project
stringclasses 765
values | commit_id
stringlengths 6
81
| func
stringlengths 19
482k
| vul
int64 0
1
| CVE ID
stringlengths 13
16
| CWE ID
stringclasses 13
values | CWE Name
stringclasses 13
values | CWE Description
stringclasses 13
values | Potential Mitigation
stringclasses 11
values | __index_level_0__
int64 0
23.9k
|
---|---|---|---|---|---|---|---|---|---|
Chrome | c7a90019bf7054145b11d2577b851cf2779d3d79 | void PrintWebViewHelper::Print(WebKit::WebFrame* frame, WebKit::WebNode* node) {
if (print_web_view_)
return;
scoped_ptr<PrepareFrameAndViewForPrint> prepare;
if (!InitPrintSettingsAndPrepareFrame(frame, node, &prepare))
return; // Failed to init print page settings.
int expected_page_count = 0;
bool use_browser_overlays = true;
expected_page_count = prepare->GetExpectedPageCount();
if (expected_page_count)
use_browser_overlays = prepare->ShouldUseBrowserOverlays();
prepare.reset();
if (!expected_page_count) {
DidFinishPrinting(OK); // Release resources and fail silently.
return;
}
if (!GetPrintSettingsFromUser(frame, expected_page_count,
use_browser_overlays)) {
DidFinishPrinting(OK); // Release resources and fail silently.
return;
}
if (!RenderPagesForPrint(frame, node, NULL)) {
LOG(ERROR) << "RenderPagesForPrint failed";
DidFinishPrinting(FAIL_PRINT);
}
ResetScriptedPrintCount();
}
| 1 | CVE-2011-3897 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 9,945 |
linux | bc909d9ddbf7778371e36a651d6e4194b1cc7d4c | static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
struct msghdr *msg_sys, unsigned flags,
struct used_address *used_address)
{
struct compat_msghdr __user *msg_compat =
(struct compat_msghdr __user *)msg;
struct sockaddr_storage address;
struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
unsigned char ctl[sizeof(struct cmsghdr) + 20]
__attribute__ ((aligned(sizeof(__kernel_size_t))));
/* 20 is size of ipv6_pktinfo */
unsigned char *ctl_buf = ctl;
int err, ctl_len, iov_size, total_len;
err = -EFAULT;
if (MSG_CMSG_COMPAT & flags) {
if (get_compat_msghdr(msg_sys, msg_compat))
return -EFAULT;
} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
return -EFAULT;
/* do not move before msg_sys is valid */
err = -EMSGSIZE;
if (msg_sys->msg_iovlen > UIO_MAXIOV)
goto out;
/* Check whether to allocate the iovec area */
err = -ENOMEM;
iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
if (msg_sys->msg_iovlen > UIO_FASTIOV) {
iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
if (!iov)
goto out;
}
/* This will also move the address data into kernel space */
if (MSG_CMSG_COMPAT & flags) {
err = verify_compat_iovec(msg_sys, iov,
(struct sockaddr *)&address,
VERIFY_READ);
} else
err = verify_iovec(msg_sys, iov,
(struct sockaddr *)&address,
VERIFY_READ);
if (err < 0)
goto out_freeiov;
total_len = err;
err = -ENOBUFS;
if (msg_sys->msg_controllen > INT_MAX)
goto out_freeiov;
ctl_len = msg_sys->msg_controllen;
if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
err =
cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
sizeof(ctl));
if (err)
goto out_freeiov;
ctl_buf = msg_sys->msg_control;
ctl_len = msg_sys->msg_controllen;
} else if (ctl_len) {
if (ctl_len > sizeof(ctl)) {
ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
if (ctl_buf == NULL)
goto out_freeiov;
}
err = -EFAULT;
/*
* Careful! Before this, msg_sys->msg_control contains a user pointer.
* Afterwards, it will be a kernel pointer. Thus the compiler-assisted
* checking falls down on this.
*/
if (copy_from_user(ctl_buf,
(void __user __force *)msg_sys->msg_control,
ctl_len))
goto out_freectl;
msg_sys->msg_control = ctl_buf;
}
msg_sys->msg_flags = flags;
if (sock->file->f_flags & O_NONBLOCK)
msg_sys->msg_flags |= MSG_DONTWAIT;
/*
* If this is sendmmsg() and current destination address is same as
* previously succeeded address, omit asking LSM's decision.
* used_address->name_len is initialized to UINT_MAX so that the first
* destination address never matches.
*/
if (used_address && used_address->name_len == msg_sys->msg_namelen &&
!memcmp(&used_address->name, msg->msg_name,
used_address->name_len)) {
err = sock_sendmsg_nosec(sock, msg_sys, total_len);
goto out_freectl;
}
err = sock_sendmsg(sock, msg_sys, total_len);
/*
* If this is sendmmsg() and sending to current destination address was
* successful, remember it.
*/
if (used_address && err >= 0) {
used_address->name_len = msg_sys->msg_namelen;
memcpy(&used_address->name, msg->msg_name,
used_address->name_len);
}
out_freectl:
if (ctl_buf != ctl)
sock_kfree_s(sock->sk, ctl_buf, ctl_len);
out_freeiov:
if (iov != iovstack)
sock_kfree_s(sock->sk, iov, iov_size);
out:
return err;
}
| 1 | CVE-2011-4594 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 4,352 |
Chrome | b3ae5db129f88dae153880e84bdabea8ce2ca89b | void CrosLibrary::TestApi::SetBrightnessLibrary(
BrightnessLibrary* library, bool own) {
library_->brightness_lib_.SetImpl(library, own);
}
| 1 | CVE-2011-1300 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 6,520 |
Chrome | 227851d714bdc081de4c7e81669420380fa6c000 | void ArcVoiceInteractionFrameworkService::NotifyMetalayerStatusChanged(
bool visible) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
mojom::VoiceInteractionFrameworkInstance* framework_instance =
ARC_GET_INSTANCE_FOR_METHOD(
arc_bridge_service_->voice_interaction_framework(),
SetMetalayerVisibility);
if (!framework_instance)
return;
framework_instance->SetMetalayerVisibility(visible);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,514 |
cgit | 02a545e63454530c1639014d3239c14ced2022c6 | void html(const char *txt)
{
write(htmlfd, txt, strlen(txt));
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,473 |
Chrome | 04aaacb936a08d70862d6d9d7e8354721ae46be8 | void MakeCacheAndGroup(const GURL& manifest_url,
int64_t group_id,
int64_t cache_id,
bool add_to_database) {
AppCacheEntry default_entry(AppCacheEntry::EXPLICIT,
cache_id + kDefaultEntryIdOffset,
kDefaultEntrySize);
group_ = new AppCacheGroup(storage(), manifest_url, group_id);
cache_ = new AppCache(storage(), cache_id);
cache_->AddEntry(kDefaultEntryUrl, default_entry);
cache_->set_complete(true);
group_->AddCache(cache_.get());
url::Origin manifest_origin(url::Origin::Create(manifest_url));
if (add_to_database) {
AppCacheDatabase::GroupRecord group_record;
group_record.group_id = group_id;
group_record.manifest_url = manifest_url;
group_record.origin = manifest_origin;
EXPECT_TRUE(database()->InsertGroup(&group_record));
AppCacheDatabase::CacheRecord cache_record;
cache_record.cache_id = cache_id;
cache_record.group_id = group_id;
cache_record.online_wildcard = false;
cache_record.update_time = kZeroTime;
cache_record.cache_size = kDefaultEntrySize;
EXPECT_TRUE(database()->InsertCache(&cache_record));
AppCacheDatabase::EntryRecord entry_record;
entry_record.cache_id = cache_id;
entry_record.url = kDefaultEntryUrl;
entry_record.flags = default_entry.types();
entry_record.response_id = default_entry.response_id();
entry_record.response_size = default_entry.response_size();
EXPECT_TRUE(database()->InsertEntry(&entry_record));
storage()->usage_map_[manifest_origin] = default_entry.response_size();
}
}
| 1 | CVE-2019-5837 | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. |
Phase: Architecture and Design
Strategy: Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges. | 3,170 |
tcpdump | 0b661e0aa61850234b64394585cf577aac570bf4 | lmp_print_data_link_subobjs(netdissect_options *ndo, const u_char *obj_tptr,
int total_subobj_len, int offset)
{
int hexdump = FALSE;
int subobj_type, subobj_len;
union { /* int to float conversion buffer */
float f;
uint32_t i;
} bw;
while (total_subobj_len > 0 && hexdump == FALSE ) {
ND_TCHECK_16BITS(obj_tptr + offset);
subobj_type = EXTRACT_8BITS(obj_tptr + offset);
subobj_len = EXTRACT_8BITS(obj_tptr + offset + 1);
ND_PRINT((ndo, "\n\t Subobject, Type: %s (%u), Length: %u",
tok2str(lmp_data_link_subobj,
"Unknown",
subobj_type),
subobj_type,
subobj_len));
if (subobj_len < 4) {
ND_PRINT((ndo, " (too short)"));
break;
}
if ((subobj_len % 4) != 0) {
ND_PRINT((ndo, " (not a multiple of 4)"));
break;
}
if (total_subobj_len < subobj_len) {
ND_PRINT((ndo, " (goes past the end of the object)"));
break;
}
switch(subobj_type) {
case INT_SWITCHING_TYPE_SUBOBJ:
ND_TCHECK_8BITS(obj_tptr + offset + 2);
ND_PRINT((ndo, "\n\t Switching Type: %s (%u)",
tok2str(gmpls_switch_cap_values,
"Unknown",
EXTRACT_8BITS(obj_tptr + offset + 2)),
EXTRACT_8BITS(obj_tptr + offset + 2)));
ND_TCHECK_8BITS(obj_tptr + offset + 3);
ND_PRINT((ndo, "\n\t Encoding Type: %s (%u)",
tok2str(gmpls_encoding_values,
"Unknown",
EXTRACT_8BITS(obj_tptr + offset + 3)),
EXTRACT_8BITS(obj_tptr + offset + 3)));
ND_TCHECK_32BITS(obj_tptr + offset + 4);
bw.i = EXTRACT_32BITS(obj_tptr+offset+4);
ND_PRINT((ndo, "\n\t Min Reservable Bandwidth: %.3f Mbps",
bw.f*8/1000000));
ND_TCHECK_32BITS(obj_tptr + offset + 8);
bw.i = EXTRACT_32BITS(obj_tptr+offset+8);
ND_PRINT((ndo, "\n\t Max Reservable Bandwidth: %.3f Mbps",
bw.f*8/1000000));
break;
case WAVELENGTH_SUBOBJ:
ND_TCHECK_32BITS(obj_tptr + offset + 4);
ND_PRINT((ndo, "\n\t Wavelength: %u",
EXTRACT_32BITS(obj_tptr+offset+4)));
break;
default:
/* Any Unknown Subobject ==> Exit loop */
hexdump=TRUE;
break;
}
total_subobj_len-=subobj_len;
offset+=subobj_len;
}
return (hexdump);
trunc:
return -1;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 23,763 |
Chrome | 7df06970ff05d4b412534f6deea89c9b9ac4be67 | Buffer::~Buffer() {
Unmap();
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,240 |
gst-plugins-good | d0949baf3dadea6021d54abef6802fed5a06af75 | qtdemux_tag_add_classification (GstQTDemux * qtdemux, GstTagList * taglist,
const char *tag, const char *dummy, GNode * node)
{
int offset;
char *tag_str = NULL;
guint8 *entity;
guint16 table;
gint len;
len = QT_UINT32 (node->data);
if (len <= 20)
goto short_read;
offset = 12;
entity = (guint8 *) node->data + offset;
if (entity[0] == 0 || entity[1] == 0 || entity[2] == 0 || entity[3] == 0) {
GST_DEBUG_OBJECT (qtdemux,
"classification info: %c%c%c%c invalid classification entity",
entity[0], entity[1], entity[2], entity[3]);
return;
}
offset += 4;
table = QT_UINT16 ((guint8 *) node->data + offset);
/* Language code skipped */
offset += 4;
/* Tag format: "XXXX://Y[YYYY]/classification info string"
* XXXX: classification entity, fixed length 4 chars.
* Y[YYYY]: classification table, max 5 chars.
*/
tag_str = g_strdup_printf ("----://%u/%s",
table, (char *) node->data + offset);
/* memcpy To be sure we're preserving byte order */
memcpy (tag_str, entity, 4);
GST_DEBUG_OBJECT (qtdemux, "classification info: %s", tag_str);
gst_tag_list_add (taglist, GST_TAG_MERGE_APPEND, tag, tag_str, NULL);
g_free (tag_str);
return;
/* ERRORS */
short_read:
{
GST_DEBUG_OBJECT (qtdemux, "short read parsing 3GP classification");
return;
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,331 |
sqlite | 54d501092d88c0cf89bec4279951f548fb0b8618 | static int zipfileEof(sqlite3_vtab_cursor *cur){
ZipfileCsr *pCsr = (ZipfileCsr*)cur;
return pCsr->bEof;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,670 |
php-src | e7f2356665c2569191a946b6fc35b437f0ae1384 | void gdImageFillToBorder (gdImagePtr im, int x, int y, int border, int color)
{
int lastBorder;
/* Seek left */
int leftLimit = -1, rightLimit;
int i, restoreAlphaBlending = 0;
if (border < 0) {
/* Refuse to fill to a non-solid border */
return;
}
restoreAlphaBlending = im->alphaBlendingFlag;
im->alphaBlendingFlag = 0;
if (x >= im->sx) {
x = im->sx - 1;
}
if (y >= im->sy) {
y = im->sy - 1;
}
for (i = x; i >= 0; i--) {
if (gdImageGetPixel(im, i, y) == border) {
break;
}
gdImageSetPixel(im, i, y, color);
leftLimit = i;
}
if (leftLimit == -1) {
im->alphaBlendingFlag = restoreAlphaBlending;
return;
}
/* Seek right */
rightLimit = x;
for (i = (x + 1); i < im->sx; i++) {
if (gdImageGetPixel(im, i, y) == border) {
break;
}
gdImageSetPixel(im, i, y, color);
rightLimit = i;
}
/* Look at lines above and below and start paints */
/* Above */
if (y > 0) {
lastBorder = 1;
for (i = leftLimit; i <= rightLimit; i++) {
int c = gdImageGetPixel(im, i, y - 1);
if (lastBorder) {
if ((c != border) && (c != color)) {
gdImageFillToBorder(im, i, y - 1, border, color);
lastBorder = 0;
}
} else if ((c == border) || (c == color)) {
lastBorder = 1;
}
}
}
/* Below */
if (y < ((im->sy) - 1)) {
lastBorder = 1;
for (i = leftLimit; i <= rightLimit; i++) {
int c = gdImageGetPixel(im, i, y + 1);
if (lastBorder) {
if ((c != border) && (c != color)) {
gdImageFillToBorder(im, i, y + 1, border, color);
lastBorder = 0;
}
} else if ((c == border) || (c == color)) {
lastBorder = 1;
}
}
}
im->alphaBlendingFlag = restoreAlphaBlending;
} | 1 | CVE-2015-8874 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 9,059 |
Chrome | dd77c2a41c72589d929db0592565125ca629fb2c | const RunFromHostProxyCallback& run_callback() const { return run_callback_; }
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,787 |
linux | 0d0138ebe24b94065580bd2601f8bb7eb6152f56 | void do_syscall_trace_leave(struct pt_regs *regs)
{
if ((test_thread_flag(TIF_SYSCALL_TRACE))
&& (current->ptrace & PT_PTRACED))
do_syscall_trace();
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,324 |
FreeRDP | 7d58aac24fe20ffaad7bd9b40c9ddf457c1b06e7 | BOOL rdp_decrypt(rdpRdp* rdp, STREAM* s, int length, UINT16 securityFlags)
{
BYTE cmac[8];
BYTE wmac[8];
if (rdp->settings->EncryptionMethods == ENCRYPTION_METHOD_FIPS)
{
UINT16 len;
BYTE version, pad;
BYTE* sig;
if (stream_get_left(s) < 12)
return FALSE;
stream_read_UINT16(s, len); /* 0x10 */
stream_read_BYTE(s, version); /* 0x1 */
stream_read_BYTE(s, pad);
sig = s->p;
stream_seek(s, 8); /* signature */
length -= 12;
if (!security_fips_decrypt(s->p, length, rdp))
{
printf("FATAL: cannot decrypt\n");
return FALSE; /* TODO */
}
if (!security_fips_check_signature(s->p, length - pad, sig, rdp))
{
printf("FATAL: invalid packet signature\n");
return FALSE; /* TODO */
}
/* is this what needs adjusting? */
s->size -= pad;
return TRUE;
}
if (stream_get_left(s) < 8)
return FALSE;
stream_read(s, wmac, sizeof(wmac));
length -= sizeof(wmac);
security_decrypt(s->p, length, rdp);
if (securityFlags & SEC_SECURE_CHECKSUM)
security_salted_mac_signature(rdp, s->p, length, FALSE, cmac);
else
security_mac_signature(rdp, s->p, length, cmac);
if (memcmp(wmac, cmac, sizeof(wmac)) != 0)
{
printf("WARNING: invalid packet signature\n");
/*
* Because Standard RDP Security is totally broken,
* and cannot protect against MITM, don't treat signature
* verification failure as critical. This at least enables
* us to work with broken RDP clients and servers that
* generate invalid signatures.
*/
}
return TRUE;
}
| 1 | CVE-2013-4118 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 885 |
linux | 979e0d74651ba5aa533277f2a6423d0f982fb6f6 | static bool keyring_gc_select_iterator(void *object, void *iterator_data)
{
struct key *key = keyring_ptr_to_key(object);
time_t *limit = iterator_data;
if (key_is_dead(key, *limit))
return false;
key_get(key);
return true;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,981 |
Chrome | d0947db40187f4708c58e64cbd6013faf9eddeed | xmlParseInternalSubset(xmlParserCtxtPtr ctxt) {
/*
* Is there any DTD definition ?
*/
if (RAW == '[') {
ctxt->instate = XML_PARSER_DTD;
NEXT;
/*
* Parse the succession of Markup declarations and
* PEReferences.
* Subsequence (markupdecl | PEReference | S)*
*/
while (RAW != ']') {
const xmlChar *check = CUR_PTR;
unsigned int cons = ctxt->input->consumed;
SKIP_BLANKS;
xmlParseMarkupDecl(ctxt);
xmlParsePEReference(ctxt);
/*
* Pop-up of finished entities.
*/
while ((RAW == 0) && (ctxt->inputNr > 1))
xmlPopInput(ctxt);
if ((CUR_PTR == check) && (cons == ctxt->input->consumed)) {
xmlFatalErr(ctxt, XML_ERR_INTERNAL_ERROR,
"xmlParseInternalSubset: error detected in Markup declaration\n");
break;
}
}
if (RAW == ']') {
NEXT;
SKIP_BLANKS;
}
}
/*
* We should be at the end of the DOCTYPE declaration.
*/
if (RAW != '>') {
xmlFatalErr(ctxt, XML_ERR_DOCTYPE_NOT_FINISHED, NULL);
}
NEXT;
}
| 1 | CVE-2013-2877 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 4,303 |
linux | 0b79459b482e85cb7426aa7da683a9f2c97aeae1 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
{
if (!vcpu->arch.time_page)
return -EINVAL;
vcpu->arch.pvclock_set_guest_stopped_request = true;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
return 0;
}
| 1 | CVE-2013-1797 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 7,048 |
Chrome | 3f71619ec516f553c69a08bf373dcde14e86d08f | void ZeroSuggestProvider::RegisterProfilePrefs(
user_prefs::PrefRegistrySyncable* registry) {
registry->RegisterStringPref(omnibox::kZeroSuggestCachedResults,
std::string());
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,640 |
linux | 01ca667133d019edc9f0a1f70a272447c84ec41f | static void fm10k_init_reta(struct fm10k_intfc *interface)
{
u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
u32 reta;
/* If the Rx flow indirection table has been configured manually, we
* need to maintain it when possible.
*/
if (netif_is_rxfh_configured(interface->netdev)) {
for (i = FM10K_RETA_SIZE; i--;) {
reta = interface->reta[i];
if ((((reta << 24) >> 24) < rss_i) &&
(((reta << 16) >> 24) < rss_i) &&
(((reta << 8) >> 24) < rss_i) &&
(((reta) >> 24) < rss_i))
continue;
/* this should never happen */
dev_err(&interface->pdev->dev,
"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
goto repopulate_reta;
}
/* do nothing if all of the elements are in bounds */
return;
}
repopulate_reta:
fm10k_write_reta(interface, NULL);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,495 |
Chrome | 20b65d00ca3d8696430e22efad7485366f8c3a21 | void ProcessBackingStore(HeapObjectHeader* header) {
EXPECT_TRUE(header->IsValid());
EXPECT_TRUE(header->IsMarked());
header->Unmark();
ThreadHeap::GcInfo(header->GcInfoIndex())->trace_(this, header->Payload());
}
| 1 | CVE-2018-6158 | CWE-362 | Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') | The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. | Phase: Architecture and Design
In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance.
Phase: Architecture and Design
Use thread-safe capabilities such as the data access abstraction in Spring.
Phase: Architecture and Design
Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).
Phase: Implementation
When using multithreading and operating on shared variables, only use thread-safe functions.
Phase: Implementation
Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write.
Phase: Implementation
Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412.
Phase: Implementation
Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization.
Phase: Implementation
Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop.
Phase: Implementation
Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help.
Phases: Architecture and Design; Operation
Strategy: Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations | 7,042 |
Chrome | 1c40f9042ae2d6ee7483d72998aabb5e73b2ff60 | void ResourceFetcher::DidLoadResourceFromMemoryCache(
unsigned long identifier,
Resource* resource,
const ResourceRequest& original_resource_request) {
ResourceRequest resource_request(resource->Url());
resource_request.SetFrameType(original_resource_request.GetFrameType());
resource_request.SetRequestContext(
original_resource_request.GetRequestContext());
Context().DispatchDidLoadResourceFromMemoryCache(identifier, resource_request,
resource->GetResponse());
Context().DispatchWillSendRequest(identifier, resource_request,
ResourceResponse() /* redirects */,
resource->Options().initiator_info);
Context().DispatchDidReceiveResponse(
identifier, resource->GetResponse(), resource_request.GetFrameType(),
resource_request.GetRequestContext(), resource,
FetchContext::ResourceResponseType::kFromMemoryCache);
if (resource->EncodedSize() > 0)
Context().DispatchDidReceiveData(identifier, 0, resource->EncodedSize());
Context().DispatchDidFinishLoading(
identifier, 0, 0, resource->GetResponse().DecodedBodyLength());
}
| 1 | CVE-2017-5009 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,314 |
ghostpdl | 89f58f1aa95b3482cadf6977da49457194ee5358 | epson_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
gx_color_value r = cv[0];
gx_color_value g = cv[1];
gx_color_value b = cv[2];
if (gx_device_has_color(dev))
/* use ^7 so WHITE is 0 for internal calculations */
return (gx_color_index) rgb_color[r >> cv_shift][g >> cv_shift][b >> cv_shift] ^ 7;
else
return gx_default_map_rgb_color(dev, cv);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,448 |
rizin | 58926dffbe819fe9ebf5062f7130e026351cae01 | static void header(RzBinFile *bf) {
rz_return_if_fail(bf && bf->o && bf->rbin);
QnxObj *bin = bf->o->bin_obj;
RzBin *rbin = bf->rbin;
rbin->cb_printf("QNX file header:\n");
rbin->cb_printf("version : 0x%xH\n", bin->lmfh.version);
rbin->cb_printf("cflags : 0x%xH\n", bin->lmfh.cflags);
rbin->cb_printf("cpu : 0x%xH\n", bin->lmfh.cpu);
rbin->cb_printf("fpu : 0x%xH\n", bin->lmfh.fpu);
rbin->cb_printf("code_index : 0x%xH\n", bin->lmfh.code_index);
rbin->cb_printf("stack_index : 0x%xH\n", bin->lmfh.stack_index);
rbin->cb_printf("heap_index : 0x%xH\n", bin->lmfh.heap_index);
rbin->cb_printf("argv_index : 0x%xH\n", bin->lmfh.argv_index);
rbin->cb_printf("spare2[4] : 0x0H\n");
rbin->cb_printf("code_offset : 0x%xH\n", bin->lmfh.code_offset);
rbin->cb_printf("stack_nbytes : 0x%xH\n", bin->lmfh.stack_nbytes);
rbin->cb_printf("heap_nbytes : 0x%xH\n", bin->lmfh.heap_nbytes);
rbin->cb_printf("image_base : 0x%xH\n", bin->lmfh.image_base);
rbin->cb_printf("spare3[2] : 0x0H\n");
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,686 |
sddm | 4cfed6b0a625593fb43876f04badc4dd99799d86 | void Greeter::onReadyReadStandardOutput()
{
if (m_process) {
qDebug() << "Greeter output:" << qPrintable(QString::fromLocal8Bit(m_process->readAllStandardOutput()));
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 19,664 |
gpac | 64a2e1b799352ac7d7aad1989bc06e7b0f2b01db |
GF_Err metx_box_size(GF_Box *s)
{
GF_MetaDataSampleEntryBox *ptr = (GF_MetaDataSampleEntryBox *)s;
ptr->size += 8;
if (ptr->type!=GF_ISOM_BOX_TYPE_STPP) {
if (ptr->content_encoding)
ptr->size += strlen(ptr->content_encoding);
ptr->size++;
}
if ((ptr->type==GF_ISOM_BOX_TYPE_METX) || (ptr->type==GF_ISOM_BOX_TYPE_STPP)) {
if (ptr->xml_namespace)
ptr->size += strlen(ptr->xml_namespace);
ptr->size++;
if (ptr->xml_schema_loc)
ptr->size += strlen(ptr->xml_schema_loc);
ptr->size++;
if (ptr->type==GF_ISOM_BOX_TYPE_STPP) {
if (ptr->mime_type)
ptr->size += strlen(ptr->mime_type);
ptr->size++;
}
}
//mett, sbtt, stxt
else {
if (ptr->mime_type)
ptr->size += strlen(ptr->mime_type);
ptr->size++;
}
return GF_OK; | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,316 |
libjpeg-turbo | 6d2e8837b440ce4d8befd805a5abc0d351028d70 | jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
{
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
my_master_ptr master = (my_master_ptr)cinfo->master;
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
JDIMENSION i, x;
int y;
JDIMENSION lines_per_iMCU_row, lines_left_in_iMCU_row, lines_after_iMCU_row;
JDIMENSION lines_to_skip, lines_to_read;
/* Two-pass color quantization is not supported. */
if (cinfo->quantize_colors && cinfo->two_pass_quantize)
ERREXIT(cinfo, JERR_NOTIMPL);
if (cinfo->global_state != DSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Do not skip past the bottom of the image. */
if (cinfo->output_scanline + num_lines >= cinfo->output_height) {
num_lines = cinfo->output_height - cinfo->output_scanline;
cinfo->output_scanline = cinfo->output_height;
(*cinfo->inputctl->finish_input_pass) (cinfo);
cinfo->inputctl->eoi_reached = TRUE;
return num_lines;
}
if (num_lines == 0)
return 0;
lines_per_iMCU_row = cinfo->_min_DCT_scaled_size * cinfo->max_v_samp_factor;
lines_left_in_iMCU_row =
(lines_per_iMCU_row - (cinfo->output_scanline % lines_per_iMCU_row)) %
lines_per_iMCU_row;
lines_after_iMCU_row = num_lines - lines_left_in_iMCU_row;
/* Skip the lines remaining in the current iMCU row. When upsampling
* requires context rows, we need the previous and next rows in order to read
* the current row. This adds some complexity.
*/
if (cinfo->upsample->need_context_rows) {
/* If the skipped lines would not move us past the current iMCU row, we
* read the lines and ignore them. There might be a faster way of doing
* this, but we are facing increasing complexity for diminishing returns.
* The increasing complexity would be a by-product of meddling with the
* state machine used to skip context rows. Near the end of an iMCU row,
* the next iMCU row may have already been entropy-decoded. In this unique
* case, we will read the next iMCU row if we cannot skip past it as well.
*/
if ((num_lines < lines_left_in_iMCU_row + 1) ||
(lines_left_in_iMCU_row <= 1 && main_ptr->buffer_full &&
lines_after_iMCU_row < lines_per_iMCU_row + 1)) {
read_and_discard_scanlines(cinfo, num_lines);
return num_lines;
}
/* If the next iMCU row has already been entropy-decoded, make sure that
* we do not skip too far.
*/
if (lines_left_in_iMCU_row <= 1 && main_ptr->buffer_full) {
cinfo->output_scanline += lines_left_in_iMCU_row + lines_per_iMCU_row;
lines_after_iMCU_row -= lines_per_iMCU_row;
} else {
cinfo->output_scanline += lines_left_in_iMCU_row;
}
/* If we have just completed the first block, adjust the buffer pointers */
if (main_ptr->iMCU_row_ctr == 0 ||
(main_ptr->iMCU_row_ctr == 1 && lines_left_in_iMCU_row > 2))
set_wraparound_pointers(cinfo);
main_ptr->buffer_full = FALSE;
main_ptr->rowgroup_ctr = 0;
main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
if (!master->using_merged_upsample) {
upsample->next_row_out = cinfo->max_v_samp_factor;
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
}
}
/* Skipping is much simpler when context rows are not required. */
else {
if (num_lines < lines_left_in_iMCU_row) {
increment_simple_rowgroup_ctr(cinfo, num_lines);
return num_lines;
} else {
cinfo->output_scanline += lines_left_in_iMCU_row;
main_ptr->buffer_full = FALSE;
main_ptr->rowgroup_ctr = 0;
if (!master->using_merged_upsample) {
upsample->next_row_out = cinfo->max_v_samp_factor;
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
}
}
}
/* Calculate how many full iMCU rows we can skip. */
if (cinfo->upsample->need_context_rows)
lines_to_skip = ((lines_after_iMCU_row - 1) / lines_per_iMCU_row) *
lines_per_iMCU_row;
else
lines_to_skip = (lines_after_iMCU_row / lines_per_iMCU_row) *
lines_per_iMCU_row;
/* Calculate the number of lines that remain to be skipped after skipping all
* of the full iMCU rows that we can. We will not read these lines unless we
* have to.
*/
lines_to_read = lines_after_iMCU_row - lines_to_skip;
/* For images requiring multiple scans (progressive, non-interleaved, etc.),
* all of the entropy decoding occurs in jpeg_start_decompress(), assuming
* that the input data source is non-suspending. This makes skipping easy.
*/
if (cinfo->inputctl->has_multiple_scans) {
if (cinfo->upsample->need_context_rows) {
cinfo->output_scanline += lines_to_skip;
cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row;
main_ptr->iMCU_row_ctr += lines_to_skip / lines_per_iMCU_row;
/* It is complex to properly move to the middle of a context block, so
* read the remaining lines instead of skipping them.
*/
read_and_discard_scanlines(cinfo, lines_to_read);
} else {
cinfo->output_scanline += lines_to_skip;
cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row;
increment_simple_rowgroup_ctr(cinfo, lines_to_read);
}
if (!master->using_merged_upsample)
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
return num_lines;
}
/* Skip the iMCU rows that we can safely skip. */
for (i = 0; i < lines_to_skip; i += lines_per_iMCU_row) {
for (y = 0; y < coef->MCU_rows_per_iMCU_row; y++) {
for (x = 0; x < cinfo->MCUs_per_row; x++) {
/* Calling decode_mcu() with a NULL pointer causes it to discard the
* decoded coefficients. This is ~5% faster for large subsets, but
* it's tough to tell a difference for smaller images.
*/
(*cinfo->entropy->decode_mcu) (cinfo, NULL);
}
}
cinfo->input_iMCU_row++;
cinfo->output_iMCU_row++;
if (cinfo->input_iMCU_row < cinfo->total_iMCU_rows)
start_iMCU_row(cinfo);
else
(*cinfo->inputctl->finish_input_pass) (cinfo);
}
cinfo->output_scanline += lines_to_skip;
if (cinfo->upsample->need_context_rows) {
/* Context-based upsampling keeps track of iMCU rows. */
main_ptr->iMCU_row_ctr += lines_to_skip / lines_per_iMCU_row;
/* It is complex to properly move to the middle of a context block, so
* read the remaining lines instead of skipping them.
*/
read_and_discard_scanlines(cinfo, lines_to_read);
} else {
increment_simple_rowgroup_ctr(cinfo, lines_to_read);
}
/* Since skipping lines involves skipping the upsampling step, the value of
* "rows_to_go" will become invalid unless we set it here. NOTE: This is a
* bit odd, since "rows_to_go" seems to be redundantly keeping track of
* output_scanline.
*/
if (!master->using_merged_upsample)
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
/* Always skip the requested number of lines. */
return num_lines;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,701 |
linux | a497e47d4aec37aaf8f13509f3ef3d1f6a717d88 | void lbs_debugfs_init(void)
{
if (!lbs_dir)
lbs_dir = debugfs_create_dir("lbs_wireless", NULL);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,235 |
linux-2.6 | 9ef1d4c7c7aca1cd436612b6ca785b726ffb8ed8 | static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n,
u32 pid, u32 seq, int event, unsigned int flags)
{
unsigned long now = jiffies;
unsigned char *b = skb->tail;
struct nda_cacheinfo ci;
int locked = 0;
u32 probes;
struct nlmsghdr *nlh = NLMSG_NEW(skb, pid, seq, event,
sizeof(struct ndmsg), flags);
struct ndmsg *ndm = NLMSG_DATA(nlh);
ndm->ndm_family = n->ops->family;
ndm->ndm_flags = n->flags;
ndm->ndm_type = n->type;
ndm->ndm_ifindex = n->dev->ifindex;
RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key);
read_lock_bh(&n->lock);
locked = 1;
ndm->ndm_state = n->nud_state;
if (n->nud_state & NUD_VALID)
RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha);
ci.ndm_used = now - n->used;
ci.ndm_confirmed = now - n->confirmed;
ci.ndm_updated = now - n->updated;
ci.ndm_refcnt = atomic_read(&n->refcnt) - 1;
probes = atomic_read(&n->probes);
read_unlock_bh(&n->lock);
locked = 0;
RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes);
nlh->nlmsg_len = skb->tail - b;
return skb->len;
nlmsg_failure:
rtattr_failure:
if (locked)
read_unlock_bh(&n->lock);
skb_trim(skb, b - skb->data);
return -1;
} | 1 | CVE-2005-4881 | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. |
Phase: Architecture and Design
Strategy: Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges. | 5,003 |
tinc | 17a33dfd95b1a29e90db76414eb9622df9632320 | void receive_tcppacket(connection_t *c, const char *buffer, int len) {
vpn_packet_t outpkt;
if(len > sizeof outpkt.data)
return;
outpkt.len = len;
if(c->options & OPTION_TCPONLY)
outpkt.priority = 0;
else
outpkt.priority = -1;
memcpy(outpkt.data, buffer, len);
receive_packet(c->node, &outpkt);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,244 |
linux-2.6 | e84b90ae5eb3c112d1f208964df1d8156a538289 | static int raw_getname(struct socket *sock, struct sockaddr *uaddr,
int *len, int peer)
{
struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
struct sock *sk = sock->sk;
struct raw_sock *ro = raw_sk(sk);
if (peer)
return -EOPNOTSUPP;
addr->can_family = AF_CAN;
addr->can_ifindex = ro->ifindex;
*len = sizeof(*addr);
return 0;
} | 1 | CVE-2009-3001 | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. |
Phase: Architecture and Design
Strategy: Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges. | 8,015 |
linux | 23fcb3340d033d9f081e21e6c12c2db7eaa541d3 | xfs_dinode_verify(
struct xfs_mount *mp,
xfs_ino_t ino,
struct xfs_dinode *dip)
{
xfs_failaddr_t fa;
uint16_t mode;
uint16_t flags;
uint64_t flags2;
uint64_t di_size;
if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
return __this_address;
/* Verify v3 integrity information first */
if (dip->di_version >= 3) {
if (!xfs_sb_version_hascrc(&mp->m_sb))
return __this_address;
if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
XFS_DINODE_CRC_OFF))
return __this_address;
if (be64_to_cpu(dip->di_ino) != ino)
return __this_address;
if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
return __this_address;
}
/* don't allow invalid i_size */
di_size = be64_to_cpu(dip->di_size);
if (di_size & (1ULL << 63))
return __this_address;
mode = be16_to_cpu(dip->di_mode);
if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN)
return __this_address;
/* No zero-length symlinks/dirs. */
if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0)
return __this_address;
/* Fork checks carried over from xfs_iformat_fork */
if (mode &&
be32_to_cpu(dip->di_nextents) + be16_to_cpu(dip->di_anextents) >
be64_to_cpu(dip->di_nblocks))
return __this_address;
if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize)
return __this_address;
flags = be16_to_cpu(dip->di_flags);
if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp)
return __this_address;
/* Do we have appropriate data fork formats for the mode? */
switch (mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
if (dip->di_format != XFS_DINODE_FMT_DEV)
return __this_address;
break;
case S_IFREG:
case S_IFLNK:
case S_IFDIR:
switch (dip->di_format) {
case XFS_DINODE_FMT_LOCAL:
/*
* no local regular files yet
*/
if (S_ISREG(mode))
return __this_address;
if (di_size > XFS_DFORK_DSIZE(dip, mp))
return __this_address;
if (dip->di_nextents)
return __this_address;
/* fall through */
case XFS_DINODE_FMT_EXTENTS:
case XFS_DINODE_FMT_BTREE:
break;
default:
return __this_address;
}
break;
case 0:
/* Uninitialized inode ok. */
break;
default:
return __this_address;
}
if (XFS_DFORK_Q(dip)) {
switch (dip->di_aformat) {
case XFS_DINODE_FMT_LOCAL:
if (dip->di_anextents)
return __this_address;
/* fall through */
case XFS_DINODE_FMT_EXTENTS:
case XFS_DINODE_FMT_BTREE:
break;
default:
return __this_address;
}
} else {
/*
* If there is no fork offset, this may be a freshly-made inode
* in a new disk cluster, in which case di_aformat is zeroed.
* Otherwise, such an inode must be in EXTENTS format; this goes
* for freed inodes as well.
*/
switch (dip->di_aformat) {
case 0:
case XFS_DINODE_FMT_EXTENTS:
break;
default:
return __this_address;
}
if (dip->di_anextents)
return __this_address;
}
/* extent size hint validation */
fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize),
mode, flags);
if (fa)
return fa;
/* only version 3 or greater inodes are extensively verified here */
if (dip->di_version < 3)
return NULL;
flags2 = be64_to_cpu(dip->di_flags2);
/* don't allow reflink/cowextsize if we don't have reflink */
if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) &&
!xfs_sb_version_hasreflink(&mp->m_sb))
return __this_address;
/* only regular files get reflink */
if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG)
return __this_address;
/* don't let reflink and realtime mix */
if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME))
return __this_address;
/* don't let reflink and dax mix */
if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags2 & XFS_DIFLAG2_DAX))
return __this_address;
/* COW extent size hint validation */
fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize),
mode, flags, flags2);
if (fa)
return fa;
return NULL;
}
| 1 | CVE-2018-13095 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 204 |
php | b2cf3f064b8f5efef89bb084521b61318c71781b | PHP_METHOD(Phar, unlinkArchive)
{
char *fname, *error, *zname, *arch, *entry;
int fname_len, zname_len, arch_len, entry_len;
phar_archive_data *phar;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &fname, &fname_len) == FAILURE) {
RETURN_FALSE;
}
if (!fname_len) {
zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown phar archive \"\"");
return;
}
if (FAILURE == phar_open_from_filename(fname, fname_len, NULL, 0, REPORT_ERRORS, &phar, &error TSRMLS_CC)) {
if (error) {
zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown phar archive \"%s\": %s", fname, error);
efree(error);
} else {
zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown phar archive \"%s\"", fname);
}
return;
}
zname = (char*)zend_get_executed_filename(TSRMLS_C);
zname_len = strlen(zname);
if (zname_len > 7 && !memcmp(zname, "phar://", 7) && SUCCESS == phar_split_fname(zname, zname_len, &arch, &arch_len, &entry, &entry_len, 2, 0 TSRMLS_CC)) {
if (arch_len == fname_len && !memcmp(arch, fname, arch_len)) {
zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar archive \"%s\" cannot be unlinked from within itself", fname);
efree(arch);
efree(entry);
return;
}
efree(arch);
efree(entry);
}
if (phar->is_persistent) {
zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar archive \"%s\" is in phar.cache_list, cannot unlinkArchive()", fname);
return;
}
if (phar->refcount) {
zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar archive \"%s\" has open file handles or objects. fclose() all file handles, and unset() all objects prior to calling unlinkArchive()", fname);
return;
}
fname = estrndup(phar->fname, phar->fname_len);
/* invalidate phar cache */
PHAR_G(last_phar) = NULL;
PHAR_G(last_phar_name) = PHAR_G(last_alias) = NULL;
phar_archive_delref(phar TSRMLS_CC);
unlink(fname);
efree(fname);
RETURN_TRUE;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,041 |
gdk-pixbuf | 4f0f465f991cd454d03189497f923eb40c170c22 | read_bitmap_file_data (FILE *fstream,
guint *width,
guint *height,
guchar **data,
int *x_hot,
int *y_hot)
{
guchar *bits = NULL; /* working variable */
char line[MAX_SIZE]; /* input line from file */
int size; /* number of bytes of data */
char name_and_type[MAX_SIZE]; /* an input line */
char *type; /* for parsing */
int value; /* from an input line */
int version10p; /* boolean, old format */
int padding; /* to handle alignment */
int bytes_per_line; /* per scanline of data */
guint ww = 0; /* width */
guint hh = 0; /* height */
int hx = -1; /* x hotspot */
int hy = -1; /* y hotspot */
/* first time initialization */
if (!initialized) {
init_hex_table ();
}
/* error cleanup and return macro */
#define RETURN(code) { g_free (bits); return code; }
while (fgets (line, MAX_SIZE, fstream)) {
if (strlen (line) == MAX_SIZE-1)
RETURN (FALSE);
if (sscanf (line,"#define %s %d",name_and_type,&value) == 2) {
if (!(type = strrchr (name_and_type, '_')))
type = name_and_type;
else {
type++;
}
if (!strcmp ("width", type))
ww = (unsigned int) value;
if (!strcmp ("height", type))
hh = (unsigned int) value;
if (!strcmp ("hot", type)) {
if (type-- == name_and_type
|| type-- == name_and_type)
continue;
if (!strcmp ("x_hot", type))
hx = value;
if (!strcmp ("y_hot", type))
hy = value;
}
continue;
}
if (sscanf (line, "static short %s = {", name_and_type) == 1)
version10p = 1;
else if (sscanf (line,"static const unsigned char %s = {",name_and_type) == 1)
version10p = 0;
else if (sscanf (line,"static unsigned char %s = {",name_and_type) == 1)
version10p = 0;
else if (sscanf (line, "static const char %s = {", name_and_type) == 1)
version10p = 0;
else if (sscanf (line, "static char %s = {", name_and_type) == 1)
version10p = 0;
else
continue;
if (!(type = strrchr (name_and_type, '_')))
type = name_and_type;
else
type++;
if (strcmp ("bits[]", type))
continue;
if (!ww || !hh)
RETURN (FALSE);
if ((ww % 16) && ((ww % 16) < 9) && version10p)
padding = 1;
else
padding = 0;
bytes_per_line = (ww+7)/8 + padding;
size = bytes_per_line * hh;
bits = g_malloc (size);
if (version10p) {
unsigned char *ptr;
int bytes;
for (bytes = 0, ptr = bits; bytes < size; (bytes += 2)) {
if ((value = next_int (fstream)) < 0)
RETURN (FALSE);
*(ptr++) = value;
if (!padding || ((bytes+2) % bytes_per_line))
*(ptr++) = value >> 8;
}
} else {
unsigned char *ptr;
int bytes;
for (bytes = 0, ptr = bits; bytes < size; bytes++, ptr++) {
if ((value = next_int (fstream)) < 0)
RETURN (FALSE);
*ptr=value;
}
}
break;
}
if (!bits)
RETURN (FALSE);
*data = bits;
*width = ww;
*height = hh;
if (x_hot)
*x_hot = hx;
if (y_hot)
*y_hot = hy;
return TRUE;
} | 1 | CVE-2012-2370 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 1,496 |
Chrome | 17368442aec0f48859a3561ae5e441175c7041ba | void DownloadManagerImpl::OnDownloadCreated(
std::unique_ptr<download::DownloadItemImpl> download) {
DCHECK(!base::ContainsKey(downloads_, download->GetId()));
DCHECK(!base::ContainsKey(downloads_by_guid_, download->GetGuid()));
download::DownloadItemImpl* item = download.get();
downloads_[item->GetId()] = std::move(download);
downloads_by_guid_[item->GetGuid()] = item;
for (auto& observer : observers_)
observer.OnDownloadCreated(this, item);
OnNewDownloadCreated(item);
DVLOG(20) << __func__ << "() download = " << item->DebugString(true);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,046 |
libsndfile | f833c53cb596e9e1792949f762e0b33661822748 | aiff_read_chanmap (SF_PRIVATE * psf, unsigned dword)
{ const AIFF_CAF_CHANNEL_MAP * map_info ;
unsigned channel_bitmap, channel_decriptions, bytesread ;
int layout_tag ;
bytesread = psf_binheader_readf (psf, "444", &layout_tag, &channel_bitmap, &channel_decriptions) ;
if ((map_info = aiff_caf_of_channel_layout_tag (layout_tag)) == NULL)
return 0 ;
psf_log_printf (psf, " Tag : %x\n", layout_tag) ;
if (map_info)
psf_log_printf (psf, " Layout : %s\n", map_info->name) ;
if (bytesread < dword)
psf_binheader_readf (psf, "j", dword - bytesread) ;
if (map_info->channel_map != NULL)
{ size_t chanmap_size = psf->sf.channels * sizeof (psf->channel_map [0]) ;
free (psf->channel_map) ;
if ((psf->channel_map = malloc (chanmap_size)) == NULL)
return SFE_MALLOC_FAILED ;
memcpy (psf->channel_map, map_info->channel_map, chanmap_size) ;
} ;
return 0 ;
} /* aiff_read_chanmap */
| 1 | CVE-2017-6892 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 7,181 |
qemu | edfe2eb4360cde4ed5d95bda7777edcb3510f76a | void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
MemTxAttrs attrs)
{
if (s->security_extn && !attrs.secure) {
if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
return; /* Ignore Non-secure access of Group0 IRQ */
}
val = 0x80 | (val >> 1); /* Non-secure view */
}
val &= gic_fullprio_mask(s, cpu);
if (irq < GIC_INTERNAL) {
s->priority1[irq][cpu] = val;
} else {
s->priority2[(irq) - GIC_INTERNAL] = val;
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,358 |
radare2 | 37897226a1a31f982bfefdc4aeefc2e50355c73c | R_API bool r_io_bank_write_at(RIO *io, const ut32 bankid, ut64 addr, const ut8 *buf, int len) {
RIOBank *bank = r_io_bank_get (io, bankid);
r_return_val_if_fail (io && bank, false);
RIOSubMap fake_sm;
memset (&fake_sm, 0x00, sizeof (RIOSubMap));
fake_sm.itv.addr = addr;
fake_sm.itv.size = len;
RRBNode *node;
if (bank->last_used && r_io_submap_contain (((RIOSubMap *)bank->last_used->data), addr)) {
node = bank->last_used;
} else {
node = _find_entry_submap_node (bank, &fake_sm);
}
RIOSubMap *sm = node ? (RIOSubMap *)node->data : NULL;
bool ret = true;
while (sm && r_io_submap_overlap ((&fake_sm), sm)) {
bank->last_used = node;
RIOMap *map = r_io_map_get_by_ref (io, &sm->mapref);
if (!map) {
// mapref doesn't belong to map
return false;
}
if (!(map->perm & R_PERM_W)) {
node = r_rbnode_next (node);
sm = node ? (RIOSubMap *)node->data : NULL;
ret = false;
continue;
}
const ut64 buf_off = R_MAX (addr, r_io_submap_from (sm)) - addr;
const int write_len = R_MIN (r_io_submap_to ((&fake_sm)),
r_io_submap_to (sm)) - (addr + buf_off) + 1;
const ut64 paddr = addr + buf_off - r_io_map_from (map) + map->delta;
ret &= (r_io_fd_write_at (io, map->fd, paddr, &buf[buf_off], write_len) == write_len);
// check return value here?
node = r_rbnode_next (node);
sm = node ? (RIOSubMap *)node->data : NULL;
}
return ret;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,103 |
php | 082aecfc3a753ad03be82cf14f03ac065723ec92 | static int exif_process_IFD_TAG(image_info_type *ImageInfo, char *dir_entry, char *offset_base, size_t IFDlength, size_t displacement, int section_index, int ReadNextIFD, tag_table_type tag_table TSRMLS_DC)
{
size_t length;
int tag, format, components;
char *value_ptr, tagname[64], cbuf[32], *outside=NULL;
size_t byte_count, offset_val, fpos, fgot;
int64_t byte_count_signed;
xp_field_type *tmp_xp;
#ifdef EXIF_DEBUG
char *dump_data;
int dump_free;
#endif /* EXIF_DEBUG */
/* Protect against corrupt headers */
if (ImageInfo->ifd_nesting_level > MAX_IFD_NESTING_LEVEL) {
exif_error_docref("exif_read_data#error_ifd" EXIFERR_CC, ImageInfo, E_WARNING, "corrupt EXIF header: maximum directory nesting level reached");
return FALSE;
}
ImageInfo->ifd_nesting_level++;
tag = php_ifd_get16u(dir_entry, ImageInfo->motorola_intel);
format = php_ifd_get16u(dir_entry+2, ImageInfo->motorola_intel);
components = php_ifd_get32u(dir_entry+4, ImageInfo->motorola_intel);
if (!format || format > NUM_FORMATS) {
/* (-1) catches illegal zero case as unsigned underflows to positive large. */
exif_error_docref("exif_read_data#error_ifd" EXIFERR_CC, ImageInfo, E_WARNING, "Process tag(x%04X=%s): Illegal format code 0x%04X, suppose BYTE", tag, exif_get_tagname(tag, tagname, -12, tag_table TSRMLS_CC), format);
format = TAG_FMT_BYTE;
/*return TRUE;*/
}
if (components < 0) {
exif_error_docref("exif_read_data#error_ifd" EXIFERR_CC, ImageInfo, E_WARNING, "Process tag(x%04X=%s): Illegal components(%ld)", tag, exif_get_tagname(tag, tagname, -12, tag_table TSRMLS_CC), components);
return FALSE;
}
byte_count_signed = (int64_t)components * php_tiff_bytes_per_format[format];
if (byte_count_signed < 0 || (byte_count_signed > INT32_MAX)) {
exif_error_docref("exif_read_data#error_ifd" EXIFERR_CC, ImageInfo, E_WARNING, "Process tag(x%04X=%s): Illegal byte_count", tag, exif_get_tagname(tag, tagname, -12, tag_table TSRMLS_CC));
return FALSE;
}
byte_count = (size_t)byte_count_signed;
if (byte_count > 4) {
offset_val = php_ifd_get32u(dir_entry+8, ImageInfo->motorola_intel);
/* If its bigger than 4 bytes, the dir entry contains an offset. */
value_ptr = offset_base+offset_val;
/*
dir_entry is ImageInfo->file.list[sn].data+2+i*12
offset_base is ImageInfo->file.list[sn].data-dir_offset
dir_entry - offset_base is dir_offset+2+i*12
*/
if (byte_count > IFDlength || offset_val > IFDlength-byte_count || value_ptr < dir_entry || offset_val < (size_t)(dir_entry-offset_base)) {
/* It is important to check for IMAGE_FILETYPE_TIFF
* JPEG does not use absolute pointers instead its pointers are
* relative to the start of the TIFF header in APP1 section. */
if (byte_count > ImageInfo->FileSize || offset_val>ImageInfo->FileSize-byte_count || (ImageInfo->FileType!=IMAGE_FILETYPE_TIFF_II && ImageInfo->FileType!=IMAGE_FILETYPE_TIFF_MM && ImageInfo->FileType!=IMAGE_FILETYPE_JPEG)) {
if (value_ptr < dir_entry) {
/* we can read this if offset_val > 0 */
/* some files have their values in other parts of the file */
exif_error_docref("exif_read_data#error_ifd" EXIFERR_CC, ImageInfo, E_WARNING, "Process tag(x%04X=%s): Illegal pointer offset(x%04X < x%04X)", tag, exif_get_tagname(tag, tagname, -12, tag_table TSRMLS_CC), offset_val, dir_entry);
} else {
/* this is for sure not allowed */
/* exception are IFD pointers */
exif_error_docref("exif_read_data#error_ifd" EXIFERR_CC, ImageInfo, E_WARNING, "Process tag(x%04X=%s): Illegal pointer offset(x%04X + x%04X = x%04X > x%04X)", tag, exif_get_tagname(tag, tagname, -12, tag_table TSRMLS_CC), offset_val, byte_count, offset_val+byte_count, IFDlength);
}
return FALSE;
}
if (byte_count>sizeof(cbuf)) {
/* mark as outside range and get buffer */
value_ptr = safe_emalloc(byte_count, 1, 0);
outside = value_ptr;
} else {
/* In most cases we only access a small range so
* it is faster to use a static buffer there
* BUT it offers also the possibility to have
* pointers read without the need to free them
* explicitley before returning. */
memset(&cbuf, 0, sizeof(cbuf));
value_ptr = cbuf;
}
fpos = php_stream_tell(ImageInfo->infile);
php_stream_seek(ImageInfo->infile, offset_val, SEEK_SET);
fgot = php_stream_tell(ImageInfo->infile);
if (fgot!=offset_val) {
EFREE_IF(outside);
exif_error_docref(NULL EXIFERR_CC, ImageInfo, E_WARNING, "Wrong file pointer: 0x%08X != 0x%08X", fgot, offset_val);
return FALSE;
}
fgot = php_stream_read(ImageInfo->infile, value_ptr, byte_count);
php_stream_seek(ImageInfo->infile, fpos, SEEK_SET);
if (fgot<byte_count) {
EFREE_IF(outside);
EXIF_ERRLOG_FILEEOF(ImageInfo)
return FALSE;
}
}
} else {
/* 4 bytes or less and value is in the dir entry itself */
value_ptr = dir_entry+8;
offset_val= value_ptr-offset_base;
}
ImageInfo->sections_found |= FOUND_ANY_TAG;
#ifdef EXIF_DEBUG
dump_data = exif_dump_data(&dump_free, format, components, length, ImageInfo->motorola_intel, value_ptr TSRMLS_CC);
exif_error_docref(NULL EXIFERR_CC, ImageInfo, E_NOTICE, "Process tag(x%04X=%s,@x%04X + x%04X(=%d)): %s%s %s", tag, exif_get_tagname(tag, tagname, -12, tag_table TSRMLS_CC), offset_val+displacement, byte_count, byte_count, (components>1)&&format!=TAG_FMT_UNDEFINED&&format!=TAG_FMT_STRING?"ARRAY OF ":"", exif_get_tagformat(format), dump_data);
if (dump_free) {
efree(dump_data);
}
#endif
if (section_index==SECTION_THUMBNAIL) {
if (!ImageInfo->Thumbnail.data) {
switch(tag) {
case TAG_IMAGEWIDTH:
case TAG_COMP_IMAGE_WIDTH:
ImageInfo->Thumbnail.width = exif_convert_any_to_int(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
break;
case TAG_IMAGEHEIGHT:
case TAG_COMP_IMAGE_HEIGHT:
ImageInfo->Thumbnail.height = exif_convert_any_to_int(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
break;
case TAG_STRIP_OFFSETS:
case TAG_JPEG_INTERCHANGE_FORMAT:
/* accept both formats */
ImageInfo->Thumbnail.offset = exif_convert_any_to_int(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
break;
case TAG_STRIP_BYTE_COUNTS:
if (ImageInfo->FileType == IMAGE_FILETYPE_TIFF_II || ImageInfo->FileType == IMAGE_FILETYPE_TIFF_MM) {
ImageInfo->Thumbnail.filetype = ImageInfo->FileType;
} else {
/* motorola is easier to read */
ImageInfo->Thumbnail.filetype = IMAGE_FILETYPE_TIFF_MM;
}
ImageInfo->Thumbnail.size = exif_convert_any_to_int(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
break;
case TAG_JPEG_INTERCHANGE_FORMAT_LEN:
if (ImageInfo->Thumbnail.filetype == IMAGE_FILETYPE_UNKNOWN) {
ImageInfo->Thumbnail.filetype = IMAGE_FILETYPE_JPEG;
ImageInfo->Thumbnail.size = exif_convert_any_to_int(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
}
break;
}
}
} else {
if (section_index==SECTION_IFD0 || section_index==SECTION_EXIF)
switch(tag) {
case TAG_COPYRIGHT:
/* check for "<photographer> NUL <editor> NUL" */
if (byte_count>1 && (length=php_strnlen(value_ptr, byte_count)) > 0) {
if (length<byte_count-1) {
/* When there are any characters after the first NUL */
ImageInfo->CopyrightPhotographer = estrdup(value_ptr);
ImageInfo->CopyrightEditor = estrndup(value_ptr+length+1, byte_count-length-1);
spprintf(&ImageInfo->Copyright, 0, "%s, %s", value_ptr, value_ptr+length+1);
/* format = TAG_FMT_UNDEFINED; this musn't be ASCII */
/* but we are not supposed to change this */
/* keep in mind that image_info does not store editor value */
} else {
ImageInfo->Copyright = estrndup(value_ptr, byte_count);
}
}
break;
case TAG_USERCOMMENT:
ImageInfo->UserCommentLength = exif_process_user_comment(ImageInfo, &(ImageInfo->UserComment), &(ImageInfo->UserCommentEncoding), value_ptr, byte_count TSRMLS_CC);
break;
case TAG_XP_TITLE:
case TAG_XP_COMMENTS:
case TAG_XP_AUTHOR:
case TAG_XP_KEYWORDS:
case TAG_XP_SUBJECT:
tmp_xp = (xp_field_type*)safe_erealloc(ImageInfo->xp_fields.list, (ImageInfo->xp_fields.count+1), sizeof(xp_field_type), 0);
ImageInfo->sections_found |= FOUND_WINXP;
ImageInfo->xp_fields.list = tmp_xp;
ImageInfo->xp_fields.count++;
exif_process_unicode(ImageInfo, &(ImageInfo->xp_fields.list[ImageInfo->xp_fields.count-1]), tag, value_ptr, byte_count TSRMLS_CC);
break;
case TAG_FNUMBER:
/* Simplest way of expressing aperture, so I trust it the most.
(overwrite previously computed value if there is one) */
ImageInfo->ApertureFNumber = (float)exif_convert_any_format(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
break;
case TAG_APERTURE:
case TAG_MAX_APERTURE:
/* More relevant info always comes earlier, so only use this field if we don't
have appropriate aperture information yet. */
if (ImageInfo->ApertureFNumber == 0) {
ImageInfo->ApertureFNumber
= (float)exp(exif_convert_any_format(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC)*log(2)*0.5);
}
break;
case TAG_SHUTTERSPEED:
/* More complicated way of expressing exposure time, so only use
this value if we don't already have it from somewhere else.
SHUTTERSPEED comes after EXPOSURE TIME
*/
if (ImageInfo->ExposureTime == 0) {
ImageInfo->ExposureTime
= (float)(1/exp(exif_convert_any_format(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC)*log(2)));
}
break;
case TAG_EXPOSURETIME:
ImageInfo->ExposureTime = -1;
break;
case TAG_COMP_IMAGE_WIDTH:
ImageInfo->ExifImageWidth = exif_convert_any_to_int(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
break;
case TAG_FOCALPLANE_X_RES:
ImageInfo->FocalplaneXRes = exif_convert_any_format(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
break;
case TAG_SUBJECT_DISTANCE:
/* Inidcates the distacne the autofocus camera is focused to.
Tends to be less accurate as distance increases. */
ImageInfo->Distance = (float)exif_convert_any_format(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC);
break;
case TAG_FOCALPLANE_RESOLUTION_UNIT:
switch((int)exif_convert_any_format(value_ptr, format, ImageInfo->motorola_intel TSRMLS_CC)) {
case 1: ImageInfo->FocalplaneUnits = 25.4; break; /* inch */
case 2:
/* According to the information I was using, 2 measn meters.
But looking at the Cannon powershot's files, inches is the only
sensible value. */
ImageInfo->FocalplaneUnits = 25.4;
break;
case 3: ImageInfo->FocalplaneUnits = 10; break; /* centimeter */
case 4: ImageInfo->FocalplaneUnits = 1; break; /* milimeter */
case 5: ImageInfo->FocalplaneUnits = .001; break; /* micrometer */
}
break;
case TAG_SUB_IFD:
if (format==TAG_FMT_IFD) {
/* If this is called we are either in a TIFFs thumbnail or a JPEG where we cannot handle it */
/* TIFF thumbnail: our data structure cannot store a thumbnail of a thumbnail */
/* JPEG do we have the data area and what to do with it */
exif_error_docref(NULL EXIFERR_CC, ImageInfo, E_NOTICE, "Skip SUB IFD");
}
break;
case TAG_MAKE:
ImageInfo->make = estrndup(value_ptr, byte_count);
break;
case TAG_MODEL:
ImageInfo->model = estrndup(value_ptr, byte_count);
break;
case TAG_MAKER_NOTE:
exif_process_IFD_in_MAKERNOTE(ImageInfo, value_ptr, byte_count, offset_base, IFDlength, displacement TSRMLS_CC);
break;
case TAG_EXIF_IFD_POINTER:
case TAG_GPS_IFD_POINTER:
case TAG_INTEROP_IFD_POINTER:
if (ReadNextIFD) {
char *Subdir_start;
int sub_section_index = 0;
switch(tag) {
case TAG_EXIF_IFD_POINTER:
#ifdef EXIF_DEBUG
exif_error_docref(NULL EXIFERR_CC, ImageInfo, E_NOTICE, "Found EXIF");
#endif
ImageInfo->sections_found |= FOUND_EXIF;
sub_section_index = SECTION_EXIF;
break;
case TAG_GPS_IFD_POINTER:
#ifdef EXIF_DEBUG
exif_error_docref(NULL EXIFERR_CC, ImageInfo, E_NOTICE, "Found GPS");
#endif
ImageInfo->sections_found |= FOUND_GPS;
sub_section_index = SECTION_GPS;
break;
case TAG_INTEROP_IFD_POINTER:
#ifdef EXIF_DEBUG
exif_error_docref(NULL EXIFERR_CC, ImageInfo, E_NOTICE, "Found INTEROPERABILITY");
#endif
ImageInfo->sections_found |= FOUND_INTEROP;
sub_section_index = SECTION_INTEROP;
break;
}
Subdir_start = offset_base + php_ifd_get32u(value_ptr, ImageInfo->motorola_intel);
if (Subdir_start < offset_base || Subdir_start > offset_base+IFDlength) {
exif_error_docref("exif_read_data#error_ifd" EXIFERR_CC, ImageInfo, E_WARNING, "Illegal IFD Pointer");
return FALSE;
}
if (!exif_process_IFD_in_JPEG(ImageInfo, Subdir_start, offset_base, IFDlength, displacement, sub_section_index TSRMLS_CC)) {
return FALSE;
}
#ifdef EXIF_DEBUG
exif_error_docref(NULL EXIFERR_CC, ImageInfo, E_NOTICE, "Subsection %s done", exif_get_sectionname(sub_section_index));
#endif
}
}
}
exif_iif_add_tag(ImageInfo, section_index, exif_get_tagname(tag, tagname, sizeof(tagname), tag_table TSRMLS_CC), tag, format, components, value_ptr TSRMLS_CC);
EFREE_IF(outside);
return TRUE;
}
| 1 | CVE-2016-4544 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,825 |
ldns | 3bdeed02505c9bbacb3b64a97ddcb1de967153b7 | loc_parse_cm(char* my_str, char** endstr, uint8_t* m, uint8_t* e)
{
/* read <digits>[.<digits>][mM] */
/* into mantissa exponent format for LOC type */
uint32_t meters = 0, cm = 0, val;
while (isblank((unsigned char)*my_str)) {
my_str++;
}
meters = (uint32_t)strtol(my_str, &my_str, 10);
if (*my_str == '.') {
my_str++;
cm = (uint32_t)strtol(my_str, &my_str, 10);
}
if (meters >= 1) {
*e = 2;
val = meters;
} else {
*e = 0;
val = cm;
}
while(val >= 10) {
(*e)++;
val /= 10;
}
*m = (uint8_t)val;
if (*e > 9)
return 0;
if (*my_str == 'm' || *my_str == 'M') {
my_str++;
}
*endstr = my_str;
return 1;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,431 |
firejail | 903fd8a0789ca3cc3c21d84cd0282481515592ef | int is_dir(const char *fname) {
assert(fname);
if (*fname == '\0')
return 0;
int rv;
struct stat s;
if (fname[strlen(fname) - 1] == '/')
rv = stat(fname, &s);
else {
char *tmp;
if (asprintf(&tmp, "%s/", fname) == -1) {
fprintf(stderr, "Error: cannot allocate memory, %s:%d\n", __FILE__, __LINE__);
errExit("asprintf");
}
rv = stat(tmp, &s);
free(tmp);
}
if (rv == -1)
return 0;
if (S_ISDIR(s.st_mode))
return 1;
return 0;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,353 |
linux | 24b9bf43e93e0edd89072da51cf1fab95fc69dec | void inet_frags_init(struct inet_frags *f)
{
int i;
for (i = 0; i < INETFRAGS_HASHSZ; i++) {
struct inet_frag_bucket *hb = &f->hash[i];
spin_lock_init(&hb->chain_lock);
INIT_HLIST_HEAD(&hb->chain);
}
rwlock_init(&f->lock);
setup_timer(&f->secret_timer, inet_frag_secret_rebuild,
(unsigned long)f);
f->secret_timer.expires = jiffies + f->secret_interval;
add_timer(&f->secret_timer);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,094 |
Chrome | 4801ff6578b3976731b13657715dcbe916c6a221 | bool V8DOMWindow::namedSecurityCheckCustom(v8::Local<v8::Object> host, v8::Local<v8::Value> key, v8::AccessType type, v8::Local<v8::Value>)
{
v8::Isolate* isolate = v8::Isolate::GetCurrent();
v8::Handle<v8::Object> window = host->FindInstanceInPrototypeChain(V8DOMWindow::GetTemplate(isolate, worldTypeInMainThread(isolate)));
if (window.IsEmpty())
return false; // the frame is gone.
DOMWindow* targetWindow = V8DOMWindow::toNative(window);
ASSERT(targetWindow);
Frame* target = targetWindow->frame();
if (!target)
return false;
if (target->loader()->stateMachine()->isDisplayingInitialEmptyDocument())
target->loader()->didAccessInitialDocument();
if (key->IsString()) {
DEFINE_STATIC_LOCAL(AtomicString, nameOfProtoProperty, ("__proto__", AtomicString::ConstructFromLiteral));
String name = toWebCoreString(key);
Frame* childFrame = target->tree()->scopedChild(name);
if (type == v8::ACCESS_HAS && childFrame)
return true;
v8::Handle<v8::String> keyString = key->ToString();
if (type == v8::ACCESS_GET
&& childFrame
&& !host->HasRealNamedProperty(keyString)
&& !window->HasRealNamedProperty(keyString)
&& name != nameOfProtoProperty)
return true;
}
return BindingSecurity::shouldAllowAccessToFrame(target, DoNotReportSecurityError);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,896 |
Chrome | 33b9b0262029fea75c436229f9bdfe74b1937ad2 | void ActivateAndWait() {
widget_->Activate();
if (!widget_->IsActive()) {
waiting_ = true;
content::RunMessageLoop();
}
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,949 |
savannah | 1fbee57ef3c72db2206dd87e4162108b2f425555 | stringprep_unichar_to_utf8 (uint32_t c, char *outbuf)
{
return g_unichar_to_utf8 (c, outbuf);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,801 |
OpenSC | 360e95d45ac4123255a4c796db96337f332160ad | static int muscle_card_generate_key(sc_card_t *card, sc_cardctl_muscle_gen_key_info_t *info)
{
return msc_generate_keypair(card,
info->privateKeyLocation,
info->publicKeyLocation,
info->keyType,
info->keySize,
0);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,129 |
ImageMagick | a1142af44f61c038ad3eccc099c5b9548b507846 | static MagickBooleanType WriteBMPImage(const ImageInfo *image_info,Image *image,
ExceptionInfo *exception)
{
BMPInfo
bmp_info;
BMPSubtype
bmp_subtype;
const char
*option;
const StringInfo
*profile;
MagickBooleanType
have_color_info,
status;
MagickOffsetType
scene;
MemoryInfo
*pixel_info;
register const Quantum
*p;
register ssize_t
i,
x;
register unsigned char
*q;
size_t
bytes_per_line,
imageListLength,
type;
ssize_t
y;
unsigned char
*bmp_data,
*pixels;
MagickOffsetType
profile_data,
profile_size,
profile_size_pad;
/*
Open output image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception);
if (status == MagickFalse)
return(status);
if (((image->columns << 3) != (int) (image->columns << 3)) ||
((image->rows << 3) != (int) (image->rows << 3)))
ThrowWriterException(ImageError,"WidthOrHeightExceedsLimit");
type=4;
if (LocaleCompare(image_info->magick,"BMP2") == 0)
type=2;
else
if (LocaleCompare(image_info->magick,"BMP3") == 0)
type=3;
option=GetImageOption(image_info,"bmp:format");
if (option != (char *) NULL)
{
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Format=%s",option);
if (LocaleCompare(option,"bmp2") == 0)
type=2;
if (LocaleCompare(option,"bmp3") == 0)
type=3;
if (LocaleCompare(option,"bmp4") == 0)
type=4;
}
scene=0;
imageListLength=GetImageListLength(image);
do
{
/*
Initialize BMP raster file header.
*/
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
(void) TransformImageColorspace(image,sRGBColorspace,exception);
(void) memset(&bmp_info,0,sizeof(bmp_info));
bmp_info.file_size=14+12;
if (type > 2)
bmp_info.file_size+=28;
bmp_info.offset_bits=bmp_info.file_size;
bmp_info.compression=BI_RGB;
bmp_info.red_mask=0x00ff0000U;
bmp_info.green_mask=0x0000ff00U;
bmp_info.blue_mask=0x000000ffU;
bmp_info.alpha_mask=0xff000000U;
bmp_subtype=UndefinedSubtype;
if ((image->storage_class == PseudoClass) && (image->colors > 256))
(void) SetImageStorageClass(image,DirectClass,exception);
if (image->storage_class != DirectClass)
{
/*
Colormapped BMP raster.
*/
bmp_info.bits_per_pixel=8;
if (image->colors <= 2)
bmp_info.bits_per_pixel=1;
else
if (image->colors <= 16)
bmp_info.bits_per_pixel=4;
else
if (image->colors <= 256)
bmp_info.bits_per_pixel=8;
if (image_info->compression == RLECompression)
bmp_info.bits_per_pixel=8;
bmp_info.number_colors=1U << bmp_info.bits_per_pixel;
if (image->alpha_trait != UndefinedPixelTrait)
(void) SetImageStorageClass(image,DirectClass,exception);
else
if ((size_t) bmp_info.number_colors < image->colors)
(void) SetImageStorageClass(image,DirectClass,exception);
else
{
bmp_info.file_size+=3*(1UL << bmp_info.bits_per_pixel);
bmp_info.offset_bits+=3*(1UL << bmp_info.bits_per_pixel);
if (type > 2)
{
bmp_info.file_size+=(1UL << bmp_info.bits_per_pixel);
bmp_info.offset_bits+=(1UL << bmp_info.bits_per_pixel);
}
}
}
if (image->storage_class == DirectClass)
{
/*
Full color BMP raster.
*/
bmp_info.number_colors=0;
option=GetImageOption(image_info,"bmp:subtype");
if (option != (const char *) NULL)
{
if (image->alpha_trait != UndefinedPixelTrait)
{
if (LocaleNCompare(option,"ARGB4444",8) == 0)
{
bmp_subtype=ARGB4444;
bmp_info.red_mask=0x00000f00U;
bmp_info.green_mask=0x000000f0U;
bmp_info.blue_mask=0x0000000fU;
bmp_info.alpha_mask=0x0000f000U;
}
else if (LocaleNCompare(option,"ARGB1555",8) == 0)
{
bmp_subtype=ARGB1555;
bmp_info.red_mask=0x00007c00U;
bmp_info.green_mask=0x000003e0U;
bmp_info.blue_mask=0x0000001fU;
bmp_info.alpha_mask=0x00008000U;
}
}
else
{
if (LocaleNCompare(option,"RGB555",6) == 0)
{
bmp_subtype=RGB555;
bmp_info.red_mask=0x00007c00U;
bmp_info.green_mask=0x000003e0U;
bmp_info.blue_mask=0x0000001fU;
bmp_info.alpha_mask=0U;
}
else if (LocaleNCompare(option,"RGB565",6) == 0)
{
bmp_subtype=RGB565;
bmp_info.red_mask=0x0000f800U;
bmp_info.green_mask=0x000007e0U;
bmp_info.blue_mask=0x0000001fU;
bmp_info.alpha_mask=0U;
}
}
}
if (bmp_subtype != UndefinedSubtype)
{
bmp_info.bits_per_pixel=16;
bmp_info.compression=BI_BITFIELDS;
}
else
{
bmp_info.bits_per_pixel=(unsigned short) ((type > 3) &&
(image->alpha_trait != UndefinedPixelTrait) ? 32 : 24);
bmp_info.compression=(unsigned int) ((type > 3) &&
(image->alpha_trait != UndefinedPixelTrait) ? BI_BITFIELDS : BI_RGB);
if ((type == 3) && (image->alpha_trait != UndefinedPixelTrait))
{
option=GetImageOption(image_info,"bmp3:alpha");
if (IsStringTrue(option))
bmp_info.bits_per_pixel=32;
}
}
}
bytes_per_line=4*((image->columns*bmp_info.bits_per_pixel+31)/32);
bmp_info.ba_offset=0;
profile=GetImageProfile(image,"icc");
have_color_info=(image->rendering_intent != UndefinedIntent) ||
(profile != (StringInfo *) NULL) || (image->gamma != 0.0) ? MagickTrue :
MagickFalse;
if (type == 2)
bmp_info.size=12;
else
if ((type == 3) || ((image->alpha_trait == UndefinedPixelTrait) &&
(have_color_info == MagickFalse)))
{
type=3;
bmp_info.size=40;
}
else
{
int
extra_size;
bmp_info.size=108;
extra_size=68;
if ((image->rendering_intent != UndefinedIntent) ||
(profile != (StringInfo *) NULL))
{
bmp_info.size=124;
extra_size+=16;
}
bmp_info.file_size+=extra_size;
bmp_info.offset_bits+=extra_size;
}
if (((ssize_t) image->columns != (ssize_t) ((signed int) image->columns)) ||
((ssize_t) image->rows != (ssize_t) ((signed int) image->rows)))
ThrowWriterException(ImageError,"WidthOrHeightExceedsLimit");
bmp_info.width=(ssize_t) image->columns;
bmp_info.height=(ssize_t) image->rows;
bmp_info.planes=1;
bmp_info.image_size=(unsigned int) (bytes_per_line*image->rows);
bmp_info.file_size+=bmp_info.image_size;
bmp_info.x_pixels=75*39;
bmp_info.y_pixels=75*39;
switch (image->units)
{
case UndefinedResolution:
case PixelsPerInchResolution:
{
bmp_info.x_pixels=(unsigned int) (100.0*image->resolution.x/2.54);
bmp_info.y_pixels=(unsigned int) (100.0*image->resolution.y/2.54);
break;
}
case PixelsPerCentimeterResolution:
{
bmp_info.x_pixels=(unsigned int) (100.0*image->resolution.x);
bmp_info.y_pixels=(unsigned int) (100.0*image->resolution.y);
break;
}
}
bmp_info.colors_important=bmp_info.number_colors;
/*
Convert MIFF to BMP raster pixels.
*/
pixel_info=AcquireVirtualMemory(image->rows,MagickMax(bytes_per_line,
image->columns+256UL)*sizeof(*pixels));
if (pixel_info == (MemoryInfo *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
pixels=(unsigned char *) GetVirtualMemoryBlob(pixel_info);
(void) memset(pixels,0,(size_t) bmp_info.image_size);
switch (bmp_info.bits_per_pixel)
{
case 1:
{
size_t
bit,
byte;
/*
Convert PseudoClass image to a BMP monochrome image.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
offset;
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
bit=0;
byte=0;
for (x=0; x < (ssize_t) image->columns; x++)
{
byte<<=1;
byte|=GetPixelIndex(image,p) != 0 ? 0x01 : 0x00;
bit++;
if (bit == 8)
{
*q++=(unsigned char) byte;
bit=0;
byte=0;
}
p+=GetPixelChannels(image);
}
if (bit != 0)
{
*q++=(unsigned char) (byte << (8-bit));
x++;
}
offset=(ssize_t) (image->columns+7)/8;
for (x=offset; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 4:
{
unsigned int
byte,
nibble;
ssize_t
offset;
/*
Convert PseudoClass image to a BMP monochrome image.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
nibble=0;
byte=0;
for (x=0; x < (ssize_t) image->columns; x++)
{
byte<<=4;
byte|=((unsigned int) GetPixelIndex(image,p) & 0x0f);
nibble++;
if (nibble == 2)
{
*q++=(unsigned char) byte;
nibble=0;
byte=0;
}
p+=GetPixelChannels(image);
}
if (nibble != 0)
{
*q++=(unsigned char) (byte << 4);
x++;
}
offset=(ssize_t) (image->columns+1)/2;
for (x=offset; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 8:
{
/*
Convert PseudoClass packet to BMP pixel.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
{
*q++=(unsigned char) GetPixelIndex(image,p);
p+=GetPixelChannels(image);
}
for ( ; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 16:
{
/*
Convert DirectClass packet to BMP BGR888.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
{
unsigned short
pixel;
pixel=0;
if (bmp_subtype == ARGB4444)
{
pixel=(unsigned short) (ScaleQuantumToAny(
GetPixelAlpha(image,p),15) << 12);
pixel|=(unsigned short) (ScaleQuantumToAny(
GetPixelRed(image,p),15) << 8);
pixel|=(unsigned short) (ScaleQuantumToAny(
GetPixelGreen(image,p),15) << 4);
pixel|=(unsigned short) (ScaleQuantumToAny(
GetPixelBlue(image,p),15));
}
else if (bmp_subtype == RGB565)
{
pixel=(unsigned short) (ScaleQuantumToAny(
GetPixelRed(image,p),31) << 11);
pixel|=(unsigned short) (ScaleQuantumToAny(
GetPixelGreen(image,p),63) << 5);
pixel|=(unsigned short) (ScaleQuantumToAny(
GetPixelBlue(image,p),31));
}
else
{
if (bmp_subtype == ARGB1555)
pixel=(unsigned short) (ScaleQuantumToAny(
GetPixelAlpha(image,p),1) << 15);
pixel|=(unsigned short) (ScaleQuantumToAny(
GetPixelRed(image,p),31) << 10);
pixel|=(unsigned short) (ScaleQuantumToAny(
GetPixelGreen(image,p),31) << 5);
pixel|=(unsigned short) (ScaleQuantumToAny(
GetPixelBlue(image,p),31));
}
*((unsigned short *) q)=pixel;
q+=2;
p+=GetPixelChannels(image);
}
for (x=2L*(ssize_t) image->columns; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 24:
{
/*
Convert DirectClass packet to BMP BGR888.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
p+=GetPixelChannels(image);
}
for (x=3L*(ssize_t) image->columns; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 32:
{
/*
Convert DirectClass packet to ARGB8888 pixel.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
}
if ((type > 2) && (bmp_info.bits_per_pixel == 8))
if (image_info->compression != NoCompression)
{
MemoryInfo
*rle_info;
/*
Convert run-length encoded raster pixels.
*/
rle_info=AcquireVirtualMemory((size_t) (2*(bytes_per_line+2)+2),
(image->rows+2)*sizeof(*pixels));
if (rle_info == (MemoryInfo *) NULL)
{
pixel_info=RelinquishVirtualMemory(pixel_info);
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
}
bmp_data=(unsigned char *) GetVirtualMemoryBlob(rle_info);
bmp_info.file_size-=bmp_info.image_size;
bmp_info.image_size=(unsigned int) EncodeImage(image,bytes_per_line,
pixels,bmp_data);
bmp_info.file_size+=bmp_info.image_size;
pixel_info=RelinquishVirtualMemory(pixel_info);
pixel_info=rle_info;
pixels=bmp_data;
bmp_info.compression=BI_RLE8;
}
/*
Write BMP for Windows, all versions, 14-byte header.
*/
if (image->debug != MagickFalse)
{
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Writing BMP version %.20g datastream",(double) type);
if (image->storage_class == DirectClass)
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Storage class=DirectClass");
else
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Storage class=PseudoClass");
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Image depth=%.20g",(double) image->depth);
if (image->alpha_trait != UndefinedPixelTrait)
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Matte=True");
else
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Matte=MagickFalse");
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" BMP bits_per_pixel=%.20g",(double) bmp_info.bits_per_pixel);
switch ((int) bmp_info.compression)
{
case BI_RGB:
{
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Compression=BI_RGB");
break;
}
case BI_RLE8:
{
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Compression=BI_RLE8");
break;
}
case BI_BITFIELDS:
{
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Compression=BI_BITFIELDS");
break;
}
default:
{
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Compression=UNKNOWN (%u)",bmp_info.compression);
break;
}
}
if (bmp_info.number_colors == 0)
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Number_colors=unspecified");
else
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Number_colors=%u",bmp_info.number_colors);
}
profile_data=0;
profile_size=0;
profile_size_pad=0;
if (profile != (StringInfo *) NULL)
{
profile_data=(MagickOffsetType) bmp_info.file_size-14; /* from head of BMP info header */
profile_size=(MagickOffsetType) GetStringInfoLength(profile);
if ((profile_size % 4) > 0)
profile_size_pad=4-(profile_size%4);
bmp_info.file_size+=profile_size+profile_size_pad;
}
(void) WriteBlob(image,2,(unsigned char *) "BM");
(void) WriteBlobLSBLong(image,bmp_info.file_size);
(void) WriteBlobLSBLong(image,bmp_info.ba_offset); /* always 0 */
(void) WriteBlobLSBLong(image,bmp_info.offset_bits);
if (type == 2)
{
/*
Write 12-byte version 2 bitmap header.
*/
(void) WriteBlobLSBLong(image,bmp_info.size);
(void) WriteBlobLSBSignedShort(image,(signed short) bmp_info.width);
(void) WriteBlobLSBSignedShort(image,(signed short) bmp_info.height);
(void) WriteBlobLSBShort(image,bmp_info.planes);
(void) WriteBlobLSBShort(image,bmp_info.bits_per_pixel);
}
else
{
/*
Write 40-byte version 3+ bitmap header.
*/
(void) WriteBlobLSBLong(image,bmp_info.size);
(void) WriteBlobLSBSignedLong(image,(signed int) bmp_info.width);
(void) WriteBlobLSBSignedLong(image,(signed int) bmp_info.height);
(void) WriteBlobLSBShort(image,bmp_info.planes);
(void) WriteBlobLSBShort(image,bmp_info.bits_per_pixel);
(void) WriteBlobLSBLong(image,bmp_info.compression);
(void) WriteBlobLSBLong(image,bmp_info.image_size);
(void) WriteBlobLSBLong(image,bmp_info.x_pixels);
(void) WriteBlobLSBLong(image,bmp_info.y_pixels);
(void) WriteBlobLSBLong(image,bmp_info.number_colors);
(void) WriteBlobLSBLong(image,bmp_info.colors_important);
}
if ((type > 3) && ((image->alpha_trait != UndefinedPixelTrait) ||
(have_color_info != MagickFalse)))
{
/*
Write the rest of the 108-byte BMP Version 4 header.
*/
(void) WriteBlobLSBLong(image,bmp_info.red_mask);
(void) WriteBlobLSBLong(image,bmp_info.green_mask);
(void) WriteBlobLSBLong(image,bmp_info.blue_mask);
(void) WriteBlobLSBLong(image,bmp_info.alpha_mask);
if (profile != (StringInfo *) NULL)
(void) WriteBlobLSBLong(image,0x4D424544U); /* PROFILE_EMBEDDED */
else
(void) WriteBlobLSBLong(image,0x73524742U); /* sRGB */
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) image->chromaticity.red_primary.x*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) image->chromaticity.red_primary.y*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) (1.000f-(image->chromaticity.red_primary.x+
image->chromaticity.red_primary.y))*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) image->chromaticity.green_primary.x*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) image->chromaticity.green_primary.y*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) (1.000f-(image->chromaticity.green_primary.x+
image->chromaticity.green_primary.y))*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) image->chromaticity.blue_primary.x*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) image->chromaticity.blue_primary.y*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) (1.000f-(image->chromaticity.blue_primary.x+
image->chromaticity.blue_primary.y))*0x40000000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) bmp_info.gamma_scale.x*0x10000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) bmp_info.gamma_scale.y*0x10000));
(void) WriteBlobLSBLong(image,(unsigned int)
((ssize_t) bmp_info.gamma_scale.z*0x10000));
if ((image->rendering_intent != UndefinedIntent) ||
(profile != (StringInfo *) NULL))
{
ssize_t
intent;
switch ((int) image->rendering_intent)
{
case SaturationIntent:
{
intent=LCS_GM_BUSINESS;
break;
}
case RelativeIntent:
{
intent=LCS_GM_GRAPHICS;
break;
}
case PerceptualIntent:
{
intent=LCS_GM_IMAGES;
break;
}
case AbsoluteIntent:
{
intent=LCS_GM_ABS_COLORIMETRIC;
break;
}
default:
{
intent=0;
break;
}
}
(void) WriteBlobLSBLong(image,(unsigned int) intent);
(void) WriteBlobLSBLong(image,(unsigned int) profile_data);
(void) WriteBlobLSBLong(image,(unsigned int)
(profile_size+profile_size_pad));
(void) WriteBlobLSBLong(image,0x00); /* reserved */
}
}
if (image->storage_class == PseudoClass)
{
unsigned char
*bmp_colormap;
/*
Dump colormap to file.
*/
if (image->debug != MagickFalse)
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Colormap: %.20g entries",(double) image->colors);
bmp_colormap=(unsigned char *) AcquireQuantumMemory((size_t) (1UL <<
bmp_info.bits_per_pixel),4*sizeof(*bmp_colormap));
if (bmp_colormap == (unsigned char *) NULL)
{
pixel_info=RelinquishVirtualMemory(pixel_info);
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
}
q=bmp_colormap;
for (i=0; i < (ssize_t) MagickMin((ssize_t) image->colors,(ssize_t) bmp_info.number_colors); i++)
{
*q++=ScaleQuantumToChar(ClampToQuantum(image->colormap[i].blue));
*q++=ScaleQuantumToChar(ClampToQuantum(image->colormap[i].green));
*q++=ScaleQuantumToChar(ClampToQuantum(image->colormap[i].red));
if (type > 2)
*q++=(unsigned char) 0x0;
}
for ( ; i < (ssize_t) (1UL << bmp_info.bits_per_pixel); i++)
{
*q++=(unsigned char) 0x00;
*q++=(unsigned char) 0x00;
*q++=(unsigned char) 0x00;
if (type > 2)
*q++=(unsigned char) 0x00;
}
if (type <= 2)
(void) WriteBlob(image,(size_t) (3*(1L << bmp_info.bits_per_pixel)),
bmp_colormap);
else
(void) WriteBlob(image,(size_t) (4*(1L << bmp_info.bits_per_pixel)),
bmp_colormap);
bmp_colormap=(unsigned char *) RelinquishMagickMemory(bmp_colormap);
}
if (image->debug != MagickFalse)
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Pixels: %u bytes",bmp_info.image_size);
(void) WriteBlob(image,(size_t) bmp_info.image_size,pixels);
if (profile != (StringInfo *) NULL)
{
if (image->debug != MagickFalse)
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Profile: %g bytes",(double) profile_size+profile_size_pad);
(void) WriteBlob(image,(size_t) profile_size,GetStringInfoDatum(profile));
if (profile_size_pad > 0) /* padding for 4 bytes multiple */
(void) WriteBlob(image,(size_t) profile_size_pad,"\0\0\0");
}
pixel_info=RelinquishVirtualMemory(pixel_info);
if (GetNextImageInList(image) == (Image *) NULL)
break;
image=SyncNextImageInList(image);
status=SetImageProgress(image,SaveImagesTag,scene++,imageListLength);
if (status == MagickFalse)
break;
} while (image_info->adjoin != MagickFalse);
(void) CloseBlob(image);
return(MagickTrue);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,789 |
linux | 30a8beeb3042f49d0537b7050fd21b490166a3d9 | static int pcan_usb_fd_start(struct peak_usb_device *dev)
{
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
int err;
/* set filter mode: all acceptance */
err = pcan_usb_fd_set_filter_std(dev, -1, 0xffffffff);
if (err)
return err;
/* opening first device: */
if (pdev->usb_if->dev_opened_count == 0) {
/* reset time_ref */
peak_usb_init_time_ref(&pdev->usb_if->time_ref,
&pcan_usb_pro_fd);
/* enable USB calibration messages */
err = pcan_usb_fd_set_options(dev, 1,
PUCAN_OPTION_ERROR,
PCAN_UFD_FLTEXT_CALIBRATION);
}
pdev->usb_if->dev_opened_count++;
/* reset cached error counters */
pdev->bec.txerr = 0;
pdev->bec.rxerr = 0;
return err;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 19,301 |
altlinux | 05dafc06cd3dfeb7c4b24942e4e1ae33ff75a123 | check_acl(pam_handle_t *pamh,
const char *sense, const char *this_user, const char *other_user,
int noent_code, int debug)
{
char path[PATH_MAX];
struct passwd *pwd;
FILE *fp = NULL;
int i, fd = -1, save_errno;
uid_t fsuid;
struct stat st;
/* Check this user's <sense> file. */
pwd = pam_modutil_getpwnam(pamh, this_user);
if (pwd == NULL) {
pam_syslog(pamh, LOG_ERR,
"error determining home directory for '%s'",
this_user);
return PAM_SESSION_ERR;
}
/* Figure out what that file is really named. */
i = snprintf(path, sizeof(path), "%s/.xauth/%s", pwd->pw_dir, sense);
if ((i >= (int)sizeof(path)) || (i < 0)) {
pam_syslog(pamh, LOG_ERR,
"name of user's home directory is too long");
return PAM_SESSION_ERR;
}
fsuid = setfsuid(pwd->pw_uid);
if (!stat(path, &st)) {
if (!S_ISREG(st.st_mode))
errno = EINVAL;
else
fd = open(path, O_RDONLY | O_NOCTTY);
}
save_errno = errno;
setfsuid(fsuid);
if (fd >= 0) {
if (!fstat(fd, &st)) {
if (!S_ISREG(st.st_mode))
errno = EINVAL;
else
fp = fdopen(fd, "r");
}
if (!fp) {
save_errno = errno;
close(fd);
}
}
if (fp) {
char buf[LINE_MAX], *tmp;
/* Scan the file for a list of specs of users to "trust". */
while (fgets(buf, sizeof(buf), fp) != NULL) {
tmp = memchr(buf, '\r', sizeof(buf));
if (tmp != NULL) {
*tmp = '\0';
}
tmp = memchr(buf, '\n', sizeof(buf));
if (tmp != NULL) {
*tmp = '\0';
}
if (fnmatch(buf, other_user, 0) == 0) {
if (debug) {
pam_syslog(pamh, LOG_DEBUG,
"%s %s allowed by %s",
other_user, sense, path);
}
fclose(fp);
return PAM_SUCCESS;
}
}
/* If there's no match in the file, we fail. */
if (debug) {
pam_syslog(pamh, LOG_DEBUG, "%s not listed in %s",
other_user, path);
}
fclose(fp);
return PAM_PERM_DENIED;
} else {
/* Default to okay if the file doesn't exist. */
errno = save_errno;
switch (errno) {
case ENOENT:
if (noent_code == PAM_SUCCESS) {
if (debug) {
pam_syslog(pamh, LOG_DEBUG,
"%s does not exist, ignoring",
path);
}
} else {
if (debug) {
pam_syslog(pamh, LOG_DEBUG,
"%s does not exist, failing",
path);
}
}
return noent_code;
default:
if (debug) {
pam_syslog(pamh, LOG_DEBUG,
"error opening %s: %m", path);
}
return PAM_PERM_DENIED;
}
}
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,980 |
tensorflow | 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622 | void RestoreTensor(OpKernelContext* context,
checkpoint::TensorSliceReader::OpenTableFunction open_func,
int preferred_shard, bool restore_slice, int restore_index) {
const Tensor& file_pattern_t = context->input(0);
{
const int64_t size = file_pattern_t.NumElements();
OP_REQUIRES(
context, size == 1,
errors::InvalidArgument(
"Input 0 (file_pattern) must be a string scalar; got a tensor of ",
size, "elements"));
}
const string& file_pattern = file_pattern_t.flat<tstring>()(0);
const Tensor& tensor_name_t = context->input(1);
const string& tensor_name = tensor_name_t.flat<tstring>()(restore_index);
// If we cannot find a cached reader we will allocate our own.
std::unique_ptr<checkpoint::TensorSliceReader> allocated_reader;
const checkpoint::TensorSliceReader* reader = nullptr;
if (context->slice_reader_cache()) {
reader = context->slice_reader_cache()->GetReader(file_pattern, open_func,
preferred_shard);
}
if (!reader) {
allocated_reader.reset(new checkpoint::TensorSliceReader(
file_pattern, open_func, preferred_shard));
reader = allocated_reader.get();
}
OP_REQUIRES_OK(context, CHECK_NOTNULL(reader)->status());
// Get the shape and type from the save file.
DataType type;
TensorShape saved_shape;
OP_REQUIRES(
context, reader->HasTensor(tensor_name, &saved_shape, &type),
errors::NotFound("Tensor name \"", tensor_name,
"\" not found in checkpoint files ", file_pattern));
OP_REQUIRES(
context, type == context->expected_output_dtype(restore_index),
errors::InvalidArgument("Expected to restore a tensor of type ",
DataTypeString(context->expected_output_dtype(0)),
", got a tensor of type ", DataTypeString(type),
" instead: tensor_name = ", tensor_name));
// Shape of the output and slice to load.
TensorShape output_shape(saved_shape);
TensorSlice slice_to_load(saved_shape.dims());
if (restore_slice) {
const tstring& shape_spec =
context->input(2).flat<tstring>()(restore_index);
if (!shape_spec.empty()) {
TensorShape parsed_shape;
OP_REQUIRES_OK(context, checkpoint::ParseShapeAndSlice(
shape_spec, &parsed_shape, &slice_to_load,
&output_shape));
OP_REQUIRES(
context, parsed_shape.IsSameSize(saved_shape),
errors::InvalidArgument(
"Shape in shape_and_slice spec does not match the shape in the "
"save file: ",
parsed_shape.DebugString(),
", save file shape: ", saved_shape.DebugString()));
}
}
Tensor* t = nullptr;
OP_REQUIRES_OK(context,
context->allocate_output(restore_index, output_shape, &t));
if (output_shape.num_elements() == 0) return;
#define READER_COPY(T) \
case DataTypeToEnum<T>::value: \
OP_REQUIRES(context, \
reader->CopySliceData(tensor_name, slice_to_load, \
t->flat<T>().data()), \
errors::InvalidArgument("Error copying slice data")); \
break;
switch (type) {
TF_CALL_SAVE_RESTORE_TYPES(READER_COPY)
default:
context->SetStatus(errors::Unimplemented(
"Restoring data type ", DataTypeString(type), " not yet supported"));
}
#undef READER_COPY
} | 1 | CVE-2021-37639 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 6,220 |
linux | 23567fd052a9abb6d67fe8e7a9ccdd9800a540f2 | long join_session_keyring(const char *name)
{
const struct cred *old;
struct cred *new;
struct key *keyring;
long ret, serial;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
/* if no name is provided, install an anonymous keyring */
if (!name) {
ret = install_session_keyring_to_cred(new, NULL);
if (ret < 0)
goto error;
serial = new->session_keyring->serial;
ret = commit_creds(new);
if (ret == 0)
ret = serial;
goto okay;
}
/* allow the user to join or create a named keyring */
mutex_lock(&key_session_mutex);
/* look for an existing keyring of this name */
keyring = find_keyring_by_name(name, false);
if (PTR_ERR(keyring) == -ENOKEY) {
/* not found - try and create a new one */
keyring = keyring_alloc(
name, old->uid, old->gid, old,
KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ | KEY_USR_LINK,
KEY_ALLOC_IN_QUOTA, NULL);
if (IS_ERR(keyring)) {
ret = PTR_ERR(keyring);
goto error2;
}
} else if (IS_ERR(keyring)) {
ret = PTR_ERR(keyring);
goto error2;
} else if (keyring == new->session_keyring) {
key_put(keyring);
ret = 0;
goto error2;
}
/* we've got a keyring - now to install it */
ret = install_session_keyring_to_cred(new, keyring);
if (ret < 0)
goto error2;
commit_creds(new);
mutex_unlock(&key_session_mutex);
ret = keyring->serial;
key_put(keyring);
okay:
return ret;
error2:
mutex_unlock(&key_session_mutex);
error:
abort_creds(new);
return ret;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,520 |
openldap | 8c1d96ee36ed98b32cd0e28b7069c7b8ea09d793 | ldap_pvt_tls_check_hostname( LDAP *ld, void *s, const char *name_in )
{
tls_session *session = s;
if (ld->ld_options.ldo_tls_require_cert != LDAP_OPT_X_TLS_NEVER &&
ld->ld_options.ldo_tls_require_cert != LDAP_OPT_X_TLS_ALLOW) {
ld->ld_errno = tls_imp->ti_session_chkhost( ld, session, name_in );
if (ld->ld_errno != LDAP_SUCCESS) {
return ld->ld_errno;
}
}
return LDAP_SUCCESS;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,264 |
Chrome | 507241119f279c31766bd41c33d6ffb6851e2d7e | void CheckClientDownloadRequest::UploadBinary(
DownloadCheckResult result,
DownloadCheckResultReason reason) {
saved_result_ = result;
saved_reason_ = reason;
bool upload_for_dlp = ShouldUploadForDlpScan();
bool upload_for_malware = ShouldUploadForMalwareScan(reason);
auto request = std::make_unique<DownloadItemRequest>(
item_, /*read_immediately=*/true,
base::BindOnce(&CheckClientDownloadRequest::OnDeepScanningComplete,
weakptr_factory_.GetWeakPtr()));
Profile* profile = Profile::FromBrowserContext(GetBrowserContext());
if (upload_for_dlp) {
DlpDeepScanningClientRequest dlp_request;
dlp_request.set_content_source(DlpDeepScanningClientRequest::FILE_DOWNLOAD);
request->set_request_dlp_scan(std::move(dlp_request));
}
if (upload_for_malware) {
MalwareDeepScanningClientRequest malware_request;
malware_request.set_population(
MalwareDeepScanningClientRequest::POPULATION_ENTERPRISE);
malware_request.set_download_token(
DownloadProtectionService::GetDownloadPingToken(item_));
request->set_request_malware_scan(std::move(malware_request));
}
request->set_dm_token(
policy::BrowserDMTokenStorage::Get()->RetrieveDMToken());
service()->UploadForDeepScanning(profile, std::move(request));
}
| 1 | CVE-2017-5089 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 9 |
FreeRDP | 2ee663f39dc8dac3d9988e847db19b2d7e3ac8c6 | void ntlm_print_negotiate_flags(UINT32 flags)
{
int i;
const char* str;
WLog_INFO(TAG, "negotiateFlags \"0x%08"PRIX32"\"", flags);
for (i = 31; i >= 0; i--)
{
if ((flags >> i) & 1)
{
str = NTLM_NEGOTIATE_STRINGS[(31 - i)];
WLog_INFO(TAG, "\t%s (%d),", str, (31 - i));
}
}
}
| 1 | CVE-2018-8789 | CWE-125 | Out-of-bounds Read | The product reads data past the end, or before the beginning, of the intended buffer. | Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.
Phase: Architecture and Design
Strategy: Language Selection
Use a language that provides appropriate memory abstractions. | 4,417 |
taglib | dcdf4fd954e3213c355746fa15b7480461972308 | ByteVector ByteVector::mid(uint index, uint length) const
{
ByteVector v;
if(index > size())
return v;
ConstIterator endIt;
if(length < 0xffffffff && length + index < size())
endIt = d->data.begin() + index + length;
else
endIt = d->data.end();
v.d->data.insert(v.d->data.begin(), ConstIterator(d->data.begin() + index), endIt);
v.d->size = v.d->data.size();
return v;
} | 1 | CVE-2012-1584 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 6,237 |
varnish-cache | 176f8a075a963ffbfa56f1c460c15f6a1a6af5a7 | vbf_stp_condfetch(struct worker *wrk, struct busyobj *bo)
{
CHECK_OBJ_NOTNULL(wrk, WORKER_MAGIC);
CHECK_OBJ_NOTNULL(bo, BUSYOBJ_MAGIC);
AZ(vbf_beresp2obj(bo));
if (ObjHasAttr(bo->wrk, bo->stale_oc, OA_ESIDATA))
AZ(ObjCopyAttr(bo->wrk, bo->fetch_objcore, bo->stale_oc,
OA_ESIDATA));
AZ(ObjCopyAttr(bo->wrk, bo->fetch_objcore, bo->stale_oc, OA_FLAGS));
AZ(ObjCopyAttr(bo->wrk, bo->fetch_objcore, bo->stale_oc, OA_GZIPBITS));
if (bo->do_stream) {
ObjSetState(wrk, bo->fetch_objcore, BOS_PREP_STREAM);
HSH_Unbusy(wrk, bo->fetch_objcore);
ObjSetState(wrk, bo->fetch_objcore, BOS_STREAM);
}
if (ObjIterate(wrk, bo->stale_oc, bo, vbf_objiterator, 0))
(void)VFP_Error(bo->vfc, "Template object failed");
if (bo->stale_oc->flags & OC_F_FAILED)
(void)VFP_Error(bo->vfc, "Template object failed");
if (bo->vfc->failed) {
VDI_Finish(bo->wrk, bo);
wrk->stats->fetch_failed++;
return (F_STP_FAIL);
}
return (F_STP_FETCHEND);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,029 |
Chrome | 73edae623529f04c668268de49d00324b96166a2 | PassRefPtr<DocumentFragment> createFragmentFromMarkup(Document* document, const String& markup, const String& baseURL, FragmentScriptingPermission scriptingPermission)
{
RefPtr<HTMLBodyElement> fakeBody = HTMLBodyElement::create(document);
RefPtr<DocumentFragment> fragment = Range::createDocumentFragmentForElement(markup, fakeBody.get(), scriptingPermission);
if (fragment && !baseURL.isEmpty() && baseURL != blankURL() && baseURL != document->baseURL())
completeURLs(fragment.get(), baseURL);
return fragment.release();
}
| 1 | CVE-2011-2795 | CWE-264 | Permissions, Privileges, and Access Controls | Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control. | Not Found in CWE Page | 4,053 |
linux | 5f8cf712582617d523120df67d392059eaf2fc4b | static int snd_usb_audio_create(struct usb_interface *intf,
struct usb_device *dev, int idx,
const struct snd_usb_audio_quirk *quirk,
unsigned int usb_id,
struct snd_usb_audio **rchip)
{
struct snd_card *card;
struct snd_usb_audio *chip;
int err;
char component[14];
*rchip = NULL;
switch (snd_usb_get_speed(dev)) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
case USB_SPEED_HIGH:
case USB_SPEED_WIRELESS:
case USB_SPEED_SUPER:
case USB_SPEED_SUPER_PLUS:
break;
default:
dev_err(&dev->dev, "unknown device speed %d\n", snd_usb_get_speed(dev));
return -ENXIO;
}
err = snd_card_new(&intf->dev, index[idx], id[idx], THIS_MODULE,
sizeof(*chip), &card);
if (err < 0) {
dev_err(&dev->dev, "cannot create card instance %d\n", idx);
return err;
}
chip = card->private_data;
mutex_init(&chip->mutex);
init_waitqueue_head(&chip->shutdown_wait);
chip->index = idx;
chip->dev = dev;
chip->card = card;
chip->setup = device_setup[idx];
chip->autoclock = autoclock;
atomic_set(&chip->active, 1); /* avoid autopm during probing */
atomic_set(&chip->usage_count, 0);
atomic_set(&chip->shutdown, 0);
chip->usb_id = usb_id;
INIT_LIST_HEAD(&chip->pcm_list);
INIT_LIST_HEAD(&chip->ep_list);
INIT_LIST_HEAD(&chip->midi_list);
INIT_LIST_HEAD(&chip->mixer_list);
card->private_free = snd_usb_audio_free;
strcpy(card->driver, "USB-Audio");
sprintf(component, "USB%04x:%04x",
USB_ID_VENDOR(chip->usb_id), USB_ID_PRODUCT(chip->usb_id));
snd_component_add(card, component);
usb_audio_make_shortname(dev, chip, quirk);
usb_audio_make_longname(dev, chip, quirk);
snd_usb_audio_create_proc(chip);
*rchip = chip;
return 0;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,463 |
tensorflow | e746adbfcfee15e9cfdb391ff746c765b99bdf9b | void DecodePngV2(OpKernelContext* context, StringPiece input) {
int channel_bits = (data_type_ == DataType::DT_UINT8) ? 8 : 16;
png::DecodeContext decode;
OP_REQUIRES(
context, png::CommonInitDecode(input, channels_, channel_bits, &decode),
errors::InvalidArgument("Invalid PNG. Failed to initialize decoder."));
// Verify that width and height are not too large:
// - verify width and height don't overflow int.
// - width can later be multiplied by channels_ and sizeof(uint16), so
// verify single dimension is not too large.
// - verify when width and height are multiplied together, there are a few
// bits to spare as well.
const int width = static_cast<int>(decode.width);
const int height = static_cast<int>(decode.height);
const int64_t total_size =
static_cast<int64_t>(width) * static_cast<int64_t>(height);
if (width != static_cast<int64_t>(decode.width) || width <= 0 ||
width >= (1LL << 27) || height != static_cast<int64_t>(decode.height) ||
height <= 0 || height >= (1LL << 27) || total_size >= (1LL << 29)) {
OP_REQUIRES(context, false,
errors::InvalidArgument("PNG size too large for int: ",
decode.width, " by ", decode.height));
}
Tensor* output = nullptr;
Status status;
// By the existing API, we support decoding PNG with `DecodeGif` op.
// We need to make sure to return 4-D shapes when using `DecodeGif`.
if (op_type_ == "DecodeGif") {
status = context->allocate_output(
0, TensorShape({1, height, width, decode.channels}), &output);
} else {
status = context->allocate_output(
0, TensorShape({height, width, decode.channels}), &output);
}
if (op_type_ == "DecodeBmp") {
// TODO(b/171060723): Only DecodeBmp as op_type_ is not acceptable here
// because currently `decode_(jpeg|png|gif)` ops can decode any one of
// jpeg, png or gif but not bmp. Similarly, `decode_bmp` cannot decode
// anything but bmp formats. This behavior needs to be revisited. For more
// details, please refer to the bug.
OP_REQUIRES(context, false,
errors::InvalidArgument(
"Trying to decode PNG format using DecodeBmp op. Use "
"`decode_png` or `decode_image` instead."));
} else if (op_type_ == "DecodeAndCropJpeg") {
OP_REQUIRES(context, false,
errors::InvalidArgument(
"DecodeAndCropJpeg operation can run on JPEG only, but "
"detected PNG."));
}
if (!status.ok()) png::CommonFreeDecode(&decode);
OP_REQUIRES_OK(context, status);
if (data_type_ == DataType::DT_UINT8) {
OP_REQUIRES(
context,
png::CommonFinishDecode(
reinterpret_cast<png_bytep>(output->flat<uint8>().data()),
decode.channels * width * sizeof(uint8), &decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
} else if (data_type_ == DataType::DT_UINT16) {
OP_REQUIRES(
context,
png::CommonFinishDecode(
reinterpret_cast<png_bytep>(output->flat<uint16>().data()),
decode.channels * width * sizeof(uint16), &decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
} else if (data_type_ == DataType::DT_FLOAT) {
// `png::CommonFinishDecode` does not support `float`. First allocate
// uint16 buffer for the image and decode in uint16 (lossless). Wrap the
// buffer in `unique_ptr` so that we don't forget to delete the buffer.
std::unique_ptr<uint16[]> buffer(
new uint16[height * width * decode.channels]);
OP_REQUIRES(
context,
png::CommonFinishDecode(reinterpret_cast<png_bytep>(buffer.get()),
decode.channels * width * sizeof(uint16),
&decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
// Convert uint16 image data to desired data type.
// Use eigen threadpooling to speed up the copy operation.
const auto& device = context->eigen_device<Eigen::ThreadPoolDevice>();
TTypes<uint16, 3>::UnalignedConstTensor buf(buffer.get(), height, width,
decode.channels);
float scale = 1. / std::numeric_limits<uint16>::max();
// Fill output tensor with desired dtype.
output->tensor<float, 3>().device(device) = buf.cast<float>() * scale;
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 23,584 |
Chrome | 96dbafe288dbe2f0cc45fa3c39daf6d0c37acbab | xsltResolveSASCallback(xsltAttrElemPtr values, xsltStylesheetPtr style,
const xmlChar *name, const xmlChar *ns,
ATTRIBUTE_UNUSED const xmlChar *ignored) {
xsltAttrElemPtr tmp;
xsltAttrElemPtr refs;
tmp = values;
while (tmp != NULL) {
if (tmp->set != NULL) {
/*
* Check against cycles !
*/
if ((xmlStrEqual(name, tmp->set)) && (xmlStrEqual(ns, tmp->ns))) {
xsltGenericError(xsltGenericErrorContext,
"xsl:attribute-set : use-attribute-sets recursion detected on %s\n",
name);
} else {
#ifdef WITH_XSLT_DEBUG_ATTRIBUTES
xsltGenericDebug(xsltGenericDebugContext,
"Importing attribute list %s\n", tmp->set);
#endif
refs = xsltGetSAS(style, tmp->set, tmp->ns);
if (refs == NULL) {
xsltGenericError(xsltGenericErrorContext,
"xsl:attribute-set : use-attribute-sets %s reference missing %s\n",
name, tmp->set);
} else {
/*
* recurse first for cleanup
*/
xsltResolveSASCallback(refs, style, name, ns, NULL);
/*
* Then merge
*/
xsltMergeAttrElemList(style, values, refs);
/*
* Then suppress the reference
*/
tmp->set = NULL;
tmp->ns = NULL;
}
}
}
tmp = tmp->next;
}
}
| 1 | CVE-2016-1683 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 1,719 |
git | e904deb89d9a9669a76a426182506a084d3f6308 | static int name_and_item_from_var(const char *var, struct strbuf *name,
struct strbuf *item)
{
const char *subsection, *key;
int subsection_len, parse;
parse = parse_config_key(var, "submodule", &subsection,
&subsection_len, &key);
if (parse < 0 || !subsection)
return 0;
strbuf_add(name, subsection, subsection_len);
if (check_submodule_name(name->buf) < 0) {
warning(_("ignoring suspicious submodule name: %s"), name->buf);
strbuf_release(name);
return 0;
}
strbuf_addstr(item, key);
return 1;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,195 |
gdk-pixbuf | b7bf6fbfb310fceba2d35d4de143b8d5ffdad990 | gdk_pixbuf__bmp_image_save_to_callback (GdkPixbufSaveFunc save_func,
gpointer user_data,
GdkPixbuf *pixbuf,
gchar **keys,
gchar **values,
GError **error)
{
guint width, height, channel, size, stride, src_stride, x, y;
guchar BFH_BIH[54], *pixels, *buf, *src, *dst, *dst_line;
gboolean ret;
width = gdk_pixbuf_get_width (pixbuf);
height = gdk_pixbuf_get_height (pixbuf);
channel = gdk_pixbuf_get_n_channels (pixbuf);
pixels = gdk_pixbuf_get_pixels (pixbuf);
src_stride = gdk_pixbuf_get_rowstride (pixbuf);
stride = (width * 3 + 3) & ~3;
size = stride * height;
/* filling BFH */
dst = BFH_BIH;
*dst++ = 'B'; /* bfType */
*dst++ = 'M';
put32 (dst, size + 14 + 40); /* bfSize */
put32 (dst, 0); /* bfReserved1 + bfReserved2 */
put32 (dst, 14 + 40); /* bfOffBits */
/* filling BIH */
put32 (dst, 40); /* biSize */
put32 (dst, width); /* biWidth */
put32 (dst, height); /* biHeight */
put16 (dst, 1); /* biPlanes */
put16 (dst, 24); /* biBitCount */
put32 (dst, BI_RGB); /* biCompression */
put32 (dst, size); /* biSizeImage */
put32 (dst, 0); /* biXPelsPerMeter */
put32 (dst, 0); /* biYPelsPerMeter */
put32 (dst, 0); /* biClrUsed */
put32 (dst, 0); /* biClrImportant */
if (!save_func ((gchar *)BFH_BIH, 14 + 40, error, user_data))
return FALSE;
dst_line = buf = g_try_malloc (size);
if (!buf) {
g_set_error_literal (error,
GDK_PIXBUF_ERROR,
GDK_PIXBUF_ERROR_INSUFFICIENT_MEMORY,
_("Couldn't allocate memory for saving BMP file"));
return FALSE;
}
/* saving as a bottom-up bmp */
pixels += (height - 1) * src_stride;
for (y = 0; y < height; ++y, pixels -= src_stride, dst_line += stride) {
dst = dst_line;
src = pixels;
for (x = 0; x < width; ++x, dst += 3, src += channel) {
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
}
}
ret = save_func ((gchar *)buf, size, error, user_data);
g_free (buf);
return ret;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,897 |
Android | ae18eb014609948a40e22192b87b10efc680daa7 | static void print_maps(struct pid_info_t* info)
{
FILE *maps;
size_t offset;
char device[10];
long int inode;
char file[PATH_MAX];
strlcat(info->path, "maps", sizeof(info->path));
maps = fopen(info->path, "r");
if (!maps)
goto out;
while (fscanf(maps, "%*x-%*x %*s %zx %s %ld %s\n", &offset, device, &inode,
file) == 4) {
if (inode == 0 || !strcmp(device, "00:00"))
continue;
printf("%-9s %5d %10s %4s %9s %18s %9zd %10ld %s\n",
info->cmdline, info->pid, info->user, "mem",
"???", device, offset, inode, file);
}
fclose(maps);
out:
info->path[info->parent_length] = '\0';
}
| 1 | CVE-2016-3757 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 6,796 |
libXrandr | a0df3e1c7728205e5c7650b2e6dce684139254a6 | XRRGetMonitors(Display *dpy, Window window, Bool get_active, int *nmonitors)
{
XExtDisplayInfo *info = XRRFindDisplay(dpy);
xRRGetMonitorsReply rep;
xRRGetMonitorsReq *req;
int nbytes, nbytesRead, rbytes;
int nmon, noutput;
int m, o;
char *buf, *buf_head;
xRRMonitorInfo *xmon;
CARD32 *xoutput;
XRRMonitorInfo *mon = NULL;
RROutput *output;
RRCheckExtension (dpy, info, NULL);
*nmonitors = -1;
LockDisplay (dpy);
GetReq (RRGetMonitors, req);
req->reqType = info->codes->major_opcode;
req->randrReqType = X_RRGetMonitors;
req->window = window;
req->get_active = get_active;
if (!_XReply (dpy, (xReply *) &rep, 0, xFalse))
{
UnlockDisplay (dpy);
SyncHandle ();
return NULL;
return NULL;
}
nbytes = (long) rep.length << 2;
nmon = rep.nmonitors;
noutput = rep.noutputs;
rbytes = nmon * sizeof (XRRMonitorInfo) + noutput * sizeof(RROutput);
buf = buf_head = Xmalloc (nbytesRead);
mon = Xmalloc (rbytes);
if (buf == NULL || mon == NULL) {
Xfree(buf);
Xfree(mon);
_XEatDataWords (dpy, rep.length);
UnlockDisplay (dpy);
SyncHandle ();
return NULL;
}
_XReadPad(dpy, buf, nbytesRead);
output = (RROutput *) (mon + nmon);
for (m = 0; m < nmon; m++) {
xmon = (xRRMonitorInfo *) buf;
mon[m].name = xmon->name;
mon[m].primary = xmon->primary;
mon[m].automatic = xmon->automatic;
mon[m].noutput = xmon->noutput;
mon[m].x = xmon->x;
mon[m].y = xmon->y;
mon[m].width = xmon->width;
mon[m].height = xmon->height;
mon[m].mwidth = xmon->widthInMillimeters;
mon[m].mheight = xmon->heightInMillimeters;
mon[m].outputs = output;
buf += SIZEOF (xRRMonitorInfo);
xoutput = (CARD32 *) buf;
for (o = 0; o < xmon->noutput; o++)
output[o] = xoutput[o];
output += xmon->noutput;
buf += xmon->noutput * 4;
}
Xfree(buf_head);
}
| 1 | CVE-2016-7948 | CWE-787 | Out-of-bounds Write | The product writes data past the end, or before the beginning, of the intended buffer. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,389 |
ImageMagick | d31fec57e9dfb0516deead2053a856e3c71e9751 | static MagickBooleanType IsXCF(const unsigned char *magick,const size_t length)
{
if (length < 8)
return(MagickFalse);
if (LocaleNCompare((char *) magick,"gimp xcf",8) == 0)
return(MagickTrue);
return(MagickFalse);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,394 |
flatpak | 902fb713990a8f968ea4350c7c2a27ff46f1a6c4 | flatpak_run_apply_env_vars (char **envp, FlatpakContext *context)
{
GHashTableIter iter;
gpointer key, value;
g_hash_table_iter_init (&iter, context->env_vars);
while (g_hash_table_iter_next (&iter, &key, &value))
{
const char *var = key;
const char *val = value;
if (val && val[0] != 0)
envp = g_environ_setenv (envp, var, val, TRUE);
else
envp = g_environ_unsetenv (envp, var);
}
return envp;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,883 |
Chrome | 73edae623529f04c668268de49d00324b96166a2 | void HTMLElement::setInnerHTML(const String& html, ExceptionCode& ec)
{
RefPtr<DocumentFragment> fragment = createFragmentFromSource(html, this, ec);
if (fragment)
replaceChildrenWithFragment(this, fragment.release(), ec);
}
| 1 | CVE-2011-2795 | CWE-264 | Permissions, Privileges, and Access Controls | Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control. | Not Found in CWE Page | 8,466 |
php-src | 9a07245b728714de09361ea16b9c6fcf70cb5685 | PHPAPI size_t php_printf(const char *format, ...)
{
va_list args;
size_t ret;
char *buffer;
size_t size;
va_start(args, format);
size = vspprintf(&buffer, 0, format, args);
ret = PHPWRITE(buffer, size);
efree(buffer);
va_end(args);
return ret;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,795 |
ntopng | 30610bda60cbfc058f90a1c0a17d0e8f4516221a | static void set_cookie(const struct mg_connection *conn,
char *user, char *referer) {
char key[256], session_id[64], random[64];
if(!strcmp(mg_get_request_info((struct mg_connection*)conn)->uri, "/metrics")
|| !strncmp(mg_get_request_info((struct mg_connection*)conn)->uri, GRAFANA_URL, strlen(GRAFANA_URL))
|| !strncmp(mg_get_request_info((struct mg_connection*)conn)->uri, POOL_MEMBERS_ASSOC_URL, strlen(POOL_MEMBERS_ASSOC_URL)))
return;
if(authorized_localhost_users_login_disabled(conn))
return;
// Authentication success:
// 1. create new session
// 2. set session ID token in the cookie
//
// The most secure way is to stay HTTPS all the time. However, just to
// show the technique, we redirect to HTTP after the successful
// authentication. The danger of doing this is that session cookie can
// be stolen and an attacker may impersonate the user.
// Secure application must use HTTPS all the time.
snprintf(random, sizeof(random), "%d", rand());
generate_session_id(session_id, random, user);
// ntop->getTrace()->traceEvent(TRACE_ERROR, "==> %s\t%s", random, session_id);
/* http://en.wikipedia.org/wiki/HTTP_cookie */
mg_printf((struct mg_connection *)conn, "HTTP/1.1 302 Found\r\n"
"Set-Cookie: session=%s; path=/; max-age=%u;%s\r\n" // Session ID
"Set-Cookie: user=%s; path=/; max-age=%u;%s\r\n" // Set user, needed by JavaScript code
"Location: %s%s\r\n\r\n",
session_id, HTTP_SESSION_DURATION, get_secure_cookie_attributes(mg_get_request_info((struct mg_connection*)conn)),
user, HTTP_SESSION_DURATION, get_secure_cookie_attributes(mg_get_request_info((struct mg_connection*)conn)),
ntop->getPrefs()->get_http_prefix(), referer ? referer : "/");
/* Save session in redis */
snprintf(key, sizeof(key), "sessions.%s", session_id);
ntop->getRedis()->set(key, user, HTTP_SESSION_DURATION);
ntop->getTrace()->traceEvent(TRACE_INFO, "[HTTP] Set session sessions.%s", session_id);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,794 |
linux-2.6 | f0f4c3432e5e1087b3a8c0e6bd4113d3c37497ff | int acpi_map_lsapic(acpi_handle handle, int *pcpu)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
struct acpi_table_lapic *lapic;
cpumask_t tmp_map, new_map;
u8 physid;
int cpu;
if (ACPI_FAILURE(acpi_evaluate_object(handle, "_MAT", NULL, &buffer)))
return -EINVAL;
if (!buffer.length || !buffer.pointer)
return -EINVAL;
obj = buffer.pointer;
if (obj->type != ACPI_TYPE_BUFFER ||
obj->buffer.length < sizeof(*lapic)) {
kfree(buffer.pointer);
return -EINVAL;
}
lapic = (struct acpi_table_lapic *)obj->buffer.pointer;
if ((lapic->header.type != ACPI_MADT_LAPIC) ||
(!lapic->flags.enabled)) {
kfree(buffer.pointer);
return -EINVAL;
}
physid = lapic->id;
kfree(buffer.pointer);
buffer.length = ACPI_ALLOCATE_BUFFER;
buffer.pointer = NULL;
tmp_map = cpu_present_map;
mp_register_lapic(physid, lapic->flags.enabled);
/*
* If mp_register_lapic successfully generates a new logical cpu
* number, then the following will get us exactly what was mapped
*/
cpus_andnot(new_map, cpu_present_map, tmp_map);
if (cpus_empty(new_map)) {
printk ("Unable to map lapic to logical cpu number\n");
return -EINVAL;
}
cpu = first_cpu(new_map);
*pcpu = cpu;
return 0;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,241 |
libssh-mirror | 10b3ebbe61a7031a3dae97f05834442220447181 | uint32_t ssh_buffer_get_data(struct ssh_buffer_struct *buffer, void *data, uint32_t len)
{
int rc;
/*
* Check for a integer overflow first, then check if not enough data is in
* the buffer.
*/
rc = ssh_buffer_validate_length(buffer, len);
if (rc != SSH_OK) {
return 0;
}
memcpy(data,buffer->data+buffer->pos,len);
buffer->pos+=len;
return len; /* no yet support for partial reads (is it really needed ?? ) */
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,619 |
libplist | 32ee5213fe64f1e10ec76c1ee861ee6f233120dd | static uint16_t *plist_utf8_to_utf16(char *unistr, long size, long *items_read, long *items_written)
{
uint16_t *outbuf;
int p = 0;
long i = 0;
unsigned char c0;
unsigned char c1;
unsigned char c2;
unsigned char c3;
uint32_t w;
outbuf = (uint16_t*)malloc(((size*2)+1)*sizeof(uint16_t));
if (!outbuf) {
PLIST_BIN_ERR("%s: Could not allocate %" PRIu64 " bytes\n", __func__, (uint64_t)((size*2)+1)*sizeof(uint16_t));
return NULL;
}
while (i < size) {
c0 = unistr[i];
c1 = (i < size-1) ? unistr[i+1] : 0;
c2 = (i < size-2) ? unistr[i+2] : 0;
c3 = (i < size-3) ? unistr[i+3] : 0;
if ((c0 >= 0xF0) && (i < size-3) && (c1 >= 0x80) && (c2 >= 0x80) && (c3 >= 0x80)) {
w = ((((c0 & 7) << 18) + ((c1 & 0x3F) << 12) + ((c2 & 0x3F) << 6) + (c3 & 0x3F)) & 0x1FFFFF) - 0x010000;
outbuf[p++] = 0xD800 + (w >> 10);
outbuf[p++] = 0xDC00 + (w & 0x3FF);
i+=4;
} else if ((c0 >= 0xE0) && (i < size-2) && (c1 >= 0x80) && (c2 >= 0x80)) {
outbuf[p++] = ((c2 & 0x3F) + ((c1 & 3) << 6)) + (((c1 >> 2) & 15) << 8) + ((c0 & 15) << 12);
i+=3;
} else if ((c0 >= 0xC0) && (i < size-1) && (c1 >= 0x80)) {
outbuf[p++] = ((c1 & 0x3F) + ((c0 & 3) << 6)) + (((c0 >> 2) & 7) << 8);
i+=2;
} else if (c0 < 0x80) {
outbuf[p++] = c0;
i+=1;
} else {
PLIST_BIN_ERR("%s: invalid utf8 sequence in string at index %lu\n", __func__, i);
break;
}
}
if (items_read) {
*items_read = i;
}
if (items_written) {
*items_written = p;
}
outbuf[p] = 0;
return outbuf;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,542 |
file | 46a8443f76cec4b41ec736eca396984c74664f84 | cdf_read_property_info(const cdf_stream_t *sst, const cdf_header_t *h,
uint32_t offs, cdf_property_info_t **info, size_t *count, size_t *maxcount)
{
const cdf_section_header_t *shp;
cdf_section_header_t sh;
const uint8_t *p, *q, *e;
size_t i, o4, nelements, j, slen, left;
cdf_property_info_t *inp;
if (offs > UINT32_MAX / 4) {
errno = EFTYPE;
goto out;
}
shp = CAST(const cdf_section_header_t *,
cdf_offset(sst->sst_tab, offs));
if (cdf_check_stream_offset(sst, h, shp, sizeof(*shp), __LINE__) == -1)
goto out;
sh.sh_len = CDF_TOLE4(shp->sh_len);
if (sh.sh_len > CDF_SHLEN_LIMIT) {
errno = EFTYPE;
goto out;
}
if (cdf_check_stream_offset(sst, h, shp, sh.sh_len, __LINE__) == -1)
goto out;
sh.sh_properties = CDF_TOLE4(shp->sh_properties);
DPRINTF(("section len: %u properties %u\n", sh.sh_len,
sh.sh_properties));
if (sh.sh_properties > CDF_PROP_LIMIT)
goto out;
inp = cdf_grow_info(info, maxcount, sh.sh_properties);
if (inp == NULL)
goto out;
inp += *count;
*count += sh.sh_properties;
p = CAST(const uint8_t *, cdf_offset(sst->sst_tab, offs + sizeof(sh)));
e = CAST(const uint8_t *, cdf_offset(shp, sh.sh_len));
if (p >= e || cdf_check_stream_offset(sst, h, e, 0, __LINE__) == -1)
goto out;
for (i = 0; i < sh.sh_properties; i++) {
if ((q = cdf_get_property_info_pos(sst, h, p, e, i)) == NULL)
goto out;
inp[i].pi_id = CDF_GETUINT32(p, i << 1);
left = CAST(size_t, e - q);
if (left < sizeof(uint32_t)) {
DPRINTF(("short info (no type)_\n"));
goto out;
}
inp[i].pi_type = CDF_GETUINT32(q, 0);
DPRINTF(("%" SIZE_T_FORMAT "u) id=%#x type=%#x offs=%#tx,%#x\n",
i, inp[i].pi_id, inp[i].pi_type, q - p, offs));
if (inp[i].pi_type & CDF_VECTOR) {
if (left < sizeof(uint32_t) * 2) {
DPRINTF(("missing CDF_VECTOR length\n"));
goto out;
}
nelements = CDF_GETUINT32(q, 1);
if (nelements == 0) {
DPRINTF(("CDF_VECTOR with nelements == 0\n"));
goto out;
}
slen = 2;
} else {
nelements = 1;
slen = 1;
}
o4 = slen * sizeof(uint32_t);
if (inp[i].pi_type & (CDF_ARRAY|CDF_BYREF|CDF_RESERVED))
goto unknown;
switch (inp[i].pi_type & CDF_TYPEMASK) {
case CDF_NULL:
case CDF_EMPTY:
break;
case CDF_SIGNED16:
if (!cdf_copy_info(&inp[i], &q[o4], e, sizeof(int16_t)))
goto unknown;
break;
case CDF_SIGNED32:
case CDF_BOOL:
case CDF_UNSIGNED32:
case CDF_FLOAT:
if (!cdf_copy_info(&inp[i], &q[o4], e, sizeof(int32_t)))
goto unknown;
break;
case CDF_SIGNED64:
case CDF_UNSIGNED64:
case CDF_DOUBLE:
case CDF_FILETIME:
if (!cdf_copy_info(&inp[i], &q[o4], e, sizeof(int64_t)))
goto unknown;
break;
case CDF_LENGTH32_STRING:
case CDF_LENGTH32_WSTRING:
if (nelements > 1) {
size_t nelem = inp - *info;
inp = cdf_grow_info(info, maxcount, nelements);
if (inp == NULL)
goto out;
inp += nelem;
}
DPRINTF(("nelements = %" SIZE_T_FORMAT "u\n",
nelements));
for (j = 0; j < nelements && i < sh.sh_properties;
j++, i++)
{
uint32_t l;
if (o4 + sizeof(uint32_t) > left)
goto out;
l = CDF_GETUINT32(q, slen);
o4 += sizeof(uint32_t);
if (o4 + l > left)
goto out;
inp[i].pi_str.s_len = l;
inp[i].pi_str.s_buf = CAST(const char *,
CAST(const void *, &q[o4]));
DPRINTF(("o=%" SIZE_T_FORMAT "u l=%d(%"
SIZE_T_FORMAT "u), t=%" SIZE_T_FORMAT
"u s=%s\n", o4, l, CDF_ROUND(l, sizeof(l)),
left, inp[i].pi_str.s_buf));
if (l & 1)
l++;
slen += l >> 1;
o4 = slen * sizeof(uint32_t);
}
i--;
break;
case CDF_CLIPBOARD:
if (inp[i].pi_type & CDF_VECTOR)
goto unknown;
break;
default:
unknown:
memset(&inp[i].pi_val, 0, sizeof(inp[i].pi_val));
DPRINTF(("Don't know how to deal with %#x\n",
inp[i].pi_type));
break;
}
}
return 0;
out:
free(*info);
*info = NULL;
*count = 0;
*maxcount = 0;
errno = EFTYPE;
return -1;
} | 1 | CVE-2019-18218 | CWE-787 | Out-of-bounds Write | The product writes data past the end, or before the beginning, of the intended buffer. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 3,507 |
Android | 5a9753fca56f0eeb9f61e342b2fccffc364f9426 | void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
| 1 | CVE-2016-1621 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 5,556 |
Chrome | 503bea2643350c6378de5f7a268b85cf2480e1ac | void AudioInputRendererHost::OnCreateStream(
int stream_id, const media::AudioParameters& params,
const std::string& device_id, bool automatic_gain_control) {
VLOG(1) << "AudioInputRendererHost::OnCreateStream(stream_id="
<< stream_id << ")";
DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO));
DCHECK(LookupById(stream_id) == NULL);
media::AudioParameters audio_params(params);
if (media_stream_manager_->audio_input_device_manager()->
ShouldUseFakeDevice()) {
audio_params.Reset(media::AudioParameters::AUDIO_FAKE,
params.channel_layout(), params.sample_rate(),
params.bits_per_sample(), params.frames_per_buffer());
} else if (WebContentsCaptureUtil::IsWebContentsDeviceId(device_id)) {
audio_params.Reset(media::AudioParameters::AUDIO_VIRTUAL,
params.channel_layout(), params.sample_rate(),
params.bits_per_sample(), params.frames_per_buffer());
}
DCHECK_GT(audio_params.frames_per_buffer(), 0);
uint32 buffer_size = audio_params.GetBytesPerBuffer();
scoped_ptr<AudioEntry> entry(new AudioEntry());
uint32 mem_size = sizeof(media::AudioInputBufferParameters) + buffer_size;
if (!entry->shared_memory.CreateAndMapAnonymous(mem_size)) {
SendErrorMessage(stream_id);
return;
}
scoped_ptr<AudioInputSyncWriter> writer(
new AudioInputSyncWriter(&entry->shared_memory));
if (!writer->Init()) {
SendErrorMessage(stream_id);
return;
}
entry->writer.reset(writer.release());
entry->controller = media::AudioInputController::CreateLowLatency(
audio_manager_,
this,
audio_params,
device_id,
entry->writer.get());
if (!entry->controller) {
SendErrorMessage(stream_id);
return;
}
if (params.format() == media::AudioParameters::AUDIO_PCM_LOW_LATENCY)
entry->controller->SetAutomaticGainControl(automatic_gain_control);
entry->stream_id = stream_id;
audio_entries_.insert(std::make_pair(stream_id, entry.release()));
}
| 1 | CVE-2012-5149 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 6,910 |
libtiff | 0c74a9f49b8d7a36b17b54a7428b3526d20f88a8 | checkcmap(int n, uint16* r, uint16* g, uint16* b)
{
while (n-- > 0)
if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
return (16);
fprintf(stderr, "Warning, assuming 8-bit colormap.\n");
return (8);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,117 |
qemu | 8d1b247f3748ac4078524130c6d7ae42b6140aaf | static void vhost_vsock_common_send_transport_reset(VHostVSockCommon *vvc)
{
VirtQueueElement *elem;
VirtQueue *vq = vvc->event_vq;
struct virtio_vsock_event event = {
.id = cpu_to_le32(VIRTIO_VSOCK_EVENT_TRANSPORT_RESET),
};
elem = virtqueue_pop(vq, sizeof(VirtQueueElement));
if (!elem) {
error_report("vhost-vsock missed transport reset event");
return;
}
if (elem->out_num) {
error_report("invalid vhost-vsock event virtqueue element with "
"out buffers");
goto err;
}
if (iov_from_buf(elem->in_sg, elem->in_num, 0,
&event, sizeof(event)) != sizeof(event)) {
error_report("vhost-vsock event virtqueue element is too short");
goto err;
}
virtqueue_push(vq, elem, sizeof(event));
virtio_notify(VIRTIO_DEVICE(vvc), vq);
g_free(elem);
return;
err:
virtqueue_detach_element(vq, elem, 0);
g_free(elem);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,050 |
exif | eb84b0e3c5f2a86013b6fcfb800d187896a648fa | action_save_thumb (ExifData *ed, ExifLog *log, ExifParams p, const char *fout)
{
FILE *f;
if (!ed) return;
/* No thumbnail? Exit. */
if (!ed->data) {
exif_log (log, -1, "exif", _("'%s' does not "
"contain a thumbnail!"), p.fin);
return;
}
/* Save the thumbnail */
f = fopen (fout, "wb");
if (!f)
exif_log (log, -1, "exif", _("Could not open '%s' for "
"writing (%s)!"), fout, strerror (errno));
else {
if (fwrite (ed->data, 1, ed->size, f) != ed->size) {
exif_log (log, -1, "exif", _("Could not write '%s' (%s)."),
fout, strerror (errno));
};
if (fclose (f) == EOF)
exif_log (log, -1, "exif", _("Could not write '%s' (%s)."),
fout, strerror (errno));
fprintf (stdout, _("Wrote file '%s'."), fout);
fprintf (stdout, "\n");
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,154 |
fribidi | ad3a19e6372b1e667128ed1ea2f49919884587e1 | help (
void
)
{
/* Break help string into little ones, to assure ISO C89 conformance */
printf ("Usage: " appname " [OPTION]... [FILE]...\n"
"A command line interface for the " FRIBIDI_NAME " library.\n"
"Convert a logical string to visual.\n"
"\n"
" -h, --help Display this information and exit\n"
" -V, --version Display version information and exit\n"
" -v, --verbose Verbose mode, same as --basedir --ltov --vtol\n"
" --levels\n");
printf (" -d, --debug Output debug information\n"
" -t, --test Test " FRIBIDI_NAME
", same as --clean --nobreak\n"
" --showinput --reordernsm --width %d\n",
default_text_width);
printf (" -c, --charset CS Specify character set, default is %s\n"
" --charsetdesc CS Show descriptions for character set CS and exit\n"
" --caprtl Old style: set character set to CapRTL\n",
char_set);
printf (" --showinput Output the input string too\n"
" --nopad Do not right justify RTL lines\n"
" --nobreak Do not break long lines\n"
" -w, --width W Screen width for padding, default is %d, but if\n"
" environment variable COLUMNS is defined, its value\n"
" will be used, --width overrides both of them.\n",
default_text_width);
printf
(" -B, --bol BOL Output string BOL before the visual string\n"
" -E, --eol EOL Output string EOL after the visual string\n"
" --rtl Force base direction to RTL\n"
" --ltr Force base direction to LTR\n"
" --wrtl Set base direction to RTL if no strong character found\n");
printf
(" --wltr Set base direction to LTR if no strong character found\n"
" (default)\n"
" --nomirror Turn mirroring off, to do it later\n"
" --reordernsm Reorder NSM sequences to follow their base character\n"
" --clean Remove explicit format codes in visual string\n"
" output, currently does not affect other outputs\n"
" --basedir Output Base Direction\n");
printf (" --ltov Output Logical to Visual position map\n"
" --vtol Output Visual to Logical position map\n"
" --levels Output Embedding Levels\n"
" --novisual Do not output the visual string, to be used with\n"
" --basedir, --ltov, --vtol, --levels\n");
printf (" All string indexes are zero based\n" "\n" "Output:\n"
" For each line of input, output something like this:\n"
" [input-str` => '][BOL][[padding space]visual-str][EOL]\n"
" [\\n base-dir][\\n ltov-map][\\n vtol-map][\\n levels]\n");
{
int i;
printf ("\n" "Available character sets:\n");
for (i = 1; i <= FRIBIDI_CHAR_SETS_NUM; i++)
printf (" * %-10s: %-25s%1s\n",
fribidi_char_set_name (i), fribidi_char_set_title (i),
(fribidi_char_set_desc (i) ? "X" : ""));
printf
(" X: Character set has descriptions, use --charsetdesc to see\n");
}
printf ("\nReport bugs online at\n<" FRIBIDI_BUGREPORT ">.\n");
exit (0);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,941 |
linux | cec8f96e49d9be372fdb0c3836dcf31ec71e457e | static void snd_timer_user_ccallback(struct snd_timer_instance *timeri,
int event,
struct timespec *tstamp,
unsigned long resolution)
{
struct snd_timer_user *tu = timeri->callback_data;
struct snd_timer_tread r1;
unsigned long flags;
if (event >= SNDRV_TIMER_EVENT_START &&
event <= SNDRV_TIMER_EVENT_PAUSE)
tu->tstamp = *tstamp;
if ((tu->filter & (1 << event)) == 0 || !tu->tread)
return;
r1.event = event;
r1.tstamp = *tstamp;
r1.val = resolution;
spin_lock_irqsave(&tu->qlock, flags);
snd_timer_user_append_to_tqueue(tu, &r1);
spin_unlock_irqrestore(&tu->qlock, flags);
kill_fasync(&tu->fasync, SIGIO, POLL_IN);
wake_up(&tu->qchange_sleep);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,796 |
openssl | d73cc256c8e256c32ed959456101b73ba9842f72 | int test_sub(BIO *bp)
{
BIGNUM a, b, c;
int i;
BN_init(&a);
BN_init(&b);
BN_init(&c);
for (i = 0; i < num0 + num1; i++) {
if (i < num1) {
BN_bntest_rand(&a, 512, 0, 0);
BN_copy(&b, &a);
if (BN_set_bit(&a, i) == 0)
return (0);
BN_add_word(&b, i);
} else {
BN_bntest_rand(&b, 400 + i - num1, 0, 0);
a.neg = rand_neg();
b.neg = rand_neg();
}
BN_sub(&c, &a, &b);
if (bp != NULL) {
if (!results) {
BN_print(bp, &a);
BIO_puts(bp, " - ");
BN_print(bp, &b);
BIO_puts(bp, " - ");
}
BN_print(bp, &c);
BIO_puts(bp, "\n");
}
BN_add(&c, &c, &b);
BN_sub(&c, &c, &a);
if (!BN_is_zero(&c)) {
fprintf(stderr, "Subtract test failed!\n");
return 0;
}
}
BN_free(&a);
BN_free(&b);
BN_free(&c);
return (1);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,468 |
qemu | a890a2f9137ac3cf5b607649e66a6f3a5512d8dc | int virtio_load(VirtIODevice *vdev, QEMUFile *f)
{
int i, ret;
uint32_t num;
uint32_t features;
uint32_t supported_features;
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
if (k->load_config) {
ret = k->load_config(qbus->parent, f);
if (ret)
return ret;
}
qemu_get_8s(f, &vdev->status);
qemu_get_8s(f, &vdev->isr);
qemu_get_be16s(f, &vdev->queue_sel);
if (vdev->queue_sel >= VIRTIO_PCI_QUEUE_MAX) {
return -1;
}
qemu_get_be32s(f, &features);
if (virtio_set_features(vdev, features) < 0) {
supported_features = k->get_features(qbus->parent);
error_report("Features 0x%x unsupported. Allowed features: 0x%x",
features, supported_features);
features, supported_features);
return -1;
}
vdev->config_len = qemu_get_be32(f);
qemu_get_buffer(f, vdev->config, vdev->config_len);
num = qemu_get_be32(f);
for (i = 0; i < num; i++) {
vdev->vq[i].vring.num = qemu_get_be32(f);
if (k->has_variable_vring_alignment) {
vdev->vq[i].vring.align = qemu_get_be32(f);
}
vdev->vq[i].pa = qemu_get_be64(f);
qemu_get_be16s(f, &vdev->vq[i].last_avail_idx);
vdev->vq[i].signalled_used_valid = false;
vdev->vq[i].notification = true;
if (vdev->vq[i].pa) {
uint16_t nheads;
virtqueue_init(&vdev->vq[i]);
nheads = vring_avail_idx(&vdev->vq[i]) - vdev->vq[i].last_avail_idx;
/* Check it isn't doing very strange things with descriptor numbers. */
if (nheads > vdev->vq[i].vring.num) {
error_report("VQ %d size 0x%x Guest index 0x%x "
"inconsistent with Host index 0x%x: delta 0x%x",
i, vdev->vq[i].vring.num,
vring_avail_idx(&vdev->vq[i]),
vdev->vq[i].last_avail_idx, nheads);
return -1;
}
} else if (vdev->vq[i].last_avail_idx) {
error_report("VQ %d address 0x0 "
"inconsistent with Host index 0x%x",
i, vdev->vq[i].last_avail_idx);
return -1;
}
if (k->load_queue) {
ret = k->load_queue(qbus->parent, i, f);
if (ret)
return ret;
}
}
virtio_notify_vector(vdev, VIRTIO_NO_VECTOR);
return 0;
}
| 1 | CVE-2014-0182 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 856 |
Chrome | a4acc2991a60408f2044b2a3b19817074c04b751 | static void HandleCrash(int signo, siginfo_t* siginfo, void* context) {
SandboxedHandler* state = Get();
state->HandleCrashNonFatal(signo, siginfo, context);
Signals::RestoreHandlerAndReraiseSignalOnReturn(
siginfo, state->old_actions_.ActionForSignal(signo));
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,747 |
Chrome | 58c433b2426f8d23ad27f1976635506ee3643034 | QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group) {
header_.packet_sequence_number = number;
header_.flags = PACKET_FLAGS_NONE;
header_.fec_group = fec_group;
QuicFrames frames;
QuicFrame frame(&frame1_);
frames.push_back(frame);
QuicPacket* packet;
framer_.ConstructFragementDataPacket(header_, frames, &packet);
return packet;
}
| 1 | CVE-2013-0896 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,731 |
Android | 3ac044334c3ff6a61cb4238ff3ddaf17c7efcf49 | void WT_VoiceFilter (S_FILTER_CONTROL *pFilter, S_WT_INT_FRAME *pWTIntFrame)
{
EAS_PCM *pAudioBuffer;
EAS_I32 k;
EAS_I32 b1;
EAS_I32 b2;
EAS_I32 z1;
EAS_I32 z2;
EAS_I32 acc0;
EAS_I32 acc1;
EAS_I32 numSamples;
/* initialize some local variables */
numSamples = pWTIntFrame->numSamples;
pAudioBuffer = pWTIntFrame->pAudioBuffer;
z1 = pFilter->z1;
z2 = pFilter->z2;
b1 = -pWTIntFrame->frame.b1;
/*lint -e{702} <avoid divide> */
b2 = -pWTIntFrame->frame.b2 >> 1;
/*lint -e{702} <avoid divide> */
k = pWTIntFrame->frame.k >> 1;
while (numSamples--)
{
/* do filter calculations */
acc0 = *pAudioBuffer;
acc1 = z1 * b1;
acc1 += z2 * b2;
acc0 = acc1 + k * acc0;
z2 = z1;
/*lint -e{702} <avoid divide> */
z1 = acc0 >> 14;
*pAudioBuffer++ = (EAS_I16) z1;
}
/* save delay values */
pFilter->z1 = (EAS_I16) z1;
pFilter->z2 = (EAS_I16) z2;
}
| 1 | CVE-2016-0838 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 9,002 |
teeworlds | ff254722a2683867fcb3e67569ffd36226c4bc62 | void CClient::SetState(int s)
{
if(m_State == IClient::STATE_QUITING)
return;
int Old = m_State;
if(g_Config.m_Debug)
{
char aBuf[128];
str_format(aBuf, sizeof(aBuf), "state change. last=%d current=%d", m_State, s);
m_pConsole->Print(IConsole::OUTPUT_LEVEL_DEBUG, "client", aBuf);
}
m_State = s;
if(Old != s)
GameClient()->OnStateChange(m_State, Old);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,624 |
php-src | f151e048ed27f6f4eef729f3310d053ab5da71d4 | PHP_FUNCTION(linkinfo)
{
char *link;
char *dirname;
size_t link_len;
zend_stat_t sb;
int ret;
if (zend_parse_parameters(ZEND_NUM_ARGS(), "p", &link, &link_len) == FAILURE) {
return;
}
dirname = estrndup(link, link_len);
php_dirname(dirname, link_len);
if (php_check_open_basedir(dirname)) {
efree(dirname);
RETURN_FALSE;
}
ret = VCWD_STAT(link, &sb);
if (ret == -1) {
php_error_docref(NULL, E_WARNING, "%s", strerror(errno));
efree(dirname);
RETURN_LONG(Z_L(-1));
}
efree(dirname);
RETURN_LONG((zend_long) sb.st_dev);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,756 |
Chrome | 60cc89e8d2e761dea28bb9e4cf9ebbad516bff09 | STDMETHODIMP UrlmonUrlRequest::GetWindow(const GUID& guid_reason,
HWND* parent_window) {
if (!parent_window)
return E_INVALIDARG;
#ifndef NDEBUG
wchar_t guid[40] = {0};
::StringFromGUID2(guid_reason, guid, arraysize(guid));
const wchar_t* str = guid;
if (guid_reason == IID_IAuthenticate)
str = L"IAuthenticate";
else if (guid_reason == IID_IHttpSecurity)
str = L"IHttpSecurity";
else if (guid_reason == IID_IWindowForBindingUI)
str = L"IWindowForBindingUI";
DVLOG(1) << __FUNCTION__ << me() << "GetWindow: " << str;
#endif
DLOG_IF(WARNING, !::IsWindow(parent_window_))
<< "UrlmonUrlRequest::GetWindow - no window!";
*parent_window = parent_window_;
return S_OK;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,134 |
server | b1351c15946349f9daa7e5297fb2ac6f3139e4a8 | xbstream_init(const char *root __attribute__((unused)))
{
ds_ctxt_t *ctxt;
ds_stream_ctxt_t *stream_ctxt;
xb_wstream_t *xbstream;
ctxt = (ds_ctxt_t *)my_malloc(sizeof(ds_ctxt_t) + sizeof(ds_stream_ctxt_t),
MYF(MY_FAE));
stream_ctxt = (ds_stream_ctxt_t *)(ctxt + 1);
if (pthread_mutex_init(&stream_ctxt->mutex, NULL)) {
msg("xbstream_init: pthread_mutex_init() failed.");
goto err;
}
xbstream = xb_stream_write_new();
if (xbstream == NULL) {
msg("xb_stream_write_new() failed.");
goto err;
}
stream_ctxt->xbstream = xbstream;
stream_ctxt->dest_file = NULL;
ctxt->ptr = stream_ctxt;
return ctxt;
err:
my_free(ctxt);
return NULL;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 19,252 |
Chrome | 91b27188b728e90c651c55a985d23ad0c26eb662 | bool base64Decode(const char* data, unsigned length, Vector<char>& out, CharacterMatchFunctionPtr shouldIgnoreCharacter, Base64DecodePolicy policy)
{
return base64DecodeInternal<LChar>(reinterpret_cast<const LChar*>(data), length, out, shouldIgnoreCharacter, policy);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,269 |
linux | 0f22072ab50cac7983f9660d33974b45184da4f9 | asmlinkage long sys_oabi_connect(int fd, struct sockaddr __user *addr, int addrlen)
{
sa_family_t sa_family;
if (addrlen == 112 &&
get_user(sa_family, &addr->sa_family) == 0 &&
sa_family == AF_UNIX)
addrlen = 110;
return sys_connect(fd, addr, addrlen);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,030 |
ImageMagick | a54fe0e8600eaf3dc6fe717d3c0398001507f723 | MagickExport const PixelPacket *GetVirtualPixels(const Image *image,
const ssize_t x,const ssize_t y,const size_t columns,const size_t rows,
ExceptionInfo *exception)
{
CacheInfo
*restrict cache_info;
const int
id = GetOpenMPThreadId();
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
assert(image->cache != (Cache) NULL);
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
if (cache_info->methods.get_virtual_pixel_handler !=
(GetVirtualPixelHandler) NULL)
return(cache_info->methods.get_virtual_pixel_handler(image,
GetPixelCacheVirtualMethod(image),x,y,columns,rows,exception));
assert(id < (int) cache_info->number_threads);
return(GetVirtualPixelsFromNexus(image,GetPixelCacheVirtualMethod(image),x,y,
columns,rows,cache_info->nexus_info[id],exception));
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,792 |
qemu | 0ebb5fd80589835153a0c2baa1b8cc7a04e67a93 | static void esp_do_dma(ESPState *s)
{
uint32_t len, cmdlen;
int to_device = ((s->rregs[ESP_RSTAT] & 7) == STAT_DO);
uint8_t buf[ESP_CMDFIFO_SZ];
len = esp_get_tc(s);
if (s->do_cmd) {
/*
* handle_ti_cmd() case: esp_do_dma() is called only from
* handle_ti_cmd() with do_cmd != NULL (see the assert())
*/
cmdlen = fifo8_num_used(&s->cmdfifo);
trace_esp_do_dma(cmdlen, len);
if (s->dma_memory_read) {
s->dma_memory_read(s->dma_opaque, buf, len);
fifo8_push_all(&s->cmdfifo, buf, len);
} else {
s->pdma_cb = do_dma_pdma_cb;
esp_raise_drq(s);
return;
}
trace_esp_handle_ti_cmd(cmdlen);
s->ti_size = 0;
if ((s->rregs[ESP_RSTAT] & 7) == STAT_CD) {
/* No command received */
if (s->cmdfifo_cdb_offset == fifo8_num_used(&s->cmdfifo)) {
return;
}
/* Command has been received */
s->do_cmd = 0;
do_cmd(s);
} else {
/*
* Extra message out bytes received: update cmdfifo_cdb_offset
* and then switch to commmand phase
*/
s->cmdfifo_cdb_offset = fifo8_num_used(&s->cmdfifo);
s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
s->rregs[ESP_RSEQ] = SEQ_CD;
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
return;
}
if (!s->current_req) {
return;
}
if (s->async_len == 0) {
/* Defer until data is available. */
return;
}
if (len > s->async_len) {
len = s->async_len;
}
if (to_device) {
if (s->dma_memory_read) {
s->dma_memory_read(s->dma_opaque, s->async_buf, len);
} else {
s->pdma_cb = do_dma_pdma_cb;
esp_raise_drq(s);
return;
}
} else {
if (s->dma_memory_write) {
s->dma_memory_write(s->dma_opaque, s->async_buf, len);
} else {
/* Adjust TC for any leftover data in the FIFO */
if (!fifo8_is_empty(&s->fifo)) {
esp_set_tc(s, esp_get_tc(s) - fifo8_num_used(&s->fifo));
}
/* Copy device data to FIFO */
len = MIN(len, fifo8_num_free(&s->fifo));
fifo8_push_all(&s->fifo, s->async_buf, len);
s->async_buf += len;
s->async_len -= len;
s->ti_size -= len;
/*
* MacOS toolbox uses a TI length of 16 bytes for all commands, so
* commands shorter than this must be padded accordingly
*/
if (len < esp_get_tc(s) && esp_get_tc(s) <= ESP_FIFO_SZ) {
while (fifo8_num_used(&s->fifo) < ESP_FIFO_SZ) {
esp_fifo_push(&s->fifo, 0);
len++;
}
}
esp_set_tc(s, esp_get_tc(s) - len);
s->pdma_cb = do_dma_pdma_cb;
esp_raise_drq(s);
/* Indicate transfer to FIFO is complete */
s->rregs[ESP_RSTAT] |= STAT_TC;
return;
}
}
esp_set_tc(s, esp_get_tc(s) - len);
s->async_buf += len;
s->async_len -= len;
if (to_device) {
s->ti_size += len;
} else {
s->ti_size -= len;
}
if (s->async_len == 0) {
scsi_req_continue(s->current_req);
/*
* If there is still data to be read from the device then
* complete the DMA operation immediately. Otherwise defer
* until the scsi layer has completed.
*/
if (to_device || esp_get_tc(s) != 0 || s->ti_size == 0) {
return;
}
}
/* Partially filled a scsi buffer. Complete immediately. */
esp_dma_done(s);
esp_lower_drq(s);
} | 1 | CVE-2020-35504 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 5,181 |
kdeconnect-kde | 542d94a70c56aa386c8d4d793481ce181b0422e8 | void LanLinkProvider::encrypted()
{
qCDebug(KDECONNECT_CORE) << "Socket successfully established an SSL connection";
QSslSocket* socket = qobject_cast<QSslSocket*>(sender());
if (!socket) return;
Q_ASSERT(socket->mode() != QSslSocket::UnencryptedMode);
LanDeviceLink::ConnectionStarted connectionOrigin = (socket->mode() == QSslSocket::SslClientMode)? LanDeviceLink::Locally : LanDeviceLink::Remotely;
NetworkPacket* receivedPacket = m_receivedIdentityPackets[socket].np;
const QString& deviceId = receivedPacket->get<QString>(QStringLiteral("deviceId"));
addLink(deviceId, socket, receivedPacket, connectionOrigin);
// Copied from tcpSocketConnected slot, now delete received packet
delete m_receivedIdentityPackets.take(socket).np;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,050 |
linux | 942080643bce061c3dd9d5718d3b745dcb39a8bc | int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
{
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&ecryptfs_superblock_to_private(
ecryptfs_inode->i_sb)->mount_crypt_stat;
int cipher_name_len;
int rc = 0;
ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
mount_crypt_stat);
rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
mount_crypt_stat);
if (rc) {
printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
"to the inode key sigs; rc = [%d]\n", rc);
goto out;
}
cipher_name_len =
strlen(mount_crypt_stat->global_default_cipher_name);
memcpy(crypt_stat->cipher,
mount_crypt_stat->global_default_cipher_name,
cipher_name_len);
crypt_stat->cipher[cipher_name_len] = '\0';
crypt_stat->key_size =
mount_crypt_stat->global_default_cipher_key_size;
ecryptfs_generate_new_key(crypt_stat);
rc = ecryptfs_init_crypt_ctx(crypt_stat);
if (rc)
ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
"context for cipher [%s]: rc = [%d]\n",
crypt_stat->cipher, rc);
out:
return rc;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,505 |
linux | 7b38460dc8e4eafba06c78f8e37099d3b34d473c | xfs_attr_calc_size(
struct xfs_da_args *args,
int *local)
{
struct xfs_mount *mp = args->dp->i_mount;
int size;
int nblks;
/*
* Determine space new attribute will use, and if it would be
* "local" or "remote" (note: local != inline).
*/
size = xfs_attr_leaf_newentsize(args, local);
nblks = XFS_DAENTER_SPACE_RES(mp, XFS_ATTR_FORK);
if (*local) {
if (size > (args->geo->blksize / 2)) {
/* Double split possible */
nblks *= 2;
}
} else {
/*
* Out of line attribute, cannot double split, but
* make room for the attribute value itself.
*/
uint dblocks = xfs_attr3_rmt_blocks(mp, args->valuelen);
nblks += dblocks;
nblks += XFS_NEXTENTADD_SPACE_RES(mp, dblocks, XFS_ATTR_FORK);
}
return nblks;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,733 |
linux | ed8cd3b2cd61004cab85380c52b1817aca1ca49b | i915_gem_execbuffer2(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer2 *args = data;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret;
if (args->buffer_count < 1) {
DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
return -EINVAL;
}
exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
if (exec2_list == NULL)
exec2_list = drm_malloc_ab(sizeof(*exec2_list),
args->buffer_count);
if (exec2_list == NULL) {
DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
return -ENOMEM;
}
ret = copy_from_user(exec2_list,
(struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
sizeof(*exec2_list) * args->buffer_count);
if (ret != 0) {
DRM_DEBUG("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec2_list);
return -EFAULT;
}
ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
ret = copy_to_user((struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
exec2_list,
sizeof(*exec2_list) * args->buffer_count);
if (ret) {
ret = -EFAULT;
DRM_DEBUG("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
}
}
drm_free_large(exec2_list);
return ret;
}
| 1 | CVE-2012-2383 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 2,501 |
Android | 04839626ed859623901ebd3a5fd483982186b59d | BlockEntry::Kind SimpleBlock::GetKind() const
{
return kBlockSimple;
}
| 1 | CVE-2016-1621 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,589 |
ntp | ba716a464ecb20618560075f2e4e1051e5b6f24f | decodenetnum(
const char *num,
sockaddr_u *netnum
)
{
struct addrinfo hints, *ai = NULL;
int err;
u_short port;
const char *cp;
const char *port_str;
char *pp;
char *np;
char name[80];
REQUIRE(num != NULL);
if (strlen(num) >= sizeof(name)) {
return 0;
}
port_str = NULL;
if ('[' != num[0]) {
/*
* to distinguish IPv6 embedded colons from a port
* specification on an IPv4 address, assume all
* legal IPv6 addresses have at least two colons.
*/
pp = strchr(num, ':');
if (NULL == pp)
cp = num; /* no colons */
else if (NULL != strchr(pp + 1, ':'))
cp = num; /* two or more colons */
else { /* one colon */
strlcpy(name, num, sizeof(name));
cp = name;
pp = strchr(cp, ':');
*pp = '\0';
port_str = pp + 1;
}
} else {
cp = num + 1;
np = name;
while (*cp && ']' != *cp)
*np++ = *cp++;
*np = 0;
if (']' == cp[0] && ':' == cp[1] && '\0' != cp[2])
port_str = &cp[2];
cp = name;
}
ZERO(hints);
hints.ai_flags = Z_AI_NUMERICHOST;
err = getaddrinfo(cp, "ntp", &hints, &ai);
if (err != 0)
return 0;
INSIST(ai->ai_addrlen <= sizeof(*netnum));
ZERO(*netnum);
memcpy(netnum, ai->ai_addr, ai->ai_addrlen);
freeaddrinfo(ai);
if (NULL == port_str || 1 != sscanf(port_str, "%hu", &port))
port = NTP_PORT;
SET_PORT(netnum, port);
return 1;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,273 |
tcpdump | b534e304568585707c4a92422aeca25cf908ff02 | juniper_pppoe_atm_print(netdissect_options *ndo,
const struct pcap_pkthdr *h, register const u_char *p)
{
struct juniper_l2info_t l2info;
uint16_t extracted_ethertype;
l2info.pictype = DLT_JUNIPER_PPPOE_ATM;
if (juniper_parse_header(ndo, p, h, &l2info) == 0)
return l2info.header_len;
p+=l2info.header_len;
extracted_ethertype = EXTRACT_16BITS(p);
/* this DLT contains nothing but raw PPPoE frames,
* prepended with a type field*/
if (ethertype_print(ndo, extracted_ethertype,
p+ETHERTYPE_LEN,
l2info.length-ETHERTYPE_LEN,
l2info.caplen-ETHERTYPE_LEN,
NULL, NULL) == 0)
/* ether_type not known, probably it wasn't one */
ND_PRINT((ndo, "unknown ethertype 0x%04x", extracted_ethertype));
return l2info.header_len;
}
| 1 | CVE-2017-12993 | CWE-125 | Out-of-bounds Read | The product reads data past the end, or before the beginning, of the intended buffer. | Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.
Phase: Architecture and Design
Strategy: Language Selection
Use a language that provides appropriate memory abstractions. | 9,822 |
ImageMagick | 9fd10cf630832b36a588c1545d8736539b2f1fb5 | static Image *ReadGIFImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
#define BitSet(byte,bit) (((byte) & (bit)) == (bit))
#define LSBFirstOrder(x,y) (((y) << 8) | (x))
Image
*image,
*meta_image;
int
number_extensionss=0;
MagickBooleanType
status;
RectangleInfo
page;
register ssize_t
i;
register unsigned char
*p;
size_t
delay,
dispose,
duration,
global_colors,
image_count,
iterations,
one;
ssize_t
count,
opacity;
unsigned char
background,
c,
flag,
*global_colormap,
buffer[257];
/*
Open image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
image=AcquireImage(image_info,exception);
status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
if (status == MagickFalse)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
/*
Determine if this a GIF file.
*/
count=ReadBlob(image,6,buffer);
if ((count != 6) || ((LocaleNCompare((char *) buffer,"GIF87",5) != 0) &&
(LocaleNCompare((char *) buffer,"GIF89",5) != 0)))
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
page.width=ReadBlobLSBShort(image);
page.height=ReadBlobLSBShort(image);
flag=(unsigned char) ReadBlobByte(image);
background=(unsigned char) ReadBlobByte(image);
c=(unsigned char) ReadBlobByte(image); /* reserved */
one=1;
global_colors=one << (((size_t) flag & 0x07)+1);
global_colormap=(unsigned char *) AcquireQuantumMemory((size_t)
MagickMax(global_colors,256),3UL*sizeof(*global_colormap));
if (global_colormap == (unsigned char *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
if (BitSet((int) flag,0x80) != 0)
{
count=ReadBlob(image,(size_t) (3*global_colors),global_colormap);
if (count != (ssize_t) (3*global_colors))
{
global_colormap=(unsigned char *) RelinquishMagickMemory(
global_colormap);
ThrowReaderException(CorruptImageError,"InsufficientImageDataInFile");
}
}
delay=0;
dispose=0;
duration=0;
iterations=1;
opacity=(-1);
image_count=0;
meta_image=AcquireImage(image_info,exception); /* metadata container */
for ( ; ; )
{
count=ReadBlob(image,1,&c);
if (count != 1)
break;
if (c == (unsigned char) ';')
break; /* terminator */
if (c == (unsigned char) '!')
{
/*
GIF Extension block.
*/
count=ReadBlob(image,1,&c);
if (count != 1)
{
global_colormap=(unsigned char *) RelinquishMagickMemory(
global_colormap);
meta_image=DestroyImage(meta_image);
ThrowReaderException(CorruptImageError,
"UnableToReadExtensionBlock");
}
switch (c)
{
case 0xf9:
{
/*
Read graphics control extension.
*/
while (ReadBlobBlock(image,buffer) != 0) ;
dispose=(size_t) (buffer[0] >> 2);
delay=(size_t) ((buffer[2] << 8) | buffer[1]);
if ((ssize_t) (buffer[0] & 0x01) == 0x01)
opacity=(ssize_t) buffer[3];
break;
}
case 0xfe:
{
char
*comments;
size_t
length;
/*
Read comment extension.
*/
comments=AcquireString((char *) NULL);
for (length=0; ; length+=count)
{
count=(ssize_t) ReadBlobBlock(image,buffer);
if (count == 0)
break;
buffer[count]='\0';
(void) ConcatenateString(&comments,(const char *) buffer);
}
(void) SetImageProperty(meta_image,"comment",comments,exception);
comments=DestroyString(comments);
break;
}
case 0xff:
{
MagickBooleanType
loop;
/*
Read Netscape Loop extension.
*/
loop=MagickFalse;
if (ReadBlobBlock(image,buffer) != 0)
loop=LocaleNCompare((char *) buffer,"NETSCAPE2.0",11) == 0 ?
MagickTrue : MagickFalse;
if (loop != MagickFalse)
{
while (ReadBlobBlock(image,buffer) != 0)
iterations=(size_t) ((buffer[2] << 8) | buffer[1]);
break;
}
else
{
char
name[MagickPathExtent];
int
block_length,
info_length,
reserved_length;
MagickBooleanType
i8bim,
icc,
iptc,
magick;
StringInfo
*profile;
unsigned char
*info;
/*
Store GIF application extension as a generic profile.
*/
icc=LocaleNCompare((char *) buffer,"ICCRGBG1012",11) == 0 ?
MagickTrue : MagickFalse;
magick=LocaleNCompare((char *) buffer,"ImageMagick",11) == 0 ?
MagickTrue : MagickFalse;
i8bim=LocaleNCompare((char *) buffer,"MGK8BIM0000",11) == 0 ?
MagickTrue : MagickFalse;
iptc=LocaleNCompare((char *) buffer,"MGKIPTC0000",11) == 0 ?
MagickTrue : MagickFalse;
number_extensionss++;
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" Reading GIF application extension");
info=(unsigned char *) AcquireQuantumMemory(255UL,
sizeof(*info));
if (info == (unsigned char *) NULL)
{
meta_image=DestroyImage(meta_image);
ThrowReaderException(ResourceLimitError,
"MemoryAllocationFailed");
}
reserved_length=255;
for (info_length=0; ; )
{
block_length=(int) ReadBlobBlock(image,&info[info_length]);
if (block_length == 0)
break;
info_length+=block_length;
if (info_length > (reserved_length-255))
{
reserved_length+=4096;
info=(unsigned char *) ResizeQuantumMemory(info,(size_t)
reserved_length,sizeof(*info));
if (info == (unsigned char *) NULL)
{
meta_image=DestroyImage(meta_image);
ThrowReaderException(ResourceLimitError,
"MemoryAllocationFailed");
}
}
}
profile=BlobToStringInfo(info,(size_t) info_length);
if (profile == (StringInfo *) NULL)
{
meta_image=DestroyImage(meta_image);
ThrowReaderException(ResourceLimitError,
"MemoryAllocationFailed");
}
if (i8bim != MagickFalse)
(void) CopyMagickString(name,"8bim",sizeof(name));
else if (icc != MagickFalse)
(void) CopyMagickString(name,"icc",sizeof(name));
else if (iptc != MagickFalse)
(void) CopyMagickString(name,"iptc",sizeof(name));
else if (magick != MagickFalse)
{
(void) CopyMagickString(name,"magick",sizeof(name));
meta_image->gamma=StringToDouble((char *) info+6,
(char **) NULL);
}
else
(void) FormatLocaleString(name,sizeof(name),"gif:%.11s",
buffer);
info=(unsigned char *) RelinquishMagickMemory(info);
if (magick == MagickFalse)
(void) SetImageProfile(meta_image,name,profile,exception);
profile=DestroyStringInfo(profile);
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
" profile name=%s",name);
}
break;
}
default:
{
while (ReadBlobBlock(image,buffer) != 0) ;
break;
}
}
}
if (c != (unsigned char) ',')
continue;
if (image_count != 0)
{
/*
Allocate next image structure.
*/
AcquireNextImage(image_info,image,exception);
if (GetNextImageInList(image) == (Image *) NULL)
{
image=DestroyImageList(image);
global_colormap=(unsigned char *) RelinquishMagickMemory(
global_colormap);
return((Image *) NULL);
}
image=SyncNextImageInList(image);
}
image_count++;
/*
Read image attributes.
*/
meta_image->scene=image->scene;
(void) CloneImageProperties(image,meta_image);
DestroyImageProperties(meta_image);
(void) CloneImageProfiles(image,meta_image);
DestroyImageProfiles(meta_image);
image->storage_class=PseudoClass;
image->compression=LZWCompression;
page.x=(ssize_t) ReadBlobLSBShort(image);
page.y=(ssize_t) ReadBlobLSBShort(image);
image->columns=ReadBlobLSBShort(image);
image->rows=ReadBlobLSBShort(image);
image->depth=8;
flag=(unsigned char) ReadBlobByte(image);
image->interlace=BitSet((int) flag,0x40) != 0 ? GIFInterlace : NoInterlace;
image->colors=BitSet((int) flag,0x80) == 0 ? global_colors : one <<
((size_t) (flag & 0x07)+1);
if (opacity >= (ssize_t) image->colors)
opacity=(-1);
image->page.width=page.width;
image->page.height=page.height;
image->page.y=page.y;
image->page.x=page.x;
image->delay=delay;
image->ticks_per_second=100;
image->dispose=(DisposeType) dispose;
image->iterations=iterations;
image->alpha_trait=opacity >= 0 ? BlendPixelTrait : UndefinedPixelTrait;
delay=0;
dispose=0;
if ((image->columns == 0) || (image->rows == 0))
{
global_colormap=(unsigned char *) RelinquishMagickMemory(
global_colormap);
meta_image=DestroyImage(meta_image);
ThrowReaderException(CorruptImageError,"NegativeOrZeroImageSize");
}
/*
Inititialize colormap.
*/
if (AcquireImageColormap(image,image->colors,exception) == MagickFalse)
{
global_colormap=(unsigned char *) RelinquishMagickMemory(
global_colormap);
meta_image=DestroyImage(meta_image);
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
}
if (BitSet((int) flag,0x80) == 0)
{
/*
Use global colormap.
*/
p=global_colormap;
for (i=0; i < (ssize_t) image->colors; i++)
{
image->colormap[i].red=(double) ScaleCharToQuantum(*p++);
image->colormap[i].green=(double) ScaleCharToQuantum(*p++);
image->colormap[i].blue=(double) ScaleCharToQuantum(*p++);
if (i == opacity)
{
image->colormap[i].alpha=(double) TransparentAlpha;
image->transparent_color=image->colormap[opacity];
}
}
image->background_color=image->colormap[MagickMin((ssize_t) background,
(ssize_t) image->colors-1)];
}
else
{
unsigned char
*colormap;
/*
Read local colormap.
*/
colormap=(unsigned char *) AcquireQuantumMemory(image->colors,3*
sizeof(*colormap));
if (colormap == (unsigned char *) NULL)
{
global_colormap=(unsigned char *) RelinquishMagickMemory(
global_colormap);
meta_image=DestroyImage(meta_image);
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
}
count=ReadBlob(image,(3*image->colors)*sizeof(*colormap),colormap);
if (count != (ssize_t) (3*image->colors))
{
global_colormap=(unsigned char *) RelinquishMagickMemory(
global_colormap);
colormap=(unsigned char *) RelinquishMagickMemory(colormap);
meta_image=DestroyImage(meta_image);
ThrowReaderException(CorruptImageError,
"InsufficientImageDataInFile");
}
p=colormap;
for (i=0; i < (ssize_t) image->colors; i++)
{
image->colormap[i].red=(double) ScaleCharToQuantum(*p++);
image->colormap[i].green=(double) ScaleCharToQuantum(*p++);
image->colormap[i].blue=(double) ScaleCharToQuantum(*p++);
if (i == opacity)
image->colormap[i].alpha=(double) TransparentAlpha;
}
colormap=(unsigned char *) RelinquishMagickMemory(colormap);
}
if (image->gamma == 1.0)
{
for (i=0; i < (ssize_t) image->colors; i++)
if (IsPixelInfoGray(image->colormap+i) == MagickFalse)
break;
(void) SetImageColorspace(image,i == (ssize_t) image->colors ?
GRAYColorspace : RGBColorspace,exception);
}
if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
if (image->scene >= (image_info->scene+image_info->number_scenes-1))
break;
status=SetImageExtent(image,image->columns,image->rows,exception);
if (status == MagickFalse)
return(DestroyImageList(image));
/*
Decode image.
*/
if (image_info->ping != MagickFalse)
status=PingGIFImage(image,exception);
else
status=DecodeImage(image,opacity,exception);
if ((image_info->ping == MagickFalse) && (status == MagickFalse))
{
global_colormap=(unsigned char *) RelinquishMagickMemory(
global_colormap);
meta_image=DestroyImage(meta_image);
ThrowReaderException(CorruptImageError,"CorruptImage");
}
duration+=image->delay*image->iterations;
if (image_info->number_scenes != 0)
if (image->scene >= (image_info->scene+image_info->number_scenes-1))
break;
opacity=(-1);
status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) image->scene-
1,image->scene);
if (status == MagickFalse)
break;
}
image->duration=duration;
meta_image=DestroyImage(meta_image);
global_colormap=(unsigned char *) RelinquishMagickMemory(global_colormap);
if ((image->columns == 0) || (image->rows == 0))
ThrowReaderException(CorruptImageError,"NegativeOrZeroImageSize");
(void) CloseBlob(image);
return(GetFirstImageInList(image));
}
| 1 | CVE-2017-15277 | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. |
Phase: Architecture and Design
Strategy: Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges. | 8,188 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.