): # Fine to have different task_ids: if par not in ['task_ids', 'num_epochs']: assert par_value == data_to_load['params'][par] variables_to_initialize = [] with tf.name_scope("restore"): restore_ops = [] used_vars = set() for variable in self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): used_vars.add(variable.name) if variable.name in data_to_load['weights']: restore_ops.append(variable.assign(data_to_load['weights'][variable.name])) else: print('Freshly initializing %s since no saved value was found.' % variable.name) variables_to_initialize.append(variable) for var_name in data_to_load['weights']: if var_name not in used_vars: print('Saved weights for %s not used by model.' % var_name) restore_ops.append(tf.variables_initializer(variables_to_initialize)) self.sess.run(restore_ops)
python
21,122
from decimal import Decimal as D from collections import defaultdict, OrderedDict from dateutil.relativedelta import relativedelta from accounting.apps.books.models import Invoice, Bill from accounting.apps.books.calculators import ProfitsLossCalculator from accounting.libs.intervals import TimeInterval class BaseReport(object): title = None period = None def __init__(self, title, start, end): self.title = title self.period = TimeInterval(start, end) def generate(self): raise NotImplementedError class TaxRateSummary(object): tax_rate = None taxable_amount = D('0') expenses_amount = D('0') @property def collected_taxes(self): return self.tax_rate.rate * self.taxable_amount @property def deductible_taxes(self): return self.tax_rate.rate * self.expenses_amount @property def net_amount(self): return self.taxable_amount - self.expenses_amount @property def net_taxes(self): return self.tax_rate.rate * self.net_amount class TaxReport(BaseReport): # TODO implement 'Billed (Accrual) / Collected (Cash based)' organization = None tax_summaries = None def __init__(self, organization, start, end): super().__init__("Tax Report", start, end) self.organization = organization self.tax_summaries = defaultdict(TaxRateSummary) def generate(self): invoice_queryset = Invoice.objects.all() bill_queryset = Bill.objects.all() self.generate_for_sales(invoice_queryset) self.generate_for_sales(bill_queryset) def generate_for_sales(self, sales_queryset): calculator = ProfitsLossCalculator(self.organization, start=self.period.start, end=self.period.end) for output in calculator.process_generator(sales_queryset): summary = self.tax_summaries[output.tax_rate.pk] summary.tax_rate = output.tax_rate if isinstance(output.sale, Invoice): summary.taxable_amount += output.amount_excl_tax elif isinstance(output.sale, Bill): summary.expenses_amount += output.amount_excl_tax else: raise ValueError("Unsupported type of sale {}" .format(output.sale.__class__)) class ProfitAndLossSummary(object): grouping_date = None sales_amount = D('0') expenses_amount = D('0') @property def net_profit(self): return self.sales_amount - self.expenses_amount class ProfitAndLossReport(BaseReport): # TODO implement 'Billed (Accrual) / Collected (Cash based)' organization = None summaries = None total_summary = None RESOLUTION_MONTHLY = 'monthly' RESOLUTION_CHOICES = ( RESOLUTION_MONTHLY, ) group_by_resolution = RESOLUTION_MONTHLY def __init__(self, organization, start, end): super().__init__("Profit and Loss", start, end) self.organization = organization self.summaries = {} steps_interval = relativedelta(end, start) assert self.group_by_resolution in self.RESOLUTION_CHOICES, \ "No a resolution choice" if self.group_by_resolution == self.RESOLUTION_MONTHLY: for step in range(0, steps_interval.months): key_date = start + relativedelta(months=step) self.summaries[key_date] = ProfitAndLossSummary() else: raise ValueError("Unsupported resolution {}" .format(self.group_by_resolution)) self.total_summary = ProfitAndLossSummary() def group_by_date(self, date): if self.group_by_resolution == self.RESOLUTION_MONTHLY: grouping_date = date.replace(day=1) else: raise ValueError("Unsupported resolution {}" .format(self.group_by_resolution)) return grouping_date def generate(self): invoice_queryset = Invoice.objects.all() bill_queryset = Bill.objects.all() self.generate_for_sales(invoice_queryset) self.generate_for_sales(bill_queryset) # order the results self.summaries = OrderedDict(sorted(self.summaries.items())) # compute totals for summary in self.summaries.values(): self.total_summary.sales_amount += summary.sales_amount self.total_summary.expenses_amount += summary.expenses_amount def generate_for_sales(self, sales_queryset): calculator = ProfitsLossCalculator(self.organization, start=self.period.start, end=self.period.end) for output in calculator.process_generator(sales_queryset): key_date = self.group_by_date(output.payment.date_paid) summary = self.summaries[key_date] if isinstance(output.sale, Invoice): summary.sales_amount += output.amount_excl_tax elif isinstance(output.sale, Bill): summary.expenses_amount += output.amount_excl_tax else: raise ValueError("Unsupported type of sale {}" .format(output.sale.__class__)) class PayRunSummary(object): payroll_tax_rate = None total_excl_tax = D('0') @property def payroll_taxes(self): return self.payroll_tax_rate * self.total_excl_tax class PayRunReport(BaseReport): organization = None summaries = None total_payroll_taxes = D('0') def __init__(self, organization, start, end): super().__init__("Pay Run Report", start, end) self.organization = organization self.summaries = defaultdict(PayRunSummary) def generate(self): employee_queryset = self.organization.employees.all() self.generate_for_employees(employee_queryset) def generate_for_employees(self, employee_queryset): total_payroll_taxes = D('0') calculator = ProfitsLossCalculator(self.organization, start=self.period.start, end=self.period.end) for emp in employee_queryset: summary = self.summaries[emp.composite_name] summary.employee = emp summary.payroll_tax_rate = emp.payroll_tax_rate if emp.salary_follows_profits: # TODO compute profits based on the period interval profits = calculator.profits() summary.total_excl_tax = profits * emp.shares_percentage else: raise ValueError("Salary not indexed on the profits " "are not supported yet") total_payroll_taxes += summary.payroll_taxes # Total payroll self.total_payroll_taxes = total_payroll_taxes class InvoiceDetailsReport(BaseReport): organization = None invoices = None tax_rates = None def __init__(self, organization, start, end): super().__init__("Pay Run Report", start, end) self.organization = organization self.tax_rates = organization.tax_rates.all() def generate(self): invoice_queryset = self.organization.invoices.all() self.generate_for_invoices(invoice_queryset) def generate_for_invoices(self, invoice_queryset): invoice_queryset = (invoice_queryset .filter(payments__date_paid__range=[ self.period.start, self.period.end ])) # optimize the query invoice_queryset = (invoice_queryset .select_related( 'organization') .prefetch_related( 'lines', 'lines__tax_rate', 'payments', 'organization__employees',) .distinct()) self.invoices = invoice_queryset
python
7,987
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch import torchvision from fcos_core.structures.bounding_box import BoxList from fcos_core.structures.segmentation_mask import SegmentationMask from fcos_core.structures.keypoint import PersonKeypoints min_keypoints_per_image = 10 def _count_visible_keypoints(anno): return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno) def _has_only_empty_bbox(anno): return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno) def has_valid_annotation(anno): # if it's empty, there is no annotation if len(anno) == 0: return False # if all boxes have close to zero area, there is no annotation if _has_only_empty_bbox(anno): return False # keypoints task have a slight different critera for considering # if an annotation is valid if "keypoints" not in anno[0]: return True # for keypoint detection tasks, only consider valid images those # containing at least min_keypoints_per_image if _count_visible_keypoints(anno) >= min_keypoints_per_image: return True return False class COCODataset(torchvision.datasets.coco.CocoDetection): def __init__( self, ann_file, root, remove_images_without_annotations, transforms=None ): super(COCODataset, self).__init__(root, ann_file) # sort indices for reproducible results self.ids = sorted(self.ids) # filter images without detection annotations if remove_images_without_annotations: ids = [] for img_id in self.ids: ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None) anno = self.coco.loadAnns(ann_ids) if has_valid_annotation(anno): ids.append(img_id) self.ids = ids self.json_category_id_to_contiguous_id = { v: i + 1 for i, v in enumerate(self.coco.getCatIds()) } self.contiguous_category_id_to_json_id = { v: k for k, v in self.json_category_id_to_contiguous_id.items() } self.id_to_img_map = {k: v for k, v in enumerate(self.ids)} self._transforms = transforms def __getitem__(self, idx): img, anno = super(COCODataset, self).__getitem__(idx) # filter crowd annotations # TODO might be better to add an extra field anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes target = BoxList(boxes, img.size, mode="xywh").convert("xyxy") classes = [obj["category_id"] for obj in anno] classes = [self.json_category_id_to_contiguous_id[c] for c in classes] classes = torch.tensor(classes) target.add_field("labels", classes) masks = [obj["segmentation"] for obj in anno] # masks = SegmentationMask(masks, img.size, mode='poly') # target.add_field("masks", masks) # print("boxes") # print(boxes) target.add_field("masks", boxes) if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = PersonKeypoints(keypoints, img.size) target.add_field("keypoints", keypoints) target = target.clip_to_image(remove_empty=True) if self._transforms is not None: img, target = self._transforms(img, target) return img, target, idx def get_img_info(self, index): img_id = self.id_to_img_map[index] img_data = self.coco.imgs[img_id] return img_data
python
3,703
#!/usr/bin/env python """Fabfile using only commands from buedafab (https://github.com/bueda/ops) to deploy this app to remote servers. """ import os from fabric.api import * from buedafab.test import (test, tornado_test_runner as _tornado_test_runner, lint) from buedafab.deploy.types import tornado_deploy as deploy from buedafab.environments import development, staging, production, localhost from buedafab.tasks import (setup, restart_webserver, rollback, enable, disable, maintenancemode, rechef) # For a description of these attributes, see https://github.com/bueda/ops env.unit = "rishacar" env.path = "/var/webapps/%(unit)s" % env env.scm = "[email protected]:bueda/%(unit)s.git" % env env.scm_http_url = "http://github.com/bueda/%(unit)s" % env env.root_dir = os.path.abspath(os.path.dirname(__file__)) env.test_runner = _tornado_test_runner env.pip_requirements = ["requirements/common.txt", "vendor/allo/pip-requirements.txt",] env.pip_requirements_dev = ["requirements/dev.txt",] env.pip_requirements_production = ["requirements/production.txt",]
python
1,085
from typing import Optional from application.models import IviApiResponseResult, IviApiResponse from application.service.elastic import ElasticWizard from application.service.http import HTTPClient, get_external_api_headers from application.settings import Settings VID_TYPE_MAP = {"film": "Фильм", "serial": "Сериал"} class IviOrderManager: api_limit = Settings.ivi.LIMIT @classmethod async def run(cls, message: str): api_link = Settings.ivi.IVI_API_LINK.format(name=message, limit=cls.api_limit) objects = await cls.send_request(api_link) already_have_titles = await cls.check_if_content_already_in_db(objects) titles = [] for result in objects: await ElasticWizard.store_object(result) titles.append(result.title) return {"new": titles, "old": already_have_titles} @classmethod async def send_request(cls, api_link: str) -> Optional[list[IviApiResponseResult]]: ivi_response = await HTTPClient.get(api_link, headers=get_external_api_headers()) return IviApiResponse(**ivi_response).result @classmethod async def check_if_content_already_in_db(cls, objects: list[IviApiResponseResult]) -> list[str]: result = await ElasticWizard.check_objects(objects) already_have_ids = {int(item["_id"]) for item in result["hits"]["hits"]} already_have_titles = [] for obj in objects: if obj.id in already_have_ids: already_have_titles.append(f"{obj.title} ({obj.year_of_content})") objects.remove(obj) return already_have_titles
python
1,625
# Generated by Django 3.2.4 on 2021-08-04 18:42 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('recibidos', '0001_initial'), ] operations = [ migrations.AlterField( model_name='comprobantesrecibidos', name='Tipo', field=models.CharField(max_length=60), ), ]
python
390
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst # # Astropy documentation build configuration file. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this file. # # All configuration values have a default. Some values are defined in # the global Astropy configuration which is loaded here before anything else. # See astropy.sphinx.conf for which values are set there. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('..')) # IMPORTANT: the above commented section was generated by sphinx-quickstart, but # is *NOT* appropriate for astropy or Astropy affiliated packages. It is left # commented out with this explanation to make it clear why this should not be # done. If the sys.path entry above is added, when the astropy.sphinx.conf # import occurs, it will import the *source* version of astropy instead of the # version installed (if invoked as "make html" or directly with sphinx), or the # version in the build directory (if "python setup.py build_sphinx" is used). # Thus, any C-extensions that are needed to build the documentation will *not* # be accessible, and the documentation will not build correctly. import datetime import os import sys try: import astropy_helpers except ImportError: # Building from inside the docs/ directory? if os.path.basename(os.getcwd()) == 'docs': a_h_path = os.path.abspath(os.path.join('..', 'astropy_helpers')) if os.path.isdir(a_h_path): sys.path.insert(1, a_h_path) # Load all of the global Astropy configuration from astropy_helpers.sphinx.conf import * # Get configuration information from setup.cfg try: from ConfigParser import ConfigParser except ImportError: from configparser import ConfigParser conf = ConfigParser() conf.read([os.path.join(os.path.dirname(__file__), '..', 'setup.cfg')]) setup_cfg = dict(conf.items('metadata')) setup_cfg = {str(k): str(v) for k, v in setup_cfg.items()} #Making sure parsed data is in string not unicode # -- General configuration ---------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.2' # To perform a Sphinx version check that needs to be more specific than # major.minor, call `check_sphinx_version("x.y.z")` here. # check_sphinx_version("1.2.1") # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build', '**.ipynb_checkpoints'] nbsphinx_prolog = """ The notebook is available here: https://github.com/starkit/wsynphot/tree/master/docs/{{ env.doc2path(env.docname, base=None) }} ---- """ nbsphinx_execute = 'never' exclude_patterns.append('_templates') # This is added to the end of RST files - a good place to put substitutions to # be used globally. rst_epilog += """ """ # -- Project information ------------------------------------------------------ # This does not *have* to match the package name, but typically does project = setup_cfg['package_name'] author = setup_cfg['author'] copyright = '{0}, {1}'.format( datetime.datetime.now().year, setup_cfg['author']) html_theme_options = { 'logotext1': 'W', # white, semi-bold 'logotext2': 'Synphot', # orange, light 'logotext3': ':documentation'} # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. __import__(setup_cfg['package_name']) package = sys.modules[setup_cfg['package_name']] # The short X.Y version. version = package.__version__.split('-', 1)[0] # The full version, including alpha/beta/rc tags. release = package.__version__ extensions += [ 'nbsphinx', ] # -- Options for HTML output --------------------------------------------------- # A NOTE ON HTML THEMES # The global astropy configuration uses a custom theme, 'bootstrap-astropy', # which is installed along with astropy. A different theme can be used or # the options for this theme can be modified by overriding some of the # variables set in the global configuration. The variables set in the # global configuration are listed below, commented out. # Add any paths that contain custom themes here, relative to this directory. # To use a different custom theme, add the directory containing the theme. #html_theme_path = [] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. To override the custom theme, set this to the # name of a builtin theme or the name of a custom theme in html_theme_path. #html_theme = None # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = '' # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = '{0} v{1}'.format(project, release) # Output file base name for HTML help builder. htmlhelp_basename = project + 'doc' # -- Options for LaTeX output -------------------------------------------------- # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [('index', project + '.tex', project + u' Documentation', author, 'manual')] # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [('index', project.lower(), project + u' Documentation', [author], 1)] ## -- Options for the edit_on_github extension ---------------------------------------- if eval(setup_cfg.get('edit_on_github')): extensions += ['astropy_helpers.sphinx.ext.edit_on_github'] versionmod = __import__(setup_cfg['package_name'] + '.version') edit_on_github_project = setup_cfg['github_project'] if versionmod.version.release: edit_on_github_branch = "v" + versionmod.version.version else: edit_on_github_branch = "master" edit_on_github_source_root = "" edit_on_github_doc_root = "docs"
python
6,812
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.image_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import tensorflow.python.platform import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import test_util from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import constant_op from tensorflow.python.ops import image_ops from tensorflow.python.ops import io_ops from tensorflow.python.platform import googletest class RGBToHSVTest(test_util.TensorFlowTestCase): def testBatch(self): # Build an arbitrary RGB image np.random.seed(7) batch_size = 5 shape = (batch_size, 2, 7, 3) inp = np.random.rand(*shape).astype(np.float32) # Convert to HSV and back, as a batch and individually with self.test_session() as sess: batch0 = constant_op.constant(inp) batch1 = image_ops.rgb_to_hsv(batch0) batch2 = image_ops.hsv_to_rgb(batch1) split0 = array_ops.unpack(batch0) split1 = list(map(image_ops.rgb_to_hsv, split0)) split2 = list(map(image_ops.hsv_to_rgb, split1)) join1 = array_ops.pack(split1) join2 = array_ops.pack(split2) batch1, batch2, join1, join2 = sess.run([batch1, batch2, join1, join2]) # Verify that processing batch elements together is the same as separate self.assertAllClose(batch1, join1) self.assertAllClose(batch2, join2) self.assertAllClose(batch2, inp) def testRGBToHSVRoundTrip(self): data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] rgb_np = np.array(data, dtype=np.float32).reshape([2, 2, 3]) / 255. for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu): hsv = image_ops.rgb_to_hsv(rgb_np) rgb = image_ops.hsv_to_rgb(hsv) rgb_tf = rgb.eval() self.assertAllClose(rgb_tf, rgb_np) class GrayscaleToRGBTest(test_util.TensorFlowTestCase): def _RGBToGrayscale(self, images): is_batch = True if len(images.shape) == 3: is_batch = False images = np.expand_dims(images, axis=0) out_shape = images.shape[0:3] + (1,) out = np.zeros(shape=out_shape, dtype=np.uint8) for batch in xrange(images.shape[0]): for y in xrange(images.shape[1]): for x in xrange(images.shape[2]): red = images[batch, y, x, 0] green = images[batch, y, x, 1] blue = images[batch, y, x, 2] gray = 0.2989 * red + 0.5870 * green + 0.1140 * blue out[batch, y, x, 0] = int(gray) if not is_batch: out = np.squeeze(out, axis=0) return out def _TestRGBToGrayscale(self, x_np): y_np = self._RGBToGrayscale(x_np) with self.test_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.rgb_to_grayscale(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testBasicRGBToGrayscale(self): # 4-D input with batch dimension. x_np = np.array([[1, 2, 3], [4, 10, 1]], dtype=np.uint8).reshape([1, 1, 2, 3]) self._TestRGBToGrayscale(x_np) # 3-D input with no batch dimension. x_np = np.array([[1, 2, 3], [4, 10, 1]], dtype=np.uint8).reshape([1, 2, 3]) self._TestRGBToGrayscale(x_np) def testBasicGrayscaleToRGB(self): # 4-D input with batch dimension. x_np = np.array([[1, 2]], dtype=np.uint8).reshape([1, 1, 2, 1]) y_np = np.array([[1, 1, 1], [2, 2, 2]], dtype=np.uint8).reshape([1, 1, 2, 3]) with self.test_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.grayscale_to_rgb(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) # 3-D input with no batch dimension. x_np = np.array([[1, 2]], dtype=np.uint8).reshape([1, 2, 1]) y_np = np.array([[1, 1, 1], [2, 2, 2]], dtype=np.uint8).reshape([1, 2, 3]) with self.test_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.grayscale_to_rgb(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) class AdjustHueTest(test_util.TensorFlowTestCase): def testAdjustNegativeHue(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) delta = -0.25 y_data = [0, 13, 1, 54, 226, 59, 8, 234, 150, 255, 39, 1] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_hue(x, delta) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testAdjustPositiveHue(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) delta = 0.25 y_data = [13, 0, 11, 226, 54, 221, 234, 8, 92, 1, 217, 255] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_hue(x, delta) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) class AdjustSaturationTest(test_util.TensorFlowTestCase): def testHalfSaturation(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 0.5 y_data = [6, 9, 13, 140, 180, 226, 135, 121, 234, 172, 255, 128] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_saturation(x, saturation_factor) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testTwiceSaturation(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 2.0 y_data = [0, 5, 13, 0, 106, 226, 30, 0, 234, 89, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_saturation(x, saturation_factor) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) class FlipTest(test_util.TensorFlowTestCase): def testIdempotentLeftRight(self): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_left_right(image_ops.flip_left_right(x_tf)) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testLeftRight(self): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[3, 2, 1], [3, 2, 1]], dtype=np.uint8).reshape([2, 3, 1]) for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_left_right(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testIdempotentUpDown(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_up_down(image_ops.flip_up_down(x_tf)) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testUpDown(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[4, 5, 6], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_up_down(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testIdempotentTranspose(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.transpose_image(image_ops.transpose_image(x_tf)) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testTranspose(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[1, 4], [2, 5], [3, 6]], dtype=np.uint8).reshape([3, 2, 1]) for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.transpose_image(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) class RandomFlipTest(test_util.TensorFlowTestCase): def testRandomLeftRight(self): x_np = np.array([0, 1], dtype=np.uint8).reshape([1, 2, 1]) num_iterations = 500 hist = [0, 0] with self.test_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.random_flip_left_right(x_tf) for _ in xrange(num_iterations): y_np = y.eval().flatten()[0] hist[y_np] += 1 # Ensure that each entry is observed within 4 standard deviations. four_stddev = 4.0 * np.sqrt(num_iterations / 2.0) self.assertAllClose(hist, [num_iterations / 2.0] * 2, atol=four_stddev) def testRandomUpDown(self): x_np = np.array([0, 1], dtype=np.uint8).reshape([2, 1, 1]) num_iterations = 500 hist = [0, 0] with self.test_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.random_flip_up_down(x_tf) for _ in xrange(num_iterations): y_np = y.eval().flatten()[0] hist[y_np] += 1 # Ensure that each entry is observed within 4 standard deviations. four_stddev = 4.0 * np.sqrt(num_iterations / 2.0) self.assertAllClose(hist, [num_iterations / 2.0] * 2, atol=four_stddev) class AdjustContrastTest(test_util.TensorFlowTestCase): def _testContrast(self, x_np, y_np, contrast_factor, min_value, max_value): for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu): x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_contrast(x, contrast_factor, min_value=min_value, max_value=max_value) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testDoubleContrastUint8(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [0, 0, 0, 63, 169, 255, 29, 0, 255, 135, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=2.0, min_value=None, max_value=None) def testDoubleContrastFloat(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.float).reshape(x_shape) y_data = [0, 0, 0, 62.75, 169.25, 255, 28.75, 0, 255, 134.75, 255, 0] y_np = np.array(y_data, dtype=np.float).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=2.0, min_value=0, max_value=255) def testHalfContrastUint8(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [23, 53, 66, 50, 118, 172, 41, 54, 176, 68, 178, 60] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=0.5, min_value=None, max_value=None) def testBatchDoubleContrast(self): x_shape = [2, 1, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [0, 0, 0, 81, 200, 255, 11, 0, 255, 117, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=2.0, min_value=None, max_value=None) class AdjustBrightnessTest(test_util.TensorFlowTestCase): def _testBrightness(self, x_np, y_np, delta, min_value, max_value): with self.test_session(): x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_brightness(x, delta, min_value=min_value, max_value=max_value) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testPositiveDeltaUint8(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [10, 15, 23, 64, 145, 236, 47, 18, 244, 100, 255, 11] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testBrightness(x_np, y_np, delta=10.0, min_value=None, max_value=None) def testPositiveDeltaFloat(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.float32).reshape(x_shape) y_data = [10, 15, 23, 64, 145, 236, 47, 18, 244, 100, 265, 11] y_np = np.array(y_data, dtype=np.float32).reshape(x_shape) self._testBrightness(x_np, y_np, delta=10.0, min_value=None, max_value=None) def testNegativeDelta(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [5, 5, 5, 44, 125, 216, 27, 5, 224, 80, 245, 5] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testBrightness(x_np, y_np, delta=-10.0, min_value=5, max_value=None) class RandomCropTest(test_util.TensorFlowTestCase): def testNoOp(self): # No random cropping is performed since the target width and height # are match the image dimensions. height = 4 width = 5 x_shape = [height, width, 3] x_np = np.arange(0, np.prod(x_shape), dtype=np.int32).reshape(x_shape) target_shape_np = np.array([height, width], dtype=np.int64) with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) target_shape = constant_op.constant(target_shape_np, shape=[2]) y = image_ops.random_crop(x, target_shape) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testRandomization(self): # Run 1x1 crop num_samples times in an image and ensure that one finds each # pixel 1/num_pixels of the time. num_samples = 1000 height = 5 width = 4 num_pixels = height * width data = np.arange(num_pixels).reshape([height, width, 1]) x_np = np.array(data).astype(np.int32) target_shape_np = np.array([1, 1], dtype=np.int64) y = [] with self.test_session(): x = constant_op.constant(x_np, shape=x_np.shape) target_shape = constant_op.constant(target_shape_np, shape=[2]) y_tf = image_ops.random_crop(x, target_shape) for _ in xrange(num_samples): y_np = y_tf.eval() self.assertAllEqual(y_np.shape, [1, 1, 1]) y.extend(y_np.flatten()) # Calculate the mean and 4 * standard deviation. mean = [num_samples / num_pixels] * num_pixels four_stddev = 4.0 * np.sqrt(mean) # Ensure that each entry is observed in 1/num_pixels of the samples # within 4 standard deviations. counts = np.bincount(y) self.assertAllClose(counts, mean, atol=four_stddev) class PerImageWhiteningTest(test_util.TensorFlowTestCase): def _NumpyPerImageWhitening(self, x): num_pixels = np.prod(x.shape) x2 = np.square(x).astype(np.float32) mn = np.mean(x) vr = np.mean(x2) - (mn * mn) stddev = max(math.sqrt(vr), 1.0 / math.sqrt(num_pixels)) y = x.astype(np.float32) y -= mn y /= stddev return y def testBasic(self): x_shape = [13, 9, 3] x_np = np.arange(0, np.prod(x_shape), dtype=np.int32).reshape(x_shape) y_np = self._NumpyPerImageWhitening(x_np) with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.per_image_whitening(x) y_tf = y.eval() self.assertAllClose(y_tf, y_np, atol=1e-4) def testUniformImage(self): im_np = np.ones([19, 19, 3]).astype(np.float32) * 249 im = constant_op.constant(im_np) whiten = image_ops.per_image_whitening(im) with self.test_session(): whiten_np = whiten.eval() self.assertFalse(np.any(np.isnan(whiten_np))) class CropToBoundingBoxTest(test_util.TensorFlowTestCase): def testNoOp(self): x_shape = [13, 9, 3] x_np = np.ones(x_shape, dtype=np.float32) with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) target_height = x_shape[0] target_width = x_shape[1] y = image_ops.crop_to_bounding_box(x, 0, 0, target_height, target_width) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testCropping(self): x_np = np.arange(0, 30, dtype=np.int32).reshape([6, 5, 1]) offset_height = 1 after_height = 2 offset_width = 0 after_width = 3 target_height = x_np.shape[0] - offset_height - after_height target_width = x_np.shape[1] - offset_width - after_width y_np = x_np[offset_height:offset_height + target_height, offset_width:offset_width + target_width, :] with self.test_session(): x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.crop_to_bounding_box(x, offset_height, offset_width, target_height, target_width) y_tf = y.eval() self.assertAllEqual(y_tf.flatten(), y_np.flatten()) class PadToBoundingBoxTest(test_util.TensorFlowTestCase): def testNoOp(self): x_shape = [13, 9, 3] x_np = np.ones(x_shape, dtype=np.float32) target_height = x_shape[0] target_width = x_shape[1] with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.pad_to_bounding_box(x, 0, 0, target_height, target_width) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testPadding(self): x_shape = [3, 4, 1] x_np = np.ones(x_shape, dtype=np.float32) offset_height = 2 after_height = 3 offset_width = 1 after_width = 4 target_height = x_shape[0] + offset_height + after_height target_width = x_shape[1] + offset_width + after_width # Note the padding are along batch, height, width and depth. paddings = ((offset_height, after_height), (offset_width, after_width), (0, 0)) y_np = np.pad(x_np, paddings, 'constant') with self.test_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.pad_to_bounding_box(x, offset_height, offset_width, target_height, target_width) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) class ResizeImagesTest(test_util.TensorFlowTestCase): OPTIONS = [image_ops.ResizeMethod.BILINEAR, image_ops.ResizeMethod.NEAREST_NEIGHBOR, image_ops.ResizeMethod.BICUBIC, image_ops.ResizeMethod.AREA] def testNoOp(self): img_shape = [1, 6, 4, 1] data = [128, 128, 64, 64, 128, 128, 64, 64, 64, 64, 128, 128, 64, 64, 128, 128, 50, 50, 100, 100, 50, 50, 100, 100] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 6 target_width = 4 for opt in self.OPTIONS: with self.test_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, target_height, target_width, opt) resized = y.eval() self.assertAllClose(resized, img_np, atol=1e-5) def testResizeDown(self): data = [128, 128, 64, 64, 128, 128, 64, 64, 64, 64, 128, 128, 64, 64, 128, 128, 50, 50, 100, 100, 50, 50, 100, 100] expected_data = [128, 64, 64, 128, 50, 100] target_height = 3 target_width = 2 # Test out 3-D and 4-D image shapes. img_shapes = [[1, 6, 4, 1], [6, 4, 1]] target_shapes = [[1, target_height, target_width, 1], [target_height, target_width, 1]] for target_shape, img_shape in zip(target_shapes, img_shapes): img_np = np.array(data, dtype=np.uint8).reshape(img_shape) for opt in self.OPTIONS: with self.test_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, target_height, target_width, opt) expected = np.array(expected_data).reshape(target_shape) resized = y.eval() self.assertAllClose(resized, expected, atol=1e-5) def testResizeUp(self): img_shape = [1, 3, 2, 1] data = [128, 64, 64, 128, 50, 100] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 6 target_width = 4 expected_data = {} expected_data[image_ops.ResizeMethod.BILINEAR] = [ 128.0, 96.0, 64.0, 64.0, 96.0, 96.0, 96.0, 96.0, 64.0, 96.0, 128.0, 128.0, 57.0, 85.5, 114.0, 114.0, 50.0, 75.0, 100.0, 100.0, 50.0, 75.0, 100.0, 100.0] expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [ 128.0, 128.0, 64.0, 64.0, 128.0, 128.0, 64.0, 64.0, 64.0, 64.0, 128.0, 128.0, 64.0, 64.0, 128.0, 128.0, 50.0, 50.0, 100.0, 100.0, 50.0, 50.0, 100.0, 100.0] expected_data[image_ops.ResizeMethod.AREA] = [ 128.0, 128.0, 64.0, 64.0, 128.0, 128.0, 64.0, 64.0, 64.0, 64.0, 128.0, 128.0, 64.0, 64.0, 128.0, 128.0, 50.0, 50.0, 100.0, 100.0, 50.0, 50.0, 100.0, 100.0] for opt in [ image_ops.ResizeMethod.BILINEAR, image_ops.ResizeMethod.NEAREST_NEIGHBOR, image_ops.ResizeMethod.AREA]: with self.test_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, target_height, target_width, opt) resized = y.eval() expected = np.array(expected_data[opt]).reshape( [1, target_height, target_width, 1]) self.assertAllClose(resized, expected, atol=1e-05) def testResizeUpBicubic(self): img_shape = [1, 6, 6, 1] data = [128, 128, 64, 64, 128, 128, 64, 64, 64, 64, 128, 128, 64, 64, 128, 128, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 8 target_width = 8 expected_data = [128, 135, 96, 55, 64, 114, 134, 128, 78, 81, 68, 52, 57, 118, 144, 136, 55, 49, 79, 109, 103, 89, 83, 84, 74, 70, 95, 122, 115, 69, 49, 55, 100, 105, 75, 43, 50, 89, 105, 100, 57, 54, 74, 96, 91, 65, 55, 58, 70, 69, 75, 81, 80, 72, 69, 70, 105, 112, 75, 36, 45, 92, 111, 105] with self.test_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, target_height, target_width, image_ops.ResizeMethod.BICUBIC) resized = y.eval() expected = np.array(expected_data).reshape( [1, target_height, target_width, 1]) self.assertAllClose(resized, expected, atol=1) def testResizeDownArea(self): img_shape = [1, 6, 6, 1] data = [128, 64, 32, 16, 8, 4, 4, 8, 16, 32, 64, 128, 128, 64, 32, 16, 8, 4, 5, 10, 15, 20, 25, 30, 30, 25, 20, 15, 10, 5, 5, 10, 15, 20, 25, 30] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 4 target_width = 4 expected_data = [73, 33, 23, 39, 73, 33, 23, 39, 14, 16, 19, 21, 14, 16, 19, 21] with self.test_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, target_height, target_width, image_ops.ResizeMethod.AREA) expected = np.array(expected_data).reshape( [1, target_height, target_width, 1]) resized = y.eval() self.assertAllClose(resized, expected, atol=1) class ResizeImageWithCropOrPadTest(test_util.TensorFlowTestCase): def _ResizeImageWithCropOrPad(self, original, original_shape, expected, expected_shape): x_np = np.array(original, dtype=np.uint8).reshape(original_shape) y_np = np.array(expected).reshape(expected_shape) target_height = expected_shape[0] target_width = expected_shape[1] with self.test_session(): image = constant_op.constant(x_np, shape=original_shape) y = image_ops.resize_image_with_crop_or_pad(image, target_height, target_width) resized = y.eval() self.assertAllClose(resized, y_np, atol=1e-5) def testBasic(self): # Basic no-op. original = [1, 2, 3, 4, 5, 6, 7, 8] self._ResizeImageWithCropOrPad(original, [2, 4, 1], original, [2, 4, 1]) def testPad(self): # Pad even along col. original = [1, 2, 3, 4, 5, 6, 7, 8] expected = [0, 1, 2, 3, 4, 0, 0, 5, 6, 7, 8, 0] self._ResizeImageWithCropOrPad(original, [2, 4, 1], expected, [2, 6, 1]) # Pad odd along col. original = [1, 2, 3, 4, 5, 6, 7, 8] expected = [0, 1, 2, 3, 4, 0, 0, 0, 5, 6, 7, 8, 0, 0] self._ResizeImageWithCropOrPad(original, [2, 4, 1], expected, [2, 7, 1]) # Pad even along row. original = [1, 2, 3, 4, 5, 6, 7, 8] expected = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0] self._ResizeImageWithCropOrPad(original, [2, 4, 1], expected, [4, 4, 1]) # Pad odd along row. original = [1, 2, 3, 4, 5, 6, 7, 8] expected = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0] self._ResizeImageWithCropOrPad(original, [2, 4, 1], expected, [5, 4, 1]) def testCrop(self): # Crop even along col. original = [1, 2, 3, 4, 5, 6, 7, 8] expected = [2, 3, 6, 7] self._ResizeImageWithCropOrPad(original, [2, 4, 1], expected, [2, 2, 1]) # Crop odd along col. original = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] expected = [2, 3, 4, 8, 9, 10] self._ResizeImageWithCropOrPad(original, [2, 6, 1], expected, [2, 3, 1]) # Crop even along row. original = [1, 2, 3, 4, 5, 6, 7, 8] expected = [3, 4, 5, 6] self._ResizeImageWithCropOrPad(original, [4, 2, 1], expected, [2, 2, 1]) # Crop odd along row. original = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] expected = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] self._ResizeImageWithCropOrPad(original, [8, 2, 1], expected, [5, 2, 1]) def testCropAndPad(self): # Pad along row but crop along col. original = [1, 2, 3, 4, 5, 6, 7, 8] expected = [0, 0, 2, 3, 6, 7, 0, 0] self._ResizeImageWithCropOrPad(original, [2, 4, 1], expected, [4, 2, 1]) # Crop along row but pad along col. original = [1, 2, 3, 4, 5, 6, 7, 8] expected = [0, 3, 4, 0, 0, 5, 6, 0] self._ResizeImageWithCropOrPad(original, [4, 2, 1], expected, [2, 4, 1]) def _SimpleColorRamp(): """Build a simple color ramp RGB image.""" w, h = 256, 200 i = np.arange(h)[:, None] j = np.arange(w) image = np.empty((h, w, 3), dtype=np.uint8) image[:, :, 0] = i image[:, :, 1] = j image[:, :, 2] = (i + j) >> 1 return image class JpegTest(test_util.TensorFlowTestCase): # TODO(irving): Add self.assertAverageLess or similar to test_util def averageError(self, image0, image1): self.assertEqual(image0.shape, image1.shape) image0 = image0.astype(int) # Avoid overflow return np.abs(image0 - image1).sum() / np.prod(image0.shape) def testExisting(self): # Read a real jpeg and verify shape path = ('tensorflow/core/lib/jpeg/testdata/' 'jpeg_merge_test1.jpg') with self.test_session() as sess: jpeg0 = io_ops.read_file(path) image0 = image_ops.decode_jpeg(jpeg0) image1 = image_ops.decode_jpeg(image_ops.encode_jpeg(image0)) jpeg0, image0, image1 = sess.run([jpeg0, image0, image1]) self.assertEqual(len(jpeg0), 3771) self.assertEqual(image0.shape, (256, 128, 3)) self.assertLess(self.averageError(image0, image1), 0.8) def testSynthetic(self): with self.test_session() as sess: # Encode it, then decode it, then encode it image0 = constant_op.constant(_SimpleColorRamp()) jpeg0 = image_ops.encode_jpeg(image0) image1 = image_ops.decode_jpeg(jpeg0) image2 = image_ops.decode_jpeg(image_ops.encode_jpeg(image1)) jpeg0, image0, image1, image2 = sess.run([jpeg0, image0, image1, image2]) # The decoded-encoded image should be similar to the input self.assertLess(self.averageError(image0, image1), 0.6) # We should be very close to a fixpoint self.assertLess(self.averageError(image1, image2), 0.02) # Smooth ramps compress well (input size is 153600) self.assertGreaterEqual(len(jpeg0), 5000) self.assertLessEqual(len(jpeg0), 6000) def testShape(self): with self.test_session() as sess: jpeg = constant_op.constant('nonsense') for channels in 0, 1, 3: image = image_ops.decode_jpeg(jpeg, channels=channels) self.assertEqual(image.get_shape().as_list(), [None, None, channels or None]) class PngTest(test_util.TensorFlowTestCase): def testExisting(self): # Read some real PNGs, converting to different channel numbers prefix = 'tensorflow/core/lib/png/testdata/' inputs = (1, 'lena_gray.png'), (4, 'lena_rgba.png') for channels_in, filename in inputs: for channels in 0, 1, 3, 4: with self.test_session() as sess: png0 = io_ops.read_file(prefix + filename) image0 = image_ops.decode_png(png0, channels=channels) png0, image0 = sess.run([png0, image0]) self.assertEqual(image0.shape, (26, 51, channels or channels_in)) if channels == channels_in: image1 = image_ops.decode_png(image_ops.encode_png(image0)) self.assertAllEqual(image0, image1.eval()) def testSynthetic(self): with self.test_session() as sess: # Encode it, then decode it image0 = constant_op.constant(_SimpleColorRamp()) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0) png0, image0, image1 = sess.run([png0, image0, image1]) # PNG is lossless self.assertAllEqual(image0, image1) # Smooth ramps compress well, but not too well self.assertGreaterEqual(len(png0), 400) self.assertLessEqual(len(png0), 750) def testShape(self): with self.test_session() as sess: png = constant_op.constant('nonsense') for channels in 0, 1, 3: image = image_ops.decode_png(png, channels=channels) self.assertEqual(image.get_shape().as_list(), [None, None, channels or None]) class ConvertImageTest(test_util.TensorFlowTestCase): def _convert(self, original, original_dtype, output_dtype, expected): x_np = np.array(original, dtype=original_dtype.as_numpy_dtype()) y_np = np.array(expected, dtype=output_dtype.as_numpy_dtype()) with self.test_session(): image = constant_op.constant(x_np) y = image_ops.convert_image_dtype(image, output_dtype) self.assertTrue(y.dtype == output_dtype) self.assertAllClose(y.eval(), y_np, atol=1e-5) def testNoConvert(self): # Make sure converting to the same data type creates no ops with self.test_session(): image = constant_op.constant([1], dtype=dtypes.uint8) y = image_ops.convert_image_dtype(image, dtypes.uint8) self.assertEquals(image, y) def testConvertBetweenInteger(self): # Make sure converting to between integer types scales appropriately with self.test_session(): self._convert([0, 255], dtypes.uint8, dtypes.int16, [0, 255 * 128]) self._convert([0, 32767], dtypes.int16, dtypes.uint8, [0, 255]) def testConvertBetweenFloat(self): # Make sure converting to between float types does nothing interesting with self.test_session(): self._convert([-1.0, 0, 1.0, 200000], dtypes.float32, dtypes.float64, [-1.0, 0, 1.0, 200000]) self._convert([-1.0, 0, 1.0, 200000], dtypes.float64, dtypes.float32, [-1.0, 0, 1.0, 200000]) def testConvertBetweenIntegerAndFloat(self): # Make sure converting from and to a float type scales appropriately with self.test_session(): self._convert([0, 1, 255], dtypes.uint8, dtypes.float32, [0, 1.0 / 255.0, 1]) self._convert([0, 1.1 / 255.0, 1], dtypes.float32, dtypes.uint8, [0, 1, 255]) if __name__ == '__main__': googletest.main()
python
35,478
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%% FUNCTION %%%%%%%%%%%%%%%%%%% # # user = username SPENVIS external INPUT %%%% # password = password SPENVIS external INPUT %%%% # proj = project name SPENVIS external INPUT %%%% # lifetime = mission lifetime [number of years] external INPUT %%%% # day = day starting the mission external INPUT %%%% # month = month starting of the mission external INPUT %%%% # h = altitude circular orbit external INPUT %%%% # i = inclination circular orbit external INPUT %%%% # Al_eq = equivalent Al shielding external INPUT %%%% # n_devices = number of new devices external INPUT %%%% # data_devices = data of the the devices external INPUT %%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%% DESCRIPTION %%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # ATTENTION!! It's necessary to run SPENVIS with the same project name # inserted in SPENVIS by the user # # user = username SPENVIS external INPUT %%%%%%%%%%%%%%%%% # password = password SPENVIS external INPUT %%%%%%%%%%%%%%%%% # proj = project name SPENVIS external INPUT %%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%% orbit generator %%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT 1 %%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Planet --> Earth # Trajectory Generation --> use orbit generator # Number of mission segments: --> 1 # Mission End --> total mission duration ---> number of years --> # # lifetime = number of years external INPUT %%%%%%%%%%%%%%%%% # # Satellite orientation: --> one axis parallel to the velocity vector # Account for solar radiation pressure: --> no # Account for atmospheric drag: --> no # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT 2 %%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Segment title --> (no title) # Orbit type --> general # orbit start --> # # calendare date --> [dd/mm/yyyy]] external INPUT %%%%%%%%%%%%%%% # # Hour --> [00:00:00] # Representative --> trajectory duration --> 1 # Altitude specification --> altitude for a circular orbit # # Altitude [km] --> external INPUT %%%%%%%%%%%%%%% # Inclination [deg] --> external INPUT %%%%%%%%%%%%%%% # # R. asc. of asc. node [deg w.r.t. gamma50] --> 0 # Argument of perigee [deg] --> 0 # %Output resolution --> default # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% saving INPUT %%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%% Radiation Sources and effects %%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%% Radiation sources %%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%% Trapped Proton and Electron Fluxes %%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT %%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %standard models # Proton model --> AP-8 # Electron model --> AE-8 # Model version (proton) --> solar maximum # Threshold flux for exposure (proton) --> 1 # Model version (electron) --> solar maximum # do not include local time variation # Confidence level --> 50.000% # Threshold flux for exposure (electron) --> 1 # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%% Short-term solar particle fluxes (only for SEU) %%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT %%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Solar particle flux model --> CREME-96 # ion range --> H to Ni # worst day # Magnetic shielding --> default # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%% Long-term solar particle fluences %%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT %%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Solar particle model --> ESP-PSYCHIC (total fluence) # ion range --> H to Ni # Prediction period --> automatic # offset in solar cycle --> automatic # Confidence level [%] --> 95.0 # Magnetic shielding --> default # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%% Galactic cosmic ray fluxes %%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT %%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # ion range --> H to Ni # GCR model at 1 AU--> ISO 15390 # model -->ISO-15390 standard model # solar activity data --> mission epoch # Magnetic shielding --> default # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%% Long-term radiation doses %%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%% Ionizing dose for simple geometries %%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT %%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Shielding depths --> table of values # Al shielding --> external INPUT %%%%%%%%%%%%%%% # Dose model --> SHIELDOSE-2 # Shielding configuration --> centre of Al spheres # Target material --> Silicon # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%% Single Event Effects %%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%% Short-term SEU rates and LET spectra %%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT %%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Device number (max 15) ---> INPUT external %%%%%%%%%%% # Device material --> Si (CREME-86) # Device source --> user defined # Device Name ---> INPUT external %%%%%%%%%%% # Shape Sensitive volume ---> rectangular parallelepiped (3D) # Dimensions --> INPUT external %%%%%%%% # %%%%Models Weibull function and Bendel function (cross section methods) # Drirect ionization upset rates ---> INPUT external %%%%%%%%%%% # Algorithm --> constant LET (CREME) # %%%%%Models Weibull function and Bendel function # Proton induced upset rates --> INPUT external %%%%%%%%%%% # # % solar particles + trapped protons + GCR particles # mission segment averages # # Al Equivalent shielding --> INPUT external %%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%% Long-term SEU rates and LET spectra %%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%% internal INPUT %%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Device number (max 15) ---> INPUT external %%%%%%%%%%% # Device material --> Si (CREME-86) # Device source --> user defined # Device Name ---> INPUT external %%%%%%%%%%% # Shape Sensitive volume ---> rectangular parallelepiped (3D) # Dimensions --> INPUT external %%%%%%%% # %%%%Models Weibull function and Bendel function (cross section methods) # Drirect ionization upset rates ---> INPUT external %%%%%%%%%%% # Algorithm --> constant LET (CREME) # %%%%Models Weibull function and Bendel function # Proton induced upset rates --> INPUT external %%%%%%%%%%% # # solar particles + trapped protons + GCR particles # mission segment averages # Al Equivalent shielding --> INPUT external %%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% import requests def do_post(url, user, password, values): return requests.post(url, data=values, auth=(user, password)) def SPENVIS_interface_f(user, password, proj, lifetime, day, month, year, h, i, OMEGA, omega, theta): url = 'https://www.spenvis.oma.be/htbin/spenvis.exe/' + proj # personal username shall be selected by the user and inserted in ADV_USERinputCEDH.xml for radiation model values = { 'action': 'cleanup', 'SWITCH': '1', 'TODELETE': proj, '#cleanUp()#deleteFile(project.cgi)#ResetToPrevious(packages.html)': 'Execute'} # ('Delete previous results') do_post(url, user, password, values) # ('Orbit Generator...'); # ('Input #1'); values = { '_JS_SUBMIT': '#saveform(sapre_mis.html)#resetToPrevious(sapre_mis.html)', 'PLANET': '3', 'ORBGEN': '1', 'NTRAJ': '1', 'IMISD': '0', 'MISDUR': lifetime, 'JMISD':'0', 'KATT':'2', 'ISRP':'0', 'IDRAG':'0', '#deleteFile(orbitp.cgi)#saveForm(sapre_mis.html,orbitn)#saveForm(sapre_mis.html)#ResetToPrevious(sapre_orb.html,orbit1)': 'Next >>', 'PRODEF': proj, 'PROTIT': '', 'ORBITN': '0'} do_post(url, user, password, values) # ('General circular orbit') # ('Input #2...') values = { '_JS_SUBMIT': '#saveform(sapre_orb.html,orbit1)#resetToPrevious(sapre_orb.html,orbit1)', 'TITLE': '', 'TYPE': 'GEN', 'ISTART': '1', 'OEDAY': day, 'OEMON': month, 'OEYEAR': year, 'OEHRS': '0', 'OEMIN': '0', 'OESEC': '0', 'IDUR': '1', 'EPDUR': '1', 'IAE': '2', 'ALT': h, 'RINCL': i, 'IAN': '0', 'RAAN': OMEGA, 'ARGPER': omega, 'TRANO': theta, 'DT1': '60.0', 'DH2': '20000.0', 'DT2': '240.0', 'DH3': '80000.0', 'DT3': '3600.0', 'ORBITN': '1', '#saveForm(sapre_orb.html,orbit1)#deleteFile(orbitp.cgi)#saveForm(sapre_orb.html,orbitn)#ResetToPrevious(sapre_sum.html)': 'Next >>', 'STEP': '0.5'} do_post(url, user, password, values) # ('Saving inputs...') values = { '_JS_SUBMIT': '#saveform(sapre_sum.html)#resetToPrevious(sapre_sum.html)', 'ORBITN': '2', '#deleteFile(orbitn.cgi)#saveForm(sapre_sum.html,orbitp)#saveForm(sapre_sum.html)#namelist(mission[sapre_mis],sapre[orbit1])#runModel(sapre)#ResetToPrevious(sapre_out.html)': 'Run'} do_post(url, user, password, values) # ('Radiation sources') # ('Trapped Proton and Electron Fluxes...') values = { '_JS_SUBMIT': '#saveform(trep_par.html)#resetToPrevious(trep_par.html)', 'TRPMOD': '1', 'TREMOD': '1', 'MINDP': '1', 'FLUXTHP': '1.00', 'MINDE': '1', 'ILTV': '0', 'ISIG': '0', 'FLUXTHE': '1.00', '#saveForm(trep_par.html)#namelist(trep[trep_par.html])#deleteFile(ae9ap9_par.cgi)#runModel(trep)#ResetToPrevious(trep_out.html)': 'Run', 'NENERP': '30', 'PROEN(1)': '0.1', 'PROEN(2)': '0.15', 'PROEN(3)': '0.2', 'PROEN(4)': '0.3', 'PROEN(5)': '0.4', 'PROEN(6)': '0.5', 'PROEN(7)': '0.6', 'PROEN(8)': '0.7', 'PROEN(9)': '1.0', 'PROEN(10)': '1.5', 'PROEN(11)': '2.0', 'PROEN(12)': '3.0', 'PROEN(13)': '4.0', 'PROEN(14)': '5.0', 'PROEN(15)': '6.0', 'PROEN(16)': '7.0', 'PROEN(17)': '10.0', 'PROEN(18)': '15.0', 'PROEN(19)': '20.0', 'PROEN(20)': '30.0', 'PROEN(21)': '40.0', 'PROEN(22)': '50.0', 'PROEN(23)': '60.0', 'PROEN(24)': '70.0', 'PROEN(25)': '100.0', 'PROEN(26)': '150.0', 'PROEN(27)': '200.0', 'PROEN(28)': '300.0', 'PROEN(29)': '400.0', 'PROEN(30)': '500.0', 'NENERE': '30', 'ELEEN(1)': '0.04', 'ELEEN(2)': '0.1', 'ELEEN(3)': '0.2', 'ELEEN(4)': '0.3', 'ELEEN(5)': '0.4', 'ELEEN(6)': '0.5', 'ELEEN(7)': '0.6', 'ELEEN(8)': '0.7', 'ELEEN(9)': '0.8', 'ELEEN(10)': '1.0', 'ELEEN(11)': '1.25', 'ELEEN(12)': '1.5', 'ELEEN(13)': '1.75', 'ELEEN(14)': '2.0', 'ELEEN(15)': '2.25', 'ELEEN(16)': '2.5', 'ELEEN(17)': '2.75', 'ELEEN(18)': '3.0', 'ELEEN(19)': '3.25', 'ELEEN(20)': '3.5', 'ELEEN(21)': '3.75', 'ELEEN(22)': '4.0', 'ELEEN(23)': '4.25', 'ELEEN(24)': '4.5', 'ELEEN(25)': '4.75', 'ELEEN(26)': '5.0', 'ELEEN(27)': '5.5', 'ELEEN(28)': '6.0', 'ELEEN(29)': '6.5', 'ELEEN(30)': '7.0'} do_post(url, user, password, values) # ('Short-term solar particle fluxes...') values = { '_JS_SUBMIT': '#saveform(sepflare_par.html)#resetToPrevious(sepflare_par.html)', 'FLAREMOD': '1', 'ION1': '1', 'ION2': '92', 'CREME96': '2', '#saveForm(sepflare_par.html)#namelist(sepflare[sepflare_par+magshielding_par])#RunModel(sepflare)#ResetToPrevious(sepflare_out.html)': 'Run', 'NENERS': '75', 'ENERFL(1)': '0.10', 'ENERFL(2)': '0.11', 'ENERFL(3)': '0.12', 'ENERFL(4)': '0.14', 'ENERFL(5)': '0.16', 'ENERFL(6)': '0.18', 'ENERFL(7)': '0.20', 'ENERFL(8)': '0.22', 'ENERFL(9)': '0.25', 'ENERFL(10)': '0.28', 'ENERFL(11)': '0.32', 'ENERFL(12)': '0.35', 'ENERFL(13)': '0.40', 'ENERFL(14)': '0.45', 'ENERFL(15)': '0.5', 'ENERFL(16)': '0.55', 'ENERFL(17)': '0.63', 'ENERFL(18)': '0.71', 'ENERFL(19)': '0.80', 'ENERFL(20)': '0.90', 'ENERFL(21)': '1.0', 'ENERFL(22)': '1.1', 'ENERFL(23)': '1.2', 'ENERFL(24)': '1.4', 'ENERFL(25)': '1.6', 'ENERFL(26)': '1.8', 'ENERFL(27)': '2.0', 'ENERFL(28)': '2.2', 'ENERFL(29)': '2.5', 'ENERFL(30)': '2.8', 'ENERFL(31)': '3.2', 'ENERFL(32)': '3.5', 'ENERFL(33)': '4.0', 'ENERFL(34)': '4.5', 'ENERFL(35)': '5.0', 'ENERFL(36)': '5.5', 'ENERFL(37)': '6.3', 'ENERFL(38)': '7.1', 'ENERFL(39)': '8.0', 'ENERFL(40)': '9.0', 'ENERFL(41)': '10.0', 'ENERFL(42)': '11.0', 'ENERFL(43)': '12.0', 'ENERFL(44)': '14.0', 'ENERFL(45)': '16.0', 'ENERFL(46)': '18.0', 'ENERFL(47)': '20.0', 'ENERFL(48)': '22.0', 'ENERFL(49)': '25.0', 'ENERFL(50)': '28.0', 'ENERFL(51)': '32.0', 'ENERFL(52)': '35.0', 'ENERFL(53)': '40.0', 'ENERFL(54)': '45.0', 'ENERFL(55)': '50.0', 'ENERFL(56)': '55.0', 'ENERFL(57)': '63.0', 'ENERFL(58)': '71.0', 'ENERFL(59)': '80.0', 'ENERFL(60)': '90.0', 'ENERFL(61)': '100.0', 'ENERFL(62)': '110.0', 'ENERFL(63)': '120.0', 'ENERFL(64)': '140.0', 'ENERFL(65)': '160.0', 'ENERFL(66)': '180.0', 'ENERFL(67)': '200.0', 'ENERFL(68)': '220.0', 'ENERFL(69)': '250.0', 'ENERFL(70)': '280.0', 'ENERFL(71)': '320.0', 'ENERFL(72)': '350.0', 'ENERFL(73)': '400.0', 'ENERFL(74)': '450.0', 'ENERFL(75)': '500.0'} do_post(url, user, password, values) # ('Long-term solar particle fluences...'); values = { '_JS_SUBMIT': '#saveform(sepflare_par.html)#resetToPrevious(sepflare_par.html)', 'FLAMOD': '4', 'ION1': '1', 'ION2': '92', 'ITFLARE': '0', 'ISTART': '0', 'FLPROB': '95.0', '#saveForm(sep_par.html)#namelist(sep[sep_par+magshielding_par])#RunModel(sep)#ResetToPrevious(sep_out.html)': 'Run', 'NENERS': '75', 'ENERFL(1)': '0.10', 'ENERFL(2)': '0.11', 'ENERFL(3)': '0.12', 'ENERFL(4)': '0.14', 'ENERFL(5)': '0.16', 'ENERFL(6)': '0.18', 'ENERFL(7)': '0.20', 'ENERFL(8)': '0.22', 'ENERFL(9)': '0.25', 'ENERFL(10)': '0.28', 'ENERFL(11)': '0.32', 'ENERFL(12)': '0.35', 'ENERFL(13)': '0.40', 'ENERFL(14)': '0.45', 'ENERFL(15)': '0.5', 'ENERFL(16)': '0.55', 'ENERFL(17)': '0.63', 'ENERFL(18)': '0.71', 'ENERFL(19)': '0.80', 'ENERFL(20)': '0.90', 'ENERFL(21)': '1.0', 'ENERFL(22)': '1.1', 'ENERFL(23)': '1.2', 'ENERFL(24)': '1.4', 'ENERFL(25)': '1.6', 'ENERFL(26)': '1.8', 'ENERFL(27)': '2.0', 'ENERFL(28)': '2.2', 'ENERFL(29)': '2.5', 'ENERFL(30)': '2.8', 'ENERFL(31)': '3.2', 'ENERFL(32)': '3.5', 'ENERFL(33)': '4.0', 'ENERFL(34)': '4.5', 'ENERFL(35)': '5.0', 'ENERFL(36)': '5.5', 'ENERFL(37)': '6.3', 'ENERFL(38)': '7.1', 'ENERFL(39)': '8.0', 'ENERFL(40)': '9.0', 'ENERFL(41)': '10.0', 'ENERFL(42)': '11.0', 'ENERFL(43)': '12.0', 'ENERFL(44)': '14.0', 'ENERFL(45)': '16.0', 'ENERFL(46)': '18.0', 'ENERFL(47)': '20.0', 'ENERFL(48)': '22.0', 'ENERFL(49)': '25.0', 'ENERFL(50)': '28.0', 'ENERFL(51)': '32.0', 'ENERFL(52)': '35.0', 'ENERFL(53)': '40.0', 'ENERFL(54)': '45.0', 'ENERFL(55)': '50.0', 'ENERFL(56)': '55.0', 'ENERFL(57)': '63.0', 'ENERFL(58)': '71.0', 'ENERFL(59)': '80.0', 'ENERFL(60)': '90.0', 'ENERFL(61)': '100.0', 'ENERFL(62)': '110.0', 'ENERFL(63)': '120.0', 'ENERFL(64)': '140.0', 'ENERFL(65)': '160.0', 'ENERFL(66)': '180.0', 'ENERFL(67)': '200.0', 'ENERFL(68)': '220.0', 'ENERFL(69)': '250.0', 'ENERFL(70)': '280.0', 'ENERFL(71)': '320.0', 'ENERFL(72)': '350.0', 'ENERFL(73)': '400.0', 'ENERFL(74)': '450.0', 'ENERFL(75)': '500.0'} do_post(url, user, password, values) # ('Galactic Cosmic Ray fluxes...'); values = { '_JS_SUBMIT': '#saveform(gcr_par.html)#resetToPrevious(gcr_par.html)', 'IELM': '1', 'JELM': '92', 'GCRMOD': '3', 'MQ':'9677', '#saveForm(gcr_par.html)#namelist(gcr[gcr_par+magshielding_par])#RunModel(gcr)#ResetToPrevious(gcr_out.html)': 'Run'} do_post(url, user, password, values) # ('Ionizing dose for simple geometries...'); values = { '_JS_SUBMIT': '#saveform(dose_sd.html)#resetToPrevious(dose_sd.html)', 'JSHLD': '0', 'DOSMOD': '2', 'ISHLD': '3', 'IDET': '3', '#saveForm(dose_sd.html)#saveForm(dose_sd.html,sd2)#namelist(sd2[dose_sd.html])#RunModel(sd2)#ResetToPrevious(sd2_out.html)': 'Run', 'SSAT_DOSE': '0'} do_post(url, user, password, values) # OUTPUT # ('Save results from Ionizing dose for simple geometries...'); string = '?%23sendResult(spenvis_s2o.txt)' URL = url + string results = requests.get(URL, auth = (user, password)) file = open('resultsSPENVIS.txt','w') file.write(results.text) file.close()
python
21,033
from .GridConfiguration import GridConfiguration from data.scaling import ScalerType, StandardScaler, RangeScaler from collections import namedtuple grid_scaling = namedtuple("grid_scaling", ["grids", "scaler"]) __scaler_types__ = { ScalerType.STANDARD: StandardScaler, ScalerType.RANGE: RangeScaler } class GridConfigurator(object): def __init__(self): pass def build_grids(self, config): assert isinstance(config, dict) assert "input_lr" in config or "input_hr" in config assert "target" in config input_grids_lr = [] input_scalings_lr = [] if "input_lr" in config: grid_list = config["input_lr"] input_grids_lr, input_scalings_lr = self._read_grid_list(grid_list) input_grids_hr = [] input_scalings_hr = [] if "input_hr" in config: grid_list = config["input_hr"] input_grids_hr, input_scalings_hr = self._read_grid_list(grid_list) grid_list = config["target"] target_grids, target_scalings = self._read_grid_list(grid_list) return GridConfiguration( input_grids_lr, input_grids_hr, target_grids, input_scalings_lr, input_scalings_hr, target_scalings ) def _read_grid_list(self, grid_list): grid_names = [] scalings = [] if grid_list is None: return grid_names, scalings if not isinstance(grid_list, (list, tuple)): assert isinstance(grid_list, str) grid_list = [grid_list] for grid_config in grid_list: if isinstance(grid_config, str): current_grid_names = [grid_config] scaler = None elif isinstance(grid_config, list): if len(grid_config) == 0: continue current_grid_names = grid_config[0] if current_grid_names is None: continue if not isinstance(current_grid_names, list): assert isinstance(current_grid_names, str) current_grid_names = [current_grid_names] scaler = None if len(grid_config) > 1: scaler_config = grid_config[1] if scaler_config is not None: channels = len(current_grid_names) scaler = self._build_scaler(channels, grid_config[1]) if len(grid_config) > 2: raise Exception("[ERROR] Unknown configuration format.") else: raise Exception("[ERROR] Unknown configuration format.") grid_names += current_grid_names scalings.append(grid_scaling(current_grid_names, scaler)) return grid_names, scalings def _build_scaler(self, channels, scaler_config): if scaler_config is None: return None if isinstance(scaler_config, str): scaler_config = [scaler_config] if isinstance(scaler_config, (list, tuple)): if len(scaler_config) == 0: return None scaler_type = ScalerType(scaler_config[0].upper()) kwargs = {} if len(scaler_config) > 1: scaler_opts = scaler_config[1] if scaler_opts is None: scaler_opts = {} assert isinstance(scaler_opts, dict) kwargs.update(scaler_opts) if len(scaler_config) > 2: raise Exception("[ERROR] Unknown configuration format.") elif isinstance(scaler_config, dict): if len(scaler_config) == 0: return None assert "type" in scaler_config scaler_type = ScalerType(scaler_config["type"].upper()) kwargs = {} if "options" in scaler_config: scaler_opts = scaler_config["options"] assert isinstance(scaler_opts, dict) kwargs.update(scaler_opts) else: raise Exception("[ERROR] Unknown configuration format.") scaler_constructor = __scaler_types__[scaler_type] return scaler_constructor(channels=channels, **kwargs)
python
4,247
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render from .serializers import StandardSerializer, MarksheetSerializer from rest_framework import viewsets from models import Marksheet, Standard # Create your views here. def index(request): if not request.user.is_authenticated: return render(request, "result/index.html") else: return render(request, "accounts/profile.html") class MarksheetViewSet(viewsets.ModelViewSet): queryset = Marksheet.objects.all() serializer_class = MarksheetSerializer class StandardViewSet(viewsets.ModelViewSet): queryset = Standard.objects.all() serializer_class = StandardSerializer
python
709
from opentrons import protocol_api from opentrons.drivers.rpi_drivers import gpio import time import math # Metadata metadata = { 'protocolName': 'S3 Station C Version 1', 'author': 'Nick <[email protected]>, Sara <[email protected]>, Miguel <[email protected]>', 'source': 'Custom Protocol Request', 'apiLevel': '2.1' } # Parameters to adapt the protocol NUM_SAMPLES = 96 MM_LABWARE = 'opentrons aluminum block' MMTUBE_LABWARE = '2ml tubes' PCR_LABWARE = 'opentrons aluminum nest plate' ELUTION_LABWARE = 'opentrons aluminum nest plate' PREPARE_MASTERMIX = True MM_TYPE = 'MM1' TRANSFER_MASTERMIX = True TRANSFER_SAMPLES = True """ NUM_SAMPLES is the number of samples, must be an integer number MM_LABWARE must be one of the following: opentrons plastic block pentrons aluminum block covidwarriors aluminum block MMTUBE_LABWARE must be one of the following: 2ml tubes PCR_LABWARE must be one of the following: opentrons aluminum biorad plate opentrons aluminum nest plate opentrons aluminum strip short covidwarriors aluminum biorad plate covidwarriors aluminum biorad strip short ELUTION_LABWARE must be one of the following: opentrons plastic 2ml tubes opentrons plastic 1.5ml tubes opentrons aluminum 2ml tubes opentrons aluminum 1.5ml tubes covidwarriors aluminum 2ml tubes covidwarriors aluminum 1.5ml tubes opentrons aluminum biorad plate opentrons aluminum nest plate covidwarriors aluminum biorad plate opentrons aluminum strip alpha opentrons aluminum strip short covidwarriors aluminum biorad strip alpha covidwarriors aluminum biorad strip short PREPARE_MASTERMIX: True or False MM_TYPE must be one of the following: MM1 MM2 MM3 TRANSFER_MASTERMIX: True or False TRANSFER_SAMPLES: True or False """ # Calculated variables if MM_TYPE == 'MM3': VOLUME_MMIX = 15 else: VOLUME_MMIX = 20 # Constants MM_LW_DICT = { 'opentrons plastic block': 'opentrons_24_tuberack_generic_2ml_screwcap', 'opentrons aluminum block': 'opentrons_24_aluminumblock_generic_2ml_screwcap', 'covidwarriors aluminum block': 'covidwarriors_aluminumblock_24_screwcap_2000ul' } PCR_LW_DICT = { 'opentrons aluminum biorad plate': 'opentrons_96_aluminumblock_biorad_wellplate_200ul', 'opentrons aluminum nest plate': 'opentrons_96_aluminumblock_nest_wellplate_100ul', 'opentrons aluminum strip short': 'opentrons_aluminumblock_96_pcrstrips_100ul', 'covidwarriors aluminum biorad plate': 'covidwarriors_aluminumblock_96_bioradwellplate_200ul', 'covidwarriors aluminum biorad strip short': 'covidwarriors_aluminumblock_96_bioradwellplate_pcrstrips_100ul' } EL_LW_DICT = { # tubes 'opentrons plastic 2ml tubes': 'opentrons_24_tuberack_generic_2ml_screwcap', 'opentrons plastic 1.5ml tubes': 'opentrons_24_tuberack_nest_1.5ml_screwcap', 'opentrons aluminum 2ml tubes': 'opentrons_24_aluminumblock_generic_2ml_screwcap', 'opentrons aluminum 1.5ml tubes': 'opentrons_24_aluminumblock_nest_1.5ml_screwcap', 'covidwarriors aluminum 2ml tubes': 'covidwarriors_aluminumblock_24_screwcap_2000ul', 'covidwarriors aluminum 1.5ml tubes': 'covidwarriors_aluminumblock_24_screwcap_2000ul', # PCR plate 'opentrons aluminum biorad plate': 'opentrons_96_aluminumblock_biorad_wellplate_200ul', 'opentrons aluminum nest plate': 'opentrons_96_aluminumblock_nest_wellplate_100ul', 'covidwarriors aluminum biorad plate': 'covidwarriors_aluminumblock_96_bioradwellplate_200ul', # Strips #'large strips': 'opentrons_96_aluminumblock_generic_pcr_strip_200ul', #'short strips': 'opentrons_96_aluminumblock_generic_pcr_strip_200ul', 'opentrons aluminum strip alpha': 'opentrons_aluminumblock_96_pcrstripsalpha_200ul', 'opentrons aluminum strip short': 'opentrons_aluminumblock_96_pcrstrips_100ul', 'covidwarriors aluminum biorad strip alpha': 'covidwarriors_aluminumblock_96_bioradwellplate_pcrstripsalpha_200ul', 'covidwarriors aluminum biorad strip short': 'covidwarriors_aluminumblock_96_bioradwellplate_pcrstrips_100ul' } MMTUBE_LW_DICT = { # Radius of each possible tube '2ml tubes': 4 } # Function definitions def check_door(): return gpio.read_window_switches() def confirm_door_is_closed(ctx): #Check if door is opened if check_door() == False: #Set light color to red and pause gpio.set_button_light(1,0,0) ctx.pause(f"Please, close the door") time.sleep(3) confirm_door_is_closed(ctx) else: #Set light color to green gpio.set_button_light(0,1,0) def finish_run(): #Set light color to blue gpio.set_button_light(0,0,1) def get_source_dest_coordinates(ELUTION_LABWARE, source_racks, pcr_plate): if 'strip' in ELUTION_LABWARE: sources = [ tube for i, rack in enumerate(source_racks) for col in [ rack.columns()[c] if i < 2 else rack.columns()[c+1] for c in [0, 5, 10] ] for tube in col ][:NUM_SAMPLES] dests = pcr_plate.wells()[:NUM_SAMPLES] elif 'plate' in ELUTION_LABWARE: sources = source_racks.wells()[:NUM_SAMPLES] dests = pcr_plate.wells()[:NUM_SAMPLES] else: sources = [ tube for rack in source_racks for tube in rack.wells()][:NUM_SAMPLES] dests = [ well for v_block in range(2) for h_block in range(2) for col in pcr_plate.columns()[6*v_block:6*(v_block+1)] for well in col[4*h_block:4*(h_block+1)]][:NUM_SAMPLES] return sources, dests def get_mm_height(volume): # depending on the volume in tube, get mm fluid height height = volume // (3.14 * (MMTUBE_LW_DICT[MMTUBE_LABWARE] ** 2)) height -= 18 if height < 5: return 1 else: return height def homogenize_mm(mm_tube, p300, times=5): # homogenize mastermix tube a given number of times p300.pick_up_tip() volume = VOLUME_MMIX * NUM_SAMPLES volume_height = get_mm_height(volume) #p300.mix(5, 200, mm_tube.bottom(5)) for i in range(times): for j in range(5): # depending on the number of samples, start at a different height and move as it aspires if volume_height < 12: p300.aspirate(40, mm_tube.bottom(1)) else: aspirate_height = volume_height-(3*j) p300.aspirate(40, mm_tube.bottom(aspirate_height)) # empty pipete p300.dispense(200, mm_tube.bottom(volume_height)) # clow out before dropping tip p300.blow_out(mm_tube.top(-2)) p300.drop_tip() def prepare_mastermix(MM_TYPE, mm_rack, p300, p20): # setup mastermix coordinates """ mastermix component maps """ mm1 = { tube: vol for tube, vol in zip( [well for col in mm_rack.columns()[2:5] for well in col][:10], [2.85, 12.5, 0.4, 1, 1, 0.25, 0.25, 0.5, 0.25, 1] ) } mm2 = { tube: vol for tube, vol in zip( [mm_rack.wells_by_name()[well] for well in ['A3', 'C5', 'D5']], [10, 4, 1] ) } mm3 = { tube: vol for tube, vol in zip( [mm_rack.wells_by_name()[well] for well in ['A6', 'B6']], [13, 2] ) } mm_dict = {'MM1': mm1, 'MM2': mm2, 'MM3': mm3} # create mastermix mm_tube = mm_rack.wells()[0] for tube, vol in mm_dict[MM_TYPE].items(): mm_vol = vol*(NUM_SAMPLES+5) disp_loc = mm_tube.top(-10) pip = p300 if mm_vol > 20 else p20 pip.pick_up_tip() #pip.transfer(mm_vol, tube.bottom(0.5), disp_loc, air_gap=2, touch_tip=True, new_tip='never') air_gap_vol = 5 num_transfers = math.ceil(mm_vol/(200-air_gap_vol)) for i in range(num_transfers): if i == 0: transfer_vol = mm_vol % (200-air_gap_vol) else: transfer_vol = (200-air_gap_vol) pip.transfer(transfer_vol, tube.bottom(0.5), disp_loc, air_gap=air_gap_vol, new_tip='never') pip.blow_out(disp_loc) pip.aspirate(5, mm_tube.top(2)) pip.drop_tip() # homogenize mastermix homogenize_mm(mm_tube, p300) return mm_tube def transfer_mastermix(mm_tube, dests, VOLUME_MMIX, p300, p20): max_trans_per_asp = 8 #230//(VOLUME_MMIX+5) split_ind = [ind for ind in range(0, NUM_SAMPLES, max_trans_per_asp)] dest_sets = [dests[split_ind[i]:split_ind[i+1]] for i in range(len(split_ind)-1)] + [dests[split_ind[-1]:]] pip = p300 if VOLUME_MMIX >= 20 else p20 pip.pick_up_tip() # get initial fluid height to avoid overflowing mm when aspiring mm_volume = VOLUME_MMIX * NUM_SAMPLES volume_height = get_mm_height(mm_volume) for set in dest_sets: # check height and if it is low enought, aim for the bottom if volume_height < 5: disp_loc = mm_tube.bottom(1) else: # reclaculate volume height mm_volume -= VOLUME_MMIX * max_trans_per_asp volume_height = get_mm_height(mm_volume) disp_loc = mm_tube.bottom(volume_height) pip.aspirate(4, disp_loc) pip.distribute(VOLUME_MMIX, disp_loc, [d.bottom(2) for d in set], air_gap=1, disposal_volume=0, new_tip='never') pip.blow_out(disp_loc) pip.drop_tip() def transfer_samples(ELUTION_LABWARE, sources, dests, p20): # height for aspiration has to be different depending if you ar useing tubes or wells if 'strip' in ELUTION_LABWARE or 'plate' in ELUTION_LABWARE: height = 1.5 else: height = 1 # transfer for s, d in zip(sources, dests): p20.pick_up_tip() p20.transfer(7, s.bottom(height), d.bottom(2), air_gap=2, new_tip='never') #p20.mix(1, 10, d.bottom(2)) #p20.blow_out(d.top(-2)) p20.aspirate(1, d.top(-2)) p20.drop_tip() # RUN PROTOCOL def run(ctx: protocol_api.ProtocolContext): # confirm door is closed if not ctx.is_simulating(): confirm_door_is_closed(ctx) # define tips tips20 = [ ctx.load_labware('opentrons_96_filtertiprack_20ul', slot) for slot in ['6', '9', '8', '7'] ] tips300 = [ctx.load_labware('opentrons_96_filtertiprack_200ul', '3')] # define pipettes p20 = ctx.load_instrument('p20_single_gen2', 'right', tip_racks=tips20) p300 = ctx.load_instrument('p300_single_gen2', 'left', tip_racks=tips300) # tempdeck module tempdeck = ctx.load_module('tempdeck', '10') #tempdeck.set_temperature(4) # check mastermix labware type if MM_LABWARE not in MM_LW_DICT: raise Exception('Invalid MM_LABWARE. Must be one of the \ following:\nopentrons plastic block\nopentrons aluminum block\ncovidwarriors aluminum block') # load mastermix labware mm_rack = ctx.load_labware( MM_LW_DICT[MM_LABWARE], '11', MM_LABWARE) # check mastermix tube labware type if MMTUBE_LABWARE not in MMTUBE_LW_DICT: raise Exception('Invalid MMTUBE_LABWARE. Must be one of the \ following:\no2ml tubes') # This one is not loaded, it contains the raius of each tube to calculate volume height # check pcr plate if PCR_LABWARE not in PCR_LW_DICT: raise Exception('Invalid PCR_LABWARE. Must be one of the \ following:\nopentrons aluminum biorad plate\nopentrons aluminum nest plate\nopentrons aluminum strip short\ncovidwarriors aluminum biorad plate\ncovidwarriors aluminum biorad strip short') # load pcr plate pcr_plate = tempdeck.load_labware( PCR_LW_DICT[PCR_LABWARE], 'PCR plate') # check source (elution) labware type if ELUTION_LABWARE not in EL_LW_DICT: raise Exception('Invalid ELUTION_LABWARE. Must be one of the \ following:\nopentrons plastic 2ml tubes\nopentrons plastic 1.5ml tubes\nopentrons aluminum 2ml tubes\nopentrons aluminum 1.5ml tubes\ncovidwarriors aluminum 2ml tubes\ncovidwarriors aluminum 1.5ml tubes\nopentrons aluminum biorad plate\nopentrons aluminum nest plate\ncovidwarriors aluminum biorad plate\nopentrons aluminum strip alpha\nopentrons aluminum strip short\ncovidwarriors aluminum biorad strip alpha\ncovidwarriors aluminum biorad strip short') # load elution labware if 'plate' in ELUTION_LABWARE: source_racks = ctx.load_labware( EL_LW_DICT[ELUTION_LABWARE], '1', 'RNA elution labware') else: source_racks = [ ctx.load_labware(EL_LW_DICT[ELUTION_LABWARE], slot, 'RNA elution labware ' + str(i+1)) for i, slot in enumerate(['4', '1', '5', '2']) ] # setup sample sources and destinations sources, dests = get_source_dest_coordinates(ELUTION_LABWARE, source_racks, pcr_plate) # prepare mastermix if PREPARE_MASTERMIX: mm_tube = prepare_mastermix(MM_TYPE, mm_rack, p300, p20) else: mm_tube = mm_rack.wells()[0] if TRANSFER_MASTERMIX: homogenize_mm(mm_tube, p300) # transfer mastermix if TRANSFER_MASTERMIX: transfer_mastermix(mm_tube, dests, VOLUME_MMIX, p300, p20) # transfer samples to corresponding locations if TRANSFER_SAMPLES: transfer_samples(ELUTION_LABWARE, sources, dests, p20) finish_run()
python
13,450
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import argh import os import itertools import re import numpy as np from tqdm import tqdm def crawl(sgf_directory='sgf', print_summary=True): max_w_upset = {'value': 0} max_b_upset = {'value': 0} worst_qs = [] tot_files = 0 num_resign_disabled = 0 bad_resigns = 0 bad_resign_files = [] other_thresh = 0.9 def sgfs(root, fils): return [os.path.join(root, f) for f in fils if f.endswith('.sgf')] fs = [i for sublist in [sgfs(root, files) for root, _, files in os.walk( sgf_directory)] for i in sublist] for filename in tqdm(fs): data = open(filename).read() result = re.search("RE\[([BWbw])\+", data) if not result: print("No result string found in sgf: ", filename) continue else: result = result.group(1) threshold = re.search("Resign Threshold: -(\d.\d*)", data) if not threshold: print("No threshold found for ", filename) else: threshold = float(threshold.group(1)) if threshold == 1.0: num_resign_disabled += 1 tot_files += 1 q_values = list(map(float, re.findall("C\[(-?\d.\d*)", data))) if result == "B": look_for = min else: look_for = max #print("%s:%s+:%s" % (filename, result, min(q_values))) worst_qs.append(look_for(q_values)) if threshold == 1.0 and abs(look_for(q_values)) > other_thresh: bad_resigns += 1 bad_resign_files.append(filename) if look_for == min and min(q_values) < max_b_upset['value']: max_b_upset = {"filename": filename, "value": look_for(q_values)} elif look_for == max and max(q_values) > max_w_upset['value']: max_w_upset = {"filename": filename, "value": max(q_values)} if print_summary: b_upsets = np.array([q for q in worst_qs if q < 0]) w_upsets = np.array([q for q in worst_qs if q > 0]) both = np.array(list(map(abs, worst_qs))) print("Biggest w upset:", max_w_upset) print("Biggest b upset:", max_b_upset) print("99th percentiles (both/w/b)") print(np.percentile(both, 99)) print(np.percentile(b_upsets, 1)) print(np.percentile(w_upsets, 99)) print("Bad resigns: {} / {} ({:.2f}%) ".format(bad_resigns, num_resign_disabled, (bad_resigns / (num_resign_disabled+1)) * 100.0)) print("Total files:", tot_files) print(bad_resign_files) if __name__ == '__main__': argh.dispatch_command(crawl)
python
3,319
import os from datetime import datetime, timedelta from airflow import DAG from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator from airflow_utils import DATA_IMAGE, clone_repo_cmd, gitlab_defaults, slack_failed_task from kube_secrets import ( SNOWFLAKE_ACCOUNT, SNOWFLAKE_LOAD_DATABASE, SNOWFLAKE_LOAD_WAREHOUSE, SNOWFLAKE_PASSWORD, SNOWFLAKE_USER, ) # Load the env vars into a dict and set Secrets env = os.environ.copy() pod_env_vars = { "CI_PROJECT_DIR": "/analytics", "SNOWFLAKE_TRANSFORM_DATABASE": "ANALYTICS", } # Default arguments for the DAG default_args = { "catchup": False, "depends_on_past": False, "on_failure_callback": slack_failed_task, "owner": "airflow", "retries": 0, "retry_delay": timedelta(minutes=1), "start_date": datetime(2019, 1, 1), "dagrun_timeout": timedelta(hours=2), } # Create the DAG dag = DAG("snowflake_cleanup", default_args=default_args, schedule_interval="0 5 * * 0") # Task 1 drop_clones_cmd = f""" {clone_repo_cmd} && analytics/orchestration/drop_snowflake_objects.py drop_databases """ purge_clones = KubernetesPodOperator( **gitlab_defaults, image=DATA_IMAGE, task_id="purge-clones", name="purge-clones", secrets=[ SNOWFLAKE_USER, SNOWFLAKE_PASSWORD, SNOWFLAKE_ACCOUNT, SNOWFLAKE_LOAD_DATABASE, SNOWFLAKE_LOAD_WAREHOUSE, ], env_vars=pod_env_vars, arguments=[drop_clones_cmd], dag=dag, ) # Task 2 drop_dev_cmd = f""" {clone_repo_cmd} && analytics/orchestration/drop_snowflake_objects.py drop_dev_schemas """ purge_dev_schemas = KubernetesPodOperator( **gitlab_defaults, image=DATA_IMAGE, task_id="purge-dev-schemas", name="purge-dev-schemas", secrets=[ SNOWFLAKE_USER, SNOWFLAKE_PASSWORD, SNOWFLAKE_ACCOUNT, SNOWFLAKE_LOAD_DATABASE, SNOWFLAKE_LOAD_WAREHOUSE, ], env_vars=pod_env_vars, arguments=[drop_dev_cmd], dag=dag, )
python
2,030
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_get_by_pet_id_request( pet_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/extensibleenums/pet/{petId}') path_format_arguments = { "petId": _SERIALIZER.url("pet_id", pet_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_add_pet_request( **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/extensibleenums/pet/addPet') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) # fmt: on class PetOperations(object): """PetOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~extensibleenumsswagger.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def get_by_pet_id( self, pet_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.Pet" """get pet by id. :param pet_id: Pet id. :type pet_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Pet, or the result of cls(response) :rtype: ~extensibleenumsswagger.models.Pet :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType["_models.Pet"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) request = build_get_by_pet_id_request( pet_id=pet_id, template_url=self.get_by_pet_id.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) deserialized = self._deserialize("Pet", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_by_pet_id.metadata = {"url": "/extensibleenums/pet/{petId}"} # type: ignore @distributed_trace def add_pet( self, pet_param=None, # type: Optional["_models.Pet"] **kwargs # type: Any ): # type: (...) -> "_models.Pet" """add pet. :param pet_param: pet param. :type pet_param: ~extensibleenumsswagger.models.Pet :keyword callable cls: A custom type or function that will be passed the direct response :return: Pet, or the result of cls(response) :rtype: ~extensibleenumsswagger.models.Pet :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType["_models.Pet"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] if pet_param is not None: _json = self._serialize.body(pet_param, "Pet") else: _json = None request = build_add_pet_request( content_type=content_type, json=_json, template_url=self.add_pet.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) deserialized = self._deserialize("Pet", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized add_pet.metadata = {"url": "/extensibleenums/pet/addPet"} # type: ignore
python
7,086
""" Stability metric example """ import os.path as path import numpy as np import matplotlib.pyplot as plt from stability_evaluation import (RecordingBatchIterator, MeanWaveCalculator, RecordingAugmentation, SpikeSortingEvaluation) ROOT = path.join(path.expanduser('~'), 'data/yass') path_to_spike_train = path.join(ROOT, 'ej49_spikeTrain1_1.csv') path_to_data = path.join(ROOT, 'ej49_data1_set1.bin') path_to_geom = path.join(ROOT, 'ej49_geometry1.txt') path_to_augmented = path.join(ROOT, 'augmented.bin') spike_train = np.loadtxt(path_to_spike_train, dtype='int32', delimiter=',') spike_train br = RecordingBatchIterator(path_to_data, path_to_geom, sample_rate=30000, batch_time_samples=1000000, n_batches=5, n_chan=200, radius=100, whiten=False) mwc = MeanWaveCalculator(br, spike_train) # plot some of the recovered templates for i in range(2): plt.plot(mwc.templates[:, :, i]) plt.show() # here we indicate what is the length of the augmented data in terms of # batches (with respect to the batch iterator object.) stab = RecordingAugmentation(mwc, augment_rate=0.25, move_rate=0.2) # New ground truth spike train new_gt_spt, status = stab.save_augment_recording(path_to_augmented, 5) # Creating evaluation object for matching, TP, and FP spt_ = spike_train[spike_train[:, 0] < 1e6, :] tmp_ = mwc.templates[:, :, np.unique(spt_[:, 1])] # Let's create a fake new spike train with only 100 # first units of the ground truth as clusters spt_2 = spt_[spt_[:, 1] < 100, :] tmp_2 = tmp_[:, :, :100] # Here we just demonstrate with the sampe spike train # The second argument should be a different spike train ev = SpikeSortingEvaluation(spt_, spt_2, tmp_, tmp_2) print(ev.true_positive) print(ev.false_positive) print(ev.unit_cluster_map)
python
1,887
CABLETERMINATION = """ {% if value %} <a href="{{ value.parent.get_absolute_url }}">{{ value.parent }}</a> <i class="mdi mdi-chevron-right"></i> <a href="{{ value.get_absolute_url }}">{{ value }}</a> {% else %} &mdash; {% endif %} """ CABLE_LENGTH = """ {% if record.length %}{{ record.length }} {{ record.get_length_unit_display }}{% else %}&mdash;{% endif %} """ CABLE_TERMINATION_PARENT = """ {% if value.device %} <a href="{{ value.device.get_absolute_url }}">{{ value.device }}</a> {% elif value.circuit %} <a href="{{ value.circuit.get_absolute_url }}">{{ value.circuit }}</a> {% elif value.power_panel %} <a href="{{ value.power_panel.get_absolute_url }}">{{ value.power_panel }}</a> {% endif %} """ DEVICE_LINK = """ <a href="{% url 'dcim:device' pk=record.pk %}"> {{ record.name|default:'<span class="label label-info">Unnamed device</span>' }} </a> """ DEVICEBAY_STATUS = """ {% if record.installed_device_id %} <span class="label label-{{ record.installed_device.get_status_class }}"> {{ record.installed_device.get_status_display }} </span> {% else %} <span class="label label-default">Vacant</span> {% endif %} """ INTERFACE_IPADDRESSES = """ {% for ip in record.ip_addresses.all %} <a href="{{ ip.get_absolute_url }}">{{ ip }}</a><br /> {% endfor %} """ INTERFACE_TAGGED_VLANS = """ {% if record.mode == 'tagged' %} {% for vlan in record.tagged_vlans.all %} <a href="{{ vlan.get_absolute_url }}">{{ vlan }}</a><br /> {% endfor %} {% elif record.mode == 'tagged-all' %} All {% else %} &mdash; {% endif %} """ MPTT_LINK = """ {% if record.get_children %} <span style="padding-left: {{ record.get_ancestors|length }}0px "><i class="mdi mdi-chevron-right"></i> {% else %} <span style="padding-left: {{ record.get_ancestors|length }}9px"> {% endif %} <a href="{{ record.get_absolute_url }}">{{ record.name }}</a> </span> """ POWERFEED_CABLE = """ <a href="{{ value.get_absolute_url }}">{{ value }}</a> <a href="{% url 'dcim:powerfeed_trace' pk=record.pk %}" class="btn btn-primary btn-xs" title="Trace"> <i class="mdi mdi-transit-connection-variant" aria-hidden="true"></i> </a> """ POWERFEED_CABLETERMINATION = """ <a href="{{ value.parent.get_absolute_url }}">{{ value.parent }}</a> <i class="mdi mdi-chevron-right"></i> <a href="{{ value.get_absolute_url }}">{{ value }}</a> """ RACKGROUP_ELEVATIONS = """ <a href="{% url 'dcim:rack_elevation_list' %}?site={{ record.site.slug }}&group_id={{ record.pk }}" class="btn btn-xs btn-primary" title="View elevations"> <i class="mdi mdi-server"></i> </a> """ UTILIZATION_GRAPH = """ {% load helpers %} {% utilization_graph value %} """ # # Device component buttons # CONSOLEPORT_BUTTONS = """ {% if record.cable %} <a href="{% url 'dcim:consoleport_trace' pk=record.pk %}" class="btn btn-primary btn-xs" title="Trace"><i class="mdi mdi-transit-connection-variant"></i></a> {% include 'dcim/inc/cable_toggle_buttons.html' with cable=record.cable %} {% elif perms.dcim.add_cable %} <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-transit-connection-variant" aria-hidden="true"></i></a> <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-lan-connect" aria-hidden="true"></i></a> <span class="dropdown"> <button type="button" class="btn btn-success btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class="mdi mdi-ethernet-cable" aria-hidden="true"></span> </button> <ul class="dropdown-menu dropdown-menu-right"> <li><a href="{% url 'dcim:consoleport_connect' termination_a_id=record.pk termination_b_type='console-server-port' %}?return_url={% url 'dcim:device_consoleports' pk=object.pk %}">Console Server Port</a></li> <li><a href="{% url 'dcim:consoleport_connect' termination_a_id=record.pk termination_b_type='front-port' %}?return_url={% url 'dcim:device_consoleports' pk=object.pk %}">Front Port</a></li> <li><a href="{% url 'dcim:consoleport_connect' termination_a_id=record.pk termination_b_type='rear-port' %}?return_url={% url 'dcim:device_consoleports' pk=object.pk %}">Rear Port</a></li> </ul> </span> {% endif %} """ CONSOLESERVERPORT_BUTTONS = """ {% if record.cable %} <a href="{% url 'dcim:consoleserverport_trace' pk=record.pk %}" class="btn btn-primary btn-xs" title="Trace"><i class="mdi mdi-transit-connection-variant"></i></a> {% include 'dcim/inc/cable_toggle_buttons.html' with cable=record.cable %} {% elif perms.dcim.add_cable %} <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-transit-connection-variant" aria-hidden="true"></i></a> <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-lan-connect" aria-hidden="true"></i></a> <span class="dropdown"> <button type="button" class="btn btn-success btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class="mdi mdi-ethernet-cable" aria-hidden="true"></span> </button> <ul class="dropdown-menu dropdown-menu-right"> <li><a href="{% url 'dcim:consoleserverport_connect' termination_a_id=record.pk termination_b_type='console-port' %}?return_url={% url 'dcim:device_consoleserverports' pk=object.pk %}">Console Port</a></li> <li><a href="{% url 'dcim:consoleserverport_connect' termination_a_id=record.pk termination_b_type='front-port' %}?return_url={% url 'dcim:device_consoleserverports' pk=object.pk %}">Front Port</a></li> <li><a href="{% url 'dcim:consoleserverport_connect' termination_a_id=record.pk termination_b_type='rear-port' %}?return_url={% url 'dcim:device_consoleserverports' pk=object.pk %}">Rear Port</a></li> </ul> </span> {% endif %} """ POWERPORT_BUTTONS = """ {% if record.cable %} <a href="{% url 'dcim:powerport_trace' pk=record.pk %}" class="btn btn-primary btn-xs" title="Trace"><i class="mdi mdi-transit-connection-variant"></i></a> {% include 'dcim/inc/cable_toggle_buttons.html' with cable=record.cable %} {% elif perms.dcim.add_cable %} <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-transit-connection-variant" aria-hidden="true"></i></a> <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-lan-connect" aria-hidden="true"></i></a> <span class="dropdown"> <button type="button" class="btn btn-success btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class="mdi mdi-ethernet-cable" aria-hidden="true"></span> </button> <ul class="dropdown-menu dropdown-menu-right"> <li><a href="{% url 'dcim:powerport_connect' termination_a_id=record.pk termination_b_type='power-outlet' %}?return_url={% url 'dcim:device_powerports' pk=object.pk %}">Power Outlet</a></li> <li><a href="{% url 'dcim:powerport_connect' termination_a_id=record.pk termination_b_type='power-feed' %}?return_url={% url 'dcim:device_powerports' pk=object.pk %}">Power Feed</a></li> </ul> </span> {% endif %} """ POWEROUTLET_BUTTONS = """ {% if record.cable %} <a href="{% url 'dcim:poweroutlet_trace' pk=record.pk %}" class="btn btn-primary btn-xs" title="Trace"><i class="mdi mdi-transit-connection-variant"></i></a> {% include 'dcim/inc/cable_toggle_buttons.html' with cable=record.cable %} {% elif perms.dcim.add_cable %} <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-transit-connection-variant" aria-hidden="true"></i></a> <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-lan-connect" aria-hidden="true"></i></a> <a href="{% url 'dcim:poweroutlet_connect' termination_a_id=record.pk termination_b_type='power-port' %}?return_url={% url 'dcim:device_poweroutlets' pk=object.pk %}" title="Connect" class="btn btn-success btn-xs"> <i class="mdi mdi-ethernet-cable" aria-hidden="true"></i> </a> {% endif %} """ INTERFACE_BUTTONS = """ {% if perms.ipam.add_ipaddress %} <a href="{% url 'ipam:ipaddress_add' %}?interface={{ record.pk }}&return_url={% url 'dcim:device_interfaces' pk=object.pk %}" class="btn btn-xs btn-success" title="Add IP address"> <i class="mdi mdi-plus-thick" aria-hidden="true"></i> </a> {% endif %} {% if record.cable %} <a href="{% url 'dcim:interface_trace' pk=record.pk %}" class="btn btn-primary btn-xs" title="Trace"><i class="mdi mdi-transit-connection-variant"></i></a> {% include 'dcim/inc/cable_toggle_buttons.html' with cable=record.cable %} {% elif record.is_connectable and perms.dcim.add_cable %} <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-transit-connection-variant" aria-hidden="true"></i></a> <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-lan-connect" aria-hidden="true"></i></a> <span class="dropdown"> <button type="button" class="btn btn-success btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class="mdi mdi-ethernet-cable" aria-hidden="true"></span> </button> <ul class="dropdown-menu dropdown-menu-right"> <li><a href="{% url 'dcim:interface_connect' termination_a_id=record.pk termination_b_type='interface' %}?return_url={% url 'dcim:device_interfaces' pk=object.pk %}">Interface</a></li> <li><a href="{% url 'dcim:interface_connect' termination_a_id=record.pk termination_b_type='front-port' %}?return_url={% url 'dcim:device_interfaces' pk=object.pk %}">Front Port</a></li> <li><a href="{% url 'dcim:interface_connect' termination_a_id=record.pk termination_b_type='rear-port' %}?return_url={% url 'dcim:device_interfaces' pk=object.pk %}">Rear Port</a></li> <li><a href="{% url 'dcim:interface_connect' termination_a_id=record.pk termination_b_type='circuit-termination' %}?return_url={% url 'dcim:device_interfaces' pk=object.pk %}">Circuit Termination</a></li> </ul> </span> {% endif %} """ FRONTPORT_BUTTONS = """ {% if record.cable %} <a href="{% url 'dcim:frontport_trace' pk=record.pk %}" class="btn btn-primary btn-xs" title="Trace"><i class="mdi mdi-transit-connection-variant"></i></a> {% include 'dcim/inc/cable_toggle_buttons.html' with cable=record.cable %} {% elif perms.dcim.add_cable %} <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-transit-connection-variant" aria-hidden="true"></i></a> <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-lan-connect" aria-hidden="true"></i></a> <span class="dropdown"> <button type="button" class="btn btn-success btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class="mdi mdi-ethernet-cable" aria-hidden="true"></span> </button> <ul class="dropdown-menu dropdown-menu-right"> <li><a href="{% url 'dcim:frontport_connect' termination_a_id=record.pk termination_b_type='interface' %}?return_url={% url 'dcim:device_frontports' pk=object.pk %}">Interface</a></li> <li><a href="{% url 'dcim:frontport_connect' termination_a_id=record.pk termination_b_type='console-server-port' %}?return_url={% url 'dcim:device_frontports' pk=object.pk %}">Console Server Port</a></li> <li><a href="{% url 'dcim:frontport_connect' termination_a_id=record.pk termination_b_type='console-port' %}?return_url={% url 'dcim:device_frontports' pk=object.pk %}">Console Port</a></li> <li><a href="{% url 'dcim:frontport_connect' termination_a_id=record.pk termination_b_type='front-port' %}?return_url={% url 'dcim:device_frontports' pk=object.pk %}">Front Port</a></li> <li><a href="{% url 'dcim:frontport_connect' termination_a_id=record.pk termination_b_type='rear-port' %}?return_url={% url 'dcim:device_frontports' pk=object.pk %}">Rear Port</a></li> <li><a href="{% url 'dcim:frontport_connect' termination_a_id=record.pk termination_b_type='circuit-termination' %}?return_url={% url 'dcim:device_frontports' pk=object.pk %}">Circuit Termination</a></li> </ul> </span> {% endif %} """ REARPORT_BUTTONS = """ {% if record.cable %} <a href="{% url 'dcim:rearport_trace' pk=record.pk %}" class="btn btn-primary btn-xs" title="Trace"><i class="mdi mdi-transit-connection-variant"></i></a> {% include 'dcim/inc/cable_toggle_buttons.html' with cable=record.cable %} {% elif perms.dcim.add_cable %} <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-transit-connection-variant" aria-hidden="true"></i></a> <a href="#" class="btn btn-default btn-xs disabled"><i class="mdi mdi-lan-connect" aria-hidden="true"></i></a> <span class="dropdown"> <button type="button" class="btn btn-success btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class="mdi mdi-ethernet-cable" aria-hidden="true"></span> </button> <ul class="dropdown-menu dropdown-menu-right"> <li><a href="{% url 'dcim:rearport_connect' termination_a_id=record.pk termination_b_type='interface' %}?return_url={% url 'dcim:device_rearports' pk=object.pk %}">Interface</a></li> <li><a href="{% url 'dcim:rearport_connect' termination_a_id=record.pk termination_b_type='front-port' %}?return_url={% url 'dcim:device_rearports' pk=object.pk %}">Front Port</a></li> <li><a href="{% url 'dcim:rearport_connect' termination_a_id=record.pk termination_b_type='rear-port' %}?return_url={% url 'dcim:device_rearports' pk=object.pk %}">Rear Port</a></li> <li><a href="{% url 'dcim:rearport_connect' termination_a_id=record.pk termination_b_type='circuit-termination' %}?return_url={% url 'dcim:device_rearports' pk=object.pk %}">Circuit Termination</a></li> </ul> </span> {% endif %} """ DEVICEBAY_BUTTONS = """ {% if perms.dcim.change_devicebay %} {% if record.installed_device %} <a href="{% url 'dcim:devicebay_depopulate' pk=record.pk %}?return_url={% url 'dcim:device_devicebays' pk=object.pk %}" class="btn btn-danger btn-xs"> <i class="mdi mdi-minus-thick" aria-hidden="true" title="Remove device"></i> </a> {% else %} <a href="{% url 'dcim:devicebay_populate' pk=record.pk %}?return_url={% url 'dcim:device_devicebays' pk=object.pk %}" class="btn btn-success btn-xs"> <i class="mdi mdi-plus-thick" aria-hidden="true" title="Install device"></i> </a> {% endif %} {% endif %} """
python
14,692
import math from datetime import datetime import pandas as pd from settings import IVarType from util.langUtil import try_divide class ClassicSupportFinder: ARGS_DICT = { 'distinguishing_constant': { 'default': 10, 'range': [1, 30], 'step': 0.05, 'comment': 'Factor distinguishing between different bundles. The greater the number,' 'the more supports are bundled together. Adjacent distance for bundling ' 'is directly equal to d_c * stddev (variability) e.g. stddev(200) (+ flat base of 1 pip)' 'Acts as a multiplier to stddev. If stddev type is flat, distinguishing amount is' 'd_c * 100 pips' 'UPDATE: d_c * pips only.', 'type': IVarType.CONTINUOUS, }, 'decay_constant': { 'default': 0.95, 'range': [0.1, 1], 'step': 0.01, 'type': IVarType.CONTINUOUS, }, 'width_coefficient': { 'default': 1, # a.k.a width decay 'range': [0, 2], 'step': 0.01, 'comment': 'Strength = width_coefficient * base + 1. At 0, Strength = 1 at all times. At greater numbers,' 'base width greatly increases strength.', 'type': IVarType.CONTINUOUS, }, 'clumping_coefficient': { # Done 'default': 1, 'range': [0.2, 2], 'step': 0.01, 'comment': 'Affects strength addition: (X+Y)/c. c=1 is default addition. The greater' 'the number, the less strength emphasis is on having multiple supports.' 'Smaller numbers (<1) enhance the importance of having multiple supports.' 'Sum(X_n)=(X_1+...X_N)/c^(N-1). Sum(X)=X/c^0=X, as expected.', 'type': IVarType.CONTINUOUS, }, 'variability_period': { 'default': 500, 'range': [200, 700], 'step': 50, 'comment': 'Used in determining bundling with distinguishing_constant. +-Stddev lines formed' 'from stddev(variability_period) calculation.', 'type': IVarType.CONTINUOUS, }, 'symmetry_coefficient': { 'default': 0, 'range': [0, 1], 'step': 0.1, 'type': IVarType.CONTINUOUS, 'comment': 'This greater this coefficient, the more it demands the left and right bases' 'of a support to be symmetrical. At 1, both sides can only be as wide' 'as their shortest side. At 0, both sides are as wide as their longest' 'side. Formula: min(min(l, r) * 1/c, max(l, r)) + max(l, r). Where the left' 'term represents the shorter side, compensated, and the right side is the' 'longer side. If c = 0, min(min, max) will be assumed to be max(l, r).', }, 'max_base': { 'default': 12, 'range': [5, 50], 'step': 1, 'type': IVarType.DISCRETE, }, 'min_base': { 'default': 2, 'range': [1, 5], 'step': 1, 'type': IVarType.DISCRETE, }, 'delta_constant': { 'default': 3, 'range': [1, 10], 'step': 1, 'type': IVarType.CONTINUOUS, 'comment': 'This is the main part of the algorithm that sets it apart from' 'the strictly inc. dec. peak algorithm. It allows for a \'give\' of ' 'delta before considering it an increase or decrease. Peaks are defined not by' 'strictly decreasing numbers on both sides but instead, a looser requirement of' 'delta-decreasing numbers on both sides. If the values on the side increase but' 'within delta, it does not count as breaking the peak.' 'delta_constant is in units of pips.' }, 'smoothing_period': { 'default': 6, 'range': [3, 20], 'step': 1, 'type': IVarType.DISCRETE, 'comment': 'Conducting the same algorithm on a smoothed surface may generate supports missed' 'when operating on the candlestick data. These supports, from here on forwards called' 'smooth supports will corroborate the supports. Only when these supports cannot be' 'bundled with any existing bundles will they form their own bundle. Note. Peaks and troughs' 'are detected with delta=0, strict peaks/troughs. min_base will be of the same size as' 'the normal min_base.' }, # Unused # 'value_type': { # Not used at the moment # 'default': 'close', # index 0 # 'idx ': 0, # 'range': ['close', 'open', 'high_low', 'average'], # 'type': IVarType.ENUM # }, # 'variability_type': { # 'default': 'flat', # 'idx': 1, # 'range': ['stddev', 'flat'], # 'type': IVarType.ENUM # } } OTHER_ARGS_DICT = { 'lookback_period': { 'default': 20, }, 'strength_cutoff': { 'default': 0.01, # strength = log(base) 'range': [0.001, 0.1], 'step': 0.001, 'type': IVarType.CONTINUOUS, }, 'date_cutoff': { 'default': 25, # strength = log(base) 'range': [], 'step': 0, 'type': IVarType.CONTINUOUS, }, } # Constants PEAK, TROUGH = 1, -1 # Other args PREPARE_PERIOD = 0 def __init__(self, ivar=None): # == Main Args == if ivar is None: ivar = self.ARGS_DICT self.time = None self.started = None self.df = None if ivar: self.ivar = ivar else: self.ivar = self.ARGS_DICT # ARGS_DICT self.distinguishing_constant = ivar['distinguishing_constant']['default'] self.decay_constant = ivar['decay_constant']['default'] self.variability_period = ivar['variability_period']['default'] self.symmetry_coefficient = ivar['symmetry_coefficient']['default'] self.max_base = ivar['max_base']['default'] self.min_base = ivar['min_base']['default'] self.delta_constant = ivar['delta_constant']['default'] self.delta_value = self.delta_constant * 0.0001 self.width_coefficient = ivar['width_coefficient']['default'] self.clumping_strength = ivar['clumping_coefficient']['default'] # self.value_type = ivar['value_type']['default'] # self.variability_type = ivar['variability_type']['default'] self.ivar_check() # OTHER ARGS self.lookback_period = self.OTHER_ARGS_DICT['lookback_period']['default'] self.strength_cutoff = self.OTHER_ARGS_DICT['strength_cutoff']['default'] self.date_cutoff = self.OTHER_ARGS_DICT['date_cutoff']['default'] # Constants self.pip = 0.0001 self.min_left = self.min_base // 2 # == Variables == # Variable arrays self.decay = math.pow(math.e, - self.decay_constant) self.bundles = [] # supports build up into bundles self.supports = [] # handles to the supports themselves self.delta_data = [] # -1: delta-descending, 0: within delta, 1: delta-ascending self.accum_df = pd.DataFrame() self.delta_df = pd.DataFrame() # Tracking variables self.last_peak, self.last_trough, self.new_peak, self.new_trough = 0, 0, 0, 0 self.peak, self.trough, self.has_new = 0, 0, False self.last_lookback, self.last_support, self.last_delta, self.delta_flipped = 0, None, 0, False self.idx = 0 # Collecting data across time self.avg_strength = [] self.n_supports = [] self.avg_strength = [] # Indicators self.stdev = [] # == Testing == self.test_mode = None def ivar_check(self): """Ensures the IVar variables are 1) within range and 2) in the correct format.""" for key in self.ivar.keys(): arg = self.ivar[key] def reset(self, ivar): self.__init__(ivar) def start(self, meta_or_param, pre_data: pd.DataFrame, test_mode=False): """?Start""" self.reset(self.ivar) # External codes should reset it instead. self.test_mode = test_mode # == Data Meta == pass # == Preparation == self.df = pd.DataFrame() self.idx += len(pre_data) - 1 # == Statistical Data == self.n_supports = [] self.avg_strength = [] # == Status == self.started = True self.time = datetime.now() # Setup consequences of pre_data for i in range(max(0, len(pre_data) - self.lookback_period), len(pre_data)): self.pre_next(pre_data[i:i + 1]) # df.Close, Open, High, Low self.n_supports.append(0) self.avg_strength.append(0) self.delta_df.index_name = 'date' def support_find(self, data): """Find supports in data w.r.t current (latest) index""" for i in range(len(data) - self.date_cutoff, len(data)): pass def set_pip_value(self, pip): self.pip = pip # ==== Algo ==== def next(self, candlestick): # Next # self.df = self.df.append(candlestick) self.df = pd.concat([self.df, candlestick]) self.idx += 1 # Note: This algorithm is index agnostic # self.supports = [] # temporary _max, _min = 0, math.inf if len(self.df) < 2: return self.build_indicators() # ===== Algorithm ====== # (1) Compare old[-1] and new candle diff = self.df.Close[-2] - self.df.Close[-1] self.delta_flipped = False if abs(diff) < self.delta_value: self.delta_data.append(0) else: if diff > 0: # Past candle is higher than latest candle delta_val = -1 else: delta_val = 1 self.delta_data.append(delta_val) # 1 to -1 or -1 to 1. 0s break the chain if self.last_delta != 0: self.delta_flipped = (self.last_delta != delta_val) self.last_delta = delta_val # Update delta df self.delta_df = pd.concat([self.delta_df, pd.DataFrame({ 'delta': self.delta_data[-1] }, index=[self.df.index[-1]])]) if len(self.accum_df > 0): self.accum_df = pd.concat([self.accum_df, pd.DataFrame({ 'delta': self.delta_data[-1] + self.accum_df.delta[-1] }, index=[self.df.index[-1]])]) else: self.accum_df = self.accum_df.append(pd.DataFrame({ 'delta': self.delta_data[-1] }, index=[self.df.index[-1]])) # (2) Get next peak/trough: if self.trough == self.peak: # Find any peak/trough if self.last_delta == 0: pass # ignore and continue # Do not create support, but create left base first elif self.last_delta == 1: self.trough = self.idx - 1 elif self.last_delta == -1: self.peak = self.idx - 1 elif self.trough > self.peak: # Find new peak if self.delta_flipped: # Found! # 'default' peak properties self.peak = self.idx - 1 left_base = self.peak - self.trough start = self.trough end = self.idx height = self.df.Close[self.peak] # Check if supports (previous and current) have min_base if left_base < self.min_base // 2: # new left base = old right base # Destroy left support if self.has_new: self.delete_support(self.supports[-1]) # Do not create new support, past support cannot be extended also self.has_new = False else: # left base > min_base // 2, OK # Try to find true peak (a.k.a delta=0 peak) # todo: 1) check if sorting works 2) check if df.index.get_loc works peaks = self.df[self.trough:self.peak + 1][self.df.Close >= height].sort_values(by=['Close'], ascending=False) # If no alt. peaks, loop will terminate at df.Close == height for i, peak in peaks.iterrows(): # Check if alt. left_base is of minimum length, _peak = self.df.index.get_loc(i) _left_base = _peak - self.trough if _left_base >= self.min_base // 2: # Add as new peak # Adjust previous support's base # self.update_support(self.supports[-1], 'end', _peak) # no need to. auto extended! # Register peak height = peak['Close'] self.peak = _peak self.create_support(self.peak, start, end, height, self.PEAK) self.has_new = True break else: # otherwise continue continue else: if self.has_new: if self.try_extend(self.supports[-1]): pass # if extension (to the right) successful, do nothing else: # Reset status to 'neutral' self.has_new = False # self.trough = self.peak = self.idx # no need to reset completely else: # No older support to extend. Old trough and peak cannot be further than min_base/2 away # Last support was trough. Only reset trough. self.trough = max(self.trough, self.idx - self.min_left) # reset elif self.peak > self.trough: # Find new trough if self.delta_flipped: self.trough = self.idx - 1 left_base = self.trough - self.peak start = self.peak end = self.idx depth = self.df.Close[self.trough] # Check if supports have min_base if left_base < self.min_base // 2: # Destroy left support if self.has_new: self.delete_support(self.supports[-1]) # Past support cannot be extended self.has_new = False else: # Try to find true trough troughs = self.df[self.peak:self.trough + 1][self.df.Close <= depth].sort_values(by=['Close'], ascending=True) for i, trough in troughs.iterrows(): # Check if alt. trough has min_base _trough = self.df.index.get_loc(i) _left_base = _trough - self.peak if _left_base >= self.min_base // 2: # Adjust previous support's base # self.update_support(self.supports[-1], 'end', _trough) # Register trough depth = trough['Close'] self.trough = _trough self.create_support(self.trough, start, end, depth, self.TROUGH) self.has_new = True break else: continue else: if self.has_new: if self.try_extend(self.supports[-1]): pass else: self.has_new = False else: # Reset peak only (Searching for trough) self.peak = max(self.peak, self.idx - self.min_left) # ===== Bundling ===== # Bundling is automatic when creating supports # Decay bundles self.decay_all() # ===== Stats ===== self.n_supports.append(len(self.bundles)) # self.avg_strength.append(try_mean([bundle['strength'] for bundle in self.bundles])) # ===== Return function ===== # None in this case # print(self.bundles) def pre_next(self, candlestick): self.df = self.df.append(candlestick) # Pre_data supports will be ignored! If that is not desired, do not include pre_data self.delta_data.append(0) self.delta_df = self.delta_df.append(pd.DataFrame({ 'delta': 0 }, index=[self.df.index[-1]])) self.accum_df = self.accum_df.append(pd.DataFrame({ 'delta': 0 }, index=[self.df.index[-1]])) # ============== def get_supports(self): return self.bundles def get_value(self, idx, peak_type=TROUGH): if self.value_type == 'close': return self.df.Close[idx] if self.value_type == 'high_low': if peak_type == self.TROUGH: return self.df.Low[idx] elif peak_type == self.PEAK: return self.df.High[idx] if self.value_type == 'open': return self.df.Open[idx] if self.value_type == 'average': return self.df.Close[idx] # ? return None def get_sort_height(self, idx, peak_type=TROUGH): """Sorts based on value type""" if self.value_type == 'close': return self.df.Close[idx] if self.value_type == 'high_low': if peak_type == self.TROUGH: return self.df.Low[idx] elif peak_type == self.PEAK: return self.df.High[idx] if self.value_type == 'open': return self.df.Open[idx] if self.value_type == 'average': return self.df.Close[idx] # ? pass def get_resistances(self): """Only get support ceilings""" last = self.df.Close[-1] _bundles = [] for bundle in self.bundles: if bundle['height'] > last: _bundles.append(bundle) return _bundles def get_resistance_supports(self): """Only get support floors""" last = self.df.Close[-1] _bundles = [] for bundle in self.bundles: if bundle['height'] < last: _bundles.append(bundle) return _bundles def get_instructions(self): # Lines should get lighter the weaker they are # Data should be pd.DataFrame format with index and 'height'/value data = pd.DataFrame(index=[self.get_idx_date(bundle['peak']) for bundle in self.bundles], data={ 'strength': [bundle['strength'] for bundle in self.bundles], 'height': [bundle['height'] for bundle in self.bundles], 'peak': [bundle['peak'] for bundle in self.bundles], }) # data = pd.DataFrame(index=[[self.df.index.get_loc(bundle['peak']) for bundle in self.bundles]], data={ # 'strength': [[bundle['strength'] for bundle in self.bundles]], # 'height': [[bundle['height'] for bundle in self.bundles]], # }) return [{ 'index': 0, 'data': data, 'type': 'support', 'colour': 'black', }, # { # 'index': 0, # 'data': smooth_data, # 'type': 'support', # 'colour': 'red', # }, { 'index': 1, 'data': self.delta_df.copy(), 'type': 'line', 'colour': 'black', }, { 'index': 2, 'data': self.accum_df.copy(), 'type': 'line', 'colour': 'black', }] def build_indicators(self): # self.stdev = talib.STDDEV(self.df, self.variability_period) pass # Util functions def bundle_add(self, _bundle, support): for bundle in self.bundles: if bundle == _bundle: bundle['supports'].append(support) self.calculate_bundle(bundle) def calc_strength(self, support): """Takes width and time decay into account. Recalculates the current strength value of a support.""" strength = self.calc_raw_strength(support) dist = self.idx - support['peak'] support['strength'] = math.pow(self.decay_constant, dist) * strength return support['strength'] def calc_raw_strength(self, support): left = support['end'] - support['peak'] right = support['peak'] - support['start'] # Symmetry considerations base = min(min(left, right) * try_divide(1, self.symmetry_coefficient), max(left, right)) \ + max(left, right) if math.isnan(base): # Occurs only on 0 * inf base = min(left, right) # Max base consideration base = min(base, self.max_base) # Width contribution consideration return base * self.width_coefficient + 1 def calculate_bundle(self, bundle): strength = 0 peak = 0 # (position) height = 0 for support in bundle['supports']: # strength += self.calc_strength(support, idx) strength += support['strength'] # peak += support['strength'] * support['peak'] height += support['strength'] * support['height'] peak = support['peak'] bundle['strength'] = try_divide(strength, math.pow(self.clumping_strength, len(bundle['supports']) - 1)) # bundle['peak'] = try_divide(bundle['peak'], len(bundle['supports']) * strength) bundle['peak'] = peak # Last added peak bundle['height'] = try_divide(height, len(bundle['supports']) * strength) return strength def combine_bundles(self): """Use closeness/2 metric. Combine from top to bottom.""" pass def create_bundle(self, support): """Create new bundle around support.""" bundle = { 'strength': 0, 'peak': 0, 'height': 0, 'supports': [support] } self.bundles.append(bundle) # print(F'Creating {bundle}') return bundle def create_support(self, peak, start, end, height, type): """Create support within bounds end and start, at peak, with value of height. Types are TROUGH or PEAK. 'open' is whether the support is available for base extension (to increase its strength). Then, add it into closest bundle if possible. Otherwise, it becomes a bundle of its own.""" support = { 'peak': peak, 'start': start, 'end': end, 'height': height, 'type': type, 'open': True, } support.update({ 'strength': self.calc_raw_strength(support) }) # Add into some bundle added = False for bundle in self.bundles: if self.within_bundle(bundle, support): self.bundle_add(bundle, support) # print(F'Creating {support} in {bundle}') added = True break # Make new bundle if not added: bundle = self.create_bundle(support) # print(F'Creating {support} in new {bundle}') self.calculate_bundle(bundle) self.supports.append(support) return support def decay_all(self): for bundle in self.bundles: self.decay_bundle(bundle) self.delete_decayed() def decay_bundle(self, bundle): for support in bundle['supports']: self.decay_support(support) self.calculate_bundle(bundle) def decay_by(self, strength, length): return strength * math.pow(self.ARGS_DICT['decay'], length) def decay_support(self, support): support['strength'] = support['strength'] * self.decay_constant def delete_support(self, _support): for bundle in self.bundles: for support in bundle['supports']: if support == _support: # print(F'Deleting {_support} from {bundle}') bundle['supports'].remove(support) # If bundle has no supports, remove it if len(bundle['supports']) == 0: self.bundles.remove(bundle) self.supports.remove(support) def delete_decayed(self): for bundle in self.bundles: if bundle['strength'] < self.strength_cutoff: self.bundles.remove(bundle) def get_bundle(self, support): for bundle in self.bundles: if support in bundle['supports']: return bundle return None def get_idx_date(self, idx): if idx < 0 or idx > self.idx: idx = 0 return self.df.index[idx] def try_extend(self, support): """Extend length of peak. This affects its strength. Upon extension, recalculate decay effects.""" if support['end'] - support['start'] > self.max_base: # base too long, reset return False elif support['type'] == self.PEAK and support['height'] < self.df.High[self.idx]: # new base too high return False elif support['type'] == self.TROUGH and support['height'] > self.df.Low[self.idx]: # new base too low return False # Calculate new strength support['end'] += 1 # support['strength'] += 1 * math.pow(self.decay, self.idx - support['peak']) * self.width_coefficient support['strength'] = self.calc_strength(support) # Recalculate bundle strength self.calculate_bundle(self.get_bundle(support)) return True def update_support(self, support, arg, val): support[arg] = val self.calculate_bundle(self.get_bundle(support)) def within_bundle(self, bundle, support): if abs(bundle['height'] - support['height']) < self.distinguishing_constant * self.pip: return True return False
python
26,961
# # Autogenerated by Thrift Compiler (0.10.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TFrozenDict, TException, TApplicationException from thrift.protocol.TProtocol import TProtocolException import sys import logging from .ttypes import * from thrift.Thrift import TProcessor from thrift.transport import TTransport class Iface(object): def getAPIVersion(self): pass def createGroup(self, authzToken, groupModel): """ Parameters: - authzToken - groupModel """ pass def updateGroup(self, authzToken, groupModel): """ Parameters: - authzToken - groupModel """ pass def deleteGroup(self, authzToken, groupId, ownerId): """ Parameters: - authzToken - groupId - ownerId """ pass def getGroup(self, authzToken, groupId): """ Parameters: - authzToken - groupId """ pass def getGroups(self, authzToken): """ Parameters: - authzToken """ pass def getAllGroupsUserBelongs(self, authzToken, userName): """ Parameters: - authzToken - userName """ pass def addUsersToGroup(self, authzToken, userIds, groupId): """ Parameters: - authzToken - userIds - groupId """ pass def removeUsersFromGroup(self, authzToken, userIds, groupId): """ Parameters: - authzToken - userIds - groupId """ pass def transferGroupOwnership(self, authzToken, groupId, newOwnerId): """ Parameters: - authzToken - groupId - newOwnerId """ pass def addGroupAdmins(self, authzToken, groupId, adminIds): """ Parameters: - authzToken - groupId - adminIds """ pass def removeGroupAdmins(self, authzToken, groupId, adminIds): """ Parameters: - authzToken - groupId - adminIds """ pass def hasAdminAccess(self, authzToken, groupId, adminId): """ Parameters: - authzToken - groupId - adminId """ pass def hasOwnerAccess(self, authzToken, groupId, ownerId): """ Parameters: - authzToken - groupId - ownerId """ pass class Client(Iface): def __init__(self, iprot, oprot=None): self._iprot = self._oprot = iprot if oprot is not None: self._oprot = oprot self._seqid = 0 def getAPIVersion(self): self.send_getAPIVersion() return self.recv_getAPIVersion() def send_getAPIVersion(self): self._oprot.writeMessageBegin('getAPIVersion', TMessageType.CALL, self._seqid) args = getAPIVersion_args() args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getAPIVersion(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = getAPIVersion_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse raise TApplicationException(TApplicationException.MISSING_RESULT, "getAPIVersion failed: unknown result") def createGroup(self, authzToken, groupModel): """ Parameters: - authzToken - groupModel """ self.send_createGroup(authzToken, groupModel) return self.recv_createGroup() def send_createGroup(self, authzToken, groupModel): self._oprot.writeMessageBegin('createGroup', TMessageType.CALL, self._seqid) args = createGroup_args() args.authzToken = authzToken args.groupModel = groupModel args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_createGroup(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = createGroup_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "createGroup failed: unknown result") def updateGroup(self, authzToken, groupModel): """ Parameters: - authzToken - groupModel """ self.send_updateGroup(authzToken, groupModel) return self.recv_updateGroup() def send_updateGroup(self, authzToken, groupModel): self._oprot.writeMessageBegin('updateGroup', TMessageType.CALL, self._seqid) args = updateGroup_args() args.authzToken = authzToken args.groupModel = groupModel args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_updateGroup(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = updateGroup_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "updateGroup failed: unknown result") def deleteGroup(self, authzToken, groupId, ownerId): """ Parameters: - authzToken - groupId - ownerId """ self.send_deleteGroup(authzToken, groupId, ownerId) return self.recv_deleteGroup() def send_deleteGroup(self, authzToken, groupId, ownerId): self._oprot.writeMessageBegin('deleteGroup', TMessageType.CALL, self._seqid) args = deleteGroup_args() args.authzToken = authzToken args.groupId = groupId args.ownerId = ownerId args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_deleteGroup(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = deleteGroup_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "deleteGroup failed: unknown result") def getGroup(self, authzToken, groupId): """ Parameters: - authzToken - groupId """ self.send_getGroup(authzToken, groupId) return self.recv_getGroup() def send_getGroup(self, authzToken, groupId): self._oprot.writeMessageBegin('getGroup', TMessageType.CALL, self._seqid) args = getGroup_args() args.authzToken = authzToken args.groupId = groupId args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getGroup(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = getGroup_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "getGroup failed: unknown result") def getGroups(self, authzToken): """ Parameters: - authzToken """ self.send_getGroups(authzToken) return self.recv_getGroups() def send_getGroups(self, authzToken): self._oprot.writeMessageBegin('getGroups', TMessageType.CALL, self._seqid) args = getGroups_args() args.authzToken = authzToken args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getGroups(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = getGroups_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "getGroups failed: unknown result") def getAllGroupsUserBelongs(self, authzToken, userName): """ Parameters: - authzToken - userName """ self.send_getAllGroupsUserBelongs(authzToken, userName) return self.recv_getAllGroupsUserBelongs() def send_getAllGroupsUserBelongs(self, authzToken, userName): self._oprot.writeMessageBegin('getAllGroupsUserBelongs', TMessageType.CALL, self._seqid) args = getAllGroupsUserBelongs_args() args.authzToken = authzToken args.userName = userName args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getAllGroupsUserBelongs(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = getAllGroupsUserBelongs_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "getAllGroupsUserBelongs failed: unknown result") def addUsersToGroup(self, authzToken, userIds, groupId): """ Parameters: - authzToken - userIds - groupId """ self.send_addUsersToGroup(authzToken, userIds, groupId) return self.recv_addUsersToGroup() def send_addUsersToGroup(self, authzToken, userIds, groupId): self._oprot.writeMessageBegin('addUsersToGroup', TMessageType.CALL, self._seqid) args = addUsersToGroup_args() args.authzToken = authzToken args.userIds = userIds args.groupId = groupId args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_addUsersToGroup(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = addUsersToGroup_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "addUsersToGroup failed: unknown result") def removeUsersFromGroup(self, authzToken, userIds, groupId): """ Parameters: - authzToken - userIds - groupId """ self.send_removeUsersFromGroup(authzToken, userIds, groupId) return self.recv_removeUsersFromGroup() def send_removeUsersFromGroup(self, authzToken, userIds, groupId): self._oprot.writeMessageBegin('removeUsersFromGroup', TMessageType.CALL, self._seqid) args = removeUsersFromGroup_args() args.authzToken = authzToken args.userIds = userIds args.groupId = groupId args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_removeUsersFromGroup(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = removeUsersFromGroup_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "removeUsersFromGroup failed: unknown result") def transferGroupOwnership(self, authzToken, groupId, newOwnerId): """ Parameters: - authzToken - groupId - newOwnerId """ self.send_transferGroupOwnership(authzToken, groupId, newOwnerId) return self.recv_transferGroupOwnership() def send_transferGroupOwnership(self, authzToken, groupId, newOwnerId): self._oprot.writeMessageBegin('transferGroupOwnership', TMessageType.CALL, self._seqid) args = transferGroupOwnership_args() args.authzToken = authzToken args.groupId = groupId args.newOwnerId = newOwnerId args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_transferGroupOwnership(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = transferGroupOwnership_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "transferGroupOwnership failed: unknown result") def addGroupAdmins(self, authzToken, groupId, adminIds): """ Parameters: - authzToken - groupId - adminIds """ self.send_addGroupAdmins(authzToken, groupId, adminIds) return self.recv_addGroupAdmins() def send_addGroupAdmins(self, authzToken, groupId, adminIds): self._oprot.writeMessageBegin('addGroupAdmins', TMessageType.CALL, self._seqid) args = addGroupAdmins_args() args.authzToken = authzToken args.groupId = groupId args.adminIds = adminIds args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_addGroupAdmins(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = addGroupAdmins_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "addGroupAdmins failed: unknown result") def removeGroupAdmins(self, authzToken, groupId, adminIds): """ Parameters: - authzToken - groupId - adminIds """ self.send_removeGroupAdmins(authzToken, groupId, adminIds) return self.recv_removeGroupAdmins() def send_removeGroupAdmins(self, authzToken, groupId, adminIds): self._oprot.writeMessageBegin('removeGroupAdmins', TMessageType.CALL, self._seqid) args = removeGroupAdmins_args() args.authzToken = authzToken args.groupId = groupId args.adminIds = adminIds args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_removeGroupAdmins(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = removeGroupAdmins_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "removeGroupAdmins failed: unknown result") def hasAdminAccess(self, authzToken, groupId, adminId): """ Parameters: - authzToken - groupId - adminId """ self.send_hasAdminAccess(authzToken, groupId, adminId) return self.recv_hasAdminAccess() def send_hasAdminAccess(self, authzToken, groupId, adminId): self._oprot.writeMessageBegin('hasAdminAccess', TMessageType.CALL, self._seqid) args = hasAdminAccess_args() args.authzToken = authzToken args.groupId = groupId args.adminId = adminId args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_hasAdminAccess(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = hasAdminAccess_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "hasAdminAccess failed: unknown result") def hasOwnerAccess(self, authzToken, groupId, ownerId): """ Parameters: - authzToken - groupId - ownerId """ self.send_hasOwnerAccess(authzToken, groupId, ownerId) return self.recv_hasOwnerAccess() def send_hasOwnerAccess(self, authzToken, groupId, ownerId): self._oprot.writeMessageBegin('hasOwnerAccess', TMessageType.CALL, self._seqid) args = hasOwnerAccess_args() args.authzToken = authzToken args.groupId = groupId args.ownerId = ownerId args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_hasOwnerAccess(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = hasOwnerAccess_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success if result.gse is not None: raise result.gse if result.ae is not None: raise result.ae raise TApplicationException(TApplicationException.MISSING_RESULT, "hasOwnerAccess failed: unknown result") class Processor(Iface, TProcessor): def __init__(self, handler): self._handler = handler self._processMap = {} self._processMap["getAPIVersion"] = Processor.process_getAPIVersion self._processMap["createGroup"] = Processor.process_createGroup self._processMap["updateGroup"] = Processor.process_updateGroup self._processMap["deleteGroup"] = Processor.process_deleteGroup self._processMap["getGroup"] = Processor.process_getGroup self._processMap["getGroups"] = Processor.process_getGroups self._processMap["getAllGroupsUserBelongs"] = Processor.process_getAllGroupsUserBelongs self._processMap["addUsersToGroup"] = Processor.process_addUsersToGroup self._processMap["removeUsersFromGroup"] = Processor.process_removeUsersFromGroup self._processMap["transferGroupOwnership"] = Processor.process_transferGroupOwnership self._processMap["addGroupAdmins"] = Processor.process_addGroupAdmins self._processMap["removeGroupAdmins"] = Processor.process_removeGroupAdmins self._processMap["hasAdminAccess"] = Processor.process_hasAdminAccess self._processMap["hasOwnerAccess"] = Processor.process_hasOwnerAccess def process(self, iprot, oprot): (name, type, seqid) = iprot.readMessageBegin() if name not in self._processMap: iprot.skip(TType.STRUCT) iprot.readMessageEnd() x = TApplicationException(TApplicationException.UNKNOWN_METHOD, 'Unknown function %s' % (name)) oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid) x.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() return else: self._processMap[name](self, seqid, iprot, oprot) return True def process_getAPIVersion(self, seqid, iprot, oprot): args = getAPIVersion_args() args.read(iprot) iprot.readMessageEnd() result = getAPIVersion_result() try: result.success = self._handler.getAPIVersion() msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("getAPIVersion", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_createGroup(self, seqid, iprot, oprot): args = createGroup_args() args.read(iprot) iprot.readMessageEnd() result = createGroup_result() try: result.success = self._handler.createGroup(args.authzToken, args.groupModel) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("createGroup", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_updateGroup(self, seqid, iprot, oprot): args = updateGroup_args() args.read(iprot) iprot.readMessageEnd() result = updateGroup_result() try: result.success = self._handler.updateGroup(args.authzToken, args.groupModel) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("updateGroup", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_deleteGroup(self, seqid, iprot, oprot): args = deleteGroup_args() args.read(iprot) iprot.readMessageEnd() result = deleteGroup_result() try: result.success = self._handler.deleteGroup(args.authzToken, args.groupId, args.ownerId) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("deleteGroup", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getGroup(self, seqid, iprot, oprot): args = getGroup_args() args.read(iprot) iprot.readMessageEnd() result = getGroup_result() try: result.success = self._handler.getGroup(args.authzToken, args.groupId) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("getGroup", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getGroups(self, seqid, iprot, oprot): args = getGroups_args() args.read(iprot) iprot.readMessageEnd() result = getGroups_result() try: result.success = self._handler.getGroups(args.authzToken) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("getGroups", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getAllGroupsUserBelongs(self, seqid, iprot, oprot): args = getAllGroupsUserBelongs_args() args.read(iprot) iprot.readMessageEnd() result = getAllGroupsUserBelongs_result() try: result.success = self._handler.getAllGroupsUserBelongs(args.authzToken, args.userName) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("getAllGroupsUserBelongs", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_addUsersToGroup(self, seqid, iprot, oprot): args = addUsersToGroup_args() args.read(iprot) iprot.readMessageEnd() result = addUsersToGroup_result() try: result.success = self._handler.addUsersToGroup(args.authzToken, args.userIds, args.groupId) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("addUsersToGroup", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_removeUsersFromGroup(self, seqid, iprot, oprot): args = removeUsersFromGroup_args() args.read(iprot) iprot.readMessageEnd() result = removeUsersFromGroup_result() try: result.success = self._handler.removeUsersFromGroup(args.authzToken, args.userIds, args.groupId) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("removeUsersFromGroup", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_transferGroupOwnership(self, seqid, iprot, oprot): args = transferGroupOwnership_args() args.read(iprot) iprot.readMessageEnd() result = transferGroupOwnership_result() try: result.success = self._handler.transferGroupOwnership(args.authzToken, args.groupId, args.newOwnerId) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("transferGroupOwnership", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_addGroupAdmins(self, seqid, iprot, oprot): args = addGroupAdmins_args() args.read(iprot) iprot.readMessageEnd() result = addGroupAdmins_result() try: result.success = self._handler.addGroupAdmins(args.authzToken, args.groupId, args.adminIds) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("addGroupAdmins", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_removeGroupAdmins(self, seqid, iprot, oprot): args = removeGroupAdmins_args() args.read(iprot) iprot.readMessageEnd() result = removeGroupAdmins_result() try: result.success = self._handler.removeGroupAdmins(args.authzToken, args.groupId, args.adminIds) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("removeGroupAdmins", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_hasAdminAccess(self, seqid, iprot, oprot): args = hasAdminAccess_args() args.read(iprot) iprot.readMessageEnd() result = hasAdminAccess_result() try: result.success = self._handler.hasAdminAccess(args.authzToken, args.groupId, args.adminId) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("hasAdminAccess", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_hasOwnerAccess(self, seqid, iprot, oprot): args = hasOwnerAccess_args() args.read(iprot) iprot.readMessageEnd() result = hasOwnerAccess_result() try: result.success = self._handler.hasOwnerAccess(args.authzToken, args.groupId, args.ownerId) msg_type = TMessageType.REPLY except (TTransport.TTransportException, KeyboardInterrupt, SystemExit): raise except airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException as gse: msg_type = TMessageType.REPLY result.gse = gse except airavata.api.error.ttypes.AuthorizationException as ae: msg_type = TMessageType.REPLY result.ae = ae except Exception as ex: msg_type = TMessageType.EXCEPTION logging.exception(ex) result = TApplicationException(TApplicationException.INTERNAL_ERROR, 'Internal error') oprot.writeMessageBegin("hasOwnerAccess", msg_type, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() # HELPER FUNCTIONS AND STRUCTURES class getAPIVersion_args(object): thrift_spec = ( ) def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getAPIVersion_args') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getAPIVersion_result(object): """ Attributes: - success - gse """ thrift_spec = ( (0, TType.STRING, 'success', 'UTF8', None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, gse=None,): self.success = success self.gse = gse def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRING: self.success = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getAPIVersion_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRING, 0) oprot.writeString(self.success.encode('utf-8') if sys.version_info[0] == 2 else self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class createGroup_args(object): """ Attributes: - authzToken - groupModel """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'groupModel', (airavata.model.group.ttypes.GroupModel, airavata.model.group.ttypes.GroupModel.thrift_spec), None, ), # 2 ) def __init__(self, authzToken=None, groupModel=None,): self.authzToken = authzToken self.groupModel = groupModel def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.groupModel = airavata.model.group.ttypes.GroupModel() self.groupModel.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('createGroup_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupModel is not None: oprot.writeFieldBegin('groupModel', TType.STRUCT, 2) self.groupModel.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupModel is None: raise TProtocolException(message='Required field groupModel is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class createGroup_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.STRING, 'success', 'UTF8', None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRING: self.success = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('createGroup_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRING, 0) oprot.writeString(self.success.encode('utf-8') if sys.version_info[0] == 2 else self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class updateGroup_args(object): """ Attributes: - authzToken - groupModel """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'groupModel', (airavata.model.group.ttypes.GroupModel, airavata.model.group.ttypes.GroupModel.thrift_spec), None, ), # 2 ) def __init__(self, authzToken=None, groupModel=None,): self.authzToken = authzToken self.groupModel = groupModel def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.groupModel = airavata.model.group.ttypes.GroupModel() self.groupModel.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('updateGroup_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupModel is not None: oprot.writeFieldBegin('groupModel', TType.STRUCT, 2) self.groupModel.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupModel is None: raise TProtocolException(message='Required field groupModel is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class updateGroup_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('updateGroup_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deleteGroup_args(object): """ Attributes: - authzToken - groupId - ownerId """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRING, 'groupId', 'UTF8', None, ), # 2 (3, TType.STRING, 'ownerId', 'UTF8', None, ), # 3 ) def __init__(self, authzToken=None, groupId=None, ownerId=None,): self.authzToken = authzToken self.groupId = groupId self.ownerId = ownerId def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.ownerId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deleteGroup_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 2) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() if self.ownerId is not None: oprot.writeFieldBegin('ownerId', TType.STRING, 3) oprot.writeString(self.ownerId.encode('utf-8') if sys.version_info[0] == 2 else self.ownerId) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') if self.ownerId is None: raise TProtocolException(message='Required field ownerId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deleteGroup_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deleteGroup_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getGroup_args(object): """ Attributes: - authzToken - groupId """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRING, 'groupId', 'UTF8', None, ), # 2 ) def __init__(self, authzToken=None, groupId=None,): self.authzToken = authzToken self.groupId = groupId def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getGroup_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 2) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getGroup_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.STRUCT, 'success', (airavata.model.group.ttypes.GroupModel, airavata.model.group.ttypes.GroupModel.thrift_spec), None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = airavata.model.group.ttypes.GroupModel() self.success.read(iprot) else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getGroup_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getGroups_args(object): """ Attributes: - authzToken """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 ) def __init__(self, authzToken=None,): self.authzToken = authzToken def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getGroups_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getGroups_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.LIST, 'success', (TType.STRUCT, (airavata.model.group.ttypes.GroupModel, airavata.model.group.ttypes.GroupModel.thrift_spec), False), None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype3, _size0) = iprot.readListBegin() for _i4 in range(_size0): _elem5 = airavata.model.group.ttypes.GroupModel() _elem5.read(iprot) self.success.append(_elem5) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getGroups_result') if self.success is not None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.STRUCT, len(self.success)) for iter6 in self.success: iter6.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getAllGroupsUserBelongs_args(object): """ Attributes: - authzToken - userName """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRING, 'userName', 'UTF8', None, ), # 2 ) def __init__(self, authzToken=None, userName=None,): self.authzToken = authzToken self.userName = userName def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.userName = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getAllGroupsUserBelongs_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.userName is not None: oprot.writeFieldBegin('userName', TType.STRING, 2) oprot.writeString(self.userName.encode('utf-8') if sys.version_info[0] == 2 else self.userName) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.userName is None: raise TProtocolException(message='Required field userName is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getAllGroupsUserBelongs_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.LIST, 'success', (TType.STRUCT, (airavata.model.group.ttypes.GroupModel, airavata.model.group.ttypes.GroupModel.thrift_spec), False), None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype10, _size7) = iprot.readListBegin() for _i11 in range(_size7): _elem12 = airavata.model.group.ttypes.GroupModel() _elem12.read(iprot) self.success.append(_elem12) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getAllGroupsUserBelongs_result') if self.success is not None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.STRUCT, len(self.success)) for iter13 in self.success: iter13.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class addUsersToGroup_args(object): """ Attributes: - authzToken - userIds - groupId """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.LIST, 'userIds', (TType.STRING, 'UTF8', False), None, ), # 2 (3, TType.STRING, 'groupId', 'UTF8', None, ), # 3 ) def __init__(self, authzToken=None, userIds=None, groupId=None,): self.authzToken = authzToken self.userIds = userIds self.groupId = groupId def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.userIds = [] (_etype17, _size14) = iprot.readListBegin() for _i18 in range(_size14): _elem19 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.userIds.append(_elem19) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('addUsersToGroup_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.userIds is not None: oprot.writeFieldBegin('userIds', TType.LIST, 2) oprot.writeListBegin(TType.STRING, len(self.userIds)) for iter20 in self.userIds: oprot.writeString(iter20.encode('utf-8') if sys.version_info[0] == 2 else iter20) oprot.writeListEnd() oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 3) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.userIds is None: raise TProtocolException(message='Required field userIds is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class addUsersToGroup_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('addUsersToGroup_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class removeUsersFromGroup_args(object): """ Attributes: - authzToken - userIds - groupId """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.LIST, 'userIds', (TType.STRING, 'UTF8', False), None, ), # 2 (3, TType.STRING, 'groupId', 'UTF8', None, ), # 3 ) def __init__(self, authzToken=None, userIds=None, groupId=None,): self.authzToken = authzToken self.userIds = userIds self.groupId = groupId def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.userIds = [] (_etype24, _size21) = iprot.readListBegin() for _i25 in range(_size21): _elem26 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.userIds.append(_elem26) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('removeUsersFromGroup_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.userIds is not None: oprot.writeFieldBegin('userIds', TType.LIST, 2) oprot.writeListBegin(TType.STRING, len(self.userIds)) for iter27 in self.userIds: oprot.writeString(iter27.encode('utf-8') if sys.version_info[0] == 2 else iter27) oprot.writeListEnd() oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 3) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.userIds is None: raise TProtocolException(message='Required field userIds is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class removeUsersFromGroup_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('removeUsersFromGroup_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class transferGroupOwnership_args(object): """ Attributes: - authzToken - groupId - newOwnerId """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRING, 'groupId', 'UTF8', None, ), # 2 (3, TType.STRING, 'newOwnerId', 'UTF8', None, ), # 3 ) def __init__(self, authzToken=None, groupId=None, newOwnerId=None,): self.authzToken = authzToken self.groupId = groupId self.newOwnerId = newOwnerId def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.newOwnerId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('transferGroupOwnership_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 2) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() if self.newOwnerId is not None: oprot.writeFieldBegin('newOwnerId', TType.STRING, 3) oprot.writeString(self.newOwnerId.encode('utf-8') if sys.version_info[0] == 2 else self.newOwnerId) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') if self.newOwnerId is None: raise TProtocolException(message='Required field newOwnerId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class transferGroupOwnership_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('transferGroupOwnership_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class addGroupAdmins_args(object): """ Attributes: - authzToken - groupId - adminIds """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRING, 'groupId', 'UTF8', None, ), # 2 (3, TType.LIST, 'adminIds', (TType.STRING, 'UTF8', False), None, ), # 3 ) def __init__(self, authzToken=None, groupId=None, adminIds=None,): self.authzToken = authzToken self.groupId = groupId self.adminIds = adminIds def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.adminIds = [] (_etype31, _size28) = iprot.readListBegin() for _i32 in range(_size28): _elem33 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.adminIds.append(_elem33) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('addGroupAdmins_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 2) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() if self.adminIds is not None: oprot.writeFieldBegin('adminIds', TType.LIST, 3) oprot.writeListBegin(TType.STRING, len(self.adminIds)) for iter34 in self.adminIds: oprot.writeString(iter34.encode('utf-8') if sys.version_info[0] == 2 else iter34) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') if self.adminIds is None: raise TProtocolException(message='Required field adminIds is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class addGroupAdmins_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('addGroupAdmins_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class removeGroupAdmins_args(object): """ Attributes: - authzToken - groupId - adminIds """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRING, 'groupId', 'UTF8', None, ), # 2 (3, TType.LIST, 'adminIds', (TType.STRING, 'UTF8', False), None, ), # 3 ) def __init__(self, authzToken=None, groupId=None, adminIds=None,): self.authzToken = authzToken self.groupId = groupId self.adminIds = adminIds def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.adminIds = [] (_etype38, _size35) = iprot.readListBegin() for _i39 in range(_size35): _elem40 = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() self.adminIds.append(_elem40) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('removeGroupAdmins_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 2) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() if self.adminIds is not None: oprot.writeFieldBegin('adminIds', TType.LIST, 3) oprot.writeListBegin(TType.STRING, len(self.adminIds)) for iter41 in self.adminIds: oprot.writeString(iter41.encode('utf-8') if sys.version_info[0] == 2 else iter41) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') if self.adminIds is None: raise TProtocolException(message='Required field adminIds is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class removeGroupAdmins_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('removeGroupAdmins_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class hasAdminAccess_args(object): """ Attributes: - authzToken - groupId - adminId """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRING, 'groupId', 'UTF8', None, ), # 2 (3, TType.STRING, 'adminId', 'UTF8', None, ), # 3 ) def __init__(self, authzToken=None, groupId=None, adminId=None,): self.authzToken = authzToken self.groupId = groupId self.adminId = adminId def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.adminId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('hasAdminAccess_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 2) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() if self.adminId is not None: oprot.writeFieldBegin('adminId', TType.STRING, 3) oprot.writeString(self.adminId.encode('utf-8') if sys.version_info[0] == 2 else self.adminId) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') if self.adminId is None: raise TProtocolException(message='Required field adminId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class hasAdminAccess_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('hasAdminAccess_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class hasOwnerAccess_args(object): """ Attributes: - authzToken - groupId - ownerId """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'authzToken', (airavata.model.security.ttypes.AuthzToken, airavata.model.security.ttypes.AuthzToken.thrift_spec), None, ), # 1 (2, TType.STRING, 'groupId', 'UTF8', None, ), # 2 (3, TType.STRING, 'ownerId', 'UTF8', None, ), # 3 ) def __init__(self, authzToken=None, groupId=None, ownerId=None,): self.authzToken = authzToken self.groupId = groupId self.ownerId = ownerId def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.authzToken = airavata.model.security.ttypes.AuthzToken() self.authzToken.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.groupId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.ownerId = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('hasOwnerAccess_args') if self.authzToken is not None: oprot.writeFieldBegin('authzToken', TType.STRUCT, 1) self.authzToken.write(oprot) oprot.writeFieldEnd() if self.groupId is not None: oprot.writeFieldBegin('groupId', TType.STRING, 2) oprot.writeString(self.groupId.encode('utf-8') if sys.version_info[0] == 2 else self.groupId) oprot.writeFieldEnd() if self.ownerId is not None: oprot.writeFieldBegin('ownerId', TType.STRING, 3) oprot.writeString(self.ownerId.encode('utf-8') if sys.version_info[0] == 2 else self.ownerId) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): if self.authzToken is None: raise TProtocolException(message='Required field authzToken is unset!') if self.groupId is None: raise TProtocolException(message='Required field groupId is unset!') if self.ownerId is None: raise TProtocolException(message='Required field ownerId is unset!') return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class hasOwnerAccess_result(object): """ Attributes: - success - gse - ae """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 (1, TType.STRUCT, 'gse', (airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException, airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ae', (airavata.api.error.ttypes.AuthorizationException, airavata.api.error.ttypes.AuthorizationException.thrift_spec), None, ), # 2 ) def __init__(self, success=None, gse=None, ae=None,): self.success = success self.gse = gse self.ae = ae def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.gse = airavata.service.profile.groupmanager.cpi.error.ttypes.GroupManagerServiceException() self.gse.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ae = airavata.api.error.ttypes.AuthorizationException() self.ae.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('hasOwnerAccess_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.gse is not None: oprot.writeFieldBegin('gse', TType.STRUCT, 1) self.gse.write(oprot) oprot.writeFieldEnd() if self.ae is not None: oprot.writeFieldBegin('ae', TType.STRUCT, 2) self.ae.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
python
130,623
# Copyright 2013 by Leighton Pritchard. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Tests for general functionality of the ColorSpiral utility.""" # Builtins import colorsys from math import pi import os import unittest from cmath import rect # Do we have ReportLab? Raise error if not present. from Bio import MissingPythonDependencyError try: from reportlab.pdfgen.canvas import Canvas from reportlab.lib.pagesizes import A4 except ImportError: raise MissingPythonDependencyError( "Install reportlab if you want to use Bio.Graphics." ) from None # Biopython Bio.Graphics.ColorSpiral from Bio.Graphics.ColorSpiral import ColorSpiral, get_colors, get_color_dict class SpiralTest(unittest.TestCase): """Construct and draw ColorSpiral colours placed on HSV spiral.""" def setUp(self): """Set up canvas for drawing.""" output_filename = os.path.join("Graphics", "spiral_test.pdf") self.c = Canvas(output_filename, pagesize=A4) # co-ordinates of the centre of the canvas self.x_0, self.y_0 = 0.5 * A4[0], 0.5 * A4[1] def test_colorlist(self): """Get set of eight colours, no jitter, using ColorSpiral.""" cs = ColorSpiral(a=4, b=0.33, jitter=0) colours = list(cs.get_colors(8)) cstr = ["(%.2f, %.2f, %.2f)" % (r, g, b) for r, g, b in colours] expected = [ "(0.64, 0.74, 0.81)", "(0.68, 0.52, 0.76)", "(0.72, 0.41, 0.55)", "(0.68, 0.39, 0.31)", "(0.63, 0.54, 0.22)", "(0.48, 0.59, 0.13)", "(0.24, 0.54, 0.06)", "(0.01, 0.50, -0.00)", ] self.assertEqual(cstr, expected) def test_colorspiral(self): """Get set of 16 colours, no jitter, using ColorSpiral.""" cs = ColorSpiral(a=4, b=0.33, jitter=0) radius = A4[0] * 0.025 for r, g, b in cs.get_colors(16): self.c.setFillColor((r, g, b)) # Convert HSV colour to rectangular coordinates on HSV disc h, s, v = colorsys.rgb_to_hsv(r, g, b) coords = rect(s * A4[0] * 0.45, h * 2 * pi) x, y = self.x_0 + coords.real, self.y_0 + coords.imag self.c.ellipse( x - radius, y - radius, x + radius, y + radius, stroke=0, fill=1 ) self.finish() def finish(self): """Clean up and save image.""" self.c.save() class SquareTest(unittest.TestCase): """Construct and draw ColorSpiral colours placed in a square, with jitter.""" def setUp(self): """Set up canvas for drawing.""" output_filename = os.path.join("Graphics", "square_test.pdf") self.c = Canvas(output_filename, pagesize=(500, 500)) def test_colorspiral(self): """Set of 625 colours, with jitter, using get_colors().""" boxedge = 20 boxes_per_row = 25 rows = 0 for i, c in enumerate(get_colors(625)): self.c.setFillColor(c) x1 = boxedge * (i % boxes_per_row) y1 = rows * boxedge self.c.rect(x1, y1, boxedge, boxedge, fill=1, stroke=0) if not (i + 1) % boxes_per_row: rows += 1 self.finish() def finish(self): """Clean up and save image.""" self.c.save() class DictTest(unittest.TestCase): """Generate set of colours on the basis of an iterable.""" def test_dict(self): """get_color_dict() for classes A-D, no jitter.""" classes = ["A", "B", "C", "D"] colors = get_color_dict(classes, jitter=0) cstr = [ "%s: (%.2f, %.2f, %.2f)" % (c, r, g, b) for c, (r, g, b) in sorted(colors.items()) ] expected = [ "A: (0.52, 0.76, 0.69)", "B: (0.40, 0.31, 0.68)", "C: (0.59, 0.13, 0.47)", "D: (0.50, 0.00, 0.00)", ] self.assertEqual(cstr, expected) if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=2) unittest.main(testRunner=runner)
python
4,222
from django.urls import path, include from . import views app_name = 'project' urlpatterns = [ path('list', views.list_projects, name = 'list_projects'), path('<int:id>/mentors', views.list_project_mentors, name = 'list_project_mentors'), ]
python
249
import requests def register(api): def fixer(func): def wrapper(self,*args,**kwargs): params = func(self,*args,**kwargs) url = self.host + api response = requests.get(url,params=params) return response.json() return wrapper return fixer
python
310
from sys import stdin n = int(stdin.readline()) # get n numbers data = list(map(int, stdin.readline().split())) # get max from data m = max(data) data = [(x/m) * 100 for x in data] print(sum(data) / n)
python
209
"""\ Examples To check all pages on the production server: %(prog)s production.ini For the development.ini you must supply the paster app name: %(prog)s development.ini --app-name app """ import json import logging from future.utils import itervalues from pyramid.traversal import resource_path EPILOG = __doc__ logger = logging.getLogger(__name__) def check_path(testapp, path): try: res = testapp.get(path, status='*').maybe_follow(status='*') except Exception: logger.exception('Render failed: %s', path) return False if res.status_int != 200: logger.error('Render failed (%s): %s', res.status, path) script = res.html.find('script', **{'data-prop-name': 'context'}) if script is not None: context = json.loads(script.text) if 'detail' in context: logger.debug(context['detail']) else: logger.debug(json.dumps(context, indent=4)) return False return True def run(testapp, collections=None): app = testapp.app root = app.root_factory(app) if not collections: collections = root.by_item_type.keys() check_path(testapp, '/') for collection_name in collections: collection = root[collection_name] collection_path = resource_path(collection, '') check_path(testapp, collection_path) failed = 0 for count, item in enumerate(itervalues(collection)): path = resource_path(item, '') if not check_path(testapp, path): failed += 1 if failed: logger.info('Collection %s: %d of %d failed to render.', collection_path, failed, count) else: logger.info('Collection %s: all %d rendered ok', collection_path, count) def internal_app(configfile, app_name=None, username='TEST', accept='text/html'): from pyramid import paster from webtest import TestApp app = paster.get_app(configfile, app_name) environ = { 'HTTP_ACCEPT': accept, 'REMOTE_USER': username, } return TestApp(app, environ) def main(): import argparse parser = argparse.ArgumentParser( description="Check rendering of items", epilog=EPILOG, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument('--item-type', action='append', help="Item type") parser.add_argument('--app-name', help="Pyramid app name in configfile") parser.add_argument('--username', '-u', default='TEST', help="User uuid/email") parser.add_argument('config_uri', help="path to configfile") parser.add_argument('path', nargs='*', help="path to test") args = parser.parse_args() logging.basicConfig() testapp = internal_app(args.config_uri, args.app_name, args.username) # Loading app will have configured from config file. Reconfigure here: logging.getLogger('clincoded').setLevel(logging.DEBUG) if args.path: failed = 0 for path in args.path: if not check_path(testapp, path): failed += 1 if failed: logger.info('Paths: %d of %d failed to render.', failed, len(args.path)) else: logger.info('Paths: all %d rendered ok', len(args.path)) else: run(testapp, args.item_type) if __name__ == '__main__': main()
python
3,431
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import os import time from unittest import mock from azure.core.credentials import AccessToken from azure.core.exceptions import ClientAuthenticationError from azure.identity.aio import ManagedIdentityCredential from azure.identity._constants import Endpoints, EnvironmentVariables from azure.identity._internal.user_agent import USER_AGENT import pytest from helpers import build_aad_response, mock_response, Request from helpers_async import async_validating_transport MANAGED_IDENTITY_ENVIRON = "azure.identity.aio._credentials.managed_identity.os.environ" @pytest.mark.asyncio async def test_cloud_shell(): """Cloud Shell environment: only MSI_ENDPOINT set""" access_token = "****" expires_on = 42 expected_token = AccessToken(access_token, expires_on) endpoint = "http://localhost:42/token" scope = "scope" transport = async_validating_transport( requests=[ Request( base_url=endpoint, method="POST", required_headers={"Metadata": "true", "User-Agent": USER_AGENT}, required_data={"resource": scope}, ) ], responses=[ mock_response( json_payload={ "access_token": access_token, "expires_in": 0, "expires_on": expires_on, "not_before": int(time.time()), "resource": scope, "token_type": "Bearer", } ) ], ) with mock.patch("os.environ", {EnvironmentVariables.MSI_ENDPOINT: endpoint}): token = await ManagedIdentityCredential(transport=transport).get_token(scope) assert token == expected_token @pytest.mark.asyncio async def test_cloud_shell_user_assigned_identity(): """Cloud Shell environment: only MSI_ENDPOINT set""" access_token = "****" expires_on = 42 client_id = "some-guid" expected_token = AccessToken(access_token, expires_on) endpoint = "http://localhost:42/token" scope = "scope" transport = async_validating_transport( requests=[ Request( base_url=endpoint, method="POST", required_headers={"Metadata": "true", "User-Agent": USER_AGENT}, required_data={"client_id": client_id, "resource": scope}, ) ], responses=[ mock_response( json_payload={ "access_token": access_token, "expires_in": 0, "expires_on": expires_on, "not_before": int(time.time()), "resource": scope, "token_type": "Bearer", } ) ], ) with mock.patch("os.environ", {EnvironmentVariables.MSI_ENDPOINT: endpoint}): token = await ManagedIdentityCredential(client_id=client_id, transport=transport).get_token(scope) assert token == expected_token @pytest.mark.asyncio async def test_prefers_app_service_2017_09_01(): """When the environment is configured for both App Service versions, the credential should prefer 2017-09-01 Support for 2019-08-01 was removed due to https://github.com/Azure/azure-sdk-for-python/issues/14670. This test should be removed when that support is added back. """ access_token = "****" expires_on = 42 expected_token = AccessToken(access_token, expires_on) url = "http://localhost:42/token" secret = "expected-secret" scope = "scope" transport = async_validating_transport( requests=[ Request( url, method="GET", required_headers={"secret": secret, "User-Agent": USER_AGENT}, required_params={"api-version": "2017-09-01", "resource": scope}, ) ] * 2, responses=[ mock_response( json_payload={ "access_token": access_token, "expires_on": "01/01/1970 00:00:{} +00:00".format(expires_on), # linux format "resource": scope, "token_type": "Bearer", } ), mock_response( json_payload={ "access_token": access_token, "expires_on": "1/1/1970 12:00:{} AM +00:00".format(expires_on), # windows format "resource": scope, "token_type": "Bearer", } ), ], ) with mock.patch.dict( MANAGED_IDENTITY_ENVIRON, { EnvironmentVariables.IDENTITY_ENDPOINT: url, EnvironmentVariables.IDENTITY_HEADER: secret, EnvironmentVariables.MSI_ENDPOINT: url, EnvironmentVariables.MSI_SECRET: secret, }, clear=True, ): credential = ManagedIdentityCredential(transport=transport) token = await credential.get_token(scope) assert token == expected_token assert token.expires_on == expires_on credential = ManagedIdentityCredential(transport=transport) token = await credential.get_token(scope) assert token == expected_token assert token.expires_on == expires_on @pytest.mark.skip("2019-08-01 support was removed due to https://github.com/Azure/azure-sdk-for-python/issues/14670. This test should be enabled when that support is added back.") @pytest.mark.asyncio async def test_app_service_2019_08_01(): """App Service 2019-08-01: IDENTITY_ENDPOINT, IDENTITY_HEADER set""" access_token = "****" expires_on = 42 endpoint = "http://localhost:42/token" secret = "expected-secret" scope = "scope" async def send(request, **_): assert request.url.startswith(endpoint) assert request.method == "GET" assert request.headers["X-IDENTITY-HEADER"] == secret assert request.headers["User-Agent"] == USER_AGENT assert request.query["api-version"] == "2019-08-01" assert request.query["resource"] == scope return mock_response( json_payload={ "access_token": access_token, "expires_on": str(expires_on), "resource": scope, "token_type": "Bearer", } ) # when configuration for both API versions is present, the credential should prefer the most recent for environment in [ {EnvironmentVariables.IDENTITY_ENDPOINT: endpoint, EnvironmentVariables.IDENTITY_HEADER: secret}, { EnvironmentVariables.IDENTITY_ENDPOINT: endpoint, EnvironmentVariables.IDENTITY_HEADER: secret, EnvironmentVariables.MSI_ENDPOINT: endpoint, EnvironmentVariables.MSI_SECRET: secret, }, ]: with mock.patch.dict("os.environ", environment, clear=True): token = await ManagedIdentityCredential(transport=mock.Mock(send=send)).get_token(scope) assert token.token == access_token assert token.expires_on == expires_on @pytest.mark.asyncio async def test_app_service_2017_09_01(): """test parsing of App Service MSI 2017-09-01's eccentric platform-dependent expires_on strings""" access_token = "****" expires_on = 42 expected_token = AccessToken(access_token, expires_on) url = "http://localhost:42/token" secret = "expected-secret" scope = "scope" transport = async_validating_transport( requests=[ Request( url, method="GET", required_headers={"secret": secret, "User-Agent": USER_AGENT}, required_params={"api-version": "2017-09-01", "resource": scope}, ) ] * 2, responses=[ mock_response( json_payload={ "access_token": access_token, "expires_on": "01/01/1970 00:00:{} +00:00".format(expires_on), # linux format "resource": scope, "token_type": "Bearer", } ), mock_response( json_payload={ "access_token": access_token, "expires_on": "1/1/1970 12:00:{} AM +00:00".format(expires_on), # windows format "resource": scope, "token_type": "Bearer", } ), ], ) with mock.patch.dict( MANAGED_IDENTITY_ENVIRON, {EnvironmentVariables.MSI_ENDPOINT: url, EnvironmentVariables.MSI_SECRET: secret}, clear=True, ): token = await ManagedIdentityCredential(transport=transport).get_token(scope) assert token == expected_token assert token.expires_on == expires_on token = await ManagedIdentityCredential(transport=transport).get_token(scope) assert token == expected_token assert token.expires_on == expires_on @pytest.mark.asyncio async def test_app_service_user_assigned_identity(): """App Service 2017-09-01: MSI_ENDPOINT, MSI_SECRET set""" access_token = "****" expires_on = 42 client_id = "some-guid" expected_token = AccessToken(access_token, expires_on) endpoint = "http://localhost:42/token" secret = "expected-secret" scope = "scope" transport = async_validating_transport( requests=[ Request( base_url=endpoint, method="GET", required_headers={"secret": secret, "User-Agent": USER_AGENT}, required_params={"api-version": "2017-09-01", "clientid": client_id, "resource": scope}, ) ], responses=[ mock_response( json_payload={ "access_token": access_token, "expires_on": "01/01/1970 00:00:{} +00:00".format(expires_on), "resource": scope, "token_type": "Bearer", } ) ], ) with mock.patch( "os.environ", {EnvironmentVariables.MSI_ENDPOINT: endpoint, EnvironmentVariables.MSI_SECRET: secret} ): token = await ManagedIdentityCredential(client_id=client_id, transport=transport).get_token(scope) assert token == expected_token @pytest.mark.asyncio async def test_client_id_none(): """the credential should ignore client_id=None""" expected_access_token = "****" scope = "scope" async def send(request, **_): assert "client_id" not in request.query # IMDS assert "clientid" not in request.query # App Service 2017-09-01 if request.data: assert "client_id" not in request.body # Cloud Shell return mock_response( json_payload=( build_aad_response( access_token=expected_access_token, expires_on="01/01/1970 00:00:42 +00:00", resource=scope ) ) ) with mock.patch.dict(MANAGED_IDENTITY_ENVIRON, {}, clear=True): credential = ManagedIdentityCredential(client_id=None, transport=mock.Mock(send=send)) token = await credential.get_token(scope) assert token.token == expected_access_token with mock.patch.dict( MANAGED_IDENTITY_ENVIRON, {EnvironmentVariables.MSI_ENDPOINT: "https://localhost", EnvironmentVariables.MSI_SECRET: "secret"}, clear=True, ): credential = ManagedIdentityCredential(client_id=None, transport=mock.Mock(send=send)) token = await credential.get_token(scope) assert token.token == expected_access_token with mock.patch.dict( MANAGED_IDENTITY_ENVIRON, {EnvironmentVariables.MSI_ENDPOINT: "https://localhost"}, clear=True, ): credential = ManagedIdentityCredential(client_id=None, transport=mock.Mock(send=send)) token = await credential.get_token(scope) assert token.token == expected_access_token @pytest.mark.asyncio async def test_imds(): access_token = "****" expires_on = 42 expected_token = AccessToken(access_token, expires_on) scope = "scope" transport = async_validating_transport( requests=[ Request(url=Endpoints.IMDS), # first request should be availability probe => match only the URL Request( base_url=Endpoints.IMDS, method="GET", required_headers={"Metadata": "true", "User-Agent": USER_AGENT}, required_params={"api-version": "2018-02-01", "resource": scope}, ), ], responses=[ # probe receives error response mock_response(status_code=400, json_payload={"error": "this is an error message"}), mock_response( json_payload={ "access_token": access_token, "expires_in": 42, "expires_on": expires_on, "ext_expires_in": 42, "not_before": int(time.time()), "resource": scope, "token_type": "Bearer", } ), ], ) # ensure e.g. $MSI_ENDPOINT isn't set, so we get ImdsCredential with mock.patch.dict("os.environ", clear=True): token = await ManagedIdentityCredential(transport=transport).get_token(scope) assert token == expected_token @pytest.mark.asyncio async def test_imds_user_assigned_identity(): access_token = "****" expires_on = 42 expected_token = AccessToken(access_token, expires_on) url = Endpoints.IMDS scope = "scope" client_id = "some-guid" transport = async_validating_transport( requests=[ Request(base_url=url), # first request should be availability probe => match only the URL Request( base_url=url, method="GET", required_headers={"Metadata": "true", "User-Agent": USER_AGENT}, required_params={"api-version": "2018-02-01", "client_id": client_id, "resource": scope}, ), ], responses=[ # probe receives error response mock_response(status_code=400, json_payload={"error": "this is an error message"}), mock_response( json_payload={ "access_token": access_token, "client_id": client_id, "expires_in": 42, "expires_on": expires_on, "ext_expires_in": 42, "not_before": int(time.time()), "resource": scope, "token_type": "Bearer", } ), ], ) # ensure e.g. $MSI_ENDPOINT isn't set, so we get ImdsCredential with mock.patch.dict("os.environ", clear=True): token = await ManagedIdentityCredential(client_id=client_id, transport=transport).get_token(scope) assert token == expected_token @pytest.mark.asyncio async def test_service_fabric(): """Service Fabric 2019-07-01-preview""" access_token = "****" expires_on = 42 endpoint = "http://localhost:42/token" secret = "expected-secret" thumbprint = "SHA1HEX" scope = "scope" async def send(request, **_): assert request.url.startswith(endpoint) assert request.method == "GET" assert request.headers["Secret"] == secret assert request.query["api-version"] == "2019-07-01-preview" assert request.query["resource"] == scope return mock_response( json_payload={ "access_token": access_token, "expires_on": str(expires_on), "resource": scope, "token_type": "Bearer", } ) with mock.patch( "os.environ", { EnvironmentVariables.IDENTITY_ENDPOINT: endpoint, EnvironmentVariables.IDENTITY_HEADER: secret, EnvironmentVariables.IDENTITY_SERVER_THUMBPRINT: thumbprint, }, ): token = await ManagedIdentityCredential(transport=mock.Mock(send=send)).get_token(scope) assert token.token == access_token assert token.expires_on == expires_on @pytest.mark.asyncio async def test_azure_arc(tmpdir): """Azure Arc 2019-11-01""" access_token = "****" api_version = "2019-11-01" expires_on = 42 identity_endpoint = "http://localhost:42/token" imds_endpoint = "http://localhost:42" scope = "scope" secret_key = "XXXX" key_file = tmpdir.mkdir("key").join("key_file.key") key_file.write(secret_key) assert key_file.read() == secret_key key_path = os.path.join(key_file.dirname, key_file.basename) transport = async_validating_transport( requests=[ Request( base_url=identity_endpoint, method="GET", required_headers={"Metadata": "true"}, required_params={"api-version": api_version, "resource": scope}, ), Request( base_url=identity_endpoint, method="GET", required_headers={"Metadata": "true", "Authorization": "Basic {}".format(secret_key)}, required_params={"api-version": api_version, "resource": scope}, ), ], responses=[ # first response gives path to authentication key mock_response(status_code=401, headers={"WWW-Authenticate": "Basic realm={}".format(key_path)}), mock_response( json_payload={ "access_token": access_token, "expires_on": expires_on, "resource": scope, "token_type": "Bearer", } ), ], ) with mock.patch( "os.environ", { EnvironmentVariables.IDENTITY_ENDPOINT: identity_endpoint, EnvironmentVariables.IMDS_ENDPOINT: imds_endpoint, }, ): token = await ManagedIdentityCredential(transport=transport).get_token(scope) assert token.token == access_token assert token.expires_on == expires_on @pytest.mark.asyncio async def test_azure_arc_client_id(): """Azure Arc doesn't support user-assigned managed identity""" with mock.patch( "os.environ", { EnvironmentVariables.IDENTITY_ENDPOINT: "http://localhost:42/token", EnvironmentVariables.IMDS_ENDPOINT: "http://localhost:42", } ): credential = ManagedIdentityCredential(client_id="some-guid") with pytest.raises(ClientAuthenticationError): await credential.get_token("scope")
python
19,050
# This file is generated by /Users/travis/build/MacPython/numpy-wheels/numpy/setup.py # It contains system_info results at the time of building this package. __all__ = ["get_info","show"] atlas_3_10_blas_info={} atlas_3_10_blas_threads_info={} atlas_threads_info={} blas_opt_info={'extra_link_args': ['-Wl,-framework', '-Wl,Accelerate'], 'define_macros': [('NO_ATLAS_INFO', 3), ('HAVE_CBLAS', None)], 'extra_compile_args': ['-msse3', '-I/System/Library/Frameworks/vecLib.framework/Headers']} atlas_blas_threads_info={} openblas_info={} lapack_opt_info={'extra_link_args': ['-Wl,-framework', '-Wl,Accelerate'], 'define_macros': [('NO_ATLAS_INFO', 3), ('HAVE_CBLAS', None)], 'extra_compile_args': ['-msse3']} openblas_lapack_info={} atlas_3_10_threads_info={} atlas_info={} atlas_3_10_info={} lapack_mkl_info={} blas_mkl_info={} atlas_blas_info={} mkl_info={} def get_info(name): g = globals() return g.get(name, g.get(name + "_info", {})) def show(): for name,info_dict in globals().items(): if name[0] == "_" or type(info_dict) is not type({}): continue print(name + ":") if not info_dict: print(" NOT AVAILABLE") for k,v in info_dict.items(): v = str(v) if k == "sources" and len(v) > 200: v = v[:60] + " ...\n... " + v[-60:] print(" %s = %s" % (k,v))
python
1,372
# Electrum - Lightweight Bitcoin Client # Copyright (c) 2011-2016 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import time import queue import os import random import re from collections import defaultdict import threading import socket import json import sys import ipaddress import asyncio from typing import NamedTuple, Optional, Sequence, List, Dict, Tuple import traceback import dns import dns.resolver import aiorpcx from aiorpcx import TaskGroup from aiohttp import ClientResponse from . import util from .util import (log_exceptions, ignore_exceptions, bfh, SilentTaskGroup, make_aiohttp_session, send_exception_to_crash_reporter, is_hash256_str, is_non_negative_integer) from .bitcoin import COIN from . import constants from . import blockchain from . import bitcoin from .constants import CHUNK_SIZE from .blockchain import Blockchain, HEADER_SIZE from .axe_net import AxeNet from .interface import (Interface, serialize_server, deserialize_server, RequestTimedOut, NetworkTimeout, BUCKET_NAME_OF_ONION_SERVERS) from .version import ELECTRUM_VERSION, PROTOCOL_VERSION from .simple_config import SimpleConfig from .i18n import _ from .logging import get_logger, Logger _logger = get_logger(__name__) NODES_RETRY_INTERVAL = 60 SERVER_RETRY_INTERVAL = 10 NUM_TARGET_CONNECTED_SERVERS = 10 NUM_RECENT_SERVERS = 20 def parse_servers(result: Sequence[Tuple[str, str, List[str]]]) -> Dict[str, dict]: """ parse servers list into dict format""" servers = {} for item in result: host = item[1] out = {} version = None pruning_level = '-' if len(item) > 2: for v in item[2]: if re.match(r"[st]\d*", v): protocol, port = v[0], v[1:] if port == '': port = constants.net.DEFAULT_PORTS[protocol] out[protocol] = port elif re.match("v(.?)+", v): version = v[1:] elif re.match(r"p\d*", v): pruning_level = v[1:] if pruning_level == '': pruning_level = '0' if out: out['pruning'] = pruning_level out['version'] = version servers[host] = out return servers def filter_version(servers): def is_recent(version): try: return util.versiontuple(version) >= util.versiontuple(PROTOCOL_VERSION) except Exception as e: return False return {k: v for k, v in servers.items() if is_recent(v.get('version'))} def filter_noonion(servers): return {k: v for k, v in servers.items() if not k.endswith('.onion')} def filter_protocol(hostmap, protocol='s'): '''Filters the hostmap for those implementing protocol. The result is a list in serialized form.''' eligible = [] for host, portmap in hostmap.items(): port = portmap.get(protocol) if port: eligible.append(serialize_server(host, port, protocol)) return eligible def pick_random_server(hostmap=None, protocol='s', exclude_set=None): if hostmap is None: hostmap = constants.net.DEFAULT_SERVERS if exclude_set is None: exclude_set = set() eligible = list(set(filter_protocol(hostmap, protocol)) - exclude_set) return random.choice(eligible) if eligible else None class NetworkParameters(NamedTuple): host: str port: str protocol: str proxy: Optional[dict] auto_connect: bool oneserver: bool = False proxy_modes = ['socks4', 'socks5'] def serialize_proxy(p): if not isinstance(p, dict): return None return ':'.join([p.get('mode'), p.get('host'), p.get('port'), p.get('user', ''), p.get('password', '')]) def deserialize_proxy(s: str) -> Optional[dict]: if not isinstance(s, str): return None if s.lower() == 'none': return None proxy = { "mode":"socks5", "host":"localhost" } # FIXME raw IPv6 address fails here args = s.split(':') n = 0 if proxy_modes.count(args[n]) == 1: proxy["mode"] = args[n] n += 1 if len(args) > n: proxy["host"] = args[n] n += 1 if len(args) > n: proxy["port"] = args[n] n += 1 else: proxy["port"] = "8080" if proxy["mode"] == "http" else "1080" if len(args) > n: proxy["user"] = args[n] n += 1 if len(args) > n: proxy["password"] = args[n] return proxy class BestEffortRequestFailed(Exception): pass class TxBroadcastError(Exception): def get_message_for_gui(self): raise NotImplementedError() class TxBroadcastHashMismatch(TxBroadcastError): def get_message_for_gui(self): return "{}\n{}\n\n{}" \ .format(_("The server returned an unexpected transaction ID when broadcasting the transaction."), _("Consider trying to connect to a different server, or updating Axe Electrum."), str(self)) class TxBroadcastServerReturnedError(TxBroadcastError): def get_message_for_gui(self): return "{}\n{}\n\n{}" \ .format(_("The server returned an error when broadcasting the transaction."), _("Consider trying to connect to a different server, or updating Axe Electrum."), str(self)) class TxBroadcastUnknownError(TxBroadcastError): def get_message_for_gui(self): return "{}\n{}" \ .format(_("Unknown error when broadcasting the transaction."), _("Consider trying to connect to a different server, or updating Axe Electrum.")) class UntrustedServerReturnedError(Exception): def __init__(self, *, original_exception): self.original_exception = original_exception def __str__(self): return _("The server returned an error.") def __repr__(self): return f"<UntrustedServerReturnedError original_exception: {repr(self.original_exception)}>" INSTANCE = None TOR_WARN_MSG = _('Warning: Tor proxy is not detected, to enable' ' it read the docs:') TOR_DOCS_TITLE = _('Tor Setup Docs') TOR_DOCS_URI = ('https://github.com/axerunners/electrum-axe/' 'blob/master/docs/tor.md') TOR_DOCS_URI_QT = f'<br><a href="{TOR_DOCS_URI}">{TOR_DOCS_TITLE}</a>' TOR_DOCS_URI_KIVY = (f'\n\n[color=#00f][ref={TOR_DOCS_URI}]' f'{TOR_DOCS_TITLE}[/ref][/color]') class Network(Logger): """The Network class manages a set of connections to remote electrum servers, each connected socket is handled by an Interface() object. """ LOGGING_SHORTCUT = 'n' TOR_WARN_MSG_QT = f'{TOR_WARN_MSG} {TOR_DOCS_URI_QT}' TOR_WARN_MSG_KIVY = f'{TOR_WARN_MSG} {TOR_DOCS_URI_KIVY}' TOR_WARN_MSG_TXT = f'{TOR_WARN_MSG}\n{TOR_DOCS_URI}' TOR_AUTO_ON_MSG = _('Detect Tor proxy on wallet startup') FIAT_BYPASS_TOR_MSG = _('Bypass Tor proxy for Fiat rates loading') def __init__(self, config: SimpleConfig=None): global INSTANCE INSTANCE = self Logger.__init__(self) self.asyncio_loop = asyncio.get_event_loop() assert self.asyncio_loop.is_running(), "event loop not running" self._loop_thread = None # type: threading.Thread # set by caller; only used for sanity checks if config is None: config = {} # Do not use mutables as default values! self.config = SimpleConfig(config) if isinstance(config, dict) else config # type: SimpleConfig # Autodetect and enable Tor proxy on Network init if self.config.get('tor_auto_on', True): tor_detected = self.detect_tor_proxy() if tor_detected: self.config.set_key('proxy', tor_detected, False) blockchain.read_blockchains(self.config) self.logger.info(f"blockchains {list(map(lambda b: b.forkpoint, blockchain.blockchains.values()))}") self._blockchain_preferred_block = self.config.get('blockchain_preferred_block', None) # type: Optional[Dict] self._blockchain = blockchain.get_best_chain() # Server for addresses and transactions self.default_server = self.config.get('server', None) # Sanitize default server if self.default_server: try: deserialize_server(self.default_server) except: self.logger.warning('failed to parse server-string; falling back to random.') self.default_server = None if not self.default_server: self.default_server = pick_random_server() self.main_taskgroup = None # type: TaskGroup # locks self.restart_lock = asyncio.Lock() self.bhi_lock = asyncio.Lock() self.callback_lock = threading.Lock() self.recent_servers_lock = threading.RLock() # <- re-entrant self.interfaces_lock = threading.Lock() # for mutating/iterating self.interfaces # protx code locks self.protx_info_resp_lock = threading.Lock() self.server_peers = {} # returned by interface (servers that the main interface knows about) self.recent_servers = self._read_recent_servers() # note: needs self.recent_servers_lock self.banner = '' self.donation_address = '' self.relay_fee = None # type: Optional[int] # List of all proposals on the network. self.all_proposals = [] # callbacks set by the GUI self.callbacks = defaultdict(list) # note: needs self.callback_lock dir_path = os.path.join(self.config.path, 'certs') util.make_dir(dir_path) # retry times self.server_retry_time = time.time() self.nodes_retry_time = time.time() # the main server we are currently communicating with self.interface = None # type: Interface # set of servers we have an ongoing connection with self.interfaces = {} # type: Dict[str, Interface] self.auto_connect = self.config.get('auto_connect', True) self.connecting = set() self.server_queue = None self.proxy = None # Dump network messages (all interfaces). Set at runtime from the console. self.debug = False # protx info responses data self.protx_info_resp = [] # create AxeNet self.axe_net = AxeNet(self, config) # create MNList instance from .protx_list import MNList self.mn_list = MNList(self, config) self._set_status('disconnected') def run_from_another_thread(self, coro): assert self._loop_thread != threading.current_thread(), 'must not be called from network thread' fut = asyncio.run_coroutine_threadsafe(coro, self.asyncio_loop) return fut.result() @staticmethod def get_instance() -> Optional["Network"]: return INSTANCE def with_recent_servers_lock(func): def func_wrapper(self, *args, **kwargs): with self.recent_servers_lock: return func(self, *args, **kwargs) return func_wrapper def register_callback(self, callback, events): with self.callback_lock: for event in events: self.callbacks[event].append(callback) def unregister_callback(self, callback): with self.callback_lock: for callbacks in self.callbacks.values(): if callback in callbacks: callbacks.remove(callback) def trigger_callback(self, event, *args): with self.callback_lock: callbacks = self.callbacks[event][:] for callback in callbacks: # FIXME: if callback throws, we will lose the traceback if asyncio.iscoroutinefunction(callback): asyncio.run_coroutine_threadsafe(callback(event, *args), self.asyncio_loop) else: self.asyncio_loop.call_soon_threadsafe(callback, event, *args) def _read_recent_servers(self): if not self.config.path: return [] path = os.path.join(self.config.path, "recent_servers") try: with open(path, "r", encoding='utf-8') as f: data = f.read() return json.loads(data) except: return [] @with_recent_servers_lock def _save_recent_servers(self): if not self.config.path: return path = os.path.join(self.config.path, "recent_servers") s = json.dumps(self.recent_servers, indent=4, sort_keys=True) try: with open(path, "w", encoding='utf-8') as f: f.write(s) except: pass def get_server_height(self): interface = self.interface return interface.tip if interface else 0 async def _server_is_lagging(self): sh = self.get_server_height() if not sh: self.logger.info('no height for main interface') return True lh = self.get_local_height() result = (lh - sh) > 1 if result: self.logger.info(f'{self.default_server} is lagging ({sh} vs {lh})') return result def _set_status(self, status): self.connection_status = status self.notify('status') def is_connected(self): interface = self.interface return interface is not None and interface.ready.done() def is_connecting(self): return self.connection_status == 'connecting' async def _request_server_info(self, interface): await interface.ready session = interface.session async def get_banner(): self.banner = await session.send_request('server.banner') self.notify('banner') async def get_donation_address(): addr = await session.send_request('server.donation_address') if not bitcoin.is_address(addr): if addr: # ignore empty string self.logger.info(f"invalid donation address from server: {repr(addr)}") addr = '' self.donation_address = addr async def get_server_peers(): server_peers = await session.send_request('server.peers.subscribe') random.shuffle(server_peers) max_accepted_peers = len(constants.net.DEFAULT_SERVERS) + NUM_RECENT_SERVERS server_peers = server_peers[:max_accepted_peers] self.server_peers = parse_servers(server_peers) self.notify('servers') async def get_relay_fee(): relayfee = await session.send_request('blockchain.relayfee') if relayfee is None: self.relay_fee = None else: relayfee = int(relayfee * COIN) self.relay_fee = max(0, relayfee) async with TaskGroup() as group: await group.spawn(get_banner) await group.spawn(get_donation_address) await group.spawn(get_server_peers) await group.spawn(get_relay_fee) await group.spawn(self._request_fee_estimates(interface)) async def _request_fee_estimates(self, interface): session = interface.session from .simple_config import FEE_ETA_TARGETS self.config.requested_fee_estimates() async with TaskGroup() as group: histogram_task = await group.spawn(session.send_request('mempool.get_fee_histogram')) fee_tasks = [] for i in FEE_ETA_TARGETS: fee_tasks.append((i, await group.spawn(session.send_request('blockchain.estimatefee', [i])))) self.config.mempool_fees = histogram = histogram_task.result() self.logger.info(f'fee_histogram {histogram}') self.notify('fee_histogram') fee_estimates_eta = {} for nblock_target, task in fee_tasks: fee = int(task.result() * COIN) fee_estimates_eta[nblock_target] = fee if fee < 0: continue self.config.update_fee_estimates(nblock_target, fee) self.logger.info(f'fee_estimates {fee_estimates_eta}') self.notify('fee') def get_status_value(self, key): if key == 'status': value = self.connection_status elif key == 'banner': value = self.banner elif key == 'fee': value = self.config.fee_estimates elif key == 'fee_histogram': value = self.config.mempool_fees elif key == 'servers': value = self.get_servers() elif key == 'protx-info': with self.protx_info_resp_lock: if self.protx_info_resp: value = self.protx_info_resp.pop() else: value = {} else: raise Exception('unexpected trigger key {}'.format(key)) return value def notify(self, key): if key in ['status', 'updated']: self.trigger_callback(key) else: self.trigger_callback(key, self.get_status_value(key)) def get_parameters(self) -> NetworkParameters: host, port, protocol = deserialize_server(self.default_server) return NetworkParameters(host=host, port=port, protocol=protocol, proxy=self.proxy, auto_connect=self.auto_connect, oneserver=self.oneserver) def get_donation_address(self): if self.is_connected(): return self.donation_address def get_interfaces(self) -> List[str]: """The list of servers for the connected interfaces.""" with self.interfaces_lock: return list(self.interfaces) @with_recent_servers_lock def get_servers(self): # note: order of sources when adding servers here is crucial! # don't let "server_peers" overwrite anything, # otherwise main server can eclipse the client out = dict() # add servers received from main interface server_peers = self.server_peers if server_peers: out.update(filter_version(server_peers.copy())) # hardcoded servers out.update(constants.net.DEFAULT_SERVERS) # add recent servers for s in self.recent_servers: try: host, port, protocol = deserialize_server(s) except: continue if host in out: out[host].update({protocol: port}) else: out[host] = {protocol: port} # potentially filter out some if self.config.get('noonion'): out = filter_noonion(out) return out def _start_interface(self, server: str): if server not in self.interfaces and server not in self.connecting: if server == self.default_server: self.logger.info(f"connecting to {server} as new interface") self._set_status('connecting') self.connecting.add(server) self.server_queue.put(server) def _start_random_interface(self): with self.interfaces_lock: exclude_set = self.disconnected_servers | set(self.interfaces) | self.connecting server = pick_random_server(self.get_servers(), self.protocol, exclude_set) if server: self._start_interface(server) return server def _set_proxy(self, proxy: Optional[dict]): self.proxy = proxy # Store these somewhere so we can un-monkey-patch if not hasattr(socket, "_getaddrinfo"): socket._getaddrinfo = socket.getaddrinfo if proxy: self.logger.info(f'setting proxy {proxy}') # prevent dns leaks, see http://stackoverflow.com/questions/13184205/dns-over-proxy socket.getaddrinfo = lambda *args: [(socket.AF_INET, socket.SOCK_STREAM, 6, '', (args[0], args[1]))] else: if sys.platform == 'win32': # On Windows, socket.getaddrinfo takes a mutex, and might hold it for up to 10 seconds # when dns-resolving. To speed it up drastically, we resolve dns ourselves, outside that lock. # see #4421 socket.getaddrinfo = self._fast_getaddrinfo else: socket.getaddrinfo = socket._getaddrinfo self.trigger_callback('proxy_set', self.proxy) @staticmethod def _fast_getaddrinfo(host, *args, **kwargs): def needs_dns_resolving(host): try: ipaddress.ip_address(host) return False # already valid IP except ValueError: pass # not an IP if str(host) in ('localhost', 'localhost.',): return False return True def resolve_with_dnspython(host): addrs = [] # try IPv6 try: answers = dns.resolver.query(host, dns.rdatatype.AAAA) addrs += [str(answer) for answer in answers] except dns.exception.DNSException as e: pass except BaseException as e: _logger.info(f'dnspython failed to resolve dns (AAAA) with error: {e}') # try IPv4 try: answers = dns.resolver.query(host, dns.rdatatype.A) addrs += [str(answer) for answer in answers] except dns.exception.DNSException as e: # dns failed for some reason, e.g. dns.resolver.NXDOMAIN this is normal. # Simply report back failure; except if we already have some results. if not addrs: raise socket.gaierror(11001, 'getaddrinfo failed') from e except BaseException as e: # Possibly internal error in dnspython :( see #4483 _logger.info(f'dnspython failed to resolve dns (A) with error: {e}') if addrs: return addrs # Fall back to original socket.getaddrinfo to resolve dns. return [host] addrs = [host] if needs_dns_resolving(host): addrs = resolve_with_dnspython(host) list_of_list_of_socketinfos = [socket._getaddrinfo(addr, *args, **kwargs) for addr in addrs] list_of_socketinfos = [item for lst in list_of_list_of_socketinfos for item in lst] return list_of_socketinfos @log_exceptions async def set_parameters(self, net_params: NetworkParameters): proxy = net_params.proxy proxy_str = serialize_proxy(proxy) host, port, protocol = net_params.host, net_params.port, net_params.protocol server_str = serialize_server(host, port, protocol) # sanitize parameters try: deserialize_server(serialize_server(host, port, protocol)) if proxy: proxy_modes.index(proxy['mode']) + 1 int(proxy['port']) except: return self.config.set_key('auto_connect', net_params.auto_connect, False) self.config.set_key('oneserver', net_params.oneserver, False) self.config.set_key('proxy', proxy_str, False) self.config.set_key('server', server_str, True) # abort if changes were not allowed by config if self.config.get('server') != server_str \ or self.config.get('proxy') != proxy_str \ or self.config.get('oneserver') != net_params.oneserver: return async with self.restart_lock: self.auto_connect = net_params.auto_connect if self.proxy != proxy or self.protocol != protocol or self.oneserver != net_params.oneserver: # Restart the network defaulting to the given server await self._stop() self.default_server = server_str await self._start() elif self.default_server != server_str: await self.switch_to_interface(server_str) else: await self.switch_lagging_interface() await self.axe_net.set_parameters() @log_exceptions async def restart(self): async with self.restart_lock: await self._stop() await self._start() def _set_oneserver(self, oneserver: bool): self.num_server = NUM_TARGET_CONNECTED_SERVERS if not oneserver else 0 self.oneserver = bool(oneserver) async def _switch_to_random_interface(self): '''Switch to a random connected server other than the current one''' servers = self.get_interfaces() # Those in connected state if self.default_server in servers: servers.remove(self.default_server) if servers: await self.switch_to_interface(random.choice(servers)) async def switch_lagging_interface(self): '''If auto_connect and lagging, switch interface''' if self.auto_connect and await self._server_is_lagging(): # switch to one that has the correct header (not height) best_header = self.blockchain().read_header(self.get_local_height()) with self.interfaces_lock: interfaces = list(self.interfaces.values()) filtered = list(filter(lambda iface: iface.tip_header == best_header, interfaces)) if filtered: chosen_iface = random.choice(filtered) await self.switch_to_interface(chosen_iface.server) async def switch_unwanted_fork_interface(self): """If auto_connect and main interface is not on preferred fork, try to switch to preferred fork. """ if not self.auto_connect or not self.interface: return with self.interfaces_lock: interfaces = list(self.interfaces.values()) # try to switch to preferred fork if self._blockchain_preferred_block: pref_height = self._blockchain_preferred_block['height'] pref_hash = self._blockchain_preferred_block['hash'] if self.interface.blockchain.check_hash(pref_height, pref_hash): return # already on preferred fork filtered = list(filter(lambda iface: iface.blockchain.check_hash(pref_height, pref_hash), interfaces)) if filtered: self.logger.info("switching to preferred fork") chosen_iface = random.choice(filtered) await self.switch_to_interface(chosen_iface.server) return else: self.logger.info("tried to switch to preferred fork but no interfaces are on it") # try to switch to best chain if self.blockchain().parent is None: return # already on best chain filtered = list(filter(lambda iface: iface.blockchain.parent is None, interfaces)) if filtered: self.logger.info("switching to best chain") chosen_iface = random.choice(filtered) await self.switch_to_interface(chosen_iface.server) else: # FIXME switch to best available? self.logger.info("tried to switch to best chain but no interfaces are on it") async def switch_to_interface(self, server: str): """Switch to server as our main interface. If no connection exists, queue interface to be started. The actual switch will happen when the interface becomes ready. """ self.default_server = server old_interface = self.interface old_server = old_interface.server if old_interface else None # Stop any current interface in order to terminate subscriptions, # and to cancel tasks in interface.group. # However, for headers sub, give preference to this interface # over unknown ones, i.e. start it again right away. if old_server and old_server != server: await self._close_interface(old_interface) if len(self.interfaces) <= self.num_server: self._start_interface(old_server) if server not in self.interfaces: self.interface = None self._start_interface(server) return i = self.interfaces[server] if old_interface != i: self.logger.info(f"switching to {server}") blockchain_updated = i.blockchain != self.blockchain() self.interface = i await i.group.spawn(self._request_server_info(i)) self.trigger_callback('default_server_changed') self._set_status('connected') self.trigger_callback('network_updated') if blockchain_updated: self.trigger_callback('blockchain_updated') async def _close_interface(self, interface): if interface: with self.interfaces_lock: if self.interfaces.get(interface.server) == interface: self.interfaces.pop(interface.server) if interface.server == self.default_server: self.interface = None await interface.close() @with_recent_servers_lock def _add_recent_server(self, server): # list is ordered if server in self.recent_servers: self.recent_servers.remove(server) self.recent_servers.insert(0, server) self.recent_servers = self.recent_servers[:NUM_RECENT_SERVERS] self._save_recent_servers() async def connection_down(self, interface: Interface): '''A connection to server either went down, or was never made. We distinguish by whether it is in self.interfaces.''' if not interface: return server = interface.server self.disconnected_servers.add(server) if server == self.default_server: self._set_status('disconnected') await self._close_interface(interface) self.trigger_callback('network_updated') def get_network_timeout_seconds(self, request_type=NetworkTimeout.Generic) -> int: if self.oneserver and not self.auto_connect: return request_type.MOST_RELAXED if self.proxy: return request_type.RELAXED return request_type.NORMAL @ignore_exceptions # do not kill main_taskgroup @log_exceptions async def _run_new_interface(self, server): interface = Interface(self, server, self.proxy) # note: using longer timeouts here as DNS can sometimes be slow! timeout = self.get_network_timeout_seconds(NetworkTimeout.Generic) try: await asyncio.wait_for(interface.ready, timeout) except BaseException as e: self.logger.info(f"couldn't launch iface {server} -- {repr(e)}") await interface.close() return else: with self.interfaces_lock: assert server not in self.interfaces self.interfaces[server] = interface finally: try: self.connecting.remove(server) except KeyError: pass if server == self.default_server: await self.switch_to_interface(server) self._add_recent_server(server) self.trigger_callback('network_updated') def check_interface_against_healthy_spread_of_connected_servers(self, iface_to_check) -> bool: # main interface is exempt. this makes switching servers easier if iface_to_check.is_main_server(): return True if not iface_to_check.bucket_based_on_ipaddress(): return True # bucket connected interfaces with self.interfaces_lock: interfaces = list(self.interfaces.values()) if iface_to_check in interfaces: interfaces.remove(iface_to_check) buckets = defaultdict(list) for iface in interfaces: buckets[iface.bucket_based_on_ipaddress()].append(iface) # check proposed server against buckets onion_servers = buckets[BUCKET_NAME_OF_ONION_SERVERS] if iface_to_check.is_tor(): # keep number of onion servers below half of all connected servers if len(onion_servers) > NUM_TARGET_CONNECTED_SERVERS // 2: return False else: bucket = iface_to_check.bucket_based_on_ipaddress() if len(buckets[bucket]) > 0: return False return True async def _init_headers_file(self): b = blockchain.get_best_chain() filename = b.path() len_checkpoints = len(constants.net.CHECKPOINTS) length = HEADER_SIZE * len_checkpoints * CHUNK_SIZE if not os.path.exists(filename) or os.path.getsize(filename) < length: with open(filename, 'wb') as f: for i in range(len_checkpoints): for height, header_data in b.checkpoints[i][2]: f.seek(height*80) bin_header = util.bfh(header_data) f.write(bin_header) util.ensure_sparse_file(filename) with b.lock: b.update_size() def best_effort_reliable(func): async def make_reliable_wrapper(self, *args, **kwargs): for i in range(10): iface = self.interface # retry until there is a main interface if not iface: await asyncio.sleep(0.1) continue # try again # wait for it to be usable iface_ready = iface.ready iface_disconnected = iface.got_disconnected await asyncio.wait([iface_ready, iface_disconnected], return_when=asyncio.FIRST_COMPLETED) if not iface_ready.done() or iface_ready.cancelled(): await asyncio.sleep(0.1) continue # try again # try actual request success_fut = asyncio.ensure_future(func(self, *args, **kwargs)) await asyncio.wait([success_fut, iface_disconnected], return_when=asyncio.FIRST_COMPLETED) if success_fut.done() and not success_fut.cancelled(): if success_fut.exception(): try: raise success_fut.exception() except RequestTimedOut: await iface.close() await iface_disconnected continue # try again return success_fut.result() # otherwise; try again raise BestEffortRequestFailed('no interface to do request on... gave up.') return make_reliable_wrapper def catch_server_exceptions(func): async def wrapper(self, *args, **kwargs): try: return await func(self, *args, **kwargs) except aiorpcx.jsonrpc.CodeMessageError as e: raise UntrustedServerReturnedError(original_exception=e) from e return wrapper @best_effort_reliable @catch_server_exceptions async def get_merkle_for_transaction(self, tx_hash: str, tx_height: int) -> dict: if not is_hash256_str(tx_hash): raise Exception(f"{repr(tx_hash)} is not a txid") if not is_non_negative_integer(tx_height): raise Exception(f"{repr(tx_height)} is not a block height") return await self.interface.session.send_request('blockchain.transaction.get_merkle', [tx_hash, tx_height]) @best_effort_reliable async def broadcast_transaction(self, tx, *, timeout=None) -> None: if timeout is None: timeout = self.get_network_timeout_seconds(NetworkTimeout.Urgent) try: out = await self.interface.session.send_request('blockchain.transaction.broadcast', [str(tx)], timeout=timeout) # note: both 'out' and exception messages are untrusted input from the server except (RequestTimedOut, asyncio.CancelledError, asyncio.TimeoutError): raise # pass-through except aiorpcx.jsonrpc.CodeMessageError as e: self.logger.info(f"broadcast_transaction error [DO NOT TRUST THIS MESSAGE]: {repr(e)}") raise TxBroadcastServerReturnedError(self.sanitize_tx_broadcast_response(e.message)) from e except BaseException as e: # intentional BaseException for sanity! self.logger.info(f"broadcast_transaction error2 [DO NOT TRUST THIS MESSAGE]: {repr(e)}") send_exception_to_crash_reporter(e) raise TxBroadcastUnknownError() from e if out != tx.txid(): self.logger.info(f"unexpected txid for broadcast_transaction [DO NOT TRUST THIS MESSAGE]: {out} != {tx.txid()}") raise TxBroadcastHashMismatch(_("Server returned unexpected transaction ID.")) @staticmethod def sanitize_tx_broadcast_response(server_msg) -> str: # Unfortunately, bitcoind and hence the Electrum protocol doesn't return a useful error code. # So, we use substring matching to grok the error message. # server_msg is untrusted input so it should not be shown to the user. see #4968 server_msg = str(server_msg) server_msg = server_msg.replace("\n", r"\n") # https://github.com/bitcoin/bitcoin/blob/cd42553b1178a48a16017eff0b70669c84c3895c/src/policy/policy.cpp # grep "reason =" policy_error_messages = { r"version": _("Transaction uses non-standard version."), r"tx-size": _("The transaction was rejected because it is too large (in bytes)."), r"scriptsig-size": None, r"scriptsig-not-pushonly": None, r"scriptpubkey": None, r"bare-multisig": None, r"dust": _("Transaction could not be broadcast due to dust outputs."), r"multi-op-return": _("The transaction was rejected because it contains multiple OP_RETURN outputs."), } for substring in policy_error_messages: if substring in server_msg: msg = policy_error_messages[substring] return msg if msg else substring # https://github.com/bitcoin/bitcoin/blob/cd42553b1178a48a16017eff0b70669c84c3895c/src/script/script_error.cpp script_error_messages = { r"Script evaluated without error but finished with a false/empty top stack element", r"Script failed an OP_VERIFY operation", r"Script failed an OP_EQUALVERIFY operation", r"Script failed an OP_CHECKMULTISIGVERIFY operation", r"Script failed an OP_CHECKSIGVERIFY operation", r"Script failed an OP_NUMEQUALVERIFY operation", r"Script is too big", r"Push value size limit exceeded", r"Operation limit exceeded", r"Stack size limit exceeded", r"Signature count negative or greater than pubkey count", r"Pubkey count negative or limit exceeded", r"Opcode missing or not understood", r"Attempted to use a disabled opcode", r"Operation not valid with the current stack size", r"Operation not valid with the current altstack size", r"OP_RETURN was encountered", r"Invalid OP_IF construction", r"Negative locktime", r"Locktime requirement not satisfied", r"Signature hash type missing or not understood", r"Non-canonical DER signature", r"Data push larger than necessary", r"Only non-push operators allowed in signatures", r"Non-canonical signature: S value is unnecessarily high", r"Dummy CHECKMULTISIG argument must be zero", r"OP_IF/NOTIF argument must be minimal", r"Signature must be zero for failed CHECK(MULTI)SIG operation", r"NOPx reserved for soft-fork upgrades", r"Public key is neither compressed or uncompressed", r"Extra items left on stack after execution", r"Signature is found in scriptCode", } for substring in script_error_messages: if substring in server_msg: return substring # https://github.com/bitcoin/bitcoin/blob/cd42553b1178a48a16017eff0b70669c84c3895c/src/validation.cpp # grep "REJECT_" # should come after script_error.cpp (due to e.g. non-mandatory-script-verify-flag) validation_error_messages = { r"coinbase", r"tx-size-small", r"non-final", r"txn-already-in-mempool", r"txn-mempool-conflict", r"txn-already-known", r"non-BIP68-final", r"bad-txns-nonstandard-inputs", r"bad-txns-too-many-sigops", r"mempool min fee not met", r"min relay fee not met", r"absurdly-high-fee", r"too-long-mempool-chain", r"bad-txns-spends-conflicting-tx", r"insufficient fee", r"too many potential replacements", r"replacement-adds-unconfirmed", r"mempool full", r"non-mandatory-script-verify-flag", r"mandatory-script-verify-flag-failed", } for substring in validation_error_messages: if substring in server_msg: return substring # https://github.com/bitcoin/bitcoin/blob/cd42553b1178a48a16017eff0b70669c84c3895c/src/rpc/rawtransaction.cpp # grep "RPC_TRANSACTION" # grep "RPC_DESERIALIZATION_ERROR" # https://github.com/bitcoin/bitcoin/blob/d7d7d315060620446bd363ca50f95f79d3260db7/src/util/error.cpp rawtransaction_error_messages = { r"Missing inputs", r"transaction already in block chain", r"Transaction already in block chain", r"TX decode failed", r"Peer-to-peer functionality missing or disabled", r"Transaction rejected by AcceptToMemoryPool", r"AcceptToMemoryPool failed", } for substring in rawtransaction_error_messages: if substring in server_msg: return substring # https://github.com/bitcoin/bitcoin/blob/cd42553b1178a48a16017eff0b70669c84c3895c/src/consensus/tx_verify.cpp # grep "REJECT_" tx_verify_error_messages = { r"bad-txns-vin-empty", r"bad-txns-vout-empty", r"bad-txns-oversize", r"bad-txns-vout-negative", r"bad-txns-vout-toolarge", r"bad-txns-txouttotal-toolarge", r"bad-txns-inputs-duplicate", r"bad-cb-length", r"bad-txns-prevout-null", r"bad-txns-inputs-missingorspent", r"bad-txns-premature-spend-of-coinbase", r"bad-txns-inputvalues-outofrange", r"bad-txns-in-belowout", r"bad-txns-fee-outofrange", } for substring in tx_verify_error_messages: if substring in server_msg: return substring # Axed v0.13.1 specific errors axed_specific_error_messages = { r"bad-qc-not-allowed", r"bad-qc-missing", r"bad-qc-block", r"bad-qc-invalid-null", r"bad-qc-dup", r"bad-qc-height", r"bad-qc-invalid", r"bad-tx-payload", r"bad-qc-dup", r"bad-qc-premature", r"bad-qc-version", r"bad-qc-quorum-hash", r"bad-qc-type", r"bad-qc-payload", r"commitment-not-found", r"excess-quorums", r"bad-protx-addr", r"bad-protx-ipaddr", r"bad-protx-addr-port", r"bad-protx-ipaddr-port", r"bad-protx-sig", r"bad-protx-inputs-hash", r"bad-protx-type", r"bad-protx-payload", r"bad-protx-version", r"bad-protx-mode", r"bad-protx-key-null", r"bad-protx-payee", r"bad-protx-payee-dest", r"bad-protx-payee-reuse", r"bad-protx-operator-reward", r"bad-protx-collateral", r"bad-protx-collateral-dest", r"bad-protx-collateral-pkh", r"bad-protx-collateral-index", r"bad-protx-collateral-reuse", r"bad-protx-dup-addr", r"bad-protx-dup-key", r"bad-protx-key-not-same", r"bad-protx-hash", r"bad-protx-operator-payee", r"bad-protx-reason", r"bad-tx-type", r"bad-tx-type-check", r"bad-tx-type-proc", r"failed-check-special-tx", r"bad-cbtx-type", r"bad-cbtx-invalid", r"bad-cbtx-payload", r"bad-cbtx-version", r"bad-cbtx-height", r"bad-cbtx-mnmerkleroot", r"failed-calc-cb-mnmerkleroot", r"failed-dmn-block", r"bad-txns-payload-oversize", r"bad-txns-type", r"bad-txns-cb-type", r"qc-not-allowed", r"bad-txlockrequest", r"tx-txlock-conflict", r"tx-txlockreq-mempool-conflict", r"txlockreq-tx-mempool-conflict", r"protx-dup", r"mempool min fee not met", r"insufficient priority", r"rate limited free transaction", r"bad-txns-fee-negative", r"bad-txns-BIP30", r"bad-sb-start", r"bad-blk-sigops", r"bad-txns-nonfinal", r"bad-cb-amount", r"bad-cb-payee", r"high-hash", r"devnet-genesis", r"bad-txnmrklroot", r"bad-txns-duplicate", r"bad-blk-length", r"bad-cb-missing", r"bad-cb-multiple", r"conflict-tx-lock", r"forked chain older than last checkpoint", r"incorrect proof of work (DGW pre-fd-diffbitsork)", r"bad-diffbits", r"time-too-old", r"time-too-new", r"bad-cb-height", r"bad-cb-type", r"bad-prevblk", r"Inputs unavailable", r"Transaction check failed", r"bad-version", } for substring in axed_specific_error_messages: if substring in server_msg: return substring # otherwise: return _("Unknown error") @best_effort_reliable @catch_server_exceptions async def request_chunk(self, height: int, tip=None, *, can_return_early=False): if not is_non_negative_integer(height): raise Exception(f"{repr(height)} is not a block height") return await self.interface.request_chunk(height, tip=tip, can_return_early=can_return_early) @best_effort_reliable @catch_server_exceptions async def get_transaction(self, tx_hash: str, *, timeout=None) -> str: if not is_hash256_str(tx_hash): raise Exception(f"{repr(tx_hash)} is not a txid") return await self.interface.session.send_request('blockchain.transaction.get', [tx_hash], timeout=timeout) @best_effort_reliable @catch_server_exceptions async def get_history_for_scripthash(self, sh: str) -> List[dict]: if not is_hash256_str(sh): raise Exception(f"{repr(sh)} is not a scripthash") return await self.interface.session.send_request('blockchain.scripthash.get_history', [sh]) @best_effort_reliable @catch_server_exceptions async def listunspent_for_scripthash(self, sh: str) -> List[dict]: if not is_hash256_str(sh): raise Exception(f"{repr(sh)} is not a scripthash") return await self.interface.session.send_request('blockchain.scripthash.listunspent', [sh]) @best_effort_reliable @catch_server_exceptions async def get_balance_for_scripthash(self, sh: str) -> dict: if not is_hash256_str(sh): raise Exception(f"{repr(sh)} is not a scripthash") return await self.interface.session.send_request('blockchain.scripthash.get_balance', [sh]) @best_effort_reliable @catch_server_exceptions async def request_protx_diff(self, *, timeout=None) -> dict: mn_list = self.mn_list base_height = mn_list.protx_height height = self.get_local_height() if not height or height <= base_height: return activation_height = constants.net.DIP3_ACTIVATION_HEIGHT if base_height <= 1: if base_height == 0: # on protx diff first allowed height is 1 base_height = 1 if height > activation_height: height = activation_height + 1 elif height - base_height > CHUNK_SIZE: height = mn_list.calc_max_height(base_height, height) try: params = (base_height, height) mn_list.sent_protx_diff.put_nowait(params) except asyncio.QueueFull: self.logger.info('ignore excess protx diff request') return try: res = None err = None s = self.interface.session res = await s.send_request('protx.diff', params, timeout=timeout) except asyncio.TimeoutError: err = f'request_protx_diff(), params={params}: timeout' except asyncio.CancelledError: err = f'request_protx_diff(), params={params}: cancelled' except Exception as e: err = f'request_protx_diff(), params={params}: {repr(e)}' self.trigger_callback('protx-diff', {'error': err, 'result': res, 'params': params}) @best_effort_reliable @catch_server_exceptions async def request_protx_info(self, protx_hash: str,*, timeout=None): ''' Request detailed information about a deterministic masternode. protx_hash: The hash of the initial ProRegTx ''' if not is_hash256_str(protx_hash): raise Exception(f"{repr(protx_hash)} is not a txid") try: err = None res = await self.interface.session.send_request('protx.info', [protx_hash], timeout=timeout) except Exception as e: err = str(e) res = None with self.protx_info_resp_lock: self.protx_info_resp.insert(0, {'error': err, 'result': res}) self.notify('protx-info') def blockchain(self) -> Blockchain: interface = self.interface if interface and interface.blockchain is not None: self._blockchain = interface.blockchain return self._blockchain def get_blockchains(self): out = {} # blockchain_id -> list(interfaces) with blockchain.blockchains_lock: blockchain_items = list(blockchain.blockchains.items()) with self.interfaces_lock: interfaces_values = list(self.interfaces.values()) for chain_id, bc in blockchain_items: r = list(filter(lambda i: i.blockchain==bc, interfaces_values)) if r: out[chain_id] = r return out def _set_preferred_chain(self, chain: Blockchain): height = chain.get_max_forkpoint() header_hash = chain.get_hash(height) self._blockchain_preferred_block = { 'height': height, 'hash': header_hash, } self.config.set_key('blockchain_preferred_block', self._blockchain_preferred_block) async def follow_chain_given_id(self, chain_id: str) -> None: bc = blockchain.blockchains.get(chain_id) if not bc: raise Exception('blockchain {} not found'.format(chain_id)) self._set_preferred_chain(bc) # select server on this chain with self.interfaces_lock: interfaces = list(self.interfaces.values()) interfaces_on_selected_chain = list(filter(lambda iface: iface.blockchain == bc, interfaces)) if len(interfaces_on_selected_chain) == 0: return chosen_iface = random.choice(interfaces_on_selected_chain) # switch to server (and save to config) net_params = self.get_parameters() host, port, protocol = deserialize_server(chosen_iface.server) net_params = net_params._replace(host=host, port=port, protocol=protocol) await self.set_parameters(net_params) async def follow_chain_given_server(self, server_str: str) -> None: # note that server_str should correspond to a connected interface iface = self.interfaces.get(server_str) if iface is None: return self._set_preferred_chain(iface.blockchain) # switch to server (and save to config) net_params = self.get_parameters() host, port, protocol = deserialize_server(server_str) net_params = net_params._replace(host=host, port=port, protocol=protocol) await self.set_parameters(net_params) def get_local_height(self): return self.blockchain().height() def export_checkpoints(self, path): """Run manually to generate blockchain checkpoints. Kept for console use only. """ cp = self.blockchain().get_checkpoints() with open(path, 'w', encoding='utf-8') as f: f.write(json.dumps(cp, indent=4)) async def _start(self): assert not self.main_taskgroup self.main_taskgroup = main_taskgroup = SilentTaskGroup() assert not self.interface and not self.interfaces assert not self.connecting and not self.server_queue self.logger.info('starting network') self.disconnected_servers = set([]) self.protocol = deserialize_server(self.default_server)[2] self.server_queue = queue.Queue() self._set_proxy(deserialize_proxy(self.config.get('proxy'))) self._set_oneserver(self.config.get('oneserver', False)) self._start_interface(self.default_server) async def main(): try: await self._init_headers_file() # note: if a task finishes with CancelledError, that # will NOT raise, and the group will keep the other tasks running async with main_taskgroup as group: await group.spawn(self._maintain_sessions()) await group.spawn(self._gather_protx_info()) [await group.spawn(job) for job in self._jobs] except Exception as e: self.logger.exception('') raise e asyncio.run_coroutine_threadsafe(main(), self.asyncio_loop) self.trigger_callback('network_updated') def start(self, jobs: List=None): self._jobs = jobs or [] asyncio.run_coroutine_threadsafe(self._start(), self.asyncio_loop) self.axe_net.start() self.mn_list.start() @log_exceptions async def _stop(self, full_shutdown=False): self.logger.info("stopping network") try: await asyncio.wait_for(self.main_taskgroup.cancel_remaining(), timeout=2) except (asyncio.TimeoutError, asyncio.CancelledError) as e: self.logger.info(f"exc during main_taskgroup cancellation: {repr(e)}") self.main_taskgroup = None # type: TaskGroup self.interface = None # type: Interface self.interfaces = {} # type: Dict[str, Interface] self.connecting.clear() self.server_queue = None if not full_shutdown: self.trigger_callback('network_updated') def stop(self): assert self._loop_thread != threading.current_thread(), 'must not be called from network thread' self.mn_list.stop() fut = asyncio.run_coroutine_threadsafe(self._stop(full_shutdown=True), self.asyncio_loop) try: fut.result(timeout=2) except (asyncio.TimeoutError, asyncio.CancelledError): pass self.axe_net.stop() async def _ensure_there_is_a_main_interface(self): if self.is_connected(): return now = time.time() # if auto_connect is set, try a different server if self.auto_connect and not self.is_connecting(): await self._switch_to_random_interface() # if auto_connect is not set, or still no main interface, retry current if not self.is_connected() and not self.is_connecting(): if self.default_server in self.disconnected_servers: if now - self.server_retry_time > SERVER_RETRY_INTERVAL: self.disconnected_servers.remove(self.default_server) self.server_retry_time = now else: await self.switch_to_interface(self.default_server) async def _maintain_sessions(self): async def launch_already_queued_up_new_interfaces(): while self.server_queue.qsize() > 0: server = self.server_queue.get() await self.main_taskgroup.spawn(self._run_new_interface(server)) async def maybe_queue_new_interfaces_to_be_launched_later(): now = time.time() for i in range(self.num_server - len(self.interfaces) - len(self.connecting)): # FIXME this should try to honour "healthy spread of connected servers" self._start_random_interface() if now - self.nodes_retry_time > NODES_RETRY_INTERVAL: self.logger.info('network: retrying connections') self.disconnected_servers = set([]) self.nodes_retry_time = now async def maintain_healthy_spread_of_connected_servers(): with self.interfaces_lock: interfaces = list(self.interfaces.values()) random.shuffle(interfaces) for iface in interfaces: if not self.check_interface_against_healthy_spread_of_connected_servers(iface): self.logger.info(f"disconnecting from {iface.server}. too many connected " f"servers already in bucket {iface.bucket_based_on_ipaddress()}") await self._close_interface(iface) async def maintain_main_interface(): await self._ensure_there_is_a_main_interface() if self.is_connected(): if self.config.is_fee_estimates_update_required(): await self.interface.group.spawn(self._request_fee_estimates, self.interface) while True: try: await launch_already_queued_up_new_interfaces() await maybe_queue_new_interfaces_to_be_launched_later() await maintain_healthy_spread_of_connected_servers() await maintain_main_interface() except asyncio.CancelledError: # suppress spurious cancellations group = self.main_taskgroup if not group or group._closed: raise await asyncio.sleep(0.1) async def _gather_protx_info(self): mn_list = self.mn_list while mn_list.protx_loading: # start after protx diffs loaded await asyncio.sleep(1) loop = self.asyncio_loop get_hashes = await loop.run_in_executor(None, mn_list.process_info) last_process_time = time.time() while True: if not get_hashes: await asyncio.sleep(60) for h in get_hashes: try: await self.request_protx_info(h) except Exception as e: self.logger.info(f'_gather_protx_info error {str(e)}') if time.time() - last_process_time > 60: break await asyncio.sleep(0.1) get_hashes = await loop.run_in_executor(None, mn_list.process_info) last_process_time = time.time() await asyncio.sleep(0.1) @classmethod async def _send_http_on_proxy(cls, method: str, url: str, params: str = None, body: bytes = None, json: dict = None, headers=None, on_finish=None, timeout=None): async def default_on_finish(resp: ClientResponse): resp.raise_for_status() return await resp.text() if headers is None: headers = {} if on_finish is None: on_finish = default_on_finish network = cls.get_instance() proxy = network.proxy if network else None async with make_aiohttp_session(proxy, timeout=timeout) as session: if method == 'get': async with session.get(url, params=params, headers=headers) as resp: return await on_finish(resp) elif method == 'post': assert body is not None or json is not None, 'body or json must be supplied if method is post' if body is not None: async with session.post(url, data=body, headers=headers) as resp: return await on_finish(resp) elif json is not None: async with session.post(url, json=json, headers=headers) as resp: return await on_finish(resp) else: assert False @classmethod def send_http_on_proxy(cls, method, url, **kwargs): network = cls.get_instance() if network: assert network._loop_thread is not threading.currentThread() loop = network.asyncio_loop else: loop = asyncio.get_event_loop() coro = asyncio.run_coroutine_threadsafe(cls._send_http_on_proxy(method, url, **kwargs), loop) # note: _send_http_on_proxy has its own timeout, so no timeout here: return coro.result() @classmethod def detect_tor_proxy(cls, proxy=None): detected = None tor_ip = '127.0.0.1' tor_ports = [9050, 9150] proxies = [('socks5', tor_ip, p) for p in tor_ports] if proxy: try: psplit = proxy.split(':')[:3] proxies.insert(0, (psplit[0], psplit[1], int(psplit[2]))) except: pass if hasattr(socket, "_socketobject"): s = socket._socketobject(socket.AF_INET, socket.SOCK_STREAM) else: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(0.1) for p in proxies: try: s.connect(p[1:]) # Tor responds uniquely to HTTP-like requests s.send(b"GET\n") if b"Tor is not an HTTP Proxy" in s.recv(1024): detected = p break except socket.error: continue return "%s:%s:%s::" % detected if detected else None def proxy_is_tor(self, proxy): if proxy is None: return False if hasattr(socket, "_socketobject"): s = socket._socketobject(socket.AF_INET, socket.SOCK_STREAM) else: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) proxy_host = proxy.get('host', None) proxy_port = int(proxy.get('port', -1)) if proxy_host is None or proxy_port < 0: return False try: s.settimeout(0.1) s.connect((proxy_host, proxy_port)) s.send(b"GET\n") if b"Tor is not an HTTP Proxy" in s.recv(1024): return True except socket.error: return False return False # methods used in scripts async def get_peers(self): while not self.is_connected(): await asyncio.sleep(1) session = self.interface.session return parse_servers(await session.send_request('server.peers.subscribe')) async def send_multiple_requests(self, servers: List[str], method: str, params: Sequence): responses = dict() async def get_response(server): interface = Interface(self, server, self.proxy) timeout = self.get_network_timeout_seconds(NetworkTimeout.Urgent) try: await asyncio.wait_for(interface.ready, timeout) except BaseException as e: await interface.close() return try: res = await interface.session.send_request(method, params, timeout=10) except Exception as e: res = e responses[interface.server] = res async with TaskGroup() as group: for server in servers: await group.spawn(get_response(server)) return responses
python
66,208
# Copyright DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from cassandra.datastax.cloud import parse_metadata_info from cassandra.query import SimpleStatement try: import unittest2 as unittest except ImportError: import unittest # noqa import six from ssl import SSLContext, PROTOCOL_TLSv1 from cassandra import DriverException, ConsistencyLevel, InvalidRequest from cassandra.cluster import NoHostAvailable, ExecutionProfile, Cluster from cassandra.connection import SniEndPoint from cassandra.auth import PlainTextAuthProvider from cassandra.policies import TokenAwarePolicy, DCAwareRoundRobinPolicy, ConstantReconnectionPolicy from mock import patch from tests.integration import requirescloudproxy from tests.integration.util import wait_until_not_raised from tests.integration.advanced.cloud import CloudProxyCluster, CLOUD_PROXY_SERVER DISALLOWED_CONSISTENCIES = [ ConsistencyLevel.ANY, ConsistencyLevel.ONE, ConsistencyLevel.LOCAL_ONE ] @requirescloudproxy class CloudTests(CloudProxyCluster): def hosts_up(self): return [h for h in self.cluster.metadata.all_hosts() if h.is_up] def test_resolve_and_connect(self): self.connect(self.creds) self.assertEqual(len(self.hosts_up()), 3) for host in self.cluster.metadata.all_hosts(): self.assertTrue(host.is_up) self.assertIsInstance(host.endpoint, SniEndPoint) self.assertEqual(str(host.endpoint), "{}:{}:{}".format( host.endpoint.address, host.endpoint.port, host.host_id)) self.assertIn(host.endpoint._resolved_address, ("127.0.0.1", '::1')) def test_match_system_local(self): self.connect(self.creds) self.assertEqual(len(self.hosts_up()), 3) for host in self.cluster.metadata.all_hosts(): row = self.session.execute('SELECT * FROM system.local', host=host).one() self.assertEqual(row.host_id, host.host_id) self.assertEqual(row.rpc_address, host.broadcast_rpc_address) def test_set_auth_provider(self): self.connect(self.creds) self.assertIsInstance(self.cluster.auth_provider, PlainTextAuthProvider) self.assertEqual(self.cluster.auth_provider.username, 'cassandra') self.assertEqual(self.cluster.auth_provider.password, 'cassandra') def test_support_leaving_the_auth_unset(self): with self.assertRaises(NoHostAvailable): self.connect(self.creds_no_auth) self.assertIsNone(self.cluster.auth_provider) def test_support_overriding_auth_provider(self): try: self.connect(self.creds, auth_provider=PlainTextAuthProvider('invalid', 'invalid')) except: pass # this will fail soon when sni_single_endpoint is updated self.assertIsInstance(self.cluster.auth_provider, PlainTextAuthProvider) self.assertEqual(self.cluster.auth_provider.username, 'invalid') self.assertEqual(self.cluster.auth_provider.password, 'invalid') def test_error_overriding_ssl_context(self): with self.assertRaises(ValueError) as cm: self.connect(self.creds, ssl_context=SSLContext(PROTOCOL_TLSv1)) self.assertIn('cannot be specified with a cloud configuration', str(cm.exception)) def test_error_overriding_ssl_options(self): with self.assertRaises(ValueError) as cm: self.connect(self.creds, ssl_options={'check_hostname': True}) self.assertIn('cannot be specified with a cloud configuration', str(cm.exception)) def _bad_hostname_metadata(self, config, http_data): config = parse_metadata_info(config, http_data) config.sni_host = "127.0.0.1" return config def test_verify_hostname(self): with patch('cassandra.datastax.cloud.parse_metadata_info', wraps=self._bad_hostname_metadata): with self.assertRaises(NoHostAvailable) as e: self.connect(self.creds) self.assertIn("hostname", str(e.exception).lower()) def test_error_when_bundle_doesnt_exist(self): try: self.connect('/invalid/path/file.zip') except Exception as e: if six.PY2: self.assertIsInstance(e, IOError) else: self.assertIsInstance(e, FileNotFoundError) def test_load_balancing_policy_is_dcawaretokenlbp(self): self.connect(self.creds) self.assertIsInstance(self.cluster.profile_manager.default.load_balancing_policy, TokenAwarePolicy) self.assertIsInstance(self.cluster.profile_manager.default.load_balancing_policy._child_policy, DCAwareRoundRobinPolicy) def test_resolve_and_reconnect_on_node_down(self): self.connect(self.creds, idle_heartbeat_interval=1, idle_heartbeat_timeout=1, reconnection_policy=ConstantReconnectionPolicy(120)) self.assertEqual(len(self.hosts_up()), 3) CLOUD_PROXY_SERVER.stop_node(1) wait_until_not_raised( lambda: self.assertEqual(len(self.hosts_up()), 2), 0.02, 250) host = [h for h in self.cluster.metadata.all_hosts() if not h.is_up][0] with patch.object(SniEndPoint, "resolve", wraps=host.endpoint.resolve) as mocked_resolve: CLOUD_PROXY_SERVER.start_node(1) wait_until_not_raised( lambda: self.assertEqual(len(self.hosts_up()), 3), 0.02, 250) mocked_resolve.assert_called_once() def test_metadata_unreachable(self): with self.assertRaises(DriverException) as cm: self.connect(self.creds_unreachable, connect_timeout=1) self.assertIn('Unable to connect to the metadata service', str(cm.exception)) def test_metadata_ssl_error(self): with self.assertRaises(DriverException) as cm: self.connect(self.creds_invalid_ca) self.assertIn('Unable to connect to the metadata', str(cm.exception)) def test_default_consistency(self): self.connect(self.creds) self.assertEqual(self.session.default_consistency_level, ConsistencyLevel.LOCAL_QUORUM) self.assertEqual(self.cluster.profile_manager.default.consistency_level, ConsistencyLevel.LOCAL_QUORUM) def test_default_consistency_of_execution_profiles(self): cloud_config = {'secure_connect_bundle': self.creds} self.cluster = Cluster(cloud=cloud_config, protocol_version=4, execution_profiles={ 'pre_create_default_ep': ExecutionProfile(), 'pre_create_changed_ep': ExecutionProfile( consistency_level=ConsistencyLevel.LOCAL_ONE, ), }) self.cluster.add_execution_profile('pre_connect_default_ep', ExecutionProfile()) self.cluster.add_execution_profile( 'pre_connect_changed_ep', ExecutionProfile( consistency_level=ConsistencyLevel.LOCAL_ONE, ) ) session = self.cluster.connect(wait_for_all_pools=True) self.cluster.add_execution_profile('post_connect_default_ep', ExecutionProfile()) self.cluster.add_execution_profile( 'post_connect_changed_ep', ExecutionProfile( consistency_level=ConsistencyLevel.LOCAL_ONE, ) ) for default in ['pre_create_default_ep', 'pre_connect_default_ep', 'post_connect_default_ep']: cl = self.cluster.profile_manager.profiles[default].consistency_level self.assertEqual( cl, ConsistencyLevel.LOCAL_QUORUM, "Expecting LOCAL QUORUM for profile {}, but got {} instead".format(default, cl) ) for changed in ['pre_create_changed_ep', 'pre_connect_changed_ep', 'post_connect_changed_ep']: cl = self.cluster.profile_manager.profiles[changed].consistency_level self.assertEqual( cl, ConsistencyLevel.LOCAL_ONE, "Expecting LOCAL ONE for profile {}, but got {} instead".format(default, cl) ) def test_consistency_guardrails(self): self.connect(self.creds) self.session.execute( "CREATE KEYSPACE IF NOT EXISTS test_consistency_guardrails " "with replication={'class': 'SimpleStrategy', 'replication_factor': 1}" ) self.session.execute("CREATE TABLE IF NOT EXISTS test_consistency_guardrails.guardrails (id int primary key)") for consistency in DISALLOWED_CONSISTENCIES: statement = SimpleStatement( "INSERT INTO test_consistency_guardrails.guardrails (id) values (1)", consistency_level=consistency ) with self.assertRaises(InvalidRequest) as e: self.session.execute(statement) self.assertIn('not allowed for Write Consistency Level', str(e.exception)) # Sanity check to make sure we can do a normal insert statement = SimpleStatement( "INSERT INTO test_consistency_guardrails.guardrails (id) values (1)", consistency_level=ConsistencyLevel.LOCAL_QUORUM ) try: self.session.execute(statement) except InvalidRequest: self.fail("InvalidRequest was incorrectly raised for write query at LOCAL QUORUM!")
python
9,894
import os from django.conf import settings from django.contrib.gis.db.models.functions import Transform from rest_framework import serializers from rest_framework_gis import serializers as geo_serializers from geotrek.api.mobile.serializers.tourism import InformationDeskSerializer from geotrek.api.v2.functions import StartPoint, EndPoint from geotrek.zoning.models import City, District if 'geotrek.trekking' in settings.INSTALLED_APPS: from geotrek.trekking import models as trekking_models class POIListSerializer(geo_serializers.GeoFeatureModelSerializer): pictures = serializers.SerializerMethodField() geometry = geo_serializers.GeometryField(read_only=True, precision=7, source='geom2d_transformed') type = serializers.ReadOnlyField(source='type.pk') def get_pictures(self, obj): if not obj.resized_pictures: return [] root_pk = self.context.get('root_pk') or obj.pk return obj.serializable_pictures_mobile(root_pk) class Meta: model = trekking_models.POI id_field = 'pk' geo_field = 'geometry' fields = ( 'id', 'pk', 'pictures', 'name', 'description', 'type', 'geometry', ) class TrekBaseSerializer(geo_serializers.GeoFeatureModelSerializer): cities = serializers.SerializerMethodField() districts = serializers.SerializerMethodField() length = serializers.FloatField(source='length_2d_display') departure_city = serializers.SerializerMethodField() def get_cities(self, obj): qs = City.objects.filter(published=True) cities = qs.filter(geom__intersects=(obj.geom, 0)) return cities.values_list('code', flat=True) def get_departure_city(self, obj): qs = City.objects.filter(published=True) if obj.start_point: city = qs.filter(geom__covers=(obj.start_point, 0)).first() if city: return city.code return None def get_districts(self, obj): qs = District.objects.filter(published=True) districts = qs.filter(geom__intersects=(obj.geom, 0)) return [district.pk for district in districts] class Meta: model = trekking_models.Trek id_field = 'pk' geo_field = 'geometry' class TrekListSerializer(TrekBaseSerializer): first_picture = serializers.SerializerMethodField() geometry = geo_serializers.GeometryField(read_only=True, precision=7, source='start_point', ) def get_first_picture(self, obj): root_pk = self.context.get('root_pk') or obj.pk return obj.resized_picture_mobile(root_pk) class Meta(TrekBaseSerializer.Meta): fields = ( 'id', 'pk', 'first_picture', 'name', 'departure', 'accessibilities', 'route', 'departure_city', 'difficulty', 'practice', 'themes', 'length', 'geometry', 'districts', 'cities', 'duration', 'ascent', 'descent', ) class TrekDetailSerializer(TrekBaseSerializer): geometry = geo_serializers.GeometryField(read_only=True, precision=7, source='geom2d_transformed') pictures = serializers.SerializerMethodField() arrival_city = serializers.SerializerMethodField() information_desks = serializers.SerializerMethodField() parking_location = serializers.SerializerMethodField() profile = serializers.SerializerMethodField() points_reference = serializers.SerializerMethodField() children = serializers.SerializerMethodField() def get_pictures(self, obj): root_pk = self.context.get('root_pk') or obj.pk return obj.serializable_pictures_mobile(root_pk) def get_children(self, obj): children = obj.children.all().annotate(start_point=Transform(StartPoint('geom'), settings.API_SRID), end_point=Transform(EndPoint('geom'), settings.API_SRID)) serializer_children = TrekListSerializer(children, many=True, context={'root_pk': obj.pk}) return serializer_children.data def get_points_reference(self, obj): if not obj.points_reference: return None return obj.points_reference.transform(settings.API_SRID, clone=True).coords def get_parking_location(self, obj): if not obj.parking_location: return None return obj.parking_location.transform(settings.API_SRID, clone=True).coords def get_arrival_city(self, obj): qs = City.objects.all() if obj.end_point: city = qs.filter(geom__covers=(obj.end_point, 0)).first() if city: return city.code return None def get_information_desks(self, obj): return [ InformationDeskSerializer(information_desk, context={'root_pk': obj.pk}).data for information_desk in obj.information_desks.all() ] def get_profile(self, obj): root_pk = self.context.get('root_pk') or obj.pk return os.path.join("/", str(root_pk), settings.MEDIA_URL.lstrip('/'), obj.get_elevation_chart_url_png()) class Meta(TrekBaseSerializer.Meta): auto_bbox = True fields = ( 'id', 'pk', 'name', 'slug', 'accessibilities', 'description_teaser', 'cities', 'profile', 'description', 'departure', 'arrival', 'duration', 'access', 'advised_parking', 'advice', 'difficulty', 'length', 'ascent', 'descent', 'route', 'labels', 'parking_location', 'min_elevation', 'max_elevation', 'themes', 'networks', 'practice', 'difficulty', 'geometry', 'pictures', 'information_desks', 'cities', 'departure_city', 'arrival_city', 'points_reference', 'districts', 'ambiance', 'children', )
python
6,106
#!/usr/bin/python # -*- coding: utf-8 -*- # # Urwid BigText fonts # Copyright (C) 2004-2006 Ian Ward # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Urwid web site: http://excess.org/urwid/ from urwid.escape import SAFE_ASCII_DEC_SPECIAL_RE from urwid.util import apply_target_encoding, str_util from urwid.canvas import TextCanvas def separate_glyphs(gdata, height): """return (dictionary of glyphs, utf8 required)""" gl = gdata.split("\n") del gl[0] del gl[-1] for g in gl: assert "\t" not in g assert len(gl) == height+1, repr(gdata) key_line = gl[0] del gl[0] c = None # current character key_index = 0 # index into character key line end_col = 0 # column position at end of glyph start_col = 0 # column position at start of glyph jl = [0]*height # indexes into lines of gdata (gl) dout = {} utf8_required = False while True: if c is None: if key_index >= len(key_line): break c = key_line[key_index] if key_index < len(key_line) and key_line[key_index] == c: end_col += str_util.get_width(ord(c)) key_index += 1 continue out = [] for k in range(height): l = gl[k] j = jl[k] y = 0 fill = 0 while y < end_col - start_col: if j >= len(l): fill = end_col - start_col - y break y += str_util.get_width(ord(l[j])) j += 1 assert y + fill == end_col - start_col, \ repr((y, fill, end_col)) segment = l[jl[k]:j] if not SAFE_ASCII_DEC_SPECIAL_RE.match(segment): utf8_required = True out.append(segment + " " * fill) jl[k] = j start_col = end_col dout[c] = (y + fill, out) c = None return dout, utf8_required _all_fonts = [] def get_all_fonts(): """ Return a list of (font name, font class) tuples. """ return _all_fonts[:] def add_font(name, cls): _all_fonts.append((name, cls)) class Font(object): def __init__(self): assert self.height assert self.data self.char = {} self.canvas = {} self.utf8_required = False for gdata in self.data: self.add_glyphs(gdata) def add_glyphs(self, gdata): d, utf8_required = separate_glyphs(gdata, self.height) self.char.update(d) self.utf8_required |= utf8_required def characters(self): l = self.char.keys() l.sort() return "".join(l) def char_width(self, c): if c in self.char: return self.char[c][0] return 0 def char_data(self, c): return self.char[c][1] def render(self, c): if c in self.canvas: return self.canvas[c] width, l = self.char[c] tl = [] csl = [] for d in l: t, cs = apply_target_encoding(d) tl.append(t) csl.append(cs) canv = TextCanvas(tl, None, csl, maxcol=width, check_width=False) self.canvas[c] = canv return canv #safe_palette = u"┘┐┌└┼─├┤┴┬│" #more_palette = u"═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬○" #block_palette = u"▄#█#▀#▌#▐#▖#▗#▘#▙#▚#▛#▜#▝#▞#▟" class Thin3x3Font(Font): height = 3 data = [u""" 000111222333444555666777888999 ! ┌─┐ ┐ ┌─┐┌─┐ ┐┌─ ┌─ ┌─┐┌─┐┌─┐ │ │ │ │ ┌─┘ ─┤└─┼└─┐├─┐ ┼├─┤└─┤ │ └─┘ ┴ └─ └─┘ ┴ ─┘└─┘ ┴└─┘ ─┘ . """, ur""" "###$$$%%%'*++,--.///:;==???[[\\\]]^__` " ┼┼┌┼┐O /' /.. _┌─┐┌ \ ┐^ ` ┼┼└┼┐ / * ┼ ─ / ., _ ┌┘│ \ │ └┼┘/ O , ./ . └ \ ┘ ── """] add_font("Thin 3x3",Thin3x3Font) class Thin4x3Font(Font): height = 3 data = Thin3x3Font.data + [u""" 0000111122223333444455556666777788889999 ####$$$$ ┌──┐ ┐ ┌──┐┌──┐ ┐┌── ┌── ┌──┐┌──┐┌──┐ ┼─┼┌┼┼┐ │ │ │ ┌──┘ ─┤└──┼└──┐├──┐ ┼├──┤└──┤ ┼─┼└┼┼┐ └──┘ ┴ └── └──┘ ┴ ──┘└──┘ ┴└──┘ ──┘ └┼┼┘ """] add_font("Thin 4x3",Thin4x3Font) class HalfBlock5x4Font(Font): height = 4 data = [u""" 00000111112222233333444445555566666777778888899999 !! ▄▀▀▄ ▄█ ▄▀▀▄ ▄▀▀▄ ▄ █ █▀▀▀ ▄▀▀ ▀▀▀█ ▄▀▀▄ ▄▀▀▄ █ █ █ █ ▄▀ ▄▀ █▄▄█ █▄▄ █▄▄ ▐▌ ▀▄▄▀ ▀▄▄█ █ █ █ █ ▄▀ ▄ █ █ █ █ █ █ █ █ █ ▀ ▀▀ ▀▀▀ ▀▀▀▀ ▀▀ ▀ ▀▀▀ ▀▀ ▀ ▀▀ ▀▀ ▀ """, u''' """######$$$$$$%%%%%&&&&&((()))******++++++,,,-----..////:::;; █▐▌ █ █ ▄▀█▀▄ ▐▌▐▌ ▄▀▄ █ █ ▄ ▄ ▄ ▐▌ ▀█▀█▀ ▀▄█▄ █ ▀▄▀ ▐▌ ▐▌ ▄▄█▄▄ ▄▄█▄▄ ▄▄▄▄ █ ▀ ▀ ▀█▀█▀ ▄ █ █ ▐▌▄ █ ▀▄▌▐▌ ▐▌ ▄▀▄ █ ▐▌ ▀ ▄▀ ▀ ▀ ▀▀▀ ▀ ▀ ▀▀ ▀ ▀ ▄▀ ▀ ▀ ''', ur""" <<<<<=====>>>>>?????@@@@@@[[[[\\\\]]]]^^^^____```{{{{||}}}}~~~~''´´´ ▄▀ ▀▄ ▄▀▀▄ ▄▀▀▀▄ █▀▀ ▐▌ ▀▀█ ▄▀▄ ▀▄ ▄▀ █ ▀▄ ▄ █ ▄▀ ▄▀ ▀▀▀▀ ▀▄ ▄▀ █ █▀█ █ █ █ ▄▀ █ ▀▄ ▐▐▌▌ ▀▄ ▀▀▀▀ ▄▀ ▀ █ ▀▀▀ █ ▐▌ █ █ █ █ ▀ ▀ ▀ ▀ ▀▀▀ ▀▀▀ ▀ ▀▀▀ ▀▀▀▀ ▀ ▀ ▀ """, u''' AAAAABBBBBCCCCCDDDDDEEEEEFFFFFGGGGGHHHHHIIJJJJJKKKKK ▄▀▀▄ █▀▀▄ ▄▀▀▄ █▀▀▄ █▀▀▀ █▀▀▀ ▄▀▀▄ █ █ █ █ █ █ █▄▄█ █▄▄▀ █ █ █ █▄▄ █▄▄ █ █▄▄█ █ █ █▄▀ █ █ █ █ █ ▄ █ █ █ █ █ ▀█ █ █ █ ▄ █ █ ▀▄ ▀ ▀ ▀▀▀ ▀▀ ▀▀▀ ▀▀▀▀ ▀ ▀▀ ▀ ▀ ▀ ▀▀ ▀ ▀ ''', u''' LLLLLMMMMMMNNNNNOOOOOPPPPPQQQQQRRRRRSSSSSTTTTT █ █▄ ▄█ ██ █ ▄▀▀▄ █▀▀▄ ▄▀▀▄ █▀▀▄ ▄▀▀▄ ▀▀█▀▀ █ █ ▀ █ █▐▌█ █ █ █▄▄▀ █ █ █▄▄▀ ▀▄▄ █ █ █ █ █ ██ █ █ █ █ ▌█ █ █ ▄ █ █ ▀▀▀▀ ▀ ▀ ▀ ▀ ▀▀ ▀ ▀▀▌ ▀ ▀ ▀▀ ▀ ''', u''' UUUUUVVVVVVWWWWWWXXXXXXYYYYYYZZZZZ █ █ █ █ █ █ █ █ █ █ ▀▀▀█ █ █ ▐▌ ▐▌ █ ▄ █ ▀▄▀ ▀▄▀ ▄▀ █ █ █ █ ▐▌█▐▌ ▄▀ ▀▄ █ █ ▀▀ ▀ ▀ ▀ ▀ ▀ ▀ ▀▀▀▀ ''', u''' aaaaabbbbbcccccdddddeeeeeffffggggghhhhhiijjjjkkkkk █ █ ▄▀▀ █ ▄ ▄ █ ▀▀▄ █▀▀▄ ▄▀▀▄ ▄▀▀█ ▄▀▀▄ ▀█▀ ▄▀▀▄ █▀▀▄ ▄ ▄ █ ▄▀ ▄▀▀█ █ █ █ ▄ █ █ █▀▀ █ ▀▄▄█ █ █ █ █ █▀▄ ▀▀▀ ▀▀▀ ▀▀ ▀▀▀ ▀▀ ▀ ▄▄▀ ▀ ▀ ▀ ▄▄▀ ▀ ▀ ''', u''' llmmmmmmnnnnnooooopppppqqqqqrrrrssssstttt █ █ █ █▀▄▀▄ █▀▀▄ ▄▀▀▄ █▀▀▄ ▄▀▀█ █▀▀ ▄▀▀▀ ▀█▀ █ █ █ █ █ █ █ █ █ █ █ █ █ ▀▀▄ █ ▀ ▀ ▀ ▀ ▀ ▀▀ █▀▀ ▀▀█ ▀ ▀▀▀ ▀ ''', u''' uuuuuvvvvvwwwwwwxxxxxxyyyyyzzzzz █ █ █ █ █ ▄ █ ▀▄ ▄▀ █ █ ▀▀█▀ █ █ ▐▌▐▌ ▐▌█▐▌ ▄▀▄ ▀▄▄█ ▄▀ ▀▀ ▀▀ ▀ ▀ ▀ ▀ ▄▄▀ ▀▀▀▀ '''] add_font("Half Block 5x4",HalfBlock5x4Font) class HalfBlock6x5Font(Font): height = 5 data = [u""" 000000111111222222333333444444555555666666777777888888999999 ..:://// ▄▀▀▀▄ ▄█ ▄▀▀▀▄ ▄▀▀▀▄ ▄ █ █▀▀▀▀ ▄▀▀▀ ▀▀▀▀█ ▄▀▀▀▄ ▄▀▀▀▄ █ █ █ █ █ █ █ █ █ █ ▐▌ █ █ █ █ ▀ ▐▌ █ █ █ ▄▀ ▀▀▄ ▀▀▀█▀ ▀▀▀▀▄ █▀▀▀▄ █ ▄▀▀▀▄ ▀▀▀█ ▄ █ █ █ █ ▄▀ ▄ █ █ █ █ █ ▐▌ █ █ █ ▐▌ ▀▀▀ ▀▀▀ ▀▀▀▀▀ ▀▀▀ ▀ ▀▀▀▀ ▀▀▀ ▀ ▀▀▀ ▀▀▀ ▀ ▀ """] add_font("Half Block 6x5",HalfBlock6x5Font) class HalfBlockHeavy6x5Font(Font): height = 5 data = [u""" 000000111111222222333333444444555555666666777777888888999999 ..:://// ▄███▄ ▐█▌ ▄███▄ ▄███▄ █▌ █████ ▄███▄ █████ ▄███▄ ▄███▄ █▌ █▌ ▐█ ▀█▌ ▀ ▐█ ▀ ▐█ █▌ █▌ █▌ █▌ █▌ █▌ ▐█ █▌ ▐█ █▌ ▐█ █▌ ▐█ █▌ ▄█▀ ██▌ █████ ████▄ ████▄ ▐█ ▐███▌ ▀████ █▌ █▌ ▐█ █▌ ▄█▀ ▄ ▐█ █▌ ▐█ █▌ ▐█ █▌ █▌ ▐█ ▐█ █▌▐█ ▀███▀ ███▌ █████ ▀███▀ █▌ ████▀ ▀███▀ ▐█ ▀███▀ ▀███▀ █▌ █▌ """] add_font("Half Block Heavy 6x5",HalfBlockHeavy6x5Font) class Thin6x6Font(Font): height = 6 data = [u""" 000000111111222222333333444444555555666666777777888888999999'' ┌───┐ ┐ ┌───┐ ┌───┐ ┐ ┌─── ┌─── ┌───┐ ┌───┐ ┌───┐ │ │ │ │ │ │ ┌ │ │ │ │ │ │ │ │ │ / │ │ ┌───┘ ─┤ └──┼─ └───┐ ├───┐ ┼ ├───┤ └───┤ │ │ │ │ │ │ │ │ │ │ │ │ │ └───┘ ┴ └─── └───┘ ┴ ───┘ └───┘ ┴ └───┘ ───┘ """, ur''' !! """######$$$$$$%%%%%%&&&&&&((()))******++++++ │ ││ ┌ ┌ ┌─┼─┐ ┌┐ / ┌─┐ / \ │ ─┼─┼─ │ │ └┘ / │ │ │ │ \ / │ │ │ │ └─┼─┐ / ┌─\┘ │ │ ──X── ──┼── │ ─┼─┼─ │ │ / ┌┐ │ \, │ │ / \ │ . ┘ ┘ └─┼─┘ / └┘ └───\ \ / ''', ur""" ,,-----..//////::;;<<<<=====>>>>??????@@@@@@ / ┌───┐ ┌───┐ / . . / ──── \ │ │┌──┤ ──── / / \ ┌─┘ ││ │ / . , \ ──── / │ │└──┘ , . / \ / . └───┘ """, ur""" [[\\\\\\]]^^^____``{{||}}~~~~~~ ┌ \ ┐ /\ \ ┌ │ ┐ │ \ │ │ │ │ ┌─┐ │ \ │ ┤ │ ├ └─┘ │ \ │ │ │ │ └ \ ┘ ──── └ │ ┘ """, u""" AAAAAABBBBBBCCCCCCDDDDDDEEEEEEFFFFFFGGGGGGHHHHHHIIJJJJJJ ┌───┐ ┬───┐ ┌───┐ ┬───┐ ┬───┐ ┬───┐ ┌───┐ ┬ ┬ ┬ ┬ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├───┤ ├───┤ │ │ │ ├── ├── │ ──┬ ├───┤ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ┬ │ ┴ ┴ ┴───┘ └───┘ ┴───┘ ┴───┘ ┴ └───┘ ┴ ┴ ┴ └───┘ """, u""" KKKKKKLLLLLLMMMMMMNNNNNNOOOOOOPPPPPPQQQQQQRRRRRRSSSSSS ┬ ┬ ┬ ┌─┬─┐ ┬─┐ ┬ ┌───┐ ┬───┐ ┌───┐ ┬───┐ ┌───┐ │ ┌─┘ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├─┴┐ │ │ │ │ │ │ │ │ │ ├───┘ │ │ ├─┬─┘ └───┐ │ └┐ │ │ │ │ │ │ │ │ │ │ ┐│ │ └─┐ │ ┴ ┴ ┴───┘ ┴ ┴ ┴ └─┴ └───┘ ┴ └──┼┘ ┴ ┴ └───┘ └ """, u""" TTTTTTUUUUUUVVVVVVWWWWWWXXXXXXYYYYYYZZZZZZ ┌─┬─┐ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┌───┐ │ │ │ │ │ │ │ └┐ ┌┘ │ │ ┌─┘ │ │ │ │ │ │ │ │ ├─┤ └─┬─┘ ┌┘ │ │ │ └┐ ┌┘ │ │ │ ┌┘ └┐ │ ┌┘ ┴ └───┘ └─┘ └─┴─┘ ┴ ┴ ┴ └───┘ """, u""" aaaaaabbbbbbccccccddddddeeeeeefffgggggghhhhhhiijjj ┌─┐ │ │ │ │ . . ┌───┐ ├───┐ ┌───┐ ┌───┤ ┌───┐ ┼ ┌───┐ ├───┐ ┐ ┐ ┌───┤ │ │ │ │ │ ├───┘ │ │ │ │ │ │ │ └───┴ └───┘ └───┘ └───┘ └───┘ ┴ └───┤ ┴ ┴ ┴ │ └───┘ ─┘ """, u""" kkkkkkllmmmmmmnnnnnnooooooppppppqqqqqqrrrrrssssss │ │ │ ┌─ │ ┬─┬─┐ ┬───┐ ┌───┐ ┌───┐ ┌───┐ ┬──┐ ┌───┐ ├─┴┐ │ │ │ │ │ │ │ │ │ │ │ │ │ └───┐ ┴ └─ └ ┴ ┴ ┴ ┴ └───┘ ├───┘ └───┤ ┴ └───┘ │ │ """, u""" ttttuuuuuuvvvvvvwwwwwwxxxxxxyyyyyyzzzzzz │ ─┼─ ┬ ┬ ┬ ┬ ┬ ┬ ─┐ ┌─ ┬ ┬ ────┬ │ │ │ └┐ ┌┘ │ │ │ ├─┤ │ │ ┌───┘ └─ └───┴ └─┘ └─┴─┘ ─┘ └─ └───┤ ┴──── └───┘ """] add_font("Thin 6x6",Thin6x6Font) class HalfBlock7x7Font(Font): height = 7 data = [u""" 0000000111111122222223333333444444455555556666666777777788888889999999''' ▄███▄ ▐█▌ ▄███▄ ▄███▄ █▌ ▐█████▌ ▄███▄ ▐█████▌ ▄███▄ ▄███▄ ▐█ ▐█ █▌ ▀█▌ ▐█ █▌▐█ █▌▐█ █▌ ▐█ ▐█ ▐█ ▐█ █▌▐█ █▌▐█ ▐█ ▐ █▌ █▌ █▌ ▐██ ▐█████▌▐████▄ ▐████▄ █▌ █████ ▀████▌ ▐█ ▌ █▌ █▌ ▄█▀ █▌ █▌ █▌▐█ █▌ ▐█ ▐█ █▌ █▌ ▐█ █▌ █▌ ▄█▀ ▐█ █▌ █▌ █▌▐█ █▌ █▌ ▐█ █▌ █▌ ▀███▀ ███▌ ▐█████▌ ▀███▀ █▌ ▐████▀ ▀███▀ ▐█ ▀███▀ ▀███▀ """, u''' !!! """""#######$$$$$$$%%%%%%%&&&&&&&(((())))*******++++++ ▐█ ▐█ █▌ ▐█ █▌ █ ▄ █▌ ▄█▄ █▌▐█ ▄▄ ▄▄ ▐█ ▐█ █▌▐█████▌ ▄███▄ ▐█▌▐█ ▐█ █▌ ▐█ █▌ ▀█▄█▀ ▐█ ▐█ ▐█ █▌ ▐█▄█▄▄ ▀ █▌ ███ █▌ ▐█ ▐█████▌ ████▌ ▐█ ▐█████▌ ▀▀█▀█▌ ▐█ ▄ ███▌▄ █▌ ▐█ ▄█▀█▄ ▐█ ▐█ █▌ ▀███▀ █▌▐█▌▐█ █▌ ▐█ █▌ ▀▀ ▀▀ ▐█ █ ▐█ ▀ ▀██▀█▌ █▌▐█ ''', u""" ,,,------.../////:::;;;<<<<<<<======>>>>>>>???????@@@@@@@ █▌ ▄█▌ ▐█▄ ▄███▄ ▄███▄ ▐█ ▐█ ▐█ ▄█▀ ▐████▌ ▀█▄ ▐█ █▌▐█ ▄▄█▌ ▐████▌ █▌ ▐██ ██▌ █▌ ▐█▐█▀█▌ ▐█ ▐█ ▐█ ▀█▄ ▐████▌ ▄█▀ █▌ ▐█▐█▄█▌ █▌ ▀ ▀█▌ ▐█▀ ▐█ ▀▀▀ ▐█ ▐█ ▐█ █▌ ▀███▀ ▀ """, ur""" [[[[\\\\\]]]]^^^^^^^_____```{{{{{|||}}}}}~~~~~~~´´´ ▐██▌▐█ ▐██▌ ▐█▌ ▐█ █▌▐█ ▐█ █▌ ▐█ █▌ █▌ ▐█ █▌ █▌ █▌ ▐█ ▐█ ▄▄ ▐█ ▐█ ▐█ █▌▐█ █▌ ▄█▌ ▐█ ▐█▄ ▐▀▀█▄▄▌ ▐█ █▌ █▌ ▀█▌ ▐█ ▐█▀ ▀▀ ▐█ ▐█ █▌ █▌ ▐█ ▐█ ▐██▌ █▌▐██▌ █████ █▌▐█ ▐█ """, u""" AAAAAAABBBBBBBCCCCCCCDDDDDDDEEEEEEEFFFFFFFGGGGGGGHHHHHHHIIIIJJJJJJJ ▄███▄ ▐████▄ ▄███▄ ▐████▄ ▐█████▌▐█████▌ ▄███▄ ▐█ █▌ ██▌ █▌ ▐█ █▌▐█ █▌▐█ ▐█ █▌▐█ ▐█ ▐█ ▐█ █▌ ▐█ █▌ ▐█████▌▐█████ ▐█ ▐█ █▌▐████ ▐████ ▐█ ▐█████▌ ▐█ █▌ ▐█ █▌▐█ █▌▐█ ▐█ █▌▐█ ▐█ ▐█ ██▌▐█ █▌ ▐█ █▌ ▐█ █▌▐█ █▌▐█ ▐█ █▌▐█ ▐█ ▐█ █▌▐█ █▌ ▐█ ▐█ █▌ ▐█ █▌▐████▀ ▀███▀ ▐████▀ ▐█████▌▐█ ▀███▀ ▐█ █▌ ██▌ ▀███▀ """, u""" KKKKKKKLLLLLLLMMMMMMMMNNNNNNNOOOOOOOPPPPPPPQQQQQQQRRRRRRRSSSSSSS ▐█ █▌▐█ ▄█▌▐█▄ ▐██ █▌ ▄███▄ ▐████▄ ▄███▄ ▐████▄ ▄███▄ ▐█ █▌ ▐█ ▐█ ▐▌ █▌▐██▌ █▌▐█ █▌▐█ █▌▐█ █▌▐█ █▌▐█ ▐█▄█▌ ▐█ ▐█ ▐▌ █▌▐█▐█ █▌▐█ █▌▐████▀ ▐█ █▌▐█████ ▀███▄ ▐█▀█▌ ▐█ ▐█ █▌▐█ █▌█▌▐█ █▌▐█ ▐█ █▌▐█ █▌ █▌ ▐█ █▌ ▐█ ▐█ █▌▐█ ▐██▌▐█ █▌▐█ ▐█ █▌█▌▐█ █▌ █▌ ▐█ █▌▐█████▌▐█ █▌▐█ ██▌ ▀███▀ ▐█ ▀███▀ ▐█ █▌ ▀███▀ ▀▀ """, u""" TTTTTTTUUUUUUUVVVVVVVWWWWWWWWXXXXXXXYYYYYYYZZZZZZZ █████▌▐█ █▌▐█ █▌▐█ █▌▐█ █▌ █▌ █▌▐█████▌ █▌ ▐█ █▌ █▌ ▐█ ▐█ █▌ ▐█ █▌ ▐█ ▐█ █▌ █▌ ▐█ █▌ ▐█ █▌ ▐█ █▌ ▐█▌ ▐██ █▌ █▌ ▐█ █▌ ███ ▐█ ▐▌ █▌ ███ █▌ █▌ █▌ ▐█ █▌ ▐█▌ ▐█ ▐▌ █▌ █▌ ▐█ █▌ █▌ █▌ ▀███▀ █ ▀█▌▐█▀ ▐█ █▌ █▌ ▐█████▌ """, u""" aaaaaaabbbbbbbcccccccdddddddeeeeeeefffffggggggghhhhhhhiiijjjj ▐█ █▌ ▄█▌ ▐█ █▌ █▌ ▐█ █▌ ▐█ ▐█ ▄███▄ ▐████▄ ▄███▄ ▄████▌ ▄███▄ ▐███ ▄███▄ ▐████▄ ▐█▌ ▐█▌ ▄▄▄█▌▐█ █▌▐█ ▐█ █▌▐█▄▄▄█▌ ▐█ ▐█ █▌▐█ █▌ █▌ █▌ ▐█▀▀▀█▌▐█ █▌▐█ ▐█ █▌▐█▀▀▀ ▐█ ▐█▄▄▄█▌▐█ █▌ █▌ █▌ ▀████▌▐████▀ ▀███▀ ▀████▌ ▀███▀ ▐█ ▀▀▀█▌▐█ █▌ █▌ █▌ ▀███▀ ▐██ """, u""" kkkkkkkllllmmmmmmmmnnnnnnnooooooopppppppqqqqqqqrrrrrrsssssss ▐█ ██ ▐█ ▐█ ▐█ ▄█▌ ▐█ ▄█▌▐█▄ ▐████▄ ▄███▄ ▐████▄ ▄████▌ ▄███▌ ▄███▄ ▐█▄█▀ ▐█ ▐█ ▐▌ █▌▐█ █▌▐█ █▌▐█ █▌▐█ █▌▐█ ▐█▄▄▄ ▐█▀▀█▄ ▐█ ▐█ ▐▌ █▌▐█ █▌▐█ █▌▐█ █▌▐█ █▌▐█ ▀▀▀█▌ ▐█ █▌ ▐█▌▐█ █▌▐█ █▌ ▀███▀ ▐████▀ ▀████▌▐█ ▀███▀ ▐█ █▌ """, u""" tttttuuuuuuuvvvvvvvwwwwwwwwxxxxxxxyyyyyyyzzzzzzz █▌ █▌ ███▌▐█ █▌▐█ █▌▐█ █▌▐█ █▌▐█ █▌▐█████▌ █▌ ▐█ █▌ █▌ ▐█ ▐█ █▌ ▀█▄█▀ ▐█ █▌ ▄█▀ █▌ ▐█ █▌ ███ ▐█ ▐▌ █▌ ▄█▀█▄ ▐█▄▄▄█▌ ▄█▀ █▌ ▀███▀ ▐█▌ ▀█▌▐█▀ ▐█ █▌ ▀▀▀█▌▐█████▌ ▀███▀ """] add_font("Half Block 7x7",HalfBlock7x7Font) if __name__ == "__main__": l = get_all_fonts() all_ascii = "".join([chr(x) for x in range(32, 127)]) print "Available Fonts: (U) = UTF-8 required" print "----------------" for n,cls in l: f = cls() u = "" if f.utf8_required: u = "(U)" print ("%-20s %3s " % (n,u)), c = f.characters() if c == all_ascii: print "Full ASCII" elif c.startswith(all_ascii): print "Full ASCII + " + c[len(all_ascii):] else: print "Characters: " + c
python
16,068
__author__ = "avh5nm" if __name__ == "__main__": print("so tired.")
python
72
from random import random, seed, sample import numpy as np import datetime import time # import Code.preprocessing as pp from Code.dynamic_library import method_info def remove_subject(rsub): pn_list = list() for target in rsub: pn, cn = target.endswith('.csv').spliat('_') pn_list.append((pn, cn)) return pn_list def method_base(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 divide_process = baseDP(param.method, param.model_name, dataset=datasets, rsub=None) sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(20): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_sn(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 divide_process = snDP(param.method, param.model_name, dataset=datasets) sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(20): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_leaveone(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.method == "cropping" or param.method == "convert": divide_process = LeaveOneDP_ns(param.method, param.model_name, dataset=datasets, rsub=None) tot_repeat = divide_process.nb_people if param.datatype == "disease": divide_process.nb_class += 1 elif param.method == "sleaveone": divide_process = LeaveOneDP_select(param.method, param.model_name, dataset=datasets, rsub=None) tot_repeat = 20 else: divide_process = LeaveOneDP(param.method, param.model_name, dataset=datasets, rsub=None) tot_repeat = divide_process.nb_people if param.datatype == "disease": divide_process.nb_class += 1 sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(tot_repeat): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_fa_leaveone(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 divide_process = LeaveOneDP(param.method, param.model_name, dataset=datasets , rsub=None) sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(divide_process.nb_people): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_mdpi(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 divide_process = mdpiDP(param.method, param.model_name, dataset=datasets , rsub=None) sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(20): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_smdpi(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) divide_process = mdpiDP(param.method, param.model_name, dataset=datasets , rsub=None) sampling_data = divide_process.sampling(s1=param.collect["select"][0], s2=param.collect["select"][1]) sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(20): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_dhalf(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 divide_process = mdpi_dhalfDP(param.method, param.model_name, dataset=datasets , rsub=None) sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(20): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_half(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 divide_process = mdpi_halfDP(param.method, param.model_name, dataset=datasets , rsub=None) sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(20): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_MCCV(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 divide_process = mdpi_MCCVDP(param.method, param.model_name, dataset=datasets , rsub=None) sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(20): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_CV(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 if param.collect["CrossValidation"] == 7: divide_process = seven_CVDP(param.method, param.model_name, dataset=datasets , rsub=None) else: param.cv_ratio = param.collect["CrossValidation"] divide_process = select_CVDP(param.method, param.model_name, dataset=datasets , rsub=None) sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(len(sample_train)): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people def method_vec(param, comb, datasets): BaseDivideProcess(param.method, param.model_name, dataset=datasets) if param.datatype == "disease": BaseDivideProcess.nb_class += 1 divide_process = NotImplemented sampling_data = divide_process.sampling() sample_train = sampling_data["train"] sample_test = sampling_data["test"] for repeat in range(len(sample_train)): train = sample_train[repeat] test = sample_test[repeat] for nb in range(3): train[f"data_{nb}"] = divide_process.convert(data=train[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) test[f"data_{nb}"] = divide_process.convert(data=test[f"data_{nb}"], mt=param.collect["minimum_threshold"], comb=comb) sample_train[repeat] = train sample_test[repeat] = test nb_tag = divide_process.nb_class nb_people = divide_process.nb_people return sample_train, sample_test, nb_tag, nb_people # Base Divide Process Class class BaseDivideProcess: def __init__(self, mode, model_name, dataset): assert len(dataset) == 3, "dataset must be 3 arguments" data1, data2, data3 = dataset # [data1, data2, data3] = pp.sort_by_people(dataset) data1 = data1[data1[:, -2].argsort()] data2 = data2[data2[:, -2].argsort()] data3 = data3[data3[:, -2].argsort()] # sampling func name self.mode = mode # used model name self.model_name = model_name self.dataset = dataset self.plabel = data1[:, -2] self.tlabel = data1[:, -1] # dataset index self.data1 = data1[:, :-2] self.data2 = data2[:, :-2] self.data3 = data3[:, :-2] self.nb_class = int(max(self.tlabel)) self.nb_people = int(max(self.plabel)) + 1 def sampling(self): pass def convert(self, data, mt, comb): drow, dcol = data.shape input_shape = (int(mt * comb), int((dcol) / (mt * comb))) if self.model_name in method_info['4columns']: converted = data.reshape(-1, input_shape[0], input_shape[1], 1) elif self.model_name == "pVGG": data = data.reshape(-1, input_shape[0], input_shape[1]) converted = np.zeros((data.shape[0], data.shape[1], data.shape[2], 3)) for idx in range(3): converted[:, :, :, idx] = data elif self.model_name in method_info['3columns']: converted = data.reshape(-1, input_shape[0], input_shape[1]) elif self.model_name in method_info['2columns']: converted = data elif self.model_name in method_info['specific']: converted = data elif self.model_name in method_info['vector']: converted = data elif self.model_name in method_info['5columns']: if input_shape[1] == 6: converted = data.reshape(-1, input_shape[0], input_shape[1]) left_data = converted[:, :, :3] right_data = converted[:, :, 3:] converted = [left_data, right_data] else: converted = data.reshape(-1, input_shape[0], input_shape[1]) return converted # 1000, 1000 sampling Class class baseDP(BaseDivideProcess): """ Sn 600-900 sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for repeat in range(20): seed(repeat) drow, _ = self.data1.shape train_dict = dict() test_dict = dict() dataset_list = list() random_list = sample(range(drow), drow) for dataset in [self.data1, self.data2, self.data3]: dataset_list.append(dataset[random_list]) targetp = self.plabel[random_list] targetc = self.tlabel[random_list] - 1 for i, dataset in enumerate(dataset_list): train_dict[f"data_{i}"] = dataset[:1000, :] test_dict[f"data_{i}"] = dataset[1000:2000, :] train_dict["people"] = targetp[:1000] train_dict["tag"] = targetc[:1000] test_dict["people"] = targetp[1000:2000] test_dict["tag"] = targetc[1000:2000] total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # 600-900 sampling Class class snDP(BaseDivideProcess): """ Sn 600-900 sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for repeat in range(20): seed(repeat) drow, _ = self.data1.shape train_dict = dict() test_dict = dict() for class_target in range(self.nb_class): find_idx = [] count_idx = 0 for idx in range(drow): if self.tlabel[idx] == class_target: find_idx.append(idx) count_idx += 1 dataset_list = list() for dataset in [self.data1, self.data2, self.data3]: target = dataset[find_idx[0]:find_idx[-1] + 1, :] dataset_list.append(target) targetp = self.plabel[find_idx[0]:find_idx[-1] + 1] targetc = self.tlabel[find_idx[0]:find_idx[-1] + 1] random_list = sample(range(count_idx), count_idx) for i, target in enumerate(dataset_list): dataset_list[i] = target[random_list] targetp = targetp[random_list] targetc = targetc[random_list] if class_target == 0: for i, dataset in enumerate(dataset_list): train_dict[f"data_{i}"] = dataset[:200, :] test_dict[f"data_{i}"] = dataset[200:, :] train_dict["people"] = targetp[:200] train_dict["tag"] = targetc[:200] test_dict["people"] = targetp[200:] test_dict["tag"] = targetc[200:] else: for i, dataset in enumerate(dataset_list): train_dict[f"data_{i}"] = np.vstack([train_dict[f"data_{i}"], dataset[:200, :]]) test_dict[f"data_{i}"] = np.vstack([test_dict[f"data_{i}"], dataset[200:, :]]) train_dict["people"] = np.concatenate([train_dict["people"], targetp[:200]]) train_dict["tag"] = np.concatenate([train_dict["tag"], targetc[:200]]) test_dict["people"] = np.concatenate([test_dict["people"], targetp[200:]]) test_dict["tag"] = np.concatenate([test_dict["tag"], targetc[200:]]) other_samples, _ = train_dict["data_0"].shape random_list = sample(range(other_samples), 600) train_dict["people"] = train_dict["people"][random_list] train_dict["tag"] = train_dict["tag"][random_list] for i in range(3): train_dict[f"data_{i}"] = train_dict[f"data_{i}"][random_list] other_samples, _ = test_dict["data_0"].shape random_list = sample(range(other_samples), 900) test_dict["people"] = test_dict["people"][random_list] test_dict["tag"] = test_dict["tag"][random_list] for i in range(3): test_dict[f"data_{i}"] = test_dict[f"data_{i}"][random_list] total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # LeaveOne sampling Class class LeaveOneDP(BaseDivideProcess): """ LeaveOne sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for peo_target in range(self.nb_people): train_dict = dict() test_dict = dict() dataset_list = list() train_list = list() find_idx = [] count_idx = 0 drow, _ = self.data1.shape for idx in range(drow): if self.plabel[idx] == peo_target: find_idx.append(idx) count_idx += 1 for dataset in [self.data1, self.data2, self.data3]: target = dataset[find_idx[0]:find_idx[-1] + 1, :] if find_idx[0] == 0: train = dataset[find_idx[-1] + 1:, :] elif find_idx[0] != 0 and find_idx[-1] + 1 != drow: temp1 = dataset[:find_idx[0], :] temp2 = dataset[find_idx[-1] + 1:, :] train = np.vstack([temp1, temp2]) elif find_idx[-1] + 1 == drow: train = dataset[:find_idx[-1] + 1, :] dataset_list.append(target) train_list.append(train) targetp = self.plabel[find_idx[0]:find_idx[-1] + 1] targetc = self.tlabel[find_idx[0]:find_idx[-1] + 1] if find_idx[0] == 0: trainp = self.plabel[find_idx[-1] + 1:] trainc = self.tlabel[find_idx[-1] + 1:] elif find_idx[0] != 0 and find_idx[-1] + 1 != drow: temp1 = self.plabel[:find_idx[0]] temp2 = self.plabel[find_idx[-1] + 1:] trainp = np.concatenate([temp1, temp2]) temp1 = self.tlabel[:find_idx[0]] temp2 = self.tlabel[find_idx[-1] + 1:] trainc = np.concatenate([temp1, temp2]) elif find_idx[-1] + 1 == drow: trainp = self.plabel[:find_idx[-1] + 1] trainc = self.tlabel[:find_idx[-1] + 1] target_indexes, _ = dataset_list[0].shape train_indexes, _ = train_list[0].shape random_list1 = sample(range(target_indexes), target_indexes) random_list2 = sample(range(train_indexes), train_indexes) for i, dataset in enumerate(dataset_list): test_dict[f"data_{i}"] = dataset[random_list1] test_dict["people"] = targetp[random_list1] test_dict["tag"] = targetc[random_list1] for i, dataset in enumerate(train_list): train_dict[f"data_{i}"] = dataset[random_list2] train_dict["people"] = trainp[random_list2] train_dict["tag"] = trainc[random_list2] total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # LeaveOne sampling Class no shuffle class LeaveOneDP_ns(BaseDivideProcess): """ LeaveOne sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for peo_target in range(self.nb_people): train_dict = dict() test_dict = dict() dataset_list = list() train_list = list() find_idx = [] count_idx = 0 drow, _ = self.data1.shape for idx in range(drow): if self.plabel[idx] == peo_target: find_idx.append(idx) count_idx += 1 for dataset in [self.data1, self.data2, self.data3]: target = dataset[find_idx[0]:find_idx[-1] + 1, :] if find_idx[0] == 0: train = dataset[find_idx[-1] + 1:, :] elif find_idx[0] != 0 and find_idx[-1] + 1 != drow: temp1 = dataset[:find_idx[0], :] temp2 = dataset[find_idx[-1] + 1:, :] train = np.vstack([temp1, temp2]) elif find_idx[-1] + 1 == drow: train = dataset[:find_idx[-1] + 1, :] dataset_list.append(target) train_list.append(train) targetp = self.plabel[find_idx[0]:find_idx[-1] + 1] targetc = self.tlabel[find_idx[0]:find_idx[-1] + 1] if find_idx[0] == 0: trainp = self.plabel[find_idx[-1] + 1:] trainc = self.tlabel[find_idx[-1] + 1:] elif find_idx[0] != 0 and find_idx[-1] + 1 != drow: temp1 = self.plabel[:find_idx[0]] temp2 = self.plabel[find_idx[-1] + 1:] trainp = np.concatenate([temp1, temp2]) temp1 = self.tlabel[:find_idx[0]] temp2 = self.tlabel[find_idx[-1] + 1:] trainc = np.concatenate([temp1, temp2]) elif find_idx[-1] + 1 == drow: trainp = self.plabel[:find_idx[-1] + 1] trainc = self.tlabel[:find_idx[-1] + 1] for i, dataset in enumerate(dataset_list): test_dict[f"data_{i}"] = dataset test_dict["people"] = targetp test_dict["tag"] = targetc for i, dataset in enumerate(train_list): train_dict[f"data_{i}"] = dataset train_dict["people"] = trainp train_dict["tag"] = trainc total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # LeaveOne sampling Class class LeaveOneDP(BaseDivideProcess): """ LeaveOne sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for peo_target in range(self.nb_people): train_dict = dict() test_dict = dict() dataset_list = list() train_list = list() find_idx = [] count_idx = 0 drow, _ = self.data1.shape for idx in range(drow): if self.plabel[idx] == peo_target: find_idx.append(idx) count_idx += 1 for dataset in [self.data1, self.data2, self.data3]: target = dataset[find_idx[0]:find_idx[-1] + 1, :] if find_idx[0] == 0: train = dataset[find_idx[-1] + 1:, :] elif find_idx[0] != 0 and find_idx[-1] + 1 != drow: temp1 = dataset[:find_idx[0], :] temp2 = dataset[find_idx[-1] + 1:, :] train = np.vstack([temp1, temp2]) elif find_idx[-1] + 1 == drow: train = dataset[:find_idx[-1] + 1, :] dataset_list.append(target) train_list.append(train) targetp = self.plabel[find_idx[0]:find_idx[-1] + 1] targetc = self.tlabel[find_idx[0]:find_idx[-1] + 1] if find_idx[0] == 0: trainp = self.plabel[find_idx[-1] + 1:] trainc = self.tlabel[find_idx[-1] + 1:] elif find_idx[0] != 0 and find_idx[-1] + 1 != drow: temp1 = self.plabel[:find_idx[0]] temp2 = self.plabel[find_idx[-1] + 1:] trainp = np.concatenate([temp1, temp2]) temp1 = self.tlabel[:find_idx[0]] temp2 = self.tlabel[find_idx[-1] + 1:] trainc = np.concatenate([temp1, temp2]) elif find_idx[-1] + 1 == drow: trainp = self.plabel[:find_idx[-1] + 1] trainc = self.tlabel[:find_idx[-1] + 1] target_indexes, _ = dataset_list[0].shape train_indexes, _ = train_list[0].shape random_list1 = sample(range(target_indexes), target_indexes) random_list2 = sample(range(train_indexes), train_indexes) for i, dataset in enumerate(dataset_list): test_dict[f"data_{i}"] = dataset[random_list1] test_dict["people"] = targetp[random_list1] test_dict["tag"] = targetc[random_list1] for i, dataset in enumerate(train_list): train_dict[f"data_{i}"] = dataset[random_list2] train_dict["people"] = trainp[random_list2] train_dict["tag"] = trainc[random_list2] total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # LeaveOne sampling Class class LeaveOneDP_select(BaseDivideProcess): """ LeaveOne sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() seed_num = 0 for repeat in range(20): train_dict = dict() test_dict = dict() class_collect = dict() for target_class in range(1, self.nb_class+1): # per label collect data1 = self.dataset[0][target_class == self.dataset[0][:, -1]] data2 = self.dataset[1][target_class == self.dataset[0][:, -1]] data3 = self.dataset[2][target_class == self.dataset[0][:, -1]] per_people = list() for peo_target in range(self.nb_people+1): find_idx = [] count_idx = 0 drow, _ = data1.shape for idx in range(drow): if data1[idx, -2] == peo_target: find_idx.append(idx) count_idx += 1 if len(find_idx) == 0: continue dataset_list = list() for dataset in [data1, data2, data3]: target = dataset[find_idx[0]:find_idx[-1] + 1, :] dataset_list.append(target) per_people.append(dataset_list) class_collect[target_class] = per_people test_list = list() train_list = list() for key, datalist in class_collect.items(): class_len = len(datalist) seed(seed_num) seed_num += 1 ridx = sample(range(class_len), class_len) temp_test = datalist.pop(ridx[0]) temp_train = datalist test_list.append(temp_test) train_list.extend(temp_train) for sens in range(3): for i, data in enumerate(test_list): if i == 0: test_dict[f"data_{sens}"] = data[sens][:, :-2] if sens == 0: test_dict["people"] = data[sens][:, -2] test_dict["tag"] = data[sens][:, -1] else: test_dict[f"data_{sens}"] = np.vstack([test_dict[f"data_{sens}"], data[sens][:, :-2]]) if sens == 0: test_dict["people"] = np.concatenate([test_dict["people"], data[sens][:, -2]]) test_dict["tag"] = np.concatenate([test_dict["tag"], data[sens][:, -1]]) for i, data in enumerate(train_list): if i == 0: train_dict[f"data_{sens}"] = data[sens][:, :-2] if sens == 0: train_dict["people"] = data[sens][:, -2] train_dict["tag"] = data[sens][:, -1] else: train_dict[f"data_{sens}"] = np.vstack([train_dict[f"data_{sens}"], data[sens][:, :-2]]) if sens == 0: train_dict["people"] = np.concatenate([train_dict["people"], data[sens][:, -2]]) train_dict["tag"] = np.concatenate([train_dict["tag"], data[sens][:, -1]]) total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # LeaveOne sampling Class class mdpiDP(BaseDivideProcess): """ mdpi sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self, s1=3, s2=50): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for repeat in range(20): seed(repeat) drow, _ = self.data1.shape train_dict = dict() test_dict = dict() for people_target in range(self.nb_people): find_idx = [] for idx in range(drow): if self.plabel[idx] == people_target: find_idx.append(idx) dataset_list = list() for dataset in [self.data1, self.data2, self.data3]: target = dataset[find_idx[0]:find_idx[-1] + 1, :] dataset_list.append(target) targetp = self.plabel[find_idx[0]:find_idx[-1] + 1] targetc = self.tlabel[find_idx[0]:find_idx[-1] + 1] for class_target in range(self.nb_class): find_idx = [] count_idx = 0 for idx in range(dataset_list[0].shape[0]): if targetc[idx] == class_target + 1: find_idx.append(idx) count_idx += 1 class_list = list() try: for dataset in dataset_list: target = dataset[find_idx[0]:find_idx[-1] + 1, :] class_list.append(target) sec_targetp = targetp[find_idx[0]:find_idx[-1] + 1] sec_targetc = targetc[find_idx[0]:find_idx[-1] + 1] except: class_list = list() continue random_list = sample(range(count_idx), count_idx) for i, target in enumerate(class_list): class_list[i] = target[random_list] sec_targetp = sec_targetp[random_list] sec_targetc = sec_targetc[random_list] if s2 != -1: if people_target == 0: for i, dataset in enumerate(class_list): train_dict[f"data_{i}"] = dataset[:s1, :] test_dict[f"data_{i}"] = dataset[s1:s2, :] train_dict["people"] = sec_targetp[:s1] train_dict["tag"] = sec_targetc[:s1] test_dict["people"] = sec_targetp[s1:s2] test_dict["tag"] = sec_targetc[s1:s2] else: for i, dataset in enumerate(class_list): train_dict[f"data_{i}"] = np.vstack([train_dict[f"data_{i}"], dataset[:s1, :]]) test_dict[f"data_{i}"] = np.vstack([test_dict[f"data_{i}"], dataset[s1:s2, :]]) train_dict["people"] = np.concatenate([train_dict["people"], sec_targetp[:s1]]) train_dict["tag"] = np.concatenate([train_dict["tag"], sec_targetc[:s1]]) test_dict["people"] = np.concatenate([test_dict["people"], sec_targetp[s1:s2]]) test_dict["tag"] = np.concatenate([test_dict["tag"], sec_targetc[s1:s2]]) else: if people_target == 0: for i, dataset in enumerate(class_list): train_dict[f"data_{i}"] = dataset[:s1, :] test_dict[f"data_{i}"] = dataset[s1:, :] train_dict["people"] = sec_targetp[:s1] train_dict["tag"] = sec_targetc[:s1] test_dict["people"] = sec_targetp[s1:] test_dict["tag"] = sec_targetc[s1:] else: for i, dataset in enumerate(class_list): train_dict[f"data_{i}"] = np.vstack([train_dict[f"data_{i}"], dataset[:s1, :]]) test_dict[f"data_{i}"] = np.vstack([test_dict[f"data_{i}"], dataset[s1:, :]]) train_dict["people"] = np.concatenate([train_dict["people"], sec_targetp[:s1]]) train_dict["tag"] = np.concatenate([train_dict["tag"], sec_targetc[:s1]]) test_dict["people"] = np.concatenate([test_dict["people"], sec_targetp[s1:]]) test_dict["tag"] = np.concatenate([test_dict["tag"], sec_targetc[s1:]]) other_samples, _ = train_dict["data_0"].shape random_list = sample(range(other_samples), other_samples) train_dict["people"] = train_dict["people"][random_list] train_dict["tag"] = train_dict["tag"][random_list] for i in range(3): train_dict[f"data_{i}"] = train_dict[f"data_{i}"][random_list] other_samples, _ = test_dict["data_0"].shape random_list = sample(range(other_samples), other_samples) test_dict["people"] = test_dict["people"][random_list] test_dict["tag"] = test_dict["tag"][random_list] for i in range(3): test_dict[f"data_{i}"] = test_dict[f"data_{i}"][random_list] total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # LeaveOne sampling Class class mdpi_dhalfDP(BaseDivideProcess): """ mdpi sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for repeat in range(20): seed(repeat) drow, _ = self.data1.shape train_dict = dict() test_dict = dict() rindx_list = sample(range(drow), drow) dataset_list = list() for dataset in [self.data1, self.data2, self.data3]: randomized = dataset[rindx_list] dataset_list.append(randomized) targetc = self.tlabel[rindx_list] targetp = self.plabel[rindx_list] half_idx = int(drow / 2) # get decimal result = 0 previous = 0 n = 10 while result == 0: output = round(half_idx // n) if output == 0: n = n / 10 result = previous * n else: previous = output n = n * 10 drop_idx = int(result) # drop_idx = 10**(len(half_idx) - 1) for i, dataset in enumerate(dataset_list): train_dict[f"data_{i}"] = dataset[:drop_idx, :] test_dict[f"data_{i}"] = dataset[drop_idx:2*drop_idx, :] train_dict["people"] = targetp[:drop_idx] train_dict["tag"] = targetc[:drop_idx] test_dict["people"] = targetp[drop_idx:2*drop_idx] test_dict["tag"] = targetc[drop_idx:2*drop_idx] total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # LeaveOne sampling Class class mdpi_halfDP(BaseDivideProcess): """ mdpi sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for repeat in range(20): seed(repeat) drow, _ = self.data1.shape train_dict = dict() test_dict = dict() rindx_list = sample(range(drow), drow) dataset_list = list() for dataset in [self.data1, self.data2, self.data3]: randomized = dataset[rindx_list] dataset_list.append(randomized) targetc = self.tlabel[rindx_list] targetp = self.plabel[rindx_list] half_idx = int(drow/2) for i, dataset in enumerate(dataset_list): train_dict[f"data_{i}"] = dataset[:half_idx, :] test_dict[f"data_{i}"] = dataset[half_idx:, :] train_dict["people"] = targetp[:half_idx] train_dict["tag"] = targetc[:half_idx] test_dict["people"] = targetp[half_idx:] test_dict["tag"] = targetc[half_idx:] total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # LeaveOne sampling Class class mdpi_MCCVDP(BaseDivideProcess): """ mdpi sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for repeat in range(20): seed(repeat) drow, _ = self.data1.shape train_dict = dict() test_dict = dict() rindx_list = sample(range(drow), drow) dataset_list = list() for dataset in [self.data1, self.data2, self.data3]: randomized = dataset[rindx_list] dataset_list.append(randomized) targetc = self.tlabel[rindx_list] targetp = self.plabel[rindx_list] mcv_rate = int(drow * 0.7) for i, dataset in enumerate(dataset_list): train_dict[f"data_{i}"] = dataset[:mcv_rate, :] test_dict[f"data_{i}"] = dataset[mcv_rate:, :] train_dict["people"] = targetp[:mcv_rate] train_dict["tag"] = targetc[:mcv_rate] test_dict["people"] = targetp[mcv_rate:] test_dict["tag"] = targetc[mcv_rate:] total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # 7 - Cross Validation sampling Class class seven_CVDP(BaseDivideProcess): """ mdpi sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for repeat in range(5): seed(repeat) drow, _ = self.data1.shape rindx_list = sample(range(drow), drow) dataset_list = list() for dataset in [self.data1, self.data2, self.data3]: randomized = dataset[rindx_list] dataset_list.append(randomized) targetc = self.tlabel[rindx_list] targetp = self.plabel[rindx_list] cv_rate = int(drow / 7) for cvi in range(7): train_dict = dict() test_dict = dict() for i, dataset in enumerate(dataset_list): test_dict[f"data_{i}"] = dataset[cv_rate*cvi: cv_rate*(cvi+1), :] test_dict["people"] = targetp[cv_rate*cvi: cv_rate*(cvi+1)] test_dict["tag"] = targetc[cv_rate*cvi: cv_rate*(cvi+1)] indexing = np.arange(cv_rate*cvi, cv_rate*(cvi+1)) for i, dataset in enumerate(dataset_list): train_dict[f"data_{i}"] = np.array([element for idx, element in enumerate(dataset) if idx not in indexing]) train_dict["people"] = np.array([element for idx, element in enumerate(targetp) if idx not in indexing]) train_dict["tag"] = np.array([element for idx, element in enumerate(targetc) if idx not in indexing]) # if cvi == 0: # for i, dataset in enumerate(dataset_list): # test_dict[f"data_{i}"] = dataset[cv_rate:, :] # test_dict["people"] = targetp[cv_rate:] # test_dict["tag"] = targetc[cv_rate:] # elif cvi == 6: # for i, dataset in enumerate(dataset_list): # test_dict[f"data_{i}"] = dataset[:cv_rate*cvi, :] # test_dict["people"] = targetp[:cv_rate*cvi] # test_dict["tag"] = targetc[:cv_rate*cvi] # else: # for i, dataset in enumerate(dataset_list): # temp1 = dataset[:cv_rate*cvi, :] # temp2 = dataset[cv_rate*(cvi+1):, :] # test_dict[f"data_{i}"] = np.vstack([temp1, temp2]) # test_dict["people"] = np.vstack([targetp[:cv_rate*cvi], targetp[cv_rate*(cvi+1):]]) # test_dict["tag"] = np.vstack([targetc[:cv_rate*cvi], targetc[cv_rate*(cvi+1):]]) total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # Selected Cross Validation sampling Class class select_CVDP(BaseDivideProcess): """ mdpi sampling """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() for repeat in range(10): seed(repeat) drow, _ = self.data1.shape train_dict = dict() test_dict = dict() rindx_list = sample(range(drow), drow) dataset_list = list() for dataset in [self.data1, self.data2, self.data3]: randomized = dataset[rindx_list] dataset_list.append(randomized) targetc = self.tlabel[rindx_list] targetp = self.plabel[rindx_list] cv_rate = int(drow / 7) for cvi in range(7): for i, dataset in enumerate(dataset_list): train_dict[f"data_{i}"] = dataset[cv_rate*cvi: cv_rate*cvi+1, :] train_dict["people"] = targetp[:cv_rate] train_dict["tag"] = targetc[:cv_rate] if cvi == 0: for i, dataset in enumerate(dataset_list): test_dict[f"data_{i}"] = dataset[cv_rate:, :] test_dict["people"] = targetp[cv_rate:] test_dict["tag"] = targetc[cv_rate:] elif cvi == 6: for i, dataset in enumerate(dataset_list): test_dict[f"data_{i}"] = dataset[:cv_rate*cvi, :] test_dict["people"] = targetp[:cv_rate*cvi] test_dict["tag"] = targetc[:cv_rate*cvi] else: for i, dataset in enumerate(dataset_list): temp1 = dataset[:cv_rate*cvi, :] temp2 = dataset[cv_rate*cvi+1:, :] test_dict[f"data_{i}"] = np.vstack([temp1, temp2]) test_dict["people"] = np.vstack([targetp[:cv_rate*cvi], targetp[cv_rate*cvi+1]]) test_dict["tag"] = np.vstack([targetc[:cv_rate*cvi], targetc[cv_rate*cvi+1]]) total_dataset["train"].append(train_dict) total_dataset["test"].append(test_dict) return total_dataset # Base Divide Process Class class BaseVectorDivideProcess: def __init__(self, mode, model_name, dataset): assert len(dataset) == 3, "dataset must be 3 arguments" pressure, accl, accr, gyrl, gyrr, info = dataset # [data1, data2, data3] = pp.sort_by_people(dataset) # sampling func name self.mode = mode # used model name self.model_name = model_name self.dataset = dataset self.real_plabel = info[:, 0] self.plabel = info[:, 1] self.tlabel = info[:, 2] # dataset index self.pressure = pressure self.acc = [accl, accr] self.gyro = [gyrl, gyrr] self.nb_class = int(max(self.tlabel)) self.nb_people = int(max(self.plabel)) + 1 def sampling(self): pass def convert(self, data, mt, comb): # need to update drow, dcol = data.shape input_shape = (int(mt * comb), int((dcol) / (mt * comb))) if self.model_name in method_info['4columns']: converted = data.reshape(-1, input_shape[0], input_shape[1], 1) elif self.model_name == "pVGG": data = data.reshape(-1, input_shape[0], input_shape[1]) converted = np.zeros((data.shape[0], data.shape[1], data.shape[2], 3)) for idx in range(3): converted[:, :, :, idx] = data elif self.model_name in method_info['3columns']: converted = data.reshape(-1, input_shape[0], input_shape[1]) elif self.model_name in method_info['2columns']: converted = data elif self.model_name in method_info['specific']: converted = data elif self.model_name in method_info['vector']: converted = data return converted class method_as_vector(BaseDivideProcess): """ convert vector method """ def __init__(self, mode, model_name, dataset, rsub): super().__init__(mode, model_name, dataset) print(f"{datetime.datetime.now()} :: Divide Process : {self.mode}") def sampling(self): total_dataset = dict() total_dataset["train"] = list() total_dataset["test"] = list() return total_dataset
python
52,446
import errno import os import stat import subprocess from jupyter_core.paths import jupyter_data_dir from notebook.auth import passwd # Setup the Notebook to listen on all interfaces on port 8888 by default c.NotebookApp.ip = '*' c.NotebookApp.port = 8888 c.NotebookApp.open_browser = False # Configure Networking while running under Marathon: if 'MARATHON_APP_ID' in os.environ: if 'PORT_JUPYTER' in os.environ: c.NotebookApp.port = int(os.environ['PORT_JUPYTER']) # Set the Access-Control-Allow-Origin header c.NotebookApp.allow_origin = '*' # Set Jupyter Notebook Server password to 'jupyter-<Marathon-App-Prefix>' # e.g., Marathon App ID '/foo/bar/app' maps to password: 'jupyter-foo-bar' MARATHON_APP_PREFIX = \ '-'.join(os.environ['MARATHON_APP_ID'].split('/')[:-1]) c.NotebookApp.password = passwd('jupyter{}'.format(MARATHON_APP_PREFIX)) # Allow CORS and TLS from behind Marathon-LB/HAProxy # Trust X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-For # Necessary if the proxy handles SSL if 'MARATHON_APP_LABEL_HAPROXY_GROUP' in os.environ: c.NotebookApp.trust_xheaders = True if 'MARATHON_APP_LABEL_HAPROXY_0_VHOST' in os.environ: c.NotebookApp.allow_origin = \ 'http://{}'.format( os.environ['MARATHON_APP_LABEL_HAPROXY_0_VHOST'] ) if 'MARATHON_APP_LABEL_HAPROXY_0_REDIRECT_TO_HTTPS' in os.environ: c.NotebookApp.allow_origin = \ 'https://{}'.format( os.environ['MARATHON_APP_LABEL_HAPROXY_0_VHOST'] ) # Set the Jupyter Notebook server base URL to the HAPROXY_PATH specified if 'MARATHON_APP_LABEL_HAPROXY_0_PATH' in os.environ: c.NotebookApp.base_url = \ os.environ['MARATHON_APP_LABEL_HAPROXY_0_PATH'] # Setup TLS if 'USE_HTTPS' in os.environ: SCHEDULER_TLS_CERT = os.environ.get('TLS_CERT_PATH', '/'.join( [os.environ['MESOS_SANDBOX'], '.ssl', 'scheduler.crt'])) c.NotebookApp.certfile = SCHEDULER_TLS_CERT SCHEDULER_TLS_KEY = os.environ.get('TLS_KEY_PATH', '/'.join( [os.environ['MESOS_SANDBOX'], '.ssl', 'scheduler.key'])) c.NotebookApp.keyfile = SCHEDULER_TLS_KEY # Set a certificate if USE_HTTPS is set to any value PEM_FILE = os.path.join(jupyter_data_dir(), 'notebook.pem') if 'USE_HTTPS' in os.environ: if not os.path.isfile(PEM_FILE): # Ensure PEM_FILE directory exists DIR_NAME = os.path.dirname(PEM_FILE) try: os.makedirs(DIR_NAME) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(DIR_NAME): pass else: raise # Generate a certificate if one doesn't exist on disk subprocess.check_call(['openssl', 'req', '-new', '-newkey', 'rsa:2048', '-days', '365', '-nodes', '-x509', '-subj', '/C=XX/ST=XX/L=XX/O=generated/CN=generated', '-keyout', PEM_FILE, '-out', PEM_FILE]) # Restrict access to PEM_FILE os.chmod(PEM_FILE, stat.S_IRUSR | stat.S_IWUSR) c.NotebookApp.certfile = PEM_FILE # Set a password if JUPYTER_PASSWORD is set if 'JUPYTER_PASSWORD' in os.environ: c.NotebookApp.password = passwd(os.environ['JUPYTER_PASSWORD']) del os.environ['JUPYTER_PASSWORD']
python
3,490
from rest_framework.routers import DefaultRouter from .views import ShopViewSet from shops.models import Shop from .serializers import ShopSerializer from django.urls import path, include from rest_framework.urlpatterns import format_suffix_patterns app_name = "api" router = DefaultRouter() router.register("Shops", ShopViewSet, basename="shop") #router.register("products", ProductViewSet) shop_list = ShopViewSet.as_view({"get":"list", "post":"create"}) shop_detail = ShopViewSet.as_view({"get":"retrieve"}) urlpatterns = [ path("shops/", shop_list, name="shop-list"), path("shops/<slug:slug>/", shop_detail, name="shop-detail"), ] urlpatterns = format_suffix_patterns(urlpatterns, allowed=["json"])
python
720
# Generated by Django 3.1.7 on 2021-04-03 12:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('base', '0002_order_orderitem_review_shippingaddress'), ] operations = [ migrations.AddField( model_name='product', name='image', field=models.ImageField(blank=True, null=True, upload_to=''), ), ]
python
424
""" Module contains tools for processing files into DataFrames or other objects """ from collections import abc, defaultdict import csv import datetime from io import StringIO import re import sys from textwrap import fill from typing import Any, Dict, Set import warnings import numpy as np import pandas._libs.lib as lib import pandas._libs.ops as libops import pandas._libs.parsers as parsers from pandas._libs.parsers import STR_NA_VALUES from pandas._libs.tslibs import parsing from pandas._typing import FilePathOrBuffer from pandas.errors import ( AbstractMethodError, EmptyDataError, ParserError, ParserWarning, ) from pandas.util._decorators import Appender from pandas.core.dtypes.cast import astype_nansafe from pandas.core.dtypes.common import ( ensure_object, ensure_str, is_bool_dtype, is_categorical_dtype, is_dtype_equal, is_extension_array_dtype, is_file_like, is_float, is_integer, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.missing import isna from pandas.core import algorithms from pandas.core.arrays import Categorical from pandas.core.frame import DataFrame from pandas.core.indexes.api import ( Index, MultiIndex, RangeIndex, ensure_index_from_sequences, ) from pandas.core.series import Series from pandas.core.tools import datetimes as tools from pandas.io.common import ( UTF8Recoder, get_filepath_or_buffer, get_handle, infer_compression, validate_header_arg, ) from pandas.io.date_converters import generic_parser # BOM character (byte order mark) # This exists at the beginning of a file to indicate endianness # of a file (stream). Unfortunately, this marker screws up parsing, # so we need to remove it if we see it. _BOM = "\ufeff" _doc_read_csv_and_table = ( r""" {summary} Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the online docs for `IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handler (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default {_default_sep} Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, default ``None`` Alias for sep. header : int, list of int, default 'infer' Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to ``header=0`` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to ``header=None``. Explicitly pass ``header=0`` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header=0`` denotes the first line of data rather than the first line of the file. names : array-like, optional List of column names to use. If the file contains a header row, then you should explicitly pass ``header=0`` to override the column names. Duplicates in this list are not allowed. index_col : int, str, sequence of int / str, or False, default ``None`` Column(s) to use as the row labels of the ``DataFrame``, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: ``index_col=False`` can be used to force pandas to *not* use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecols : list-like or callable, optional Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header row(s). For example, a valid list-like `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a DataFrame from ``data`` with element order preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. squeeze : bool, default False If the parsed data only contains one column then return a Series. prefix : str, optional Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ... mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32, 'c': 'Int64'}} Use `str` or `object` together with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : {{'c', 'python'}}, optional Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. true_values : list, optional Values to consider as True. false_values : list, optional Values to consider as False. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : list-like, int or callable, optional Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine='c'). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is appended to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. skip_blank_lines : bool, default True If True, skip over blank lines rather than interpreting as NaN values. parse_dates : bool or list of int or names or list of lists or dict, \ default False The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call result 'foo' If a column or index cannot be represented as an array of datetimes, say because of an unparseable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv``. To parse an index or column with a mixture of timezones, specify ``date_parser`` to be a partially-applied :func:`pandas.to_datetime` with ``utc=True``. See :ref:`io.csv.mixed_timezones` for more. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_format : bool, default False If True and `parse_dates` is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_col : bool, default False If True and `parse_dates` specifies combining multiple columns then keep the original columns. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Pandas will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. dayfirst : bool, default False DD/MM format dates, international and European format. cache_dates : bool, default True If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. .. versionadded:: 0.25.0 iterator : bool, default False Return TextFileReader object for iteration or getting chunks with ``get_chunk()``. chunksize : int, optional Return TextFileReader object for iteration. See the `IO Tools docs <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_ for more information on ``iterator`` and ``chunksize``. compression : {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no decompression). If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. thousands : str, optional Thousands separator. decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). lineterminator : str (length 1), optional Character to break file into lines. Only valid with C parser. quotechar : str (length 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequote : bool, default ``True`` When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single ``quotechar`` element. escapechar : str (length 1), optional One-character string used to escape other characters. comment : str, optional Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if ``comment='#'``, parsing ``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in 'a,b,c' being treated as the header. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. error_bad_lines : bool, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these "bad lines" will dropped from the DataFrame that is returned. warn_bad_lines : bool, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each "bad line" will be output. delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the sep. Equivalent to setting ``sep='\\s+'``. If this option is set to True, nothing should be passed in for the ``delimiter`` parameter. low_memory : bool, default True Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single DataFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser). memory_map : bool, default False If a filepath is provided for `filepath_or_buffer`, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are `None` for the ordinary converter, `high` for the high-precision converter, and `round_trip` for the round-trip converter. Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. read_fwf : Read a table of fixed-width formatted lines into DataFrame. Examples -------- >>> pd.{func_name}('data.csv') # doctest: +SKIP """ ) def _validate_integer(name, val, min_val=0): """ Checks whether the 'name' parameter for parsing is either an integer OR float that can SAFELY be cast to an integer without losing accuracy. Raises a ValueError if that is not the case. Parameters ---------- name : string Parameter name (used for error reporting) val : int or float The value to check min_val : int Minimum allowed value (val < min_val will result in a ValueError) """ msg = f"'{name:s}' must be an integer >={min_val:d}" if val is not None: if is_float(val): if int(val) != val: raise ValueError(msg) val = int(val) elif not (is_integer(val) and val >= min_val): raise ValueError(msg) return val def _validate_names(names): """ Raise ValueError if the `names` parameter contains duplicates. Parameters ---------- names : array-like or None An array containing a list of the names used for the output DataFrame. Raises ------ ValueError If names are not unique. """ if names is not None: if len(names) != len(set(names)): raise ValueError("Duplicate names are not allowed.") def _read(filepath_or_buffer: FilePathOrBuffer, kwds): """Generic reader of line files.""" encoding = kwds.get("encoding", None) if encoding is not None: encoding = re.sub("_", "-", encoding).lower() kwds["encoding"] = encoding compression = kwds.get("compression", "infer") compression = infer_compression(filepath_or_buffer, compression) # TODO: get_filepath_or_buffer could return # Union[FilePathOrBuffer, s3fs.S3File, gcsfs.GCSFile] # though mypy handling of conditional imports is difficult. # See https://github.com/python/mypy/issues/1297 fp_or_buf, _, compression, should_close = get_filepath_or_buffer( filepath_or_buffer, encoding, compression ) kwds["compression"] = compression if kwds.get("date_parser", None) is not None: if isinstance(kwds["parse_dates"], bool): kwds["parse_dates"] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.get("iterator", False) chunksize = _validate_integer("chunksize", kwds.get("chunksize", None), 1) nrows = kwds.get("nrows", None) # Check for duplicates in names. _validate_names(kwds.get("names", None)) # Create the parser. parser = TextFileReader(fp_or_buf, **kwds) if chunksize or iterator: return parser try: data = parser.read(nrows) finally: parser.close() if should_close: try: fp_or_buf.close() except ValueError: pass return data _parser_defaults = { "delimiter": None, "escapechar": None, "quotechar": '"', "quoting": csv.QUOTE_MINIMAL, "doublequote": True, "skipinitialspace": False, "lineterminator": None, "header": "infer", "index_col": None, "names": None, "prefix": None, "skiprows": None, "skipfooter": 0, "nrows": None, "na_values": None, "keep_default_na": True, "true_values": None, "false_values": None, "converters": None, "dtype": None, "cache_dates": True, "thousands": None, "comment": None, "decimal": ".", # 'engine': 'c', "parse_dates": False, "keep_date_col": False, "dayfirst": False, "date_parser": None, "usecols": None, # 'iterator': False, "chunksize": None, "verbose": False, "encoding": None, "squeeze": False, "compression": None, "mangle_dupe_cols": True, "infer_datetime_format": False, "skip_blank_lines": True, } _c_parser_defaults = { "delim_whitespace": False, "na_filter": True, "low_memory": True, "memory_map": False, "error_bad_lines": True, "warn_bad_lines": True, "float_precision": None, } _fwf_defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None} _c_unsupported = {"skipfooter"} _python_unsupported = {"low_memory", "float_precision"} _deprecated_defaults: Dict[str, Any] = {} _deprecated_args: Set[str] = set() def _make_parser_function(name, default_sep=","): def parser_f( filepath_or_buffer: FilePathOrBuffer, sep=default_sep, delimiter=None, # Column and Index Locations and Names header="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", lineterminator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_map=False, float_precision=None, ): # gh-23761 # # When a dialect is passed, it overrides any of the overlapping # parameters passed in directly. We don't want to warn if the # default parameters were passed in (since it probably means # that the user didn't pass them in explicitly in the first place). # # "delimiter" is the annoying corner case because we alias it to # "sep" before doing comparison to the dialect values later on. # Thus, we need a flag to indicate that we need to "override" # the comparison to dialect values by checking if default values # for BOTH "delimiter" and "sep" were provided. if dialect is not None: sep_override = delimiter is None and sep == default_sep kwds = dict(sep_override=sep_override) else: kwds = dict() # Alias sep -> delimiter. if delimiter is None: delimiter = sep if delim_whitespace and delimiter != default_sep: raise ValueError( "Specified a delimiter with both sep and" " delim_whitespace=True; you can only" " specify one." ) if engine is not None: engine_specified = True else: engine = "c" engine_specified = False kwds.update( delimiter=delimiter, engine=engine, dialect=dialect, compression=compression, engine_specified=engine_specified, doublequote=doublequote, escapechar=escapechar, quotechar=quotechar, quoting=quoting, skipinitialspace=skipinitialspace, lineterminator=lineterminator, header=header, index_col=index_col, names=names, prefix=prefix, skiprows=skiprows, skipfooter=skipfooter, na_values=na_values, true_values=true_values, false_values=false_values, keep_default_na=keep_default_na, thousands=thousands, comment=comment, decimal=decimal, parse_dates=parse_dates, keep_date_col=keep_date_col, dayfirst=dayfirst, date_parser=date_parser, cache_dates=cache_dates, nrows=nrows, iterator=iterator, chunksize=chunksize, converters=converters, dtype=dtype, usecols=usecols, verbose=verbose, encoding=encoding, squeeze=squeeze, memory_map=memory_map, float_precision=float_precision, na_filter=na_filter, delim_whitespace=delim_whitespace, warn_bad_lines=warn_bad_lines, error_bad_lines=error_bad_lines, low_memory=low_memory, mangle_dupe_cols=mangle_dupe_cols, infer_datetime_format=infer_datetime_format, skip_blank_lines=skip_blank_lines, ) return _read(filepath_or_buffer, kwds) parser_f.__name__ = name return parser_f read_csv = _make_parser_function("read_csv", default_sep=",") read_csv = Appender( _doc_read_csv_and_table.format( func_name="read_csv", summary="Read a comma-separated values (csv) file into DataFrame.", _default_sep="','", ) )(read_csv) read_table = _make_parser_function("read_table", default_sep="\t") read_table = Appender( _doc_read_csv_and_table.format( func_name="read_table", summary="Read general delimited file into DataFrame.", _default_sep=r"'\\t' (tab-stop)", ) )(read_table) def read_fwf( filepath_or_buffer: FilePathOrBuffer, colspecs="infer", widths=None, infer_nrows=100, **kwds, ): r""" Read a table of fixed-width formatted lines into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.csv``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handler (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser determine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- >>> pd.read_fwf('data.csv') # doctest: +SKIP """ # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, "infer") and widths is not None: raise ValueError("You must specify only one of 'widths' and 'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.append((col, col + w)) col += w kwds["colspecs"] = colspecs kwds["infer_nrows"] = infer_nrows kwds["engine"] = "python-fwf" return _read(filepath_or_buffer, kwds) class TextFileReader(abc.Iterator): """ Passed dialect overrides any of the related parser options """ def __init__(self, f, engine=None, **kwds): self.f = f if engine is not None: engine_specified = True else: engine = "python" engine_specified = False self._engine_specified = kwds.get("engine_specified", engine_specified) if kwds.get("dialect") is not None: dialect = kwds["dialect"] if dialect in csv.list_dialects(): dialect = csv.get_dialect(dialect) # Any valid dialect should have these attributes. # If any are missing, we will raise automatically. for param in ( "delimiter", "doublequote", "escapechar", "skipinitialspace", "quotechar", "quoting", ): try: dialect_val = getattr(dialect, param) except AttributeError: raise ValueError(f"Invalid dialect {kwds['dialect']} provided") parser_default = _parser_defaults[param] provided = kwds.get(param, parser_default) # Messages for conflicting values between the dialect # instance and the actual parameters provided. conflict_msgs = [] # Don't warn if the default parameter was passed in, # even if it conflicts with the dialect (gh-23761). if provided != parser_default and provided != dialect_val: msg = ( f"Conflicting values for '{param}': '{provided}' was " f"provided, but the dialect specifies '{dialect_val}'. " "Using the dialect-specified value." ) # Annoying corner case for not warning about # conflicts between dialect and delimiter parameter. # Refer to the outer "_read_" function for more info. if not (param == "delimiter" and kwds.pop("sep_override", False)): conflict_msgs.append(msg) if conflict_msgs: warnings.warn( "\n\n".join(conflict_msgs), ParserWarning, stacklevel=2 ) kwds[param] = dialect_val if kwds.get("skipfooter"): if kwds.get("iterator") or kwds.get("chunksize"): raise ValueError("'skipfooter' not supported for 'iteration'") if kwds.get("nrows"): raise ValueError("'skipfooter' not supported with 'nrows'") if kwds.get("header", "infer") == "infer": kwds["header"] = 0 if kwds.get("names") is None else None self.orig_options = kwds # miscellanea self.engine = engine self._engine = None self._currow = 0 options = self._get_options_with_defaults(engine) self.chunksize = options.pop("chunksize", None) self.nrows = options.pop("nrows", None) self.squeeze = options.pop("squeeze", False) # might mutate self.engine self.engine = self._check_file_or_buffer(f, engine) self.options, self.engine = self._clean_options(options, engine) if "has_index_names" in kwds: self.options["has_index_names"] = kwds["has_index_names"] self._make_engine(self.engine) def close(self): self._engine.close() def _get_options_with_defaults(self, engine): kwds = self.orig_options options = {} for argname, default in _parser_defaults.items(): value = kwds.get(argname, default) # see gh-12935 if argname == "mangle_dupe_cols" and not value: raise ValueError("Setting mangle_dupe_cols=False is not supported yet") else: options[argname] = value for argname, default in _c_parser_defaults.items(): if argname in kwds: value = kwds[argname] if engine != "c" and value != default: if "python" in engine and argname not in _python_unsupported: pass elif value == _deprecated_defaults.get(argname, default): pass else: raise ValueError( f"The {repr(argname)} option is not supported with the" f" {repr(engine)} engine" ) else: value = _deprecated_defaults.get(argname, default) options[argname] = value if engine == "python-fwf": for argname, default in _fwf_defaults.items(): options[argname] = kwds.get(argname, default) return options def _check_file_or_buffer(self, f, engine): # see gh-16530 if is_file_like(f): next_attr = "__next__" # The C engine doesn't need the file-like to have the "next" or # "__next__" attribute. However, the Python engine explicitly calls # "next(...)" when iterating through such an object, meaning it # needs to have that attribute ("next" for Python 2.x, "__next__" # for Python 3.x) if engine != "c" and not hasattr(f, next_attr): msg = "The 'python' engine cannot iterate through this file buffer." raise ValueError(msg) return engine def _clean_options(self, options, engine): result = options.copy() engine_specified = self._engine_specified fallback_reason = None sep = options["delimiter"] delim_whitespace = options["delim_whitespace"] # C engine not supported yet if engine == "c": if options["skipfooter"] > 0: fallback_reason = "the 'c' engine does not support skipfooter" engine = "python" encoding = sys.getfilesystemencoding() or "utf-8" if sep is None and not delim_whitespace: if engine == "c": fallback_reason = ( "the 'c' engine does not support" " sep=None with delim_whitespace=False" ) engine = "python" elif sep is not None and len(sep) > 1: if engine == "c" and sep == r"\s+": result["delim_whitespace"] = True del result["delimiter"] elif engine not in ("python", "python-fwf"): # wait until regex engine integrated fallback_reason = ( "the 'c' engine does not support " "regex separators (separators > 1 char and " r"different from '\s+' are " "interpreted as regex)" ) engine = "python" elif delim_whitespace: if "python" in engine: result["delimiter"] = r"\s+" elif sep is not None: encodeable = True try: if len(sep.encode(encoding)) > 1: encodeable = False except UnicodeDecodeError: encodeable = False if not encodeable and engine not in ("python", "python-fwf"): fallback_reason = ( f"the separator encoded in {encoding} " "is > 1 char long, and the 'c' engine " "does not support such separators" ) engine = "python" quotechar = options["quotechar"] if quotechar is not None and isinstance(quotechar, (str, bytes)): if ( len(quotechar) == 1 and ord(quotechar) > 127 and engine not in ("python", "python-fwf") ): fallback_reason = ( "ord(quotechar) > 127, meaning the " "quotechar is larger than one byte, " "and the 'c' engine does not support " "such quotechars" ) engine = "python" if fallback_reason and engine_specified: raise ValueError(fallback_reason) if engine == "c": for arg in _c_unsupported: del result[arg] if "python" in engine: for arg in _python_unsupported: if fallback_reason and result[arg] != _c_parser_defaults[arg]: raise ValueError( "Falling back to the 'python' engine because " f"{fallback_reason}, but this causes {repr(arg)} to be " "ignored as it is not supported by the 'python' engine." ) del result[arg] if fallback_reason: warnings.warn( ( "Falling back to the 'python' engine because " f"{fallback_reason}; you can avoid this warning by specifying " "engine='python'." ), ParserWarning, stacklevel=5, ) index_col = options["index_col"] names = options["names"] converters = options["converters"] na_values = options["na_values"] skiprows = options["skiprows"] validate_header_arg(options["header"]) depr_warning = "" for arg in _deprecated_args: parser_default = _c_parser_defaults[arg] depr_default = _deprecated_defaults[arg] msg = ( f"The {repr(arg)} argument has been deprecated and will be " "removed in a future version." ) if result.get(arg, depr_default) != depr_default: depr_warning += msg + "\n\n" else: result[arg] = parser_default if depr_warning != "": warnings.warn(depr_warning, FutureWarning, stacklevel=2) if index_col is True: raise ValueError("The value of index_col couldn't be 'True'") if _is_index_col(index_col): if not isinstance(index_col, (list, tuple, np.ndarray)): index_col = [index_col] result["index_col"] = index_col names = list(names) if names is not None else names # type conversion-related if converters is not None: if not isinstance(converters, dict): raise TypeError( "Type converters must be a dict or subclass, " f"input was a {type(converters).__name__}" ) else: converters = {} # Converting values to NA keep_default_na = options["keep_default_na"] na_values, na_fvalues = _clean_na_values(na_values, keep_default_na) # handle skiprows; this is internally handled by the # c-engine, so only need for python parsers if engine != "c": if is_integer(skiprows): skiprows = list(range(skiprows)) if skiprows is None: skiprows = set() elif not callable(skiprows): skiprows = set(skiprows) # put stuff back result["names"] = names result["converters"] = converters result["na_values"] = na_values result["na_fvalues"] = na_fvalues result["skiprows"] = skiprows return result, engine def __next__(self): try: return self.get_chunk() except StopIteration: self.close() raise def _make_engine(self, engine="c"): if engine == "c": self._engine = CParserWrapper(self.f, **self.options) else: if engine == "python": klass = PythonParser elif engine == "python-fwf": klass = FixedWidthFieldParser else: raise ValueError( f"Unknown engine: {engine} (valid options are" ' "c", "python", or' ' "python-fwf")' ) self._engine = klass(self.f, **self.options) def _failover_to_python(self): raise AbstractMethodError(self) def read(self, nrows=None): nrows = _validate_integer("nrows", nrows) ret = self._engine.read(nrows) # May alter columns / col_dict index, columns, col_dict = self._create_index(ret) if index is None: if col_dict: # Any column is actually fine: new_rows = len(next(iter(col_dict.values()))) index = RangeIndex(self._currow, self._currow + new_rows) else: new_rows = 0 else: new_rows = len(index) df = DataFrame(col_dict, columns=columns, index=index) self._currow += new_rows if self.squeeze and len(df.columns) == 1: return df[df.columns[0]].copy() return df def _create_index(self, ret): index, columns, col_dict = ret return index, columns, col_dict def get_chunk(self, size=None): if size is None: size = self.chunksize if self.nrows is not None: if self._currow >= self.nrows: raise StopIteration size = min(size, self.nrows - self._currow) return self.read(nrows=size) def _is_index_col(col): return col is not None and col is not False def _is_potential_multi_index(columns): """ Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex Returns ------- boolean : Whether or not columns could become a MultiIndex """ return ( len(columns) and not isinstance(columns, MultiIndex) and all(isinstance(c, tuple) for c in columns) ) def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a callable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a callable, returns 'usecols'. """ if callable(usecols): return {i for i, name in enumerate(names) if usecols(name)} return usecols def _validate_usecols_names(usecols, names): """ Validates that all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them. """ missing = [c for c in usecols if c not in names] if len(missing) > 0: raise ValueError( "Usecols do not match columns, " f"columns expected but not found: {missing}" ) return usecols def _validate_skipfooter_arg(skipfooter): """ Validate the 'skipfooter' parameter. Checks whether 'skipfooter' is a non-negative integer. Raises a ValueError if that is not the case. Parameters ---------- skipfooter : non-negative integer The number of rows to skip at the end of the file. Returns ------- validated_skipfooter : non-negative integer The original input if the validation succeeds. Raises ------ ValueError : 'skipfooter' was not a non-negative integer. """ if not is_integer(skipfooter): raise ValueError("skipfooter must be an integer") if skipfooter < 0: raise ValueError("skipfooter cannot be negative") return skipfooter def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains all integers (column selection by index), strings (column by name) or is a callable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, callable, or None List of columns to use when parsing or a callable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a callable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a callable or None is passed in. """ msg = ( "'usecols' must either be list-like of all strings, all unicode, " "all integers or a callable." ) if usecols is not None: if callable(usecols): return usecols, None if not is_list_like(usecols): # see gh-20529 # # Ensure it is iterable container but not string. raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string", "unicode"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ( "Only booleans, lists, and " "dictionaries are accepted " "for the 'parse_dates' parameter" ) if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not isinstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates class ParserBase: def __init__(self, kwds): self.names = kwds.get("names") self.orig_names = None self.prefix = kwds.pop("prefix", None) self.index_col = kwds.get("index_col", None) self.unnamed_cols = set() self.index_names = None self.col_names = None self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False)) self.date_parser = kwds.pop("date_parser", None) self.dayfirst = kwds.pop("dayfirst", False) self.keep_date_col = kwds.pop("keep_date_col", False) self.na_values = kwds.get("na_values") self.na_fvalues = kwds.get("na_fvalues") self.na_filter = kwds.get("na_filter", False) self.keep_default_na = kwds.get("keep_default_na", True) self.true_values = kwds.get("true_values") self.false_values = kwds.get("false_values") self.mangle_dupe_cols = kwds.get("mangle_dupe_cols", True) self.infer_datetime_format = kwds.pop("infer_datetime_format", False) self.cache_dates = kwds.pop("cache_dates", True) self._date_conv = _make_date_converter( date_parser=self.date_parser, dayfirst=self.dayfirst, infer_datetime_format=self.infer_datetime_format, cache_dates=self.cache_dates, ) # validate header options for mi self.header = kwds.get("header") if isinstance(self.header, (list, tuple, np.ndarray)): if not all(map(is_integer, self.header)): raise ValueError("header must be integer or list of integers") if any(i < 0 for i in self.header): raise ValueError( "cannot specify multi-index header with negative integers" ) if kwds.get("usecols"): raise ValueError( "cannot specify usecols when specifying a multi-index header" ) if kwds.get("names"): raise ValueError( "cannot specify names when specifying a multi-index header" ) # validate index_col that only contains integers if self.index_col is not None: is_sequence = isinstance(self.index_col, (list, tuple, np.ndarray)) if not ( is_sequence and all(map(is_integer, self.index_col)) or is_integer(self.index_col) ): raise ValueError( "index_col must only contain row numbers " "when specifying a multi-index header" ) # GH 16338 elif self.header is not None and not is_integer(self.header): raise ValueError("header must be integer or list of integers") # GH 27779 elif self.header is not None and self.header < 0: raise ValueError( "Passing negative integer to header is invalid. " "For no header, use header=None instead" ) self._name_processed = False self._first_chunk = True # GH 13932 # keep references to file handles opened by the parser itself self.handles = [] def close(self): for f in self.handles: f.close() @property def _has_complex_date_col(self): return isinstance(self.parse_dates, dict) or ( isinstance(self.parse_dates, list) and len(self.parse_dates) > 0 and isinstance(self.parse_dates[0], list) ) def _should_parse_dates(self, i): if isinstance(self.parse_dates, bool): return self.parse_dates else: if self.index_names is not None: name = self.index_names[i] else: name = None j = self.index_col[i] if is_scalar(self.parse_dates): return (j == self.parse_dates) or ( name is not None and name == self.parse_dates ) else: return (j in self.parse_dates) or ( name is not None and name in self.parse_dates ) def _extract_multi_indexer_columns( self, header, index_names, col_names, passed_names=False ): """ extract and return the names, index_names, col_names header is a list-of-lists returned from the parsers """ if len(header) < 2: return header[0], index_names, col_names, passed_names # the names are the tuples of the header that are not the index cols # 0 is the name of the index, assuming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not isinstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header.pop(-1) index_names, names, index_col = _clean_index_names( index_names, self.index_col, self.unnamed_cols ) # extract the columns field_count = len(header[0]) def extract(r): return tuple(r[i] for i in range(field_count) if i not in sic) columns = list(zip(*(extract(r) for r in header))) names = ic + columns # If we find unnamed columns all in a single # level, then our header was too long. for n in range(len(columns[0])): if all(ensure_str(col[n]) in self.unnamed_cols for col in columns): raise ParserError( "Passed header=[{header}] are too many rows for this " "multi_index of columns".format( header=",".join(str(x) for x in self.header) ) ) # Clean the column names (if we have an index_col). if len(ic): col_names = [ r[0] if (len(r[0]) and r[0] not in self.unnamed_cols) else None for r in header ] else: col_names = [None] * len(header) passed_names = True return names, index_names, col_names, passed_names def _maybe_dedup_names(self, names): # see gh-7160 and gh-9424: this helps to provide # immediate alleviation of the duplicate names # issue and appears to be satisfactory to users, # but ultimately, not needing to butcher the names # would be nice! if self.mangle_dupe_cols: names = list(names) # so we can index counts = defaultdict(int) is_potential_mi = _is_potential_multi_index(names) for i, col in enumerate(names): cur_count = counts[col] while cur_count > 0: counts[col] = cur_count + 1 if is_potential_mi: col = col[:-1] + (f"{col[-1]}.{cur_count}",) else: col = f"{col}.{cur_count}" cur_count = counts[col] names[i] = col counts[col] = cur_count + 1 return names def _maybe_make_multi_index_columns(self, columns, col_names=None): # possibly create a column mi here if _is_potential_multi_index(columns): columns = MultiIndex.from_tuples(columns, names=col_names) return columns def _make_index(self, data, alldata, columns, indexnamerow=False): if not _is_index_col(self.index_col) or not self.index_col: index = None elif not self._has_complex_date_col: index = self._get_simple_index(alldata, columns) index = self._agg_index(index) elif self._has_complex_date_col: if not self._name_processed: (self.index_names, _, self.index_col) = _clean_index_names( list(columns), self.index_col, self.unnamed_cols ) self._name_processed = True index = self._get_complex_date_index(data, columns) index = self._agg_index(index, try_parse_dates=False) # add names for the index if indexnamerow: coffset = len(indexnamerow) - len(columns) index = index.set_names(indexnamerow[:coffset]) # maybe create a mi on the columns columns = self._maybe_make_multi_index_columns(columns, self.col_names) return index, columns _implicit_index = False def _get_simple_index(self, data, columns): def ix(col): if not isinstance(col, str): return col raise ValueError(f"Index {col} invalid") to_remove = [] index = [] for idx in self.index_col: i = ix(idx) to_remove.append(i) index.append(data[i]) # remove index items from content and columns, don't pop in # loop for i in sorted(to_remove, reverse=True): data.pop(i) if not self._implicit_index: columns.pop(i) return index def _get_complex_date_index(self, data, col_names): def _get_name(icol): if isinstance(icol, str): return icol if col_names is None: raise ValueError(f"Must supply column order to use {icol!s} as index") for i, c in enumerate(col_names): if i == icol: return c to_remove = [] index = [] for idx in self.index_col: name = _get_name(idx) to_remove.append(name) index.append(data[name]) # remove index items from content and columns, don't pop in # loop for c in sorted(to_remove, reverse=True): data.pop(c) col_names.remove(c) return index def _agg_index(self, index, try_parse_dates=True): arrays = [] for i, arr in enumerate(index): if try_parse_dates and self._should_parse_dates(i): arr = self._date_conv(arr) if self.na_filter: col_na_values = self.na_values col_na_fvalues = self.na_fvalues else: col_na_values = set() col_na_fvalues = set() if isinstance(self.na_values, dict): col_name = self.index_names[i] if col_name is not None: col_na_values, col_na_fvalues = _get_na_values( col_name, self.na_values, self.na_fvalues, self.keep_default_na ) arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) arrays.append(arr) names = self.index_names index = ensure_index_from_sequences(arrays, names) return index def _convert_to_ndarrays( self, dct, na_values, na_fvalues, verbose=False, converters=None, dtypes=None ): result = {} for c, values in dct.items(): conv_f = None if converters is None else converters.get(c, None) if isinstance(dtypes, dict): cast_type = dtypes.get(c, None) else: # single dtype or None cast_type = dtypes if self.na_filter: col_na_values, col_na_fvalues = _get_na_values( c, na_values, na_fvalues, self.keep_default_na ) else: col_na_values, col_na_fvalues = set(), set() if conv_f is not None: # conv_f applied to data before inference if cast_type is not None: warnings.warn( ( "Both a converter and dtype were specified " f"for column {c} - only the converter will " "be used" ), ParserWarning, stacklevel=7, ) try: values = lib.map_infer(values, conv_f) except ValueError: mask = algorithms.isin(values, list(na_values)).view(np.uint8) values = lib.map_infer_mask(values, conv_f, mask) cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool=False ) else: is_str_or_ea_dtype = is_string_dtype( cast_type ) or is_extension_array_dtype(cast_type) # skip inference if specified dtype is object # or casting to an EA try_num_bool = not (cast_type and is_str_or_ea_dtype) # general type inference and conversion cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool ) # type specified in dtype param or cast_type is an EA if cast_type and ( not is_dtype_equal(cvals, cast_type) or is_extension_array_dtype(cast_type) ): try: if ( is_bool_dtype(cast_type) and not is_categorical_dtype(cast_type) and na_count > 0 ): raise ValueError(f"Bool column has NA values in column {c}") except (AttributeError, TypeError): # invalid input to is_bool_dtype pass cvals = self._cast_types(cvals, cast_type, c) result[c] = cvals if verbose and na_count: print(f"Filled {na_count} NA values in column {c!s}") return result def _infer_types(self, values, na_values, try_num_bool=True): """ Infer types of values, possibly casting Parameters ---------- values : ndarray na_values : set try_num_bool : bool, default try try to cast values to numeric (first preference) or boolean Returns ------- converted : ndarray na_count : int """ na_count = 0 if issubclass(values.dtype.type, (np.number, np.bool_)): mask = algorithms.isin(values, list(na_values)) na_count = mask.sum() if na_count > 0: if is_integer_dtype(values): values = values.astype(np.float64) np.putmask(values, mask, np.nan) return values, na_count if try_num_bool and is_object_dtype(values.dtype): # exclude e.g DatetimeIndex here try: result = lib.maybe_convert_numeric(values, na_values, False) except (ValueError, TypeError): # e.g. encountering datetime string gets ValueError # TypeError can be raised in floatify result = values na_count = parsers.sanitize_objects(result, na_values, False) else: na_count = isna(result).sum() else: result = values if values.dtype == np.object_: na_count = parsers.sanitize_objects(values, na_values, False) if result.dtype == np.object_ and try_num_bool: result = libops.maybe_convert_bool( np.asarray(values), true_values=self.true_values, false_values=self.false_values, ) return result, na_count def _cast_types(self, values, cast_type, column): """ Cast values to specified type Parameters ---------- values : ndarray cast_type : string or np.dtype dtype to cast values to column : string column name - used only for error reporting Returns ------- converted : ndarray """ if is_categorical_dtype(cast_type): known_cats = ( isinstance(cast_type, CategoricalDtype) and cast_type.categories is not None ) if not is_object_dtype(values) and not known_cats: # XXX this is for consistency with # c-parser which parses all categories # as strings values = astype_nansafe(values, str) cats = Index(values).unique().dropna() values = Categorical._from_inferred_categories( cats, cats.get_indexer(values), cast_type, true_values=self.true_values ) # use the EA's implementation of casting elif is_extension_array_dtype(cast_type): # ensure cast_type is an actual dtype and not a string cast_type = pandas_dtype(cast_type) array_type = cast_type.construct_array_type() try: return array_type._from_sequence_of_strings(values, dtype=cast_type) except NotImplementedError: raise NotImplementedError( f"Extension Array: {array_type} must implement " "_from_sequence_of_strings in order " "to be used in parser methods" ) else: try: values = astype_nansafe(values, cast_type, copy=True, skipna=True) except ValueError: raise ValueError( f"Unable to convert column {column} to type {cast_type}" ) return values def _do_date_conversions(self, names, data): # returns data, columns if self.parse_dates is not None: data, names = _process_date_conversion( data, self._date_conv, self.parse_dates, self.index_col, self.index_names, names, keep_date_col=self.keep_date_col, ) return names, data class CParserWrapper(ParserBase): """ """ def __init__(self, src, **kwds): self.kwds = kwds kwds = kwds.copy() ParserBase.__init__(self, kwds) if kwds.get("compression") is None and "utf-16" in (kwds.get("encoding") or ""): # if source is utf-16 plain text, convert source to utf-8 if isinstance(src, str): src = open(src, "rb") self.handles.append(src) src = UTF8Recoder(src, kwds["encoding"]) kwds["encoding"] = "utf-8" # #2442 kwds["allow_leading_cols"] = self.index_col is not False # GH20529, validate usecol arg before TextReader self.usecols, self.usecols_dtype = _validate_usecols_arg(kwds["usecols"]) kwds["usecols"] = self.usecols self._reader = parsers.TextReader(src, **kwds) self.unnamed_cols = self._reader.unnamed_cols passed_names = self.names is None if self._reader.header is None: self.names = None else: if len(self._reader.header) > 1: # we have a multi index in the columns ( self.names, self.index_names, self.col_names, passed_names, ) = self._extract_multi_indexer_columns( self._reader.header, self.index_names, self.col_names, passed_names ) else: self.names = list(self._reader.header[0]) if self.names is None: if self.prefix: self.names = [ f"{self.prefix}{i}" for i in range(self._reader.table_width) ] else: self.names = list(range(self._reader.table_width)) # gh-9755 # # need to set orig_names here first # so that proper indexing can be done # with _set_noconvert_columns # # once names has been filtered, we will # then set orig_names again to names self.orig_names = self.names[:] if self.usecols: usecols = _evaluate_usecols(self.usecols, self.orig_names) # GH 14671 if self.usecols_dtype == "string" and not set(usecols).issubset( self.orig_names ): _validate_usecols_names(usecols, self.orig_names) if len(self.names) > len(usecols): self.names = [ n for i, n in enumerate(self.names) if (i in usecols or n in usecols) ] if len(self.names) < len(usecols): _validate_usecols_names(usecols, self.names) self._set_noconvert_columns() self.orig_names = self.names if not self._has_complex_date_col: if self._reader.leading_cols == 0 and _is_index_col(self.index_col): self._name_processed = True (index_names, self.names, self.index_col) = _clean_index_names( self.names, self.index_col, self.unnamed_cols ) if self.index_names is None: self.index_names = index_names if self._reader.header is None and not passed_names: self.index_names = [None] * len(self.index_names) self._implicit_index = self._reader.leading_cols > 0 def close(self): for f in self.handles: f.close() # close additional handles opened by C parser (for compression) try: self._reader.close() except ValueError: pass def _set_noconvert_columns(self): """ Set the columns that should not undergo dtype conversions. Currently, any column that is involved with date parsing will not undergo such conversions. """ names = self.orig_names if self.usecols_dtype == "integer": # A set of integers will be converted to a list in # the correct order every single time. usecols = list(self.usecols) usecols.sort() elif callable(self.usecols) or self.usecols_dtype not in ("empty", None): # The names attribute should have the correct columns # in the proper order for indexing with parse_dates. usecols = self.names[:] else: # Usecols is empty. usecols = None def _set(x): if usecols is not None and is_integer(x): x = usecols[x] if not is_integer(x): x = names.index(x) self._reader.set_noconvert(x) if isinstance(self.parse_dates, list): for val in self.parse_dates: if isinstance(val, list): for k in val: _set(k) else: _set(val) elif isinstance(self.parse_dates, dict): for val in self.parse_dates.values(): if isinstance(val, list): for k in val: _set(k) else: _set(val) elif self.parse_dates: if isinstance(self.index_col, list): for k in self.index_col: _set(k) elif self.index_col is not None: _set(self.index_col) def set_error_bad_lines(self, status): self._reader.set_error_bad_lines(int(status)) def read(self, nrows=None): try: data = self._reader.read(nrows) except StopIteration: if self._first_chunk: self._first_chunk = False names = self._maybe_dedup_names(self.orig_names) index, columns, col_dict = _get_empty_meta( names, self.index_col, self.index_names, dtype=self.kwds.get("dtype"), ) columns = self._maybe_make_multi_index_columns(columns, self.col_names) if self.usecols is not None: columns = self._filter_usecols(columns) col_dict = dict( filter(lambda item: item[0] in columns, col_dict.items()) ) return index, columns, col_dict else: raise # Done with first read, next time raise StopIteration self._first_chunk = False names = self.names if self._reader.leading_cols: if self._has_complex_date_col: raise NotImplementedError("file structure not yet supported") # implicit index, no index names arrays = [] for i in range(self._reader.leading_cols): if self.index_col is None: values = data.pop(i) else: values = data.pop(self.index_col[i]) values = self._maybe_parse_dates(values, i, try_parse_dates=True) arrays.append(values) index = ensure_index_from_sequences(arrays) if self.usecols is not None: names = self._filter_usecols(names) names = self._maybe_dedup_names(names) # rename dict keys data = sorted(data.items()) data = {k: v for k, (i, v) in zip(names, data)} names, data = self._do_date_conversions(names, data) else: # rename dict keys data = sorted(data.items()) # ugh, mutation names = list(self.orig_names) names = self._maybe_dedup_names(names) if self.usecols is not None: names = self._filter_usecols(names) # columns as list alldata = [x[1] for x in data] data = {k: v for k, (i, v) in zip(names, data)} names, data = self._do_date_conversions(names, data) index, names = self._make_index(data, alldata, names) # maybe create a mi on the columns names = self._maybe_make_multi_index_columns(names, self.col_names) return index, names, data def _filter_usecols(self, names): # hackish usecols = _evaluate_usecols(self.usecols, names) if usecols is not None and len(names) != len(usecols): names = [ name for i, name in enumerate(names) if i in usecols or name in usecols ] return names def _get_index_names(self): names = list(self._reader.header[0]) idx_names = None if self._reader.leading_cols == 0 and self.index_col is not None: (idx_names, names, self.index_col) = _clean_index_names( names, self.index_col, self.unnamed_cols ) return names, idx_names def _maybe_parse_dates(self, values, index, try_parse_dates=True): if try_parse_dates and self._should_parse_dates(index): values = self._date_conv(values) return values def TextParser(*args, **kwds): """ Converts lists of lists/tuples into DataFrames with proper type inference and optional (e.g. string to datetime) conversion. Also enables iterating lazily over chunks of large files Parameters ---------- data : file-like object or list delimiter : separator character to use dialect : str or csv.Dialect instance, optional Ignored if delimiter is longer than 1 character names : sequence, default header : int, default 0 Row to use to parse column labels. Defaults to the first row. Prior rows will be discarded index_col : int or list, optional Column or columns to use as the (possibly hierarchical) index has_index_names: bool, default False True if the cols defined in index_col have an index name and are not in the header. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. keep_default_na : bool, default True thousands : str, optional Thousands separator comment : str, optional Comment out remainder of line parse_dates : bool, default False keep_date_col : bool, default False date_parser : function, optional skiprows : list of integers Row numbers to skip skipfooter : int Number of line at bottom of file to skip converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the cell (not column) content, and return the transformed content. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8') squeeze : bool, default False returns Series if only one column. infer_datetime_format: bool, default False If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, 'high' for the high-precision converter, and 'round_trip' for the round-trip converter. """ kwds["engine"] = "python" return TextFileReader(*args, **kwds) def count_empty_vals(vals): return sum(1 for v in vals if v == "" or v is None) class PythonParser(ParserBase): def __init__(self, f, **kwds): """ Workhorse function for processing nested list into DataFrame """ ParserBase.__init__(self, kwds) self.data = None self.buf = [] self.pos = 0 self.line_pos = 0 self.encoding = kwds["encoding"] self.compression = kwds["compression"] self.memory_map = kwds["memory_map"] self.skiprows = kwds["skiprows"] if callable(self.skiprows): self.skipfunc = self.skiprows else: self.skipfunc = lambda x: x in self.skiprows self.skipfooter = _validate_skipfooter_arg(kwds["skipfooter"]) self.delimiter = kwds["delimiter"] self.quotechar = kwds["quotechar"] if isinstance(self.quotechar, str): self.quotechar = str(self.quotechar) self.escapechar = kwds["escapechar"] self.doublequote = kwds["doublequote"] self.skipinitialspace = kwds["skipinitialspace"] self.lineterminator = kwds["lineterminator"] self.quoting = kwds["quoting"] self.usecols, _ = _validate_usecols_arg(kwds["usecols"]) self.skip_blank_lines = kwds["skip_blank_lines"] self.warn_bad_lines = kwds["warn_bad_lines"] self.error_bad_lines = kwds["error_bad_lines"] self.names_passed = kwds["names"] or None self.has_index_names = False if "has_index_names" in kwds: self.has_index_names = kwds["has_index_names"] self.verbose = kwds["verbose"] self.converters = kwds["converters"] self.dtype = kwds["dtype"] self.thousands = kwds["thousands"] self.decimal = kwds["decimal"] self.comment = kwds["comment"] self._comment_lines = [] f, handles = get_handle( f, "r", encoding=self.encoding, compression=self.compression, memory_map=self.memory_map, ) self.handles.extend(handles) # Set self.data to something that can read lines. if hasattr(f, "readline"): self._make_reader(f) else: self.data = f # Get columns in two steps: infer from data, then # infer column indices from self.usecols if it is specified. self._col_indices = None ( self.columns, self.num_original_columns, self.unnamed_cols, ) = self._infer_columns() # Now self.columns has the set of columns that we will process. # The original set is stored in self.original_columns. if len(self.columns) > 1: # we are processing a multi index column ( self.columns, self.index_names, self.col_names, _, ) = self._extract_multi_indexer_columns( self.columns, self.index_names, self.col_names ) # Update list of original names to include all indices. self.num_original_columns = len(self.columns) else: self.columns = self.columns[0] # get popped off for index self.orig_names = list(self.columns) # needs to be cleaned/refactored # multiple date column thing turning into a real spaghetti factory if not self._has_complex_date_col: (index_names, self.orig_names, self.columns) = self._get_index_name( self.columns ) self._name_processed = True if self.index_names is None: self.index_names = index_names if self.parse_dates: self._no_thousands_columns = self._set_no_thousands_columns() else: self._no_thousands_columns = None if len(self.decimal) != 1: raise ValueError("Only length-1 decimal markers supported") if self.thousands is None: self.nonnum = re.compile(fr"[^-^0-9^{self.decimal}]+") else: self.nonnum = re.compile(fr"[^-^0-9^{self.thousands}^{self.decimal}]+") def _set_no_thousands_columns(self): # Create a set of column ids that are not to be stripped of thousands # operators. noconvert_columns = set() def _set(x): if is_integer(x): noconvert_columns.add(x) else: noconvert_columns.add(self.columns.index(x)) if isinstance(self.parse_dates, list): for val in self.parse_dates: if isinstance(val, list): for k in val: _set(k) else: _set(val) elif isinstance(self.parse_dates, dict): for val in self.parse_dates.values(): if isinstance(val, list): for k in val: _set(k) else: _set(val) elif self.parse_dates: if isinstance(self.index_col, list): for k in self.index_col: _set(k) elif self.index_col is not None: _set(self.index_col) return noconvert_columns def _make_reader(self, f): sep = self.delimiter if sep is None or len(sep) == 1: if self.lineterminator: raise ValueError( "Custom line terminators not supported in python parser (yet)" ) class MyDialect(csv.Dialect): delimiter = self.delimiter quotechar = self.quotechar escapechar = self.escapechar doublequote = self.doublequote skipinitialspace = self.skipinitialspace quoting = self.quoting lineterminator = "\n" dia = MyDialect sniff_sep = True if sep is not None: sniff_sep = False dia.delimiter = sep # attempt to sniff the delimiter if sniff_sep: line = f.readline() while self.skipfunc(self.pos): self.pos += 1 line = f.readline() line = self._check_comments([line])[0] self.pos += 1 self.line_pos += 1 sniffed = csv.Sniffer().sniff(line) dia.delimiter = sniffed.delimiter # Note: self.encoding is irrelevant here line_rdr = csv.reader(StringIO(line), dialect=dia) self.buf.extend(list(line_rdr)) # Note: self.encoding is irrelevant here reader = csv.reader(f, dialect=dia, strict=True) else: def _read(): line = f.readline() pat = re.compile(sep) yield pat.split(line.strip()) for line in f: yield pat.split(line.strip()) reader = _read() self.data = reader def read(self, rows=None): try: content = self._get_lines(rows) except StopIteration: if self._first_chunk: content = [] else: raise # done with first read, next time raise StopIteration self._first_chunk = False columns = list(self.orig_names) if not len(content): # pragma: no cover # DataFrame with the right metadata, even though it's length 0 names = self._maybe_dedup_names(self.orig_names) index, columns, col_dict = _get_empty_meta( names, self.index_col, self.index_names, self.dtype ) columns = self._maybe_make_multi_index_columns(columns, self.col_names) return index, columns, col_dict # handle new style for names in index count_empty_content_vals = count_empty_vals(content[0]) indexnamerow = None if self.has_index_names and count_empty_content_vals == len(columns): indexnamerow = content[0] content = content[1:] alldata = self._rows_to_cols(content) data = self._exclude_implicit_index(alldata) columns = self._maybe_dedup_names(self.columns) columns, data = self._do_date_conversions(columns, data) data = self._convert_data(data) index, columns = self._make_index(data, alldata, columns, indexnamerow) return index, columns, data def _exclude_implicit_index(self, alldata): names = self._maybe_dedup_names(self.orig_names) if self._implicit_index: excl_indices = self.index_col data = {} offset = 0 for i, col in enumerate(names): while i + offset in excl_indices: offset += 1 data[col] = alldata[i + offset] else: data = {k: v for k, v in zip(names, alldata)} return data # legacy def get_chunk(self, size=None): if size is None: size = self.chunksize return self.read(rows=size) def _convert_data(self, data): # apply converters def _clean_mapping(mapping): "converts col numbers to names" clean = {} for col, v in mapping.items(): if isinstance(col, int) and col not in self.orig_names: col = self.orig_names[col] clean[col] = v return clean clean_conv = _clean_mapping(self.converters) if not isinstance(self.dtype, dict): # handles single dtype applied to all columns clean_dtypes = self.dtype else: clean_dtypes = _clean_mapping(self.dtype) # Apply NA values. clean_na_values = {} clean_na_fvalues = {} if isinstance(self.na_values, dict): for col in self.na_values: na_value = self.na_values[col] na_fvalue = self.na_fvalues[col] if isinstance(col, int) and col not in self.orig_names: col = self.orig_names[col] clean_na_values[col] = na_value clean_na_fvalues[col] = na_fvalue else: clean_na_values = self.na_values clean_na_fvalues = self.na_fvalues return self._convert_to_ndarrays( data, clean_na_values, clean_na_fvalues, self.verbose, clean_conv, clean_dtypes, ) def _infer_columns(self): names = self.names num_original_columns = 0 clear_buffer = True unnamed_cols = set() if self.header is not None: header = self.header if isinstance(header, (list, tuple, np.ndarray)): have_mi_columns = len(header) > 1 # we have a mi columns, so read an extra line if have_mi_columns: header = list(header) + [header[-1] + 1] else: have_mi_columns = False header = [header] columns = [] for level, hr in enumerate(header): try: line = self._buffered_line() while self.line_pos <= hr: line = self._next_line() except StopIteration: if self.line_pos < hr: raise ValueError( f"Passed header={hr} but only {self.line_pos + 1} lines in " "file" ) # We have an empty file, so check # if columns are provided. That will # serve as the 'line' for parsing if have_mi_columns and hr > 0: if clear_buffer: self._clear_buffer() columns.append([None] * len(columns[-1])) return columns, num_original_columns, unnamed_cols if not self.names: raise EmptyDataError("No columns to parse from file") line = self.names[:] this_columns = [] this_unnamed_cols = [] for i, c in enumerate(line): if c == "": if have_mi_columns: col_name = f"Unnamed: {i}_level_{level}" else: col_name = f"Unnamed: {i}" this_unnamed_cols.append(i) this_columns.append(col_name) else: this_columns.append(c) if not have_mi_columns and self.mangle_dupe_cols: counts = defaultdict(int) for i, col in enumerate(this_columns): cur_count = counts[col] while cur_count > 0: counts[col] = cur_count + 1 col = f"{col}.{cur_count}" cur_count = counts[col] this_columns[i] = col counts[col] = cur_count + 1 elif have_mi_columns: # if we have grabbed an extra line, but its not in our # format so save in the buffer, and create an blank extra # line for the rest of the parsing code if hr == header[-1]: lc = len(this_columns) ic = len(self.index_col) if self.index_col is not None else 0 unnamed_count = len(this_unnamed_cols) if lc != unnamed_count and lc - ic > unnamed_count: clear_buffer = False this_columns = [None] * lc self.buf = [self.buf[-1]] columns.append(this_columns) unnamed_cols.update({this_columns[i] for i in this_unnamed_cols}) if len(columns) == 1: num_original_columns = len(this_columns) if clear_buffer: self._clear_buffer() if names is not None: if (self.usecols is not None and len(names) != len(self.usecols)) or ( self.usecols is None and len(names) != len(columns[0]) ): raise ValueError( "Number of passed names did not match " "number of header fields in the file" ) if len(columns) > 1: raise TypeError("Cannot pass names with multi-index columns") if self.usecols is not None: # Set _use_cols. We don't store columns because they are # overwritten. self._handle_usecols(columns, names) else: self._col_indices = None num_original_columns = len(names) columns = [names] else: columns = self._handle_usecols(columns, columns[0]) else: try: line = self._buffered_line() except StopIteration: if not names: raise EmptyDataError("No columns to parse from file") line = names[:] ncols = len(line) num_original_columns = ncols if not names: if self.prefix: columns = [[f"{self.prefix}{i}" for i in range(ncols)]] else: columns = [list(range(ncols))] columns = self._handle_usecols(columns, columns[0]) else: if self.usecols is None or len(names) >= num_original_columns: columns = self._handle_usecols([names], names) num_original_columns = len(names) else: if not callable(self.usecols) and len(names) != len(self.usecols): raise ValueError( "Number of passed names did not match number of " "header fields in the file" ) # Ignore output but set used columns. self._handle_usecols([names], names) columns = [names] num_original_columns = ncols return columns, num_original_columns, unnamed_cols def _handle_usecols(self, columns, usecols_key): """ Sets self._col_indices usecols_key is used if there are string usecols. """ if self.usecols is not None: if callable(self.usecols): col_indices = _evaluate_usecols(self.usecols, usecols_key) elif any(isinstance(u, str) for u in self.usecols): if len(columns) > 1: raise ValueError( "If using multiple headers, usecols must be integers." ) col_indices = [] for col in self.usecols: if isinstance(col, str): try: col_indices.append(usecols_key.index(col)) except ValueError: _validate_usecols_names(self.usecols, usecols_key) else: col_indices.append(col) else: col_indices = self.usecols columns = [ [n for i, n in enumerate(column) if i in col_indices] for column in columns ] self._col_indices = col_indices return columns def _buffered_line(self): """ Return a line from buffer, filling buffer if required. """ if len(self.buf) > 0: return self.buf[0] else: return self._next_line() def _check_for_bom(self, first_row): """ Checks whether the file begins with the BOM character. If it does, remove it. In addition, if there is quoting in the field subsequent to the BOM, remove it as well because it technically takes place at the beginning of the name, not the middle of it. """ # first_row will be a list, so we need to check # that that list is not empty before proceeding. if not first_row: return first_row # The first element of this row is the one that could have the # BOM that we want to remove. Check that the first element is a # string before proceeding. if not isinstance(first_row[0], str): return first_row # Check that the string is not empty, as that would # obviously not have a BOM at the start of it. if not first_row[0]: return first_row # Since the string is non-empty, check that it does # in fact begin with a BOM. first_elt = first_row[0][0] if first_elt != _BOM: return first_row first_row_bom = first_row[0] if len(first_row_bom) > 1 and first_row_bom[1] == self.quotechar: start = 2 quote = first_row_bom[1] end = first_row_bom[2:].index(quote) + 2 # Extract the data between the quotation marks new_row = first_row_bom[start:end] # Extract any remaining data after the second # quotation mark. if len(first_row_bom) > end + 1: new_row += first_row_bom[end + 1 :] return [new_row] + first_row[1:] elif len(first_row_bom) > 1: return [first_row_bom[1:]] else: # First row is just the BOM, so we # return an empty string. return [""] def _is_line_empty(self, line): """ Check if a line is empty or not. Parameters ---------- line : str, array-like The line of data to check. Returns ------- boolean : Whether or not the line is empty. """ return not line or all(not x for x in line) def _next_line(self): if isinstance(self.data, list): while self.skipfunc(self.pos): self.pos += 1 while True: try: line = self._check_comments([self.data[self.pos]])[0] self.pos += 1 # either uncommented or blank to begin with if not self.skip_blank_lines and ( self._is_line_empty(self.data[self.pos - 1]) or line ): break elif self.skip_blank_lines: ret = self._remove_empty_lines([line]) if ret: line = ret[0] break except IndexError: raise StopIteration else: while self.skipfunc(self.pos): self.pos += 1 next(self.data) while True: orig_line = self._next_iter_line(row_num=self.pos + 1) self.pos += 1 if orig_line is not None: line = self._check_comments([orig_line])[0] if self.skip_blank_lines: ret = self._remove_empty_lines([line]) if ret: line = ret[0] break elif self._is_line_empty(orig_line) or line: break # This was the first line of the file, # which could contain the BOM at the # beginning of it. if self.pos == 1: line = self._check_for_bom(line) self.line_pos += 1 self.buf.append(line) return line def _alert_malformed(self, msg, row_num): """ Alert a user about a malformed row. If `self.error_bad_lines` is True, the alert will be `ParserError`. If `self.warn_bad_lines` is True, the alert will be printed out. Parameters ---------- msg : The error message to display. row_num : The row number where the parsing error occurred. Because this row number is displayed, we 1-index, even though we 0-index internally. """ if self.error_bad_lines: raise ParserError(msg) elif self.warn_bad_lines: base = f"Skipping line {row_num}: " sys.stderr.write(base + msg + "\n") def _next_iter_line(self, row_num): """ Wrapper around iterating through `self.data` (CSV source). When a CSV error is raised, we check for specific error messages that allow us to customize the error message displayed to the user. Parameters ---------- row_num : The row number of the line being parsed. """ try: return next(self.data) except csv.Error as e: if self.warn_bad_lines or self.error_bad_lines: msg = str(e) if "NULL byte" in msg or "line contains NUL" in msg: msg = ( "NULL byte detected. This byte " "cannot be processed in Python's " "native csv library at the moment, " "so please pass in engine='c' instead" ) if self.skipfooter > 0: reason = ( "Error could possibly be due to " "parsing errors in the skipped footer rows " "(the skipfooter keyword is only applied " "after Python's csv library has parsed " "all rows)." ) msg += ". " + reason self._alert_malformed(msg, row_num) return None def _check_comments(self, lines): if self.comment is None: return lines ret = [] for l in lines: rl = [] for x in l: if not isinstance(x, str) or self.comment not in x: rl.append(x) else: x = x[: x.find(self.comment)] if len(x) > 0: rl.append(x) break ret.append(rl) return ret def _remove_empty_lines(self, lines): """ Iterate through the lines and remove any that are either empty or contain only one whitespace value Parameters ---------- lines : array-like The array of lines that we are to filter. Returns ------- filtered_lines : array-like The same array of lines with the "empty" ones removed. """ ret = [] for l in lines: # Remove empty lines and lines with only one whitespace value if ( len(l) > 1 or len(l) == 1 and (not isinstance(l[0], str) or l[0].strip()) ): ret.append(l) return ret def _check_thousands(self, lines): if self.thousands is None: return lines return self._search_replace_num_columns( lines=lines, search=self.thousands, replace="" ) def _search_replace_num_columns(self, lines, search, replace): ret = [] for l in lines: rl = [] for i, x in enumerate(l): if ( not isinstance(x, str) or search not in x or (self._no_thousands_columns and i in self._no_thousands_columns) or self.nonnum.search(x.strip()) ): rl.append(x) else: rl.append(x.replace(search, replace)) ret.append(rl) return ret def _check_decimal(self, lines): if self.decimal == _parser_defaults["decimal"]: return lines return self._search_replace_num_columns( lines=lines, search=self.decimal, replace="." ) def _clear_buffer(self): self.buf = [] _implicit_index = False def _get_index_name(self, columns): """ Try several cases to get lines: 0) There are headers on row 0 and row 1 and their total summed lengths equals the length of the next line. Treat row 0 as columns and row 1 as indices 1) Look for implicit index: there are more columns on row 1 than row 0. If this is true, assume that row 1 lists index columns and row 0 lists normal columns. 2) Get index from the columns if it was listed. """ orig_names = list(columns) columns = list(columns) try: line = self._next_line() except StopIteration: line = None try: next_line = self._next_line() except StopIteration: next_line = None # implicitly index_col=0 b/c 1 fewer column names implicit_first_cols = 0 if line is not None: # leave it 0, #2442 # Case 1 if self.index_col is not False: implicit_first_cols = len(line) - self.num_original_columns # Case 0 if next_line is not None: if len(next_line) == len(line) + self.num_original_columns: # column and index names on diff rows self.index_col = list(range(len(line))) self.buf = self.buf[1:] for c in reversed(line): columns.insert(0, c) # Update list of original names to include all indices. orig_names = list(columns) self.num_original_columns = len(columns) return line, orig_names, columns if implicit_first_cols > 0: # Case 1 self._implicit_index = True if self.index_col is None: self.index_col = list(range(implicit_first_cols)) index_name = None else: # Case 2 (index_name, columns_, self.index_col) = _clean_index_names( columns, self.index_col, self.unnamed_cols ) return index_name, orig_names, columns def _rows_to_cols(self, content): col_len = self.num_original_columns if self._implicit_index: col_len += len(self.index_col) max_len = max(len(row) for row in content) # Check that there are no rows with too many # elements in their row (rows with too few # elements are padded with NaN). if max_len > col_len and self.index_col is not False and self.usecols is None: footers = self.skipfooter if self.skipfooter else 0 bad_lines = [] iter_content = enumerate(content) content_len = len(content) content = [] for (i, l) in iter_content: actual_len = len(l) if actual_len > col_len: if self.error_bad_lines or self.warn_bad_lines: row_num = self.pos - (content_len - i + footers) bad_lines.append((row_num, actual_len)) if self.error_bad_lines: break else: content.append(l) for row_num, actual_len in bad_lines: msg = ( f"Expected {col_len} fields in line {row_num + 1}, saw " f"{actual_len}" ) if ( self.delimiter and len(self.delimiter) > 1 and self.quoting != csv.QUOTE_NONE ): # see gh-13374 reason = ( "Error could possibly be due to quotes being " "ignored when a multi-char delimiter is used." ) msg += ". " + reason self._alert_malformed(msg, row_num + 1) # see gh-13320 zipped_content = list(lib.to_object_array(content, min_width=col_len).T) if self.usecols: if self._implicit_index: zipped_content = [ a for i, a in enumerate(zipped_content) if ( i < len(self.index_col) or i - len(self.index_col) in self._col_indices ) ] else: zipped_content = [ a for i, a in enumerate(zipped_content) if i in self._col_indices ] return zipped_content def _get_lines(self, rows=None): lines = self.buf new_rows = None # already fetched some number if rows is not None: # we already have the lines in the buffer if len(self.buf) >= rows: new_rows, self.buf = self.buf[:rows], self.buf[rows:] # need some lines else: rows -= len(self.buf) if new_rows is None: if isinstance(self.data, list): if self.pos > len(self.data): raise StopIteration if rows is None: new_rows = self.data[self.pos :] new_pos = len(self.data) else: new_rows = self.data[self.pos : self.pos + rows] new_pos = self.pos + rows # Check for stop rows. n.b.: self.skiprows is a set. if self.skiprows: new_rows = [ row for i, row in enumerate(new_rows) if not self.skipfunc(i + self.pos) ] lines.extend(new_rows) self.pos = new_pos else: new_rows = [] try: if rows is not None: for _ in range(rows): new_rows.append(next(self.data)) lines.extend(new_rows) else: rows = 0 while True: new_row = self._next_iter_line(row_num=self.pos + rows + 1) rows += 1 if new_row is not None: new_rows.append(new_row) except StopIteration: if self.skiprows: new_rows = [ row for i, row in enumerate(new_rows) if not self.skipfunc(i + self.pos) ] lines.extend(new_rows) if len(lines) == 0: raise self.pos += len(new_rows) self.buf = [] else: lines = new_rows if self.skipfooter: lines = lines[: -self.skipfooter] lines = self._check_comments(lines) if self.skip_blank_lines: lines = self._remove_empty_lines(lines) lines = self._check_thousands(lines) return self._check_decimal(lines) def _make_date_converter( date_parser=None, dayfirst=False, infer_datetime_format=False, cache_dates=True ): def converter(*date_cols): if date_parser is None: strs = parsing._concat_date_cols(date_cols) try: return tools.to_datetime( ensure_object(strs), utc=None, dayfirst=dayfirst, errors="ignore", infer_datetime_format=infer_datetime_format, cache=cache_dates, ).to_numpy() except ValueError: return tools.to_datetime( parsing.try_parse_dates(strs, dayfirst=dayfirst), cache=cache_dates ) else: try: result = tools.to_datetime( date_parser(*date_cols), errors="ignore", cache=cache_dates ) if isinstance(result, datetime.datetime): raise Exception("scalar parser") return result except Exception: try: return tools.to_datetime( parsing.try_parse_dates( parsing._concat_date_cols(date_cols), parser=date_parser, dayfirst=dayfirst, ), errors="ignore", ) except Exception: return generic_parser(date_parser, *date_cols) return converter def _process_date_conversion( data_dict, converter, parse_spec, index_col, index_names, columns, keep_date_col=False, ): def _isindex(colspec): return (isinstance(index_col, list) and colspec in index_col) or ( isinstance(index_names, list) and colspec in index_names ) new_cols = [] new_data = {} orig_names = columns columns = list(columns) date_cols = set() if parse_spec is None or isinstance(parse_spec, bool): return data_dict, columns if isinstance(parse_spec, list): # list of column lists for colspec in parse_spec: if is_scalar(colspec): if isinstance(colspec, int) and colspec not in data_dict: colspec = orig_names[colspec] if _isindex(colspec): continue data_dict[colspec] = converter(data_dict[colspec]) else: new_name, col, old_names = _try_convert_dates( converter, colspec, data_dict, orig_names ) if new_name in data_dict: raise ValueError(f"New date column already in dict {new_name}") new_data[new_name] = col new_cols.append(new_name) date_cols.update(old_names) elif isinstance(parse_spec, dict): # dict of new name to column list for new_name, colspec in parse_spec.items(): if new_name in data_dict: raise ValueError(f"Date column {new_name} already in dict") _, col, old_names = _try_convert_dates( converter, colspec, data_dict, orig_names ) new_data[new_name] = col new_cols.append(new_name) date_cols.update(old_names) data_dict.update(new_data) new_cols.extend(columns) if not keep_date_col: for c in list(date_cols): data_dict.pop(c) new_cols.remove(c) return data_dict, new_cols def _try_convert_dates(parser, colspec, data_dict, columns): colset = set(columns) colnames = [] for c in colspec: if c in colset: colnames.append(c) elif isinstance(c, int) and c not in columns: colnames.append(columns[c]) else: colnames.append(c) new_name = "_".join(str(x) for x in colnames) to_parse = [data_dict[c] for c in colnames if c in data_dict] new_col = parser(*to_parse) return new_name, new_col, colnames def _clean_na_values(na_values, keep_default_na=True): if na_values is None: if keep_default_na: na_values = STR_NA_VALUES else: na_values = set() na_fvalues = set() elif isinstance(na_values, dict): old_na_values = na_values.copy() na_values = {} # Prevent aliasing. # Convert the values in the na_values dictionary # into array-likes for further use. This is also # where we append the default NaN values, provided # that `keep_default_na=True`. for k, v in old_na_values.items(): if not is_list_like(v): v = [v] if keep_default_na: v = set(v) | STR_NA_VALUES na_values[k] = v na_fvalues = {k: _floatify_na_values(v) for k, v in na_values.items()} else: if not is_list_like(na_values): na_values = [na_values] na_values = _stringify_na_values(na_values) if keep_default_na: na_values = na_values | STR_NA_VALUES na_fvalues = _floatify_na_values(na_values) return na_values, na_fvalues def _clean_index_names(columns, index_col, unnamed_cols): if not _is_index_col(index_col): return None, columns, index_col columns = list(columns) cp_cols = list(columns) index_names = [] # don't mutate index_col = list(index_col) for i, c in enumerate(index_col): if isinstance(c, str): index_names.append(c) for j, name in enumerate(cp_cols): if name == c: index_col[i] = j columns.remove(name) break else: name = cp_cols[c] columns.remove(name) index_names.append(name) # Only clean index names that were placeholders. for i, name in enumerate(index_names): if isinstance(name, str) and name in unnamed_cols: index_names[i] = None return index_names, columns, index_col def _get_empty_meta(columns, index_col, index_names, dtype=None): columns = list(columns) # Convert `dtype` to a defaultdict of some kind. # This will enable us to write `dtype[col_name]` # without worrying about KeyError issues later on. if not isinstance(dtype, dict): # if dtype == None, default will be np.object. default_dtype = dtype or np.object dtype = defaultdict(lambda: default_dtype) else: # Save a copy of the dictionary. _dtype = dtype.copy() dtype = defaultdict(lambda: np.object) # Convert column indexes to column names. for k, v in _dtype.items(): col = columns[k] if is_integer(k) else k dtype[col] = v # Even though we have no data, the "index" of the empty DataFrame # could for example still be an empty MultiIndex. Thus, we need to # check whether we have any index columns specified, via either: # # 1) index_col (column indices) # 2) index_names (column names) # # Both must be non-null to ensure a successful construction. Otherwise, # we have to create a generic empty Index. if (index_col is None or index_col is False) or index_names is None: index = Index([]) else: data = [Series([], dtype=dtype[name]) for name in index_names] index = ensure_index_from_sequences(data, names=index_names) index_col.sort() for i, n in enumerate(index_col): columns.pop(n - i) col_dict = {col_name: Series([], dtype=dtype[col_name]) for col_name in columns} return index, columns, col_dict def _floatify_na_values(na_values): # create float versions of the na_values result = set() for v in na_values: try: v = float(v) if not np.isnan(v): result.add(v) except (TypeError, ValueError, OverflowError): pass return result def _stringify_na_values(na_values): """ return a stringified and numeric for these values """ result = [] for x in na_values: result.append(str(x)) result.append(x) try: v = float(x) # we are like 999 here if v == int(v): v = int(v) result.append(f"{v}.0") result.append(str(v)) result.append(v) except (TypeError, ValueError, OverflowError): pass try: result.append(int(x)) except (TypeError, ValueError, OverflowError): pass return set(result) def _get_na_values(col, na_values, na_fvalues, keep_default_na): """ Get the NaN values for a given column. Parameters ---------- col : str The name of the column. na_values : array-like, dict The object listing the NaN values as strings. na_fvalues : array-like, dict The object listing the NaN values as floats. keep_default_na : bool If `na_values` is a dict, and the column is not mapped in the dictionary, whether to return the default NaN values or the empty set. Returns ------- nan_tuple : A length-two tuple composed of 1) na_values : the string NaN values for that column. 2) na_fvalues : the float NaN values for that column. """ if isinstance(na_values, dict): if col in na_values: return na_values[col], na_fvalues[col] else: if keep_default_na: return STR_NA_VALUES, set() return set(), set() else: return na_values, na_fvalues def _get_col_names(colspec, columns): colset = set(columns) colnames = [] for c in colspec: if c in colset: colnames.append(c) elif isinstance(c, int): colnames.append(columns[c]) return colnames class FixedWidthReader(abc.Iterator): """ A reader of fixed-width lines. """ def __init__(self, f, colspecs, delimiter, comment, skiprows=None, infer_nrows=100): self.f = f self.buffer = None self.delimiter = "\r\n" + delimiter if delimiter else "\n\r\t " self.comment = comment if colspecs == "infer": self.colspecs = self.detect_colspecs( infer_nrows=infer_nrows, skiprows=skiprows ) else: self.colspecs = colspecs if not isinstance(self.colspecs, (tuple, list)): raise TypeError( "column specifications must be a list or tuple, " f"input was a {type(colspecs).__name__}" ) for colspec in self.colspecs: if not ( isinstance(colspec, (tuple, list)) and len(colspec) == 2 and isinstance(colspec[0], (int, np.integer, type(None))) and isinstance(colspec[1], (int, np.integer, type(None))) ): raise TypeError( "Each column specification must be " "2 element tuple or list of integers" ) def get_rows(self, infer_nrows, skiprows=None): """ Read rows from self.f, skipping as specified. We distinguish buffer_rows (the first <= infer_nrows lines) from the rows returned to detect_colspecs because it's simpler to leave the other locations with skiprows logic alone than to modify them to deal with the fact we skipped some rows here as well. Parameters ---------- infer_nrows : int Number of rows to read from self.f, not counting rows that are skipped. skiprows: set, optional Indices of rows to skip. Returns ------- detect_rows : list of str A list containing the rows to read. """ if skiprows is None: skiprows = set() buffer_rows = [] detect_rows = [] for i, row in enumerate(self.f): if i not in skiprows: detect_rows.append(row) buffer_rows.append(row) if len(detect_rows) >= infer_nrows: break self.buffer = iter(buffer_rows) return detect_rows def detect_colspecs(self, infer_nrows=100, skiprows=None): # Regex escape the delimiters delimiters = "".join(r"\{}".format(x) for x in self.delimiter) pattern = re.compile("([^{}]+)".format(delimiters)) rows = self.get_rows(infer_nrows, skiprows) if not rows: raise EmptyDataError("No rows from which to infer column width") max_len = max(map(len, rows)) mask = np.zeros(max_len + 1, dtype=int) if self.comment is not None: rows = [row.partition(self.comment)[0] for row in rows] for row in rows: for m in pattern.finditer(row): mask[m.start() : m.end()] = 1 shifted = np.roll(mask, 1) shifted[0] = 0 edges = np.where((mask ^ shifted) == 1)[0] edge_pairs = list(zip(edges[::2], edges[1::2])) return edge_pairs def __next__(self): if self.buffer is not None: try: line = next(self.buffer) except StopIteration: self.buffer = None line = next(self.f) else: line = next(self.f) # Note: 'colspecs' is a sequence of half-open intervals. return [line[fromm:to].strip(self.delimiter) for (fromm, to) in self.colspecs] class FixedWidthFieldParser(PythonParser): """ Specialization that Converts fixed-width fields into DataFrames. See PythonParser for details. """ def __init__(self, f, **kwds): # Support iterators, convert to a list. self.colspecs = kwds.pop("colspecs") self.infer_nrows = kwds.pop("infer_nrows") PythonParser.__init__(self, f, **kwds) def _make_reader(self, f): self.data = FixedWidthReader( f, self.colspecs, self.delimiter, self.comment, self.skiprows, self.infer_nrows, )
python
126,513
from __future__ import absolute_import from six.moves import range __author__ = 'noe' import numpy as _np from pyemma.util.types import ensure_dtraj_list from pyemma.msm.estimators.maximum_likelihood_hmsm import MaximumLikelihoodHMSM as _MaximumLikelihoodHMSM from pyemma.msm.models.hmsm import HMSM as _HMSM from pyemma.msm.estimators.estimated_hmsm import EstimatedHMSM as _EstimatedHMSM from pyemma.msm.models.hmsm_sampled import SampledHMSM as _SampledHMSM from pyemma.util.units import TimeUnit from pyemma._base.progress import ProgressReporter class BayesianHMSM(_MaximumLikelihoodHMSM, _SampledHMSM, ProgressReporter): """Estimator for a Bayesian HMSM """ def __init__(self, nstates=2, lag=1, stride='effective', prior='mixed', nsamples=100, init_hmsm=None, reversible=True, connectivity='largest', observe_active=True, dt_traj='1 step', conf=0.95): """ Parameters ---------- nstates : int, optional, default=2 number of hidden states lag : int, optional, default=1 lagtime to estimate the HMSM at stride : str or int, default=1 stride between two lagged trajectories extracted from the input trajectories. Given trajectory s[t], stride and lag will result in trajectories s[0], s[tau], s[2 tau], ... s[stride], s[stride + tau], s[stride + 2 tau], ... Setting stride = 1 will result in using all data (useful for maximum likelihood estimator), while a Bayesian estimator requires a longer stride in order to have statistically uncorrelated trajectories. Setting stride = None 'effective' uses the largest neglected timescale as an estimate for the correlation time and sets the stride accordingly. prior : str, optional, default='mixed' prior used in the estimation of the transition matrix. While 'sparse' would be preferred as it doesn't bias the distribution way from the maximum-likelihood, this prior is sensitive to loss of connectivity. Loss of connectivity can occur in the Gibbs sampling algorithm used here because in each iteration the hidden state sequence is randomly generated. Once full connectivity is lost in one of these steps, the current algorithm cannot recover from that. As a solution we suggest using a prior that ensures that the estimated transition matrix is connected even if the sampled state sequence is not. * 'sparse' : the sparse prior proposed in [1]_ which centers the posterior around the maximum likelihood estimator. This is the preferred option if there are no connectivity problems. However this prior is sensitive to loss of connectivity. * 'uniform' : uniform prior probability for every transition matrix element. Compared to the sparse prior, 'uniform' adds +1 to every transition count. Weak prior that ensures connectivity, but can lead to large biases if some states have small exit probabilities. * 'mixed' : ensures connectivity by adding a prior taken from the maximum likelihood estimate (MLE) of the hidden transition matrix P. The rows of P are scaled in order to have total outgoing transition counts of at least 1 out of each state. While this operation centers the posterior around the MLE, it can be a very strong prior if states with small exit probabilities are involved, and can therefore artificially reduce the error bars. init_hmsm : :class:`HMSM <pyemma.msm.ui.hmsm.HMSM>` Single-point estimate of HMSM object around which errors will be evaluated observe_active : bool, optional, default=True True: Restricts the observation set to the active states of the MSM. False: All states are in the observation set. References ---------- [1] Trendelkamp-Schroer, B., H. Wu, F. Paul and F. Noe: Estimation and uncertainty of reversible Markov models. J. Chem. Phys. (in review) Preprint: http://arxiv.org/abs/1507.05990 """ self.lag = lag self.stride = stride self.nstates = nstates self.prior = prior self.nsamples = nsamples self.init_hmsm = init_hmsm self.reversible = reversible self.connectivity = connectivity self.observe_active = observe_active self.dt_traj = dt_traj self.timestep_traj = TimeUnit(dt_traj) self.conf = conf def _estimate(self, dtrajs): """ Return ------ hmsm : :class:`EstimatedHMSM <pyemma.msm.ui.hmsm_estimated.EstimatedHMSM>` Estimated Hidden Markov state model """ # ensure right format dtrajs = ensure_dtraj_list(dtrajs) # if no initial MSM is given, estimate it now if self.init_hmsm is None: # estimate with store_data=True, because we need an EstimatedHMSM hmsm_estimator = _MaximumLikelihoodHMSM(lag=self.lag, stride=self.stride, nstates=self.nstates, reversible=self.reversible, connectivity=self.connectivity, observe_active=self.observe_active, dt_traj=self.dt_traj) init_hmsm = hmsm_estimator.estimate(dtrajs) # estimate with lagged trajectories else: # check input assert isinstance(self.init_hmsm, _EstimatedHMSM), 'hmsm must be of type EstimatedHMSM' init_hmsm = self.init_hmsm self.nstates = init_hmsm.nstates self.reversible = init_hmsm.is_reversible # here we blow up the output matrix (if needed) to the FULL state space because we want to use dtrajs in the # Bayesian HMM sampler if self.observe_active: import msmtools.estimation as msmest nstates_full = msmest.number_of_states(dtrajs) # pobs = _np.zeros((init_hmsm.nstates, nstates_full)) # currently unused because that produces zero cols eps = 0.01 / nstates_full # default output probability, in order to avoid zero columns # full state space output matrix. make sure there are no zero columns pobs = eps * _np.ones((self.nstates, nstates_full), dtype=_np.float64) # fill active states pobs[:, init_hmsm.observable_set] = _np.maximum(eps, init_hmsm.observation_probabilities) # renormalize B to make it row-stochastic pobs /= pobs.sum(axis=1)[:, None] else: pobs = init_hmsm.observation_probabilities # HMM sampler self._progress_register(self.nsamples, description='Sampling models', stage=0) def call_back(): self._progress_update(1, stage=0) from bhmm import discrete_hmm, bayesian_hmm hmm_mle = discrete_hmm(init_hmsm.transition_matrix, pobs, stationary=True, reversible=self.reversible) # define prior if self.prior == 'sparse': self.prior_count_matrix = _np.zeros((self.nstates, self.nstates), dtype=_np.float64) elif self.prior == 'uniform': self.prior_count_matrix = _np.ones((self.nstates, self.nstates), dtype=_np.float64) elif self.prior == 'mixed': # C0 = _np.dot(_np.diag(init_hmsm.stationary_distribution), init_hmsm.transition_matrix) P0 = init_hmsm.transition_matrix P0_offdiag = P0 - _np.diag(_np.diag(P0)) scaling_factor = 1.0 / _np.sum(P0_offdiag, axis=1) self.prior_count_matrix = P0 * scaling_factor[:, None] else: raise ValueError('Unknown prior mode: '+self.prior) sampled_hmm = bayesian_hmm(init_hmsm.discrete_trajectories_lagged, hmm_mle, nsample=self.nsamples, transition_matrix_prior=self.prior_count_matrix, call_back=call_back) # Samples sample_Ps = [sampled_hmm.sampled_hmms[i].transition_matrix for i in range(self.nsamples)] sample_pis = [sampled_hmm.sampled_hmms[i].stationary_distribution for i in range(self.nsamples)] sample_pobs = [sampled_hmm.sampled_hmms[i].output_model.output_probabilities for i in range(self.nsamples)] samples = [] for i in range(self.nsamples): # restrict to observable set if necessary Bobs = sample_pobs[i][:, init_hmsm.observable_set] sample_pobs[i] = Bobs / Bobs.sum(axis=1)[:, None] # renormalize samples.append(_HMSM(sample_Ps[i], sample_pobs[i], pi=sample_pis[i], dt_model=init_hmsm.dt_model)) # parametrize self self._dtrajs_full = dtrajs self._observable_set = init_hmsm._observable_set self._dtrajs_obs = init_hmsm._dtrajs_obs self.set_model_params(samples=samples, P=init_hmsm.transition_matrix, pobs=init_hmsm.observation_probabilities, dt_model=init_hmsm.dt_model) return self
python
9,309
import activitylogs from events.registry import build_job activitylogs.subscribe(build_job.BuildJobStartedTriggeredEvent) activitylogs.subscribe(build_job.BuildJobSoppedTriggeredEvent) activitylogs.subscribe(build_job.BuildJobDeletedTriggeredEvent) activitylogs.subscribe(build_job.BuildJobCreatedEvent) activitylogs.subscribe(build_job.BuildJobUpdatedEvent) activitylogs.subscribe(build_job.BuildJobViewedEvent) activitylogs.subscribe(build_job.BuildJobArchivedEvent) activitylogs.subscribe(build_job.BuildJobRestoredEvent) activitylogs.subscribe(build_job.BuildJobBookmarkedEvent) activitylogs.subscribe(build_job.BuildJobUnBookmarkedEvent) activitylogs.subscribe(build_job.BuildJobLogsViewedEvent) activitylogs.subscribe(build_job.BuildJobStatusesViewedEvent)
python
765
import logging import pytest from ocs_ci.framework.testlib import ( E2ETest, skipif_ocs_version, on_prem_platform_required, scale, ) from ocs_ci.ocs import constants from ocs_ci.ocs import hsbench logger = logging.getLogger(__name__) @pytest.fixture(scope="function") def s3bench(request): # Create hs s3 benchmark s3bench = hsbench.HsBench() s3bench.create_resource_hsbench() s3bench.install_hsbench() def teardown(): s3bench.cleanup() request.addfinalizer(teardown) return s3bench @scale class TestScaleNamespace(E2ETest): """ Test creation of a namespace scale resource """ @skipif_ocs_version("<4.7") @pytest.mark.parametrize( argnames=["bucketclass_dict"], argvalues=[ pytest.param( { "interface": "OC", "namespace_policy_dict": { "type": "Single", "namespacestore_dict": {"aws": [(1, None)]}, }, }, marks=[pytest.mark.polarion_id("OCS-2518")], ), pytest.param( { "interface": "OC", "namespace_policy_dict": { "type": "Single", "namespacestore_dict": {"azure": [(1, None)]}, }, }, marks=[pytest.mark.polarion_id("OCS-2558")], ), pytest.param( { "interface": "OC", "namespace_policy_dict": { "type": "Single", "namespacestore_dict": {"rgw": [(1, None)]}, }, }, marks=[ on_prem_platform_required, pytest.mark.polarion_id("OCS-2559"), ], ), pytest.param( { "interface": "OC", "namespace_policy_dict": { "type": "Cache", "ttl": 60000, "namespacestore_dict": {"aws": [(1, "eu-central-1")]}, }, "placement_policy": { "tiers": [ {"backingStores": [constants.DEFAULT_NOOBAA_BACKINGSTORE]} ] }, }, marks=[pytest.mark.polarion_id("OCS-2560")], ), pytest.param( { "interface": "OC", "namespace_policy_dict": { "type": "Multi", "namespacestore_dict": { "aws": [(2, "us-east-2")], }, }, }, marks=[pytest.mark.polarion_id("OCS-2743")], ), pytest.param( { "interface": "OC", "namespace_policy_dict": { "type": "Multi", "namespacestore_dict": { "rgw": [(2, None)], }, }, }, marks=[ on_prem_platform_required, pytest.mark.polarion_id("OCS-2744"), ], ), ], ids=[ "Scale-AWS-Single", "Scale-Azure-Single", "Scale-RGW-Single", "Scale-AWS-Cache", "Scale-AWS-AWS-Multi", "Scale-RWG-RGW-Multi", ], ) def test_scale_namespace_bucket_creation_crd( self, mcg_obj, bucket_factory, bucketclass_dict, s3bench, ): """ Test namespace bucket creation using the MCG CRDs. Create 50 namespace resources For each namespace resource, create namespace bucket and start hsbench benchmark """ num_s3_obj = 1000 ns_bucket_list = [] for _ in range(50): ns_bucket_list.append( bucket_factory( amount=1, interface=bucketclass_dict["interface"], bucketclass=bucketclass_dict, )[0] ) for _ in ns_bucket_list: s3bench.run_benchmark( num_obj=num_s3_obj, timeout=7200, access_key=mcg_obj.access_key_id, secret_key=mcg_obj.access_key, end_point="http://s3.openshift-storage.svc/", run_mode="ipg", )
python
4,746
import os import numpy as np import keras.backend as K from keras import metrics from keras.models import Model from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler, ReduceLROnPlateau from keras.layers import Input, MaxPool2D, Activation, BatchNormalization, UpSampling2D, concatenate, LeakyReLU, Conv2D import os, sys, inspect sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))))) from dataset import * from utils import * EPOCHS = 500 BATCH_SIZE = 128 LEARNING_RATE = 0.0001 INPUT_SHAPE = (32, 32, 1) WEIGHTS = 'model2.hdf5' MODE = 1 # 1: train - 2: test data = load_cifar10_data() np.random.shuffle(data) Y_channel = data[:, 0, :].reshape(50000, 32, 32, 1) UV_channel = data[:, 1:, :].reshape(50000, 32, 32, 2) def exact_acc(y_true, y_pred): return K.mean(K.equal(K.round(y_true), K.round(y_pred))) def create_conv(filters, kernel_size, inputs, name=None, bn=True, padding='same', activation='relu'): conv = Conv2D(filters, kernel_size, padding=padding, kernel_initializer='he_normal', name=name)(inputs) if bn == True: conv = BatchNormalization()(conv) if activation == 'relu': conv = Activation(activation)(conv) elif activation == 'leakyrelu': conv = LeakyReLU()(conv) return conv def create_model(): inputs = Input(INPUT_SHAPE) conv1 = create_conv(64, (3, 3), inputs, 'conv1_1', activation='leakyrelu') conv1 = create_conv(64, (3, 3), conv1, 'conv1_2', activation='leakyrelu') pool1 = MaxPool2D((2, 2))(conv1) conv2 = create_conv(128, (3, 3), pool1, 'conv2_1', activation='leakyrelu') conv2 = create_conv(128, (3, 3), conv2, 'conv2_2', activation='leakyrelu') pool2 = MaxPool2D((2, 2))(conv2) conv3 = create_conv(256, (3, 3), pool2, 'conv3_1', activation='leakyrelu') conv3 = create_conv(256, (3, 3), conv3, 'conv3_2', activation='leakyrelu') pool3 = MaxPool2D((2, 2))(conv3) conv4 = create_conv(512, (3, 3), pool3, 'conv4_1', activation='leakyrelu') conv4 = create_conv(512, (3, 3), conv4, 'conv4_2', activation='leakyrelu') pool4 = MaxPool2D((2, 2))(conv4) conv5 = create_conv(1024, (3, 3), pool4, 'conv5_1', activation='leakyrelu') conv5 = create_conv(1024, (3, 3), conv5, 'conv5_2', activation='leakyrelu') up6 = create_conv(512, (2, 2), UpSampling2D((2, 2))(conv5), 'up6', activation='relu') merge6 = concatenate([conv4, up6], axis=3) conv6 = create_conv(512, (3, 3), merge6, 'conv6_1', activation='relu') conv6 = create_conv(512, (3, 3), conv6, 'conv6_2', activation='relu') up7 = create_conv(256, (2, 2), UpSampling2D((2, 2))(conv6), 'up7', activation='relu') merge7 = concatenate([conv3, up7], axis=3) conv7 = create_conv(256, (3, 3), merge7, 'conv7_1', activation='relu') conv7 = create_conv(256, (3, 3), conv7, 'conv7_2', activation='relu') up8 = create_conv(128, (2, 2), UpSampling2D((2, 2))(conv7), 'up8', activation='relu') merge8 = concatenate([conv2, up8], axis=3) conv8 = create_conv(128, (3, 3), merge8, 'conv8_1', activation='relu') conv8 = create_conv(128, (3, 3), conv8, 'conv8_2', activation='relu') up9 = create_conv(64, (2, 2), UpSampling2D((2, 2))(conv8)) merge9 = concatenate([conv1, up9], axis=3) conv9 = create_conv(64, (3, 3), merge9, 'conv9_1', activation='relu') conv9 = create_conv(64, (3, 3), conv9, 'conv9_2', activation='relu') conv9 = Conv2D(2, (1, 1), padding='same', name='conv9_3')(conv9) model = Model(inputs=inputs, outputs=conv9) model.compile(optimizer=Adam(LEARNING_RATE), loss='mean_squared_error', metrics=['accuracy', exact_acc, metrics.mse, metrics.mae]) return model model = create_model() if os.path.exists(WEIGHTS): model.load_weights(WEIGHTS) if MODE == 1: model_checkpoint = ModelCheckpoint( filepath=WEIGHTS, monitor='loss', verbose=1, save_best_only=True) reduce_lr = ReduceLROnPlateau( monitor='loss', factor=0.5, patience=10) model.fit( Y_channel, UV_channel, batch_size=BATCH_SIZE, epochs=EPOCHS, verbose=1, validation_split=0.1, callbacks=[model_checkpoint, reduce_lr]) elif MODE == 2: for i in range(45000, 50000): y = Y_channel[i].T yuv_original = np.r_[(y, UV_channel[i].T[:1], UV_channel[i].T[1:])] uv_pred = np.array(model.predict(Y_channel[i][None, :, :, :]))[0] yuv_pred = np.r_[(y, uv_pred.T[:1], uv_pred.T[1:])] show_yuv(yuv_original, yuv_pred)
python
4,651
from tkinter import * expression="" def press(num): global expression expression = expression + str(num) equation.set(expression) def equalpress(): try: global expression total = str(eval(expression)) equation.set(total) expression = "" except: equation.set("Error") expression="" def clear(): global expression expression = "" equation.set("") if __name__ == "__main__": root = Tk() root.geometry("300x185+500+300") root.resizable(False,False) root.title("Simple Calculator") equation = StringVar() expression_field = Entry(root, textvariable=equation) expression_field.grid(columnspan=6, ipadx=90) btn1=Button(root,text="1",fg="white", bg="black", command=lambda: press(1),height=2, width=9) btn1.grid(row=2,column=0) btn2=Button(root,text="2",fg="white", bg="black", command=lambda: press(2), height=2, width=9) btn2.grid(row=2,column=1) btn3=Button(root,text="3",fg="white", bg="black", command=lambda: press(3), height=2, width=9) btn3.grid(row=2,column=2) btn4=Button(root,text="4",fg="white", bg="black", command=lambda: press(4), height=2, width=9) btn4.grid(row=3,column=0) btn5=Button(root,text="5",fg="white", bg="black", command=lambda: press(5), height=2, width=9) btn5.grid(row=3,column=1) btn6=Button(root,text="6",fg="white", bg="black", command=lambda: press(6), height=2, width=9) btn6.grid(row=3,column=2) btn7=Button(root,text="7",fg="white", bg="black", command=lambda: press(7), height=2, width=9) btn7.grid(row=4,column=0) btn8=Button(root,text="8",fg="white", bg="black", command=lambda: press(8), height=2, width=9) btn8.grid(row=4,column=1) btn9=Button(root,text="9",fg="white", bg="black", command=lambda: press(9), height=2, width=9) btn9.grid(row=4,column=2) btn0=Button(root,text="0",fg="white", bg="black", height=2, width=9) btn0.grid(row=5,column=0) btnAdd=Button(root,text="+",fg="white", bg="black", command=lambda: press("+"), height=2, width=9) btnAdd.grid(row=2,column=3) btnSub=Button(root,text="-",fg="white", bg="black", command=lambda: press("-"),height=2, width=9) btnSub.grid(row=3,column=3) btnMul=Button(root,text="*",fg="white", bg="black", command=lambda: press("*"), height=2, width=9) btnMul.grid(row=4,column=3) btnDiv=Button(root,text="/",fg="white", bg="black", command=lambda: press("/"), height=2, width=9) btnDiv.grid(row=5,column=3) btnClear=Button(root,text="AC",fg="white", bg="black", command=clear, height=2, width=9) btnClear.grid(row=5,column=1) btnEqual=Button(root,text="=",fg="white", bg="black", command=equalpress, height=2, width=9) btnEqual.grid(row=5,column=2) root.mainloop()
python
2,730
import abc import os from subprocess import call, CalledProcessError import attr import six from pathlib2 import Path from ....config.defs import ( VCS_REPO_TYPE, VCS_DIFF, VCS_STATUS, VCS_ROOT, VCS_BRANCH, VCS_COMMIT_ID, VCS_REPOSITORY_URL, ) from ....debugging import get_logger from .util import get_command_output class DetectionError(Exception): pass @attr.s class Result(object): """" Repository information as queried by a detector """ url = attr.ib(default="") branch = attr.ib(default="") commit = attr.ib(default="") root = attr.ib(default="") status = attr.ib(default="") diff = attr.ib(default="") modified = attr.ib(default=False, type=bool, converter=bool) def is_empty(self): return not any(attr.asdict(self).values()) @six.add_metaclass(abc.ABCMeta) class Detector(object): """ Base class for repository detection """ """ Commands are represented using the result class, where each attribute contains the command used to obtain the value of the same attribute in the actual result. """ _fallback = '_fallback' _remote = '_remote' @classmethod def _get_logger(cls): return get_logger("Repository Detection") @attr.s class Commands(object): """" Repository information as queried by a detector """ url = attr.ib(default=None, type=list) branch = attr.ib(default=None, type=list) commit = attr.ib(default=None, type=list) root = attr.ib(default=None, type=list) status = attr.ib(default=None, type=list) diff = attr.ib(default=None, type=list) modified = attr.ib(default=None, type=list) # alternative commands branch_fallback = attr.ib(default=None, type=list) diff_fallback = attr.ib(default=None, type=list) # remote commands commit_remote = attr.ib(default=None, type=list) diff_remote = attr.ib(default=None, type=list) diff_fallback_remote = attr.ib(default=None, type=list) def __init__(self, type_name, name=None): self.type_name = type_name self.name = name or type_name def _get_commands(self): """ Returns a RepoInfo instance containing a command for each info attribute """ return self.Commands() def _get_command_output(self, path, name, command, commands=None, strip=True): """ Run a command and return its output """ try: return get_command_output(command, path, strip=strip) except (CalledProcessError, UnicodeDecodeError) as ex: if not name.endswith(self._fallback): fallback_command = attr.asdict(commands or self._get_commands()).get(name + self._fallback) if fallback_command: try: return get_command_output(fallback_command, path, strip=strip) except (CalledProcessError, UnicodeDecodeError): pass self._get_logger().warning("Can't get {} information for {} repo in {}".format(name, self.type_name, path)) # full details only in debug self._get_logger().debug( "Can't get {} information for {} repo in {}: {}".format( name, self.type_name, path, str(ex) ) ) return "" def _get_info(self, path, include_diff=False, diff_from_remote=False): """ Get repository information. :param path: Path to repository :param include_diff: Whether to include the diff command's output (if available) :param diff_from_remote: Whether to store the remote diff/commit based on the remote commit (not local commit) :return: RepoInfo instance """ path = str(path) commands = self._get_commands() if not include_diff: commands.diff = None # skip the local commands if diff_from_remote and commands: for name, command in attr.asdict(commands).items(): if name.endswith(self._remote) and command: setattr(commands, name[:-len(self._remote)], None) info = Result( **{ name: self._get_command_output(path, name, command, commands=commands, strip=bool(name != 'diff')) for name, command in attr.asdict(commands).items() if command and not name.endswith(self._fallback) and not name.endswith(self._remote) } ) if diff_from_remote and commands: for name, command in attr.asdict(commands).items(): if name.endswith(self._remote) and command: setattr(commands, name[:-len(self._remote)], command+[info.branch]) info = attr.assoc( info, **{ name[:-len(self._remote)]: self._get_command_output( path, name[:-len(self._remote)], command + [info.branch], commands=commands, strip=not name.startswith('diff')) for name, command in attr.asdict(commands).items() if command and ( name.endswith(self._remote) and not name[:-len(self._remote)].endswith(self._fallback) ) } ) # make sure we match the modified with the git remote diff state info.modified = bool(info.diff) return info def _post_process_info(self, info): # check if there are uncommitted changes in the current repository return info def get_info(self, path, include_diff=False, diff_from_remote=False): """ Get repository information. :param path: Path to repository :param include_diff: Whether to include the diff command's output (if available) :param diff_from_remote: Whether to store the remote diff/commit based on the remote commit (not local commit) :return: RepoInfo instance """ info = self._get_info(path, include_diff, diff_from_remote=diff_from_remote) return self._post_process_info(info) def _is_repo_type(self, script_path): try: with open(os.devnull, "wb") as devnull: return ( call( [self.type_name, "status"], stderr=devnull, stdout=devnull, cwd=str(script_path), ) == 0 ) except CalledProcessError: self._get_logger().warning("Can't get {} status".format(self.type_name)) except (OSError, EnvironmentError, IOError): # File not found or can't be executed pass return False def exists(self, script_path): """ Test whether the given script resides in a repository type represented by this plugin. """ return self._is_repo_type(script_path) class HgDetector(Detector): def __init__(self): super(HgDetector, self).__init__("hg") def _get_commands(self): return self.Commands( url=["hg", "paths", "--verbose"], branch=["hg", "--debug", "id", "-b"], commit=["hg", "--debug", "id", "-i"], root=["hg", "root"], status=["hg", "status"], diff=["hg", "diff"], modified=["hg", "status", "-m"], ) def _post_process_info(self, info): if info.url: info.url = info.url.split(" = ")[1] if info.commit: info.commit = info.commit.rstrip("+") return info class GitDetector(Detector): def __init__(self): super(GitDetector, self).__init__("git") def _get_commands(self): return self.Commands( url=["git", "ls-remote", "--get-url", "origin"], branch=["git", "rev-parse", "--abbrev-ref", "--symbolic-full-name", "@{u}"], commit=["git", "rev-parse", "HEAD"], root=["git", "rev-parse", "--show-toplevel"], status=["git", "status", "-s"], diff=["git", "diff", "--submodule=diff"], modified=["git", "ls-files", "-m"], branch_fallback=["git", "rev-parse", "--abbrev-ref", "HEAD"], diff_fallback=["git", "diff"], diff_remote=["git", "diff", "--submodule=diff", ], commit_remote=["git", "rev-parse", ], diff_fallback_remote=["git", "diff", ], ) def _post_process_info(self, info): # Deprecated code: this was intended to make sure git repository names always # ended with ".git", but this is not always the case (e.g. Azure Repos) # if info.url and not info.url.endswith(".git"): # info.url += ".git" if (info.branch or "").startswith("origin/"): info.branch = info.branch[len("origin/"):] return info class EnvDetector(Detector): def __init__(self, type_name): super(EnvDetector, self).__init__(type_name, "{} environment".format(type_name)) def _is_repo_type(self, script_path): return VCS_REPO_TYPE.get().lower() == self.type_name and bool( VCS_REPOSITORY_URL.get() ) @staticmethod def _normalize_root(root): """ Convert to absolute and squash 'path/../folder' """ # noinspection PyBroadException try: return os.path.abspath((Path.cwd() / root).absolute().as_posix()) except Exception: return Path.cwd() def _get_info(self, _, include_diff=False, diff_from_remote=None): repository_url = VCS_REPOSITORY_URL.get() if not repository_url: raise DetectionError("No VCS environment data") status = VCS_STATUS.get() or '' diff = VCS_DIFF.get() or '' modified = bool(diff or (status and [s for s in status.split('\n') if s.strip().startswith('M ')])) if modified and not diff: diff = '# Repository modified, but no git diff could be extracted.' return Result( url=repository_url, branch=VCS_BRANCH.get(), commit=VCS_COMMIT_ID.get(), root=VCS_ROOT.get(converter=self._normalize_root), status=status, diff=diff, modified=modified, ) class GitEnvDetector(EnvDetector): def __init__(self): super(GitEnvDetector, self).__init__("git") class HgEnvDetector(EnvDetector): def __init__(self): super(HgEnvDetector, self).__init__("hg")
python
10,736
''' Created by auto_sdk on 2014.10.14 ''' from aliyun.api.base import RestApi class Rds20130528RevokeAccountPrivilegeRequest(RestApi): def __init__(self,domain='rds.aliyuncs.com',port=80): RestApi.__init__(self,domain, port) self.AccountName = None self.DBInstanceId = None self.DBName = None def getapiname(self): return 'rds.aliyuncs.com.RevokeAccountPrivilege.2013-05-28'
python
401
# This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Tests for seq module.""" import array import copy import unittest import warnings from Bio import BiopythonWarning from Bio import Alphabet from Bio import Seq from Bio.Alphabet import IUPAC, Gapped from Bio.Data.IUPACData import (ambiguous_dna_complement, ambiguous_rna_complement, ambiguous_dna_values, ambiguous_rna_values) from Bio.Data.CodonTable import TranslationError, standard_dna_table from Bio.Seq import MutableSeq test_seqs = [ Seq.Seq("TCAAAAGGATGCATCATG", IUPAC.unambiguous_dna), Seq.Seq("T", IUPAC.ambiguous_dna), Seq.Seq("ATGAAACTG"), Seq.Seq("ATGAARCTG"), Seq.Seq("AWGAARCKG"), # Note no U or T Seq.Seq("".join(ambiguous_rna_values)), Seq.Seq("".join(ambiguous_dna_values)), Seq.Seq("".join(ambiguous_rna_values), Alphabet.generic_rna), Seq.Seq("".join(ambiguous_dna_values), Alphabet.generic_dna), Seq.Seq("".join(ambiguous_rna_values), IUPAC.IUPACAmbiguousRNA()), Seq.Seq("".join(ambiguous_dna_values), IUPAC.IUPACAmbiguousDNA()), Seq.Seq("AWGAARCKG", Alphabet.generic_dna), Seq.Seq("AUGAAACUG", Alphabet.generic_rna), Seq.Seq("ATGAAACTG", IUPAC.unambiguous_dna), Seq.Seq("ATGAAA-CTG", Alphabet.Gapped(IUPAC.unambiguous_dna)), Seq.Seq("ATGAAACTGWN", IUPAC.ambiguous_dna), Seq.Seq("AUGAAACUG", Alphabet.generic_rna), Seq.Seq("AUGAAA==CUG", Alphabet.Gapped(Alphabet.generic_rna, "=")), Seq.Seq("AUGAAACUG", IUPAC.unambiguous_rna), Seq.Seq("AUGAAACUGWN", IUPAC.ambiguous_rna), Seq.Seq("ATGAAACTG", Alphabet.generic_nucleotide), Seq.Seq("AUGAAACTG", Alphabet.generic_nucleotide), # U and T Seq.MutableSeq("ATGAAACTG", Alphabet.generic_dna), Seq.MutableSeq("AUGaaaCUG", IUPAC.unambiguous_rna), Seq.Seq("ACTGTCGTCT", Alphabet.generic_protein), ] protein_seqs = [ Seq.Seq("ATCGPK", IUPAC.protein), Seq.Seq("T.CGPK", Alphabet.Gapped(IUPAC.protein, ".")), Seq.Seq("T-CGPK", Alphabet.Gapped(IUPAC.protein, "-")), Seq.Seq("MEDG-KRXR*", Alphabet.Gapped(Alphabet.HasStopCodon(IUPAC.extended_protein, "*"), "-")), Seq.MutableSeq("ME-K-DRXR*XU", Alphabet.Gapped(Alphabet.HasStopCodon( IUPAC.extended_protein, "*"), "-")), Seq.Seq("MEDG-KRXR@", Alphabet.HasStopCodon(Alphabet.Gapped(IUPAC.extended_protein, "-"), "@")), Seq.Seq("ME-KR@", Alphabet.HasStopCodon(Alphabet.Gapped(IUPAC.protein, "-"), "@")), Seq.Seq("MEDG.KRXR@", Alphabet.Gapped(Alphabet.HasStopCodon(IUPAC.extended_protein, "@"), ".")), ] class TestSeq(unittest.TestCase): def setUp(self): self.s = Seq.Seq("TCAAAAGGATGCATCATG", IUPAC.unambiguous_dna) def test_as_string(self): """Test converting Seq to string.""" self.assertEqual("TCAAAAGGATGCATCATG", str(self.s)) def test_construction_using_a_seq_object(self): """Test using a Seq object to initialize another Seq object.""" with self.assertRaises(TypeError): Seq.Seq(self.s) def test_repr(self): """Test representation of Seq object.""" self.assertEqual("Seq('TCAAAAGGATGCATCATG', IUPACUnambiguousDNA())", repr(self.s)) def test_truncated_repr(self): seq = "TCAAAAGGATGCATCATGTCAAAAGGATGCATCATGTCAAAAGGATGCATCATGTCAAAAGGA" expected = ( "Seq('TCAAAAGGATGCATCATGTCAAAAGGATGCATCATGTCAAAAGGATGCATCATG...GGA', " "IUPACAmbiguousDNA())" ) self.assertEqual(expected, repr(Seq.Seq(seq, IUPAC.ambiguous_dna))) def test_length(self): """Test len method on Seq object.""" self.assertEqual(18, len(self.s)) def test_first_nucleotide(self): """Test getting first nucleotide of Seq.""" self.assertEqual("T", self.s[0]) def test_last_nucleotide(self): """Test getting last nucleotide of Seq.""" self.assertEqual("G", self.s[-1]) def test_slicing(self): """Test slicing of Seq.""" self.assertEqual("AA", str(self.s[3:5])) def test_reverse(self): """Test reverse using -1 stride.""" self.assertEqual("GTACTACGTAGGAAAACT", self.s[::-1]) def test_extract_third_nucleotide(self): """Test extracting every third nucleotide (slicing with stride 3).""" self.assertEqual("TAGTAA", str(self.s[0::3])) self.assertEqual("CAGGTT", str(self.s[1::3])) self.assertEqual("AAACCG", str(self.s[2::3])) def test_alphabet_letters(self): """Test nucleotides in DNA Seq.""" self.assertEqual("GATC", self.s.alphabet.letters) def test_alphabet(self): """Test alphabet of derived Seq object.""" t = Seq.Seq("T", IUPAC.unambiguous_dna) u = self.s + t self.assertEqual("IUPACUnambiguousDNA()", str(u.alphabet)) def test_length_concatenated_unambiguous_seq(self): """Test length of concatenated Seq object with unambiguous DNA.""" t = Seq.Seq("T", IUPAC.unambiguous_dna) u = self.s + t self.assertEqual(19, len(u)) def test_concatenation_of_seq(self): t = Seq.Seq("T", IUPAC.unambiguous_dna) u = self.s + t self.assertEqual(str(self.s) + "T", str(u)) def test_concatenation_error(self): """DNA Seq objects cannot be concatenated with Protein Seq objects.""" with self.assertRaises(TypeError): self.s + Seq.Seq("T", IUPAC.protein) def test_concatenation_of_ambiguous_and_unambiguous_dna(self): """Concatenate Seq object with ambiguous and unambiguous DNA returns ambiguous Seq.""" t = Seq.Seq("T", IUPAC.ambiguous_dna) u = self.s + t self.assertEqual("IUPACAmbiguousDNA()", str(u.alphabet)) def test_ungap(self): self.assertEqual("ATCCCA", str(Seq.Seq("ATC-CCA").ungap("-"))) with self.assertRaises(ValueError): Seq.Seq("ATC-CCA").ungap("--") with self.assertRaises(ValueError): Seq.Seq("ATC-CCA").ungap() class TestSeqStringMethods(unittest.TestCase): def setUp(self): self.s = Seq.Seq("TCAAAAGGATGCATCATG", IUPAC.unambiguous_dna) self.dna = [ Seq.Seq("ATCG", IUPAC.ambiguous_dna), Seq.Seq("gtca", Alphabet.generic_dna), Seq.MutableSeq("GGTCA", Alphabet.generic_dna), Seq.Seq("CTG-CA", Alphabet.Gapped(IUPAC.unambiguous_dna, "-")), ] self.rna = [ Seq.Seq("AUUUCG", IUPAC.ambiguous_rna), Seq.MutableSeq("AUUCG", IUPAC.ambiguous_rna), Seq.Seq("uCAg", Alphabet.generic_rna), Seq.MutableSeq("UC-AG", Alphabet.Gapped(Alphabet.generic_rna, "-")), Seq.Seq("U.CAG", Alphabet.Gapped(Alphabet.generic_rna, ".")), ] self.nuc = [Seq.Seq("ATCG", Alphabet.generic_nucleotide)] self.protein = [ Seq.Seq("ATCGPK", IUPAC.protein), Seq.Seq("atcGPK", Alphabet.generic_protein), Seq.Seq("T.CGPK", Alphabet.Gapped(IUPAC.protein, ".")), Seq.Seq("T-CGPK", Alphabet.Gapped(IUPAC.protein, "-")), Seq.Seq("MEDG-KRXR*", Alphabet.Gapped( Alphabet.HasStopCodon(IUPAC.extended_protein, "*"), "-")), Seq.MutableSeq("ME-K-DRXR*XU", Alphabet.Gapped( Alphabet.HasStopCodon(IUPAC.extended_protein, "*"), "-")), Seq.Seq("MEDG-KRXR@", Alphabet.HasStopCodon( Alphabet.Gapped(IUPAC.extended_protein, "-"), "@")), Seq.Seq("ME-KR@", Alphabet.HasStopCodon(Alphabet.Gapped(IUPAC.protein, "-"), "@")), Seq.Seq("MEDG.KRXR@", Alphabet.Gapped(Alphabet.HasStopCodon( IUPAC.extended_protein, "@"), ".")), ] self.test_chars = ["-", Seq.Seq("-"), Seq.Seq("*"), "-X@"] def test_string_methods(self): for a in self.dna + self.rna + self.nuc + self.protein: if isinstance(a, Seq.Seq): self.assertEqual(str(a.strip()), str(a).strip()) self.assertEqual(str(a.lstrip()), str(a).lstrip()) self.assertEqual(str(a.rstrip()), str(a).rstrip()) self.assertEqual(str(a.lower()), str(a).lower()) self.assertEqual(str(a.upper()), str(a).upper()) def test_hash(self): with warnings.catch_warnings(record=True): hash(self.s) def test_equal_comparison_of_incompatible_alphabets(self): """Test __eq__ comparison method.""" with warnings.catch_warnings(record=True): Seq.Seq("TCAAAA", IUPAC.ambiguous_dna) == \ Seq.Seq("TCAAAA", IUPAC.ambiguous_rna) def test_not_equal_comparsion(self): """Test __ne__ comparison method.""" self.assertNotEqual(Seq.Seq("TCAAA", IUPAC.ambiguous_dna), Seq.Seq("TCAAAA", IUPAC.ambiguous_dna)) def test_less_than_comparison(self): """Test __lt__ comparison method.""" self.assertTrue(self.s[:-1] < self.s) def test_less_than_comparison_of_incompatible_alphabets(self): """Test incompatible alphabet __lt__ comparison method.""" seq1 = Seq.Seq("TCAAA", IUPAC.ambiguous_dna) seq2 = Seq.Seq("UCAAAA", IUPAC.ambiguous_rna) with self.assertWarns(BiopythonWarning): self.assertTrue(seq1 < seq2) def test_less_than_comparison_of_incompatible_types(self): """Test incompatible types __lt__ comparison method.""" with self.assertRaises(TypeError): self.s < 1 def test_less_than_or_equal_comparison(self): """Test __le__ comparison method.""" self.assertTrue(self.s <= self.s) def test_less_than_or_equal_comparison_of_incompatible_alphabets(self): """Test incompatible alphabet __le__ comparison method.""" seq1 = Seq.Seq("TCAAA", IUPAC.ambiguous_dna) seq2 = Seq.Seq("UCAAAA", IUPAC.ambiguous_rna) with self.assertWarns(BiopythonWarning): self.assertTrue(seq1 <= seq2) def test_less_than_or_equal_comparison_of_incompatible_types(self): """Test incompatible types __le__ comparison method.""" with self.assertRaises(TypeError): self.s <= 1 def test_greater_than_comparison(self): """Test __gt__ comparison method.""" self.assertTrue(self.s > self.s[:-1]) def test_greater_than_comparison_of_incompatible_alphabets(self): """Test incompatible alphabet __gt__ comparison method.""" seq1 = Seq.Seq("TCAAA", IUPAC.ambiguous_dna) seq2 = Seq.Seq("UCAAAA", IUPAC.ambiguous_rna) with self.assertWarns(BiopythonWarning): self.assertTrue(seq2 > seq1) def test_greater_than_comparison_of_incompatible_types(self): """Test incompatible types __gt__ comparison method.""" with self.assertRaises(TypeError): self.s > 1 def test_greater_than_or_equal_comparison(self): """Test __ge__ comparison method.""" self.assertTrue(self.s >= self.s) def test_greater_than_or_equal_comparison_of_incompatible_alphabets(self): """Test incompatible alphabet __ge__ comparison method.""" seq1 = Seq.Seq("TCAAA", IUPAC.ambiguous_dna) seq2 = Seq.Seq("UCAAAA", IUPAC.ambiguous_rna) with self.assertWarns(BiopythonWarning): self.assertTrue(seq2 >= seq1) def test_greater_than_or_equal_comparison_of_incompatible_types(self): """Test incompatible types __ge__ comparison method.""" with self.assertRaises(TypeError): self.s >= 1 def test_add_method_using_wrong_object(self): with self.assertRaises(TypeError): self.s + {} def test_radd_method(self): self.assertEqual("TCAAAAGGATGCATCATGTCAAAAGGATGCATCATG", str(self.s.__radd__(self.s))) def test_radd_method_using_incompatible_alphabets(self): rna_seq = Seq.Seq("UCAAAA", IUPAC.ambiguous_rna) with self.assertRaises(TypeError): self.s.__radd__(rna_seq) def test_radd_method_using_wrong_object(self): with self.assertRaises(TypeError): self.s.__radd__({}) def test_contains_method(self): self.assertIn("AAAA", self.s) def test_startswith(self): self.assertTrue(self.s.startswith("TCA")) self.assertTrue(self.s.startswith(("CAA", "CTA"), 1)) def test_endswith(self): self.assertTrue(self.s.endswith("ATG")) self.assertTrue(self.s.endswith(("ATG", "CTA"))) def test_append_nucleotides(self): self.test_chars.append(Seq.Seq("A", IUPAC.ambiguous_dna)) self.test_chars.append(Seq.Seq("A", IUPAC.ambiguous_rna)) self.test_chars.append(Seq.Seq("A", Alphabet.generic_nucleotide)) self.assertEqual(7, len(self.test_chars)) def test_append_proteins(self): self.test_chars.append(Seq.Seq("K", Alphabet.generic_protein)) self.test_chars.append(Seq.Seq("K-", Alphabet.Gapped( Alphabet.generic_protein, "-"))) self.test_chars.append(Seq.Seq("K@", Alphabet.Gapped(IUPAC.protein, "@"))) self.assertEqual(7, len(self.test_chars)) def test_exception_when_clashing_alphabets(self): """Test by setting up clashing alphabet sequences.""" b = Seq.Seq("-", Alphabet.generic_nucleotide) self.assertRaises(TypeError, self.protein[0].strip, b) b = Seq.Seq("-", Alphabet.generic_protein) self.assertRaises(TypeError, self.dna[0].strip, b) def test_stripping_characters(self): for a in self.dna + self.rna + self.nuc + self.protein: for char in self.test_chars: str_char = str(char) if isinstance(a, Seq.Seq): self.assertEqual(str(a.strip(char)), str(a).strip(str_char)) self.assertEqual(str(a.lstrip(char)), str(a).lstrip(str_char)) self.assertEqual(str(a.rstrip(char)), str(a).rstrip(str_char)) def test_finding_characters(self): for a in self.dna + self.rna + self.nuc + self.protein: for char in self.test_chars: str_char = str(char) if isinstance(a, Seq.Seq): self.assertEqual(a.find(char), str(a).find(str_char)) self.assertEqual(a.find(char, 2, -2), str(a).find(str_char, 2, -2)) self.assertEqual(a.rfind(char), str(a).rfind(str_char)) self.assertEqual(a.rfind(char, 2, -2), str(a).rfind(str_char, 2, -2)) def test_counting_characters(self): for a in self.dna + self.rna + self.nuc + self.protein: for char in self.test_chars: str_char = str(char) if isinstance(a, Seq.Seq): self.assertEqual(a.count(char), str(a).count(str_char)) self.assertEqual(a.count(char, 2, -2), str(a).count(str_char, 2, -2)) def test_splits(self): for a in self.dna + self.rna + self.nuc + self.protein: for char in self.test_chars: str_char = str(char) if isinstance(a, Seq.Seq): self.assertEqual([str(x) for x in a.split(char)], str(a).split(str_char)) self.assertEqual([str(x) for x in a.rsplit(char)], str(a).rsplit(str_char)) for max_sep in [0, 1, 2, 999]: self.assertEqual( [str(x) for x in a.split(char, max_sep)], str(a).split(str_char, max_sep)) class TestSeqAddition(unittest.TestCase): def setUp(self): self.dna = [ Seq.Seq("ATCG", IUPAC.ambiguous_dna), Seq.Seq("gtca", Alphabet.generic_dna), Seq.MutableSeq("GGTCA", Alphabet.generic_dna), Seq.Seq("CTG-CA", Alphabet.Gapped(IUPAC.unambiguous_dna, "-")), "TGGTCA", ] self.rna = [ Seq.Seq("AUUUCG", IUPAC.ambiguous_rna), Seq.MutableSeq("AUUCG", IUPAC.ambiguous_rna), Seq.Seq("uCAg", Alphabet.generic_rna), Seq.MutableSeq("UC-AG", Alphabet.Gapped(Alphabet.generic_rna, "-")), Seq.Seq("U.CAG", Alphabet.Gapped(Alphabet.generic_rna, ".")), "UGCAU", ] self.nuc = [ Seq.Seq("ATCG", Alphabet.generic_nucleotide), "UUUTTTACG", ] self.protein = [ Seq.Seq("ATCGPK", IUPAC.protein), Seq.Seq("atcGPK", Alphabet.generic_protein), Seq.Seq("T.CGPK", Alphabet.Gapped(IUPAC.protein, ".")), Seq.Seq("T-CGPK", Alphabet.Gapped(IUPAC.protein, "-")), Seq.Seq("MEDG-KRXR*", Alphabet.Gapped(Alphabet.HasStopCodon( IUPAC.extended_protein, "*"), "-")), Seq.MutableSeq("ME-K-DRXR*XU", Alphabet.Gapped(Alphabet.HasStopCodon( IUPAC.extended_protein, "*"), "-")), "TEDDF", ] def test_addition_dna_rna_with_generic_nucleotides(self): for a in self.dna + self.rna: for b in self.nuc: c = a + b self.assertEqual(str(c), str(a) + str(b)) def test_addition_dna_rna_with_generic_nucleotides_inplace(self): for a in self.dna + self.rna: for b in self.nuc: c = b + a b += a # can't change 'a' as need value next iteration self.assertEqual(c, b) def test_addition_rna_with_rna(self): self.rna.pop(3) for a in self.rna: for b in self.rna: c = a + b self.assertEqual(str(c), str(a) + str(b)) def test_addition_rna_with_rna_inplace(self): self.rna.pop(3) for a in self.rna: for b in self.rna: c = b + a b += a self.assertEqual(c, b) def test_exception_when_added_rna_has_more_than_one_gap_type(self): """Test resulting sequence has gap types '-' and '.'.""" with self.assertRaises(ValueError): self.rna[3] + self.rna[4] with self.assertRaises(ValueError): self.rna[3] += self.rna[4] def test_addition_dna_with_dna(self): for a in self.dna: for b in self.dna: c = a + b self.assertEqual(str(c), str(a) + str(b)) def test_addition_dna_with_dna_inplace(self): for a in self.dna: for b in self.dna: c = b + a b += a self.assertEqual(c, b) def test_addition_dna_with_rna(self): self.dna.pop(4) self.rna.pop(5) for a in self.dna: for b in self.rna: with self.assertRaises(TypeError): a + b with self.assertRaises(TypeError): b + a with self.assertRaises(TypeError): a += b with self.assertRaises(TypeError): b += a def test_addition_proteins(self): self.protein.pop(2) for a in self.protein: for b in self.protein: c = a + b self.assertEqual(str(c), str(a) + str(b)) def test_addition_proteins_inplace(self): self.protein.pop(2) for a in self.protein: for b in self.protein: c = b + a b += a self.assertEqual(c, b) def test_exception_when_added_protein_has_more_than_one_gap_type(self): """Test resulting protein has gap types '-' and '.'.""" a = Seq.Seq("T.CGPK", Alphabet.Gapped(IUPAC.protein, ".")) b = Seq.Seq("T-CGPK", Alphabet.Gapped(IUPAC.protein, "-")) with self.assertRaises(ValueError): a + b with self.assertRaises(ValueError): a += b def test_exception_when_added_protein_has_several_stop_codon_types(self): """Test resulting protein has stop codon types '*' and '@'.""" a = Seq.Seq("MEDG-KRXR@", Alphabet.HasStopCodon( Alphabet.Gapped(IUPAC.extended_protein, "-"), "@")) b = Seq.Seq("MEDG-KRXR*", Alphabet.Gapped( Alphabet.HasStopCodon(IUPAC.extended_protein, "*"), "-")) with self.assertRaises(ValueError): a + b with self.assertRaises(ValueError): a += b def test_exception_when_adding_protein_with_nucleotides(self): for a in self.protein[0:5]: for b in self.dna[0:3] + self.rna[0:4]: with self.assertRaises(TypeError): a + b with self.assertRaises(TypeError): a += b def test_adding_generic_nucleotide_with_other_nucleotides(self): for a in self.nuc: for b in self.dna + self.rna + self.nuc: c = a + b self.assertEqual(str(c), str(a) + str(b)) def test_adding_generic_nucleotide_with_other_nucleotides_inplace(self): for a in self.nuc: for b in self.dna + self.rna + self.nuc: c = b + a b += a self.assertEqual(c, b) class TestSeqMultiplication(unittest.TestCase): def test_mul_method(self): """Test mul method; relies on addition method.""" for seq in test_seqs + protein_seqs: self.assertEqual(seq * 3, seq + seq + seq) def test_mul_method_exceptions(self): """Test mul method exceptions.""" for seq in test_seqs + protein_seqs: with self.assertRaises(TypeError): seq * 3.0 with self.assertRaises(TypeError): seq * "" def test_rmul_method(self): """Test rmul method; relies on addition method.""" for seq in test_seqs + protein_seqs: self.assertEqual(3 * seq, seq + seq + seq) def test_rmul_method_exceptions(self): """Test rmul method exceptions.""" for seq in test_seqs + protein_seqs: with self.assertRaises(TypeError): 3.0 * seq with self.assertRaises(TypeError): "" * seq def test_imul_method(self): """Test imul method; relies on addition and mull methods.""" for seq in test_seqs + protein_seqs: original_seq = seq * 1 # make a copy seq *= 3 self.assertEqual(seq, original_seq + original_seq + original_seq) def test_imul_method_exceptions(self): """Test imul method exceptions.""" for seq in test_seqs + protein_seqs: with self.assertRaises(TypeError): seq *= 3.0 with self.assertRaises(TypeError): seq *= "" class TestMutableSeq(unittest.TestCase): def setUp(self): self.s = Seq.Seq("TCAAAAGGATGCATCATG", IUPAC.unambiguous_dna) self.mutable_s = MutableSeq("TCAAAAGGATGCATCATG", IUPAC.ambiguous_dna) def test_mutableseq_creation(self): """Test creating MutableSeqs in multiple ways.""" mutable_s = MutableSeq("TCAAAAGGATGCATCATG", IUPAC.ambiguous_dna) self.assertIsInstance(mutable_s, MutableSeq, "Creating MutableSeq") mutable_s = self.s.tomutable() self.assertIsInstance(mutable_s, MutableSeq, "Converting Seq to mutable") array_seq = MutableSeq(array.array("u", "TCAAAAGGATGCATCATG"), IUPAC.ambiguous_dna) self.assertIsInstance(array_seq, MutableSeq, "Creating MutableSeq using array") def test_repr(self): self.assertEqual( "MutableSeq('TCAAAAGGATGCATCATG', IUPACAmbiguousDNA())", repr(self.mutable_s)) def test_truncated_repr(self): seq = "TCAAAAGGATGCATCATGTCAAAAGGATGCATCATGTCAAAAGGATGCATCATGTCAAAAGGA" expected = ( "MutableSeq('TCAAAAGGATGCATCATGTCAAAAGGATGCATCATGTCAAAAGGATGCATCATG...GGA', " "IUPACAmbiguousDNA())" ) self.assertEqual(expected, repr(MutableSeq(seq, IUPAC.ambiguous_dna))) def test_equal_comparison(self): """Test __eq__ comparison method.""" self.assertEqual(self.mutable_s, "TCAAAAGGATGCATCATG") def test_equal_comparison_of_incompatible_alphabets(self): with self.assertWarns(BiopythonWarning): self.mutable_s == MutableSeq("UCAAAAGGA", IUPAC.ambiguous_rna) def test_not_equal_comparison(self): """Test __ne__ comparison method.""" self.assertNotEqual(self.mutable_s, "other thing") def test_less_than_comparison(self): """Test __lt__ comparison method.""" self.assertTrue(self.mutable_s[:-1] < self.mutable_s) def test_less_than_comparison_of_incompatible_alphabets(self): with self.assertWarns(BiopythonWarning): self.mutable_s[:-1] < MutableSeq("UCAAAAGGAUGCAUCAUG", IUPAC.ambiguous_rna) def test_less_than_comparison_of_incompatible_types(self): with self.assertRaises(TypeError): self.mutable_s < 1 def test_less_than_comparison_without_alphabet(self): self.assertTrue(self.mutable_s[:-1] < "TCAAAAGGATGCATCATG") def test_less_than_or_equal_comparison(self): """Test __le__ comparison method.""" self.assertTrue(self.mutable_s[:-1] <= self.mutable_s) def test_less_than_or_equal_comparison_of_incompatible_alphabets(self): with self.assertWarns(BiopythonWarning): self.mutable_s[:-1] <= MutableSeq("UCAAAAGGAUGCAUCAUG", IUPAC.ambiguous_rna) def test_less_than_or_equal_comparison_of_incompatible_types(self): with self.assertRaises(TypeError): self.mutable_s <= 1 def test_less_than_or_equal_comparison_without_alphabet(self): self.assertTrue(self.mutable_s[:-1] <= "TCAAAAGGATGCATCATG") def test_greater_than_comparison(self): """Test __gt__ comparison method.""" self.assertTrue(self.mutable_s > self.mutable_s[:-1]) def test_greater_than_comparison_of_incompatible_alphabets(self): with self.assertWarns(BiopythonWarning): self.mutable_s[:-1] > MutableSeq("UCAAAAGGAUGCAUCAUG", IUPAC.ambiguous_rna) def test_greater_than_comparison_of_incompatible_types(self): with self.assertRaises(TypeError): self.mutable_s > 1 def test_greater_than_comparison_without_alphabet(self): self.assertTrue(self.mutable_s > "TCAAAAGGATGCATCAT") def test_greater_than_or_equal_comparison(self): """Test __ge__ comparison method.""" self.assertTrue(self.mutable_s >= self.mutable_s) def test_greater_than_or_equal_comparison_of_incompatible_alphabets(self): with self.assertWarns(BiopythonWarning): self.mutable_s[:-1] >= MutableSeq("UCAAAAGGAUGCAUCAUG", IUPAC.ambiguous_rna) def test_greater_than_or_equal_comparison_of_incompatible_types(self): with self.assertRaises(TypeError): self.mutable_s >= 1 def test_greater_than_or_equal_comparison_without_alphabet(self): self.assertTrue(self.mutable_s >= "TCAAAAGGATGCATCATG") def test_add_method(self): """Test adding wrong type to MutableSeq.""" with self.assertRaises(TypeError): self.mutable_s + 1234 def test_radd_method(self): self.assertEqual("TCAAAAGGATGCATCATGTCAAAAGGATGCATCATG", self.mutable_s.__radd__(self.mutable_s)) def test_radd_method_incompatible_alphabets(self): with self.assertRaises(TypeError): self.mutable_s.__radd__(MutableSeq("UCAAAAGGA", IUPAC.ambiguous_rna)) def test_radd_method_using_seq_object(self): self.assertEqual("TCAAAAGGATGCATCATGTCAAAAGGATGCATCATG", self.mutable_s.__radd__(self.s)) def test_radd_method_wrong_type(self): with self.assertRaises(TypeError): self.mutable_s.__radd__(1234) def test_as_string(self): self.assertEqual("TCAAAAGGATGCATCATG", str(self.mutable_s)) def test_length(self): self.assertEqual(18, len(self.mutable_s)) def test_converting_to_immutable(self): self.assertIsInstance(self.mutable_s.toseq(), Seq.Seq) def test_first_nucleotide(self): self.assertEqual("T", self.mutable_s[0]) def test_setting_slices(self): self.assertEqual(MutableSeq("CAAA", IUPAC.ambiguous_dna), self.mutable_s[1:5], "Slice mutable seq") self.mutable_s[1:3] = "GAT" self.assertEqual(MutableSeq("TGATAAAGGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s, "Set slice with string and adding extra nucleotide") self.mutable_s[1:3] = self.mutable_s[5:7] self.assertEqual(MutableSeq("TAATAAAGGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s, "Set slice with MutableSeq") self.mutable_s[1:3] = array.array("u", "GAT") self.assertEqual(MutableSeq("TGATTAAAGGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s, "Set slice with array") def test_setting_item(self): self.mutable_s[3] = "G" self.assertEqual(MutableSeq("TCAGAAGGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s) def test_deleting_slice(self): del self.mutable_s[4:5] self.assertEqual(MutableSeq("TCAAAGGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s) def test_deleting_item(self): del self.mutable_s[3] self.assertEqual(MutableSeq("TCAAAGGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s) def test_appending(self): self.mutable_s.append("C") self.assertEqual(MutableSeq("TCAAAAGGATGCATCATGC", IUPAC.ambiguous_dna), self.mutable_s) def test_inserting(self): self.mutable_s.insert(4, "G") self.assertEqual(MutableSeq("TCAAGAAGGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s) def test_popping_last_item(self): self.assertEqual("G", self.mutable_s.pop()) def test_remove_items(self): self.mutable_s.remove("G") self.assertEqual(MutableSeq("TCAAAAGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s, "Remove first G") self.assertRaises(ValueError, self.mutable_s.remove, "Z") def test_count(self): self.assertEqual(7, self.mutable_s.count("A")) self.assertEqual(2, self.mutable_s.count("AA")) def test_index(self): self.assertEqual(2, self.mutable_s.index("A")) self.assertRaises(ValueError, self.mutable_s.index, "8888") def test_reverse(self): """Test using reverse method.""" self.mutable_s.reverse() self.assertEqual(MutableSeq("GTACTACGTAGGAAAACT", IUPAC.ambiguous_dna), self.mutable_s) def test_reverse_with_stride(self): """Test reverse using -1 stride.""" self.assertEqual(MutableSeq("GTACTACGTAGGAAAACT", IUPAC.ambiguous_dna), self.mutable_s[::-1]) def test_complement(self): self.mutable_s.complement() self.assertEqual("AGTTTTCCTACGTAGTAC", str(self.mutable_s)) def test_complement_rna(self): seq = Seq.MutableSeq("AUGaaaCUG", IUPAC.unambiguous_rna) seq.complement() self.assertEqual("UACuuuGAC", str(seq)) def test_complement_mixed_aphabets(self): seq = Seq.MutableSeq("AUGaaaCTG") with self.assertRaises(ValueError): seq.complement() def test_complement_rna_string(self): seq = Seq.MutableSeq("AUGaaaCUG") seq.complement() self.assertEqual("UACuuuGAC", str(seq)) def test_complement_dna_string(self): seq = Seq.MutableSeq("ATGaaaCTG") seq.complement() self.assertEqual("TACtttGAC", str(seq)) def test_reverse_complement(self): self.mutable_s.reverse_complement() self.assertEqual("CATGATGCATCCTTTTGA", str(self.mutable_s)) def test_reverse_complement_of_protein(self): seq = Seq.MutableSeq("ACTGTCGTCT", Alphabet.generic_protein) with self.assertRaises(ValueError): seq.reverse_complement() def test_extend_method(self): self.mutable_s.extend("GAT") self.assertEqual(MutableSeq("TCAAAAGGATGCATCATGGAT", IUPAC.ambiguous_dna), self.mutable_s) def test_extend_with_mutable_seq(self): self.mutable_s.extend(MutableSeq("TTT", IUPAC.ambiguous_dna)) self.assertEqual(MutableSeq("TCAAAAGGATGCATCATGTTT", IUPAC.ambiguous_dna), self.mutable_s) def test_delete_stride_slice(self): del self.mutable_s[4:6 - 1] self.assertEqual(MutableSeq("TCAAAGGATGCATCATG", IUPAC.ambiguous_dna), self.mutable_s) def test_extract_third_nucleotide(self): """Test extracting every third nucleotide (slicing with stride 3).""" self.assertEqual(MutableSeq("TAGTAA", IUPAC.ambiguous_dna), self.mutable_s[0::3]) self.assertEqual(MutableSeq("CAGGTT", IUPAC.ambiguous_dna), self.mutable_s[1::3]) self.assertEqual(MutableSeq("AAACCG", IUPAC.ambiguous_dna), self.mutable_s[2::3]) def test_set_wobble_codon_to_n(self): """Test setting wobble codon to N (set slice with stride 3).""" self.mutable_s[2::3] = "N" * len(self.mutable_s[2::3]) self.assertEqual(MutableSeq("TCNAANGGNTGNATNATN", IUPAC.ambiguous_dna), self.mutable_s) class TestUnknownSeq(unittest.TestCase): def setUp(self): self.s = Seq.UnknownSeq(6) def test_construction(self): self.assertEqual("??????", str(Seq.UnknownSeq(6))) self.assertEqual("NNNNNN", str(Seq.UnknownSeq(6, Alphabet.generic_dna))) self.assertEqual("XXXXXX", str(Seq.UnknownSeq(6, Alphabet.generic_protein))) self.assertEqual("??????", str(Seq.UnknownSeq(6, character="?"))) with self.assertRaises(ValueError): Seq.UnknownSeq(-10) with self.assertRaises(ValueError): Seq.UnknownSeq(6, character="??") def test_length(self): self.assertEqual(6, len(self.s)) def test_repr(self): self.assertEqual( "UnknownSeq(6, character='?')", repr(self.s)) def test_add_method(self): seq1 = Seq.UnknownSeq(3, Alphabet.generic_dna) self.assertEqual("??????NNN", str(self.s + seq1)) seq2 = Seq.UnknownSeq(3, Alphabet.generic_dna) self.assertEqual("NNNNNN", str(seq1 + seq2)) def test_getitem_method(self): self.assertEqual("", self.s[-1:-1]) self.assertEqual("?", self.s[1]) self.assertEqual("?", self.s[5:]) self.assertEqual("?", self.s[:1]) self.assertEqual("??", self.s[1:3]) self.assertEqual("???", self.s[1:6:2]) self.assertEqual("????", self.s[1:-1]) with self.assertRaises(ValueError): self.s[1:6:0] def test_count(self): self.assertEqual(6, self.s.count("?")) self.assertEqual(3, self.s.count("??")) self.assertEqual(0, Seq.UnknownSeq(6, character="N").count("?")) self.assertEqual(0, Seq.UnknownSeq(6, character="N").count("??")) self.assertEqual(4, Seq.UnknownSeq(6, character="?").count("?", start=2)) self.assertEqual(2, Seq.UnknownSeq(6, character="?").count("??", start=2)) def test_complement(self): self.s.complement() self.assertEqual("??????", str(self.s)) def test_complement_of_protein(self): """Check reverse complement fails on a protein.""" seq = Seq.UnknownSeq(6, Alphabet.generic_protein) with self.assertRaises(ValueError): seq.complement() def test_reverse_complement(self): self.s.reverse_complement() self.assertEqual("??????", str(self.s)) def test_reverse_complement_of_protein(self): seq = Seq.UnknownSeq(6, Alphabet.generic_protein) self.assertRaises(ValueError, seq.reverse_complement) def test_transcribe(self): self.assertEqual("??????", self.s.transcribe()) def test_back_transcribe(self): self.assertEqual("??????", self.s.back_transcribe()) def test_upper(self): seq = Seq.UnknownSeq(6, Alphabet.generic_dna) self.assertEqual("NNNNNN", str(seq.upper())) def test_lower(self): seq = Seq.UnknownSeq(6, Alphabet.generic_dna) self.assertEqual("nnnnnn", str(seq.lower())) def test_translation(self): self.assertEqual("XX", str(self.s.translate())) def test_translation_of_proteins(self): seq = Seq.UnknownSeq(6, IUPAC.protein) self.assertRaises(ValueError, seq.translate) def test_ungap(self): seq = Seq.UnknownSeq(7, alphabet=Alphabet.Gapped(Alphabet.DNAAlphabet(), "-")) self.assertEqual("NNNNNNN", str(seq.ungap("-"))) seq = Seq.UnknownSeq(20, alphabet=Alphabet.Gapped(Alphabet.DNAAlphabet(), "-"), character="-") self.assertEqual("", seq.ungap("-")) class TestAmbiguousComplements(unittest.TestCase): def test_ambiguous_values(self): """Test that other tests do not introduce characters to our values.""" self.assertFalse("-" in ambiguous_dna_values) self.assertFalse("?" in ambiguous_dna_values) class TestComplement(unittest.TestCase): def test_complement_ambiguous_dna_values(self): for ambig_char, values in sorted(ambiguous_dna_values.items()): compl_values = str( Seq.Seq(values, alphabet=IUPAC.ambiguous_dna).complement()) ambig_values = ( ambiguous_dna_values[ambiguous_dna_complement[ambig_char]]) self.assertEqual(set(compl_values), set(ambig_values)) def test_complement_ambiguous_rna_values(self): for ambig_char, values in sorted(ambiguous_rna_values.items()): compl_values = str( Seq.Seq(values, alphabet=IUPAC.ambiguous_rna).complement()) ambig_values = ( ambiguous_rna_values[ambiguous_rna_complement[ambig_char]]) self.assertEqual(set(compl_values), set(ambig_values)) def test_complement_incompatible_alphabets(self): seq = Seq.Seq("CAGGTU") with self.assertRaises(ValueError): seq.complement() def test_complement_of_mixed_dna_rna(self): seq = "AUGAAACTG" # U and T self.assertRaises(ValueError, Seq.complement, seq) def test_complement_of_rna(self): seq = "AUGAAACUG" self.assertEqual("UACUUUGAC", Seq.complement(seq)) def test_complement_of_dna(self): seq = "ATGAAACTG" self.assertEqual("TACTTTGAC", Seq.complement(seq)) def test_complement_on_proteins(self): """Check complement fails on a protein.""" for s in protein_seqs: with self.assertRaises(ValueError): Seq.complement(s) with self.assertRaises(ValueError): s.complement() class TestReverseComplement(unittest.TestCase): def test_reverse_complement(self): test_seqs_copy = copy.copy(test_seqs) test_seqs_copy.pop(21) for nucleotide_seq in test_seqs_copy: if not isinstance(nucleotide_seq.alphabet, Alphabet.ProteinAlphabet) and \ isinstance(nucleotide_seq, Seq.Seq): expected = Seq.reverse_complement(nucleotide_seq) self.assertEqual( repr(expected), repr(nucleotide_seq.reverse_complement())) self.assertEqual( repr(expected[::-1]), repr(nucleotide_seq.complement())) self.assertEqual( str(nucleotide_seq.complement()), str(Seq.reverse_complement(nucleotide_seq))[::-1]) self.assertEqual(str(nucleotide_seq.reverse_complement()), str(Seq.reverse_complement(nucleotide_seq))) def test_reverse_complement_of_mixed_dna_rna(self): seq = "AUGAAACTG" # U and T self.assertRaises(ValueError, Seq.reverse_complement, seq) def test_reverse_complement_of_rna(self): seq = "AUGAAACUG" self.assertEqual("CAGUUUCAU", Seq.reverse_complement(seq)) def test_reverse_complement_of_dna(self): seq = "ATGAAACTG" self.assertEqual("CAGTTTCAT", Seq.reverse_complement(seq)) def test_reverse_complement_on_proteins(self): """Check reverse complement fails on a protein.""" for s in protein_seqs: with self.assertRaises(ValueError): Seq.reverse_complement(s) with self.assertRaises(ValueError): s.reverse_complement() class TestDoubleReverseComplement(unittest.TestCase): def test_reverse_complements(self): """Test double reverse complement preserves the sequence.""" sorted_amb_rna = sorted(ambiguous_rna_values) sorted_amb_dna = sorted(ambiguous_dna_values) for sequence in [Seq.Seq("".join(sorted_amb_rna)), Seq.Seq("".join(sorted_amb_dna)), Seq.Seq("".join(sorted_amb_rna), Alphabet.generic_rna), Seq.Seq("".join(sorted_amb_dna), Alphabet.generic_dna), Seq.Seq("".join(sorted_amb_rna).replace("X", ""), IUPAC.IUPACAmbiguousRNA()), Seq.Seq("".join(sorted_amb_dna).replace("X", ""), IUPAC.IUPACAmbiguousDNA()), Seq.Seq("AWGAARCKG")]: # Note no U or T reversed_sequence = sequence.reverse_complement() self.assertEqual(str(sequence), str(reversed_sequence.reverse_complement())) class TestSequenceAlphabets(unittest.TestCase): def test_sequence_alphabets(self): """Sanity test on the test sequence alphabets. See also enhancement bug 2597. """ for nucleotide_seq in test_seqs: if "U" in str(nucleotide_seq).upper(): self.assertNotIsInstance(nucleotide_seq.alphabet, Alphabet.DNAAlphabet) if "T" in str(nucleotide_seq).upper(): self.assertNotIsInstance(nucleotide_seq.alphabet, Alphabet.RNAAlphabet) class TestTranscription(unittest.TestCase): def test_transcription_dna_into_rna(self): for nucleotide_seq in test_seqs: if isinstance(nucleotide_seq.alphabet, Alphabet.DNAAlphabet): expected = Seq.transcribe(nucleotide_seq) self.assertEqual( str(nucleotide_seq).replace("t", "u").replace("T", "U"), str(expected)) def test_transcription_dna_string_into_rna(self): seq = "ATGAAACTG" self.assertEqual("AUGAAACUG", Seq.transcribe(seq)) def test_seq_object_transcription_method(self): for nucleotide_seq in test_seqs: if isinstance(nucleotide_seq.alphabet, Alphabet.DNAAlphabet) and \ isinstance(nucleotide_seq, Seq.Seq): self.assertEqual(repr(Seq.transcribe(nucleotide_seq)), repr(nucleotide_seq.transcribe())) def test_transcription_of_rna(self): """Check transcription fails on RNA.""" seq = Seq.Seq("AUGAAACUG", IUPAC.ambiguous_rna) with self.assertRaises(ValueError): seq.transcribe() def test_transcription_of_proteins(self): """Check transcription fails on a protein.""" for s in protein_seqs: with self.assertRaises(ValueError): Seq.transcribe(s) if isinstance(s, Seq.Seq): with self.assertRaises(ValueError): s.transcribe() def test_back_transcribe_rna_into_dna(self): for nucleotide_seq in test_seqs: if isinstance(nucleotide_seq.alphabet, Alphabet.RNAAlphabet): expected = Seq.back_transcribe(nucleotide_seq) self.assertEqual( str(nucleotide_seq).replace("u", "t").replace("U", "T"), str(expected)) def test_back_transcribe_rna_string_into_dna(self): seq = "AUGAAACUG" self.assertEqual("ATGAAACTG", Seq.back_transcribe(seq)) def test_seq_object_back_transcription_method(self): for nucleotide_seq in test_seqs: if isinstance(nucleotide_seq.alphabet, Alphabet.RNAAlphabet) and \ isinstance(nucleotide_seq, Seq.Seq): expected = Seq.back_transcribe(nucleotide_seq) self.assertEqual(repr(nucleotide_seq.back_transcribe()), repr(expected)) def test_back_transcription_of_proteins(self): """Check back-transcription fails on a protein.""" for s in protein_seqs: with self.assertRaises(ValueError): Seq.back_transcribe(s) if isinstance(s, Seq.Seq): with self.assertRaises(ValueError): s.back_transcribe() def test_back_transcription_of_dna(self): """Check back-transcription fails on DNA.""" seq = Seq.Seq("ATGAAACTG", IUPAC.ambiguous_dna) with self.assertRaises(ValueError): seq.back_transcribe() class TestTranslating(unittest.TestCase): def setUp(self): self.test_seqs = [ Seq.Seq("TCAAAAGGATGCATCATG", IUPAC.unambiguous_dna), Seq.Seq("ATGAAACTG"), Seq.Seq("ATGAARCTG"), Seq.Seq("AWGAARCKG"), # Note no U or T Seq.Seq("".join(ambiguous_rna_values)), Seq.Seq("".join(ambiguous_dna_values)), Seq.Seq("".join(ambiguous_rna_values), Alphabet.generic_rna), Seq.Seq("".join(ambiguous_dna_values), Alphabet.generic_dna), Seq.Seq("".join(ambiguous_rna_values), IUPAC.IUPACAmbiguousRNA()), Seq.Seq("".join(ambiguous_dna_values), IUPAC.IUPACAmbiguousDNA()), Seq.Seq("AWGAARCKG", Alphabet.generic_dna), Seq.Seq("AUGAAACUG", Alphabet.generic_rna), Seq.Seq("ATGAAACTG", IUPAC.unambiguous_dna), Seq.Seq("ATGAAACTGWN", IUPAC.ambiguous_dna), Seq.Seq("AUGAAACUG", Alphabet.generic_rna), Seq.Seq("AUGAAACUG", IUPAC.unambiguous_rna), Seq.Seq("AUGAAACUGWN", IUPAC.ambiguous_rna), Seq.Seq("ATGAAACTG", Alphabet.generic_nucleotide), Seq.MutableSeq("ATGAAACTG", Alphabet.generic_dna), Seq.MutableSeq("AUGaaaCUG", IUPAC.unambiguous_rna), ] def test_translation(self): for nucleotide_seq in self.test_seqs: nucleotide_seq = nucleotide_seq[:3 * (len(nucleotide_seq) // 3)] if isinstance(nucleotide_seq, Seq.Seq) and \ "X" not in str(nucleotide_seq): expected = Seq.translate(nucleotide_seq) self.assertEqual(repr(expected), repr(nucleotide_seq.translate())) def test_alphabets_of_translated_seqs(self): def triple_pad(s): """Add N to ensure length is a multiple of three (whole codons).""" while len(s) % 3: s += "N" return s self.assertEqual("IUPACProtein()", repr(self.test_seqs[0].translate().alphabet)) self.assertEqual("ExtendedIUPACProtein()", repr(self.test_seqs[1].translate().alphabet)) self.assertEqual("ExtendedIUPACProtein()", repr(self.test_seqs[2].translate().alphabet)) self.assertEqual("ExtendedIUPACProtein()", repr(self.test_seqs[3].translate().alphabet)) self.assertEqual("ExtendedIUPACProtein()", repr(self.test_seqs[10].translate().alphabet)) self.assertEqual("ExtendedIUPACProtein()", repr(self.test_seqs[11].translate().alphabet)) self.assertEqual("IUPACProtein()", repr(self.test_seqs[12].translate().alphabet)) self.assertEqual( "ExtendedIUPACProtein()", repr(triple_pad(self.test_seqs[13]).translate().alphabet)) self.assertEqual("ExtendedIUPACProtein()", repr(self.test_seqs[14].translate().alphabet)) self.assertEqual("IUPACProtein()", repr(self.test_seqs[15].translate().alphabet)) self.assertEqual( "ExtendedIUPACProtein()", repr(triple_pad(self.test_seqs[16]).translate().alphabet)) self.assertEqual( "ExtendedIUPACProtein()", repr(triple_pad(self.test_seqs[17]).translate().alphabet)) def test_gapped_seq_with_gap_char_given(self): seq = Seq.Seq("ATG---AAACTG") self.assertEqual("M-KL", seq.translate(gap="-")) self.assertRaises(TranslationError, seq.translate, gap="~") def test_gapped_seq_with_stop_codon_and_gap_char_given(self): seq = Seq.Seq("GTG---GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG") self.assertEqual("V-AIVMGR*KGAR*", seq.translate(gap="-")) self.assertRaises(TranslationError, seq.translate) def test_gapped_seq_with_gap_char_given_and_inferred_from_alphabet(self): seq = Seq.Seq("ATG---AAACTG", Gapped(IUPAC.unambiguous_dna)) self.assertEqual("M-KL", seq.translate(gap="-")) self.assertRaises(ValueError, seq.translate, gap="~") seq = Seq.Seq("ATG~~~AAACTG", Gapped(IUPAC.unambiguous_dna)) self.assertRaises(ValueError, seq.translate, gap="~") self.assertRaises(TranslationError, seq.translate, gap="-") def test_gapped_seq_with_gap_char_given_and_inferred_from_alphabet2(self): """Test using stop codon in sequence.""" seq = Seq.Seq("ATG---AAACTGTAG", Gapped(IUPAC.unambiguous_dna)) self.assertEqual("M-KL*", seq.translate(gap="-")) self.assertRaises(ValueError, seq.translate, gap="~") seq = Seq.Seq("ATG---AAACTGTAG", Gapped(IUPAC.unambiguous_dna)) self.assertEqual("M-KL@", seq.translate(gap="-", stop_symbol="@")) self.assertRaises(ValueError, seq.translate, gap="~") seq = Seq.Seq("ATG~~~AAACTGTAG", Gapped(IUPAC.unambiguous_dna)) self.assertRaises(ValueError, seq.translate, gap="~") self.assertRaises(TranslationError, seq.translate, gap="-") def test_gapped_seq_no_gap_char_given(self): seq = Seq.Seq("ATG---AAACTG") self.assertRaises(TranslationError, seq.translate) def test_gapped_seq_no_gap_char_given_and_inferred_from_alphabet(self): seq = Seq.Seq("ATG---AAACTG", Gapped(IUPAC.unambiguous_dna)) self.assertEqual("M-KL", seq.translate()) seq = Seq.Seq("ATG~~~AAACTG", Gapped(IUPAC.unambiguous_dna)) self.assertRaises(TranslationError, seq.translate) seq = Seq.Seq("ATG~~~AAACTG", Gapped(IUPAC.unambiguous_dna, "~")) self.assertEqual("M~KL", seq.translate()) def test_alphabet_of_translated_gapped_seq(self): seq = Seq.Seq("ATG---AAACTG", Gapped(IUPAC.unambiguous_dna)) self.assertEqual("Gapped(ExtendedIUPACProtein(), '-')", repr(seq.translate().alphabet)) seq = Seq.Seq("ATG---AAACTG", Gapped(IUPAC.unambiguous_dna, "-")) self.assertEqual("Gapped(ExtendedIUPACProtein(), '-')", repr(seq.translate().alphabet)) seq = Seq.Seq("ATG~~~AAACTG", Gapped(IUPAC.unambiguous_dna, "~")) self.assertEqual("Gapped(ExtendedIUPACProtein(), '~')", repr(seq.translate().alphabet)) seq = Seq.Seq("ATG---AAACTG") self.assertEqual("Gapped(ExtendedIUPACProtein(), '-')", repr(seq.translate(gap="-").alphabet)) seq = Seq.Seq("ATG~~~AAACTG") self.assertEqual("Gapped(ExtendedIUPACProtein(), '~')", repr(seq.translate(gap="~").alphabet)) seq = Seq.Seq("ATG~~~AAACTGTAG") self.assertEqual( "HasStopCodon(Gapped(ExtendedIUPACProtein(), '~'), '*')", repr(seq.translate(gap="~").alphabet)) seq = Seq.Seq("ATG---AAACTGTGA") self.assertEqual( "HasStopCodon(Gapped(ExtendedIUPACProtein(), '-'), '*')", repr(seq.translate(gap="-").alphabet)) seq = Seq.Seq("ATG---AAACTGTGA") self.assertEqual( "HasStopCodon(Gapped(ExtendedIUPACProtein(), '-'), '@')", repr(seq.translate(gap="-", stop_symbol="@").alphabet)) def test_translation_wrong_type(self): """Test translation table cannot be CodonTable.""" seq = Seq.Seq("ATCGTA") with self.assertRaises(ValueError): seq.translate(table=ambiguous_dna_complement) def test_translation_of_string(self): seq = "GTGGCCATTGTAATGGGCCGC" self.assertEqual("VAIVMGR", Seq.translate(seq)) def test_translation_of_gapped_string_with_gap_char_given(self): seq = "GTG---GCCATTGTAATGGGCCGC" expected = "V-AIVMGR" self.assertEqual(expected, Seq.translate(seq, gap="-")) self.assertRaises(TypeError, Seq.translate, seq, gap=[]) self.assertRaises(ValueError, Seq.translate, seq, gap="-*") def test_translation_of_gapped_string_no_gap_char_given(self): seq = "GTG---GCCATTGTAATGGGCCGC" self.assertRaises(TranslationError, Seq.translate, seq) def test_translation_to_stop(self): for nucleotide_seq in self.test_seqs: nucleotide_seq = nucleotide_seq[:3 * (len(nucleotide_seq) // 3)] if isinstance(nucleotide_seq, Seq.Seq) and \ "X" not in str(nucleotide_seq): short = Seq.translate(nucleotide_seq, to_stop=True) self.assertEqual( str(short), str(Seq.translate(nucleotide_seq).split("*")[0])) seq = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG" self.assertEqual("VAIVMGRWKGAR", Seq.translate(seq, table=2, to_stop=True)) def test_translation_on_proteins(self): """Check translation fails on a protein.""" for s in protein_seqs: with self.assertRaises(ValueError): Seq.translate(s) if isinstance(s, Seq.Seq): with self.assertRaises(ValueError): s.translate() def test_translation_of_invalid_codon(self): for codon in ["TA?", "N-N", "AC_", "Ac_"]: with self.assertRaises(TranslationError): Seq.translate(codon) def test_translation_of_glutamine(self): for codon in ["SAR", "SAG", "SAA"]: self.assertEqual("Z", Seq.translate(codon)) def test_translation_of_asparagine(self): for codon in ["RAY", "RAT", "RAC"]: self.assertEqual("B", Seq.translate(codon)) def test_translation_of_leucine(self): for codon in ["WTA", "MTY", "MTT", "MTW", "MTM", "MTH", "MTA", "MTC", "HTA"]: self.assertEqual("J", Seq.translate(codon)) def test_translation_with_bad_table_argument(self): table = {} with self.assertRaises(ValueError): Seq.translate("GTGGCCATTGTAATGGGCCGC", table=table) def test_translation_with_codon_table_as_table_argument(self): table = standard_dna_table self.assertEqual("VAIVMGR", Seq.translate("GTGGCCATTGTAATGGGCCGC", table=table)) def test_translation_incomplete_codon(self): with self.assertWarns(BiopythonWarning): Seq.translate("GTGGCCATTGTAATGGGCCG") def test_translation_extra_stop_codon(self): seq = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAGTAG" with self.assertRaises(TranslationError): Seq.translate(seq, table=2, cds=True) def test_translation_using_cds(self): seq = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG" self.assertEqual("MAIVMGRWKGAR", Seq.translate(seq, table=2, cds=True)) seq = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCG" # not multiple of three with self.assertRaises(TranslationError): Seq.translate(seq, table=2, cds=True) seq = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA" # no stop codon with self.assertRaises(TranslationError): Seq.translate(seq, table=2, cds=True) seq = "GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG" # no start codon with self.assertRaises(TranslationError): Seq.translate(seq, table=2, cds=True) def test_translation_using_tables_with_ambiguous_stop_codons(self): """Check for error and warning messages. Here, 'ambiguous stop codons' means codons of unambiguous sequence but with a context sensitive encoding as STOP or an amino acid. Thus, these codons appear within the codon table in the forward table as well as in the list of stop codons. """ seq = "ATGGGCTGA" with self.assertRaises(ValueError): Seq.translate(seq, table=28, to_stop=True) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") Seq.translate(seq, table=28) message = str(w[-1].message) self.assertTrue(message.startswith("This table contains")) self.assertTrue(message.endswith("be translated as amino acid.")) class TestStopCodons(unittest.TestCase): def setUp(self): self.misc_stops = "TAATAGTGAAGAAGG" def test_stops(self): for nucleotide_seq in [self.misc_stops, Seq.Seq(self.misc_stops), Seq.Seq(self.misc_stops, Alphabet.generic_nucleotide), Seq.Seq(self.misc_stops, Alphabet.DNAAlphabet()), Seq.Seq(self.misc_stops, IUPAC.unambiguous_dna)]: self.assertEqual("***RR", str(Seq.translate(nucleotide_seq))) self.assertEqual("***RR", str(Seq.translate(nucleotide_seq, table=1))) self.assertEqual("***RR", str(Seq.translate(nucleotide_seq, table="SGC0"))) self.assertEqual("**W**", str(Seq.translate(nucleotide_seq, table=2))) self.assertEqual("**WRR", str(Seq.translate(nucleotide_seq, table="Yeast Mitochondrial"))) self.assertEqual("**WSS", str(Seq.translate(nucleotide_seq, table=5))) self.assertEqual("**WSS", str(Seq.translate(nucleotide_seq, table=9))) self.assertEqual("**CRR", str(Seq.translate(nucleotide_seq, table="Euplotid Nuclear"))) self.assertEqual("***RR", str(Seq.translate(nucleotide_seq, table=11))) self.assertEqual("***RR", str(Seq.translate(nucleotide_seq, table="Bacterial"))) def test_translation_of_stops(self): self.assertEqual(Seq.translate("TAT"), "Y") self.assertEqual(Seq.translate("TAR"), "*") self.assertEqual(Seq.translate("TAN"), "X") self.assertEqual(Seq.translate("NNN"), "X") self.assertEqual(Seq.translate("TAt"), "Y") self.assertEqual(Seq.translate("TaR"), "*") self.assertEqual(Seq.translate("TaN"), "X") self.assertEqual(Seq.translate("nnN"), "X") self.assertEqual(Seq.translate("tat"), "Y") self.assertEqual(Seq.translate("tar"), "*") self.assertEqual(Seq.translate("tan"), "X") self.assertEqual(Seq.translate("nnn"), "X") if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=2) unittest.main(testRunner=runner)
python
62,433
import numpy as np import catboost as cb import vaex.ml.catboost import vaex.ml.datasets # the parameters of the model params_multiclass = { 'leaf_estimation_method': 'Gradient', 'learning_rate': 0.1, 'max_depth': 3, 'bootstrap_type': 'Bernoulli', 'subsample': 0.8, 'sampling_frequency': 'PerTree', 'colsample_bylevel': 0.8, 'reg_lambda': 1, 'objective': 'MultiClass', 'eval_metric': 'MultiClass', 'random_state': 42, 'verbose': 0, } # catboost params params_reg = { 'leaf_estimation_method': 'Gradient', 'learning_rate': 0.1, 'max_depth': 3, 'bootstrap_type': 'Bernoulli', 'subsample': 0.8, 'sampling_frequency': 'PerTree', 'colsample_bylevel': 0.8, 'reg_lambda': 1, 'objective': 'MAE', 'eval_metric': 'R2', 'random_state': 42, 'verbose': 0, } def test_catboost(): ds = vaex.ml.datasets.load_iris() ds_train, ds_test = ds.ml.train_test_split(test_size=0.2, verbose=False) features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] booster = vaex.ml.catboost.CatBoostModel(num_boost_round=10, params=params_multiclass, features=features, target='class_', prediction_type='Probability') # Predict in memory booster.fit(ds_train) class_predict = booster.predict(ds_test) assert np.all(ds_test.col.class_.values == np.argmax(class_predict, axis=1)) # Transform ds_train = booster.transform(ds_train) # this will add the catboost_prediction column state = ds_train.state_get() ds_test.state_set(state) assert np.all(ds_test.col.class_.values == np.argmax(ds_test.catboost_prediction.values, axis=1)) def test_catboost_numerical_validation(): ds = vaex.ml.datasets.load_iris() features = ['sepal_width', 'petal_length', 'sepal_length', 'petal_width'] # Vanilla catboost dtrain = cb.Pool(ds[features].values, label=ds.data.class_) cb_bst = cb.train(params=params_multiclass, dtrain=dtrain, num_boost_round=3) cb_pred = cb_bst.predict(dtrain, prediction_type='Probability') # catboost through vaex booster = vaex.ml.catboost.CatBoostModel(features=features, target='class_', params=params_multiclass, num_boost_round=3) booster.fit(ds) vaex_pred = booster.predict(ds) # Comparing the the predictions of catboost vs vaex.ml np.testing.assert_equal(vaex_pred, cb_pred, verbose=True, err_msg='The predictions of vaex.ml.catboost do not match those of pure catboost') def test_lightgbm_serialize(tmpdir): ds = vaex.ml.datasets.load_iris() features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] target = 'class_' gbm = ds.ml.catboost_model(target, features=features, num_boost_round=20, params=params_multiclass) pl = vaex.ml.Pipeline([gbm]) pl.save(str(tmpdir.join('test.json'))) pl.load(str(tmpdir.join('test.json'))) gbm = ds.ml.catboost_model(target, features=features, num_boost_round=20, params=params_multiclass) gbm.state_set(gbm.state_get()) pl = vaex.ml.Pipeline([gbm]) pl.save(str(tmpdir.join('test.json'))) pl.load(str(tmpdir.join('test.json'))) def test_catboost_validation_set(): # read data ds = vaex.example() # Train and test split train, test = ds.ml.train_test_split(verbose=False) # Define the training featuress features = ['vx', 'vy', 'vz', 'Lz', 'L'] # instantiate the booster model booster = vaex.ml.catboost.CatBoostModel(features=features, target='E', num_boost_round=10, params=params_reg) # fit the booster - including saving the history of the validation sets booster.fit(train, evals=[train, test]) assert hasattr(booster, 'booster') assert len(booster.booster.evals_result_['learn']['MAE']) == 10 assert len(booster.booster.evals_result_['learn']['R2']) == 10 assert len(booster.booster.evals_result_['validation_0']['MAE']) == 10 assert len(booster.booster.evals_result_['validation_0']['R2']) == 10 assert hasattr(booster.booster, 'best_iteration_') assert booster.booster.best_iteration_ is not None def test_catboost_pipeline(): # read data ds = vaex.example() # train test splot train, test = ds.ml.train_test_split(verbose=False) # add virtual columns train['r'] = np.sqrt(train.x**2 + train.y**2 + train.z**2) # Do a pca features = ['vx', 'vy', 'vz', 'Lz', 'L'] pca = train.ml.pca(n_components=3, features=features) train = pca.transform(train) # Do state transfer st = train.ml.state_transfer() # now the catboost model thingy features = ['r', 'PCA_0', 'PCA_1', 'PCA_2'] # define the boosting model booster = train.ml.catboost_model(target='E', num_boost_round=10, features=features, params=params_reg) # Create a pipeline pp = vaex.ml.Pipeline([st, booster]) # Use the pipeline pred = pp.predict(test) # This works trans = pp.transform(test) # This will crash (softly) # trans.evaluate('catboost_prediction') # This is where the problem happens np.testing.assert_equal(pred, trans.evaluate('catboost_prediction'), verbose=True, err_msg='The predictions from the predict and transform method do not match')
python
5,518
# -*- coding:utf-8 -*- import sys import ssl # sys.path.insert(0,'../../') from .CCPRestSDK import REST ssl._create_default_https_context = ssl._create_unverified_context # 全局取消证书验证 # 说明:主账号,登陆云通讯网站后,可在"控制台-应用"中看到开发者主账号ACCOUNT SID _accountSid = '8aaf07087172a6ee01719ba430a6174f' # 说明:主账号Token,登陆云通讯网站后,可在控制台-应用中看到开发者主账号AUTH TOKEN _accountToken = 'ee7879df5ee84a579ab16bfeb87c3105' # 请使用管理控制台首页的APPID或自己创建应用的APPID _appId = '8aaf07087172a6ee01719ba4311f1756' # 说明:请求地址,生产环境配置成app.cloopen.com # _serverIP = 'sandboxapp.cloopen.com' _serverIP = 'app.cloopen.com' # 说明:请求端口 ,生产环境为8883 _serverPort = "8883" # 说明:REST API版本号保持不变 _softVersion = '2013-12-26' # 云通讯官方提供的发送短信代码实例 # # 发送模板短信 # # @param to 手机号码 # # @param datas 内容数据 格式为数组 例如:{'12','34'},如不需替换请填 '' # # @param $tempId 模板Id # # def sendTemplateSMS(to, datas, tempId): # # 初始化REST SDK # rest = REST(serverIP, serverPort, softVersion) # rest.setAccount(accountSid, accountToken) # rest.setAppId(appId) # # result = rest.sendTemplateSMS(to, datas, tempId) # for k, v in result.iteritems(): # # if k == 'templateSMS': # for k, s in v.iteritems(): # print '%s:%s' % (k, s) # else: # print '%s:%s' % (k, v) class CCP(object): """发送短信的辅助类""" def __new__(cls, *args, **kwargs): # 判断是否存在类属性_instance,_instance是类CCP的唯一对象,即单例 if not hasattr(CCP, "_instance"): cls._instance = super(CCP, cls).__new__(cls, *args, **kwargs) cls._instance.rest = REST(_serverIP, _serverPort, _softVersion) cls._instance.rest.setAccount(_accountSid, _accountToken) cls._instance.rest.setAppId(_appId) return cls._instance def send_template_sms(self, to, datas, temp_id): """发送模板短信""" # @param to 手机号码 # @param datas 内容数据 格式为数组 例如:{'12','34'},如不需替换请填 '' # @param temp_id 模板Id result = self.rest.sendTemplateSMS(to, datas, temp_id) # a = result.get("statusCode") # print(a) # 如果云通讯发送短信成功,返回的字典数据result中statuCode字段的值为"000000" if result.get("statusCode") == "000000": # 返回0 表示发送短信成功 return 0 else: # 返回-1 表示发送失败 return -1 # if __name__ == '__main__': # ccp = CCP() # # 注意: 测试的短信模板编号为1 # ccp.send_template_sms('13690599000', ['666', 5], 1)
python
2,377
import tensorflow as tf def compute_area(top_left, bot_right): """ Compute area given top_left and bottom_right coordinates Args: top_left: tensor (num_boxes, 2) bot_right: tensor (num_boxes, 2) Returns: area: tensor (num_boxes,) """ # top_left: N x 2 # bot_right: N x 2 hw = tf.clip_by_value(bot_right - top_left, 0.0, 512.0) area = hw[..., 0] * hw[..., 1] return area def compute_iou(boxes_a, boxes_b): """ Compute overlap between boxes_a and boxes_b Args: boxes_a: tensor (num_boxes_a, 4) boxes_b: tensor (num_boxes_b, 4) Returns: overlap: tensor (num_boxes_a, num_boxes_b) """ # boxes_a => num_boxes_a, 1, 4 boxes_a = tf.expand_dims(boxes_a, 1) # boxes_b => 1, num_boxes_b, 4 boxes_b = tf.expand_dims(boxes_b, 0) top_left = tf.math.maximum(boxes_a[..., :2], boxes_b[..., :2]) bot_right = tf.math.minimum(boxes_a[..., 2:], boxes_b[..., 2:]) overlap_area = compute_area(top_left, bot_right) area_a = compute_area(boxes_a[..., :2], boxes_a[..., 2:]) area_b = compute_area(boxes_b[..., :2], boxes_b[..., 2:]) overlap = overlap_area / (area_a + area_b - overlap_area) return overlap def compute_target(default_boxes, gt_boxes, gt_labels, iou_threshold=0.5): """ Compute regression and classification targets Args: default_boxes: tensor (num_default, 4) of format (cx, cy, w, h) gt_boxes: tensor (num_gt, 4) of format (xmin, ymin, xmax, ymax) gt_labels: tensor (num_gt,) Returns: gt_confs: classification targets, tensor (num_default,) gt_locs: regression targets, tensor (num_default, 4) """ # Convert default boxes to format (xmin, ymin, xmax, ymax) # in order to compute overlap with gt boxes transformed_default_boxes = transform_center_to_corner(default_boxes) iou = compute_iou(transformed_default_boxes, gt_boxes) best_gt_iou = tf.math.reduce_max(iou, 1) best_gt_idx = tf.math.argmax(iou, 1) best_default_iou = tf.math.reduce_max(iou, 0) best_default_idx = tf.math.argmax(iou, 0) best_gt_idx = tf.tensor_scatter_nd_update( best_gt_idx, tf.expand_dims(best_default_idx, 1), tf.range(best_default_idx.shape[0], dtype=tf.int64)) # Normal way: use a for loop # for gt_idx, default_idx in enumerate(best_default_idx): # best_gt_idx = tf.tensor_scatter_nd_update( # best_gt_idx, # tf.expand_dims([default_idx], 1), # [gt_idx]) best_gt_iou = tf.tensor_scatter_nd_update( best_gt_iou, tf.expand_dims(best_default_idx, 1), tf.ones_like(best_default_idx, dtype=tf.float32)) gt_confs = tf.gather(gt_labels, best_gt_idx) gt_confs = tf.where( tf.less(best_gt_iou, iou_threshold), tf.zeros_like(gt_confs), gt_confs) gt_boxes = tf.gather(gt_boxes, best_gt_idx) gt_locs = encode(default_boxes, gt_boxes) return gt_confs, gt_locs def encode(default_boxes, boxes, variance=[0.1, 0.2]): """ Compute regression values Args: default_boxes: tensor (num_default, 4) of format (cx, cy, w, h) boxes: tensor (num_default, 4) of format (xmin, ymin, xmax, ymax) variance: variance for center point and size Returns: locs: regression values, tensor (num_default, 4) """ # Convert boxes to (cx, cy, w, h) format transformed_boxes = transform_corner_to_center(boxes) locs = tf.concat([ (transformed_boxes[..., :2] - default_boxes[:, :2] ) / (default_boxes[:, 2:] * variance[0]), tf.math.log(transformed_boxes[..., 2:] / default_boxes[:, 2:]) / variance[1]], axis=-1) return locs def decode(default_boxes, locs, variance=[0.1, 0.2]): """ Decode regression values back to coordinates Args: default_boxes: tensor (num_default, 4) of format (cx, cy, w, h) locs: tensor (batch_size, num_default, 4) of format (cx, cy, w, h) variance: variance for center point and size Returns: boxes: tensor (num_default, 4) of format (xmin, ymin, xmax, ymax) """ locs = tf.concat([ locs[..., :2] * variance[0] * default_boxes[:, 2:] + default_boxes[:, :2], tf.math.exp(locs[..., 2:] * variance[1]) * default_boxes[:, 2:]], axis=-1) boxes = transform_center_to_corner(locs) return boxes def transform_corner_to_center(boxes): """ Transform boxes of format (xmin, ymin, xmax, ymax) to format (cx, cy, w, h) Args: boxes: tensor (num_boxes, 4) of format (xmin, ymin, xmax, ymax) Returns: boxes: tensor (num_boxes, 4) of format (cx, cy, w, h) """ center_box = tf.concat([ (boxes[..., :2] + boxes[..., 2:]) / 2, boxes[..., 2:] - boxes[..., :2]], axis=-1) return center_box def transform_center_to_corner(boxes): """ Transform boxes of format (cx, cy, w, h) to format (xmin, ymin, xmax, ymax) Args: boxes: tensor (num_boxes, 4) of format (cx, cy, w, h) Returns: boxes: tensor (num_boxes, 4) of format (xmin, ymin, xmax, ymax) """ corner_box = tf.concat([ boxes[..., :2] - boxes[..., 2:] / 2, boxes[..., :2] + boxes[..., 2:] / 2], axis=-1) return corner_box def compute_nms(boxes, scores, nms_threshold, limit=200): """ Perform Non Maximum Suppression algorithm to eliminate boxes with high overlap Args: boxes: tensor (num_boxes, 4) of format (xmin, ymin, xmax, ymax) scores: tensor (num_boxes,) nms_threshold: NMS threshold limit: maximum number of boxes to keep Returns: idx: indices of kept boxes """ if boxes.shape[0] == 0: return tf.constant([], dtype=tf.int32) selected = [0] idx = tf.argsort(scores, direction='DESCENDING') idx = idx[:limit] boxes = tf.gather(boxes, idx) iou = compute_iou(boxes, boxes) while True: row = iou[selected[-1]] next_indices = row <= nms_threshold # iou[:, ~next_indices] = 1.0 iou = tf.where( tf.expand_dims(tf.math.logical_not(next_indices), 0), tf.ones_like(iou, dtype=tf.float32), iou) if not tf.math.reduce_any(next_indices): break selected.append(tf.argsort( tf.dtypes.cast(next_indices, tf.int32), direction='DESCENDING')[0].numpy()) return tf.gather(idx, selected)
python
6,703
""" Django settings for iFarm project. Generated by 'django-admin startproject' using Django 3.1.5. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'x^)pub)%&@t-^y@-481iy_mrz-sjc@xxl)_44aty@^b3cjb5d2' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'iFarmapp.apps.IfarmappConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'iFarm.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'iFarm.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
python
3,095
# Generated by Django 3.2.4 on 2021-08-03 16:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bidding', '0006_bidhandshakecycle'), ] operations = [ migrations.AddField( model_name='bidhandshake', name='bid_cycle_id', field=models.IntegerField(help_text='The bid cycle ID', null=True), ), ]
python
424
# # This file is part of LUNA. # # Copyright (c) 2020 Great Scott Gadgets <[email protected]> # SPDX-License-Identifier: BSD-3-Clause """ Gateware for working with abstract endpoints. """ import functools import operator from amaranth import Signal, Elaboratable, Module from amaranth.hdl.ast import Past from .packet import DataCRCInterface, InterpacketTimerInterface, TokenDetectorInterface from .packet import HandshakeExchangeInterface from ..stream import USBInStreamInterface, USBOutStreamInterface from ...utils.bus import OneHotMultiplexer class EndpointInterface: """ Interface that connects a USB endpoint module to a USB device. Many non-control endpoints won't need to use the latter half of this structure; it will be automatically removed by the relevant synthesis tool. Attributes ---------- tokenizer: TokenDetectorInterface, to detector Interface to our TokenDetector; notifies us of USB tokens. rx: USBOutStreamInterface, input stream to endpoint Receive interface for this endpoint. rx_complete: Signal(), input to endpoint Strobe that indicates that the concluding rx-stream was valid (CRC check passed). rx_ready_for_response: Signal(), input to endpoint Strobe that indicates that we're ready to respond to a complete transmission. Indicates that an interpacket delay has passed after an `rx_complete` strobe. rx_invalid: Signal(), input to endpoint Strobe that indicates that the concluding rx-stream was invalid (CRC check failed). rx_pid_toggle: Signal(), input to endpoint Value for the data PID toggle; 0 indicates we're receiving a DATA0; 1 indicates Data1. tx: USBInStreamInterface, output stream from endpoint Transmit interface for this endpoint. tx_pid_toggle: Signal(2), output from endpoint Value for the data PID toggle; 0 indicates we'll send DATA0; 1 indicates DATA1. 2 indicates we'll send DATA2, while 3 indicates we'll send DATAM. handshakes_in: HandshakeExchangeInterface, input to endpoint Carries handshakes detected from the host. handshakes_out: HandshakeExchangeInterface, output from endpoint Carries handshakes generate by this endpoint. speed: Signal(2), input to endpoint The device's current operating speed. Should be a USBSpeed enumeration value -- 0 for high, 1 for full, 2 for low. active_address: Signal(7), input to endpoint Contains the device's current address. address_changed: Signal(), output from endpoint. Strobe; pulses high when the device's address should be changed. new_address: Signal(7), output from endpoint When :attr:`address_changed` is high, this field contains the address that should be adopted. active_config: Signal(8), input to endpoint The configuration number of the active configuration. config_changed: Signal(), output from endpoint Strobe; pulses high when the device's configuration should be changed. new_config: Signal(8) When `config_changed` is high, this field contains the configuration that should be applied. timer: InterpacketTimerInterface Interface to our interpacket timer. data_crc: DataCRCInterface Control connection for our data-CRC unit. """ def __init__(self): self.data_crc = DataCRCInterface() self.tokenizer = TokenDetectorInterface() self.timer = InterpacketTimerInterface() self.speed = Signal(2) self.active_address = Signal(7) self.address_changed = Signal() self.new_address = Signal(7) self.active_config = Signal(8) self.config_changed = Signal() self.new_config = Signal(8) self.rx = USBOutStreamInterface() self.rx_complete = Signal() self.rx_ready_for_response = Signal() self.rx_invalid = Signal() self.rx_pid_toggle = Signal(2) self.tx = USBInStreamInterface() self.tx_pid_toggle = Signal(2) self.handshakes_in = HandshakeExchangeInterface(is_detector=True) self.handshakes_out = HandshakeExchangeInterface(is_detector=False) self.issue_stall = Signal() class USBEndpointMultiplexer(Elaboratable): """ Multiplexes access to the resources shared between multiple endpoint interfaces. Interfaces are added using :attr:`add_interface`. Attributes ---------- shared: EndpointInterface The post-multiplexer endpoint interface. """ def __init__(self): # # I/O port # self.shared = EndpointInterface() # # Internals # self._interfaces = [] def add_interface(self, interface: EndpointInterface): """ Adds a EndpointInterface to the multiplexer. Arbitration is not performed; it's expected only one endpoint will be driving the transmit lines at a time. """ self._interfaces.append(interface) def _multiplex_signals(self, m, *, when, multiplex, sub_bus=None): """ Helper that creates a simple priority-encoder multiplexer. Parmeters --------- when: str The name of the interface signal that indicates that the `multiplex` signals should be selected for output. If this signals should be multiplexed, it should be included in `multiplex`. multiplex: iterable(str) The names of the interface signals to be multiplexed. """ def get_signal(interface, name): """ Fetches an interface signal by name / sub_bus. """ if sub_bus: bus = getattr(interface, sub_bus) return getattr(bus, name) else: return getattr(interface, name) # We're building an if-elif tree; so we should start with an If entry. conditional = m.If for interface in self._interfaces: condition = get_signal(interface, when) with conditional(condition): # Connect up each of our signals. for signal_name in multiplex: # Get the actual signals for our input and output... driving_signal = get_signal(interface, signal_name) target_signal = get_signal(self.shared, signal_name) # ... and connect them. m.d.comb += target_signal .eq(driving_signal) # After the first element, all other entries should be created with Elif. conditional = m.Elif def or_join_interface_signals(self, m, signal_for_interface): """ Joins together a set of signals on each interface by OR'ing the signals together. """ # Find the value of all of our pre-mux signals OR'd together... all_signals = (signal_for_interface(i) for i in self._interfaces) or_value = functools.reduce(operator.__or__, all_signals, 0) # ... and tie it to our post-mux signal. m.d.comb += signal_for_interface(self.shared).eq(or_value) def elaborate(self, platform): m = Module() shared = self.shared # # Pass through signals being routed -to- our pre-mux interfaces. # for interface in self._interfaces: m.d.comb += [ # CRC and timer shared signals interface. interface.data_crc.crc .eq(shared.data_crc.crc), interface.timer.tx_allowed .eq(shared.timer.tx_allowed), interface.timer.tx_timeout .eq(shared.timer.tx_timeout), interface.timer.rx_timeout .eq(shared.timer.rx_timeout), # Detectors. shared.handshakes_in .connect(interface.handshakes_in), shared.tokenizer .connect(interface.tokenizer), # Rx interface. shared.rx .connect(interface.rx), interface.rx_complete .eq(shared.rx_complete), interface.rx_ready_for_response .eq(shared.rx_ready_for_response), interface.rx_invalid .eq(shared.rx_invalid), interface.rx_pid_toggle .eq(shared.rx_pid_toggle), # State signals. interface.speed .eq(shared.speed), interface.active_config .eq(shared.active_config), interface.active_address .eq(shared.active_address) ] # # Multiplex the signals being routed -from- our pre-mux interface. # self._multiplex_signals(m, when='address_changed', multiplex=['address_changed', 'new_address'] ) self._multiplex_signals(m, when='config_changed', multiplex=['config_changed', 'new_config'] ) # Connect up our transmit interface. m.submodules.tx_mux = tx_mux = OneHotMultiplexer( interface_type=USBInStreamInterface, mux_signals=('payload',), or_signals=('valid', 'first', 'last'), pass_signals=('ready',) ) tx_mux.add_interfaces(i.tx for i in self._interfaces) m.d.comb += self.shared.tx.stream_eq(tx_mux.output) # OR together all of our handshake-generation requests... self.or_join_interface_signals(m, lambda interface : interface.handshakes_out.ack) self.or_join_interface_signals(m, lambda interface : interface.handshakes_out.nak) self.or_join_interface_signals(m, lambda interface : interface.handshakes_out.stall) # ... our CRC start signals... self.or_join_interface_signals(m, lambda interface : interface.data_crc.start) # ... and our timer start signals. self.or_join_interface_signals(m, lambda interface : interface.timer.start) # Finally, connect up our transmit PID select. conditional = m.If # We'll connect our PID toggle to whichever interface has a valid transmission going. for interface in self._interfaces: with conditional(interface.tx.valid | Past(interface.tx.valid, domain="usb")): m.d.comb += shared.tx_pid_toggle.eq(interface.tx_pid_toggle) conditional = m.Elif return m
python
10,697
async def application(scope, receive, send): assert scope['type'] == 'http' await send( { 'type': 'http.response.start', 'status': 204, 'headers': [], } )
python
220
""" Mask R-CNN Base Configurations class. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import math import numpy as np import os from os.path import join import torch from maskr.datagen.anchors import generate_pyramid_anchors import logging log = logging.getLogger() # Base Configuration Class # Don't use this class directly. Instead, sub-class it and override # the configurations you need to change. class Config(object): """Base configuration class. For custom configurations, create a sub-class that inherits from this one and override properties that need to be changed. """ ##### datagen ################################################################## # Number of classification classes (including background) NUM_CLASSES = 1 # Override in sub-classes # If enabled, resizes instance masks to a smaller size to reduce # memory load. Recommended when using high-resolution images. USE_MINI_MASK = True MINI_MASK_SHAPE = (56, 56) # (height, width) of the mini-mask # Images are resized to >= min and <=max. if cant do both then max is enforced IMAGE_SHAPE = [1024, 1024] # If True, pad images with zeros such that they're (max_dim by max_dim) IMAGE_PADDING = True # currently, the False option is not supported # Image mean (RGB) MEAN_PIXEL = [123.7, 116.8, 103.9] # Maximum number of ground truth instances to use in one image MAX_GT_INSTANCES = 100 WORKERS = os.cpu_count() BATCH_SIZE = 1 AUGMENT = False SHUFFLE = True ####### training ################################################################## # names of weight files IMAGENET_MODEL_WEIGHTS = "resnet50_imagenet.pth" COCO_MODEL_WEIGHTS = "mask_rcnn_coco.pth" # NUMBER OF GPUs to use. For CPU use 0 GPU_COUNT = torch.cuda.device_count() # Learning rate and momentum # The Mask RCNN paper uses lr=0.02, but on TensorFlow it causes # weights to explode. Likely due to differences in optimzer # implementation. LEARNING_RATE = 0.001 LEARNING_MOMENTUM = 0.9 # Weight decay regularization WEIGHT_DECAY = 0.0001 #### calculated ANCHORS = None BACKBONE_SHAPES = None DEVICE = "cpu" WEIGHTS = None ######### backbone ################################################################ # The strides of each layer of the FPN Pyramid. These values # are based on a Resnet101 backbone. BACKBONE_STRIDES = [4, 8, 16, 32, 64] ########## RPN ################################################################ # Length of square anchor side in pixels RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512) # Ratios of anchors at each cell (width/height) # A value of 1 represents a square anchor, and 0.5 is a wide anchor RPN_ANCHOR_RATIOS = [0.5, 1, 2] # Anchor stride # If 1 then anchors are created for each cell in the backbone feature map. # If 2, then anchors are created for every other cell, and so on. RPN_ANCHOR_STRIDE = 1 # Non-max suppression threshold to filter RPN proposals. # You can reduce this during training to generate more propsals. RPN_NMS_THRESHOLD = 0.7 # How many anchors per image to use for RPN training RPN_TRAIN_ANCHORS_PER_IMAGE = 256 # ROIs kept after non-maximum supression (training and inference) POST_NMS_ROIS_TRAINING = 2000 POST_NMS_ROIS_INFERENCE = 1000 # Number of ROIs per image to feed to classifier/mask heads # The Mask RCNN paper uses 512 but often the RPN doesn't generate # enough positive proposals to fill this and keep a positive:negative # ratio of 1:3. You can increase the number of proposals by adjusting # the RPN NMS threshold. TRAIN_ROIS_PER_IMAGE = 200 # Percent of positive ROIs used to train classifier/mask heads ROI_POSITIVE_RATIO = 0.33 # Bounding box refinement standard deviation for RPN RPN_BBOX_STD_DEV = [0.1, 0.1, 0.2, 0.2] ##### roialign ########################################################################### # Pooled ROIs POOL_SIZE = 7 MASK_POOL_SIZE = 14 MASK_SHAPE = [28, 28] #### detection ######################################################################### # for final detections BBOX_STD_DEV = [0.1, 0.1, 0.2, 0.2] # Max number of final detections DETECTION_MAX_INSTANCES = 100 # Minimum probability value to accept a detected instance # ROIs below this threshold are skipped DETECTION_MIN_CONFIDENCE = 0.7 # Non-maximum suppression threshold for detection DETECTION_NMS_THRESHOLD = 0.3 #### development and debugging ############################################################## # stay compatible with original for comparison # NOTE GPU convolutions do not produce consistent results on same input. COMPAT = False # if false then run rpn only HEAD = True ############################################################################################ def __init__(self): """Set values of computed attributes.""" if self.GPU_COUNT > 0: self.DEVICE = "cuda" torch.backends.cudnn.benchmark = True else: self.DEVICE = "cpu" torch.backends.cudnn.benchmark = False # default weights is pretrained coco self.WEIGHTS = os.path.abspath(join(os.path.dirname(__file__), os.pardir, "data/models", self.COCO_MODEL_WEIGHTS)) # Compute backbone size from input image size self.BACKBONE_SHAPES = np.array( [[int(math.ceil(self.IMAGE_SHAPE[0] / stride)), int(math.ceil(self.IMAGE_SHAPE[1] / stride))] for stride in self.BACKBONE_STRIDES]) # Generate Anchors here as used by dataset and model self.ANCHORS = generate_pyramid_anchors(self.RPN_ANCHOR_SCALES, self.RPN_ANCHOR_RATIOS, self.BACKBONE_SHAPES, self.BACKBONE_STRIDES, self.RPN_ANCHOR_STRIDE) def display(self): """Display Configuration values.""" print("\nConfigurations:") for a in dir(self): if not a.startswith("__") and not callable(getattr(self, a)): print("{:30} {}".format(a, getattr(self, a))) print("\n")
python
6,549
# TensorFlow external dependencies that can be loaded in WORKSPACE files. load("//third_party/gpus:cuda_configure.bzl", "cuda_configure") load("//third_party/gpus:rocm_configure.bzl", "rocm_configure") load("//third_party/tensorrt:tensorrt_configure.bzl", "tensorrt_configure") load("//third_party/nccl:nccl_configure.bzl", "nccl_configure") load("//third_party/mkl:build_defs.bzl", "mkl_repository") load("//third_party/git:git_configure.bzl", "git_configure") load("//third_party/py:python_configure.bzl", "python_configure") load("//third_party/sycl:sycl_configure.bzl", "sycl_configure") load("//third_party/systemlibs:syslibs_configure.bzl", "syslibs_configure") load("//third_party/toolchains/remote:configure.bzl", "remote_execution_configure") load("//third_party/toolchains/clang6:repo.bzl", "clang6_configure") load("//third_party/toolchains/cpus/arm:arm_compiler_configure.bzl", "arm_compiler_configure") load("//third_party:repo.bzl", "tf_http_archive") load("//third_party/clang_toolchain:cc_configure_clang.bzl", "cc_download_clang_toolchain") load("@io_bazel_rules_closure//closure/private:java_import_external.bzl", "java_import_external") load("@io_bazel_rules_closure//closure:defs.bzl", "filegroup_external") load( "//tensorflow/tools/def_file_filter:def_file_filter_configure.bzl", "def_file_filter_configure", ) load("//third_party/FP16:workspace.bzl", FP16 = "repo") load("//third_party/aws:workspace.bzl", aws = "repo") load("//third_party/flatbuffers:workspace.bzl", flatbuffers = "repo") load("//third_party/highwayhash:workspace.bzl", highwayhash = "repo") load("//third_party/hwloc:workspace.bzl", hwloc = "repo") load("//third_party/icu:workspace.bzl", icu = "repo") load("//third_party/jpeg:workspace.bzl", jpeg = "repo") load("//third_party/nasm:workspace.bzl", nasm = "repo") load("//third_party/kissfft:workspace.bzl", kissfft = "repo") load("//third_party/keras_applications_archive:workspace.bzl", keras_applications = "repo") load("//third_party/pasta:workspace.bzl", pasta = "repo") def initialize_third_party(): """ Load third party repositories. See above load() statements. """ FP16() aws() flatbuffers() highwayhash() hwloc() icu() keras_applications() kissfft() jpeg() nasm() pasta() # Sanitize a dependency so that it works correctly from code that includes # TensorFlow as a submodule. def clean_dep(dep): return str(Label(dep)) # If TensorFlow is linked as a submodule. # path_prefix is no longer used. # tf_repo_name is thought to be under consideration. def tf_workspace(path_prefix = "", tf_repo_name = ""): tf_repositories(path_prefix, tf_repo_name) tf_bind() # Define all external repositories required by TensorFlow def tf_repositories(path_prefix = "", tf_repo_name = ""): """All external dependencies for TF builds.""" # Note that we check the minimum bazel version in WORKSPACE. clang6_configure(name = "local_config_clang6") cc_download_clang_toolchain(name = "local_config_download_clang") cuda_configure(name = "local_config_cuda") tensorrt_configure(name = "local_config_tensorrt") nccl_configure(name = "local_config_nccl") git_configure(name = "local_config_git") sycl_configure(name = "local_config_sycl") syslibs_configure(name = "local_config_syslibs") python_configure(name = "local_config_python") rocm_configure(name = "local_config_rocm") native.local_repository( name = "local_config_mlir", path = "third_party/mlir", ) remote_execution_configure(name = "local_config_remote_execution") initialize_third_party() # For windows bazel build # TODO: Remove def file filter when TensorFlow can export symbols properly on Windows. def_file_filter_configure(name = "local_config_def_file_filter") # Point //external/local_config_arm_compiler to //external/arm_compiler arm_compiler_configure( name = "local_config_arm_compiler", build_file = clean_dep("//third_party/toolchains/cpus/arm:BUILD"), remote_config_repo = "../arm_compiler", ) mkl_repository( name = "mkl_linux", build_file = clean_dep("//third_party/mkl:mkl.BUILD"), sha256 = "a936d6b277a33d2a027a024ea8e65df62bd2e162c7ca52c48486ed9d5dc27160", strip_prefix = "mklml_lnx_2019.0.5.20190502", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/intel/mkl-dnn/releases/download/v0.20-rc/mklml_lnx_2019.0.5.20190502.tgz", "https://github.com/intel/mkl-dnn/releases/download/v0.20-rc/mklml_lnx_2019.0.5.20190502.tgz", ], ) mkl_repository( name = "mkl_windows", build_file = clean_dep("//third_party/mkl:mkl.BUILD"), sha256 = "535857b17643d7f7546b58fc621244e7cfcc4fff2aa2ebd3fc5b4e126bfc36cf", strip_prefix = "mklml_win_2019.0.5.20190502", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/intel/mkl-dnn/releases/download/v0.20-rc/mklml_win_2019.0.5.20190502.zip", "https://github.com/intel/mkl-dnn/releases/download/v0.20-rc/mklml_win_2019.0.5.20190502.zip", ], ) mkl_repository( name = "mkl_darwin", build_file = clean_dep("//third_party/mkl:mkl.BUILD"), sha256 = "2fbb71a0365d42a39ea7906568d69b1db3bfc9914fee75eedb06c5f32bf5fa68", strip_prefix = "mklml_mac_2019.0.5.20190502", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/intel/mkl-dnn/releases/download/v0.20-rc/mklml_mac_2019.0.5.20190502.tgz", "https://github.com/intel/mkl-dnn/releases/download/v0.20-rc/mklml_mac_2019.0.5.20190502.tgz", ], ) if path_prefix: print("path_prefix was specified to tf_workspace but is no longer used " + "and will be removed in the future.") # Important: If you are upgrading MKL-DNN, then update the version numbers # in third_party/mkl_dnn/mkldnn.BUILD. In addition, the new version of # MKL-DNN might require upgrading MKL ML libraries also. If they need to be # upgraded then update the version numbers on all three versions above # (Linux, Mac, Windows). tf_http_archive( name = "mkl_dnn", build_file = clean_dep("//third_party/mkl_dnn:mkldnn.BUILD"), sha256 = "a198a9bd3c584607e6a467f780beca92c8411cd656fcc8ec6fa5abe73d4af823", strip_prefix = "mkl-dnn-0.20.3", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/intel/mkl-dnn/archive/v0.20.3.tar.gz", "https://github.com/intel/mkl-dnn/archive/v0.20.3.tar.gz", ], ) tf_http_archive( name = "mkl_dnn_v1", build_file = clean_dep("//third_party/mkl_dnn:mkldnn.BUILD"), sha256 = "fcc2d951f7170eade0cfdd0d8d1d58e3e7785bd326bca6555f3722f8cba71811", strip_prefix = "mkl-dnn-1.0-pc2", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/intel/mkl-dnn/archive/v1.0-pc2.tar.gz", "https://github.com/intel/mkl-dnn/archive/v1.0-pc2.tar.gz", ], ) tf_http_archive( name = "com_google_absl", build_file = clean_dep("//third_party:com_google_absl.BUILD"), sha256 = "acd93f6baaedc4414ebd08b33bebca7c7a46888916101d8c0b8083573526d070", strip_prefix = "abseil-cpp-43ef2148c0936ebf7cb4be6b19927a9d9d145b8f", urls = [ "http://mirror.tensorflow.org/github.com/abseil/abseil-cpp/archive/43ef2148c0936ebf7cb4be6b19927a9d9d145b8f.tar.gz", "https://github.com/abseil/abseil-cpp/archive/43ef2148c0936ebf7cb4be6b19927a9d9d145b8f.tar.gz", ], ) tf_http_archive( name = "eigen_archive", build_file = clean_dep("//third_party:eigen.BUILD"), patch_file = clean_dep("//third_party/eigen3:gpu_packet_math.patch"), sha256 = "f3d69ac773ecaf3602cb940040390d4e71a501bb145ca9e01ce5464cf6d4eb68", strip_prefix = "eigen-eigen-049af2f56331", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/bitbucket.org/eigen/eigen/get/049af2f56331.tar.gz", "https://bitbucket.org/eigen/eigen/get/049af2f56331.tar.gz", ], ) tf_http_archive( name = "arm_compiler", build_file = clean_dep("//:arm_compiler.BUILD"), sha256 = "4c622a5c7b9feb9615d4723b03a13142a7f3f813f9296861d5401282b9fbea96", strip_prefix = "tools-0e906ebc527eab1cdbf7adabff5b474da9562e9f/arm-bcm2708/arm-rpi-4.9.3-linux-gnueabihf", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/raspberrypi/tools/archive/0e906ebc527eab1cdbf7adabff5b474da9562e9f.tar.gz", "https://github.com/raspberrypi/tools/archive/0e906ebc527eab1cdbf7adabff5b474da9562e9f.tar.gz", ], ) tf_http_archive( name = "libxsmm_archive", build_file = clean_dep("//third_party:libxsmm.BUILD"), sha256 = "5fc1972471cd8e2b8b64ea017590193739fc88d9818e3d086621e5c08e86ea35", strip_prefix = "libxsmm-1.11", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/hfp/libxsmm/archive/1.11.tar.gz", "https://github.com/hfp/libxsmm/archive/1.11.tar.gz", ], ) tf_http_archive( name = "com_googlesource_code_re2", sha256 = "d070e2ffc5476c496a6a872a6f246bfddce8e7797d6ba605a7c8d72866743bf9", strip_prefix = "re2-506cfa4bffd060c06ec338ce50ea3468daa6c814", system_build_file = clean_dep("//third_party/systemlibs:re2.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/re2/archive/506cfa4bffd060c06ec338ce50ea3468daa6c814.tar.gz", "https://github.com/google/re2/archive/506cfa4bffd060c06ec338ce50ea3468daa6c814.tar.gz", ], ) tf_http_archive( name = "com_github_googlecloudplatform_google_cloud_cpp", sha256 = "fd0c3e3b50f32af332b53857f8cd1bfa009e33d1eeecabc5c79a4825d906a90c", strip_prefix = "google-cloud-cpp-0.10.0", system_build_file = clean_dep("//third_party/systemlibs:google_cloud_cpp.BUILD"), system_link_files = { "//third_party/systemlibs:google_cloud_cpp.google.cloud.bigtable.BUILD": "google/cloud/bigtable/BUILD", }, urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/googleapis/google-cloud-cpp/archive/v0.10.0.tar.gz", "https://github.com/googleapis/google-cloud-cpp/archive/v0.10.0.tar.gz", ], ) tf_http_archive( name = "com_github_googleapis_googleapis", build_file = clean_dep("//third_party:googleapis.BUILD"), sha256 = "824870d87a176f26bcef663e92051f532fac756d1a06b404055dc078425f4378", strip_prefix = "googleapis-f81082ea1e2f85c43649bee26e0d9871d4b41cdb", system_build_file = clean_dep("//third_party/systemlibs:googleapis.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/googleapis/googleapis/archive/f81082ea1e2f85c43649bee26e0d9871d4b41cdb.zip", "https://github.com/googleapis/googleapis/archive/f81082ea1e2f85c43649bee26e0d9871d4b41cdb.zip", ], ) tf_http_archive( name = "gemmlowp", sha256 = "6678b484d929f2d0d3229d8ac4e3b815a950c86bb9f17851471d143f6d4f7834", strip_prefix = "gemmlowp-12fed0cd7cfcd9e169bf1925bc3a7a58725fdcc3", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/gemmlowp/archive/12fed0cd7cfcd9e169bf1925bc3a7a58725fdcc3.zip", "https://github.com/google/gemmlowp/archive/12fed0cd7cfcd9e169bf1925bc3a7a58725fdcc3.zip", ], ) tf_http_archive( name = "farmhash_archive", build_file = clean_dep("//third_party:farmhash.BUILD"), sha256 = "6560547c63e4af82b0f202cb710ceabb3f21347a4b996db565a411da5b17aba0", strip_prefix = "farmhash-816a4ae622e964763ca0862d9dbd19324a1eaf45", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/farmhash/archive/816a4ae622e964763ca0862d9dbd19324a1eaf45.tar.gz", "https://github.com/google/farmhash/archive/816a4ae622e964763ca0862d9dbd19324a1eaf45.tar.gz", ], ) tf_http_archive( name = "png_archive", build_file = clean_dep("//third_party:png.BUILD"), patch_file = clean_dep("//third_party:png_fix_rpi.patch"), sha256 = "ca74a0dace179a8422187671aee97dd3892b53e168627145271cad5b5ac81307", strip_prefix = "libpng-1.6.37", system_build_file = clean_dep("//third_party/systemlibs:png.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/glennrp/libpng/archive/v1.6.37.tar.gz", "https://github.com/glennrp/libpng/archive/v1.6.37.tar.gz", ], ) tf_http_archive( name = "org_sqlite", build_file = clean_dep("//third_party:sqlite.BUILD"), sha256 = "d02fc4e95cfef672b45052e221617a050b7f2e20103661cda88387349a9b1327", strip_prefix = "sqlite-amalgamation-3280000", system_build_file = clean_dep("//third_party/systemlibs:sqlite.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/www.sqlite.org/2019/sqlite-amalgamation-3280000.zip", "https://www.sqlite.org/2019/sqlite-amalgamation-3280000.zip", ], ) tf_http_archive( name = "gif_archive", build_file = clean_dep("//third_party:gif.BUILD"), patch_file = clean_dep("//third_party:gif_fix_strtok_r.patch"), sha256 = "31da5562f44c5f15d63340a09a4fd62b48c45620cd302f77a6d9acf0077879bd", strip_prefix = "giflib-5.2.1", system_build_file = clean_dep("//third_party/systemlibs:gif.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pilotfiber.dl.sourceforge.net/project/giflib/giflib-5.2.1.tar.gz", "http://pilotfiber.dl.sourceforge.net/project/giflib/giflib-5.2.1.tar.gz", ], ) tf_http_archive( name = "six_archive", build_file = clean_dep("//third_party:six.BUILD"), sha256 = "105f8d68616f8248e24bf0e9372ef04d3cc10104f1980f54d57b2ce73a5ad56a", strip_prefix = "six-1.10.0", system_build_file = clean_dep("//third_party/systemlibs:six.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/source/s/six/six-1.10.0.tar.gz", "https://pypi.python.org/packages/source/s/six/six-1.10.0.tar.gz", ], ) tf_http_archive( name = "astor_archive", build_file = clean_dep("//third_party:astor.BUILD"), sha256 = "95c30d87a6c2cf89aa628b87398466840f0ad8652f88eb173125a6df8533fb8d", strip_prefix = "astor-0.7.1", system_build_file = clean_dep("//third_party/systemlibs:astor.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/99/80/f9482277c919d28bebd85813c0a70117214149a96b08981b72b63240b84c/astor-0.7.1.tar.gz", "https://pypi.python.org/packages/99/80/f9482277c919d28bebd85813c0a70117214149a96b08981b72b63240b84c/astor-0.7.1.tar.gz", ], ) tf_http_archive( name = "functools32_archive", build_file = clean_dep("//third_party:functools32.BUILD"), sha256 = "f6253dfbe0538ad2e387bd8fdfd9293c925d63553f5813c4e587745416501e6d", strip_prefix = "functools32-3.2.3-2", system_build_file = clean_dep("//third_party/systemlibs:functools32.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/c5/60/6ac26ad05857c601308d8fb9e87fa36d0ebf889423f47c3502ef034365db/functools32-3.2.3-2.tar.gz", "https://pypi.python.org/packages/c5/60/6ac26ad05857c601308d8fb9e87fa36d0ebf889423f47c3502ef034365db/functools32-3.2.3-2.tar.gz", ], ) tf_http_archive( name = "gast_archive", build_file = clean_dep("//third_party:gast.BUILD"), sha256 = "fe939df4583692f0512161ec1c880e0a10e71e6a232da045ab8edd3756fbadf0", strip_prefix = "gast-0.2.2", system_build_file = clean_dep("//third_party/systemlibs:gast.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/4e/35/11749bf99b2d4e3cceb4d55ca22590b0d7c2c62b9de38ac4a4a7f4687421/gast-0.2.2.tar.gz", "https://files.pythonhosted.org/packages/4e/35/11749bf99b2d4e3cceb4d55ca22590b0d7c2c62b9de38ac4a4a7f4687421/gast-0.2.2.tar.gz", ], ) tf_http_archive( name = "termcolor_archive", build_file = clean_dep("//third_party:termcolor.BUILD"), sha256 = "1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b", strip_prefix = "termcolor-1.1.0", system_build_file = clean_dep("//third_party/systemlibs:termcolor.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/8a/48/a76be51647d0eb9f10e2a4511bf3ffb8cc1e6b14e9e4fab46173aa79f981/termcolor-1.1.0.tar.gz", "https://pypi.python.org/packages/8a/48/a76be51647d0eb9f10e2a4511bf3ffb8cc1e6b14e9e4fab46173aa79f981/termcolor-1.1.0.tar.gz", ], ) tf_http_archive( name = "opt_einsum_archive", build_file = clean_dep("//third_party:opt_einsum.BUILD"), sha256 = "d3d464b4da7ef09e444c30e4003a27def37f85ff10ff2671e5f7d7813adac35b", strip_prefix = "opt_einsum-2.3.2", system_build_file = clean_dep("//third_party/systemlibs:opt_einsum.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/f6/d6/44792ec668bcda7d91913c75237314e688f70415ab2acd7172c845f0b24f/opt_einsum-2.3.2.tar.gz", "https://pypi.python.org/packages/f6/d6/44792ec668bcda7d91913c75237314e688f70415ab2acd7172c845f0b24f/opt_einsum-2.3.2.tar.gz", ], ) tf_http_archive( name = "absl_py", sha256 = "3d0f39e0920379ff1393de04b573bca3484d82a5f8b939e9e83b20b6106c9bbe", strip_prefix = "abseil-py-pypi-v0.7.1", system_build_file = clean_dep("//third_party/systemlibs:absl_py.BUILD"), system_link_files = { "//third_party/systemlibs:absl_py.absl.BUILD": "absl/BUILD", "//third_party/systemlibs:absl_py.absl.flags.BUILD": "absl/flags/BUILD", "//third_party/systemlibs:absl_py.absl.testing.BUILD": "absl/testing/BUILD", }, urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/abseil/abseil-py/archive/pypi-v0.7.1.tar.gz", "https://github.com/abseil/abseil-py/archive/pypi-v0.7.1.tar.gz", ], ) tf_http_archive( name = "enum34_archive", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/bf/3e/31d502c25302814a7c2f1d3959d2a3b3f78e509002ba91aea64993936876/enum34-1.1.6.tar.gz", "https://pypi.python.org/packages/bf/3e/31d502c25302814a7c2f1d3959d2a3b3f78e509002ba91aea64993936876/enum34-1.1.6.tar.gz", ], sha256 = "8ad8c4783bf61ded74527bffb48ed9b54166685e4230386a9ed9b1279e2df5b1", build_file = clean_dep("//third_party:enum34.BUILD"), system_build_file = clean_dep("//third_party/systemlibs:enum34.BUILD"), strip_prefix = "enum34-1.1.6/enum", ) tf_http_archive( name = "org_python_pypi_backports_weakref", build_file = clean_dep("//third_party:backports_weakref.BUILD"), sha256 = "8813bf712a66b3d8b85dc289e1104ed220f1878cf981e2fe756dfaabe9a82892", strip_prefix = "backports.weakref-1.0rc1/src", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/bc/cc/3cdb0a02e7e96f6c70bd971bc8a90b8463fda83e264fa9c5c1c98ceabd81/backports.weakref-1.0rc1.tar.gz", "https://pypi.python.org/packages/bc/cc/3cdb0a02e7e96f6c70bd971bc8a90b8463fda83e264fa9c5c1c98ceabd81/backports.weakref-1.0rc1.tar.gz", ], ) filegroup_external( name = "org_python_license", licenses = ["notice"], # Python 2.0 sha256_urls = { "e76cacdf0bdd265ff074ccca03671c33126f597f39d0ed97bc3e5673d9170cf6": [ "https://storage.googleapis.com/mirror.tensorflow.org/docs.python.org/2.7/_sources/license.rst.txt", "https://docs.python.org/2.7/_sources/license.rst.txt", ], }, ) # 310ba5ee72661c081129eb878c1bbcec936b20f0 is based on 3.8.0 with a fix for protobuf.bzl. PROTOBUF_URLS = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/protocolbuffers/protobuf/archive/310ba5ee72661c081129eb878c1bbcec936b20f0.tar.gz", "https://github.com/protocolbuffers/protobuf/archive/310ba5ee72661c081129eb878c1bbcec936b20f0.tar.gz", ] PROTOBUF_SHA256 = "b9e92f9af8819bbbc514e2902aec860415b70209f31dfc8c4fa72515a5df9d59" PROTOBUF_STRIP_PREFIX = "protobuf-310ba5ee72661c081129eb878c1bbcec936b20f0" # protobuf depends on @zlib, it has to be renamed to @zlib_archive because "zlib" is already # defined using bind for grpc. PROTOBUF_PATCH = "//third_party/protobuf:protobuf.patch" tf_http_archive( name = "com_google_protobuf", patch_file = clean_dep(PROTOBUF_PATCH), sha256 = PROTOBUF_SHA256, strip_prefix = PROTOBUF_STRIP_PREFIX, system_build_file = clean_dep("//third_party/systemlibs:protobuf.BUILD"), system_link_files = { "//third_party/systemlibs:protobuf.bzl": "protobuf.bzl", }, urls = PROTOBUF_URLS, ) tf_http_archive( name = "nsync", sha256 = "704be7f58afa47b99476bbac7aafd1a9db4357cef519db361716f13538547ffd", strip_prefix = "nsync-1.20.2", system_build_file = clean_dep("//third_party/systemlibs:nsync.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/nsync/archive/1.20.2.tar.gz", "https://github.com/google/nsync/archive/1.20.2.tar.gz", ], ) tf_http_archive( name = "com_google_googletest", sha256 = "ff7a82736e158c077e76188232eac77913a15dac0b22508c390ab3f88e6d6d86", strip_prefix = "googletest-b6cd405286ed8635ece71c72f118e659f4ade3fb", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/googletest/archive/b6cd405286ed8635ece71c72f118e659f4ade3fb.zip", "https://github.com/google/googletest/archive/b6cd405286ed8635ece71c72f118e659f4ade3fb.zip", ], ) tf_http_archive( name = "com_github_gflags_gflags", sha256 = "ae27cdbcd6a2f935baa78e4f21f675649271634c092b1be01469440495609d0e", strip_prefix = "gflags-2.2.1", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/gflags/gflags/archive/v2.2.1.tar.gz", "https://github.com/gflags/gflags/archive/v2.2.1.tar.gz", ], ) tf_http_archive( name = "pcre", build_file = clean_dep("//third_party:pcre.BUILD"), sha256 = "69acbc2fbdefb955d42a4c606dfde800c2885711d2979e356c0636efde9ec3b5", strip_prefix = "pcre-8.42", system_build_file = clean_dep("//third_party/systemlibs:pcre.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/ftp.exim.org/pub/pcre/pcre-8.42.tar.gz", "http://ftp.exim.org/pub/pcre/pcre-8.42.tar.gz", ], ) tf_http_archive( name = "swig", build_file = clean_dep("//third_party:swig.BUILD"), sha256 = "58a475dbbd4a4d7075e5fe86d4e54c9edde39847cdb96a3053d87cb64a23a453", strip_prefix = "swig-3.0.8", system_build_file = clean_dep("//third_party/systemlibs:swig.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/ufpr.dl.sourceforge.net/project/swig/swig/swig-3.0.8/swig-3.0.8.tar.gz", "http://ufpr.dl.sourceforge.net/project/swig/swig/swig-3.0.8/swig-3.0.8.tar.gz", "http://pilotfiber.dl.sourceforge.net/project/swig/swig/swig-3.0.8/swig-3.0.8.tar.gz", ], ) tf_http_archive( name = "curl", build_file = clean_dep("//third_party:curl.BUILD"), sha256 = "4376ac72b95572fb6c4fbffefb97c7ea0dd083e1974c0e44cd7e49396f454839", strip_prefix = "curl-7.65.3", system_build_file = clean_dep("//third_party/systemlibs:curl.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/curl.haxx.se/download/curl-7.65.3.tar.gz", "https://curl.haxx.se/download/curl-7.65.3.tar.gz", ], ) # WARNING: make sure ncteisen@ and vpai@ are cc-ed on any CL to change the below rule tf_http_archive( name = "grpc", sha256 = "67a6c26db56f345f7cee846e681db2c23f919eba46dd639b09462d1b6203d28c", strip_prefix = "grpc-4566c2a29ebec0835643b972eb99f4306c4234a3", system_build_file = clean_dep("//third_party/systemlibs:grpc.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/grpc/grpc/archive/4566c2a29ebec0835643b972eb99f4306c4234a3.tar.gz", "https://github.com/grpc/grpc/archive/4566c2a29ebec0835643b972eb99f4306c4234a3.tar.gz", ], ) tf_http_archive( name = "com_github_nanopb_nanopb", sha256 = "8bbbb1e78d4ddb0a1919276924ab10d11b631df48b657d960e0c795a25515735", build_file = "@grpc//third_party:nanopb.BUILD", strip_prefix = "nanopb-f8ac463766281625ad710900479130c7fcb4d63b", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/nanopb/nanopb/archive/f8ac463766281625ad710900479130c7fcb4d63b.tar.gz", "https://github.com/nanopb/nanopb/archive/f8ac463766281625ad710900479130c7fcb4d63b.tar.gz", ], ) tf_http_archive( name = "linenoise", build_file = clean_dep("//third_party:linenoise.BUILD"), sha256 = "7f51f45887a3d31b4ce4fa5965210a5e64637ceac12720cfce7954d6a2e812f7", strip_prefix = "linenoise-c894b9e59f02203dbe4e2be657572cf88c4230c3", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/antirez/linenoise/archive/c894b9e59f02203dbe4e2be657572cf88c4230c3.tar.gz", "https://github.com/antirez/linenoise/archive/c894b9e59f02203dbe4e2be657572cf88c4230c3.tar.gz", ], ) # TODO(phawkins): currently, this rule uses an unofficial LLVM mirror. # Switch to an official source of snapshots if/when possible. tf_http_archive( name = "llvm", build_file = clean_dep("//third_party/llvm:llvm.autogenerated.BUILD"), sha256 = "88012afcd6d8238430d39967b62e5599bc31d9c4cdc6d20281bedf1020b7000b", strip_prefix = "llvm-b7d166cebcf619a3691eed3f994384aab3d80fa6", urls = [ "https://mirror.bazel.build/github.com/llvm-mirror/llvm/archive/b7d166cebcf619a3691eed3f994384aab3d80fa6.tar.gz", "https://github.com/llvm-mirror/llvm/archive/b7d166cebcf619a3691eed3f994384aab3d80fa6.tar.gz", ], ) tf_http_archive( name = "lmdb", build_file = clean_dep("//third_party:lmdb.BUILD"), sha256 = "f3927859882eb608868c8c31586bb7eb84562a40a6bf5cc3e13b6b564641ea28", strip_prefix = "lmdb-LMDB_0.9.22/libraries/liblmdb", system_build_file = clean_dep("//third_party/systemlibs:lmdb.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/LMDB/lmdb/archive/LMDB_0.9.22.tar.gz", "https://github.com/LMDB/lmdb/archive/LMDB_0.9.22.tar.gz", ], ) tf_http_archive( name = "jsoncpp_git", build_file = clean_dep("//third_party:jsoncpp.BUILD"), sha256 = "c49deac9e0933bcb7044f08516861a2d560988540b23de2ac1ad443b219afdb6", strip_prefix = "jsoncpp-1.8.4", system_build_file = clean_dep("//third_party/systemlibs:jsoncpp.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/open-source-parsers/jsoncpp/archive/1.8.4.tar.gz", "https://github.com/open-source-parsers/jsoncpp/archive/1.8.4.tar.gz", ], ) tf_http_archive( name = "boringssl", sha256 = "1188e29000013ed6517168600fc35a010d58c5d321846d6a6dfee74e4c788b45", strip_prefix = "boringssl-7f634429a04abc48e2eb041c81c5235816c96514", system_build_file = clean_dep("//third_party/systemlibs:boringssl.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/boringssl/archive/7f634429a04abc48e2eb041c81c5235816c96514.tar.gz", "https://github.com/google/boringssl/archive/7f634429a04abc48e2eb041c81c5235816c96514.tar.gz", ], ) tf_http_archive( name = "zlib_archive", build_file = clean_dep("//third_party:zlib.BUILD"), sha256 = "c3e5e9fdd5004dcb542feda5ee4f0ff0744628baf8ed2dd5d66f8ca1197cb1a1", strip_prefix = "zlib-1.2.11", system_build_file = clean_dep("//third_party/systemlibs:zlib.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/zlib.net/zlib-1.2.11.tar.gz", "https://zlib.net/zlib-1.2.11.tar.gz", ], ) tf_http_archive( name = "fft2d", build_file = clean_dep("//third_party/fft2d:fft2d.BUILD"), sha256 = "ada7e99087c4ed477bfdf11413f2ba8db8a840ba9bbf8ac94f4f3972e2a7cec9", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/www.kurims.kyoto-u.ac.jp/~ooura/fft2d.tgz", "http://www.kurims.kyoto-u.ac.jp/~ooura/fft2d.tgz", ], ) tf_http_archive( name = "snappy", build_file = clean_dep("//third_party:snappy.BUILD"), sha256 = "3dfa02e873ff51a11ee02b9ca391807f0c8ea0529a4924afa645fbf97163f9d4", strip_prefix = "snappy-1.1.7", system_build_file = clean_dep("//third_party/systemlibs:snappy.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/snappy/archive/1.1.7.tar.gz", "https://github.com/google/snappy/archive/1.1.7.tar.gz", ], ) tf_http_archive( name = "nccl_archive", build_file = clean_dep("//third_party:nccl/archive.BUILD"), patch_file = clean_dep("//third_party/nccl:archive.patch"), sha256 = "9a7633e224982e2b60fa6b397d895d20d6b7498e3e02f46f98a5a4e187c5a44c", strip_prefix = "nccl-0ceaec9cee96ae7658aa45686853286651f36384", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/nvidia/nccl/archive/0ceaec9cee96ae7658aa45686853286651f36384.tar.gz", "https://github.com/nvidia/nccl/archive/0ceaec9cee96ae7658aa45686853286651f36384.tar.gz", ], ) tf_http_archive( name = "kafka", build_file = clean_dep("//third_party:kafka/BUILD"), patch_file = clean_dep("//third_party/kafka:config.patch"), sha256 = "cc6ebbcd0a826eec1b8ce1f625ffe71b53ef3290f8192b6cae38412a958f4fd3", strip_prefix = "librdkafka-0.11.5", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/edenhill/librdkafka/archive/v0.11.5.tar.gz", "https://github.com/edenhill/librdkafka/archive/v0.11.5.tar.gz", ], ) java_import_external( name = "junit", jar_sha256 = "59721f0805e223d84b90677887d9ff567dc534d7c502ca903c0c2b17f05c116a", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/junit/junit/4.12/junit-4.12.jar", "http://repo1.maven.org/maven2/junit/junit/4.12/junit-4.12.jar", "http://maven.ibiblio.org/maven2/junit/junit/4.12/junit-4.12.jar", ], licenses = ["reciprocal"], # Common Public License Version 1.0 testonly_ = True, deps = ["@org_hamcrest_core"], ) java_import_external( name = "org_hamcrest_core", jar_sha256 = "66fdef91e9739348df7a096aa384a5685f4e875584cce89386a7a47251c4d8e9", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/org/hamcrest/hamcrest-core/1.3/hamcrest-core-1.3.jar", "http://repo1.maven.org/maven2/org/hamcrest/hamcrest-core/1.3/hamcrest-core-1.3.jar", "http://maven.ibiblio.org/maven2/org/hamcrest/hamcrest-core/1.3/hamcrest-core-1.3.jar", ], licenses = ["notice"], # New BSD License testonly_ = True, ) java_import_external( name = "com_google_testing_compile", jar_sha256 = "edc180fdcd9f740240da1a7a45673f46f59c5578d8cd3fbc912161f74b5aebb8", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/com/google/testing/compile/compile-testing/0.11/compile-testing-0.11.jar", "http://repo1.maven.org/maven2/com/google/testing/compile/compile-testing/0.11/compile-testing-0.11.jar", ], licenses = ["notice"], # New BSD License testonly_ = True, deps = ["@com_google_guava", "@com_google_truth"], ) java_import_external( name = "com_google_truth", jar_sha256 = "032eddc69652b0a1f8d458f999b4a9534965c646b8b5de0eba48ee69407051df", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/com/google/truth/truth/0.32/truth-0.32.jar", "http://repo1.maven.org/maven2/com/google/truth/truth/0.32/truth-0.32.jar", ], licenses = ["notice"], # Apache 2.0 testonly_ = True, deps = ["@com_google_guava"], ) java_import_external( name = "org_checkerframework_qual", jar_sha256 = "a17501717ef7c8dda4dba73ded50c0d7cde440fd721acfeacbf19786ceac1ed6", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/org/checkerframework/checker-qual/2.4.0/checker-qual-2.4.0.jar", "http://repo1.maven.org/maven2/org/checkerframework/checker-qual/2.4.0/checker-qual-2.4.0.jar", ], licenses = ["notice"], # Apache 2.0 ) java_import_external( name = "com_squareup_javapoet", jar_sha256 = "5bb5abdfe4366c15c0da3332c57d484e238bd48260d6f9d6acf2b08fdde1efea", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/com/squareup/javapoet/1.9.0/javapoet-1.9.0.jar", "http://repo1.maven.org/maven2/com/squareup/javapoet/1.9.0/javapoet-1.9.0.jar", ], licenses = ["notice"], # Apache 2.0 ) tf_http_archive( name = "com_google_pprof", build_file = clean_dep("//third_party:pprof.BUILD"), sha256 = "e0928ca4aa10ea1e0551e2d7ce4d1d7ea2d84b2abbdef082b0da84268791d0c4", strip_prefix = "pprof-c0fb62ec88c411cc91194465e54db2632845b650", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/pprof/archive/c0fb62ec88c411cc91194465e54db2632845b650.tar.gz", "https://github.com/google/pprof/archive/c0fb62ec88c411cc91194465e54db2632845b650.tar.gz", ], ) tf_http_archive( name = "cub_archive", build_file = clean_dep("//third_party:cub.BUILD"), sha256 = "6bfa06ab52a650ae7ee6963143a0bbc667d6504822cbd9670369b598f18c58c3", strip_prefix = "cub-1.8.0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/NVlabs/cub/archive/1.8.0.zip", "https://github.com/NVlabs/cub/archive/1.8.0.zip", ], ) tf_http_archive( name = "rocprim_archive", build_file = clean_dep("//third_party:rocprim.BUILD"), sha256 = "3c178461ead70ce6adb60c836a35a52564968af31dfa81f4157ab72b5f14d31f", strip_prefix = "rocPRIM-4a33d328f8352df1654271939da66914f2334424", urls = [ "https://mirror.bazel.build/github.com/ROCmSoftwarePlatform/rocPRIM/archive/4a33d328f8352df1654271939da66914f2334424.tar.gz", "https://github.com/ROCmSoftwarePlatform/rocPRIM/archive/4a33d328f8352df1654271939da66914f2334424.tar.gz", ], ) tf_http_archive( name = "cython", build_file = clean_dep("//third_party:cython.BUILD"), delete = ["BUILD.bazel"], sha256 = "bccc9aa050ea02595b2440188813b936eaf345e85fb9692790cecfe095cf91aa", strip_prefix = "cython-0.28.4", system_build_file = clean_dep("//third_party/systemlibs:cython.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/cython/cython/archive/0.28.4.tar.gz", "https://github.com/cython/cython/archive/0.28.4.tar.gz", ], ) tf_http_archive( name = "arm_neon_2_x86_sse", build_file = clean_dep("//third_party:arm_neon_2_x86_sse.BUILD"), sha256 = "213733991310b904b11b053ac224fee2d4e0179e46b52fe7f8735b8831e04dcc", strip_prefix = "ARM_NEON_2_x86_SSE-1200fe90bb174a6224a525ee60148671a786a71f", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/intel/ARM_NEON_2_x86_SSE/archive/1200fe90bb174a6224a525ee60148671a786a71f.tar.gz", "https://github.com/intel/ARM_NEON_2_x86_SSE/archive/1200fe90bb174a6224a525ee60148671a786a71f.tar.gz", ], ) tf_http_archive( name = "double_conversion", build_file = clean_dep("//third_party:double_conversion.BUILD"), sha256 = "2f7fbffac0d98d201ad0586f686034371a6d152ca67508ab611adc2386ad30de", strip_prefix = "double-conversion-3992066a95b823efc8ccc1baf82a1cfc73f6e9b8", system_build_file = clean_dep("//third_party/systemlibs:double_conversion.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/double-conversion/archive/3992066a95b823efc8ccc1baf82a1cfc73f6e9b8.zip", "https://github.com/google/double-conversion/archive/3992066a95b823efc8ccc1baf82a1cfc73f6e9b8.zip", ], ) tf_http_archive( name = "tflite_mobilenet_float", build_file = clean_dep("//third_party:tflite_mobilenet_float.BUILD"), sha256 = "2fadeabb9968ec6833bee903900dda6e61b3947200535874ce2fe42a8493abc0", urls = [ "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz", "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz", ], ) tf_http_archive( name = "tflite_mobilenet_quant", build_file = clean_dep("//third_party:tflite_mobilenet_quant.BUILD"), sha256 = "d32432d28673a936b2d6281ab0600c71cf7226dfe4cdcef3012555f691744166", urls = [ "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz", "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz", ], ) tf_http_archive( name = "tflite_mobilenet_ssd", build_file = str(Label("//third_party:tflite_mobilenet.BUILD")), sha256 = "767057f2837a46d97882734b03428e8dd640b93236052b312b2f0e45613c1cf0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_ssd_tflite_v1.zip", "https://storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_ssd_tflite_v1.zip", ], ) tf_http_archive( name = "tflite_mobilenet_ssd_quant", build_file = str(Label("//third_party:tflite_mobilenet.BUILD")), sha256 = "a809cd290b4d6a2e8a9d5dad076e0bd695b8091974e0eed1052b480b2f21b6dc", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_0.75_quant_2018_06_29.zip", "https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_0.75_quant_2018_06_29.zip", ], ) tf_http_archive( name = "tflite_mobilenet_ssd_quant_protobuf", build_file = str(Label("//third_party:tflite_mobilenet.BUILD")), sha256 = "09280972c5777f1aa775ef67cb4ac5d5ed21970acd8535aeca62450ef14f0d79", strip_prefix = "ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz", "https://storage.googleapis.com/download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz", ], ) tf_http_archive( name = "tflite_conv_actions_frozen", build_file = str(Label("//third_party:tflite_mobilenet.BUILD")), sha256 = "d947b38cba389b5e2d0bfc3ea6cc49c784e187b41a071387b3742d1acac7691e", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/tflite/conv_actions_tflite.zip", "https://storage.googleapis.com/download.tensorflow.org/models/tflite/conv_actions_tflite.zip", ], ) tf_http_archive( name = "tflite_smartreply", build_file = clean_dep("//third_party:tflite_smartreply.BUILD"), sha256 = "8980151b85a87a9c1a3bb1ed4748119e4a85abd3cb5744d83da4d4bd0fbeef7c", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/tflite/smartreply_1.0_2017_11_01.zip", "https://storage.googleapis.com/download.tensorflow.org/models/tflite/smartreply_1.0_2017_11_01.zip", ], ) tf_http_archive( name = "tflite_ovic_testdata", build_file = clean_dep("//third_party:tflite_ovic_testdata.BUILD"), sha256 = "033c941b7829b05ca55a124a26a6a0581b1ececc154a2153cafcfdb54f80dca2", strip_prefix = "ovic", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/data/ovic_2019_04_30.zip", "https://storage.googleapis.com/download.tensorflow.org/data/ovic_2019_04_30.zip", ], ) tf_http_archive( name = "build_bazel_rules_android", sha256 = "cd06d15dd8bb59926e4d65f9003bfc20f9da4b2519985c27e190cddc8b7a7806", strip_prefix = "rules_android-0.1.1", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/rules_android/archive/v0.1.1.zip", "https://github.com/bazelbuild/rules_android/archive/v0.1.1.zip", ], ) tf_http_archive( name = "tbb", build_file = clean_dep("//third_party/ngraph:tbb.BUILD"), sha256 = "c3245012296f09f1418b78a8c2f17df5188b3bd0db620f7fd5fabe363320805a", strip_prefix = "tbb-2019_U1", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/01org/tbb/archive/2019_U1.zip", "https://github.com/01org/tbb/archive/2019_U1.zip", ], ) tf_http_archive( name = "ngraph", build_file = clean_dep("//third_party/ngraph:ngraph.BUILD"), sha256 = "a1780f24a1381fc25e323b4b2d08b6ef5129f42e011305b2a34dcf43a48030d5", strip_prefix = "ngraph-0.11.0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/NervanaSystems/ngraph/archive/v0.11.0.tar.gz", "https://github.com/NervanaSystems/ngraph/archive/v0.11.0.tar.gz", ], ) tf_http_archive( name = "nlohmann_json_lib", build_file = clean_dep("//third_party/ngraph:nlohmann_json.BUILD"), sha256 = "c377963a95989270c943d522bfefe7b889ef5ed0e1e15d535fd6f6f16ed70732", strip_prefix = "json-3.4.0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/nlohmann/json/archive/v3.4.0.tar.gz", "https://github.com/nlohmann/json/archive/v3.4.0.tar.gz", ], ) tf_http_archive( name = "ngraph_tf", build_file = clean_dep("//third_party/ngraph:ngraph_tf.BUILD"), sha256 = "742a642d2c6622277df4c902b6830d616d0539cc8cd843d6cdb899bb99e66e36", strip_prefix = "ngraph-tf-0.9.0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/NervanaSystems/ngraph-tf/archive/v0.9.0.zip", "https://github.com/NervanaSystems/ngraph-tf/archive/v0.9.0.zip", ], ) tf_http_archive( name = "pybind11", urls = [ "https://mirror.bazel.build/github.com/pybind/pybind11/archive/v2.3.0.tar.gz", "https://github.com/pybind/pybind11/archive/v2.3.0.tar.gz", ], sha256 = "0f34838f2c8024a6765168227ba587b3687729ebf03dc912f88ff75c7aa9cfe8", strip_prefix = "pybind11-2.3.0", build_file = clean_dep("//third_party:pybind11.BUILD"), ) tf_http_archive( name = "wrapt", build_file = clean_dep("//third_party:wrapt.BUILD"), sha256 = "8a6fb40e8f8b6a66b4ba81a4044c68e6a7b1782f21cfabc06fb765332b4c3e51", strip_prefix = "wrapt-1.11.1/src/wrapt", system_build_file = clean_dep("//third_party/systemlibs:wrapt.BUILD"), urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/GrahamDumpleton/wrapt/archive/1.11.1.tar.gz", "https://github.com/GrahamDumpleton/wrapt/archive/1.11.1.tar.gz", ], ) def tf_bind(): """Bind targets for some external repositories""" ############################################################################## # BIND DEFINITIONS # # Please do not add bind() definitions unless we have no other choice. # If that ends up being the case, please leave a comment explaining # why we can't depend on the canonical build target. # gRPC wants a cares dependency but its contents is not actually # important since we have set GRPC_ARES=0 in .bazelrc native.bind( name = "cares", actual = "@com_github_nanopb_nanopb//:nanopb", ) # Needed by Protobuf native.bind( name = "grpc_cpp_plugin", actual = "@grpc//:grpc_cpp_plugin", ) native.bind( name = "grpc_python_plugin", actual = "@grpc//:grpc_python_plugin", ) native.bind( name = "grpc_lib", actual = "@grpc//:grpc++", ) native.bind( name = "grpc_lib_unsecure", actual = "@grpc//:grpc++_unsecure", ) # Needed by gRPC native.bind( name = "libssl", actual = "@boringssl//:ssl", ) # Needed by gRPC native.bind( name = "nanopb", actual = "@com_github_nanopb_nanopb//:nanopb", ) # Needed by gRPC native.bind( name = "protobuf", actual = "@com_google_protobuf//:protobuf", ) # gRPC expects //external:protobuf_clib and //external:protobuf_compiler # to point to Protobuf's compiler library. native.bind( name = "protobuf_clib", actual = "@com_google_protobuf//:protoc_lib", ) # Needed by gRPC native.bind( name = "protobuf_headers", actual = "@com_google_protobuf//:protobuf_headers", ) # Needed by Protobuf native.bind( name = "python_headers", actual = clean_dep("//third_party/python_runtime:headers"), ) # Needed by Protobuf native.bind( name = "six", actual = "@six_archive//:six", ) # Needed by gRPC native.bind( name = "zlib", actual = "@zlib_archive//:zlib", )
python
49,367
import os.path as osp from .base import BaseDataset from .builder import DATASETS @DATASETS.register_module class VideoDataset(BaseDataset): """Video dataset for action recognition. The dataset loads raw videos and apply specified transforms to return a dict containing the frame tensors and other information. The ann_file is a text file with multiple lines, and each line indicates a sample video with the filepath and label, which are split with a whitespace. Example of a annotation file: ``` some/path/000.mp4 1 some/path/001.mp4 1 some/path/002.mp4 2 some/path/003.mp4 2 some/path/004.mp4 3 some/path/005.mp4 3 ``` """ def load_annotations(self): video_infos = [] with open(self.ann_file, 'r') as fin: for line in fin: filename, label = line.split(' ') if self.data_root is not None: filename = osp.join(self.data_root, filename) video_infos.append(dict(filename=filename, label=int(label))) return video_infos
python
1,092
# SPDX-License-Identifier: Apache-2.0 # # http://nexb.com and https://github.com/nexB/scancode.io # The ScanCode.io software is licensed under the Apache License version 2.0. # Data generated with ScanCode.io is provided as-is without warranties. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # Data Generated with ScanCode.io is provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode.io should be considered or used as legal advice. Consult an Attorney # for any legal advice. # # ScanCode.io is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode.io for support and download. from django import forms from django.apps import apps from django.core.exceptions import ValidationError import django_filters from scanpipe.models import CodebaseResource from scanpipe.models import DiscoveredPackage from scanpipe.models import Project from scanpipe.pipes.fetch import fetch_urls scanpipe_app_config = apps.get_app_config("scanpipe") class InputsBaseForm(forms.Form): input_files = forms.FileField( required=False, widget=forms.ClearableFileInput( attrs={"class": "file-input", "multiple": True}, ), ) input_urls = forms.CharField( label="Download URLs", required=False, help_text="Provide one or more URLs to download, one per line.", widget=forms.Textarea( attrs={ "class": "textarea", "rows": 2, "placeholder": "https://domain.com/archive.zip", }, ), ) class Media: js = ("add-inputs.js",) def clean_input_urls(self): """ Fetch the `input_urls` and set the `downloads` objects in the cleaned_data. A validation error is raised if at least one URL could not be fetched. """ input_urls = self.cleaned_data.get("input_urls", []) self.cleaned_data["downloads"], errors = fetch_urls(input_urls) if errors: raise ValidationError("Could not fetch: " + "\n".join(errors)) return input_urls def handle_inputs(self, project): input_files = self.files.getlist("input_files") downloads = self.cleaned_data.get("downloads") if input_files: project.add_uploads(input_files) if downloads: project.add_downloads(downloads) class PipelineBaseForm(forms.Form): pipeline = forms.ChoiceField( choices=scanpipe_app_config.get_pipeline_choices(), required=False, ) execute_now = forms.BooleanField( label="Execute pipeline now", initial=True, required=False, ) def handle_pipeline(self, project): pipeline = self.cleaned_data["pipeline"] execute_now = self.cleaned_data["execute_now"] if pipeline: project.add_pipeline(pipeline, execute_now) class ProjectForm(InputsBaseForm, PipelineBaseForm, forms.ModelForm): class Meta: model = Project fields = [ "name", "input_files", "input_urls", "pipeline", "execute_now", ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) name_field = self.fields["name"] name_field.widget.attrs["class"] = "input" name_field.widget.attrs["autofocus"] = True name_field.help_text = "The unique name of your project." def save(self, *args, **kwargs): project = super().save(*args, **kwargs) self.handle_inputs(project) self.handle_pipeline(project) return project class AddInputsForm(InputsBaseForm, forms.Form): def save(self, project): self.handle_inputs(project) return project class AddPipelineForm(PipelineBaseForm): def __init__(self, *args, **kwargs): """ The `pipeline` field is required in the context of this form. """ super().__init__(*args, **kwargs) self.fields["pipeline"].required = True def save(self, project): self.handle_pipeline(project) return project class ProjectFilterSet(django_filters.FilterSet): search = django_filters.CharFilter(field_name="name", lookup_expr="icontains") class Meta: model = Project fields = ["search"] class ResourceFilterSet(django_filters.FilterSet): class Meta: model = CodebaseResource fields = [ "programming_language", "mime_type", ] class PackageFilterSet(django_filters.FilterSet): class Meta: model = DiscoveredPackage fields = ["type", "license_expression"]
python
5,233
# -*- coding: utf-8 -*- """ Widget for plotting phase frequency response phi(f) Author: Christian Muenker 2015 """ from __future__ import print_function, division, unicode_literals, absolute_import from ..compat import QCheckBox, QWidget, QComboBox, QHBoxLayout, QFrame import numpy as np import pyfda.filterbroker as fb from pyfda.pyfda_rc import params from pyfda.plot_widgets.plot_utils import MplWidget from pyfda.pyfda_lib import calc_Hcomplex # TODO: ax.clear() should not be neccessary for each replot? # TODO: Canvas should be grey when disabled class PlotPhi(QWidget): def __init__(self, parent): super(PlotPhi, self).__init__(parent) self.cmbUnitsPhi = QComboBox(self) units = ["rad", "rad/pi", "deg"] scales = [1., 1./ np.pi, 180./np.pi] for unit, scale in zip(units, scales): self.cmbUnitsPhi.addItem(unit, scale) self.cmbUnitsPhi.setObjectName("cmbUnitsA") self.cmbUnitsPhi.setToolTip("Set unit for phase.") self.cmbUnitsPhi.setCurrentIndex(0) self.cmbUnitsPhi.setSizeAdjustPolicy(QComboBox.AdjustToContents) self.chkWrap = QCheckBox("Wrapped Phase", self) self.chkWrap.setChecked(False) self.chkWrap.setToolTip("Plot phase wrapped to +/- pi") layHControls = QHBoxLayout() # layHControls.addStretch(10) layHControls.addWidget(self.cmbUnitsPhi) layHControls.addWidget(self.chkWrap) layHControls.addStretch(10) # This widget encompasses all control subwidgets: self.frmControls = QFrame(self) self.frmControls.setObjectName("frmControls") self.frmControls.setLayout(layHControls) #---------------------------------------------------------------------- # mplwidget #---------------------------------------------------------------------- self.mplwidget = MplWidget(self) self.mplwidget.layVMainMpl.addWidget(self.frmControls) self.mplwidget.layVMainMpl.setContentsMargins(*params['wdg_margins']) self.setLayout(self.mplwidget.layVMainMpl) self.init_axes() self.draw() # initial drawing # #============================================= # # Signals & Slots # #============================================= self.chkWrap.clicked.connect(self.draw) self.cmbUnitsPhi.currentIndexChanged.connect(self.draw) self.mplwidget.mplToolbar.sigEnabled.connect(self.enable_ui) #------------------------------------------------------------------------------ def init_axes(self): """ Initialize and clear the axes """ # self.ax = self.mplwidget.ax self.ax = self.mplwidget.fig.add_subplot(111) self.ax.clear() self.ax.get_xaxis().tick_bottom() # remove axis ticks on top self.ax.get_yaxis().tick_left() # remove axis ticks right #------------------------------------------------------------------------------ def calc_hf(self): """ (Re-)Calculate the complex frequency response H(f) """ # calculate H_cplx(W) (complex) for W = 0 ... 2 pi: self.W, self.H_cmplx = calc_Hcomplex(fb.fil[0], params['N_FFT'], wholeF=True) # replace nan and inf by finite values, otherwise np.unwrap yields # an array full of nans self.H_cmplx = np.nan_to_num(self.H_cmplx) #------------------------------------------------------------------------------ def enable_ui(self): """ Triggered when the toolbar is enabled or disabled """ self.frmControls.setEnabled(self.mplwidget.mplToolbar.enabled) if self.mplwidget.mplToolbar.enabled: self.init_axes() self.draw() #------------------------------------------------------------------------------ def draw(self): """ Main entry point: Re-calculate |H(f)| and draw the figure if enabled """ if self.mplwidget.mplToolbar.enabled: self.calc_hf() self.update_view() #------------------------------------------------------------------------------ def update_view(self): """ Draw the figure with new limits, scale etc without recalculating H(f) """ self.unitPhi = self.cmbUnitsPhi.currentText() f_S2 = fb.fil[0]['f_S'] / 2. #========= select frequency range to be displayed ===================== #=== shift, scale and select: W -> F, H_cplx -> H_c F = self.W * f_S2 / np.pi if fb.fil[0]['freqSpecsRangeType'] == 'sym': # shift H and F by f_S/2 H = np.fft.fftshift(self.H_cmplx) F -= f_S2 elif fb.fil[0]['freqSpecsRangeType'] == 'half': # only use the first half of H and F H = self.H_cmplx[0:params['N_FFT']//2] F = F[0:params['N_FFT']//2] else: # fb.fil[0]['freqSpecsRangeType'] == 'whole' # use H and F as calculated H = self.H_cmplx y_str = r'$\angle H(\mathrm{e}^{\mathrm{j} \Omega})$ in ' if self.unitPhi == 'rad': y_str += 'rad ' + r'$\rightarrow $' scale = 1. elif self.unitPhi == 'rad/pi': y_str += 'rad' + r'$ / \pi \;\rightarrow $' scale = 1./ np.pi else: y_str += 'deg ' + r'$\rightarrow $' scale = 180./np.pi fb.fil[0]['plt_phiLabel'] = y_str fb.fil[0]['plt_phiUnit'] = self.unitPhi if self.chkWrap.isChecked(): phi_plt = np.angle(H) * scale else: phi_plt = np.unwrap(np.angle(H)) * scale #--------------------------------------------------------- self.ax.clear() # need to clear, doesn't overwrite line_phi, = self.ax.plot(F, phi_plt) #--------------------------------------------------------- self.ax.set_title(r'Phase Frequency Response') self.ax.set_xlabel(fb.fil[0]['plt_fLabel']) self.ax.set_ylabel(y_str) self.ax.set_xlim(fb.fil[0]['freqSpecsRange']) self.redraw() #------------------------------------------------------------------------------ def redraw(self): """ Redraw the canvas when e.g. the canvas size has changed """ self.mplwidget.redraw() #------------------------------------------------------------------------------ def main(): import sys from ..compat import QApplication app = QApplication(sys.argv) mainw = PlotPhi(None) app.setActiveWindow(mainw) mainw.show() sys.exit(app.exec_()) if __name__ == "__main__": main()
python
6,709
"""Inserts the current time (in seconds) into the wiki page.""" revision = "$Rev: 10617 $" url = "$URL: http://svn.edgewall.org/repos/trac/tags/trac-1.0.1/sample-plugins/Timestamp.py $" # # The following shows the code for macro, old-style. # # The `execute` function serves no purpose other than to illustrate # the example, it will not be used anymore. # # ---- (ignore in your own macro) ---- # -- import time # Trac before version 0.11 was using `time` module def execute(hdf, txt, env): t = time.localtime() return "<b>%s</b>" % time.strftime('%c', t) # -- # ---- (ignore in your own macro) ---- # # The following is the converted new-style macro # # ---- (reuse for your own macro) ---- # -- from datetime import datetime # Note: since Trac 0.11, datetime objects are used internally from genshi.builder import tag from trac.util.datefmt import format_datetime, utc from trac.wiki.macros import WikiMacroBase class TimestampMacro(WikiMacroBase): _description = "Inserts the current time (in seconds) into the wiki page." def expand_macro(self, formatter, name, args): t = datetime.now(utc) return tag.b(format_datetime(t, '%c')) # -- # ---- (reuse for your own macro) ----
python
1,220
# Copyright (C) 2020 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Tests for workflow object exports.""" from freezegun import freeze_time import ddt from flask.json import dumps from ggrc_workflows.models import TaskGroupTask, Workflow from integration.ggrc import TestCase from integration.ggrc.models import factories from integration.ggrc_workflows.generator import WorkflowsGenerator from integration.ggrc_workflows.models import factories as wf_factories @ddt.ddt class TestExportEmptyTemplate(TestCase): """Test empty export for all workflow object types.""" def setUp(self): self.client.get("/login") self.headers = { 'Content-Type': 'application/json', "X-Requested-By": "GGRC", "X-export-view": "blocks", } def test_single_object_export(self): """Test empty exports for workflow only.""" data = { "export_to": "csv", "objects": [{"object_name": "Workflow", "fields": "all"}] } response = self.client.post("/_service/export_csv", data=dumps(data), headers=self.headers) self.assertEqual(response.status_code, 200) self.assertIn("Title*", response.data) def test_unit_tip(self): """Test Workflow's Unit column has hint correctly""" data = { "export_to": "csv", "objects": [{"object_name": "Workflow", "fields": "all"}] } response = self.client.post("/_service/export_csv", data=dumps(data), headers=self.headers) self.assertEqual(response.status_code, 200) self.assertIn("Allowed values are:\n{}".format( "\n".join(Workflow.VALID_UNITS)), response.data) def test_multiple_objects(self): """Test empty exports for all workflow object in one query.""" data = [ {"object_name": "Workflow", "fields": "all"}, {"object_name": "TaskGroup", "fields": "all"}, {"object_name": "TaskGroupTask", "fields": "all"}, {"object_name": "Cycle", "fields": "all"}, {"object_name": "CycleTaskGroup", "fields": "all"}, {"object_name": "CycleTaskGroupObjectTask", "fields": "all"}, ] request_body = { "export_to": "csv", "objects": data } response = self.client.post("/_service/export_csv", data=dumps(request_body), headers=self.headers) self.assertEqual(response.status_code, 200) self.assertIn("Workflow,", response.data) self.assertIn("Task Group,", response.data) self.assertIn("Task,", response.data) self.assertIn("Cycle,", response.data) self.assertIn("Cycle Task Group,", response.data) self.assertIn("Cycle Task,", response.data) def test_tips_tg_task(self): """Test if TaskGroupTask date attributes has hints correctly.""" data = { "export_to": "csv", "objects": [{"object_name": "TaskGroupTask", "fields": "all"}] } response = self.client.post("/_service/export_csv", data=dumps(data), headers=self.headers) self.assertEqual(response.status_code, 200) self.assertEqual(2, response.data.count( "{}\nOnly working days are accepted".format(TaskGroupTask.DATE_HINT))) class TestExportMultipleObjects(TestCase): """Test export of multiple objects.""" def setUp(self): self.clear_data() self.client.get("/login") self.wf_generator = WorkflowsGenerator() def test_workflow_task_group_mapping(self): # pylint: disable=invalid-name """Test workflow and task group mappings.""" with freeze_time("2017-03-07"): workflow = wf_factories.WorkflowFactory() workflow_slug = workflow.slug task_group1 = wf_factories.TaskGroupFactory(workflow=workflow) task_group1_slug = task_group1.slug task_group2 = wf_factories.TaskGroupFactory(workflow=workflow) task_group2_slug = task_group2.slug data = [ { "object_name": "Workflow", "filters": { "expression": { "op": {"name": "relevant"}, "object_name": "TaskGroup", "slugs": [task_group1_slug], }, }, "fields": "all", }, { "object_name": "TaskGroup", "filters": { "expression": { "op": {"name": "relevant"}, "object_name": "__previous__", "ids": [0], }, }, "fields": "all", }, ] response = self.export_csv(data) self.assert200(response) response_data = response.data self.assertEqual(3, response_data.count(workflow_slug)) self.assertIn(task_group1_slug, response_data) self.assertIn(task_group2_slug, response_data) def test_tg_task(self): """Test task group task mappings.""" with freeze_time("2017-03-07"): workflow = wf_factories.WorkflowFactory() task_group1 = wf_factories.TaskGroupFactory(workflow=workflow) task_group1_slug = task_group1.slug task_group_task1 = wf_factories.TaskGroupTaskFactory( task_group=task_group1) task_group_task1_slug = task_group_task1.slug task_group_task2 = wf_factories.TaskGroupTaskFactory( task_group=task_group1) task_group_task2_slug = task_group_task2.slug data = [ { "object_name": "TaskGroupTask", "filters": { "expression": { "op": {"name": "relevant"}, "object_name": "TaskGroup", "slugs": [task_group1_slug], }, }, "fields": "all", }, { "object_name": "TaskGroup", "filters": { "expression": { "op": {"name": "relevant"}, "object_name": "__previous__", "ids": ["0"], }, }, "fields": "all", }, ] response = self.export_csv(data) self.assert200(response) response_data = response.data self.assertEqual(3, response_data.count(task_group1_slug)) self.assertIn(task_group_task1_slug, response_data) self.assertIn(task_group_task2_slug, response_data) def test_workflow_cycle_mapping(self): """Test workflow and cycle mappings.""" with freeze_time("2017-03-07"): workflow = wf_factories.WorkflowFactory() workflow_slug = workflow.slug task_group = wf_factories.TaskGroupFactory(workflow=workflow) wf_factories.TaskGroupTaskFactory(task_group=task_group) wf_factories.TaskGroupTaskFactory(task_group=task_group) self.wf_generator.generate_cycle(workflow) self.wf_generator.activate_workflow(workflow) def block(obj, obj_id): return { "object_name": obj, "filters": { "expression": { "op": {"name": "relevant"}, "object_name": "__previous__", "ids": [obj_id], }, }, "fields": "all", } data = [ { "object_name": "Cycle", "filters": { "expression": { "op": {"name": "relevant"}, "object_name": "Workflow", "slugs": [workflow_slug], }, }, "fields": "all", }, block("Workflow", "0"), block("CycleTaskGroup", "0"), block("Cycle", "2"), block("CycleTaskGroupObjectTask", "2"), block("CycleTaskGroup", "4"), ] response = self.export_csv(data) self.assert200(response) response_data = response.data self.assertEqual(3, response_data.count(workflow_slug)) self.assertEqual(4, response_data.count("CYCLEGROUP-")) self.assertEqual(6, response_data.count("CYCLE-")) self.assertEqual(2, response_data.count("CYCLETASK-")) def test_cycle_task_objects(self): """Test cycle task and various objects.""" with freeze_time("2017-03-07"): workflow = wf_factories.WorkflowFactory() task_group = wf_factories.TaskGroupFactory(workflow=workflow) wf_factories.TaskGroupTaskFactory(task_group=task_group) wf_factories.TaskGroupTaskFactory(task_group=task_group) policy = factories.PolicyFactory() policy_slug = policy.slug factories.RelationshipFactory(source=task_group, destination=policy) self.wf_generator.generate_cycle(workflow) self.wf_generator.activate_workflow(workflow) data = [ { "object_name": "CycleTaskGroupObjectTask", "filters": { "expression": { "op": {"name": "relevant"}, "object_name": "Policy", "slugs": [policy_slug], }, }, "fields": "all", }, { "object_name": "Policy", "filters": { "expression": { "op": {"name": "relevant"}, "object_name": "__previous__", "ids": ["0"], }, }, "fields": ["slug", "title"], }, ] response = self.export_csv(data) self.assert200(response) response_data = response.data self.assertEqual(2, response_data.count("CYCLETASK-")) self.assertEqual(3, response_data.count(policy_slug)) def test_wf_indirect_relevant_filters(self): # pylint: disable=invalid-name """Test related filter for indirect relationships on wf objects.""" with freeze_time("2017-03-07"): workflow = wf_factories.WorkflowFactory(title="workflow-1") task_group1 = wf_factories.TaskGroupFactory(workflow=workflow) wf_factories.TaskGroupTaskFactory(task_group=task_group1) wf_factories.TaskGroupTaskFactory(task_group=task_group1) task_group2 = wf_factories.TaskGroupFactory(workflow=workflow) wf_factories.TaskGroupTaskFactory(task_group=task_group2) policy = factories.PolicyFactory() policy_slug = policy.slug factories.RelationshipFactory(source=task_group1, destination=policy) self.wf_generator.generate_cycle(workflow) self.wf_generator.activate_workflow(workflow) def block(obj): return { "object_name": obj, "fields": ["slug"], "filters": { "expression": { "object_name": "Policy", "op": {"name": "relevant"}, "slugs": [policy_slug], }, }, } data = [ block("Workflow"), block("Cycle"), block("CycleTaskGroup"), block("CycleTaskGroupObjectTask"), ] response = self.export_csv(data) self.assert200(response) response_data = response.data wf1 = Workflow.query.filter_by(title="workflow-1").first() cycle = wf1.cycles[0] cycle_tasks = [] for cycle_task in cycle.cycle_task_group_object_tasks: for related_object in cycle_task.related_objects(): if related_object.slug == policy_slug: cycle_tasks.append(cycle_task) break cycle_task_groups = list({cycle_task.cycle_task_group for cycle_task in cycle_tasks}) self.assertEqual(1, response_data.count("WORKFLOW-")) self.assertRegexpMatches(response_data, ",{}[,\r\n]".format(wf1.slug)) self.assertEqual(1, response_data.count("CYCLE-")) self.assertRegexpMatches(response_data, ",{}[,\r\n]".format(cycle.slug)) self.assertEqual(1, response_data.count("CYCLEGROUP-")) self.assertEqual(1, len(cycle_task_groups)) self.assertRegexpMatches(response_data, ",{}[,\r\n]".format( cycle_task_groups[0].slug)) self.assertEqual(2, response_data.count("CYCLETASK-")) self.assertEqual(2, len(cycle_tasks)) for cycle_task in cycle_tasks: self.assertRegexpMatches(response_data, ",{}[,\r\n]".format( cycle_task.slug)) destinations = [ ("Workflow", wf1.slug, 1), ("Cycle", cycle.slug, 1), ("CycleTaskGroupObjectTask", cycle_tasks[0].slug, 1), ("CycleTaskGroupObjectTask", cycle_tasks[1].slug, 1), ] for object_name, slug, count in destinations: data = [{ "object_name": "Policy", "fields": ["slug"], "filters": { "expression": { "object_name": object_name, "op": {"name": "relevant"}, "slugs": [slug], }, }, }] response = self.export_csv(data) self.assert200(response) response_data = response.data self.assertEqual(count, response_data.count(",POLICY-"), "Count for " + object_name) self.assertIn("," + policy_slug, response_data)
python
12,921
#!/usr/bin/env python # coding:utf-8 # Created on Dec. 5, 2015 Sat to enable i18n support in XX-Net. # Based on http://stackoverflow.com/questions/18683905/how-to-use-jinja2-and-its-i18n-extenstion-using-babel-outside-flask # # I. See jinja2: https://github.com/mitsuhiko/jinja2 # II. See MarkupSafe-0.23.tar.gz: https://pypi.python.org/packages/source/M/MarkupSafe/MarkupSafe-0.23.tar.gz # III. See Python babel: https://github.com/python-babel/babel # IV. See pytz-2015.7.tar.gz: https://pypi.python.org/packages/source/p/pytz/pytz-2015.7.tar.gz#md5=252bb731883f37ff9c7f462954e8706d # V. See Language_contry code list: http://www.fincher.org/Utilities/CountryLanguageList.shtml # IMPORTANT: # By the way, module decimal.py and numbers.py are also needed on Windows when run with the bundled Python, # which were already appended to folder python27/1.0/lib. # See for these steps at http://tlphoto.googlecode.com/git/jinja2_i18n_howto.txt # 0. Create the folder structure (no whitespace after the commas!!!) # mkdir -pv ./lang/{en_US,zh_CN,fa_IR,es_VE,de_DE,ja_JP}/LC_MESSAGES/ # 1. Extract # pybabel -v extract -F babel.config -o ./lang/messages.pot ./ # 2. Init/Update # 2.1 Init # pybabel init -l zh_CN -d ./lang -i ./lang/messages.pot # 2.2 Update # pybabel update -l zh_CN -d ./lang -i ./lang/messages.pot # 3. Compile # pybabel compile -f -d ./lang import os import sys import locale # Determines jinja2 and babel library path, and appends them to sys.path current_path = os.path.dirname(os.path.abspath(__file__)) # When run standalonely #if __name__ == '__main__': python_path = os.path.abspath(os.path.join(current_path, os.pardir, 'python27', '1.0')) python_lib = os.path.abspath(os.path.join(python_path, 'lib')) noarch_lib = os.path.abspath(os.path.join(python_lib, 'noarch')) # Michael.X: common lib should put in python27/1.0/lib/noarch, so all platform can use it. # the path struct is not good because some history reason. python27/1.0/ is a win32 env. # Appended modules decimal.py and numbers.py were copied from Python code on Windows, # so they're put in folder python27/1.0/lib if python_lib not in sys.path: sys.path.append(python_lib) # As packages jinja2, markupsafe, babel, pytz are OS-independent, # they're put in folder python27/1.0/lib/noarch if noarch_lib not in sys.path: sys.path.append(noarch_lib) #print("The current path: %s" % current_path) #print("The python path: %s" % python_path) #print(sys.path) import yaml from jinja2 import Environment, FileSystemLoader from babel.support import Translations class Jinja2I18nHelper(): """Demonstrates how to use jinja2 i18n engine to internationalize. A class-encapsulated version. Language files reside under folder lang of the current file location. """ def __init__(self): """Sets up the i18n environment""" # The current language, i.e., the default system language self.current_locale, self.encoding = locale.getdefaultlocale() # tuple, e.g., ('en_US', 'UTF-8') self.extensions = ['jinja2.ext.i18n', 'jinja2.ext.autoescape', 'jinja2.ext.with_'] # Specifies the language path (the i10n path), ./lang which holds all the translations self.locale_dir = os.path.join(current_path, "lang") self.template_dir = "web_ui" # template file root folder self.loader = FileSystemLoader(self.template_dir) self.env = Environment(extensions=self.extensions, loader=self.loader) # add any other env options if needed #print("The current language is %s" % self.current_locale) #print("The locale dir: %s" % self.locale_dir) def refresh_env(self, locale_dir, template_dir): """Refreshes the locale environment by changing the locale directory and the temple file directory.""" self.locale_dir = locale_dir self.template_dir = template_dir self.loader = FileSystemLoader(self.template_dir) self.env = Environment(extensions=self.extensions, loader=self.loader) #print("The current path: %s" % current_path) #print("The locale dir: %s" % self.locale_dir) #print("The current language is %s" % self.current_locale) def render(self, template_name, desired_lang): """Returns the rendered template with the desired language.""" if not desired_lang: desired_lang = self.current_locale # To test simplified Chinese only #desired_lang = "zh_CN" # Simple Chinese desired_locales_list = [desired_lang] #print("Your desired language is %s" % desired_lang) translations = Translations.load(self.locale_dir, desired_locales_list) self.env.install_gettext_translations(translations) template = self.env.get_template(template_name) return template.render().encode('utf-8') # magic here & avoid error UnicodeEncodeError # Creates the global singleton object (?) ihelper = Jinja2I18nHelper() if __name__ == '__main__': # Test cases. If not found, en_US is used instead. # Language_contry code list: http://www.fincher.org/Utilities/CountryLanguageList.shtml #desired_lang = "en_US" # American English desired_lang = "zh_CN" # Simple Chinese #desired_lang = "es_VE" #Venezuela #desired_lang = "de_DE" # Geman #desired_lang = "fa_IR" # Iran-Persian #desired_lang = "ja_JP" # Japanese root_path = os.path.abspath(os.path.join(current_path, os.pardir)) print("--- launcher/web_ui/about.html ---") launcher_path = os.path.abspath(os.path.join(root_path, 'launcher')) print("The launcher_path: %s" % launcher_path) locale_dir = os.path.abspath(os.path.join(launcher_path, 'lang')) template_dir = os.path.abspath(os.path.join(launcher_path, 'web_ui')) ihelper.refresh_env(locale_dir, template_dir) #print( ihelper.render("about.html", desired_lang) ) print("\n--- launcher/web_ui/menu.yaml ---") stream = ihelper.render("menu.yaml", desired_lang) #stream = ihelper.render("menu.yaml", None) print(yaml.load(stream)) # Test locale in module gae_proxy print("\n--- gae_proxy/web_ui/menu.yaml ---") gae_proxy_path = os.path.abspath(os.path.join(root_path, 'gae_proxy')) print("The gae_proxy_path: %s" % gae_proxy_path) locale_dir = os.path.abspath(os.path.join(gae_proxy_path, 'lang')) template_dir = os.path.abspath(os.path.join(gae_proxy_path, 'web_ui')) ihelper.refresh_env(locale_dir, template_dir) stream = ihelper.render("menu.yaml", desired_lang) print(yaml.load(stream))
python
6,597
"""Helper to check if path is safe to remove.""" from pathlib import Path from custom_components.racelandshop.share import get_racelandshop def is_safe_to_remove(path: str) -> bool: """Helper to check if path is safe to remove.""" racelandshop = get_racelandshop() paths = [ Path(f"{racelandshop.core.config_path}/{racelandshop.configuration.appdaemon_path}"), Path(f"{racelandshop.core.config_path}/{racelandshop.configuration.netdaemon_path}"), Path(f"{racelandshop.core.config_path}/{racelandshop.configuration.plugin_path}"), Path(f"{racelandshop.core.config_path}/{racelandshop.configuration.python_script_path}"), Path(f"{racelandshop.core.config_path}/{racelandshop.configuration.theme_path}"), Path(f"{racelandshop.core.config_path}/custom_components/"), ] if Path(path) in paths: return False return True
python
897
# -*- coding: utf-8 -*- import logging import os import sys import time from pythonjsonlogger.jsonlogger import JsonFormatter from sanic.log import DefaultFilter import ujson from jussi.typedefs import WebApp LOG_DATETIME_FORMAT = r'%Y-%m-%dT%H:%M:%S.%s%Z' os.environ['TZ'] = 'UTC' time.tzset() # JsonFormatter.converter = time.gmtime SUPPORTED_LOG_MESSAGE_KEYS = ( 'levelname', 'asctime', # 'created', # 'filename', # 'levelno', # 'module', 'funcName', 'lineno', 'msecs', 'message', 'name', 'timestamp', 'severity' # 'pathname', # 'process', # 'processName', # 'relativeCreated', # 'thread', # 'threadName' ) JSON_LOG_FORMAT = ' '.join( ['%({0:s})'.format(i) for i in SUPPORTED_LOG_MESSAGE_KEYS]) class CustomJsonFormatter(JsonFormatter): def add_fields(self, log_record, record, message_dict): super( CustomJsonFormatter, self).add_fields( log_record, record, message_dict) if getattr(record, 'asctime', None): log_record['timestamp'] = record.asctime if 'asctime' in log_record: del log_record['asctime'] if getattr(record, 'levelname', None): log_record['severity'] = record.levelname if 'levelname' in log_record: del log_record['levelname'] # pylint: disable=no-self-use def _jsonify_log_record(self, log_record): """Returns a json string of the log record.""" return ujson.dumps(log_record) LOGGING = { 'version': 1, 'filters': { 'accessFilter': { '()': DefaultFilter, 'param': [0, 10, 20] }, 'errorFilter': { '()': DefaultFilter, 'param': [30, 40, 50] } }, 'formatters': { 'simple': { '()': CustomJsonFormatter, 'format': '%(asctime)s %(name) %(levelname) %(message)', 'datefmt': LOG_DATETIME_FORMAT, 'json_indent': None }, 'json_access': { '()': CustomJsonFormatter, 'format': '%(asctime) %(name) %(levelname) %(host) ' + '%(request) %(message) %(status) %(byte)', 'datefmt': LOG_DATETIME_FORMAT, 'json_indent': None }, 'json_request': { '()': CustomJsonFormatter, 'format': '%(asctime)s', }, 'json': { '()': CustomJsonFormatter, 'format': JSON_LOG_FORMAT, 'datefmt': LOG_DATETIME_FORMAT, 'json_indent': None } }, 'handlers': { 'internal': { 'class': 'logging.StreamHandler', 'filters': ['accessFilter'], 'formatter': 'simple', 'stream': sys.stderr }, 'accessStream': { 'class': 'logging.StreamHandler', 'filters': ['accessFilter'], 'formatter': 'json_access', 'stream': sys.stderr }, 'errorStream': { 'class': 'logging.StreamHandler', 'filters': ['errorFilter'], 'formatter': 'simple', 'stream': sys.stderr }, 'jussiStdOut': { 'class': 'logging.StreamHandler', 'formatter': 'json' }, 'jussiRequest': { 'class': 'logging.StreamHandler', 'formatter': 'json_request' } }, 'loggers': { 'sanic': { 'level': logging.INFO, 'handlers': ['errorStream'] }, 'network': { 'level': logging.INFO, 'handlers': [] }, 'jussi': { 'level': logging.INFO, 'handlers': ['jussiStdOut'] }, 'jussi_debug': { 'level': logging.INFO, 'handlers': ['jussiStdOut'] }, 'jussi_request': { 'level': logging.INFO, 'handlers': ['jussiRequest'] }, } } def setup_logging(app: WebApp, log_level: str = None) -> WebApp: LOG_LEVEL = log_level or getattr(logging, os.environ.get('LOG_LEVEL', 'INFO')) LOGGING['loggers']['sanic']['level'] = LOG_LEVEL LOGGING['loggers']['network']['level'] = LOG_LEVEL LOGGING['loggers']['jussi']['level'] = LOG_LEVEL LOGGING['loggers']['jussi_debug']['level'] = os.environ.get( 'REQUEST_LOG_LEVEL', logging.INFO) LOGGING['loggers']['jussi_request']['level'] = LOG_LEVEL logger = logging.getLogger('jussi') logger.info('configuring jussi logger') app.config.logger = logger return app
python
4,663
"""InfluxDBClient is client for API defined in https://github.com/influxdata/influxdb/blob/master/http/swagger.yml.""" from __future__ import absolute_import import configparser import os import base64 from influxdb_client import Configuration, ApiClient, HealthCheck, HealthService, Ready, ReadyService from influxdb_client.client.authorizations_api import AuthorizationsApi from influxdb_client.client.bucket_api import BucketsApi from influxdb_client.client.delete_api import DeleteApi from influxdb_client.client.labels_api import LabelsApi from influxdb_client.client.organizations_api import OrganizationsApi from influxdb_client.client.query_api import QueryApi, QueryOptions from influxdb_client.client.tasks_api import TasksApi from influxdb_client.client.users_api import UsersApi from influxdb_client.client.write_api import WriteApi, WriteOptions, PointSettings class InfluxDBClient(object): """InfluxDBClient is client for InfluxDB v2.""" def __init__(self, url, token, debug=None, timeout=10_000, enable_gzip=False, org: str = None, default_tags: dict = None, **kwargs) -> None: """ Initialize defaults. :param url: InfluxDB server API url (ex. http://localhost:8086). :param token: auth token :param debug: enable verbose logging of http requests :param timeout: HTTP client timeout setting for a request specified in milliseconds. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param enable_gzip: Enable Gzip compression for http requests. Currently only the "Write" and "Query" endpoints supports the Gzip compression. :param org: organization name (used as a default in query and write API) :key bool verify_ssl: Set this to false to skip verifying SSL certificate when calling API from https server. :key str ssl_ca_cert: Set this to customize the certificate file to verify the peer. :key str proxy: Set this to configure the http proxy to be used (ex. http://localhost:3128) :key str proxy_headers: A dictionary containing headers that will be sent to the proxy. Could be used for proxy authentication. :key int connection_pool_maxsize: Number of connections to save that can be reused by urllib3. Defaults to "multiprocessing.cpu_count() * 5". :key urllib3.util.retry.Retry retries: Set the default retry strategy that is used for all HTTP requests except batching writes. As a default there is no one retry strategy. :key bool auth_basic: Set this to true to enable basic authentication when talking to a InfluxDB 1.8.x that does not use auth-enabled but is protected by a reverse proxy with basic authentication. (defaults to false, don't set to true when talking to InfluxDB 2) :key list[str] profilers: list of enabled Flux profilers """ self.url = url self.token = token self.org = org self.default_tags = default_tags conf = _Configuration() if self.url.endswith("/"): conf.host = self.url[:-1] else: conf.host = self.url conf.enable_gzip = enable_gzip conf.debug = debug conf.verify_ssl = kwargs.get('verify_ssl', True) conf.ssl_ca_cert = kwargs.get('ssl_ca_cert', None) conf.proxy = kwargs.get('proxy', None) conf.proxy_headers = kwargs.get('proxy_headers', None) conf.connection_pool_maxsize = kwargs.get('connection_pool_maxsize', conf.connection_pool_maxsize) conf.timeout = timeout auth_token = self.token auth_header_name = "Authorization" auth_header_value = "Token " + auth_token auth_basic = kwargs.get('auth_basic', False) if auth_basic: auth_header_value = "Basic " + base64.b64encode(token.encode()).decode() retries = kwargs.get('retries', False) self.profilers = kwargs.get('profilers', None) self.api_client = ApiClient(configuration=conf, header_name=auth_header_name, header_value=auth_header_value, retries=retries) def __enter__(self): """ Enter the runtime context related to this object. It will bind this method’s return value to the target(s) specified in the `as` clause of the statement. return: self instance """ return self def __exit__(self, exc_type, exc_value, traceback): """Exit the runtime context related to this object and close the client.""" self.close() @classmethod def from_config_file(cls, config_file: str = "config.ini", debug=None, enable_gzip=False): """ Configure client via configuration file. The configuration has to be under 'influx' section. The supported formats: - https://docs.python.org/3/library/configparser.html - https://toml.io/en/ Configuration options: - url - org - token - timeout, - verify_ssl - ssl_ca_cert - connection_pool_maxsize - auth_basic - profilers - proxy config.ini example:: [influx2] url=http://localhost:8086 org=my-org token=my-token timeout=6000 connection_pool_maxsize=25 auth_basic=false profilers=query,operator proxy=http:proxy.domain.org:8080 [tags] id = 132-987-655 customer = California Miner data_center = ${env.data_center} config.toml example:: [influx2] url = "http://localhost:8086" token = "my-token" org = "my-org" timeout = 6000 connection_pool_maxsize = 25 auth_basic = false profilers="query, operator" proxy = "http://proxy.domain.org:8080" [tags] id = "132-987-655" customer = "California Miner" data_center = "${env.data_center}" """ config = configparser.ConfigParser() config.read(config_file) def config_value(key: str): return config['influx2'][key].strip('"') url = config_value('url') token = config_value('token') timeout = None if config.has_option('influx2', 'timeout'): timeout = config_value('timeout') org = None if config.has_option('influx2', 'org'): org = config_value('org') verify_ssl = True if config.has_option('influx2', 'verify_ssl'): verify_ssl = config_value('verify_ssl') ssl_ca_cert = None if config.has_option('influx2', 'ssl_ca_cert'): ssl_ca_cert = config_value('ssl_ca_cert') connection_pool_maxsize = None if config.has_option('influx2', 'connection_pool_maxsize'): connection_pool_maxsize = config_value('connection_pool_maxsize') auth_basic = False if config.has_option('influx2', 'auth_basic'): auth_basic = config_value('auth_basic') default_tags = None if config.has_section('tags'): tags = {k: v.strip('"') for k, v in config.items('tags')} default_tags = dict(tags) profilers = None if config.has_option('influx2', 'profilers'): profilers = [x.strip() for x in config_value('profilers').split(',')] proxy = None if config.has_option('influx2', 'proxy'): proxy = config_value('proxy') return cls(url, token, debug=debug, timeout=_to_int(timeout), org=org, default_tags=default_tags, enable_gzip=enable_gzip, verify_ssl=_to_bool(verify_ssl), ssl_ca_cert=ssl_ca_cert, connection_pool_maxsize=_to_int(connection_pool_maxsize), auth_basic=_to_bool(auth_basic), profilers=profilers, proxy=proxy) @classmethod def from_env_properties(cls, debug=None, enable_gzip=False): """ Configure client via environment properties. Supported environment properties: - INFLUXDB_V2_URL - INFLUXDB_V2_ORG - INFLUXDB_V2_TOKEN - INFLUXDB_V2_TIMEOUT - INFLUXDB_V2_VERIFY_SSL - INFLUXDB_V2_SSL_CA_CERT - INFLUXDB_V2_CONNECTION_POOL_MAXSIZE - INFLUXDB_V2_AUTH_BASIC """ url = os.getenv('INFLUXDB_V2_URL', "http://localhost:8086") token = os.getenv('INFLUXDB_V2_TOKEN', "my-token") timeout = os.getenv('INFLUXDB_V2_TIMEOUT', "10000") org = os.getenv('INFLUXDB_V2_ORG', "my-org") verify_ssl = os.getenv('INFLUXDB_V2_VERIFY_SSL', "True") ssl_ca_cert = os.getenv('INFLUXDB_V2_SSL_CA_CERT', None) connection_pool_maxsize = os.getenv('INFLUXDB_V2_CONNECTION_POOL_MAXSIZE', None) auth_basic = os.getenv('INFLUXDB_V2_AUTH_BASIC', "False") prof = os.getenv("INFLUXDB_V2_PROFILERS", None) profilers = None if prof is not None: profilers = [x.strip() for x in prof.split(',')] default_tags = dict() for key, value in os.environ.items(): if key.startswith("INFLUXDB_V2_TAG_"): default_tags[key[16:].lower()] = value return cls(url, token, debug=debug, timeout=_to_int(timeout), org=org, default_tags=default_tags, enable_gzip=enable_gzip, verify_ssl=_to_bool(verify_ssl), ssl_ca_cert=ssl_ca_cert, connection_pool_maxsize=_to_int(connection_pool_maxsize), auth_basic=_to_bool(auth_basic), profilers=profilers) def write_api(self, write_options=WriteOptions(), point_settings=PointSettings()) -> WriteApi: """ Create a Write API instance. :param point_settings: :param write_options: write api configuration :return: write api instance """ return WriteApi(influxdb_client=self, write_options=write_options, point_settings=point_settings) def query_api(self, query_options: QueryOptions = QueryOptions()) -> QueryApi: """ Create a Query API instance. :param query_options: optional query api configuration :return: Query api instance """ return QueryApi(self, query_options) def close(self): """Shutdown the client.""" self.__del__() def __del__(self): """Shutdown the client.""" if self.api_client: self.api_client.__del__() self.api_client = None def buckets_api(self) -> BucketsApi: """ Create the Bucket API instance. :return: buckets api """ return BucketsApi(self) def authorizations_api(self) -> AuthorizationsApi: """ Create the Authorizations API instance. :return: authorizations api """ return AuthorizationsApi(self) def users_api(self) -> UsersApi: """ Create the Users API instance. :return: users api """ return UsersApi(self) def organizations_api(self) -> OrganizationsApi: """ Create the Organizations API instance. :return: organizations api """ return OrganizationsApi(self) def tasks_api(self) -> TasksApi: """ Create the Tasks API instance. :return: tasks api """ return TasksApi(self) def labels_api(self) -> LabelsApi: """ Create the Labels API instance. :return: labels api """ return LabelsApi(self) def health(self) -> HealthCheck: """ Get the health of an instance. :return: HealthCheck """ health_service = HealthService(self.api_client) try: health = health_service.get_health() return health except Exception as e: return HealthCheck(name="influxdb", message=str(e), status="fail") def ready(self) -> Ready: """ Get The readiness of the InfluxDB 2.0. :return: Ready """ ready_service = ReadyService(self.api_client) return ready_service.get_ready() def delete_api(self) -> DeleteApi: """ Get the delete metrics API instance. :return: delete api """ return DeleteApi(self) class _Configuration(Configuration): def __init__(self): Configuration.__init__(self) self.enable_gzip = False def update_request_header_params(self, path: str, params: dict): super().update_request_header_params(path, params) if self.enable_gzip: # GZIP Request if path == '/api/v2/write': params["Content-Encoding"] = "gzip" params["Accept-Encoding"] = "identity" pass # GZIP Response if path == '/api/v2/query': # params["Content-Encoding"] = "gzip" params["Accept-Encoding"] = "gzip" pass pass pass def update_request_body(self, path: str, body): _body = super().update_request_body(path, body) if self.enable_gzip: # GZIP Request if path == '/api/v2/write': import gzip if isinstance(_body, bytes): return gzip.compress(data=_body) else: return gzip.compress(bytes(_body, "utf-8")) return _body def _to_bool(bool_value): return str(bool_value).lower() in ("yes", "true") def _to_int(int_value): return int(int_value) if int_value is not None else None
python
14,169
from django.conf import settings from telegram import Bot from telegram.ext import ( Dispatcher, CommandHandler, MessageHandler, Filters, CallbackQueryHandler, ConversationHandler ) from .commands.menu import ( claim, chat_support, auth, faq, personal_account ) from .commands.menu.auth import PHONE, ADDRESS, phone, cancel, address from .commands.menu.claim import CITY_CLAIM, ADDRESS_CLAIM, cancel_claim, address_claim, city_claim, phone_claim, \ PHONE_CLAIM from .commands import base_commands from .commands import admin_commands from .commands.admin_commands import TEXT, USER_LIST BACK = 'back' def setup(): tgbot = Bot(settings.TELEGRAM_BOT_TOKEN) if settings.TELEGRAM_BOT_WEBHOOK_ENABLED: tgbot.set_webhook( settings.TELEGRAM_BOT_WEBHOOK_URL + settings.TELEGRAM_BOT_WEBHOOK_PATH ) dp = Dispatcher(tgbot, None) # Authorization conv_handler_auth = ConversationHandler( entry_points=[MessageHandler(Filters.regex('👤 Особистий кабінет'), auth)], states={ PHONE: [MessageHandler(Filters.contact, phone)], ADDRESS: [CallbackQueryHandler(address)], }, fallbacks=[CommandHandler('cancel', cancel)], ) # Claim conv_handler_claim = ConversationHandler( entry_points=[MessageHandler(Filters.regex('🔌 Заявка на підключення'), claim)], states={ CITY_CLAIM: [ MessageHandler(Filters.text(['📍 Кропивницький', '📍 Знам`янка']), city_claim, pass_user_data=True)], ADDRESS_CLAIM: [MessageHandler(Filters.all, address_claim, pass_user_data=True)], PHONE_CLAIM: [MessageHandler(Filters.contact, phone_claim, pass_user_data=True)], }, fallbacks=[CommandHandler('cancel', cancel_claim)], ) # Mailing to bot users conv_handler_mailing = ConversationHandler( entry_points=[CommandHandler('mailing_message', admin_commands.mailing_message)], states={ TEXT: [MessageHandler(Filters.all, admin_commands.text_message, pass_user_data=True)], USER_LIST: [MessageHandler(Filters.all, admin_commands.mailing_start, pass_user_data=True)], }, fallbacks=[CommandHandler('cancel', admin_commands.cancel_mailing)], ) # HANDLERS ADD ------------------------- # Base commands dp.add_handler(CommandHandler('start', base_commands.command_start)) dp.add_handler(CommandHandler('help', base_commands.command_help)) # Conversations dp.add_handler(conv_handler_auth) # Authorization dp.add_handler(conv_handler_claim) # Claims # admin commands dp.add_handler(CommandHandler('admin', admin_commands.admin_help)) dp.add_handler(conv_handler_mailing) # Mailing to all bot users # FAQ dp.add_handler(CommandHandler('faq', faq)) dp.add_handler(MessageHandler(Filters.regex('💡 F.A.Q'), faq)) dp.add_handler(CallbackQueryHandler(base_commands.inline_button)) # pattern='main' dp.add_handler(MessageHandler(Filters.regex('✉️ Чат з оператором'), chat_support)) # User menu dp.add_handler(MessageHandler(Filters.regex('👁 Інформація про користувача'), personal_account.user_info)) dp.add_handler(MessageHandler(Filters.regex('🌐 Мій тариф'), personal_account.tariff_plan)) dp.add_handler(MessageHandler(Filters.regex('📺 Телебачення'), personal_account.tv_tariff_plan)) dp.add_handler(MessageHandler(Filters.regex('💳 Фінансові операції'), personal_account.financial_operations_info)) # dp.add_handler(MessageHandler(Filters.all, base_commands.unknown)) dp.add_error_handler(base_commands.error_handler) # ------------------------------------ return tgbot, dp bot, dispatcher = setup()
python
3,756
"""Walk result example for a single timeserie""" import lisptick HOST = "uat.lisptick.org" PORT = 12006 def main(): """Ask for temperature at Poitiers airport""" conn = lisptick.Socket(HOST, PORT) request = """(timeserie @"t" "meteonet" "86027001" 2017-07-06)""" # call show_value for each value one by one, as soon as it arrives conn.walk_result(request, print_value) def print_value(_, __, value): """reader and uid are useless as result is a single timeserie""" print(value) if __name__ == "__main__": main()
python
548
''' ================================================ DOWNLOAD_AUDIOSET REPOSITORY ================================================ repository name: download_audioset repository version: 1.0 repository link: https://github.com/jim-schwoebel/download_audioset author: Jim Schwoebel author contact: [email protected] description: downloads the raw audio files from AudioSet (released by Google). license category: opensource license: Apache 2.0 license organization name: NeuroLex Laboratories, Inc. location: Seattle, WA website: https://neurolex.ai release date: 2018-11-08 This code (download_audioset) is hereby released under a Apache 2.0 license license. For more information, check out the license terms below. ================================================ SPECIAL NOTES ================================================ This script parses through the entire balanced audioset dataset and downloads all the raw audio files. The files are arranged in folders according to their representative classes. Please ensure that you have roughly 35GB of free space on your computer before downloading the files. Note that it may take up to 2 days to fully download all the files. Enjoy! - :) -Jim ================================================ LICENSE TERMS ================================================ Copyright 2018 NeuroLex Laboratories, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ================================================ SERVICE STATEMENT ================================================ If you are using the code written for a larger project, we are happy to consult with you and help you with deployment. Our team has >10 world experts in Kafka distributed architectures, microservices built on top of Node.js / Python / Docker, and applying machine learning to model speech and text data. We have helped a wide variety of enterprises - small businesses, researchers, enterprises, and/or independent developers. If you would like to work with us let us know @ [email protected]. ''' ################################################################################ ## IMPORT STATEMENTS ## ################################################################################ import pafy, os, shutil, time, ffmpy from natsort import natsorted import pandas as pd import soundfile as sf from tqdm import tqdm ################################################################################ ## HELPER FUNCTIONS ## ################################################################################ #function to clean labels def convertlabels(sortlist,labels,textlabels): clabels=list() try: index=labels.index(sortlist) clabel=textlabels[index] #pull out converted label clabels.append(clabel) except: clabels=[] return clabels def download_audio(link): listdir=os.listdir() os.system("youtube-dl -f 'bestaudio[ext=m4a]' '%s'"%(link)) listdir2=os.listdir() filename='' for i in range(len(listdir2)): if listdir2[i] not in listdir and listdir2[i].endswith('.m4a'): filename=listdir2[i] break return filename ################################################################################ ## MAIN SCRIPT ## ################################################################################ defaultdir=os.getcwd() os.chdir(defaultdir) #load labels of the videos #number, label, words loadfile=pd.read_excel('labels.xlsx') number=loadfile.iloc[:,0].tolist() labels=loadfile.iloc[:,1].tolist() textlabels=loadfile.iloc[:,2].tolist() #remove spaces for folders for i in range(len(textlabels)): textlabels[i]=textlabels[i].replace(' ','') #now load data for youtube loadfile2=pd.read_excel('unbalanced_train_segments.xlsx') # ylabels have to be cleaned to make a good list (CSV --> LIST) yid=loadfile2.iloc[:,0].tolist()[2:] ystart=loadfile2.iloc[:,1].tolist()[2:] yend=loadfile2.iloc[:,2].tolist()[2:] ylabels=loadfile2.iloc[:,3].tolist()[2:] print(set(ylabels)) #make folders try: defaultdir2=os.getcwd()+'/audiosetdata/' os.chdir(os.getcwd()+'/audiosetdata') except: defaultdir2=os.getcwd()+'/audiosetdata/' os.mkdir(os.getcwd()+'/audiosetdata') os.chdir(os.getcwd()+'/audiosetdata') existing_wavfiles=list() for i in range(len(textlabels)): try: os.mkdir(textlabels[i]) except: os.chdir(textlabels[i]) listdir=os.listdir() for j in range(len(listdir)): if listdir[j].endswith('.wav'): existing_wavfiles.append(listdir[j]) os.chdir(defaultdir2) # get last file checkpoint to leave off existing_wavfiles=natsorted(existing_wavfiles) print(existing_wavfiles) try: lastfile=int(existing_wavfiles[-1][7:][0:-4]) except: lastfile=0 #iterate through entire CSV file, look for '--' if found, find index, delete section, then go to next index slink='https://www.youtube.com/watch?v=' for i in tqdm(range(len(yid))): if i < lastfile: print('skipping, already downloaded file...') else: link=slink+yid[i] start=float(ystart[i]) end=float(yend[i]) print(ylabels[i]) clabels=convertlabels(ylabels[i],labels,textlabels) print(clabels) if clabels != []: #change to the right directory newdir=defaultdir2+clabels[0]+'/' os.chdir(newdir) #if it is the first download, pursue this path to download video lastdir=os.getcwd()+'/' if 'snipped'+str(i)+'.wav' not in os.listdir(): try: # use YouTube DL to download audio filename=download_audio(link) extension='.m4a' #get file extension and convert to .wav for processing later os.rename(filename,'%s%s'%(str(i),extension)) filename='%s%s'%(str(i),extension) if extension not in ['.wav']: xindex=filename.find(extension) filename=filename[0:xindex] ff=ffmpy.FFmpeg( inputs={filename+extension:None}, outputs={filename+'.wav':None} ) ff.run() os.remove(filename+extension) file=filename+'.wav' data,samplerate=sf.read(file) totalframes=len(data) totalseconds=totalframes/samplerate startsec=start startframe=samplerate*startsec endsec=end endframe=samplerate*endsec # print(startframe) # print(endframe) sf.write('snipped'+file, data[int(startframe):int(endframe)], samplerate) snippedfile='snipped'+file os.remove(file) except: print('no urls') #sleep 3 second sleep to prevent IP from getting banned time.sleep(2) else: print('skipping, already downloaded file...')
python
8,155
import copy def dict_merge(dict1, dict2): """ recursive update (not in-place). dict2 has precendence for equal keys. """ dict1 = copy.deepcopy(dict1) for key in dict2: val = dict2[key] if type(val) is dict: # merge dictionaries if key in dict1 and type(dict1[key]) is dict: dict1[key] = dict_merge(dict1[key], val) else: dict1[key] = val else: dict1[key] = val return dict1
python
509
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # # qooxdoo - the new era of web development # # http://qooxdoo.org # # Copyright: # 2006-2010 1&1 Internet AG, Germany, http://www.1und1.de # # License: # MIT: https://opensource.org/licenses/MIT # See the LICENSE file in the project's top-level directory for details. # # Authors: # * Sebastian Werner (wpbasti) # * Andreas Ecker (ecker) # * Fabian Jakobs (fjakobs) # ################################################################################ ## # MODULE DESCRIPTIOIN # # api.py -- Generates a tree of documentation nodes from a JavaScript synatx # tree, walking the syntax tree and picking out ecmascript.frontend. # comment nodes; uses ecmascript.frontend.tree.Node for the tree; # creates a suitable tree structure to hold the individual JSDoc # comments (which are -unfortunately- formatted in e.f.comment into # HTML). ## import sys, os, re, string, copy from ecmascript.frontend import tree, Comment, lang from ecmascript.frontend import treeutil from ecmascript.frontend import treegenerator from ecmascript.frontend.treegenerator import PackerFlags as pp from ecmascript.transform.optimizer import variantoptimizer # ugly here from generator import Context ######################################################################################## # # MAIN # ######################################################################################## class DocException (Exception): def __init__ (self, msg, syntaxItem): Exception.__init__(self, msg) self.node = syntaxItem def createDoc(syntaxTree, docTree = None): if not docTree: docTree = tree.Node("doctree") attachMap = {} # {"targetclass#targetmethod" : method_docnode} defineNode = treeutil.findQxDefine(syntaxTree) if defineNode != None: variant = treeutil.selectNode(defineNode, "operand").toJS(pp).split(".")[1].lower() # 'class' in 'qx.Class.define' handleClassDefinition(docTree, defineNode, variant) attachMap = findAttachMethods(docTree) ret = (docTree, False, attachMap) return ret def createPackageDoc(text, packageName, docTree = None): if not docTree: docTree = tree.Node("doctree") package = getPackageNode(docTree, packageName) commentAttributes = Comment.Comment(text).parse(want_errors=True) # check for JSDoc issues (no filtering) for attrib in commentAttributes: if 'error' in attrib: lineno = attrib['line'] # assume the comment text is the only contents of the package odc msg = "%s (%s): %s" % (packageName, lineno, attrib['message']) msg += (": %s" % attrib['text']) if 'text' in attrib and attrib['text'] else '' Context.console.warn(msg) # Read description, see attributes for attrib in commentAttributes: # Add description if attrib["category"] == "description": package = addChildIf(package, *(handleJSDocDecsription(attrib))) elif attrib["category"] == "see": package = addChildIf(package, *(handleJSDocSee(attrib))) return docTree def handleClassDefinition(docTree, callNode, variant): params = callNode.getChild("arguments") className = params.children[0].get("value") if len(params.children) > 1: classMap = params.children[1] else: classMap = {} cls_cmnt_node = treeutil.findLeftmostChild(callNode.getChild("operand")) commentAttributes = Comment.parseNode(cls_cmnt_node)[-1] classNode = classNodeFromDocTree(docTree, className, commentAttributes) if variant == "class": classNode.set("type", "class") type = treeutil.selectNode(params, "2/keyvalue[@key='type']/value/constant/@value") if type == "singleton": classNode.set("isSingleton", True) elif type == "abstract": classNode.set("isAbstract", True) else: classNode.set("type", variant) handleDeprecated(classNode, commentAttributes) handleAccess(classNode, commentAttributes) handleChildControls(callNode, classNode, className, commentAttributes) try: children = classMap.children except AttributeError: return for keyvalueItem in children: if keyvalueItem.type != "keyvalue": continue key = keyvalueItem.get("key") valueItem = keyvalueItem.getChild("value").getFirstChild() # print "KEY: %s = %s" % (key, valueItem.type) if key == "extend": if variant in ("class", "bootstrap"): handleClassExtend(valueItem, classNode, docTree, className) elif variant == "interface": handleInterfaceExtend(valueItem, classNode, docTree, className) elif key == "include": handleMixins(valueItem, classNode, docTree, className) elif key == "implement": handleInterfaces(valueItem, classNode, docTree) elif key == "construct": handleConstructor(valueItem, classNode) elif key == "statics": handleStatics(valueItem, classNode) elif key == "properties": handleProperties(valueItem, classNode) elif key == "members": handleMembers(valueItem, classNode) elif key == "events": handleEvents(valueItem, classNode) handleSingleton(classNode, docTree) if not classNode.hasChild("desc"): addError(classNode, "Class documentation is missing.", callNode) def handleClassExtend(valueItem, classNode, docTree, className): superClassName = (treeutil.assembleVariable(valueItem))[0] superClassNode = classNodeFromDocTree(docTree, superClassName) childClasses = superClassNode.get("childClasses", False) if childClasses: childClasses += "," + className else: childClasses = className superClassNode.set("childClasses", childClasses) classNode.set("superClass", superClassName) def handleInterfaceExtend(valueItem, classNode, docTree, className): superInterfaceNames = treeutil.variableOrArrayNodeToArray(valueItem) for superInterface in superInterfaceNames: superInterfaceNode = classNodeFromDocTree(docTree, superInterface) childInterfaces = superInterfaceNode.get("childClasses", False) if childInterfaces: childInterfaces += "," + className else: childInterfaces = className superInterfaceNode.set("childClasses", childInterfaces) node = tree.Node("class") node.set("type", "interface") node.set("name", superInterface) packageName = superInterface[:superInterface.rindex(".")] node.set("packageName", packageName) classNode.addListChild("superInterfaces", node) #superInterfaceNode.type = "interface" #classNode.addListChild("superInterfaces", superInterfaceNode) # example for string-valued attributes["superInterfaces"] property #superInterfaces = classNode.get("superInterfaces", False) #if superInterfaces: # superInterfaces += "," + superInterface #else: # superInterfaces = superInterface #classNode.set("superInterfaces", superInterfaces) return def handleMixins(item, classNode, docTree, className): try: # direct symbol or list of symbols mixins = treeutil.variableOrArrayNodeToArray(item) except tree.NodeAccessException: try: # call to qx.core.Environment.filter filterMap = variantoptimizer.getFilterMap(item, classNode.get("fullName")) assert filterMap includeSymbols = [] for key, node in filterMap.items(): # to select the current environment variant, add something like: # if key not in variants or (key in variants and bool(variants[key]): # map value has to be variable variable = node.children[0] assert variable.isVar() symbol, isComplete = treeutil.assembleVariable(variable) assert isComplete includeSymbols.append(symbol) mixins = includeSymbols except AssertionError: Context.console.warn("Illegal include definition in " + classNode.get("fullName")) return for mixin in mixins: mixinNode = classNodeFromDocTree(docTree, mixin) includer = mixinNode.get("includer", False) if includer: includer += "," + className else: includer = className mixinNode.set("includer", includer) classNode.set("mixins", ",".join(mixins)) def handleSingleton(classNode, docTree): if classNode.get("isSingleton", False) == True: className = classNode.get("fullName") functionCode = ("/**\n" "* Returns a singleton instance of this class. On the first call the class\n" "* is instantiated by calling the constructor with no arguments. All following\n" "* calls will return this instance.\n" "*\n" '* This method has been added by setting the "type" key in the class definition\n' '* ({@link qx.Class#define}) to "singleton".\n' "*\n" "* @return {%s} The singleton instance of this class.\n" "*/\n" "function() {}") % className node = treeutil.compileString(functionCode) commentAttributes = Comment.parseNode(node)[-1] docNode = handleFunction(node, "getInstance", commentAttributes, classNode) docNode.set("isStatic", True) classNode.addListChild("methods-static", docNode) def handleInterfaces(item, classNode, docTree): className = classNode.get("fullName") try: interfaces = treeutil.variableOrArrayNodeToArray(item) except tree.NodeAccessException: Context.console.warn("") Context.console.warn("Illegal implement definition in " + classNode.get("fullName")) return for interface in interfaces: interfaceNode = classNodeFromDocTree(docTree, interface) impl = interfaceNode.get("implementations", False) if impl: impl += "," + className else: impl = className interfaceNode.set("implementations", impl) classNode.set("interfaces", ",".join(interfaces)) def handleConstructor(ctorItem, classNode): if ctorItem and ctorItem.type == "function": commentAttributes = Comment.parseNode(ctorItem.parent.parent)[-1] ctor = handleFunction(ctorItem, "ctor", commentAttributes, classNode, reportMissingDesc=False) ctor.set("isCtor", True) classNode.addListChild("constructor", ctor) def handleStatics(item, classNode): for key, value in treeutil.mapNodeToMap(item).items(): keyvalue = value.parent value = value.getFirstChild() commentAttributes = Comment.parseNode(keyvalue)[-1] # handle @signature if value.type != "function": for docItem in commentAttributes: if docItem["category"] == "signature": js_string = 'function(' + ",".join(docItem['arguments']) + '){}' value = treeutil.compileString(js_string) #TODO: Warn if syntax error # Function if value.type == "function": node = handleFunction(value, key, commentAttributes, classNode) node.set("isStatic", True) if classNode.get("type", False) == "mixin": node.set("isMixin", True) classNode.addListChild("methods-static", node) # Constant elif not key[:2] == "$$": handleConstantDefinition(keyvalue, classNode) def handleMembers(item, classNode): for key, value in treeutil.mapNodeToMap(item).items(): keyvalue = value.parent value = value.getFirstChild() commentAttributes = Comment.parseNode(keyvalue)[-1] # handle @signature signatureError = None if value.type != "function": for docItem in commentAttributes: if docItem["category"] == "signature": if "error" in docItem: signatureError = "%s: %s" % (docItem["category"], docItem["message"]) value = treeutil.compileString('function(){}') continue js_string = 'function(' + ",".join(docItem['arguments']) + '){}' value = treeutil.compileString(js_string) if value.type == "function": node = handleFunction(value, key, commentAttributes, classNode) if classNode.get("type", False) == "mixin": node.set("isMixin", True) if signatureError: addError(node, signatureError) classNode.addListChild("methods", node) def generatePropertyMethods(propertyName, classNode, generatedMethods): if propertyName[:2] == "__": access = "__" name = propertyName[2:] elif propertyName[:1] == "_": access = "_" name = propertyName[1:] else: access = "" name = propertyName name = name[0].upper() + name[1:] propData = { access + "set" + name : ("/**\n" "* Sets the user value of the property <code>%s</code>.\n" "*\n" "* For further details take a look at the property definition: {@link #%s}.\n" "*\n" "* @param value {var} New value for property <code>%s</code>.\n" "* @return {var} The unmodified incoming value.\n" "*/\n" "function (value) {}; ") % (propertyName, propertyName, propertyName), access + "get" + name : ("/**\n" "* Returns the (computed) value of the property <code>%s</code>.\n" "*\n" "* For further details take a look at the property definition: {@link #%s}.\n" "*\n" "* @return {var} (Computed) value of <code>%s</code>.\n" "*/\n" "function () {}; ") % (propertyName, propertyName, propertyName), access + "reset" + name : ("/**\n" "* Resets the user value of the property <code>%s</code>.\n" "*\n" "* The computed value falls back to the next available value e.g. appearance, init or\n" "* inheritance value depeneding on the property configuration and value availability.\n" "*\n" "* For further details take a look at the property definition: {@link #%s}.\n" "*/\n" "function () {}; ") % (propertyName, propertyName), access + "init" + name : ("/**\n" "* Calls the apply method and dispatches the change event of the property <code>%s</code>\n" "* with the default value defined by the class developer. This function can\n" "* only be called from the constructor of a class.\n" "*\n" "* For further details take a look at the property definition: {@link #%s}.\n" "*\n" "* @protected\n" "* @param value {var} Initial value for property <code>%s</code>.\n" "* @return {var} the default value\n" "*/\n" "function (value) {}; ") % (propertyName, propertyName, propertyName), access + "toggle" + name : ("/**\n" "* Toggles the (computed) value of the boolean property <code>%s</code>.\n" "*\n" "* For further details take a look at the property definition: {@link #%s}.\n" "*\n" "* @return {Boolean} the new value\n" "*/\n" "function () {}; ") % (propertyName, propertyName), access + "is" + name : ("/**\n" "* Check whether the (computed) value of the boolean property <code>%s</code> equals <code>true</code>.\n" "*\n" "* For further details take a look at the property definition: {@link #%s}.\n" "*\n" "* @return {Boolean} Whether the property equals <code>true</code>.\n" "*/\n" "function () {}; ") % (propertyName, propertyName) } for funcName in generatedMethods: funcName = access + funcName + name functionCode = propData[funcName] node = treeutil.compileString(functionCode) node.getRoot().set('file', '|[email protected]|') commentAttributes = Comment.parseNode(node)[-1] docNode = handleFunction(node, funcName, commentAttributes, classNode, False, False) docNode.remove("line") docNode.set("fromProperty", propertyName) classNode.addListChild("methods", docNode) def handlePropertyDefinitionNew(propName, propDefinition, classNode): node = tree.Node("property") node.set("name", propName) if "init" in propDefinition: node.set("defaultValue", getValue(propDefinition["init"].getFirstChild())) if "nullable" in propDefinition: node.set("allowNull", propDefinition["nullable"].getChild("constant").get("value")) if "inheritable" in propDefinition: node.set("inheritable", propDefinition["inheritable"].getChild("constant").get("value")) if "themeable" in propDefinition: node.set("themeable", propDefinition["themeable"].getChild("constant").get("value")) if "refine" in propDefinition: refineValue = propDefinition["refine"].getChild("constant").get("value") if refineValue == "true": node.set("refine", "true") if "apply" in propDefinition: node.set("apply", propDefinition["apply"].getChild("constant").get("value")) if "event" in propDefinition: eventName = propDefinition["event"].getChild("constant").get("value") node.set("event", eventName) event = tree.Node("event") event.set("name", eventName) event.addChild(tree.Node("desc").set("text", "Fired on change of the property {@link #%s}." % propName)) typesNode = tree.Node("types") event.addChild(typesNode) itemNode = tree.Node("entry") typesNode.addChild(itemNode) itemNode.set("type", "qx.event.type.Data") classNode.addListChild("events", event) if "check" in propDefinition: check = propDefinition["check"].getFirstChild() if check.type == "array": values = [getValue(arrayItem) for arrayItem in check.children] node.set("possibleValues", ",".join(values)) elif check.type == "function": node.set("check", "Custom check function.") elif check.type == "constant": # this can mean: type name or check expression # test by parsing it check_value = check.get("value") check_tree = treegenerator.parse(check_value) if check_tree.children[0].isVar(): # tree is (statements (...)) node.set("check", check_value) # type name else: # don't dare to be more specific #elif check_tree.type in ('operation', 'call'): # "value<=100", "qx.util.Validate.range(0,100)" node.set("check", "Custom check function.") # that's good enough so the param type is set to 'var' else: addError(node, "Unknown property check value: '%s'" % check.type, propDefinition["check"]) return node def generateGroupPropertyMethod(propertyName, groupMembers, mode, classNode): if propertyName[:2] == "__": access = "__" functionName = propertyName[2:] elif propertyName[:1] == "_": access = "_" functionName = propertyName[1:] else: access = "" functionName = propertyName functionName = access + "set" + functionName[0].upper() + functionName[1:] functionTemplate = ("/**\n" "* Sets the values of the property group <code>%(name)s</code>.\n" "* %(modeDoc)s\n" "* For further details take a look at the property definition: {@link #%(name)s}.\n" "*\n" "%(params)s\n" "*/\n" "function (%(paramList)s) {}; ") paramsTemplate = " * @param %s {var} Sets the value of the property {@link #%s}." paramsDef = [paramsTemplate % (name, name) for name in groupMembers] if mode == "shorthand": modeDoc = "\n * This setter supports a shorthand mode compatible with the way margins and paddins are set in CSS.\n *" else: modeDoc = "" functionCode = functionTemplate % ({ "name" : propertyName, "modeDoc" : modeDoc, "params" : "\n".join(paramsDef), "paramList" : ", ".join(groupMembers) }) functionNode = treeutil.compileString(functionCode) commentAttributes = Comment.parseNode(functionNode)[-1] docNode = handleFunction(functionNode, functionName, commentAttributes, classNode) docNode.set("fromProperty", propertyName) classNode.addListChild("methods", docNode) def handlePropertyGroup(propName, propDefinition, classNode): node = tree.Node("property") node.set("name", propName) group = propDefinition["group"].getFirstChild() groupMembers = [getValue(arrayItem) for arrayItem in group.children] node.set("group", ",".join(groupMembers)); if "mode" in propDefinition: node.set("mode", propDefinition["mode"].getChild("constant").get("value")) if "themeable" in propDefinition: node.set("themeable", propDefinition["themeable"].getChild("constant").get("value")) return node def handleProperties(item, classNode): for propName, value in treeutil.mapNodeToMap(item).items(): keyvalue = value.parent value = value.getFirstChild() if value.type != "map": continue propDefinition = treeutil.mapNodeToMap(value) #print propName, propDefinition if "group" in propDefinition: node = handlePropertyGroup(propName, propDefinition, classNode) node.set("propertyType", "group") groupMembers = [member[1:-1] for member in node.get("group").split(",")] generateGroupPropertyMethod(propName, groupMembers, node.get("mode", False), classNode) generatePropertyMethods(propName, classNode, ["reset"]) else: node = handlePropertyDefinitionNew(propName, propDefinition, classNode) node.set("propertyType", "new") if node.get("refine", False) != "true": generatePropertyMethods(propName, classNode, ["set", "get", "init", "reset"]) if node.get("check", False) == "Boolean": generatePropertyMethods(propName, classNode, ["toggle", "is"]) if classNode.get("type", False) == "mixin": node.set("isMixin", True) commentAttributes = Comment.parseNode(keyvalue)[-1] for attrib in commentAttributes: addTypeInfo(node, attrib, item) handleDeprecated(node, commentAttributes) handleAccess(node, commentAttributes) if not node.hasChild("desc"): addError(node, "Documentation is missing.", item) classNode.addListChild("properties", node) def handleEvents(item, classNode): for key, value_ in treeutil.mapNodeToMap(item).items(): keyvalue = value_.parent value = value_.getFirstChild(True, True).toJavascript() value = string.strip(value, '\'"') # unquote result from .toJavascript; TODO: unnecessary with .toJS!? node = tree.Node("event") commentAttributes = Comment.parseNode(keyvalue)[-1] try: desc = commentAttributes[0]["text"] except (IndexError, KeyError): desc = None addError(node, "Documentation is missing.", item) if desc != None: node.addChild(tree.Node("desc").set("text", desc)) node.set("name", key) typesNode = tree.Node("types") node.addChild(typesNode) itemNode = tree.Node("entry") typesNode.addChild(itemNode) itemNode.set("type", value) handleDeprecated(node, commentAttributes) handleAccess(node, commentAttributes) classNode.addListChild("events", node) def handleDeprecated(docNode, commentAttributes): for docItem in commentAttributes: if docItem["category"] == "deprecated": deprecatedNode = tree.Node("deprecated") if "text" in docItem: descNode = tree.Node("desc").set("text", docItem["text"]) deprecatedNode.addChild(descNode) docNode.addChild(deprecatedNode) def handleAccess(docNode, commentAttributes): name = docNode.get("name") if name[:2] == "__": access = "private" elif name[:1] == "_": access = "protected" else: access = "public" for docItem in commentAttributes: if docItem["category"] == "internal": access = "internal" docNode.set("isInternal", True) elif docItem["category"] == "public": access = "public" elif docItem["category"] == "protected": access = "protected" elif docItem["category"] == "public": access = "public" if access != "public": docNode.set("access", access) def handleChildControls(item, classNode, className, commentAttributes): for attrib in commentAttributes: if attrib["category"] == "childControl": if "error" in attrib: msg = "%s: %s" % (attrib["category"], attrib["message"]) addError(classNode, msg, item) if not "name" in attrib: addError(classNode, "No name defined for child control.", item) return childControlName = attrib["name"] childControlNode = tree.Node("childControl") childControlNode.set("name", childControlName) if not "type" in attrib: addError(classNode, "No type defined for child control: '%s'." % childControlName, item) addTypeInfo(childControlNode, attrib, item) classNode.addListChild("childControls", childControlNode) def handleConstantDefinition(item, classNode): if (item.type == "assignment"): # This is a "normal" constant definition leftItem = item.getFirstListChild("left") name = leftItem.children[len(leftItem.children) - 1].get("name") valueNode = item.getChild("right") elif (item.type == "keyvalue"): # This is a constant definition of a map-style class (like qx.Const) name = item.get("key") valueNode = item.getChild("value") node = tree.Node("constant") node.set("name", name) if valueNode.hasChild("constant"): node.set("value", valueNode.getChild("constant").get("value")) node.set("type", valueNode.getChild("constant").get("constantType").capitalize()) elif valueNode.hasChild("array"): arrayNode = valueNode.getChild("array") if all([x.type == "constant" for x in arrayNode.children]): node.set("value", arrayNode.toJS(pp)) node.set("type", "Array") commentAttributes = Comment.parseNode(item)[-1] for attr in commentAttributes: addTypeInfo(node, attr, item) handleDeprecated(node, commentAttributes) handleAccess(node, commentAttributes) classNode.addListChild("constants", node) def getReturnNodes(parent): returnNodes = [] def getReturnNode(parent): for node in parent.getChildren(): if node.type == "return": returnNodes.append(node) continue if node.type == "function": continue if len(node.getChildren()) > 0: getReturnNode(node) getReturnNode(parent) return returnNodes def handleFunction(funcItem, name, commentAttributes, classNode, reportMissingDesc=True, checkReturn=True): node = tree.Node("method") node.set("name", name) (line, column) = treeutil.getLineAndColumnFromSyntaxItem(funcItem) if line: node.set("line", line) # Read the parameters params = funcItem.getChild("params", False) if params and params.hasChildren(): for param in params.children: if param.type != "identifier": continue paramNode = tree.Node("param") paramNode.set("name", param.get("value")) node.addListChild("params", paramNode) # Check whether the function is abstract #bodyBlockItem = funcItem.getChild("body").getFirstChild() #if bodyBlockItem.type == "block" and bodyBlockItem.hasChildren(): # firstStatement = bodyBlockItem.children[0] handleAccess(node, commentAttributes) handleDeprecated(node, commentAttributes) isAbstract = classNode.get("isAbstract", False) # Read all description, param and return attributes isAbstract = handleFunctionOtherAttributes(classNode, funcItem, name, commentAttributes, node, isAbstract) # Check for documentation errors if node.hasChild("params"): paramsListNode = node.getChild("params") for paramNode in paramsListNode.children: if not paramNode.getChild("desc", False): addError(node, "Parameter is not documented: '%s'" % paramNode.get("name"), funcItem) if reportMissingDesc and not node.hasChild("desc"): addError(node, "Documentation is missing.", funcItem) # Check whether return value documentation is correct if checkReturn: handleFunctionReturn(classNode, funcItem, name, commentAttributes, node, isAbstract) return node def handleFunctionOtherAttributes(classNode, funcItem, name, commentAttributes, node, isAbstract): for attrib in commentAttributes: # Add description if attrib["category"] == "description": node = addChildIf(node, *(handleJSDocDecsription(attrib, funcItem))) elif attrib["category"] == "see": node = addChildIf(node, *(handleJSDocSee(attrib))) elif attrib["category"] in ("attach", "attachStatic"): if not "targetClass" in attrib: addError(node, "Missing target for attach.", funcItem) continue attachNode = tree.Node(attrib["category"]).set("targetClass", attrib["targetClass"]) attachNode.set("targetMethod", attrib["targetMethod"]) attachNode.set("sourceClass", classNode.get("fullName")) # these two are interesting for display at the target class attachNode.set("sourceMethod", name) node.addChild(attachNode) elif attrib["category"] == "param": if not "name" in attrib: addError(node, "Missing name of parameter", funcItem) continue # Find the matching param node paramName = attrib["name"] paramNode = node.getListChildByAttribute("params", "name", paramName, False) if not paramNode: addError(node, "Contains information for non-existing parameter: '%s'." % paramName, funcItem) continue addTypeInfo(paramNode, attrib, funcItem) elif attrib["category"] == "return": returnNode = tree.Node("return") node.addChild(returnNode) addTypeInfo(returnNode, attrib, funcItem) elif attrib["category"] == "throws": if node.hasChild("throws"): throwsNode = node.getChild("throws") else: throwsNode = tree.Node("throws") if not "text" in attrib: addError(node, "Throws documentation is missing.", funcItem) else: child = tree.Node("desc") child.set("text", attrib["text"]) if "type" in attrib: child.set("type", attrib["type"]) throwsNode.addChild(child) node.addChild(throwsNode) elif attrib["category"] == "abstract": isAbstract = True if not classNode.get("isAbstract", False): node.set("isAbstract", True) return isAbstract def handleFunctionReturn(classNode, funcNode, funcName, commentAttributes, docNode, isAbstract): hasComment = len(commentAttributes) > 0 isInterface = classNode.get("type", False) == "interface" hasSignatureDef = False for docItem in commentAttributes: if docItem["category"] == "signature": hasSignatureDef = True #overrides = False #if len(commentAttributes) == 0: # superClassName = classNode.get("superClass", False) # if superClassName: # superClassNode = selectNode(classNode, "../class[@fullName='%s']" %superClassName) # while superClassNode: # superClassNode = selectNode(classNode, "../class[@fullName='%s']" %superClassName) if hasComment and not isInterface and not hasSignatureDef and not isAbstract: returnNodes = getReturnNodes(funcNode) hasReturnValue = False hasNoReturnValue = False hasReturnNodes = len(returnNodes) > 0 for returnNode in returnNodes: if len(returnNode.getChildren()) > 0: hasReturnValue = True else: hasNoReturnValue = True hasReturnDoc = False hasUndefinedOrVarType = False hasNonUndefinedOrVarType = False if Comment.getAttrib(commentAttributes, "return"): hasVoidType = False if "type" in Comment.getAttrib(commentAttributes, "return"): for typeDef in Comment.getAttrib(commentAttributes, "return")["type"]: if typeDef["type"] == "void": hasVoidType = True elif typeDef["type"] == "undefined" or typeDef["type"] == "var": hasUndefinedOrVarType = True else: hasNonUndefinedOrVarType = True if not hasVoidType: hasReturnDoc = True isSingletonGetInstance = classNode.get("isSingleton", False) and funcName == "getInstance" if hasReturnDoc and not hasReturnNodes and not isSingletonGetInstance: addError(docNode, "Contains documentation for return value but no return statement found.", funcNode) if hasReturnDoc and (not hasReturnValue and hasNoReturnValue) and not hasUndefinedOrVarType: addError(docNode, "Contains documentation for return value but returns nothing.", funcNode) if hasReturnDoc and hasReturnValue and hasNoReturnValue and not hasUndefinedOrVarType: addError(docNode, "Contains documentation for return value but at least one return statement has no value.", funcNode) if hasReturnValue and not hasReturnDoc: addError(docNode, "Missing documentation for return value.", funcNode) return docNode ######################################################################################## # # COMMON STUFF # ####################################################################################### def handleJSDocDecsription(attrib_desc, treeItem=None): descNode = None err_node = None if "text" in attrib_desc: if "TODOC" in attrib_desc["text"]: err_node = createError("Documentation is missing.", treeItem) descNode = tree.Node("desc").set("text", attrib_desc["text"]) return descNode, err_node def handleJSDocSee(attrib_see, treeItem=None): result_node = None err_node = None if not 'name' in attrib_see: err_node = createError("Missing target for see.", treeItem) else: result_node = tree.Node("see").set("name", attrib_see["name"]) if "text" in attrib_see: desc_node = tree.Node("desc").set("text", attrib_see["text"]) result_node.addChild(desc_node) return result_node, err_node def findAttachMethods(docTree): attachMap = {} sections = {"attach": "members", "attachStatic" :"statics"} for method in methodNodeIterator(docTree): for child in method.children: if child.type in ("attach", "attachStatic"): target_class = child.get("targetClass") if target_class not in attachMap: attachMap[target_class] = {"statics": {}, "members": {}} target_method = child.get("targetMethod") if not target_method: target_method = method.get("name") cmethod = attachMap[target_class][sections[child.type]][target_method] = copy.deepcopy(method) # copy.deepcopy(method)? # patch isStatics in target class if sections[child.type] == "statics": cmethod.set("isStatic", True) else: cmethod.set("isStatic", False) cmethod.set("sourceClass", child.get("sourceClass")) cmethod.set("sourceMethod", method.get("name")) clazz = None for node in treeutil.findNode(docTree, ["class"], [("fullName", child.get("sourceClass"))]): clazz = node if clazz and "group" in clazz.attributes: cmethod.set("group", clazz.attributes["group"]) return attachMap def variableIsClassName(varItem): length = len(varItem.children) for i in range(length): varChild = varItem.children[i] if not varChild.type == "identifier": return False if i < length - 1: # This is not the last identifier -> It must a package (= lowercase) if not varChild.get("name").islower(): return False else: # This is the last identifier -> It must the class name (= first letter uppercase) if not varChild.get("name")[0].isupper(): return False return True def getValue(item): value = None if item.type == "constant": if item.get("constantType") == "string": value = '"' + item.get("value") + '"' else: value = item.get("value") elif item.isVar(): value, isComplete = treeutil.assembleVariable(item) if not isComplete: value = "[Complex expression]" elif item.type == "operation" and item.get("operator") == "SUB": # E.g. "-1" or "-Infinity" value = "-" + getValue(item.getFirstChild()) if value == None: value = "[Unsupported item type: " + item.type + "]" return value def addTypeInfo(node, commentAttrib=None, item=None): if commentAttrib == None: if node.type == "constant" and node.get("value", False): pass elif node.type == "param": addError(node, "Parameter is not documented: '%s'" % commentAttrib.get("name"), item) elif node.type == "return": addError(node, "Return value is not documented.", item) else: addError(node, "Documentation is missing.", item) return # add description if "text" in commentAttrib: descNode = treeutil.findChild(node, "desc") if descNode: # add any additional text attributes (e.g. type description) to the # existing desc node descNode.set("text", descNode.get("text") + commentAttrib["text"]) else: node.addChild(tree.Node("desc").set("text", commentAttrib["text"])) # add types if "type" in commentAttrib and commentAttrib["type"] and not commentAttrib["category"] == "throws": typesNode = tree.Node("types") node.addChild(typesNode) for item in commentAttrib["type"]: itemNode = tree.Node("entry") typesNode.addChild(itemNode) itemNode.set("type", item["type"]) if item["dimensions"] != 0: itemNode.set("dimensions", item["dimensions"]) # add default value if "defaultValue" in commentAttrib: defaultValue = commentAttrib["defaultValue"] if defaultValue != None: # print "defaultValue: %s" % defaultValue node.set("defaultValue", defaultValue) # optional parameter? if "optional" in commentAttrib and commentAttrib["optional"]: node.set("optional", commentAttrib["optional"]) def addEventNode(classNode, classItem, commentAttrib): node = tree.Node("event") node.set("name", commentAttrib["name"]) if "text" in commentAttrib: node.addChild(tree.Node("desc").set("text", commentAttrib["text"])) # add types if "type" in commentAttrib: typesNode = tree.Node("types") node.addChild(typesNode) for item in commentAttrib["type"]: itemNode = tree.Node("entry") typesNode.addChild(itemNode) itemNode.set("type", item["type"]) if item["dimensions"] != 0: itemNode.set("dimensions", item["dimensions"]) classNode.addListChild("events", node) def createError(msg, syntaxItem=None): errorNode = tree.Node("error") errorNode.set("msg", msg) if syntaxItem: (line, column) = treeutil.getLineAndColumnFromSyntaxItem(syntaxItem) if line: errorNode.set("line", line) if column: errorNode.set("column", column) return errorNode def addError(node, msg, syntaxItem=None): errorNode = createError(msg, syntaxItem) node.addListChild("errors", errorNode) node.set("hasError", True) ## # Adds a child node to <node>, handles error nodes and None as <child_node>. # - allows both child and error node at the same time def addChildIf(node, child_node, err_node, force=False): if err_node != None: node.addListChild("errors", err_node) node.set("hasError", True) if child_node != None: node.addChild(child_node) return node def getPackageNode(docTree, namespace): currPackage = docTree childPackageName = "" for nsPart in namespace.split("."): childPackage = currPackage.getListChildByAttribute("packages", "name", nsPart, False) childPackageName += nsPart if not childPackage: # The package does not exist -> Create it childPackage = tree.Node("package") childPackage.set("name", nsPart) childPackage.set("fullName", childPackageName) childPackage.set("packageName", (childPackageName.replace("." + nsPart, "") if "." in childPackageName else "" ) ) currPackage.addListChild("packages", childPackage) childPackageName += "." # Update current package currPackage = childPackage return currPackage ## # Get (or create) the node for the given class name in the docTree # def classNodeFromDocTree(docTree, fullClassName, commentAttributes = None): if commentAttributes == None: commentAttributes = {} packageName = "" className = fullClassName classNode = None package = None if "." in fullClassName: dotIndex = fullClassName.rindex(".") packageName = fullClassName[:dotIndex] className = fullClassName[dotIndex+1:] package = getPackageNode(docTree, packageName) classNode = package.getListChildByAttribute("classes", "name", className, False) else: package = docTree classNode = package.getListChildByAttribute("classes", "name", className, False) if not classNode: # The class does not exist -> Create it classNode = tree.Node("class") classNode.set("name", className) classNode.set("fullName", fullClassName) classNode.set("packageName", packageName) # Read all description, param and return attributes for attrib in commentAttributes: # Add description if attrib["category"] == "description": classNode = addChildIf(classNode, *(handleJSDocDecsription(attrib))) elif attrib["category"] == "group": classNode.set("group", attrib["name"]) elif attrib["category"] == "see": classNode = addChildIf(classNode, *(handleJSDocSee(attrib))) if package: if fullClassName in lang.BUILTIN: pass # don't add JS built-in classes else: package.addListChild("classes", classNode) return classNode def connectPackage(docTree, packageNode): childHasError = False packages = packageNode.getChild("packages", False) if packages: packages.children.sort(nameComparator) for node in packages.children: Context.console.dot() hasError = connectPackage(docTree, node) if hasError: childHasError = True classes = packageNode.getChild("classes", False) if classes: classes.children.sort(nameComparator) for node in classes.children: Context.console.dot() hasError = connectClass(docTree, node) if hasError: childHasError = True if childHasError: packageNode.set("hasWarning", True) return childHasError def connectClass(docTree, classNode): # mark property apply methods markPropertyApply(docTree, classNode) # Sort child classes childClasses = classNode.get("childClasses", False) if childClasses: classArr = childClasses.split(",") classArr.sort() childClasses = ",".join(classArr) classNode.set("childClasses", childClasses) # Mark overridden items postWorkItemList(docTree, classNode, "constructor", True) postWorkItemList(docTree, classNode, "properties", True) postWorkItemList(docTree, classNode, "events", False) postWorkItemList(docTree, classNode, "methods", True) postWorkItemList(docTree, classNode, "methods-static", False) # Check whether the class is static superClassName = classNode.get("superClass", False) if not superClassName \ and classNode.getChild("properties", False) == None \ and classNode.getChild("methods", False) == None: # This class is static classNode.set("isStatic", True) # Check for errors childHasError = ( classNode.get("hasError", False) or listHasError(classNode, "constructor") or listHasError(classNode, "properties") or listHasError(classNode, "methods") or listHasError(classNode, "methods-static") or listHasError(classNode, "constants") or listHasError(classNode, "events") ) if childHasError: classNode.set("hasWarning", True) return childHasError def documentApplyMethod(methodNode, props): if methodNode.getChild("desc", False) != None: return firstParam = treeutil.selectNode(methodNode, "params/param[1]/@name") if firstParam is None: firstParam = "value" secondParam = treeutil.selectNode(methodNode, "params/param[2]/@name") if secondParam is None: secondParam = "old" paramType = "var" paramTypes = [] propNames = [] for prop in props: propNames.append(prop.get("name")) pType = prop.get("check", False) if pType is False or pType == "Custom check function.": pType = "var" paramTypes.append(pType) # if all properties have the same value for "check", use that if paramTypes[1:] == paramTypes[:-1]: paramType = paramTypes[0] if len(propNames) > 1: propNames.sort() propList = "</code>, <code>".join(propNames[:-1]) + "</code> and <code>" + propNames[-1] propNamesString = "properties <code>%s</code>" %propList linkList = "}, {@link #".join(propNames[:-1]) + "} and {@link #" + propNames[-1] propLinksString = "s: {@link #%s}" %linkList else: propNamesString = "property <code>%s</code>" %propNames[0] propLinksString = ": {@link #%s}" %propNames[0] functionCode = ("/**\n" "* Applies changes of the property value of the %(propNames)s.\n" "*\n" "* For further details take a look at the property definition%(propLinks)s.\n" "*\n" "* @param %(firstParamName)s {%(paramType)s} new value of the property\n" "* @param %(secondParamName)s {%(paramType)s} previous value of the property (null if it was not yet set).\n" "*/\n" "function(%(firstParamName)s, %(secondParamName)s) {}") % ({ "firstParamName": firstParam, "secondParamName": secondParam, "paramType": paramType, "propNames": propNamesString, "propLinks": propLinksString, "propName": methodNode.get("name") }) node = treeutil.compileString(functionCode) commentAttributes = Comment.parseNode(node)[-1] docNode = handleFunction(node, methodNode.get("name"), commentAttributes, treeutil.selectNode(methodNode, "../..")) oldParams = methodNode.getChild("params", False) if oldParams: methodNode.replaceChild(oldParams, docNode.getChild("params")) else: methodNode.addChild(docNode.getChild("params")) oldDesc = methodNode.getChild("desc", False) if oldDesc: methodNode.replaceChild(oldDesc, docNode.getChild("desc")) else: methodNode.addChild(docNode.getChild("desc")) def markPropertyApply(docTree, classNode): # Sort the list sortByName(classNode, "methods") # Post work all items methods = classNode.getChild("methods", False) if not methods: return dependendClasses = [cls for cls in dependendClassIterator(docTree, classNode)] for itemNode in methods.children: name = itemNode.get("name") for dep in dependendClasses: props = dep.getChild("properties", False) if not props: continue applyFor = [] for prop in props.children: if prop.get("apply", False) == name: propNode = tree.Node("entry") propNode.set("applies", dep.get("fullName") + "#" + prop.get("name")) itemNode.addListChild("apply", propNode) removeErrors(itemNode) applyFor.append(prop) if len(applyFor) > 0: documentApplyMethod(itemNode, applyFor) def dependendClassIterator(docTree, classNode): yield classNode directDependencies = [] superClassName = classNode.get("superClass", False) if superClassName: directDependencies.append(superClassName) for list_ in ["mixins", "interfaces"]: listItems = classNode.get(list_, False) if listItems: directDependencies.extend(listItems.split(",")) for list_ in ["superMixins", "superInterfaces"]: listNode = classNode.getChild(list_, False) if listNode: directDependencies.extend([depNode.get("name") for depNode in listNode.children]) for dep in directDependencies: for cls in dependendClassIterator(docTree, classNodeFromDocTree(docTree, dep)): yield cls def itemHasAnyDocs(node): if node.getChild("desc", False) != None: return True if node.hasChildren(): for child in node.children: if child.type == "params": for param in child.children: if param.getChild("desc", False) != None: return True elif child.type != "errors": return True return False def postWorkItemList(docTree, classNode, listName, overridable): """Does the post work for a list of properties or methods.""" # Sort the list sortByName(classNode, listName) # Post work all items listNode = classNode.getChild(listName, False) if listNode: for itemNode in listNode.children: name = itemNode.get("name") # Check whether this item is overridden and try to inherit the # documentation from the next matching super class if not overridable: continue superClassName = classNode.get("superClass", False) overriddenFound = False docFound = itemHasAnyDocs(itemNode) # look for documentation in interfaces if (not docFound): for item in dependendClassIterator(docTree, classNode): if item == classNode: continue if item.get("type", False) in ("interface", "mixin"): interfaceItemNode = item.getListChildByAttribute(listName, "name", name, False) if not interfaceItemNode: continue if item.get("type", "") == "mixin" and not interfaceItemNode.get("isCtor", False): # item overrides a mixin item included by a super class overriddenFound = True itemNode.set("overriddenFrom", item.get("fullName")) itemNode.set("docFrom", item.get("fullName")) docFound = itemHasAnyDocs(interfaceItemNode) # Remove previously recorded documentation errors from the item # (Any documentation errors will be recorded in the super class) removeErrors(itemNode) break # look for documentation in super classes while superClassName and (not overriddenFound or not docFound): superClassNode = classNodeFromDocTree(docTree, superClassName) superItemNode = superClassNode.getListChildByAttribute(listName, "name", name, False) if superItemNode: if not docFound: # This super item has a description # -> Check whether the parameters match # NOTE: paramsMatch works for properties, too # (Because both compared properties always have no params) if paramsMatch(itemNode, superItemNode): # The parameters match -> We can use the documentation of the super class itemNode.set("docFrom", superClassName) docFound = itemHasAnyDocs(superItemNode) # Remove previously recorded documentation errors from the item # (Any documentation errors will be recorded in the super class) removeErrors(itemNode) else: errorsNode = itemNode.getChild("errors", False) if errorsNode: if len(errorsNode.getChildren()) > 0: errorNode = errorsNode.getChildren()[0] msg = errorNode.get("msg") + " Signature of overriding method different from superclass method." errorNode.set("msg", msg) docFound = True if not overriddenFound: # This super class has the item defined -> Add a overridden attribute itemNode.set("overriddenFrom", superClassName) overriddenFound = True # Check the next superclass superClassName = superClassNode.get("superClass", False) if not docFound and itemNode.get("overriddenFrom", False): # This item is overridden, but we didn't find any documentation in the # super classes -> Add a warning itemNode.set("hasWarning", True) def paramsMatch(methodNode1, methodNode2): params1 = methodNode1.getChild("params", False) params2 = methodNode2.getChild("params", False) if params1 == None or params2 == None: # One method has no parameters -> The params match if both are None return params1 == params2 elif len(params1.children) != len(params2.children): # The param count is different -> The params don't match return False else: for i in range(len(params1.children)): par1 = params1.children[i] par2 = params2.children[i] if (par1.get("name") != par2.get("name")): # These parameters don't match return False # All tests passed return True def removeErrors(node): errors = node.getChild("errors", False) node.remove("hasWarning") if errors: node.removeChild(errors) node.remove("hasError") def sortByName(node, listName): listNode = node.getChild(listName, False) if listNode: listNode.children.sort(nameComparator) def nameComparator(node1, node2): name1 = node1.get("name").lower() name2 = node2.get("name").lower() return cmp(name1, name2) def listHasError(node, listName): listNode = node.getChild(listName, False) if listNode: for childNode in listNode.children: if childNode.get("hasError", False): return True return False def packagesToJsonString(node, prefix = "", childPrefix = " ", newLine="\n", encoding="utf-8"): asString = prefix + '{type:"' + tree.escapeJsonChars(node.type) + '"' if node.type == "class": node.set("externalRef", True) if node.hasAttributes(): asString += ',attributes:{' firstAttribute = True for key in node.attributes: if not firstAttribute: asString += ',' asString += '"' + key + '":"' + tree.escapeJsonChars(node.attributes[key]) + '"' firstAttribute = False asString += '}' if node.type == "class": node.remove("externalRef") if node.hasChildren() and node.type != "class": asString += ',children:[' + newLine prefix = prefix + childPrefix for child in node.children: asString += packagesToJsonString(child, prefix, childPrefix, newLine) + ',' + newLine # NOTE We remove the ',\n' of the last child if newLine == "": asString = asString[:-1] + prefix + ']' else: asString = asString[:-2] + newLine + prefix + ']' asString += '}' return asString ## # interface function def getPackageData(node): data = { "type" : node.type } if node.type == "class": node.set("externalRef", True) if node.hasAttributes(): data["attributes"] = {} for key in node.attributes: data["attributes"][key] = node.attributes[key] if node.type == "class": node.remove("externalRef") if node.hasChildren() and node.type != "class": data["children"] = [] for child in node.children: data["children"].append(getPackageData(child)) return data def packagesToXmlString(node, prefix = "", childPrefix = " ", newLine="\n", encoding="utf-8"): if node.type == "class": node.set("externalRef", True) hasText = False asString = prefix + "<" + node.type if node.hasAttributes(): for key in node.attributes: if key == "text": hasText = True else: asString += " " + key + "=\"" + tree.escapeXmlChars(node.attributes[key], True, encoding) + "\"" if node.type == "class": node.remove("externalRef") if not node.hasChildren() and not hasText: asString += "/>" + newLine else: asString += ">" if hasText: asString += newLine + prefix + childPrefix asString += "<text>" + tree.escapeXmlChars(node.attributes["text"], False, encoding) + "</text>" + newLine if node.hasChildren(): asString += newLine for child in node.children: asString += packagesToXmlString(child, prefix + childPrefix, childPrefix, newLine, encoding) asString += prefix + "</" + node.type + ">" + newLine return asString def classNodeIterator(docTree): if docTree.type == "class": yield docTree return if docTree.hasChildren(): for child in docTree.children: for cls in classNodeIterator(child): yield cls def methodNodeIterator(docTree): if docTree.type == "method": yield docTree return if docTree.hasChildren(): for child in docTree.children: for method in methodNodeIterator(child): yield method def docTreeIterator(docTree, type_): if docTree.type == type_: yield docTree if docTree.children: for child in docTree.children: for entry in docTreeIterator(child, type_): yield entry def errorNodeIterator(docTree): if docTree.get("hasError", False) or docTree.get("hasWarning", False): yield docTree if docTree.hasChildren(): for child in docTree.children: for fcn in errorNodeIterator(child): yield fcn ################################################################################ # # API DOC VERIFICATION # ################################################################################ # TODO: move to treeutil? def getParentAttrib(node, attrib, type=None): while node: if node.hasAttributes(): if attrib in node.attributes: if type: if node.type == type: return node.attributes[attrib] else: return node.attributes[attrib] if node.hasParent(): node = node.parent else: node = None return None def getTopPackage(node): while node: if node.hasAttributes(): if "packageName" in node.attributes: if node.attributes["packageName"] == "": return node.get("name") elif not "." in node.attributes["packageName"]: return node.get("packageName") if node.hasParent(): node = node.parent else: node = None return None def verifyLinks(docTree, index): Context.console.info("Verifying internal doc links...", False) linkRegExp = re.compile("\{\s*@link\s*([\w#-_\.]*)[\W\w\d\s]*?\}") descNodes = docTree.getAllChildrenOfType("desc") links = [] for descNode in descNodes: if not "@link" in descNode.attributes["text"]: continue match = linkRegExp.findall(descNode.attributes["text"]) if not match: continue internalLinks = [] for link in match: if not "<a" in link: internalLinks.append(link) if len(internalLinks) > 0: nodeType = descNode.parent.type if nodeType == "param": itemName = getParentAttrib(descNode.parent, "name") paramName = getParentAttrib(descNode, "name") paramForType = descNode.parent.parent.parent.type else: itemName = getParentAttrib(descNode, "name") paramName = None paramForType = None linkData = { "nodeType": nodeType, "packageName": getParentAttrib(descNode, "packageName"), "className": getParentAttrib(descNode, "name", "class"), "itemName": itemName, "paramName": paramName, "paramForType": paramForType, "links": internalLinks, "parent": descNode.parent } links.append(linkData) count = 0 classesWithWarnings = [] for link in links: count += 1 Context.console.progress(count, len(links)) result = checkLink(link, docTree, index) if result: for ref, link in result.iteritems(): addError(link["parent"], "Unknown link target: '%s'" % ref) if not link["className"] in classesWithWarnings: parent = link["parent"] while parent: if parent.type == "class": classesWithWarnings.append(link["className"]) parent.set("hasWarning", True) parent = None break if hasattr(parent, "parent"): parent = parent.parent def checkLink(link, docTree, index): brokenLinks = {} def getTargetName(ref): targetPackageName = None targetClassName = None targetItemName = None classItem = ref.split("#") # internal class item reference if classItem[0] == "": targetPackageName = link["packageName"] targetClassName = link["className"] else: namespace = classItem[0].split(".") targetPackageName = ".".join(namespace[:-1]) if targetPackageName == "": if link["nodeType"] == "package": targetPackageName = link["packageName"] + "." + link["itemName"] else: targetPackageName = link["packageName"] targetClassName = namespace[-1] if len(classItem) == 2: targetItemName = classItem[1] return (targetPackageName + "." + targetClassName, targetItemName) def isClassInHierarchy(docTree, className, searchFor): targetClass = docTree.getChildByTypeAndAttribute("class", "fullName", className, False, True) if not targetClass: return False while targetClass: if targetClass.attributes["fullName"] in searchFor: return True if "mixins" in targetClass.attributes: for wanted in searchFor: if wanted in targetClass.attributes["mixins"]: return True if "superClass" in targetClass.attributes: superClassName = targetClass.attributes["superClass"] targetClass = docTree.getChildByTypeAndAttribute("class", "fullName", superClassName, False, True) else: targetClass = None return False for ref in link["links"]: # Remove parentheses from method references if ref[-2:] == "()": ref = ref[:-2] # ref is a fully qualified package or class name if ref in index["__fullNames__"]: continue name = getTargetName(ref) targetClassName = name[0] targetItemName = name[1] # unknown class or package if not targetClassName in index["__fullNames__"]: brokenLinks[ref] = link continue # valid package or class ref if not targetItemName: continue # unknown class item if not "#" + targetItemName in index["__index__"]: # the index doesn't tell us if the class is static # so we have to assume #construct is a valid target if targetItemName != "construct": brokenLinks[ref] = link continue classHasItem = False classesWithItem = [] # get all classes that have an item with the same name as the referenced item for occurrence in index["__index__"]["#" + targetItemName]: className = index["__fullNames__"][occurrence[1]] classesWithItem.append(className) if targetClassName == className: classHasItem = True break if classHasItem: continue # search for a superclass or included mixin with the referenced item classHasItem = isClassInHierarchy(docTree, targetClassName, classesWithItem) if not classHasItem: brokenLinks[ref] = link return brokenLinks def verifyTypes(docTree, index): Context.console.info("Verifying types...", False) knownTypes = lang.GLOBALS[:] knownTypes = knownTypes + ["var", "null", # additional types supported by the property system: "Integer", "PositiveInteger", "PositiveNumber", "Float", "Double", "Map", "Node", "Element", "Document", "Window", "Event", "Class", "Mixin", "Interface", "Theme", "Color", "Decorator", "Font" ] count = 0 docNodes = docTree.getAllChildrenOfType("return") docNodes = docNodes + docTree.getAllChildrenOfType("param") docNodes = docNodes + docTree.getAllChildrenOfType("childControl") total = len(docNodes) for docNode in docNodes: count += 1 Context.console.progress(count, total) for typesNode in docNode.getAllChildrenOfType("types"): for entryNode in typesNode.getAllChildrenOfType("entry"): unknownTypes = [] entryType = entryNode.get("type") if (not entryType in knownTypes) and not ("value" in entryType and re.search("[\<\>\=]", entryType)): unknownTypes.append(entryType) if len(unknownTypes) > 0: itemName = getParentAttrib(docNode, "name") packageName = getParentAttrib(docNode, "packageName") className = getParentAttrib(docNode, "name", "class") linkData = { "itemName": itemName, "packageName": packageName, "className": className, "nodeType": docNode.parent.type, "links": unknownTypes } docNodeType = "" if docNode.type == "param": docNodeType = "Parameter '%s'" % docNode.get("name") elif docNode.type == "return": docNodeType = "Return value" elif docNode.type == "childControl": docNodeType = "Child control '%s'" % docNode.get("name") classesWithWarnings = [] for ref in checkLink(linkData, docTree, index): fullName = "%s.%s#%s" % (packageName, className, itemName) #msg = "%s of %s is documented as unknown type '%s'" % (docNodeType, fullName, ref) msg = "%s: Unknown type '%s'" % (docNodeType, ref) if (docNode.parent.get("name", False)): #Add error to method/event/... node, not params node addError(docNode.parent, msg) else: addError(docNode.parent.parent, msg) if not linkData["className"] in classesWithWarnings: parent = docNode while parent: if parent.type == "class": classesWithWarnings.append(linkData["className"]) parent.set("hasWarning", True) parent = None break if hasattr(parent, "parent"): parent = parent.parent def verifyDocPercentage(docTree): packages = {} for docNode in treeutil.nodeIterator(docTree, ["package", "class", "property", "event", "method"]): pkg = getTopPackage(docNode) if pkg == "": import pydb pydb.set_trace() if not pkg in packages: packages[pkg] = { "documentableItems": 0, "undocumentedItems": 0 } packages[pkg]["documentableItems"] += 1 if docNode.get("hasError", False): packages[pkg]["undocumentedItems"] += 1 for pkgName, pkgStats in packages.iteritems(): Context.console.info("API Documentation Statistics for package '%s':" % pkgName) undocumentedItems = pkgStats["undocumentedItems"] documentableItems = pkgStats["documentableItems"] percentageWithErrors = (float(undocumentedItems) / documentableItems) * 100 percentageOk = "{0:.2f}".format(100 - percentageWithErrors) Context.console.indent() Context.console.info("%s API items total" % documentableItems) Context.console.info("%s API items with missing or incomplete documentation" % undocumentedItems) Context.console.info("%s%% API documentation completeness" % percentageOk) Context.console.outdent() def logErrors(docTree, targets): for errNode in treeutil.nodeIterator(docTree, ["error"]): if "console" in targets: itemName = getParentAttrib(errNode, "fullName") itemType = errNode.parent.parent.type if itemType == 'doctree': Context.console.warn(errNode.get("msg")) if not itemType in ["class", "package"]: #itemName = itemName + "#" + getParentAttrib(errNode, "name") pass line = errNode.get("line", False) column = errNode.get("column", False) lineCol = "" if line: lineCol = " (" + str(line) if column: lineCol = "%s,%s" % (lineCol, str(column)) lineCol = lineCol + ")" Context.console.warn("%s%s: %s" % (itemName, lineCol, errNode.get("msg"))) if not "data" in targets: for node in errorNodeIterator(docTree): removeErrors(node)
python
74,555
import pytest from panini.test_client import TestClient, get_logger_files_path from panini import app as panini_app def run_panini(): app = panini_app.App( service_name="test_encoding", host="127.0.0.1", port=4222, app_strategy="asyncio", logger_in_separate_process=False, logger_files_path=get_logger_files_path(), ) @app.listen("test_encoding.foo") async def foo(msg): return {"len": len(msg.data["data"])} @app.listen("test_encoding.helper.correct") async def helper(msg): return {"data": "data"} @app.listen("test_encoding.helper.incorrect") async def helper(msg): return "message not dict" @app.listen("test_encoding.message.incorrect") async def bar(msg): await app.request( subject="test_encoding.helper.correct", message="message not dict" ) return {"success": True} @app.listen("test_encoding.message.correct") async def bar(msg): await app.request( subject="test_encoding.helper.incorrect", message={"data": "some data"} ) return {"success": True} @app.listen("test_encoding.correct") async def bar(msg): await app.request( subject="test_encoding.helper.correct", message={"data": "some data"} ) return {"success": True} app.start() @pytest.fixture(scope="module") def client(): client = TestClient(run_panini) client.start() yield client client.stop() def test_encoding(client): response = client.request("test_encoding.foo", {"data": "some correct data"}) assert response["len"] == 17 response = client.request("test_encoding.foo", {"data": "не латинские символы"}) assert response["len"] == 20 def test_correct_message_format(client): response = client.request("test_encoding.correct", {"data": "some data"}) assert response["success"] is True def test_incorrect_message_format(client): with pytest.raises(OSError): client.request("test_encoding.message.correct", {"data": "some data"}) with pytest.raises(OSError): client.request("test_encoding.message.incorrect", {"data": "some data"})
python
2,226
#!/usr/bin/env python import rospy from std_msgs.msg import Bool from dbw_mkz_msgs.msg import ThrottleCmd, SteeringCmd, BrakeCmd, SteeringReport from geometry_msgs.msg import TwistStamped import math from twist_controller import Controller ''' You can build this node only after you have built (or partially built) the `waypoint_updater` node. You will subscribe to `/twist_cmd` message which provides the proposed linear and angular velocities. You can subscribe to any other message that you find important or refer to the document for list of messages subscribed to by the reference implementation of this node. One thing to keep in mind while building this node and the `twist_controller` class is the status of `dbw_enabled`. While in the simulator, its enabled all the time, in the real car, that will not be the case. This may cause your PID controller to accumulate error because the car could temporarily be driven by a human instead of your controller. We have provided two launch files with this node. Vehicle specific values (like vehicle_mass, wheel_base) etc should not be altered in these files. We have also provided some reference implementations for PID controller and other utility classes. You are free to use them or build your own. Once you have the proposed throttle, brake, and steer values, publish it on the various publishers that we have created in the `__init__` function. ''' PUBLISHING_RATE = 50 # Rate of publishing class DBWNode(object): def __init__(self): rospy.init_node('dbw_node') vehicle_mass = rospy.get_param('~vehicle_mass', 1736.35) fuel_capacity = rospy.get_param('~fuel_capacity', 13.5) brake_deadband = rospy.get_param('~brake_deadband', .1) decel_limit = rospy.get_param('~decel_limit', -5.0) accel_limit = rospy.get_param('~accel_limit', 1.) wheel_radius = rospy.get_param('~wheel_radius', 0.2413) wheel_base = rospy.get_param('~wheel_base', 2.8498) steer_ratio = rospy.get_param('~steer_ratio', 14.8) max_lat_accel = rospy.get_param('~max_lat_accel', 3.) max_steer_angle = rospy.get_param('~max_steer_angle', 8.) self.steer_pub = rospy.Publisher('/vehicle/steering_cmd', SteeringCmd, queue_size=1) self.throttle_pub = rospy.Publisher('/vehicle/throttle_cmd', ThrottleCmd, queue_size=1) self.brake_pub = rospy.Publisher('/vehicle/brake_cmd', BrakeCmd, queue_size=1) # TODO: Create `Controller` object self.controller = Controller(vehicle_mass, fuel_capacity, brake_deadband, decel_limit, accel_limit, wheel_radius, wheel_base, steer_ratio, max_lat_accel, max_steer_angle) # TODO: Subscribe to all the topics you need to rospy.Subscriber('/twist_cmd',TwistStamped, self.twist_cb) rospy.Subscriber('/vehicle/dbw_enabled', Bool, self.dbw_enabled_cb) rospy.Subscriber('/current_velocity',TwistStamped, self.velocity_cb) self.current_vel = None self.curr_ang_vel = None self.dbw_enabled = None self.linear_vel = None self.angular_vel = None self.throttle = self.steering = self.brake = 0 self.loop() def loop(self): rate = rospy.Rate(PUBLISHING_RATE) while not rospy.is_shutdown(): # TODO: Get predicted throttle, brake, and steering using `twist_controller` # You should only publish the control commands if dbw is enabled # throttle, brake, steering = self.controller.control(<proposed linear velocity>, # <proposed angular velocity>, # <current linear velocity>, # <dbw status>, # <any other argument you need>) # if <dbw is enabled>: # self.publish(throttle, brake, steer) if not None in (self.current_vel, self.linear_vel, self.angular_vel): self.throttle, self.brake, self.steering = self.controller.control(self.current_vel, self.dbw_enabled, self.linear_vel, self.angular_vel) if self.dbw_enabled: self.publish(self.throttle, self.brake, self.steering) rate.sleep() def dbw_enabled_cb(self, msg): self.dbw_enabled = msg def twist_cb(self, msg): self.linear_vel = msg.twist.linear.x self.angular_vel = msg.twist.angular.z def velocity_cb(self, msg): self.current_vel = msg.twist.linear.x def publish(self, throttle, brake, steer): tcmd = ThrottleCmd() tcmd.enable = True tcmd.pedal_cmd_type = ThrottleCmd.CMD_PERCENT tcmd.pedal_cmd = throttle self.throttle_pub.publish(tcmd) scmd = SteeringCmd() scmd.enable = True scmd.steering_wheel_angle_cmd = steer self.steer_pub.publish(scmd) bcmd = BrakeCmd() bcmd.enable = True bcmd.pedal_cmd_type = BrakeCmd.CMD_TORQUE bcmd.pedal_cmd = brake self.brake_pub.publish(bcmd) if __name__ == '__main__': DBWNode()
python
5,558
#!/usr/bin/env python # encoding: utf-8 ''' views.py Created by mmiyaji on 2016-07-10. Copyright (c) 2016 ruhenheim.org. All rights reserved. ''' from django.shortcuts import render from django.http import HttpResponse import os, re, sys, commands, time, datetime, random, logging from django.http import HttpResponse, HttpResponseRedirect from django.template import Context, loader from django.template import RequestContext from django.shortcuts import render_to_response from django.core.urlresolvers import reverse from django.contrib import auth from django.contrib.auth import authenticate, login, logout from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from django.views.decorators.csrf import csrf_protect from django.utils.encoding import force_unicode, smart_str from django.core import serializers from django.conf import settings from django.http import Http404 from django.utils.http import urlencode from django.http import Http404 from django.template.loader import get_template from mainapp.models import * logger = logging.getLogger(__name__) def home(request): """ Case of GET REQUEST '/' home page """ temp_values = { "subscroll":True, } return render(request, 'general/index.html', temp_values) def login_view(request): #強制的にログアウト logout(request) username = password = '' first_name = last_name = email = '' error_list = [] error_target = [] next_url = "/" if request.GET: username = request.GET.get('username','') first_name = request.GET.get('first_name','') last_name = request.GET.get('last_name','') email = request.GET.get('email','') error_code = request.GET.get('error_code','') elif request.POST: if 'siginup' in request.POST: signup_view(request) else: username = request.POST['username'] password = request.POST['password'] next_url = request.POST.get('next', next_url) user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(request, user) return HttpResponseRedirect(next_url) else: error_list.append('login_failed') else: error_list.append('login_failed') temp_values = { "error_list": error_list, "error_target": error_target, "username": username, "first_name": first_name, "last_name": last_name, "email": email, } return render(request, 'general/login.html', temp_values) def signup_view(request): username = password = password2 = '' first_name = last_name = email = '' error_list = [] error_target = [] if request.POST: username = request.POST['username'] password = request.POST['password'] password2 = request.POST['password_confirm'] first_name = request.POST['first_name'] last_name = request.POST['last_name'] email = request.POST['email'] # is_staff = request.POST['is_staff'] if password == password2 and valid_pass(password) == 0: if not User.objects.filter(username=username): user = User.objects.create_user(username, email, password) user.first_name = first_name user.last_name = last_name user.save() user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(request, user) return HttpResponseRedirect('/') else: error_list.append('wrong_user') error_list.append('signup_failed') else: error_list.append('wrong_password') error_list.append('signup_failed') error_target.append('password') error_target.append('password2') temp_values = { "error_list": error_list, "error_target": error_target, "username": username, "first_name": first_name, "last_name": last_name, "email": email, } # query = urlencode(temp_values) # url = ''.join([ # reverse('dansible:login'), # '?', # query]) # return HttpResponseRedirect(url) return render(request, 'general/login.html', temp_values) else: raise Http404 def valid_pass(password): """ validate password Arguments: - `password`: """ if len(password) < 6: return 1 return 0
python
4,766
#!/usr/bin/python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ package_ios.py - Build and Package Release and Rebug fat libraries for iOS. """ import argparse import os import shutil import sys def run(command, extra_options=''): command = command + ' ' + ' '.join(extra_options) print command return os.system(command) def build(out_dir, test_target, extra_options=''): return run('ninja -C ' + out_dir + ' ' + test_target, extra_options) def lipo_libraries(out_dir, input_dirs, out_lib, input_lib): lipo = "lipo -create " for input_dir in input_dirs: lipo += input_dir + "/" + input_lib + " " lipo += '-output ' + out_dir + "/" + out_lib return run(lipo) def copy_build_dir(target_dir, build_dir): try: shutil.copytree(build_dir, target_dir, ignore=shutil.ignore_patterns('*.a')) except OSError as e: print('Directory not copied. Error: %s' % e) return 0 def package_ios(out_dir, build_dir, build_config): build_dir_sim = build_dir build_dir_dev = build_dir +'-iphoneos' build_target = 'cronet_package' target_dir = out_dir + "/Cronet" return build(build_dir_sim, build_target) or \ build(build_dir_dev, build_target) or \ copy_build_dir(target_dir, build_dir_dev + "/cronet") or \ lipo_libraries(target_dir, [build_dir_sim, build_dir_dev], \ "libcronet_" + build_config + ".a", \ "cronet/libcronet_standalone.a") def package_ios_framework(out_dir='out/Framework', extra_options=''): print 'Building Cronet Dynamic Framework...' # Use Ninja to build all possible combinations. build_dirs = ['Debug-iphonesimulator', 'Debug-iphoneos', 'Release-iphonesimulator', 'Release-iphoneos'] for build_dir in build_dirs: print 'Building ' + build_dir build_result = run('ninja -C out/' + build_dir + ' cronet_framework', extra_options) if build_result != 0: return build_result # Package all builds in the output directory os.makedirs(out_dir) for build_dir in build_dirs: shutil.copytree(os.path.join('out', build_dir, 'Cronet.framework'), os.path.join(out_dir, build_dir, 'Cronet.framework')) if 'Release' in build_dir: shutil.copytree(os.path.join('out', build_dir, 'Cronet.framework.dSYM'), os.path.join(out_dir, build_dir, 'Cronet.framework.dSYM')) def main(): parser = argparse.ArgumentParser() parser.add_argument('out_dir', nargs=1, help='path to output directory') parser.add_argument('-g', '--skip_gyp', action='store_true', help='skip gyp') parser.add_argument('-d', '--debug', action='store_true', help='use release configuration') parser.add_argument('-r', '--release', action='store_true', help='use release configuration') parser.add_argument('--framework', action='store_true', help='build Cronet dynamic framework') options, extra_options_list = parser.parse_known_args() print options print extra_options_list out_dir = options.out_dir[0] # Make sure that the output directory does not exist if os.path.exists(out_dir): print >>sys.stderr, 'The output directory already exists: ' + out_dir return 1 gyp_defines = 'GYP_DEFINES="OS=ios enable_websockets=0 '+ \ 'disable_file_support=1 disable_ftp_support=1 '+ \ 'enable_errorprone=1 use_platform_icu_alternatives=1 ' + \ 'disable_brotli_filter=1 chromium_ios_signing=0 ' + \ 'target_subarch=both"' if not options.skip_gyp: run (gyp_defines + ' gclient runhooks') if options.framework: return package_ios_framework(out_dir, extra_options_list) return package_ios(out_dir, "out/Release", "opt") or \ package_ios(out_dir, "out/Debug", "dbg") if __name__ == '__main__': sys.exit(main())
python
4,048
"""(Almost surely) constant random variables.""" from typing import Callable, TypeVar import numpy as np from probnum import config, linops from probnum import utils as _utils from probnum.typing import ArrayLikeGetitemArgType, ShapeArgType, ShapeType from . import _random_variable try: # functools.cached_property is only available in Python >=3.8 from functools import cached_property except ImportError: from cached_property import cached_property _ValueType = TypeVar("ValueType") class Constant(_random_variable.DiscreteRandomVariable[_ValueType]): """Random variable representing a constant value. Discrete random variable which (with probability one) takes a constant value. The law / image measure of this random variable is given by the Dirac delta measure which equals one in its (atomic) support and zero everywhere else. This class has the useful property that arithmetic operations between a :class:`Constant` random variable and an arbitrary :class:`RandomVariable` represent the same arithmetic operation with a constant. Parameters ---------- support Constant value taken by the random variable. Also the (atomic) support of the associated Dirac measure. See Also -------- RandomVariable : Class representing random variables. Notes ----- The Dirac measure formalizes the concept of a Dirac delta function as encountered in physics, where it is used to model a point mass. Another way to formalize this idea is to define the Dirac delta as a linear operator as is done in functional analysis. While related, this is not the view taken here. Examples -------- >>> from probnum import randvars >>> import numpy as np >>> rv1 = randvars.Constant(support=0.) >>> rv2 = randvars.Constant(support=1.) >>> rv = rv1 + rv2 >>> rng = np.random.default_rng(seed=42) >>> rv.sample(rng, size=5) array([1., 1., 1., 1., 1.]) """ def __init__( self, support: _ValueType, ): if np.isscalar(support): support = _utils.as_numpy_scalar(support) self._support = support support_floating = self._support.astype( np.promote_types(self._support.dtype, np.float_) ) if config.matrix_free: cov = lambda: ( linops.Scaling( 0.0, shape=(self._support.size, self._support.size), dtype=support_floating.dtype, ) if self._support.ndim > 0 else _utils.as_numpy_scalar(0.0, support_floating.dtype) ) else: cov = lambda: np.broadcast_to( _utils.as_numpy_scalar(0.0, support_floating.dtype), shape=( (self._support.size, self._support.size) if self._support.ndim > 0 else () ), ) var = lambda: np.broadcast_to( _utils.as_numpy_scalar(0.0, support_floating.dtype), shape=self._support.shape, ) super().__init__( shape=self._support.shape, dtype=self._support.dtype, parameters={"support": self._support}, sample=self._sample, in_support=lambda x: np.all(x == self._support), pmf=lambda x: np.float_(1.0 if np.all(x == self._support) else 0.0), cdf=lambda x: np.float_(1.0 if np.all(x >= self._support) else 0.0), mode=lambda: self._support, median=lambda: support_floating, mean=lambda: support_floating, cov=cov, var=var, std=var, ) @cached_property def cov_cholesky(self): # Pure utility attribute (it is zero anyway). # Make Constant behave more like Normal with zero covariance. return self.cov @property def support(self) -> _ValueType: """Constant value taken by the random variable.""" return self._support def __getitem__(self, key: ArrayLikeGetitemArgType) -> "Constant": """(Advanced) indexing, masking and slicing. This method supports all modes of array indexing presented in https://numpy.org/doc/1.19/reference/arrays.indexing.html. Parameters ---------- key : int or slice or ndarray or tuple of None, int, slice, or ndarray Indices, slice objects and/or boolean masks specifying which entries to keep while marginalizing over all other entries. """ return Constant(support=self._support[key]) def reshape(self, newshape: ShapeType) -> "Constant": return Constant( support=self._support.reshape(newshape), ) def transpose(self, *axes: int) -> "Constant": return Constant( support=self._support.transpose(*axes), ) def _sample(self, rng: np.random.Generator, size: ShapeArgType = ()) -> _ValueType: size = _utils.as_shape(size) if size == (): return self._support.copy() else: return np.tile(self._support, reps=size + (1,) * self.ndim) # Unary arithmetic operations def __neg__(self) -> "Constant": return Constant( support=-self.support, ) def __pos__(self) -> "Constant": return Constant( support=+self.support, ) def __abs__(self) -> "Constant": return Constant( support=abs(self.support), ) # Binary arithmetic operations @staticmethod def _binary_operator_factory( operator: Callable[[_ValueType, _ValueType], _ValueType] ) -> Callable[["Constant", "Constant"], "Constant"]: def _constant_rv_binary_operator( constant_rv1: Constant, constant_rv2: Constant ) -> Constant: return Constant( support=operator(constant_rv1.support, constant_rv2.support), ) return _constant_rv_binary_operator
python
6,126
#!/usr/bin/env python3 # Copyright (c) 2009-2019 The Bitcoin Core developers # Copyright (c) 2014-2019 The DigiByte Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test various fingerprinting protections. If a stale block more than a month old or its header are requested by a peer, the node should pretend that it does not have it to avoid fingerprinting. """ import time from test_framework.blocktools import (create_block, create_coinbase) from test_framework.messages import CInv from test_framework.mininode import ( P2PInterface, msg_headers, msg_block, msg_getdata, msg_getheaders, ) from test_framework.test_framework import DigiByteTestFramework from test_framework.util import ( assert_equal, wait_until, ) class P2PFingerprintTest(DigiByteTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() # Build a chain of blocks on top of given one def build_chain(self, nblocks, prev_hash, prev_height, prev_median_time): blocks = [] for _ in range(nblocks): coinbase = create_coinbase(prev_height + 1) block_time = prev_median_time + 1 block = create_block(int(prev_hash, 16), coinbase, block_time) block.solve() blocks.append(block) prev_hash = block.hash prev_height += 1 prev_median_time = block_time return blocks # Send a getdata request for a given block hash def send_block_request(self, block_hash, node): msg = msg_getdata() msg.inv.append(CInv(2, block_hash)) # 2 == "Block" node.send_message(msg) # Send a getheaders request for a given single block hash def send_header_request(self, block_hash, node): msg = msg_getheaders() msg.hashstop = block_hash node.send_message(msg) # Check whether last block received from node has a given hash def last_block_equals(self, expected_hash, node): block_msg = node.last_message.get("block") return block_msg and block_msg.block.rehash() == expected_hash # Check whether last block header received from node has a given hash def last_header_equals(self, expected_hash, node): headers_msg = node.last_message.get("headers") return (headers_msg and headers_msg.headers and headers_msg.headers[0].rehash() == expected_hash) # Checks that stale blocks timestamped more than a month ago are not served # by the node while recent stale blocks and old active chain blocks are. # This does not currently test that stale blocks timestamped within the # last month but that have over a month's worth of work are also withheld. def run_test(self): node0 = self.nodes[0].add_p2p_connection(P2PInterface()) # Set node time to 60 days ago self.nodes[0].setmocktime(int(time.time()) - 60 * 24 * 60 * 60) # Generating a chain of 10 blocks block_hashes = self.nodes[0].generate(nblocks=10) # Create longer chain starting 2 blocks before current tip height = len(block_hashes) - 2 block_hash = block_hashes[height - 1] block_time = self.nodes[0].getblockheader(block_hash)["mediantime"] + 1 new_blocks = self.build_chain(5, block_hash, height, block_time) # Force reorg to a longer chain node0.send_message(msg_headers(new_blocks)) node0.wait_for_getdata() for block in new_blocks: node0.send_and_ping(msg_block(block)) # Check that reorg succeeded assert_equal(self.nodes[0].getblockcount(), 13) stale_hash = int(block_hashes[-1], 16) # Check that getdata request for stale block succeeds self.send_block_request(stale_hash, node0) test_function = lambda: self.last_block_equals(stale_hash, node0) wait_until(test_function, timeout=3) # Check that getheader request for stale block header succeeds self.send_header_request(stale_hash, node0) test_function = lambda: self.last_header_equals(stale_hash, node0) wait_until(test_function, timeout=3) # Longest chain is extended so stale is much older than chain tip self.nodes[0].setmocktime(0) tip = self.nodes[0].generate(nblocks=1)[0] assert_equal(self.nodes[0].getblockcount(), 14) # Send getdata & getheaders to refresh last received getheader message block_hash = int(tip, 16) self.send_block_request(block_hash, node0) self.send_header_request(block_hash, node0) node0.sync_with_ping() # Request for very old stale block should now fail self.send_block_request(stale_hash, node0) time.sleep(3) assert not self.last_block_equals(stale_hash, node0) # Request for very old stale block header should now fail self.send_header_request(stale_hash, node0) time.sleep(3) assert not self.last_header_equals(stale_hash, node0) # Verify we can fetch very old blocks and headers on the active chain block_hash = int(block_hashes[2], 16) self.send_block_request(block_hash, node0) self.send_header_request(block_hash, node0) node0.sync_with_ping() self.send_block_request(block_hash, node0) test_function = lambda: self.last_block_equals(block_hash, node0) wait_until(test_function, timeout=3) self.send_header_request(block_hash, node0) test_function = lambda: self.last_header_equals(block_hash, node0) wait_until(test_function, timeout=3) if __name__ == '__main__': P2PFingerprintTest().main()
python
5,905
#!/usr/bin/python3 import time import threading import ctypes WORK_DURATION = 600 LONG_BREAK_EVERY = 4 TITLE = 'pybreak' MAIN_MENU_TEXT = 'Press OK to end session.' SHORT_BREAK_TEXT = 'Go take a short break! Press OK when finished.' LONG_BREAK_TEXT = 'Go take a long break! Press OK when finished.' MAIN_MENU_ICON = 0x00000 BREAK_ICON = 0x40000 MessageBox = ctypes.windll.user32.MessageBoxW def main(): thread = threading.Thread(target=loop, daemon=True) thread.start() menu_popup() def loop(): while True: time.sleep(WORK_DURATION) if i % LONG_BREAK_EVERY == 0: break_popup(LONG_BREAK_TEXT) else: break_popup(SHORT_BREAK_TEXT) def menu_popup(): MessageBox(None, MAIN_MENU_TEXT, TITLE, MAIN_MENU_ICON) def break_popup(text): MessageBox(None, text, TITLE, BREAK_ICON) if __name__=='__main__': main()
python
897
from django.urls import path#This import allows us to use the path function(within urlpatterns) from . import views #This will import our view.py module from the main project directory """ Please note the it must be 'urlpatterns' and not 'urlpattern'. This will be name specific and will cause an error otherwise path() will allow us to create a url for a specified view Note that more documention on views can be found in the main project directory 'tutorial_1' """ urlpatterns = [ path('register', views.register, name='register'), path('login', views.login, name='login'), path('logout', views.logout, name="logout") ]
python
637
import pytest from csv_diff import load_csv, compare from castoredc_api.auth import auth_data from castoredc_api.study.castor_study import CastorStudy class TestCSVOutputArchived: """Tests whether the correct data is outputted. When also extracting archived data""" @pytest.fixture(scope="session") def output_data_archived(self): study = CastorStudy( auth_data.client_id, auth_data.client_secret, auth_data.test_study_study_id, "data.castoredc.com", ) output_data_archived = study.export_to_csv(archived=True) return output_data_archived def test_study_export_archived(self, output_data_archived): """Tests if study export is correct.""" diff = compare( load_csv( open(output_data_archived["Study"]), key="record_id", ), load_csv( open( "tests/test_output/data_files_for_output_tests/CastorStudy - Archived.csv" ), key="record_id", ), ) assert diff["added"] == [] assert diff["removed"] == [] assert diff["columns_added"] == [] assert diff["columns_removed"] == [] assert diff["changed"] == [ { "key": "110001", "changes": { "base_weight": ["88.0", "88"], "base_sbp": ["120.0", "120"], "base_dbp": ["65.0", "65"], "base_hr": ["66.0", "66"], "fac_V_leiden_number": ["55.0", "55"], "base_tromboc": ["252.0", "252"], "base_creat": ["88.0", "88"], "fu_weight": ["66.0", "66"], "fu_sbp": ["132.0", "132"], "fu_dbp": ["72.0", "72"], "fu_hr": ["69.0", "69"], "fu_tromboc": ["366.0", "366"], "fu_creat": ["99.0", "99"], }, } ] def test_qol_survey_export_without_missing_surveys_archived( self, output_data_archived ): """Tests if survey export is correct. Does not check for empty surveys""" diff = compare( load_csv( open(output_data_archived["Surveys"]["QOL Survey"]), key="survey_instance_id", ), load_csv( open( "tests/test_output/data_files_for_output_tests/CastorQOLSurvey - Archived.csv" ), key="survey_instance_id", ), ) assert diff["removed"] == [] assert diff["columns_added"] == [] assert diff["columns_removed"] == [] assert diff["changed"] == [ { "key": "4FF130AD-274C-4C8F-A4A0-A7816A5A88E9", "changes": {"VAS": ["85.0", "85"]}, } ] def test_qol_survey_export_archived(self, output_data_archived): """Tests if survey export is correct. Does test for missing surveys.""" diff = compare( load_csv( open(output_data_archived["Surveys"]["QOL Survey"]), key="survey_instance_id", ), load_csv( open( "tests/test_output/data_files_for_output_tests/CastorQOLSurvey - Archived.csv" ), key="survey_instance_id", ), ) assert diff["removed"] == [] assert diff["columns_added"] == [] assert diff["columns_removed"] == [] assert diff["changed"] == [ { "key": "4FF130AD-274C-4C8F-A4A0-A7816A5A88E9", "changes": {"VAS": ["85.0", "85"]}, } ] assert diff["added"] == [] def test_medication_report_export_archived(self, output_data_archived): """Tests if report export is correct.""" diff = compare( load_csv( open(output_data_archived["Reports"]["Medication"]), key="custom_name", ), load_csv( open( "tests/test_output/data_files_for_output_tests/CastorMedication - Archived.csv" ), key="custom_name", ), ) assert diff["removed"] == [] assert diff["columns_added"] == [] assert diff["columns_removed"] == [] assert diff["changed"] == [] assert diff["added"] == [] def test_unscheduled_visit_report_export_archived(self, output_data_archived): """Tests if report export is correct.""" diff = compare( load_csv( open(output_data_archived["Reports"]["Unscheduled visit"]), key="custom_name", ), load_csv( open( "tests/test_output/data_files_for_output_tests/CastorUnscheduledVisit - Archived.csv" ), key="custom_name", ), ) assert diff["removed"] == [] assert diff["columns_added"] == [] assert diff["columns_removed"] == [] assert diff["changed"] == [] assert diff["added"] == [] def test_comorbidities_report_export_archived(self, output_data_archived): """Tests if report export is correct.""" diff = compare( load_csv( open(output_data_archived["Reports"]["Comorbidities"]), key="custom_name", ), load_csv( open( "tests/test_output/data_files_for_output_tests/CastorComorbidities - Archived.csv" ), key="custom_name", ), ) assert diff["removed"] == [] assert diff["columns_added"] == [] assert diff["columns_removed"] == [] assert diff["changed"] == [] assert diff["added"] == [] def test_adverse_event_report_export_archived(self, output_data_archived): """Tests if report export is correct.""" diff = compare( load_csv( open(output_data_archived["Reports"]["Adverse event"]), key="custom_name", ), load_csv( open( "tests/test_output/data_files_for_output_tests/CastorAdverseEvent - Archived.csv" ), key="custom_name", ), ) assert diff["removed"] == [] assert diff["columns_added"] == [] assert diff["columns_removed"] == [] assert diff["changed"] == [] assert diff["added"] == []
python
6,779
""" # Copyright Xiang Wang, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 Author: Xiang Wang, [email protected] Status: Active """ import json import copy import codecs import pandas as pd from collections import defaultdict from torch.utils.data import Dataset from pandas.core.frame import DataFrame class BaseDataset(Dataset): """ Dataset基类 Args: data (:obj:`DataFrame` or :obj:`string`): 数据或者数据地址 categories (:obj:`list`, optional, defaults to `None`): 数据类别 is_retain_df (:obj:`bool`, optional, defaults to False): 是否将DataFrame格式的原始数据复制到属性retain_df中 is_retain_dataset (:obj:`bool`, optional, defaults to False): 是否将处理成dataset格式的原始数据复制到属性retain_dataset中 is_train (:obj:`bool`, optional, defaults to True): 数据集是否为训练集数据 is_test (:obj:`bool`, optional, defaults to False): 数据集是否为测试集数据 """ # noqa: ignore flake8" def __init__( self, data, categories=None, is_retain_df=False, is_retain_dataset=False, is_train=True, is_test=False ): self.is_test = is_test self.is_train = is_train self.is_retain_df = is_retain_df self.is_retain_dataset = is_retain_dataset if self.is_test is True: self.is_train = False if isinstance(data, DataFrame): if 'label' in data.columns: data['label'] = data['label'].apply(lambda x: str(x)) if self.is_retain_df: self.df = data self.dataset = self._convert_to_dataset(data) else: self.dataset = self._load_dataset(data) if categories is None: self.categories = self._get_categories() else: self.categories = categories if self.categories is not None: self.cat2id = dict(zip(self.categories, range(len(self.categories)))) self.id2cat = dict(zip(range(len(self.categories)), self.categories)) self.class_num = len(self.cat2id) def _get_categories(self): return None def _load_dataset(self, data_path): """ 加载数据集 Args: data_path (:obj:`string`): 数据地址 """ # noqa: ignore flake8" data_df = self._read_data(data_path) if self.is_retain_df: self.df = data_df return self._convert_to_dataset(data_df) def _convert_to_dataset(self, data_df): pass def _read_data( self, data_path, data_format=None, skiprows=-1 ): """ 读取所需数据 Args: data_path (:obj:`string`): 数据地址 data_format (:obj:`string`, defaults to `None`): 数据存储格式 skiprows (:obj:`int`, defaults to -1): 读取跳过指定行数,默认为不跳过 """ # noqa: ignore flake8" if data_format is not None: data_format = data_path.split('.')[-1] if data_format == 'csv': data_df = pd.read_csv(data_path, dtype={'label': str}) elif data_format == 'json': try: data_df = pd.read_json(data_path, dtype={'label': str}) except: data_df = self.read_line_json(data_path) elif data_format == 'tsv': data_df = pd.read_csv(data_path, sep='\t', dtype={'label': str}) elif data_format == 'txt': data_df = pd.read_csv(data_path, sep='\t', dtype={'label': str}) else: raise ValueError("The data format does not exist") return data_df def read_line_json( self, data_path, skiprows=-1 ): """ 读取所需数据 Args: data_path (:obj:`string`): 数据所在路径 skiprows (:obj:`int`, defaults to -1): 读取跳过指定行数,默认为不跳过 """ datasets = [] with codecs.open(data_path, mode='r', encoding='utf8') as f: reader = f.readlines() for index, line in enumerate(reader): if index == skiprows: continue line = json.loads(line) tokens = line['text'] label = line['label'] datasets.append({'text': tokens.strip(), 'label': label}) return pd.DataFrame(datasets) def convert_to_ids(self, tokenizer): """ 将文本转化成id的形式 Args: tokenizer: 编码器 """ if tokenizer.tokenizer_type == 'vanilla': features = self._convert_to_vanilla_ids(tokenizer) elif tokenizer.tokenizer_type == 'transfomer': features = self._convert_to_transfomer_ids(tokenizer) elif tokenizer.tokenizer_type == 'customized': features = self._convert_to_customized_ids(tokenizer) else: raise ValueError("The tokenizer type does not exist") if self.is_retain_dataset: self.retain_dataset = copy.deepcopy(self.dataset) self.dataset = features def _convert_to_transfomer_ids(self, bert_tokenizer): pass def _convert_to_vanilla_ids(self, vanilla_tokenizer): pass def _convert_to_customized_ids(self, customized_tokenizer): pass def _get_input_length(self, text, bert_tokenizer): pass @property def dataset_cols(self): return list(self.dataset[0].keys()) @property def to_device_cols(self): return list(self.dataset[0].keys()) @property def sample_num(self): return len(self.dataset) @property def dataset_analysis(self): _result = defaultdict(list) for _row in self.dataset: for _col in self.dataset_cols: if type(_row[_col]) == str: _result[_col].append(len(_row[_col])) _report = pd.DataFrame(_result).describe() return _report def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset)
python
6,167
import json import time from flask import Flask, request, abort from flask_socketio import SocketIO, emit from flask_cors import CORS app = Flask(__name__) CORS(app) socketio = SocketIO(app) api_header_name = 'API-KEY' debug_mode = True api_key = 'test' def check_api_key(): request_api_key = request.headers.get(api_header_name) if not api_key == request_api_key: abort(401) """ API Routes """ @app.route('/') def index(): return 'Index Page' @app.route('/data', methods=['POST']) def data(): data_dict = request.get_json() print(data_dict) socketio.emit('overlayPositionUpdate', data_dict) return 'OK' """ Websocket Routes """ @socketio.on('latency', namespace='/') def latency_check(data): print(data) current_time = int(round(time.time() * 1000)) emit('latencyResponse', {'timestamp': current_time, 'timestamp_client': data['timestamp']}) @socketio.on('positionUpdate', namespace='/') def latency_check(data): print('X: {}, Y: {}'.format(data['x'], data['y'])) emit('overlayPositionUpdate', data) if __name__ == '__main__': socketio.run(app, debug=debug_mode)
python
1,143
for num1 in range(1,11): print("Tabla de multiplicar del " + str(num1)) print("-----------") for num2 in range(1,11): print(str(num1) + " por " + str(num2) + " es " + str(num1*num2))
python
202
######################################################################################## # Davi Frossard, 2016 # # VGG16 implementation in TensorFlow # # Details: # # http://www.cs.toronto.edu/~frossard/post/vgg16/ # # # # Model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md # # Weights from Caffe converted using https://github.com/ethereon/caffe-tensorflow # ######################################################################################## from numpy import * import os #from pylab import * import numpy as np from scipy.misc import imread, imresize from caffe_classes import class_names import numpy as np #import matplotlib.pyplot as plt #import matplotlib.cbook as cbook import time from scipy.misc import imread from scipy.misc import imresize import matplotlib.image as mpimg from scipy.ndimage import filters import urllib from numpy import random import scipy import TensorFI as ti import datetime import tensorflow as tf class vgg16: def __init__(self, imgs, weights=None, sess=None): self.imgs = imgs self.convlayers() self.fc_layers() self.probs = tf.nn.softmax(self.fc3l) if weights is not None and sess is not None: self.load_weights(weights, sess) def convlayers(self): self.parameters = [] # zero-mean input with tf.name_scope('preprocess') as scope: mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean') images = self.imgs-mean # conv1_1 with tf.name_scope('conv1_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 3, 64], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv1_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv1_2 with tf.name_scope('conv1_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 64], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv1_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv1_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool1 self.pool1 = tf.nn.max_pool(self.conv1_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # conv2_1 with tf.name_scope('conv2_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.pool1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv2_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv2_2 with tf.name_scope('conv2_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 128], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv2_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv2_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool2 self.pool2 = tf.nn.max_pool(self.conv2_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # conv3_1 with tf.name_scope('conv3_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 256], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.pool2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv3_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv3_2 with tf.name_scope('conv3_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv3_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv3_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv3_3 with tf.name_scope('conv3_3') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv3_2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv3_3 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool3 self.pool3 = tf.nn.max_pool(self.conv3_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool3') # conv4_1 with tf.name_scope('conv4_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.pool3, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv4_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv4_2 with tf.name_scope('conv4_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv4_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv4_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv4_3 with tf.name_scope('conv4_3') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv4_2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv4_3 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool4 self.pool4 = tf.nn.max_pool(self.conv4_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool4') # conv5_1 with tf.name_scope('conv5_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.pool4, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv5_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv5_2 with tf.name_scope('conv5_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv5_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv5_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv5_3 with tf.name_scope('conv5_3') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv5_2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv5_3 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool5 self.pool5 = tf.nn.max_pool(self.conv5_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool4') def fc_layers(self): # fc1 with tf.name_scope('fc1') as scope: shape = int(np.prod(self.pool5.get_shape()[1:])) fc1w = tf.Variable(tf.truncated_normal([shape, 4096], dtype=tf.float32, stddev=1e-1), name='weights') fc1b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32), trainable=True, name='biases') pool5_flat = tf.reshape(self.pool5, [-1, shape]) fc1l = tf.nn.bias_add(tf.matmul(pool5_flat, fc1w), fc1b) self.fc1 = tf.nn.relu(fc1l) self.parameters += [fc1w, fc1b] # fc2 with tf.name_scope('fc2') as scope: fc2w = tf.Variable(tf.truncated_normal([4096, 4096], dtype=tf.float32, stddev=1e-1), name='weights') fc2b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32), trainable=True, name='biases') fc2l = tf.nn.bias_add(tf.matmul(self.fc1, fc2w), fc2b) self.fc2 = tf.nn.relu(fc2l) self.parameters += [fc2w, fc2b] # fc3 with tf.name_scope('fc3') as scope: fc3w = tf.Variable(tf.truncated_normal([4096, 1000], dtype=tf.float32, stddev=1e-1), name='weights') fc3b = tf.Variable(tf.constant(1.0, shape=[1000], dtype=tf.float32), trainable=True, name='biases') self.fc3l = tf.nn.bias_add(tf.matmul(self.fc2, fc3w), fc3b) self.parameters += [fc3w, fc3b] def load_weights(self, weight_file, sess): weights = np.load(weight_file) keys = sorted(weights.keys()) for i, k in enumerate(keys): print i, k, np.shape(weights[k]) sess.run(self.parameters[i].assign(weights[k])) #if __name__ == '__main__': sess = tf.Session() imgs = tf.placeholder(tf.float32, [None, 224, 224, 3]) # log the pre-trained weights vgg = vgg16(imgs, 'vgg16_weights.npz', sess) # Change Me: this is the label of your test image label = 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi' fi = ti.TensorFI(sess, logLevel = 50, name = "convolutional", disableInjections=False) # inputs to be injected index = [0,2,3,5,6,8,9,12,15,17] # save FI results into file, "eachRes" saves each FI result, "resFile" saves SDC rate resFile = open("vgg16-binFI.csv", "a") eachRes = open("vgg16-binEach.csv", "a") for i in index: # Change me: load the images that you want to inject img1 = imread("path_to_input_image") img1 = scipy.misc.imresize(img1, [224,224,3]) totalFI = 0. # initiliaze for binary FI ti.faultTypes.initBinaryInjection() while(ti.faultTypes.isKeepDoingFI): prob = sess.run(vgg.probs, feed_dict={vgg.imgs: [img1]})[0] preds = (np.argsort(prob)[::-1])[0:5] # you need to feedback the FI result to guide the next FI for binary search if(class_names[preds[0]] == label): # Fi does not result in SDC ti.faultTypes.sdcFromLastFI = False else: ti.faultTypes.sdcFromLastFI = True # if FI on the current data item, you might want to log the sdc bound for the bits of 0 or 1 # (optional), if you just want to measure the SDC rate, you can access the variable of "ti.faultTypes.sdcRate" if(ti.faultTypes.isDoneForCurData): eachRes.write(`ti.faultTypes.sdc_bound_0` + "," + `ti.faultTypes.sdc_bound_1` + ",") # Important: initialize the binary FI for next data item. ti.faultTypes.initBinaryInjection(isFirstTime=False) print(i, ti.faultTypes.fiTime) eachRes.write("\n") resFile.write(`ti.faultTypes.sdcRate` + "," + `ti.faultTypes.fiTime` + "\n") print(ti.faultTypes.sdcRate , "fi time: ", ti.faultTypes.fiTime)
python
15,392
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-11-20 18:27 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('billing', '0001_initial'), ('addresses', '0001_initial'), ('carts', '0001_initial'), ('products', '0001_initial'), ] operations = [ migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('order_id', models.CharField(blank=True, max_length=120)), ('status', models.CharField(choices=[('created', 'Procesando'), ('paid', 'Pagado'), ('shipped', 'Enviado'), ('refunded', 'Reintegrado'), ('delivered', 'Entregado')], default='created', max_length=120)), ('payment_method', models.CharField(blank=True, choices=[('efectivo', 'Efectivo'), ('tarjeta', 'Tarjeta')], max_length=120, null=True)), ('cash_amount', models.DecimalField(blank=True, decimal_places=2, max_digits=100, null=True)), ('cash_change', models.DecimalField(blank=True, decimal_places=2, max_digits=100, null=True)), ('shipping_total', models.DecimalField(decimal_places=2, default=500, max_digits=100)), ('total', models.DecimalField(decimal_places=2, default=0.0, max_digits=100)), ('active', models.BooleanField(default=True)), ('updated', models.DateTimeField(auto_now=True)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('billing_profile', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='billing.BillingProfile')), ('cart', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='carts.Cart')), ('shipping_address', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='shipping_address', to='addresses.Address')), ], options={ 'ordering': ['-timestamp', '-updated'], }, ), migrations.CreateModel( name='ProductPurchase', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('order_id', models.CharField(max_length=120)), ('refunded', models.BooleanField(default=False)), ('timestamp', models.DateTimeField(auto_now=True)), ('billing_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='billing.BillingProfile')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='products.Variation')), ], ), ]
python
2,951
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `code_analysis` package.""" from click.testing import CliRunner from code_analysis import java_dependencies as jvd def test_java_dependencies(): """Test the CLI.""" runner = CliRunner() result = runner.invoke(jvd.main, ['resources/java_depend.txt']) assert result.exit_code == 0 assert 'MERGE (n:Package' in result.output assert 'MERGE (m:Package' in result.output assert 'MERGE (n)-[r:depends_on]->(m)' in result.output assert 'com.company.abc.plaza.storage.ifc' in result.output assert 'com.company.abc.general.basic.ifc.configuration' in result.output def test_help(): runner = CliRunner() help_result = runner.invoke(jvd.main, ['--help']) assert help_result.exit_code == 0 assert '--help Show this message and exit.' in help_result.output
python
861
import scipy.stats import pickle import matplotlib.pyplot as plt import sys # Load data with open("image_data.bin", "rb") as f: data = pickle.load(f) # Print results print("The result of the two sample t-test for ASD vs TD: {}".format(scipy.stats.ttest_ind(data["asd_var"], data["td_var"]))) print("-" * 20) print("The result of the SRCC for ASD on mean image brightness: {}".format(scipy.stats.spearmanr(data["asd_var"], data["im_brightness"]))) print("The result of the SRCC for TD on mean image brightness: {}".format(scipy.stats.spearmanr(data["td_var"], data["im_brightness"]))) print("-" * 20) print("The result of the SRCC for ASD on variance of image brightness: {}".format(scipy.stats.spearmanr(data["asd_var"], data["im_var"]))) print("The result of the SRCC for TD on variance of image brightness: {}".format(scipy.stats.spearmanr(data["td_var"], data["im_var"]))) # Show graphs # Choose a graph plt.xlabel("Weighted Variance of Fixmap") if len(sys.argv) < 2: print("No graph.") elif sys.argv[1] == "tdb": plt.title("TD") plt.ylabel("Mean Brightness of Image") plt.plot(data["td_var"], data["im_brightness"], "o") elif sys.argv[1] == "tdv": plt.title("TD") plt.ylabel("Variance of Brightness of Image") plt.plot(data["td_var"], data["im_var"], "o") elif sys.argv[1] == "asdb": plt.title("ASD") plt.ylabel("Mean Brightness of Image") plt.plot(data["asd_var"], data["im_brightness"], "o") elif sys.argv[1] == "asdv": plt.title("ASD") plt.ylabel("Variance of Brightness of Image") plt.plot(data["asd_var"], data["im_var"], "o") elif sys.argv[1] == "td": plt.title("TD") plt.hist(data["td_var"], 50) elif sys.argv[1] == "asd": plt.title("ASD") plt.hist(data["asd_var"], 50) elif sys.argv[1] == "combined": plt.title("ASD and TD") _, _, asd_hist = plt.hist(data["asd_var"], 50, alpha=0.5) _, _, td_hist = plt.hist(data["td_var"], 50, alpha=0.5) plt.legend(handles=[asd_hist, td_hist], labels=["ASD", "TD"]) elif sys.argv[1] == "b": fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6)) ax1.set_title("TD") ax1.set_ylabel("Mean Brightness of Image") ax1.set_xlabel("Weighted Variance of Fixmap") ax1.plot(data["td_var"], data["im_brightness"], "o") ax2.set_title("ASD") ax2.set_ylabel("Mean Brightness of Image") ax2.set_xlabel("Weighted Variance of Fixmap") ax2.plot(data["asd_var"], data["im_brightness"], "o") elif sys.argv[1] == "v": fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6)) ax1.set_title("TD") ax1.set_ylabel("Variance of Brightness of Image") ax1.set_xlabel("Weighted Variance of Fixmap") ax1.plot(data["td_var"], data["im_var"], "o") ax2.set_title("ASD") ax2.set_ylabel("Variance of Brightness of Image") ax2.set_xlabel("Weighted Variance of Fixmap") ax2.plot(data["asd_var"], data["im_var"], "o") plt.show()
python
2,780
''' <table class="ee-notebook-buttons" align="left"> <td><a target="_blank" href="https://github.com/giswqs/earthengine-py-notebooks/tree/master/Image/pansharpen.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub</a></td> <td><a target="_blank" href="https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/Image/pansharpen.ipynb"><img width=26px src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png" />Notebook Viewer</a></td> <td><a target="_blank" href="https://mybinder.org/v2/gh/giswqs/earthengine-py-notebooks/master?filepath=Image/pansharpen.ipynb"><img width=58px src="https://mybinder.org/static/images/logo_social.png" />Run in binder</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/Image/pansharpen.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Run in Google Colab</a></td> </table> ''' # %% ''' ## Install Earth Engine API Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`. The magic command `%%capture` can be used to hide output from a specific cell. Uncomment these lines if you are running this notebook for the first time. ''' # %% # %%capture # !pip install earthengine-api # !pip install geehydro # %% ''' Import libraries ''' # %% import ee import folium import geehydro # %% ''' Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for the first time or if you are getting an authentication error. ''' # %% # ee.Authenticate() ee.Initialize() # %% ''' ## Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ''' # %% Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') # %% ''' ## Add Earth Engine Python script ''' # %% # Load a Landsat 8 top-of-atmosphere reflectance image. image = ee.Image('LANDSAT/LC08/C01/T1_TOA/LC08_044034_20140318') Map.addLayer( image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 0.25, 'gamma': [1.1, 1.1, 1]}, 'rgb') # Convert the RGB bands to the HSV color space. hsv = image.select(['B4', 'B3', 'B2']).rgbToHsv() # Swap in the panchromatic band and convert back to RGB. sharpened = ee.Image.cat([ hsv.select('hue'), hsv.select('saturation'), image.select('B8') ]).hsvToRgb() # Display the pan-sharpened result. Map.setCenter(-122.44829, 37.76664, 13) Map.addLayer(sharpened, {'min': 0, 'max': 0.25, 'gamma': [1.3, 1.3, 1.3]}, 'pan-sharpened') # %% ''' ## Display Earth Engine data layers ''' # %% Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map
python
3,462
""" So this is where all the SQL commands live """ CREATE_SQL = """ CREATE TABLE component_type ( id INT PRIMARY KEY AUTO_INCREMENT, type VARCHAR(255) UNIQUE ); CREATE TABLE components ( id INT PRIMARY KEY AUTO_INCREMENT, serial_number VARCHAR(255), sku TEXT, type INT, status INT, FOREIGN KEY (type) REFERENCES component_type(id) ); CREATE TABLE projects ( id INT PRIMARY KEY AUTO_INCREMENT, product_number INT, motherboard INT, power_supply INT, cpu INT, hard_drive INT, proj_case INT, memory INT, FOREIGN KEY (motherboard) REFERENCES components(id) ON DELETE CASCADE, FOREIGN KEY (cpu) REFERENCES components(id) ON DELETE CASCADE, FOREIGN KEY (power_supply) REFERENCES components(id) ON DELETE CASCADE, FOREIGN KEY (hard_drive) REFERENCES components(id) ON DELETE CASCADE, FOREIGN KEY (proj_case) REFERENCES components(id) ON DELETE CASCADE, FOREIGN KEY (memory) REFERENCES components(id) ON DELETE CASCADE ); """ ADD_COMPONENT_TYPE = """INSERT IGNORE INTO component_type (type) VALUES ('{text}') """ GET_COMPONENT_TYPE="""SELECT * FROM component_type WHERE type='{text}'""" DELETE_COMPONENT_TYPE = """DELETE FROM component_type WHERE type='{text}' """ SELECT_ALL_COMPONENTS = """ SELECT * FROM components INNER JOIN component_type ON components.type = component_type.id; """ # Project SQL ADD_PROJECT = "INSERT INTO projects (product_number) VALUE ('{text}')" DELETE_PROJECT = """ DELETE FROM projects WHERE product_number='{text}' """ DROP_SQL = """ DROP TABLE projects; DROP TABLE components; DROP TABLE component_type; """
python
1,631
import csv import matplotlib.pyplot as plt import numpy as np # Read CSV spikes and weights spikes = np.loadtxt("spikes.csv", delimiter=",", skiprows=1, dtype={"names": ("time", "neuron_id"), "formats": (np.float, np.int)}) weights = np.loadtxt("weights.csv", delimiter=",", skiprows=1, dtype={"names": ("time", "weight"), "formats": (np.float, np.float)}) # Create plot figure, axes = plt.subplots(3, sharex=True) # Plot spikes axes[0].scatter(spikes["time"], spikes["neuron_id"], s=2, edgecolors="none") # Plot rates bins = np.arange(0, 10000 + 1, 10) rate = np.histogram(spikes["time"], bins=bins)[0] * (1000.0 / 10.0) * (1.0 / 2000.0) axes[1].plot(bins[0:-1], rate) # Plot weight evolution axes[2].plot(weights["time"], weights["weight"]) axes[0].set_title("Spikes") axes[1].set_title("Firing rates") axes[2].set_title("Weight evolution") axes[0].set_xlim((0, 10000)) axes[0].set_ylim((0, 2000)) axes[0].set_ylabel("Neuron number") axes[1].set_ylabel("Mean firing rate [Hz]") axes[2].set_ylabel("Mean I->E weights [nA]") axes[2].set_xlabel("Time [ms]") # Show plot plt.show()
python
1,188
def to_max(dataframe): """ Normalization method that finds the max value for each series and sets it to 1, dividing all other values accordingly. Useful for viewing curves on top of one another while also forcing them to have the same zero value (so that proportionality of changes is easy to find). Args: dataframe: pandas.DataFrame in which each column will be normalized Returns: new DataFrame with normalized columns """ return dataframe / dataframe.max() def by_rgb_sum(rgb_df): """ Normalize each series in the DataFrame by dividing by the sum of the r, g, and b values in each row Args: rgb_df: pandas.DataFrame instance with 'r', 'g', and 'b' columns Returns new DataFrame with all columns normalized by r+g+b """ normalization_series = rgb_df["r"] + rgb_df["g"] + rgb_df["b"] return rgb_df.apply(lambda column: column / normalization_series, axis="rows") def r_over_b(rgb_df): r_over_b = rgb_df["r"] / rgb_df["b"] r_over_b.name = "r/b" return r_over_b
python
1,068
# Copyright 2016 The Closure Rules Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for building JavaScript Protocol Buffers. """ load("//closure/compiler:closure_js_library.bzl", "closure_js_library") def _collect_includes(srcs): includes = ["."] for src in srcs: include = "" if src.startswith("@"): include = Label(src).workspace_root if include and not include in includes: includes += [include] return includes def closure_js_proto_library( name, srcs, suppress = [], add_require_for_enums = 0, testonly = None, binary = 1, import_style = None, protocbin = Label("@com_google_protobuf//:protoc"), **kwargs): cmd = ["$(location %s)" % protocbin] js_out_options = ["library=%s,error_on_name_conflict" % name] if add_require_for_enums: js_out_options += ["add_require_for_enums"] if testonly: js_out_options += ["testonly"] if binary: js_out_options += ["binary"] if import_style: js_out_options += ["import_style=%s" % import_style] cmd += ["-I%s" % i for i in _collect_includes(srcs)] cmd += ["--js_out=%s:$(@D)" % ",".join(js_out_options)] cmd += ["--descriptor_set_out=$(@D)/%s.descriptor" % name] cmd += ["$(locations " + src + ")" for src in srcs] native.genrule( name = name + "_gen", srcs = srcs, testonly = testonly, visibility = ["//visibility:private"], message = "Generating JavaScript Protocol Buffer file", outs = [name + ".js", name + ".descriptor"], tools = [protocbin], cmd = " ".join(cmd), ) closure_js_library( name = name, srcs = [name + ".js"], testonly = testonly, deps = [ str(Label("//closure/library/array")), str(Label("//closure/protobuf:jspb")), ], internal_descriptors = [name + ".descriptor"], suppress = suppress + [ "missingProperties", "unusedLocalVariables", ], lenient = True, **kwargs )
python
2,683
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- from IPython.core.display import HTML from IPython.display import Image HTML(""" <style> .output_png { display: table-cell; text-align: center; vertical-align: middle; } </style> """) # # *Circuitos Elétricos I - Semana 4* # ## Transformações de fontes # # Uma fonte de tensão ideal de valor $V_s$ conectada em série com um resistor $R$ pode ser substituída por uma fonte de corrente ideal de valor $I_s$ conectada em paralelo com uma resistência $R$, e vice-versa. Estas substituições não alterarão o comportamento dos demais elementos do circuito desde que $V_s=RI_s$. # # <img src=./figures/J5C0.png width=600> # # ## Deslocamentos de fontes # # * **Deslocamento de fontes de tensão**: conectar fontes ideais de tensão em série com todos os elementos ideais de dois terminais ligados a um nó, com polaridades adequadas, não altera as equações que descrevem o comportamento do circuito. # # * **Deslocamento de fontes de corrente**: conectar um laço de fontes ideais de corrente iguais e de mesmo sentido num circuito não altera as equações que descrevem o comportamento do circuito. # ### Problema 1 # # Determine a corrente que passa pelo resistor de $25~\Omega$ aplicando transformações e deslocamentos de fontes. Image("./figures/J5C1.png", width=500) # Simulação do circuito: https://tinyurl.com/ydk42vvn
python
1,652
import errno from io import StringIO from unittest.mock import patch from django.core.management import call_command from django.test import TestCase from aiodjango.management.commands.runserver import Command class RunserverTestCase(TestCase): """Development server command options.""" def setUp(self): self.stdout = StringIO() self.stderr = StringIO() self.cmd = Command(stdout=self.stdout, stderr=self.stderr) def assert_option(self, name, value): self.assertEqual(getattr(self.cmd, name), value) def assert_stderr(self, message): self.stderr.seek(0) self.assertIn(message, self.stderr.read()) def test_default_options(self): """Deifault options for running the server.""" with patch.object(self.cmd, 'run'): call_command(self.cmd) self.assert_option('addr', '127.0.0.1') self.assert_option('port', '8000') self.assert_option('use_ipv6', False) def test_set_ip(self): """Run server on another IP address/port.""" with patch.object(self.cmd, 'run'): call_command(self.cmd, addrport='1.2.3.4:5000') self.assert_option('addr', '1.2.3.4') self.assert_option('port', '5000') self.assert_option('use_ipv6', False) @patch('asyncio.get_event_loop') def test_run(self, mock_loop): """Running the server should kick off the aiohttp app in the event loop.""" call_command(self.cmd, use_reloader=False) mock_loop.assert_called_with() mock_loop.return_value.run_forever.assert_called_with() @patch('asyncio.set_event_loop') @patch('asyncio.new_event_loop') def test_auto_reloader(self, mock_loop, mock_set_loop): """Running with the reloader thread creates a new event loop.""" # Need to setup command options and use inner_run to prevent the # background thread from actually kicking off. self.cmd.addr = '127.0.0.1' self.cmd.port = '8000' self.cmd._raw_ipv6 = False self.cmd.inner_run(use_reloader=True, use_static_handler=False, insecure_serving=True) mock_loop.assert_called_with() mock_set_loop.assert_called_with(mock_loop.return_value) mock_loop.return_value.run_forever.assert_called_with() @patch('asyncio.get_event_loop') def test_handle_general_socket_errors(self, mock_loop): """Handle socket errors when createing the server.""" mock_loop.return_value.create_server.side_effect = OSError('OS is broken') with patch('os._exit') as mock_exit: call_command(self.cmd, use_reloader=False) mock_exit.assert_called_with(1) self.assert_stderr('OS is broken') @patch('asyncio.get_event_loop') def test_handle_known_socket_errors(self, mock_loop): """Special case socket errors for more meaningful error messages.""" cases = ( (errno.EACCES, 'You don\'t have permission to access that port.'), (errno.EADDRINUSE, 'That port is already in use.'), (errno.EADDRNOTAVAIL, 'That IP address can\'t be assigned to.'), ) for number, message in cases: error = OSError() error.errno = number mock_loop.return_value.create_server.side_effect = error with patch('os._exit') as mock_exit: call_command(self.cmd, use_reloader=False) mock_exit.assert_called_with(1) self.assert_stderr(message) @patch('asyncio.get_event_loop') def test_keyboard_stop(self, mock_loop): """User should be able to stop the server with a KeyboardInterrupt.""" mock_loop.return_value.run_forever.side_effect = KeyboardInterrupt with self.assertRaises(SystemExit): call_command(self.cmd, use_reloader=False)
python
3,862
# -*- coding: utf-8 -*- """Cisco DNA Center Update Workflow data model. Copyright (c) 2019-2021 Cisco Systems. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import ( absolute_import, division, print_function, unicode_literals, ) import fastjsonschema import json from dnacentersdk.exceptions import MalformedRequest from builtins import * class JSONSchemaValidator3086C9624F498B85(object): """Update Workflow request schema definition.""" def __init__(self): super(JSONSchemaValidator3086C9624F498B85, self).__init__() self._validator = fastjsonschema.compile(json.loads( '''{ "properties": { "_id": { "type": [ "string", "null" ] }, "addToInventory": { "type": [ "boolean", "null" ] }, "addedOn": { "type": [ "number", "null" ] }, "configId": { "type": [ "string", "null" ] }, "currTaskIdx": { "type": [ "number", "null" ] }, "description": { "type": [ "string", "null" ] }, "endTime": { "type": [ "number", "null" ] }, "execTime": { "type": [ "number", "null" ] }, "imageId": { "type": [ "string", "null" ] }, "instanceType": { "type": [ "string", "null" ] }, "lastupdateOn": { "type": [ "number", "null" ] }, "name": { "type": [ "string", "null" ] }, "startTime": { "type": [ "number", "null" ] }, "state": { "type": [ "string", "null" ] }, "tasks": { "items": { "properties": { "currWorkItemIdx": { "type": [ "number", "null" ] }, "endTime": { "type": [ "number", "null" ] }, "name": { "type": [ "string", "null" ] }, "startTime": { "type": [ "number", "null" ] }, "state": { "type": [ "string", "null" ] }, "taskSeqNo": { "type": [ "number", "null" ] }, "timeTaken": { "type": [ "number", "null" ] }, "type": { "type": [ "string", "null" ] }, "workItemList": { "items": { "properties": { "command": { "type": [ "string", "null" ] }, "endTime": { "type": [ "number", "null" ] }, "outputStr": { "type": [ "string", "null" ] }, "startTime": { "type": [ "number", "null" ] }, "state": { "type": [ "string", "null" ] }, "timeTaken": { "type": [ "number", "null" ] } }, "type": [ "object", "null" ] }, "type": [ "array", "null" ] } }, "type": [ "object", "null" ] }, "type": [ "array", "null" ] }, "tenantId": { "type": [ "string", "null" ] }, "type": { "type": [ "string", "null" ] }, "useState": { "type": [ "string", "null" ] }, "version": { "type": [ "number", "null" ] } }, "type": "object" }'''.replace("\n" + ' ' * 16, '') )) def validate(self, request): try: self._validator(request) except fastjsonschema.exceptions.JsonSchemaException as e: raise MalformedRequest( '{} is invalid. Reason: {}'.format(request, e.message) )
python
7,270
import re from abc import abstractmethod, ABCMeta from collections import defaultdict from functools import partial import numpy as np import tables from astropy.time import Time from astropy.units import Quantity import ctapipe from ctapipe.core import Component __all__ = ['TableWriter', 'TableReader', 'HDF5TableWriter', 'HDF5TableReader'] PYTABLES_TYPE_MAP = { 'float': tables.Float64Col, 'float64': tables.Float64Col, 'float32': tables.Float32Col, 'int': tables.IntCol, 'int32': tables.Int32Col, 'int64': tables.Int64Col, 'bool': tables.BoolCol, } class TableWriter(Component, metaclass=ABCMeta): def __init__(self, parent=None, **kwargs): super().__init__(parent, **kwargs) self._transforms = defaultdict(dict) self._exclusions = defaultdict(list) def exclude(self, table_name, pattern): """ Exclude any columns matching the pattern from being written Parameters ---------- table_name: str name of table on which to apply the exclusion pattern: str regular expression string to match column name """ self._exclusions[table_name].append(re.compile(pattern)) def _is_column_excluded(self, table_name, col_name): for pattern in self._exclusions[table_name]: if pattern.match(col_name): return True return False def add_column_transform(self, table_name, col_name, transform): """ Add a transformation function for a column. This function will be called on the value in the container before it is written to the output file. Parameters ---------- table_name: str identifier of table being written col_name: str name of column in the table (or item in the Container) transform: callable function that take a value and returns a new one """ self._transforms[table_name][col_name] = transform self.log.debug("Added transform: {}/{} -> {}".format(table_name, col_name, transform)) @abstractmethod def write(self, table_name, container): """ Write the contents of the given container to a table. The first call to write will create a schema and initialize the table within the file. The shape of data within the container must not change between calls, since variable-length arrays are not supported. Parameters ---------- table_name: str name of table to write to container: `ctapipe.core.Container` container to write """ pass def _apply_col_transform(self, table_name, col_name, value): """ apply value transform function if it exists for this column """ if col_name in self._transforms[table_name]: tr = self._transforms[table_name][col_name] value = tr(value) return value class HDF5TableWriter(TableWriter): """ A very basic table writer that can take a container (or more than one) and write it to an HDF5 file. It does _not_ recursively write the container. This is intended as a building block to create a more complex I/O system. It works by creating a HDF5 Table description from the `Field`s inside a container, where each item becomes a column in the table. The first time `SimpleHDF5TableWriter.write()` is called, the container is registered and the table created in the output file. Each item in the container can also have an optional transform function that is called before writing to transform the value. For example, unit quantities always have their units removed, or converted to a common unit if specified in the `Field`. Any metadata in the `Container` (stored in `Container.meta`) will be written to the table's header on the first call to write() Multiple tables may be written at once in a single file, as long as you change the table_name attribute to write() to specify which one to write to. TODO: - ability to write several containers to the same table (appending a string to each column name). Perhaps `write(name, dict(method_a=cont, method_b=cont2))`, where "method_a_X" would be a column name. May be possible to do this with some container magic, like joining two containers `joined_container(cont1, cont2, "A", "B")` or "cont1+cont2". Perhaps need to provide a better way to get container contents as a dictionary. Parameters ---------- filename: str name of hdf5 output file group_name: str name of group into which to put all of the tables generated by this Writer (it will be placed under "/" in the file) """ def __init__(self, filename, group_name, **kwargs): super().__init__() self._schemas = {} self._tables = {} self._h5file = tables.open_file(filename, mode="w", **kwargs) self._group = self._h5file.create_group("/", group_name) self.log.debug("h5file: {}".format(self._h5file)) def __del__(self): self._h5file.close() def _create_hdf5_table_schema(self, table_name, container): """ Creates a pytables description class for a container and registers it in the Writer Parameters ---------- table_name: str name of table container: ctapipe.core.Container instance of an initalized container Returns ------- dictionary of extra metadata to add to the table's header """ class Schema(tables.IsDescription): pass meta = {} # any extra meta-data generated here (like units, etc) # create pytables schema description for the given container for col_name, value in container.items(): typename = "" shape = 1 if self._is_column_excluded(table_name, col_name): self.log.debug("excluded column: {}/{}".format(table_name, col_name)) continue if isinstance(value, Quantity): req_unit = container.fields[col_name].unit if req_unit is not None: tr = partial(tr_convert_and_strip_unit, unit=req_unit) meta['{}_UNIT'.format(col_name)] = str(req_unit) else: tr = lambda x: x.value meta['{}_UNIT'.format(col_name)] = str(value.unit) value = tr(value) self.add_column_transform(table_name, col_name, tr) if isinstance(value, np.ndarray): typename = value.dtype.name coltype = PYTABLES_TYPE_MAP[typename] shape = value.shape Schema.columns[col_name] = coltype(shape=shape) if isinstance(value, Time): # TODO: really should use MET, but need a func for that Schema.columns[col_name] = tables.Float64Col() self.add_column_transform(table_name, col_name, tr_time_to_float) elif type(value).__name__ in PYTABLES_TYPE_MAP: typename = type(value).__name__ coltype = PYTABLES_TYPE_MAP[typename] Schema.columns[col_name] = coltype() self.log.debug("Table {}: added col: {} type: {} shape: {}" .format(table_name, col_name, typename, shape)) self._schemas[table_name] = Schema meta['CTAPIPE_VERSION'] = ctapipe.__version__ return meta def _setup_new_table(self, table_name, container): """ set up the table. This is called the first time `write()` is called on a new table """ self.log.debug("Initializing table '{}'".format(table_name)) meta = self._create_hdf5_table_schema(table_name, container) meta.update(container.meta) # copy metadata from container table = self._h5file.create_table(where=self._group, name=table_name, title="storage of {}".format( container.__class__.__name__), description=self._schemas[table_name]) for key, val in meta.items(): table.attrs[key] = val self._tables[table_name] = table def _append_row(self, table_name, container): """ append a row to an already initialized table. This is called automatically by `write()` """ table = self._tables[table_name] row = table.row for colname in table.colnames: value = self._apply_col_transform(table_name, colname, container[colname]) row[colname] = value row.append() def write(self, table_name, container): """ Write the contents of the given container to a table. The first call to write will create a schema and initialize the table within the file. The shape of data within the container must not change between calls, since variable-length arrays are not supported. Parameters ---------- table_name: str name of table to write to container: `ctapipe.core.Container` container to write """ if table_name not in self._schemas: self._setup_new_table(table_name, container) self._append_row(table_name, container) class TableReader(Component, metaclass=ABCMeta): """ Base class for row-wise table readers. Generally methods that read a full table at once are preferred to this method, since they are faster, but this can be used to re-play a table row by row into a `ctapipe.core.Container` class (the opposite of TableWriter) """ def __init__(self): super().__init__() self._cols_to_read = defaultdict(list) self._transforms = defaultdict(dict) def add_column_transform(self, table_name, col_name, transform): """ Add a transformation function for a column. This function will be called on the value in the container before it is written to the output file. Parameters ---------- table_name: str identifier of table being written col_name: str name of column in the table (or item in the Container) transform: callable function that take a value and returns a new one """ self._transforms[table_name][col_name] = transform self.log.debug("Added transform: {}/{} -> {}".format(table_name, col_name, transform)) def _apply_col_transform(self, table_name, col_name, value): """ apply value transform function if it exists for this column """ if col_name in self._transforms[table_name]: tr = self._transforms[table_name][col_name] value = tr(value) return value @abstractmethod def read(self, table_name, container): """ Returns a generator that reads the next row from the table into the given container. The generator returns the same container. Note that no containers are copied, the data are overwritten inside. """ pass class HDF5TableReader(TableReader): """ Reader that reads a single row of an HDF5 table at once into a Container. Simply construct a `HDF5TableReader` with an input HDF5 file, and call the `read(path, container)` method to get a generator that fills the given container with a new row of the table on each access. Columns in the table are automatically mapped to container fields by name, and if a field is missing in either, it is skipped during read, but a warning is emitted. Columns that were written by SimpleHDF5TableWriter and which had unit transforms applied, will have the units re-applied when reading (the unit used is stored in the header attributes). Note that this is only useful if you want to read all information *one event at a time* into a container, which is not very I/O efficient. For some other use cases, it may be much more efficient to access the table data directly, for example to read an entire column or table at once (which means not using the Container data structure). Todo: - add ability to synchronize reading of multiple tables on a key - add ability (also with TableWriter) to read a row into n containers at once, assuming no naming conflicts (so we can add e.g. event_id) """ def __init__(self, filename): """ Parameters ---------- filename: str name of hdf5 file group_name: str HDF5 path to group where tables are to be found """ super().__init__() self._tables = {} self._h5file = tables.open_file(filename) pass def _setup_table(self, table_name, container): tab = self._h5file.get_node(table_name) self._tables[table_name] = tab self._map_table_to_container(table_name, container) self._map_transforms_from_table_header(table_name) return tab def _map_transforms_from_table_header(self, table_name): """ create any transforms needed to "undo" ones in the writer """ tab = self._tables[table_name] for attr in tab.attrs._f_list(): if attr.endswith("_UNIT"): colname = attr[:-5] tr = partial(tr_add_unit, unitname=tab.attrs[attr]) self.add_column_transform(table_name, colname, tr) def _map_table_to_container(self, table_name, container): """ identifies which columns in the table to read into the container, by comparing their names.""" tab = self._tables[table_name] for colname in tab.colnames: if colname in container.fields: self._cols_to_read[table_name].append(colname) else: self.log.warn("Table '{}' has column '{}' that is not in " "container {}. It will be skipped" .format(table_name, colname, container.__class__.__name__)) # also check that the container doesn't have fields that are not # in the table: for colname in container.fields: if colname not in self._cols_to_read[table_name]: self.log.warn("Table '{}' is missing column '{}' that is " "in container {}. It will be skipped" .format(table_name, colname, container.__class__.__name__)) # copy all user-defined attributes back to Container.mets for key in tab.attrs._f_list(): container.meta[key] = tab.attrs[key] def read(self, table_name, container): """ Returns a generator that reads the next row from the table into the given container. The generator returns the same container. Note that no containers are copied, the data are overwritten inside. """ if table_name not in self._tables: tab = self._setup_table(table_name, container) else: tab = self._tables[table_name] row_count = 0 while 1: try: row = tab[row_count] except IndexError: return # stop generator when done for colname in self._cols_to_read[table_name]: container[colname] = self._apply_col_transform(table_name, colname, row[colname]) yield container row_count += 1 def tr_convert_and_strip_unit(quantity, unit): return quantity.to(unit).value def tr_list_to_mask(thelist, length): """ transform list to a fixed-length mask""" arr = np.zeros(shape=length, dtype=np.bool) arr[thelist] = True return arr def tr_time_to_float(thetime): return thetime.mjd def tr_add_unit(value, unitname): return Quantity(value, unitname)
python
16,910
""" Mask R-CNN Display and Visualization Functions. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import os import sys import random import itertools import colorsys import numpy as np from skimage.measure import find_contours from skimage import io import matplotlib.pyplot as plt from matplotlib import patches, lines from matplotlib.patches import Polygon import IPython.display # Root directory of the project ROOT_DIR = os.path.abspath("../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import utils ############################################################ # Visualization ############################################################ def display_images(images, titles=None, cols=4, cmap=None, norm=None, interpolation=None): """Display the given set of images, optionally with titles. images: list or array of image tensors in HWC format. titles: optional. A list of titles to display with each image. cols: number of images per row cmap: Optional. Color map to use. For example, "Blues". norm: Optional. A Normalize instance to map values to colors. interpolation: Optional. Image interpolation to use for display. """ titles = titles if titles is not None else [""] * len(images) rows = len(images) // cols + 1 plt.figure(figsize=(14, 14 * rows // cols)) i = 1 for image, title in zip(images, titles): plt.subplot(rows, cols, i) plt.title(title, fontsize=9) plt.axis('off') plt.imshow(image.astype(np.uint8), cmap=cmap, norm=norm, interpolation=interpolation) i += 1 plt.show() def random_colors(N, bright=True): """ Generate random colors. To get visually distinct colors, generate them in HSV space then convert to RGB. """ brightness = 1.0 if bright else 0.7 hsv = [(i / N, 1, brightness) for i in range(N)] colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) random.shuffle(colors) return colors def apply_mask(image, mask, color, alpha=0.5): """Apply the given mask to the image. """ for c in range(3): image[:, :, c] = np.where(mask == 1, image[:, :, c] * (1 - alpha) + alpha * color[c] * 255, image[:, :, c]) return image def display_instances(image, boxes, masks, class_ids, class_names, scores=None, title="", figsize=(16, 16), ax=None, show_mask=True, show_bbox=True, colors=None, captions=None): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [height, width, num_instances] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box title: (optional) Figure title show_mask, show_bbox: To show masks and bounding boxes or not figsize: (optional) the size of the image colors: (optional) An array or colors to use with each object captions: (optional) A list of strings to use as captions for each object """ # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # If no axis is passed, create one and automatically call show() auto_show = False if not ax: _, ax = plt.subplots(1, figsize=figsize) auto_show = True # Generate random colors colors = colors or random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] if show_bbox: p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label if not captions: class_id = class_ids[i] score = scores[i] if scores is not None else None label = class_names[class_id] caption = "{} {:.3f}".format(label, score) if score else label else: caption = captions[i] ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor="none") # Mask mask = masks[:, :, i] if show_mask: masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) if auto_show: plt.savefig(r"C:\Users\Bang\Desktop\CMNDDetection\Mask-RCNN-CMND") plt.show() def display_differences(image, gt_box, gt_class_id, gt_mask, pred_box, pred_class_id, pred_score, pred_mask, class_names, title="", ax=None, show_mask=True, show_box=True, iou_threshold=0.5, score_threshold=0.5): """Display ground truth and prediction instances on the same image.""" # Match predictions to ground truth gt_match, pred_match, overlaps = utils.compute_matches( gt_box, gt_class_id, gt_mask, pred_box, pred_class_id, pred_score, pred_mask, iou_threshold=iou_threshold, score_threshold=score_threshold) # Ground truth = green. Predictions = red colors = [(0, 1, 0, .8)] * len(gt_match)\ + [(1, 0, 0, 1)] * len(pred_match) # Concatenate GT and predictions class_ids = np.concatenate([gt_class_id, pred_class_id]) scores = np.concatenate([np.zeros([len(gt_match)]), pred_score]) boxes = np.concatenate([gt_box, pred_box]) masks = np.concatenate([gt_mask, pred_mask], axis=-1) # Captions per instance show score/IoU captions = ["" for m in gt_match] + ["{:.2f} / {:.2f}".format( pred_score[i], (overlaps[i, int(pred_match[i])] if pred_match[i] > -1 else overlaps[i].max())) for i in range(len(pred_match))] # Set title if not provided title = title or "Ground Truth and Detections\n GT=green, pred=red, captions: score/IoU" # Display display_instances( image, boxes, masks, class_ids, class_names, scores, ax=ax, show_bbox=show_box, show_mask=show_mask, colors=colors, captions=captions, title=title) def draw_rois(image, rois, refined_rois, mask, class_ids, class_names, limit=10): """ anchors: [n, (y1, x1, y2, x2)] list of anchors in image coordinates. proposals: [n, 4] the same anchors but refined to fit objects better. """ masked_image = image.copy() # Pick random anchors in case there are too many. ids = np.arange(rois.shape[0], dtype=np.int32) ids = np.random.choice( ids, limit, replace=False) if ids.shape[0] > limit else ids fig, ax = plt.subplots(1, figsize=(12, 12)) if rois.shape[0] > limit: plt.title("Showing {} random ROIs out of {}".format( len(ids), rois.shape[0])) else: plt.title("{} ROIs".format(len(ids))) # Show area outside image boundaries. ax.set_ylim(image.shape[0] + 20, -20) ax.set_xlim(-50, image.shape[1] + 20) ax.axis('off') for i, id in enumerate(ids): color = np.random.rand(3) class_id = class_ids[id] # ROI y1, x1, y2, x2 = rois[id] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, edgecolor=color if class_id else "gray", facecolor='none', linestyle="dashed") ax.add_patch(p) # Refined ROI if class_id: ry1, rx1, ry2, rx2 = refined_rois[id] p = patches.Rectangle((rx1, ry1), rx2 - rx1, ry2 - ry1, linewidth=2, edgecolor=color, facecolor='none') ax.add_patch(p) # Connect the top-left corners of the anchor and proposal for easy visualization ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color)) # Label label = class_names[class_id] ax.text(rx1, ry1 + 8, "{}".format(label), color='w', size=11, backgroundcolor="none") # Mask m = utils.unmold_mask(mask[id], rois[id] [:4].astype(np.int32), image.shape) masked_image = apply_mask(masked_image, m, color) ax.imshow(masked_image) # Print stats print("Positive ROIs: ", class_ids[class_ids > 0].shape[0]) print("Negative ROIs: ", class_ids[class_ids == 0].shape[0]) print("Positive Ratio: {:.2f}".format( class_ids[class_ids > 0].shape[0] / class_ids.shape[0])) # TODO: Replace with matplotlib equivalent? def draw_box(image, box, color): """Draw 3-pixel width bounding boxes on the given image array. color: list of 3 int values for RGB. """ y1, x1, y2, x2 = box image[y1:y1 + 2, x1:x2] = color image[y2:y2 + 2, x1:x2] = color image[y1:y2, x1:x1 + 2] = color image[y1:y2, x2:x2 + 2] = color return image def display_top_masks(image, mask, class_ids, class_names, limit=4): """Display the given image and the top few class masks.""" to_display = [] titles = [] to_display.append(image) titles.append("H x W={}x{}".format(image.shape[0], image.shape[1])) # Pick top prominent classes in this image unique_class_ids = np.unique(class_ids) mask_area = [np.sum(mask[:, :, np.where(class_ids == i)[0]]) for i in unique_class_ids] top_ids = [v[0] for v in sorted(zip(unique_class_ids, mask_area), key=lambda r: r[1], reverse=True) if v[1] > 0] # Generate images and titles for i in range(limit): class_id = top_ids[i] if i < len(top_ids) else -1 # Pull masks of instances belonging to the same class. m = mask[:, :, np.where(class_ids == class_id)[0]] m = np.sum(m * np.arange(1, m.shape[-1] + 1), -1) to_display.append(m) titles.append(class_names[class_id] if class_id != -1 else "-") display_images(to_display, titles=titles, cols=limit + 1, cmap="Blues_r") def plot_precision_recall(AP, precisions, recalls): """Draw the precision-recall curve. AP: Average precision at IoU >= 0.5 precisions: list of precision values recalls: list of recall values """ # Plot the Precision-Recall curve _, ax = plt.subplots(1) ax.set_title("Precision-Recall Curve. AP@50 = {:.3f}".format(AP)) ax.set_ylim(0, 1.1) ax.set_xlim(0, 1.1) _ = ax.plot(recalls, precisions) def plot_overlaps(gt_class_ids, pred_class_ids, pred_scores, overlaps, class_names, threshold=0.5): """Draw a grid showing how ground truth objects are classified. gt_class_ids: [N] int. Ground truth class IDs pred_class_id: [N] int. Predicted class IDs pred_scores: [N] float. The probability scores of predicted classes overlaps: [pred_boxes, gt_boxes] IoU overlaps of predictions and GT boxes. class_names: list of all class names in the dataset threshold: Float. The prediction probability required to predict a class """ gt_class_ids = gt_class_ids[gt_class_ids != 0] pred_class_ids = pred_class_ids[pred_class_ids != 0] plt.figure(figsize=(12, 10)) plt.imshow(overlaps, interpolation='nearest', cmap=plt.cm.Blues) plt.yticks(np.arange(len(pred_class_ids)), ["{} ({:.2f})".format(class_names[int(id)], pred_scores[i]) for i, id in enumerate(pred_class_ids)]) plt.xticks(np.arange(len(gt_class_ids)), [class_names[int(id)] for id in gt_class_ids], rotation=90) thresh = overlaps.max() / 2. for i, j in itertools.product(range(overlaps.shape[0]), range(overlaps.shape[1])): text = "" if overlaps[i, j] > threshold: text = "match" if gt_class_ids[j] == pred_class_ids[i] else "wrong" color = ("white" if overlaps[i, j] > thresh else "black" if overlaps[i, j] > 0 else "grey") plt.text(j, i, "{:.3f}\n{}".format(overlaps[i, j], text), horizontalalignment="center", verticalalignment="center", fontsize=9, color=color) plt.tight_layout() plt.xlabel("Ground Truth") plt.ylabel("Predictions") def draw_boxes(image, boxes=None, refined_boxes=None, masks=None, captions=None, visibilities=None, title="", ax=None): """Draw bounding boxes and segmentation masks with different customizations. boxes: [N, (y1, x1, y2, x2, class_id)] in image coordinates. refined_boxes: Like boxes, but draw with solid lines to show that they're the result of refining 'boxes'. masks: [N, height, width] captions: List of N titles to display on each box visibilities: (optional) List of values of 0, 1, or 2. Determine how prominent each bounding box should be. title: An optional title to show over the image ax: (optional) Matplotlib axis to draw on. """ # Number of boxes assert boxes is not None or refined_boxes is not None N = boxes.shape[0] if boxes is not None else refined_boxes.shape[0] # Matplotlib Axis if not ax: _, ax = plt.subplots(1, figsize=(12, 12)) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. margin = image.shape[0] // 10 ax.set_ylim(image.shape[0] + margin, -margin) ax.set_xlim(-margin, image.shape[1] + margin) ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): # Box visibility visibility = visibilities[i] if visibilities is not None else 1 if visibility == 0: color = "gray" style = "dotted" alpha = 0.5 elif visibility == 1: color = colors[i] style = "dotted" alpha = 1 elif visibility == 2: color = colors[i] style = "solid" alpha = 1 # Boxes if boxes is not None: if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=alpha, linestyle=style, edgecolor=color, facecolor='none') ax.add_patch(p) # Refined boxes if refined_boxes is not None and visibility > 0: ry1, rx1, ry2, rx2 = refined_boxes[i].astype(np.int32) p = patches.Rectangle((rx1, ry1), rx2 - rx1, ry2 - ry1, linewidth=2, edgecolor=color, facecolor='none') ax.add_patch(p) # Connect the top-left corners of the anchor and proposal if boxes is not None: ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color)) # Captions if captions is not None: caption = captions[i] # If there are refined boxes, display captions on them if refined_boxes is not None: y1, x1, y2, x2 = ry1, rx1, ry2, rx2 ax.text(x1, y1, caption, size=11, verticalalignment='top', color='w', backgroundcolor="none", bbox={'facecolor': color, 'alpha': 0.5, 'pad': 2, 'edgecolor': 'none'}) # Masks if masks is not None: mask = masks[:, :, i] masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) def display_table(table): """Display values in a table format. table: an iterable of rows, and each row is an iterable of values. """ html = "" for row in table: row_html = "" for col in row: row_html += "<td>{:40}</td>".format(str(col)) html += "<tr>" + row_html + "</tr>" html = "<table>" + html + "</table>" IPython.display.display(IPython.display.HTML(html)) def display_weight_stats(model): """Scans all the weights in the model and returns a list of tuples that contain stats about each weight. """ layers = model.get_trainable_layers() table = [["WEIGHT NAME", "SHAPE", "MIN", "MAX", "STD"]] for l in layers: weight_values = l.get_weights() # list of Numpy arrays weight_tensors = l.weights # list of TF tensors for i, w in enumerate(weight_values): weight_name = weight_tensors[i].name # Detect problematic layers. Exclude biases of conv layers. alert = "" if w.min() == w.max() and not (l.__class__.__name__ == "Conv2D" and i == 1): alert += "<span style='color:red'>*** dead?</span>" if np.abs(w.min()) > 1000 or np.abs(w.max()) > 1000: alert += "<span style='color:red'>*** Overflow?</span>" # Add row table.append([ weight_name + alert, str(w.shape), "{:+9.4f}".format(w.min()), "{:+10.4f}".format(w.max()), "{:+9.4f}".format(w.std()), ]) display_table(table)
python
19,072
import unittest import numpy as np import tensorflow as tf from autoencoder_tf.encoder import Network from autoencoder_tf.utils import batch_generator class TestMlp(unittest.TestCase): def test_weights_shapes(self): mlp = Network(32) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) self.assertEqual(mlp.hidden_weights.get_shape(), tf.TensorShape([tf.Dimension(32), tf.Dimension(784)])) self.assertEqual(mlp.output_weights.get_shape(), tf.TensorShape([tf.Dimension(784), tf.Dimension(32)])) def test_bias_shapes(self): mlp = Network(32) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) self.assertEqual(mlp.hidden_bias.get_shape(), tf.TensorShape([tf.Dimension(32), tf.Dimension(1)])) self.assertEqual(mlp.output_bias.get_shape(), tf.TensorShape([tf.Dimension(784), tf.Dimension(1)])) def test_feed_forward_single_sample(self): mlp = Network(32) data = np.random.rand(784, 1) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) hidden_net, hidden_activation, hidden_activation_derivative, \ output_net, output_activation, output_activation_derivative = sess.run([mlp.hidden_net, mlp.hidden_activation, mlp.hidden_activation_derivative, mlp.output_net, mlp.output_activation, mlp.output_activation_derivative], feed_dict={mlp.input: data}) self.assertEqual(hidden_net.shape, (32, 1)) self.assertEqual(hidden_activation.shape, (32, 1)) self.assertEqual(hidden_activation_derivative.shape, (32, 1)) self.assertEqual(output_net.shape, (784, 1)) self.assertEqual(output_activation.shape, (784, 1)) self.assertEqual(output_activation_derivative.shape, (784, 1)) def test_feed_forward_batch_sample(self): mlp = Network(32) data = np.random.rand(784, 200) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) hidden_net, hidden_activation, hidden_activation_derivative, \ output_net, output_activation, output_activation_derivative = sess.run([mlp.hidden_net, mlp.hidden_activation, mlp.hidden_activation_derivative, mlp.output_net, mlp.output_activation, mlp.output_activation_derivative], feed_dict={mlp.input: data}) self.assertEqual(hidden_net.shape, (32, 200)) self.assertEqual(hidden_activation.shape, (32, 200)) self.assertEqual(hidden_activation_derivative.shape, (32, 200)) self.assertEqual(output_net.shape, (784, 200)) self.assertEqual(output_activation.shape, (784, 200)) self.assertEqual(output_activation_derivative.shape, (784, 200)) def test_propagate_backward_single_sample(self): mlp = Network(32) data = np.random.rand(784, 1) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) output_error, hidden_error = sess.run([mlp.output_error, mlp.hidden_error], feed_dict={mlp.input: data}) self.assertEqual(output_error.shape, (784, 1)) self.assertEqual(hidden_error.shape, (32, 1)) def test_propagate_backward_batch_sample(self): mlp = Network(32) data = np.random.rand(784, 200) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) output_error, hidden_error = sess.run([mlp.output_error, mlp.hidden_error], feed_dict={mlp.input: data}) self.assertEqual(output_error.shape, (784, 200)) self.assertEqual(hidden_error.shape, (32, 200)) def test_calculate_gradients_single_sample(self): mlp = Network(32) data = np.random.rand(784, 1) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) output_weights_gradient, hidden_weights_gradient, output_bias_gradient, hidden_bias_gradient = \ sess.run([mlp.output_weights_gradient, mlp.hidden_weights_gradient, mlp.output_bias_gradient, mlp.hidden_bias_gradient], feed_dict={mlp.input: data}) self.assertEqual(output_weights_gradient.shape, (784, 32)) self.assertEqual(hidden_weights_gradient.shape, (32, 784)) self.assertEqual(output_bias_gradient.shape, (784, 1)) self.assertEqual(hidden_bias_gradient.shape, (32, 1)) def test_calculate_gradients_batch_sample(self): mlp = Network(32) data = np.random.rand(784, 200) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) output_weights_gradient, hidden_weights_gradient, output_bias_gradient, hidden_bias_gradient = \ sess.run([mlp.output_weights_gradient, mlp.hidden_weights_gradient, mlp.output_bias_gradient, mlp.hidden_bias_gradient], feed_dict={mlp.input: data}) self.assertEqual(output_weights_gradient.shape, (784, 32)) self.assertEqual(hidden_weights_gradient.shape, (32, 784)) self.assertEqual(output_bias_gradient.shape, (784, 1)) self.assertEqual(hidden_bias_gradient.shape, (32, 1)) def test_batch_generator_single_sample(self): data = np.random.rand(784, 200) batch_size = 1 for batch in batch_generator(data, batch_size): self.assertEqual(batch.shape, (784, 1)) def test_batch_generator_batch_sample(self): data = np.random.rand(784, 200) batch_size = 64 for batch in batch_generator(data, batch_size): self.assertEqual(batch.shape, (784, 64)) def test_train_single_sample(self): mlp = Network(32) data = np.random.rand(784, 200) batch_size = 1 learning_rate = 0.01 epochs = 2 l2 = 0.0001 # mlp.train(data, learning_rate, epochs, batch_size, l2) def test_train_batch_sample(self): mlp = Network(32) data = np.random.rand(784, 200) batch_size = 2 learning_rate = 0.01 epochs = 2 l2 = 0.0001 # mlp.train(data, learning_rate, epochs, batch_size, l2) if __name__ == '__main__': unittest.main()
python
7,489
def convert_fasta_to_string(filename): """Takes a genome FASTA and outputs a string of that genome Args: filename: fasta file Returns: string of the genome sequence """ assert filename.split('.')[-1] == 'fasta' # assert correct file type with open(filename) as f: sequence = ''.join(f.read().split('\n')[1:]).lower() # splits by lines, removes first line, joins lines return sequence
python
438
#Um programa que calcula o dobro, o triplo e a raiz quadrada de um número n = int(input('Digite um número... ')) print('O numéro que você escolheu é {}, o seu dobro é {}, o triplo é {}, e a raiz quadrada {:.2f}.' .format(n,(n*2),(n*3),pow(n, (1/2))))
python
252
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2016, John McNamara, [email protected] # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'print_options06.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.ignore_files = ['xl/printerSettings/printerSettings1.bin', 'xl/worksheets/_rels/sheet1.xml.rels'] self.ignore_elements = {'[Content_Types].xml': ['<Default Extension="bin"'], 'xl/worksheets/sheet1.xml': ['<pageMargins', '<pageSetup']} def test_create_file(self): """Test the creation of a simple XlsxWriter file with a print areaand a repeat rows""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.print_area('A1:G20') worksheet.repeat_rows(0) worksheet.write('A1', 'Foo') workbook.close() self.assertExcelEqual()
python
1,375
# # The Python Imaging Library # $Id$ # # JPEG2000 file handling # # History: # 2014-03-12 ajh Created # # Copyright (c) 2014 Coriolis Systems Limited # Copyright (c) 2014 Alastair Houghton # # See the README file for information on usage and redistribution. # import io import os import struct from . import Image, ImageFile def _parse_codestream(fp): """Parse the JPEG 2000 codestream to extract the size and component count from the SIZ marker segment, returning a PIL (size, mode) tuple.""" hdr = fp.read(2) lsiz = struct.unpack(">H", hdr)[0] siz = hdr + fp.read(lsiz - 2) lsiz, rsiz, xsiz, ysiz, xosiz, yosiz, _, _, _, _, csiz = struct.unpack_from( ">HHIIIIIIIIH", siz ) ssiz = [None] * csiz xrsiz = [None] * csiz yrsiz = [None] * csiz for i in range(csiz): ssiz[i], xrsiz[i], yrsiz[i] = struct.unpack_from(">BBB", siz, 36 + 3 * i) size = (xsiz - xosiz, ysiz - yosiz) if csiz == 1: if (yrsiz[0] & 0x7F) > 8: mode = "I;16" else: mode = "L" elif csiz == 2: mode = "LA" elif csiz == 3: mode = "RGB" elif csiz == 4: mode = "RGBA" else: mode = None return (size, mode) def _parse_jp2_header(fp): """Parse the JP2 header box to extract size, component count and color space information, returning a (size, mode, mimetype) tuple.""" # Find the JP2 header box header = None mimetype = None while True: lbox, tbox = struct.unpack(">I4s", fp.read(8)) if lbox == 1: lbox = struct.unpack(">Q", fp.read(8))[0] hlen = 16 else: hlen = 8 if lbox < hlen: raise SyntaxError("Invalid JP2 header length") if tbox == b"jp2h": header = fp.read(lbox - hlen) break elif tbox == b"ftyp": if fp.read(4) == b"jpx ": mimetype = "image/jpx" fp.seek(lbox - hlen - 4, os.SEEK_CUR) else: fp.seek(lbox - hlen, os.SEEK_CUR) if header is None: raise SyntaxError("could not find JP2 header") size = None mode = None bpc = None nc = None hio = io.BytesIO(header) while True: lbox, tbox = struct.unpack(">I4s", hio.read(8)) if lbox == 1: lbox = struct.unpack(">Q", hio.read(8))[0] hlen = 16 else: hlen = 8 content = hio.read(lbox - hlen) if tbox == b"ihdr": height, width, nc, bpc, c, unkc, ipr = struct.unpack(">IIHBBBB", content) size = (width, height) if unkc: if nc == 1 and (bpc & 0x7F) > 8: mode = "I;16" elif nc == 1: mode = "L" elif nc == 2: mode = "LA" elif nc == 3: mode = "RGB" elif nc == 4: mode = "RGBA" break elif tbox == b"colr": meth, prec, approx = struct.unpack_from(">BBB", content) if meth == 1: cs = struct.unpack_from(">I", content, 3)[0] if cs == 16: # sRGB if nc == 1 and (bpc & 0x7F) > 8: mode = "I;16" elif nc == 1: mode = "L" elif nc == 3: mode = "RGB" elif nc == 4: mode = "RGBA" break elif cs == 17: # grayscale if nc == 1 and (bpc & 0x7F) > 8: mode = "I;16" elif nc == 1: mode = "L" elif nc == 2: mode = "LA" break elif cs == 18: # sYCC if nc == 3: mode = "RGB" elif nc == 4: mode = "RGBA" break if size is None or mode is None: raise SyntaxError("Malformed jp2 header") return (size, mode, mimetype) ## # Image plugin for JPEG2000 images. class Jpeg2KImageFile(ImageFile.ImageFile): format = "JPEG2000" format_description = "JPEG 2000 (ISO 15444)" def _open(self): sig = self.fp.read(4) if sig == b"\xff\x4f\xff\x51": self.codec = "j2k" self._size, self.mode = _parse_codestream(self.fp) else: sig = sig + self.fp.read(8) if sig == b"\x00\x00\x00\x0cjP \x0d\x0a\x87\x0a": self.codec = "jp2" header = _parse_jp2_header(self.fp) self._size, self.mode, self.custom_mimetype = header else: raise SyntaxError("not a JPEG 2000 file") if self.size is None or self.mode is None: raise SyntaxError("unable to determine size/mode") self._reduce = 0 self.layers = 0 fd = -1 length = -1 try: fd = self.fp.fileno() length = os.fstat(fd).st_size except Exception: fd = -1 try: pos = self.fp.tell() self.fp.seek(0, io.SEEK_END) length = self.fp.tell() self.fp.seek(pos) except Exception: length = -1 self.tile = [ ( "jpeg2k", (0, 0) + self.size, 0, (self.codec, self._reduce, self.layers, fd, length), ) ] @property def reduce(self): # https://github.com/python-pillow/Pillow/issues/4343 found that the # new Image 'reduce' method was shadowed by this plugin's 'reduce' # property. This attempts to allow for both scenarios return self._reduce or super().reduce @reduce.setter def reduce(self, value): self._reduce = value def load(self): if self.tile and self._reduce: power = 1 << self._reduce adjust = power >> 1 self._size = ( int((self.size[0] + adjust) / power), int((self.size[1] + adjust) / power), ) # Update the reduce and layers settings t = self.tile[0] t3 = (t[3][0], self._reduce, self.layers, t[3][3], t[3][4]) self.tile = [(t[0], (0, 0) + self.size, t[2], t3)] return ImageFile.ImageFile.load(self) def _accept(prefix): return ( prefix[:4] == b"\xff\x4f\xff\x51" or prefix[:12] == b"\x00\x00\x00\x0cjP \x0d\x0a\x87\x0a" ) # ------------------------------------------------------------ # Save support def _save(im, fp, filename): if filename.endswith(".j2k"): kind = "j2k" else: kind = "jp2" # Get the keyword arguments info = im.encoderinfo offset = info.get("offset", None) tile_offset = info.get("tile_offset", None) tile_size = info.get("tile_size", None) quality_mode = info.get("quality_mode", "rates") quality_layers = info.get("quality_layers", None) if quality_layers is not None and not ( isinstance(quality_layers, (list, tuple)) and all( [ isinstance(quality_layer, (int, float)) for quality_layer in quality_layers ] ) ): raise ValueError("quality_layers must be a sequence of numbers") num_resolutions = info.get("num_resolutions", 0) cblk_size = info.get("codeblock_size", None) precinct_size = info.get("precinct_size", None) irreversible = info.get("irreversible", False) progression = info.get("progression", "LRCP") cinema_mode = info.get("cinema_mode", "no") fd = -1 if hasattr(fp, "fileno"): try: fd = fp.fileno() except Exception: fd = -1 im.encoderconfig = ( offset, tile_offset, tile_size, quality_mode, quality_layers, num_resolutions, cblk_size, precinct_size, irreversible, progression, cinema_mode, fd, ) ImageFile._save(im, fp, [("jpeg2k", (0, 0) + im.size, 0, kind)]) # ------------------------------------------------------------ # Registry stuff Image.register_open(Jpeg2KImageFile.format, Jpeg2KImageFile, _accept) Image.register_save(Jpeg2KImageFile.format, _save) Image.register_extensions( Jpeg2KImageFile.format, [".jp2", ".j2k", ".jpc", ".jpf", ".jpx", ".j2c"] ) Image.register_mime(Jpeg2KImageFile.format, "image/jp2")
python
9,036