Datasets:
metadata
pretty_name: NAIP 16-Day City Cubes (materialized tiles)
tags:
- geospatial
- remote-sensing
- earth-observation
- wildfire
- segmentation
task_categories:
- image-segmentation
- image-classification
license: cc-by-4.0
NAIP 16-Day City Cubes (materialized tiles)
Each row is a 512×512 chip with 16 layers (composites, single-band indices, and masks).
What’s included (no pseudoRGB)
- RGB composites:
naip_rgb
,s2_rgb
,dem_rgb
- Mono S2 layers (published as single-channel images):
s2_B08
,s2_MSAVI
,s2_NDVI
,s2_NDWI
,s2_SCL
- Other monos:
naip_ndvi
- Semantic masks:
labels
(task labels),landfire_family
,cdl
- Metadata:
tile_id
,city
,bbox
(west,south,east,north
),chip_px
,split
,meta_json
Note: The dataset intentionally omits
s2_pseudo_rgb
. If you need alternate composites, you can compose them on the fly from the published mono layers.
Loading
from datasets import load_dataset
ds = load_dataset("gdurkin/naip-16d-city-cubes", split="train")
ds[0].keys()
To load a single city’s parquet shards directly:
from datasets import load_dataset
city = "Arcadia__California__USA"
pattern = f"hf://datasets/gdurkin/naip-16d-city-cubes/data/city={city}/*.parquet"
ds_city = load_dataset("parquet", data_files=pattern, split="train")
Columns & shapes
naip_rgb
(512×512×3 u8): NAIP true colors2_rgb
(512×512×3 u8): Sentinel-2 true color (B04,B03,B02)dem_rgb
(512×512×3 u8): elevation/gradient/aspect visualizationnaip_ndvi
(512×512 u8): NDVI from NAIPs2_*
(512×512 u8): mono S2 layers (B08
,MSAVI
,NDVI
,NDWI
,SCL
)labels
,landfire_family
,cdl
(512×512 u8): categorical masks
Legends
Labels (task)
id | name | color |
---|---|---|
0 | background |
#000000 |
1 | road_concrete |
#C8C8C8 |
2 | pavement |
#A0A0A0 |
3 | dirt_gravel |
#96643C |
4 | grass_dry |
#E6DC78 |
5 | grass_healthy |
#50C878 |
6 | vegetation |
#147814 |
7 | building |
#FF5050 |
8 | water |
#4682B4 |
11 | building_res |
#FF8C8C |
12 | building_com |
#FF5A1E |
LANDFIRE family
id | family | color |
---|---|---|
0 | background |
#000000 |
1 | grass |
#F7E68C |
2 | shrub |
#C69842 |
3 | timber |
#1E781E |
4 | slash |
#CE5A32 |
9 | urban |
#969696 |
10 | snow_ice |
#C8E6FF |
11 | agriculture |
#FFCC66 |
12 | water |
#4682B4 |
13 | barren |
#C2B280 |
CDL (full palette)
The table below lists CDL codes and colors (urban classes are overridden for better visual separation).
Click to expand full CDL legend
id | class | color |
---|---|---|
0 | Background |
000000 |
1 | Corn |
ffd400 |
2 | Cotton |
ff2626 |
3 | Rice |
00a9e6 |
4 | Sorghum |
ff9e0f |
5 | Soybeans |
267300 |
6 | Sunflower |
ffff00 |
10 | Peanuts |
70a800 |
11 | Tobacco |
00af4d |
12 | Sweet Corn |
e0a60f |
13 | Pop or Orn Corn |
e0a60f |
14 | Mint |
80d4ff |
21 | Barley |
e2007f |
22 | Durum Wheat |
8a6453 |
23 | Spring Wheat |
d9b56c |
24 | Winter Wheat |
a87000 |
25 | Other Small Grains |
d69dbc |
26 | Dbl Crop WinWht/Soybeans |
737300 |
27 | Rye |
ae017e |
28 | Oats |
a15889 |
29 | Millet |
73004c |
30 | Speltz |
d69dbc |
31 | Canola |
d1ff00 |
32 | Flaxseed |
8099ff |
33 | Safflower |
d6d600 |
34 | Rape Seed |
d1ff00 |
35 | Mustard |
00af4d |
36 | Alfalfa |
ffa8e3 |
37 | Other Hay/Non Alfalfa |
a5f58d |
38 | Camelina |
00af4d |
39 | Buckwheat |
d69dbc |
41 | Sugarbeets |
a900e6 |
42 | Dry Beans |
a80000 |
43 | Potatoes |
732600 |
44 | Other Crops |
00af4d |
45 | Sugarcane |
b380ff |
46 | Sweet Potatoes |
732600 |
47 | Misc Vegs & Fruits |
ff6666 |
48 | Watermelons |
ff6666 |
49 | Onions |
ffcc66 |
50 | Cucumbers |
ff6666 |
51 | Chick Peas |
00af4d |
52 | Lentils |
00deb0 |
53 | Peas |
55ff00 |
54 | Tomatoes |
f5a27a |
55 | Caneberries |
ff6666 |
56 | Hops |
00af4d |
57 | Herbs |
80d4ff |
58 | Clover/Wildflowers |
e8beff |
59 | Sod/Grass Seed |
b2ffde |
60 | Switchgrass |
00af4d |
61 | Fallow/Idle Cropland |
bfbf7a |
63 | Forest |
95ce93 |
64 | Shrubland |
c7d79e |
65 | Barren |
ccbfa3 |
66 | Cherries |
ff00ff |
67 | Peaches |
ff91ab |
68 | Apples |
b90050 |
69 | Grapes |
704489 |
70 | Christmas Trees |
007878 |
71 | Other Tree Crops |
b39c70 |
72 | Citrus |
ffff80 |
74 | Pecans |
b6705c |
75 | Almonds |
00a884 |
76 | Walnuts |
ebd6b0 |
77 | Pears |
b39c70 |
81 | Clouds/No Data |
f7f7f7 |
82 | Developed |
9c9c9c |
83 | Water |
4d70a3 |
87 | Wetlands |
80b3b3 |
88 | Nonag/Undefined |
e9ffbe |
92 | Aquaculture |
00ffff |
111 | Open Water |
4d70a3 |
112 | Perennial Ice/Snow |
d4e3fc |
121 | Developed/Open Space |
#BDBDBD |
122 | Developed/Low Intensity |
#F4B183 |
123 | Developed/Med Intensity |
#E06666 |
124 | Developed/High Intensity |
#A61C00 |
131 | Barren |
ccbfa3 |
141 | Deciduous Forest |
95ce93 |
142 | Evergreen Forest |
95ce93 |
143 | Mixed Forest |
95ce93 |
152 | Shrubland |
c7d79e |
176 | Grass/Pasture |
e9ffbe |
190 | Woody Wetlands |
80b3b3 |
195 | Herbaceous Wetlands |
80b3b3 |
204 | Pistachios |
00ff8c |
205 | Triticale |
d69dbc |
206 | Carrots |
ff6666 |
207 | Asparagus |
ff6666 |
208 | Garlic |
ff6666 |
209 | Cantaloupes |
ff6666 |
210 | Prunes |
ff91ab |
211 | Olives |
344a34 |
212 | Oranges |
e67525 |
213 | Honeydew Melons |
ff6666 |
214 | Broccoli |
ff6666 |
215 | Avocados |
66994d |
216 | Peppers |
ff6666 |
217 | Pomegranates |
b39c70 |
218 | Nectarines |
ff91ab |
219 | Greens |
ff6666 |
220 | Plums |
ff91ab |
221 | Strawberries |
ff6666 |
222 | Squash |
ff6666 |
223 | Apricots |
ff91ab |
224 | Vetch |
00af4d |
225 | Dbl Crop WinWht/Corn |
ffd400 |
226 | Dbl Crop Oats/Corn |
ffd400 |
227 | Lettuce |
ff6666 |
228 | Dbl Crop Triticale/Corn |
ffd400 |
229 | Pumpkins |
ff6666 |
230 | Dbl Crop Lettuce/Durum Wht |
8a6453 |
231 | Dbl Crop Lettuce/Cantaloupe |
ff6666 |
232 | Dbl Crop Lettuce/Cotton |
ff2626 |
233 | Dbl Crop Lettuce/Barley |
e2007f |
234 | Dbl Crop Durum Wht/Sorghum |
ff9e0f |
235 | Dbl Crop Barley/Sorghum |
ff9e0f |
236 | Dbl Crop WinWht/Sorghum |
a87000 |
237 | Dbl Crop Barley/Corn |
ffd400 |
238 | Dbl Crop WinWht/Cotton |
a87000 |
239 | Dbl Crop Soybeans/Cotton |
267300 |
240 | Dbl Crop Soybeans/Oats |
267300 |
241 | Dbl Crop Corn/Soybeans |
ffd400 |
242 | Blueberries |
000099 |
243 | Cabbage |
ff6666 |
244 | Cauliflower |
ff6666 |
245 | Celery |
ff6666 |
246 | Radishes |
ff6666 |
247 | Turnips |
ff6666 |
248 | Eggplants |
ff6666 |
249 | Gourds |
ff6666 |
250 | Cranberries |
ff6666 |
254 | Dbl Crop Barley/Soybeans |
267300 |
Coverage
Coverage
- rows: 24,792
- S2 mono policy:
?
column | rows | pct |
---|---|---|
cdl |
24,792 | 100.0% |
dem_rgb |
24,792 | 100.0% |
labels |
24,792 | 100.0% |
landfire_family |
24,792 | 100.0% |
naip_ndvi |
24,792 | 100.0% |
naip_rgb |
24,792 | 100.0% |
s2_B08 |
24,792 | 100.0% |
s2_MSAVI |
24,792 | 100.0% |
s2_NDVI |
24,792 | 100.0% |
s2_NDWI |
24,792 | 100.0% |
s2_SCL |
24,792 | 100.0% |
s2_rgb |
24,792 | 100.0% |