project
stringclasses
765 values
commit_id
stringlengths
6
81
func
stringlengths
19
482k
vul
int64
0
1
CVE ID
stringlengths
13
16
CWE ID
stringclasses
13 values
CWE Name
stringclasses
13 values
CWE Description
stringclasses
13 values
Potential Mitigation
stringclasses
11 values
__index_level_0__
int64
0
23.9k
hhvm
7135ec229882370a00411aa50030eada6034cc1b
explicit HashContext(const HashContext* ctx) { assert(ctx->ops); assert(ctx->ops->context_size >= 0); ops = ctx->ops; context = malloc(ops->context_size); ops->hash_copy(context, ctx->context); options = ctx->options; key = ctx->key ? strdup(ctx->key) : nullptr; }
1
CVE-2014-6229
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
8,577
gpac
77ed81c069e10b3861d88f72e1c6be1277ee7eae
GF_Err stbl_AppendSize(GF_SampleTableBox *stbl, u32 size, u32 nb_pack) { u32 i; if (!nb_pack) nb_pack = 1; if (!stbl->SampleSize->sampleCount) { stbl->SampleSize->sampleSize = size; stbl->SampleSize->sampleCount += nb_pack; return GF_OK; } if (stbl->SampleSize->sampleSize && (stbl->SampleSize->sampleSize==size)) { stbl->SampleSize->sampleCount += nb_pack; return GF_OK; } if (!stbl->SampleSize->sizes || (stbl->SampleSize->sampleCount+nb_pack > stbl->SampleSize->alloc_size)) { Bool init_table = (stbl->SampleSize->sizes==NULL) ? 1 : 0; ALLOC_INC(stbl->SampleSize->alloc_size); if (stbl->SampleSize->sampleCount+nb_pack > stbl->SampleSize->alloc_size) stbl->SampleSize->alloc_size = stbl->SampleSize->sampleCount+nb_pack; stbl->SampleSize->sizes = (u32 *)gf_realloc(stbl->SampleSize->sizes, sizeof(u32)*stbl->SampleSize->alloc_size); if (!stbl->SampleSize->sizes) return GF_OUT_OF_MEM; memset(&stbl->SampleSize->sizes[stbl->SampleSize->sampleCount], 0, sizeof(u32) * (stbl->SampleSize->alloc_size - stbl->SampleSize->sampleCount) ); if (init_table) { for (i=0; i<stbl->SampleSize->sampleCount; i++) stbl->SampleSize->sizes[i] = stbl->SampleSize->sampleSize; } } stbl->SampleSize->sampleSize = 0; for (i=0; i<nb_pack; i++) { stbl->SampleSize->sizes[stbl->SampleSize->sampleCount+i] = size; } stbl->SampleSize->sampleCount += nb_pack; if (size > stbl->SampleSize->max_size) stbl->SampleSize->max_size = size; stbl->SampleSize->total_size += size; stbl->SampleSize->total_samples += nb_pack; return GF_OK; }
1
CVE-2021-32439
CWE-787
Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]. Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
9,574
quassel
8b5ecd226f9208af3074b33d3b7cf5e14f55b138
QByteArray Cipher::decrypt(QByteArray cipherText) { QByteArray pfx = ""; bool error = false; // used to flag non cbc, seems like good practice not to parse w/o regard for set encryption type //if we get cbc if (cipherText.mid(0, 5) == "+OK *") { //if we have cbc if (m_cbc) cipherText = cipherText.mid(5); //if we don't else { cipherText = cipherText.mid(5); pfx = "ERROR_NONECB: "; error = true; } } //if we get ecb else if (cipherText.mid(0, 4) == "+OK " || cipherText.mid(0, 5) == "mcps ") { //if we had cbc if (m_cbc) { cipherText = (cipherText.mid(0, 4) == "+OK ") ? cipherText.mid(4) : cipherText.mid(5); pfx = "ERROR_NONCBC: "; error = true; } //if we don't else { if (cipherText.mid(0, 4) == "+OK ") cipherText = cipherText.mid(4); else cipherText = cipherText.mid(5); } } //all other cases we fail else return cipherText; QByteArray temp; // (if cbc and no error we parse cbc) || (if ecb and error we parse cbc) if ((m_cbc && !error) || (!m_cbc && error)) { cipherText = cipherText; temp = blowfishCBC(cipherText, false); if (temp == cipherText) { // kDebug("Decryption from CBC Failed"); return cipherText+' '+'\n'; } else cipherText = temp; } else { temp = blowfishECB(cipherText, false); if (temp == cipherText) { // kDebug("Decryption from ECB Failed"); return cipherText+' '+'\n'; } else cipherText = temp; } // TODO FIXME the proper fix for this is to show encryption differently e.g. [nick] instead of <nick> // don't hate me for the mircryption reference there. if (cipherText.at(0) == 1) pfx = "\x0"; cipherText = pfx+cipherText+' '+'\n'; // FIXME(??) why is there an added space here? return cipherText; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,642
Chrome
0720b02e4f303ea6b114d4ae9453e3a7ff55f8dc
void WebContentsImpl::RunBeforeUnloadConfirm( RenderFrameHost* render_frame_host, bool is_reload, IPC::Message* reply_msg) { RenderFrameHostImpl* rfhi = static_cast<RenderFrameHostImpl*>(render_frame_host); if (delegate_) delegate_->WillRunBeforeUnloadConfirm(); bool suppress_this_message = !rfhi->is_active() || ShowingInterstitialPage() || !delegate_ || delegate_->ShouldSuppressDialogs(this) || !delegate_->GetJavaScriptDialogManager(this); if (suppress_this_message) { rfhi->JavaScriptDialogClosed(reply_msg, true, base::string16()); return; } is_showing_before_unload_dialog_ = true; dialog_manager_ = delegate_->GetJavaScriptDialogManager(this); dialog_manager_->RunBeforeUnloadDialog( this, is_reload, base::Bind(&WebContentsImpl::OnDialogClosed, base::Unretained(this), render_frame_host->GetProcess()->GetID(), render_frame_host->GetRoutingID(), reply_msg, false)); }
1
CVE-2017-5093
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
5,336
mongo
07b8851825836911265e909d6842d4586832f9bb
void DocumentSourceGroup::addAccumulator(AccumulationStatement accumulationStatement) { _accumulatedFields.push_back(accumulationStatement); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,515
openssl
76343947ada960b6269090638f5391068daee88d
static int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves, size_t *num_curves) { size_t pcurveslen = 0; if (sess) { *pcurves = s->session->tlsext_ellipticcurvelist; pcurveslen = s->session->tlsext_ellipticcurvelist_length; } else { /* For Suite B mode only include P-256, P-384 */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *pcurves = suiteb_curves; pcurveslen = sizeof(suiteb_curves); break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *pcurves = suiteb_curves; pcurveslen = 2; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *pcurves = suiteb_curves + 2; pcurveslen = 2; break; default: *pcurves = s->tlsext_ellipticcurvelist; pcurveslen = s->tlsext_ellipticcurvelist_length; } if (!*pcurves) { # ifdef OPENSSL_FIPS if (FIPS_mode()) { *pcurves = fips_curves_default; pcurveslen = sizeof(fips_curves_default); } else # endif { *pcurves = eccurves_default; pcurveslen = sizeof(eccurves_default); } } } /* We do not allow odd length arrays to enter the system. */ if (pcurveslen & 1) { SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR); *num_curves = 0; return 0; } else { *num_curves = pcurveslen / 2; return 1; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,450
ImageMagick
1f450bb5ba53d275de6d1cd086c98a0b549ad393
static MagickBooleanType WriteOnePNGImage(MngInfo *mng_info, const ImageInfo *IMimage_info,Image *IMimage,ExceptionInfo *exception) { char im_vers[32], libpng_runv[32], libpng_vers[32], zlib_runv[32], zlib_vers[32]; Image *image; ImageInfo *image_info; char *name, s[2]; const char *property, *value; const StringInfo *profile; int num_passes, pass, ping_wrote_caNv; png_byte ping_trans_alpha[256]; png_color palette[257]; png_color_16 ping_background, ping_trans_color; png_info *ping_info; png_struct *ping; png_uint_32 ping_height, ping_width; ssize_t y; MagickBooleanType image_matte, logging, matte, ping_have_blob, ping_have_cheap_transparency, ping_have_color, ping_have_non_bw, ping_have_PLTE, ping_have_bKGD, ping_have_eXIf, ping_have_iCCP, ping_have_pHYs, ping_have_sRGB, ping_have_tRNS, ping_exclude_bKGD, ping_exclude_cHRM, ping_exclude_date, /* ping_exclude_EXIF, */ ping_exclude_eXIf, ping_exclude_gAMA, ping_exclude_iCCP, /* ping_exclude_iTXt, */ ping_exclude_oFFs, ping_exclude_pHYs, ping_exclude_sRGB, ping_exclude_tEXt, ping_exclude_tIME, /* ping_exclude_tRNS, */ ping_exclude_caNv, ping_exclude_zCCP, /* hex-encoded iCCP */ ping_exclude_zTXt, ping_preserve_colormap, ping_preserve_iCCP, ping_need_colortype_warning, status, tried_332, tried_333, tried_444; MemoryInfo *volatile pixel_info; QuantumInfo *quantum_info; PNGErrorInfo error_info; register ssize_t i, x; unsigned char *ping_pixels; volatile int image_colors, ping_bit_depth, ping_color_type, ping_interlace_method, ping_compression_method, ping_filter_method, ping_num_trans; volatile size_t image_depth, old_bit_depth; size_t quality, rowbytes, save_image_depth; int j, number_colors, number_opaque, number_semitransparent, number_transparent, ping_pHYs_unit_type; png_uint_32 ping_pHYs_x_resolution, ping_pHYs_y_resolution; logging=LogMagickEvent(CoderEvent,GetMagickModule(), " Enter WriteOnePNGImage()"); image = CloneImage(IMimage,0,0,MagickFalse,exception); if (image == (Image *) NULL) return(MagickFalse); image_info=(ImageInfo *) CloneImageInfo(IMimage_info); /* Define these outside of the following "if logging()" block so they will * show in debuggers. */ *im_vers='\0'; (void) ConcatenateMagickString(im_vers, MagickLibVersionText,MagickPathExtent); (void) ConcatenateMagickString(im_vers, MagickLibAddendum,MagickPathExtent); *libpng_vers='\0'; (void) ConcatenateMagickString(libpng_vers, PNG_LIBPNG_VER_STRING,32); *libpng_runv='\0'; (void) ConcatenateMagickString(libpng_runv, png_get_libpng_ver(NULL),32); *zlib_vers='\0'; (void) ConcatenateMagickString(zlib_vers, ZLIB_VERSION,32); *zlib_runv='\0'; (void) ConcatenateMagickString(zlib_runv, zlib_version,32); if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " IM version = %s", im_vers); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Libpng version = %s", libpng_vers); if (LocaleCompare(libpng_vers,libpng_runv) != 0) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " running with %s", libpng_runv); } (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Zlib version = %s", zlib_vers); if (LocaleCompare(zlib_vers,zlib_runv) != 0) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " running with %s", zlib_runv); } } /* Initialize some stuff */ ping_bit_depth=0, ping_color_type=0, ping_interlace_method=0, ping_compression_method=0, ping_filter_method=0, ping_num_trans = 0; ping_background.red = 0; ping_background.green = 0; ping_background.blue = 0; ping_background.gray = 0; ping_background.index = 0; ping_trans_color.red=0; ping_trans_color.green=0; ping_trans_color.blue=0; ping_trans_color.gray=0; ping_pHYs_unit_type = 0; ping_pHYs_x_resolution = 0; ping_pHYs_y_resolution = 0; ping_have_blob=MagickFalse; ping_have_cheap_transparency=MagickFalse; ping_have_color=MagickTrue; ping_have_non_bw=MagickTrue; ping_have_PLTE=MagickFalse; ping_have_bKGD=MagickFalse; ping_have_eXIf=MagickTrue; ping_have_iCCP=MagickFalse; ping_have_pHYs=MagickFalse; ping_have_sRGB=MagickFalse; ping_have_tRNS=MagickFalse; ping_exclude_bKGD=mng_info->ping_exclude_bKGD; ping_exclude_caNv=mng_info->ping_exclude_caNv; ping_exclude_cHRM=mng_info->ping_exclude_cHRM; ping_exclude_date=mng_info->ping_exclude_date; ping_exclude_eXIf=mng_info->ping_exclude_eXIf; ping_exclude_gAMA=mng_info->ping_exclude_gAMA; ping_exclude_iCCP=mng_info->ping_exclude_iCCP; /* ping_exclude_iTXt=mng_info->ping_exclude_iTXt; */ ping_exclude_oFFs=mng_info->ping_exclude_oFFs; ping_exclude_pHYs=mng_info->ping_exclude_pHYs; ping_exclude_sRGB=mng_info->ping_exclude_sRGB; ping_exclude_tEXt=mng_info->ping_exclude_tEXt; ping_exclude_tIME=mng_info->ping_exclude_tIME; /* ping_exclude_tRNS=mng_info->ping_exclude_tRNS; */ ping_exclude_zCCP=mng_info->ping_exclude_zCCP; /* hex-encoded iCCP in zTXt */ ping_exclude_zTXt=mng_info->ping_exclude_zTXt; ping_preserve_colormap = mng_info->ping_preserve_colormap; ping_preserve_iCCP = mng_info->ping_preserve_iCCP; ping_need_colortype_warning = MagickFalse; /* Recognize the ICC sRGB profile and convert it to the sRGB chunk, * i.e., eliminate the ICC profile and set image->rendering_intent. * Note that this will not involve any changes to the actual pixels * but merely passes information to applications that read the resulting * PNG image. * * To do: recognize other variants of the sRGB profile, using the CRC to * verify all recognized variants including the 7 already known. * * Work around libpng16+ rejecting some "known invalid sRGB profiles". * * Use something other than image->rendering_intent to record the fact * that the sRGB profile was found. * * Record the ICC version (currently v2 or v4) of the incoming sRGB ICC * profile. Record the Blackpoint Compensation, if any. */ if (ping_exclude_sRGB == MagickFalse && ping_preserve_iCCP == MagickFalse) { ResetImageProfileIterator(image); for (name=GetNextImageProfile(image); name != (char *) NULL; ) { profile=GetImageProfile(image,name); if (profile != (StringInfo *) NULL) { if ((LocaleCompare(name,"ICC") == 0) || (LocaleCompare(name,"ICM") == 0)) { int icheck, got_crc=0; png_uint_32 length, profile_crc=0; unsigned char *data; length=(png_uint_32) GetStringInfoLength(profile); for (icheck=0; sRGB_info[icheck].len > 0; icheck++) { if (length == sRGB_info[icheck].len) { if (got_crc == 0) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Got a %lu-byte ICC profile (potentially sRGB)", (unsigned long) length); data=GetStringInfoDatum(profile); profile_crc=crc32(0,data,length); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " with crc=%8x",(unsigned int) profile_crc); got_crc++; } if (profile_crc == sRGB_info[icheck].crc) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " It is sRGB with rendering intent = %s", Magick_RenderingIntentString_from_PNG_RenderingIntent( sRGB_info[icheck].intent)); if (image->rendering_intent==UndefinedIntent) { image->rendering_intent= Magick_RenderingIntent_from_PNG_RenderingIntent( sRGB_info[icheck].intent); } ping_exclude_iCCP = MagickTrue; ping_exclude_zCCP = MagickTrue; ping_have_sRGB = MagickTrue; break; } } } if (sRGB_info[icheck].len == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Got %lu-byte ICC profile not recognized as sRGB", (unsigned long) length); } } name=GetNextImageProfile(image); } } number_opaque = 0; number_semitransparent = 0; number_transparent = 0; if (logging != MagickFalse) { if (image->storage_class == UndefinedClass) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->storage_class=UndefinedClass"); if (image->storage_class == DirectClass) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->storage_class=DirectClass"); if (image->storage_class == PseudoClass) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->storage_class=PseudoClass"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), image->taint ? " image->taint=MagickTrue": " image->taint=MagickFalse"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->gamma=%g", image->gamma); } if (image->storage_class == PseudoClass && (mng_info->write_png8 || mng_info->write_png24 || mng_info->write_png32 || mng_info->write_png48 || mng_info->write_png64 || (mng_info->write_png_colortype != 1 && mng_info->write_png_colortype != 5))) { (void) SyncImage(image,exception); image->storage_class = DirectClass; } if (ping_preserve_colormap == MagickFalse) { if ((image->storage_class != PseudoClass) && (image->colormap != (PixelInfo *) NULL)) { /* Free the bogus colormap; it can cause trouble later */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Freeing bogus colormap"); image->colormap=(PixelInfo *) RelinquishMagickMemory( image->colormap); } } if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse) (void) TransformImageColorspace(image,sRGBColorspace,exception); /* Sometimes we get PseudoClass images whose RGB values don't match the colors in the colormap. This code syncs the RGB values. */ image->depth=GetImageQuantumDepth(image,MagickFalse); if (image->depth <= 8 && image->taint && image->storage_class == PseudoClass) (void) SyncImage(image,exception); #if (MAGICKCORE_QUANTUM_DEPTH == 8) if (image->depth > 8) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Reducing PNG bit depth to 8 since this is a Q8 build."); image->depth=8; } #endif /* Respect the -depth option */ if (image->depth < 4) { register Quantum *r; if (image->depth > 2) { /* Scale to 4-bit */ LBR04PacketRGBA(image->background_color); for (y=0; y < (ssize_t) image->rows; y++) { r=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (r == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { LBR04PixelRGBA(r); r+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } if (image->storage_class == PseudoClass && image->colormap != NULL) { for (i=0; i < (ssize_t) image->colors; i++) { LBR04PacketRGBA(image->colormap[i]); } } } else if (image->depth > 1) { /* Scale to 2-bit */ LBR02PacketRGBA(image->background_color); for (y=0; y < (ssize_t) image->rows; y++) { r=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (r == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { LBR02PixelRGBA(r); r+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } if (image->storage_class == PseudoClass && image->colormap != NULL) { for (i=0; i < (ssize_t) image->colors; i++) { LBR02PacketRGBA(image->colormap[i]); } } } else { /* Scale to 1-bit */ LBR01PacketRGBA(image->background_color); for (y=0; y < (ssize_t) image->rows; y++) { r=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (r == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { LBR01PixelRGBA(r); r+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } if (image->storage_class == PseudoClass && image->colormap != NULL) { for (i=0; i < (ssize_t) image->colors; i++) { LBR01PacketRGBA(image->colormap[i]); } } } } /* To do: set to next higher multiple of 8 */ if (image->depth < 8) image->depth=8; #if (MAGICKCORE_QUANTUM_DEPTH > 16) /* PNG does not handle depths greater than 16 so reduce it even * if lossy */ if (image->depth > 8) image->depth=16; #endif #if (MAGICKCORE_QUANTUM_DEPTH > 8) if (image->depth > 8) { /* To do: fill low byte properly */ image->depth=16; } if (image->depth == 16 && mng_info->write_png_depth != 16) if (mng_info->write_png8 || LosslessReduceDepthOK(image,exception) != MagickFalse) image->depth = 8; #endif image_colors = (int) image->colors; number_opaque = (int) image->colors; number_transparent = 0; number_semitransparent = 0; if (mng_info->write_png_colortype && (mng_info->write_png_colortype > 4 || (mng_info->write_png_depth >= 8 && mng_info->write_png_colortype < 4 && image->alpha_trait == UndefinedPixelTrait))) { /* Avoid the expensive BUILD_PALETTE operation if we're sure that we * are not going to need the result. */ if (mng_info->write_png_colortype == 1 || mng_info->write_png_colortype == 5) ping_have_color=MagickFalse; if (image->alpha_trait != UndefinedPixelTrait) { number_transparent = 2; number_semitransparent = 1; } } if (mng_info->write_png_colortype < 7) { /* BUILD_PALETTE * * Normally we run this just once, but in the case of writing PNG8 * we reduce the transparency to binary and run again, then if there * are still too many colors we reduce to a simple 4-4-4-1, then 3-3-3-1 * RGBA palette and run again, and then to a simple 3-3-2-1 RGBA * palette. Then (To do) we take care of a final reduction that is only * needed if there are still 256 colors present and one of them has both * transparent and opaque instances. */ tried_332 = MagickFalse; tried_333 = MagickFalse; tried_444 = MagickFalse; if (image->depth != GetImageDepth(image,exception)) (void) SetImageDepth(image,image->depth,exception); for (j=0; j<6; j++) { /* * Sometimes we get DirectClass images that have 256 colors or fewer. * This code will build a colormap. * * Also, sometimes we get PseudoClass images with an out-of-date * colormap. This code will replace the colormap with a new one. * Sometimes we get PseudoClass images that have more than 256 colors. * This code will delete the colormap and change the image to * DirectClass. * * If image->alpha_trait is MagickFalse, we ignore the alpha channel * even though it sometimes contains left-over non-opaque values. * * Also we gather some information (number of opaque, transparent, * and semitransparent pixels, and whether the image has any non-gray * pixels or only black-and-white pixels) that we might need later. * * Even if the user wants to force GrayAlpha or RGBA (colortype 4 or 6) * we need to check for bogus non-opaque values, at least. */ int n; PixelInfo opaque[260], semitransparent[260], transparent[260]; register const Quantum *r; register Quantum *q; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Enter BUILD_PALETTE:"); if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->columns=%.20g",(double) image->columns); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->rows=%.20g",(double) image->rows); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->alpha_trait=%.20g",(double) image->alpha_trait); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->depth=%.20g",(double) image->depth); if (image->storage_class == PseudoClass && image->colormap != NULL) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Original colormap:"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " i (red,green,blue,alpha)"); for (i=0; i < MagickMin(image->colors,256); i++) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " %d (%d,%d,%d,%d)", (int) i, (int) image->colormap[i].red, (int) image->colormap[i].green, (int) image->colormap[i].blue, (int) image->colormap[i].alpha); } for (i=image->colors - 10; i < (ssize_t) image->colors; i++) { if (i > 255) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " %d (%d,%d,%d,%d)", (int) i, (int) image->colormap[i].red, (int) image->colormap[i].green, (int) image->colormap[i].blue, (int) image->colormap[i].alpha); } } } (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->colors=%d",(int) image->colors); if (image->colors == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " (zero means unknown)"); if (ping_preserve_colormap == MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Regenerate the colormap"); } image_colors=0; number_opaque = 0; number_semitransparent = 0; number_transparent = 0; for (y=0; y < (ssize_t) image->rows; y++) { r=GetVirtualPixels(image,0,y,image->columns,1,exception); if (r == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (image->alpha_trait == UndefinedPixelTrait || GetPixelAlpha(image,r) == OpaqueAlpha) { if (number_opaque < 259) { if (number_opaque == 0) { GetPixelInfoPixel(image,r,opaque); opaque[0].alpha=OpaqueAlpha; number_opaque=1; } for (i=0; i< (ssize_t) number_opaque; i++) { if (IsColorEqual(image,r,opaque+i)) break; } if (i == (ssize_t) number_opaque && number_opaque < 259) { number_opaque++; GetPixelInfoPixel(image,r,opaque+i); opaque[i].alpha=OpaqueAlpha; } } } else if (GetPixelAlpha(image,r) == TransparentAlpha) { if (number_transparent < 259) { if (number_transparent == 0) { GetPixelInfoPixel(image,r,transparent); ping_trans_color.red=(unsigned short) GetPixelRed(image,r); ping_trans_color.green=(unsigned short) GetPixelGreen(image,r); ping_trans_color.blue=(unsigned short) GetPixelBlue(image,r); ping_trans_color.gray=(unsigned short) GetPixelGray(image,r); number_transparent = 1; } for (i=0; i< (ssize_t) number_transparent; i++) { if (IsColorEqual(image,r,transparent+i)) break; } if (i == (ssize_t) number_transparent && number_transparent < 259) { number_transparent++; GetPixelInfoPixel(image,r,transparent+i); } } } else { if (number_semitransparent < 259) { if (number_semitransparent == 0) { GetPixelInfoPixel(image,r,semitransparent); number_semitransparent = 1; } for (i=0; i< (ssize_t) number_semitransparent; i++) { if (IsColorEqual(image,r,semitransparent+i) && GetPixelAlpha(image,r) == semitransparent[i].alpha) break; } if (i == (ssize_t) number_semitransparent && number_semitransparent < 259) { number_semitransparent++; GetPixelInfoPixel(image,r,semitransparent+i); } } } r+=GetPixelChannels(image); } } if (mng_info->write_png8 == MagickFalse && ping_exclude_bKGD == MagickFalse) { /* Add the background color to the palette, if it * isn't already there. */ if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Check colormap for background (%d,%d,%d)", (int) image->background_color.red, (int) image->background_color.green, (int) image->background_color.blue); } if (number_opaque < 259) { for (i=0; i<number_opaque; i++) { if (opaque[i].red == image->background_color.red && opaque[i].green == image->background_color.green && opaque[i].blue == image->background_color.blue) break; } if (i == number_opaque) { opaque[i] = image->background_color; ping_background.index = i; number_opaque++; if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " background_color index is %d",(int) i); } } } else if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " No room in the colormap to add background color"); } image_colors=number_opaque+number_transparent+number_semitransparent; if (logging != MagickFalse) { if (image_colors > 256) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image has more than 256 colors"); else (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image has %d colors",image_colors); } if (ping_preserve_colormap != MagickFalse) break; if (mng_info->write_png_colortype != 7) /* We won't need this info */ { ping_have_color=MagickFalse; ping_have_non_bw=MagickFalse; if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), "incompatible colorspace"); ping_have_color=MagickTrue; ping_have_non_bw=MagickTrue; } if(image_colors > 256) { for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; r=q; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelRed(image,r) != GetPixelGreen(image,r) || GetPixelRed(image,r) != GetPixelBlue(image,r)) { ping_have_color=MagickTrue; ping_have_non_bw=MagickTrue; break; } r+=GetPixelChannels(image); } if (ping_have_color != MagickFalse) break; /* Worst case is black-and-white; we are looking at every * pixel twice. */ if (ping_have_non_bw == MagickFalse) { r=q; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelRed(image,r) != 0 && GetPixelRed(image,r) != QuantumRange) { ping_have_non_bw=MagickTrue; break; } r+=GetPixelChannels(image); } } } } } if (image_colors < 257) { PixelInfo colormap[260]; /* * Initialize image colormap. */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Sort the new colormap"); /* Sort palette, transparent first */; n = 0; for (i=0; i<number_transparent; i++) colormap[n++] = transparent[i]; for (i=0; i<number_semitransparent; i++) colormap[n++] = semitransparent[i]; for (i=0; i<number_opaque; i++) colormap[n++] = opaque[i]; ping_background.index += (number_transparent + number_semitransparent); /* image_colors < 257; search the colormap instead of the pixels * to get ping_have_color and ping_have_non_bw */ for (i=0; i<n; i++) { if (ping_have_color == MagickFalse) { if (colormap[i].red != colormap[i].green || colormap[i].red != colormap[i].blue) { ping_have_color=MagickTrue; ping_have_non_bw=MagickTrue; break; } } if (ping_have_non_bw == MagickFalse) { if (colormap[i].red != 0 && colormap[i].red != QuantumRange) ping_have_non_bw=MagickTrue; } } if ((mng_info->ping_exclude_tRNS == MagickFalse || (number_transparent == 0 && number_semitransparent == 0)) && (((mng_info->write_png_colortype-1) == PNG_COLOR_TYPE_PALETTE) || (mng_info->write_png_colortype == 0))) { if (logging != MagickFalse) { if (n != (ssize_t) image_colors) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image_colors (%d) and n (%d) don't match", image_colors, n); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " AcquireImageColormap"); } image->colors = image_colors; if (AcquireImageColormap(image,image_colors,exception) == MagickFalse) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'", image->filename); break; } for (i=0; i< (ssize_t) image_colors; i++) image->colormap[i] = colormap[i]; if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->colors=%d (%d)", (int) image->colors, image_colors); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Update the pixel indexes"); } /* Sync the pixel indices with the new colormap */ for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { for (i=0; i< (ssize_t) image_colors; i++) { if ((image->alpha_trait == UndefinedPixelTrait || image->colormap[i].alpha == GetPixelAlpha(image,q)) && image->colormap[i].red == GetPixelRed(image,q) && image->colormap[i].green == GetPixelGreen(image,q) && image->colormap[i].blue == GetPixelBlue(image,q)) { SetPixelIndex(image,i,q); break; } } q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } } } if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->colors=%d", (int) image->colors); if (image->colormap != NULL) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " i (red,green,blue,alpha)"); for (i=0; i < (ssize_t) image->colors; i++) { if (i < 300 || i >= (ssize_t) image->colors - 10) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " %d (%d,%d,%d,%d)", (int) i, (int) image->colormap[i].red, (int) image->colormap[i].green, (int) image->colormap[i].blue, (int) image->colormap[i].alpha); } } } if (number_transparent < 257) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " number_transparent = %d", number_transparent); else (void) LogMagickEvent(CoderEvent,GetMagickModule(), " number_transparent > 256"); if (number_opaque < 257) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " number_opaque = %d", number_opaque); else (void) LogMagickEvent(CoderEvent,GetMagickModule(), " number_opaque > 256"); if (number_semitransparent < 257) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " number_semitransparent = %d", number_semitransparent); else (void) LogMagickEvent(CoderEvent,GetMagickModule(), " number_semitransparent > 256"); if (ping_have_non_bw == MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " All pixels and the background are black or white"); else if (ping_have_color == MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " All pixels and the background are gray"); else (void) LogMagickEvent(CoderEvent,GetMagickModule(), " At least one pixel or the background is non-gray"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Exit BUILD_PALETTE:"); } if (mng_info->write_png8 == MagickFalse) break; /* Make any reductions necessary for the PNG8 format */ if (image_colors <= 256 && image_colors != 0 && image->colormap != NULL && number_semitransparent == 0 && number_transparent <= 1) break; /* PNG8 can't have semitransparent colors so we threshold the * opacity to 0 or OpaqueOpacity, and PNG8 can only have one * transparent color so if more than one is transparent we merge * them into image->background_color. */ if (number_semitransparent != 0 || number_transparent > 1) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Thresholding the alpha channel to binary"); for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,q) < OpaqueAlpha/2) { SetPixelViaPixelInfo(image,&image->background_color,q); SetPixelAlpha(image,TransparentAlpha,q); } else SetPixelAlpha(image,OpaqueAlpha,q); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; if (image_colors != 0 && image_colors <= 256 && image->colormap != NULL) for (i=0; i<image_colors; i++) image->colormap[i].alpha = (image->colormap[i].alpha > TransparentAlpha/2 ? TransparentAlpha : OpaqueAlpha); } continue; } /* PNG8 can't have more than 256 colors so we quantize the pixels and * background color to the 4-4-4-1, 3-3-3-1 or 3-3-2-1 palette. If the * image is mostly gray, the 4-4-4-1 palette is likely to end up with 256 * colors or less. */ if (tried_444 == MagickFalse && (image_colors == 0 || image_colors > 256)) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the background color to 4-4-4"); tried_444 = MagickTrue; LBR04PacketRGB(image->background_color); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the pixel colors to 4-4-4"); if (image->colormap == NULL) { for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,q) == OpaqueAlpha) LBR04PixelRGB(q); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } } else /* Should not reach this; colormap already exists and must be <= 256 */ { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the colormap to 4-4-4"); for (i=0; i<image_colors; i++) { LBR04PacketRGB(image->colormap[i]); } } continue; } if (tried_333 == MagickFalse && (image_colors == 0 || image_colors > 256)) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the background color to 3-3-3"); tried_333 = MagickTrue; LBR03PacketRGB(image->background_color); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the pixel colors to 3-3-3-1"); if (image->colormap == NULL) { for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,q) == OpaqueAlpha) LBR03RGB(q); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } } else /* Should not reach this; colormap already exists and must be <= 256 */ { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the colormap to 3-3-3-1"); for (i=0; i<image_colors; i++) { LBR03PacketRGB(image->colormap[i]); } } continue; } if (tried_332 == MagickFalse && (image_colors == 0 || image_colors > 256)) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the background color to 3-3-2"); tried_332 = MagickTrue; /* Red and green were already done so we only quantize the blue * channel */ LBR02PacketBlue(image->background_color); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the pixel colors to 3-3-2-1"); if (image->colormap == NULL) { for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,q) == OpaqueAlpha) LBR02PixelBlue(q); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } } else /* Should not reach this; colormap already exists and must be <= 256 */ { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Quantizing the colormap to 3-3-2-1"); for (i=0; i<image_colors; i++) { LBR02PacketBlue(image->colormap[i]); } } continue; } if (image_colors == 0 || image_colors > 256) { /* Take care of special case with 256 opaque colors + 1 transparent * color. We don't need to quantize to 2-3-2-1; we only need to * eliminate one color, so we'll merge the two darkest red * colors (0x49, 0, 0) -> (0x24, 0, 0). */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Merging two dark red background colors to 3-3-2-1"); if (ScaleQuantumToChar(image->background_color.red) == 0x49 && ScaleQuantumToChar(image->background_color.green) == 0x00 && ScaleQuantumToChar(image->background_color.blue) == 0x00) { image->background_color.red=ScaleCharToQuantum(0x24); } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Merging two dark red pixel colors to 3-3-2-1"); if (image->colormap == NULL) { for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (ScaleQuantumToChar(GetPixelRed(image,q)) == 0x49 && ScaleQuantumToChar(GetPixelGreen(image,q)) == 0x00 && ScaleQuantumToChar(GetPixelBlue(image,q)) == 0x00 && GetPixelAlpha(image,q) == OpaqueAlpha) { SetPixelRed(image,ScaleCharToQuantum(0x24),q); } q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } } else { for (i=0; i<image_colors; i++) { if (ScaleQuantumToChar(image->colormap[i].red) == 0x49 && ScaleQuantumToChar(image->colormap[i].green) == 0x00 && ScaleQuantumToChar(image->colormap[i].blue) == 0x00) { image->colormap[i].red=ScaleCharToQuantum(0x24); } } } } } } /* END OF BUILD_PALETTE */ /* If we are excluding the tRNS chunk and there is transparency, * then we must write a Gray-Alpha (color-type 4) or RGBA (color-type 6) * PNG. */ if (mng_info->ping_exclude_tRNS != MagickFalse && (number_transparent != 0 || number_semitransparent != 0)) { unsigned int colortype=mng_info->write_png_colortype; if (ping_have_color == MagickFalse) mng_info->write_png_colortype = 5; else mng_info->write_png_colortype = 7; if (colortype != 0 && mng_info->write_png_colortype != colortype) ping_need_colortype_warning=MagickTrue; } /* See if cheap transparency is possible. It is only possible * when there is a single transparent color, no semitransparent * color, and no opaque color that has the same RGB components * as the transparent color. We only need this information if * we are writing a PNG with colortype 0 or 2, and we have not * excluded the tRNS chunk. */ if (number_transparent == 1 && mng_info->write_png_colortype < 4) { ping_have_cheap_transparency = MagickTrue; if (number_semitransparent != 0) ping_have_cheap_transparency = MagickFalse; else if (image_colors == 0 || image_colors > 256 || image->colormap == NULL) { register const Quantum *q; for (y=0; y < (ssize_t) image->rows; y++) { q=GetVirtualPixels(image,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,q) != TransparentAlpha && (unsigned short) GetPixelRed(image,q) == ping_trans_color.red && (unsigned short) GetPixelGreen(image,q) == ping_trans_color.green && (unsigned short) GetPixelBlue(image,q) == ping_trans_color.blue) { ping_have_cheap_transparency = MagickFalse; break; } q+=GetPixelChannels(image); } if (ping_have_cheap_transparency == MagickFalse) break; } } else { /* Assuming that image->colormap[0] is the one transparent color * and that all others are opaque. */ if (image_colors > 1) for (i=1; i<image_colors; i++) if (image->colormap[i].red == image->colormap[0].red && image->colormap[i].green == image->colormap[0].green && image->colormap[i].blue == image->colormap[0].blue) { ping_have_cheap_transparency = MagickFalse; break; } } if (logging != MagickFalse) { if (ping_have_cheap_transparency == MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Cheap transparency is not possible."); else (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Cheap transparency is possible."); } } else ping_have_cheap_transparency = MagickFalse; image_depth=image->depth; quantum_info = (QuantumInfo *) NULL; number_colors=0; image_colors=(int) image->colors; image_matte=image->alpha_trait != UndefinedPixelTrait ? MagickTrue : MagickFalse; if (mng_info->write_png_colortype < 5) mng_info->IsPalette=image->storage_class == PseudoClass && image_colors <= 256 && image->colormap != NULL; else mng_info->IsPalette = MagickFalse; if ((mng_info->write_png_colortype == 4 || mng_info->write_png8) && (image->colors == 0 || image->colormap == NULL)) { image_info=DestroyImageInfo(image_info); image=DestroyImage(image); (void) ThrowMagickException(exception,GetMagickModule(),CoderError, "Cannot write PNG8 or color-type 3; colormap is NULL", "`%s'",IMimage->filename); return(MagickFalse); } /* Allocate the PNG structures */ #ifdef PNG_USER_MEM_SUPPORTED error_info.image=image; error_info.exception=exception; ping=png_create_write_struct_2(PNG_LIBPNG_VER_STRING,&error_info, MagickPNGErrorHandler,MagickPNGWarningHandler,(void *) NULL, (png_malloc_ptr) Magick_png_malloc,(png_free_ptr) Magick_png_free); #else ping=png_create_write_struct(PNG_LIBPNG_VER_STRING,&error_info, MagickPNGErrorHandler,MagickPNGWarningHandler); #endif if (ping == (png_struct *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); ping_info=png_create_info_struct(ping); if (ping_info == (png_info *) NULL) { png_destroy_write_struct(&ping,(png_info **) NULL); ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); } png_set_write_fn(ping,image,png_put_data,png_flush_data); pixel_info=(MemoryInfo *) NULL; if (setjmp(png_jmpbuf(ping))) { /* PNG write failed. */ #ifdef PNG_DEBUG if (image_info->verbose) (void) printf("PNG write has failed.\n"); #endif png_destroy_write_struct(&ping,&ping_info); #ifdef IMPNG_SETJMP_NOT_THREAD_SAFE UnlockSemaphoreInfo(ping_semaphore); #endif if (pixel_info != (MemoryInfo *) NULL) pixel_info=RelinquishVirtualMemory(pixel_info); if (quantum_info != (QuantumInfo *) NULL) quantum_info=DestroyQuantumInfo(quantum_info); if (ping_have_blob != MagickFalse) (void) CloseBlob(image); image_info=DestroyImageInfo(image_info); image=DestroyImage(image); return(MagickFalse); } /* { For navigation to end of SETJMP-protected block. Within this * block, use png_error() instead of Throwing an Exception, to ensure * that libpng is able to clean up, and that the semaphore is unlocked. */ #ifdef IMPNG_SETJMP_NOT_THREAD_SAFE LockSemaphoreInfo(ping_semaphore); #endif #ifdef PNG_BENIGN_ERRORS_SUPPORTED /* Allow benign errors */ png_set_benign_errors(ping, 1); #endif #ifdef PNG_SET_USER_LIMITS_SUPPORTED /* Reject images with too many rows or columns */ png_set_user_limits(ping, (png_uint_32) MagickMin(0x7fffffffL, GetMagickResourceLimit(WidthResource)), (png_uint_32) MagickMin(0x7fffffffL, GetMagickResourceLimit(HeightResource))); #endif /* PNG_SET_USER_LIMITS_SUPPORTED */ /* Prepare PNG for writing. */ #if defined(PNG_MNG_FEATURES_SUPPORTED) if (mng_info->write_mng) { (void) png_permit_mng_features(ping,PNG_ALL_MNG_FEATURES); # ifdef PNG_WRITE_CHECK_FOR_INVALID_INDEX_SUPPORTED /* Disable new libpng-1.5.10 feature when writing a MNG because * zero-length PLTE is OK */ png_set_check_for_invalid_index (ping, 0); # endif } #else # ifdef PNG_WRITE_EMPTY_PLTE_SUPPORTED if (mng_info->write_mng) png_permit_empty_plte(ping,MagickTrue); # endif #endif x=0; ping_width=(png_uint_32) image->columns; ping_height=(png_uint_32) image->rows; if (mng_info->write_png8 || mng_info->write_png24 || mng_info->write_png32) image_depth=8; if (mng_info->write_png48 || mng_info->write_png64) image_depth=16; if (mng_info->write_png_depth != 0) image_depth=mng_info->write_png_depth; /* Adjust requested depth to next higher valid depth if necessary */ if (image_depth > 8) image_depth=16; if ((image_depth > 4) && (image_depth < 8)) image_depth=8; if (image_depth == 3) image_depth=4; if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " width=%.20g",(double) ping_width); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " height=%.20g",(double) ping_height); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image_matte=%.20g",(double) image->alpha_trait); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->depth=%.20g",(double) image->depth); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Tentative ping_bit_depth=%.20g",(double) image_depth); } save_image_depth=image_depth; ping_bit_depth=(png_byte) save_image_depth; #if defined(PNG_pHYs_SUPPORTED) if (ping_exclude_pHYs == MagickFalse) { if ((image->resolution.x != 0) && (image->resolution.y != 0) && (!mng_info->write_mng || !mng_info->equal_physs)) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up pHYs chunk"); if (image->units == PixelsPerInchResolution) { ping_pHYs_unit_type=PNG_RESOLUTION_METER; ping_pHYs_x_resolution= (png_uint_32) ((100.0*image->resolution.x+0.5)/2.54); ping_pHYs_y_resolution= (png_uint_32) ((100.0*image->resolution.y+0.5)/2.54); } else if (image->units == PixelsPerCentimeterResolution) { ping_pHYs_unit_type=PNG_RESOLUTION_METER; ping_pHYs_x_resolution=(png_uint_32) (100.0*image->resolution.x+0.5); ping_pHYs_y_resolution=(png_uint_32) (100.0*image->resolution.y+0.5); } else { ping_pHYs_unit_type=PNG_RESOLUTION_UNKNOWN; ping_pHYs_x_resolution=(png_uint_32) image->resolution.x; ping_pHYs_y_resolution=(png_uint_32) image->resolution.y; } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Set up PNG pHYs chunk: xres: %.20g, yres: %.20g, units: %d.", (double) ping_pHYs_x_resolution,(double) ping_pHYs_y_resolution, (int) ping_pHYs_unit_type); ping_have_pHYs = MagickTrue; } } #endif if (ping_exclude_bKGD == MagickFalse) { if ((!mng_info->adjoin || !mng_info->equal_backgrounds)) { unsigned int mask; mask=0xffff; if (ping_bit_depth == 8) mask=0x00ff; if (ping_bit_depth == 4) mask=0x000f; if (ping_bit_depth == 2) mask=0x0003; if (ping_bit_depth == 1) mask=0x0001; ping_background.red=(png_uint_16) (ScaleQuantumToShort(image->background_color.red) & mask); ping_background.green=(png_uint_16) (ScaleQuantumToShort(image->background_color.green) & mask); ping_background.blue=(png_uint_16) (ScaleQuantumToShort(image->background_color.blue) & mask); ping_background.gray=(png_uint_16) ping_background.green; } if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up bKGD chunk (1)"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " background_color index is %d", (int) ping_background.index); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " ping_bit_depth=%d",ping_bit_depth); } ping_have_bKGD = MagickTrue; } /* Select the color type. */ matte=image_matte; old_bit_depth=0; if (mng_info->IsPalette && mng_info->write_png8) { /* To do: make this a function cause it's used twice, except for reducing the sample depth from 8. */ number_colors=image_colors; ping_have_tRNS=MagickFalse; /* Set image palette. */ ping_color_type=(png_byte) PNG_COLOR_TYPE_PALETTE; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up PLTE chunk with %d colors (%d)", number_colors, image_colors); for (i=0; i < (ssize_t) number_colors; i++) { palette[i].red=ScaleQuantumToChar(image->colormap[i].red); palette[i].green=ScaleQuantumToChar(image->colormap[i].green); palette[i].blue=ScaleQuantumToChar(image->colormap[i].blue); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), #if MAGICKCORE_QUANTUM_DEPTH == 8 " %3ld (%3d,%3d,%3d)", #else " %5ld (%5d,%5d,%5d)", #endif (long) i,palette[i].red,palette[i].green,palette[i].blue); } ping_have_PLTE=MagickTrue; image_depth=ping_bit_depth; ping_num_trans=0; if (matte != MagickFalse) { /* Identify which colormap entry is transparent. */ assert(number_colors <= 256); assert(image->colormap != NULL); for (i=0; i < (ssize_t) number_transparent; i++) ping_trans_alpha[i]=0; ping_num_trans=(unsigned short) (number_transparent + number_semitransparent); if (ping_num_trans == 0) ping_have_tRNS=MagickFalse; else ping_have_tRNS=MagickTrue; } if (ping_exclude_bKGD == MagickFalse) { /* * Identify which colormap entry is the background color. */ for (i=0; i < (ssize_t) MagickMax(1L*number_colors-1L,1L); i++) if (IsPNGColorEqual(ping_background,image->colormap[i])) break; ping_background.index=(png_byte) i; if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " background_color index is %d", (int) ping_background.index); } } } /* end of write_png8 */ else if (mng_info->write_png_colortype == 1) { image_matte=MagickFalse; ping_color_type=(png_byte) PNG_COLOR_TYPE_GRAY; } else if (mng_info->write_png24 || mng_info->write_png48 || mng_info->write_png_colortype == 3) { image_matte=MagickFalse; ping_color_type=(png_byte) PNG_COLOR_TYPE_RGB; } else if (mng_info->write_png32 || mng_info->write_png64 || mng_info->write_png_colortype == 7) { image_matte=MagickTrue; ping_color_type=(png_byte) PNG_COLOR_TYPE_RGB_ALPHA; } else /* mng_info->write_pngNN not specified */ { image_depth=ping_bit_depth; if (mng_info->write_png_colortype != 0) { ping_color_type=(png_byte) mng_info->write_png_colortype-1; if (ping_color_type == PNG_COLOR_TYPE_GRAY_ALPHA || ping_color_type == PNG_COLOR_TYPE_RGB_ALPHA) image_matte=MagickTrue; else image_matte=MagickFalse; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " PNG colortype %d was specified:",(int) ping_color_type); } else /* write_png_colortype not specified */ { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Selecting PNG colortype:"); if (image_info->type == TrueColorType) { ping_color_type=(png_byte) PNG_COLOR_TYPE_RGB; image_matte=MagickFalse; } else if (image_info->type == TrueColorAlphaType) { ping_color_type=(png_byte) PNG_COLOR_TYPE_RGB_ALPHA; image_matte=MagickTrue; } else if (image_info->type == PaletteType || image_info->type == PaletteAlphaType) ping_color_type=(png_byte) PNG_COLOR_TYPE_PALETTE; else { if (ping_have_color == MagickFalse) { if (image_matte == MagickFalse) { ping_color_type=(png_byte) PNG_COLOR_TYPE_GRAY; image_matte=MagickFalse; } else { ping_color_type=(png_byte) PNG_COLOR_TYPE_GRAY_ALPHA; image_matte=MagickTrue; } } else { if (image_matte == MagickFalse) { ping_color_type=(png_byte) PNG_COLOR_TYPE_RGB; image_matte=MagickFalse; } else { ping_color_type=(png_byte) PNG_COLOR_TYPE_RGBA; image_matte=MagickTrue; } } } } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Selected PNG colortype=%d",ping_color_type); if (ping_bit_depth < 8) { if (ping_color_type == PNG_COLOR_TYPE_GRAY_ALPHA || ping_color_type == PNG_COLOR_TYPE_RGB || ping_color_type == PNG_COLOR_TYPE_RGB_ALPHA) ping_bit_depth=8; } old_bit_depth=ping_bit_depth; if (ping_color_type == PNG_COLOR_TYPE_GRAY) { if (image->alpha_trait == UndefinedPixelTrait && ping_have_non_bw == MagickFalse) ping_bit_depth=1; } if (ping_color_type == PNG_COLOR_TYPE_PALETTE) { size_t one = 1; ping_bit_depth=1; if (image->colors == 0) { /* DO SOMETHING */ png_error(ping,"image has 0 colors"); } while ((int) (one << ping_bit_depth) < (ssize_t) image_colors) ping_bit_depth <<= 1; } if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Number of colors: %.20g",(double) image_colors); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Tentative PNG bit depth: %d",ping_bit_depth); } if (ping_bit_depth < (int) mng_info->write_png_depth) ping_bit_depth = mng_info->write_png_depth; } (void) old_bit_depth; image_depth=ping_bit_depth; if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Tentative PNG color type: %s (%.20g)", PngColorTypeToString(ping_color_type), (double) ping_color_type); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image_info->type: %.20g",(double) image_info->type); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image_depth: %.20g",(double) image_depth); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->depth: %.20g",(double) image->depth); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " ping_bit_depth: %.20g",(double) ping_bit_depth); } if (matte != MagickFalse) { if (mng_info->IsPalette) { if (mng_info->write_png_colortype == 0) { ping_color_type=PNG_COLOR_TYPE_GRAY_ALPHA; if (ping_have_color != MagickFalse) ping_color_type=PNG_COLOR_TYPE_RGBA; } /* * Determine if there is any transparent color. */ if (number_transparent + number_semitransparent == 0) { /* No transparent pixels are present. Change 4 or 6 to 0 or 2. */ image_matte=MagickFalse; if (mng_info->write_png_colortype == 0) ping_color_type&=0x03; } else { unsigned int mask; mask=0xffff; if (ping_bit_depth == 8) mask=0x00ff; if (ping_bit_depth == 4) mask=0x000f; if (ping_bit_depth == 2) mask=0x0003; if (ping_bit_depth == 1) mask=0x0001; ping_trans_color.red=(png_uint_16) (ScaleQuantumToShort(image->colormap[0].red) & mask); ping_trans_color.green=(png_uint_16) (ScaleQuantumToShort(image->colormap[0].green) & mask); ping_trans_color.blue=(png_uint_16) (ScaleQuantumToShort(image->colormap[0].blue) & mask); ping_trans_color.gray=(png_uint_16) (ScaleQuantumToShort(GetPixelInfoIntensity(image, image->colormap)) & mask); ping_trans_color.index=(png_byte) 0; ping_have_tRNS=MagickTrue; } if (ping_have_tRNS != MagickFalse) { /* * Determine if there is one and only one transparent color * and if so if it is fully transparent. */ if (ping_have_cheap_transparency == MagickFalse) ping_have_tRNS=MagickFalse; } if (ping_have_tRNS != MagickFalse) { if (mng_info->write_png_colortype == 0) ping_color_type &= 0x03; /* changes 4 or 6 to 0 or 2 */ if (image_depth == 8) { ping_trans_color.red&=0xff; ping_trans_color.green&=0xff; ping_trans_color.blue&=0xff; ping_trans_color.gray&=0xff; } } } else { if (image_depth == 8) { ping_trans_color.red&=0xff; ping_trans_color.green&=0xff; ping_trans_color.blue&=0xff; ping_trans_color.gray&=0xff; } } } matte=image_matte; if (ping_have_tRNS != MagickFalse) image_matte=MagickFalse; if ((mng_info->IsPalette) && mng_info->write_png_colortype-1 != PNG_COLOR_TYPE_PALETTE && ping_have_color == MagickFalse && (image_matte == MagickFalse || image_depth >= 8)) { size_t one=1; if (image_matte != MagickFalse) ping_color_type=PNG_COLOR_TYPE_GRAY_ALPHA; else if (mng_info->write_png_colortype-1 != PNG_COLOR_TYPE_GRAY_ALPHA) { ping_color_type=PNG_COLOR_TYPE_GRAY; if (save_image_depth == 16 && image_depth == 8) { if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Scaling ping_trans_color (0)"); } ping_trans_color.gray*=0x0101; } } if (image_depth > MAGICKCORE_QUANTUM_DEPTH) image_depth=MAGICKCORE_QUANTUM_DEPTH; if ((image_colors == 0) || ((ssize_t) (image_colors-1) > (ssize_t) MaxColormapSize)) image_colors=(int) (one << image_depth); if (image_depth > 8) ping_bit_depth=16; else { ping_bit_depth=8; if ((int) ping_color_type == PNG_COLOR_TYPE_PALETTE) { if(!mng_info->write_png_depth) { ping_bit_depth=1; while ((int) (one << ping_bit_depth) < (ssize_t) image_colors) ping_bit_depth <<= 1; } } else if (ping_color_type == PNG_COLOR_TYPE_GRAY && image_colors < 17 && mng_info->IsPalette) { /* Check if grayscale is reducible */ int depth_4_ok=MagickTrue, depth_2_ok=MagickTrue, depth_1_ok=MagickTrue; for (i=0; i < (ssize_t) image_colors; i++) { unsigned char intensity; intensity=ScaleQuantumToChar(image->colormap[i].red); if ((intensity & 0x0f) != ((intensity & 0xf0) >> 4)) depth_4_ok=depth_2_ok=depth_1_ok=MagickFalse; else if ((intensity & 0x03) != ((intensity & 0x0c) >> 2)) depth_2_ok=depth_1_ok=MagickFalse; else if ((intensity & 0x01) != ((intensity & 0x02) >> 1)) depth_1_ok=MagickFalse; } if (depth_1_ok && mng_info->write_png_depth <= 1) ping_bit_depth=1; else if (depth_2_ok && mng_info->write_png_depth <= 2) ping_bit_depth=2; else if (depth_4_ok && mng_info->write_png_depth <= 4) ping_bit_depth=4; } } image_depth=ping_bit_depth; } else if (mng_info->IsPalette) { number_colors=image_colors; if (image_depth <= 8) { /* Set image palette. */ ping_color_type=(png_byte) PNG_COLOR_TYPE_PALETTE; if (!(mng_info->have_write_global_plte && matte == MagickFalse)) { for (i=0; i < (ssize_t) number_colors; i++) { palette[i].red=ScaleQuantumToChar(image->colormap[i].red); palette[i].green= ScaleQuantumToChar(image->colormap[i].green); palette[i].blue=ScaleQuantumToChar(image->colormap[i].blue); } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up PLTE chunk with %d colors", number_colors); ping_have_PLTE=MagickTrue; } /* color_type is PNG_COLOR_TYPE_PALETTE */ if (mng_info->write_png_depth == 0) { size_t one; ping_bit_depth=1; one=1; while ((one << ping_bit_depth) < (size_t) number_colors) ping_bit_depth <<= 1; } ping_num_trans=0; if (matte != MagickFalse) { /* * Set up trans_colors array. */ assert(number_colors <= 256); ping_num_trans=(unsigned short) (number_transparent + number_semitransparent); if (ping_num_trans == 0) ping_have_tRNS=MagickFalse; else { if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Scaling ping_trans_color (1)"); } ping_have_tRNS=MagickTrue; for (i=0; i < ping_num_trans; i++) { ping_trans_alpha[i]= (png_byte) ScaleQuantumToChar(image->colormap[i].alpha); } } } } } else { if (image_depth < 8) image_depth=8; if ((save_image_depth == 16) && (image_depth == 8)) { if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Scaling ping_trans_color from (%d,%d,%d)", (int) ping_trans_color.red, (int) ping_trans_color.green, (int) ping_trans_color.blue); } ping_trans_color.red*=0x0101; ping_trans_color.green*=0x0101; ping_trans_color.blue*=0x0101; ping_trans_color.gray*=0x0101; if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " to (%d,%d,%d)", (int) ping_trans_color.red, (int) ping_trans_color.green, (int) ping_trans_color.blue); } } } if (ping_bit_depth < (ssize_t) mng_info->write_png_depth) ping_bit_depth = (ssize_t) mng_info->write_png_depth; /* Adjust background and transparency samples in sub-8-bit grayscale files. */ if (ping_bit_depth < 8 && ping_color_type == PNG_COLOR_TYPE_GRAY) { png_uint_16 maxval; size_t one=1; maxval=(png_uint_16) ((one << ping_bit_depth)-1); if (ping_exclude_bKGD == MagickFalse) { ping_background.gray=(png_uint_16) ((maxval/65535.)* (ScaleQuantumToShort(((GetPixelInfoIntensity(image, &image->background_color))) +.5))); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up bKGD chunk (2)"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " background_color index is %d", (int) ping_background.index); ping_have_bKGD = MagickTrue; } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Scaling ping_trans_color.gray from %d", (int)ping_trans_color.gray); ping_trans_color.gray=(png_uint_16) ((maxval/255.)*( ping_trans_color.gray)+.5); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " to %d", (int)ping_trans_color.gray); } if (ping_exclude_bKGD == MagickFalse) { if (mng_info->IsPalette && (int) ping_color_type == PNG_COLOR_TYPE_PALETTE) { /* Identify which colormap entry is the background color. */ number_colors=image_colors; for (i=0; i < (ssize_t) MagickMax(1L*number_colors,1L); i++) if (IsPNGColorEqual(image->background_color,image->colormap[i])) break; ping_background.index=(png_byte) i; if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up bKGD chunk with index=%d",(int) i); } if (i < (ssize_t) number_colors) { ping_have_bKGD = MagickTrue; if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " background =(%d,%d,%d)", (int) ping_background.red, (int) ping_background.green, (int) ping_background.blue); } } else /* Can't happen */ { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " No room in PLTE to add bKGD color"); ping_have_bKGD = MagickFalse; } } } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " PNG color type: %s (%d)", PngColorTypeToString(ping_color_type), ping_color_type); /* Initialize compression level and filtering. */ if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up deflate compression"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Compression buffer size: 32768"); } png_set_compression_buffer_size(ping,32768L); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Compression mem level: 9"); png_set_compression_mem_level(ping, 9); /* Untangle the "-quality" setting: Undefined is 0; the default is used. Default is 75 10's digit: 0 or omitted: Use Z_HUFFMAN_ONLY strategy with the zlib default compression level 1-9: the zlib compression level 1's digit: 0-4: the PNG filter method 5: libpng adaptive filtering if compression level > 5 libpng filter type "none" if compression level <= 5 or if image is grayscale or palette 6: libpng adaptive filtering 7: "LOCO" filtering (intrapixel differing) if writing a MNG, otherwise "none". Did not work in IM-6.7.0-9 and earlier because of a missing "else". 8: Z_RLE strategy (or Z_HUFFMAN_ONLY if quality < 10), adaptive filtering. Unused prior to IM-6.7.0-10, was same as 6 9: Z_RLE strategy (or Z_HUFFMAN_ONLY if quality < 10), no PNG filters Unused prior to IM-6.7.0-10, was same as 6 Note that using the -quality option, not all combinations of PNG filter type, zlib compression level, and zlib compression strategy are possible. This will be addressed soon in a release that accomodates "-define png:compression-strategy", etc. */ quality=image_info->quality == UndefinedCompressionQuality ? 75UL : image_info->quality; if (quality <= 9) { if (mng_info->write_png_compression_strategy == 0) mng_info->write_png_compression_strategy = Z_HUFFMAN_ONLY+1; } else if (mng_info->write_png_compression_level == 0) { int level; level=(int) MagickMin((ssize_t) quality/10,9); mng_info->write_png_compression_level = level+1; } if (mng_info->write_png_compression_strategy == 0) { if ((quality %10) == 8 || (quality %10) == 9) #ifdef Z_RLE /* Z_RLE was added to zlib-1.2.0 */ mng_info->write_png_compression_strategy=Z_RLE+1; #else mng_info->write_png_compression_strategy = Z_DEFAULT_STRATEGY+1; #endif } if (mng_info->write_png_compression_filter == 0) mng_info->write_png_compression_filter=((int) quality % 10) + 1; if (logging != MagickFalse) { if (mng_info->write_png_compression_level) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Compression level: %d", (int) mng_info->write_png_compression_level-1); if (mng_info->write_png_compression_strategy) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Compression strategy: %d", (int) mng_info->write_png_compression_strategy-1); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up filtering"); if (mng_info->write_png_compression_filter == 6) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Base filter method: ADAPTIVE"); else if (mng_info->write_png_compression_filter == 0 || mng_info->write_png_compression_filter == 1) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Base filter method: NONE"); else (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Base filter method: %d", (int) mng_info->write_png_compression_filter-1); } if (mng_info->write_png_compression_level != 0) png_set_compression_level(ping,mng_info->write_png_compression_level-1); if (mng_info->write_png_compression_filter == 6) { if (((int) ping_color_type == PNG_COLOR_TYPE_GRAY) || ((int) ping_color_type == PNG_COLOR_TYPE_PALETTE) || (quality < 50)) png_set_filter(ping,PNG_FILTER_TYPE_BASE,PNG_NO_FILTERS); else png_set_filter(ping,PNG_FILTER_TYPE_BASE,PNG_ALL_FILTERS); } else if (mng_info->write_png_compression_filter == 7 || mng_info->write_png_compression_filter == 10) png_set_filter(ping,PNG_FILTER_TYPE_BASE,PNG_ALL_FILTERS); else if (mng_info->write_png_compression_filter == 8) { #if defined(PNG_MNG_FEATURES_SUPPORTED) && defined(PNG_INTRAPIXEL_DIFFERENCING) if (mng_info->write_mng) { if (((int) ping_color_type == PNG_COLOR_TYPE_RGB) || ((int) ping_color_type == PNG_COLOR_TYPE_RGBA)) ping_filter_method=PNG_INTRAPIXEL_DIFFERENCING; } #endif png_set_filter(ping,PNG_FILTER_TYPE_BASE,PNG_NO_FILTERS); } else if (mng_info->write_png_compression_filter == 9) png_set_filter(ping,PNG_FILTER_TYPE_BASE,PNG_NO_FILTERS); else if (mng_info->write_png_compression_filter != 0) png_set_filter(ping,PNG_FILTER_TYPE_BASE, mng_info->write_png_compression_filter-1); if (mng_info->write_png_compression_strategy != 0) png_set_compression_strategy(ping, mng_info->write_png_compression_strategy-1); ping_interlace_method=image_info->interlace != NoInterlace; if (mng_info->write_mng) png_set_sig_bytes(ping,8); /* Bail out if cannot meet defined png:bit-depth or png:color-type */ if (mng_info->write_png_colortype != 0) { if (mng_info->write_png_colortype-1 == PNG_COLOR_TYPE_GRAY) if (ping_have_color != MagickFalse) { ping_color_type = PNG_COLOR_TYPE_RGB; if (ping_bit_depth < 8) ping_bit_depth=8; } if (mng_info->write_png_colortype-1 == PNG_COLOR_TYPE_GRAY_ALPHA) if (ping_have_color != MagickFalse) ping_color_type = PNG_COLOR_TYPE_RGB_ALPHA; } if (ping_need_colortype_warning != MagickFalse || ((mng_info->write_png_depth && (int) mng_info->write_png_depth != ping_bit_depth) || (mng_info->write_png_colortype && ((int) mng_info->write_png_colortype-1 != ping_color_type && mng_info->write_png_colortype != 7 && !(mng_info->write_png_colortype == 5 && ping_color_type == 0))))) { if (logging != MagickFalse) { if (ping_need_colortype_warning != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Image has transparency but tRNS chunk was excluded"); } if (mng_info->write_png_depth) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Defined png:bit-depth=%u, Computed depth=%u", mng_info->write_png_depth, ping_bit_depth); } if (mng_info->write_png_colortype) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Defined png:color-type=%u, Computed color type=%u", mng_info->write_png_colortype-1, ping_color_type); } } png_warning(ping, "Cannot write image with defined png:bit-depth or png:color-type."); } if (image_matte != MagickFalse && image->alpha_trait == UndefinedPixelTrait) { /* Add an opaque matte channel */ image->alpha_trait = BlendPixelTrait; (void) SetImageAlpha(image,OpaqueAlpha,exception); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Added an opaque matte channel"); } if (number_transparent != 0 || number_semitransparent != 0) { if (ping_color_type < 4) { ping_have_tRNS=MagickTrue; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting ping_have_tRNS=MagickTrue."); } } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing PNG header chunks"); png_set_IHDR(ping,ping_info,ping_width,ping_height, ping_bit_depth,ping_color_type, ping_interlace_method,ping_compression_method, ping_filter_method); if (ping_color_type == 3 && ping_have_PLTE != MagickFalse) { png_set_PLTE(ping,ping_info,palette,number_colors); if (logging != MagickFalse) { for (i=0; i< (ssize_t) number_colors; i++) { if (i < ping_num_trans) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " PLTE[%d] = (%d,%d,%d), tRNS[%d] = (%d)", (int) i, (int) palette[i].red, (int) palette[i].green, (int) palette[i].blue, (int) i, (int) ping_trans_alpha[i]); else (void) LogMagickEvent(CoderEvent,GetMagickModule(), " PLTE[%d] = (%d,%d,%d)", (int) i, (int) palette[i].red, (int) palette[i].green, (int) palette[i].blue); } } } /* Only write the iCCP chunk if we are not writing the sRGB chunk. */ if (ping_exclude_sRGB != MagickFalse || (!png_get_valid(ping,ping_info,PNG_INFO_sRGB))) { if ((ping_exclude_tEXt == MagickFalse || ping_exclude_zTXt == MagickFalse) && (ping_exclude_iCCP == MagickFalse || ping_exclude_zCCP == MagickFalse)) { ResetImageProfileIterator(image); for (name=GetNextImageProfile(image); name != (char *) NULL; ) { profile=GetImageProfile(image,name); if (profile != (StringInfo *) NULL) { #ifdef PNG_WRITE_iCCP_SUPPORTED if ((LocaleCompare(name,"ICC") == 0) || (LocaleCompare(name,"ICM") == 0)) { ping_have_iCCP = MagickTrue; if (ping_exclude_iCCP == MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up iCCP chunk"); png_set_iCCP(ping,ping_info,(png_charp) name,0, #if (PNG_LIBPNG_VER < 10500) (png_charp) GetStringInfoDatum(profile), #else (const png_byte *) GetStringInfoDatum(profile), #endif (png_uint_32) GetStringInfoLength(profile)); } else { /* Do not write hex-encoded ICC chunk */ name=GetNextImageProfile(image); continue; } } #endif /* WRITE_iCCP */ if (LocaleCompare(name,"exif") == 0) { /* Do not write hex-encoded ICC chunk; we will write it later as an eXIf chunk */ name=GetNextImageProfile(image); continue; } (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up zTXt chunk with uuencoded %s profile", name); Magick_png_write_raw_profile(image_info,ping,ping_info, (unsigned char *) name,(unsigned char *) name, GetStringInfoDatum(profile), (png_uint_32) GetStringInfoLength(profile)); } name=GetNextImageProfile(image); } } } #if defined(PNG_WRITE_sRGB_SUPPORTED) if ((mng_info->have_write_global_srgb == 0) && ping_have_iCCP != MagickTrue && (ping_have_sRGB != MagickFalse || png_get_valid(ping,ping_info,PNG_INFO_sRGB))) { if (ping_exclude_sRGB == MagickFalse) { /* Note image rendering intent. */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up sRGB chunk"); (void) png_set_sRGB(ping,ping_info,( Magick_RenderingIntent_to_PNG_RenderingIntent( image->rendering_intent))); ping_have_sRGB = MagickTrue; } } if ((!mng_info->write_mng) || (!png_get_valid(ping,ping_info,PNG_INFO_sRGB))) #endif { if (ping_exclude_gAMA == MagickFalse && ping_have_iCCP == MagickFalse && ping_have_sRGB == MagickFalse && (ping_exclude_sRGB == MagickFalse || (image->gamma < .45 || image->gamma > .46))) { if ((mng_info->have_write_global_gama == 0) && (image->gamma != 0.0)) { /* Note image gamma. To do: check for cHRM+gAMA == sRGB, and write sRGB instead. */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up gAMA chunk"); png_set_gAMA(ping,ping_info,image->gamma); } } if (ping_exclude_cHRM == MagickFalse && ping_have_sRGB == MagickFalse) { if ((mng_info->have_write_global_chrm == 0) && (image->chromaticity.red_primary.x != 0.0)) { /* Note image chromaticity. Note: if cHRM+gAMA == sRGB write sRGB instead. */ PrimaryInfo bp, gp, rp, wp; wp=image->chromaticity.white_point; rp=image->chromaticity.red_primary; gp=image->chromaticity.green_primary; bp=image->chromaticity.blue_primary; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up cHRM chunk"); png_set_cHRM(ping,ping_info,wp.x,wp.y,rp.x,rp.y,gp.x,gp.y, bp.x,bp.y); } } } if (ping_exclude_bKGD == MagickFalse) { if (ping_have_bKGD != MagickFalse) { png_set_bKGD(ping,ping_info,&ping_background); if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up bKGD chunk"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " background color = (%d,%d,%d)", (int) ping_background.red, (int) ping_background.green, (int) ping_background.blue); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " index = %d, gray=%d", (int) ping_background.index, (int) ping_background.gray); } } } if (ping_exclude_pHYs == MagickFalse) { if (ping_have_pHYs != MagickFalse) { png_set_pHYs(ping,ping_info, ping_pHYs_x_resolution, ping_pHYs_y_resolution, ping_pHYs_unit_type); if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up pHYs chunk"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " x_resolution=%lu", (unsigned long) ping_pHYs_x_resolution); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " y_resolution=%lu", (unsigned long) ping_pHYs_y_resolution); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " unit_type=%lu", (unsigned long) ping_pHYs_unit_type); } } } #if defined(PNG_tIME_SUPPORTED) if (ping_exclude_tIME == MagickFalse) { const char *timestamp; if (image->taint == MagickFalse) { timestamp=GetImageOption(image_info,"png:tIME"); if (timestamp == (const char *) NULL) timestamp=GetImageProperty(image,"png:tIME",exception); } else { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Reset tIME in tainted image"); timestamp=GetImageProperty(image,"date:modify",exception); } if (timestamp != (const char *) NULL) write_tIME_chunk(image,ping,ping_info,timestamp,exception); } #endif if (mng_info->need_blob != MagickFalse) { if (OpenBlob(image_info,image,WriteBinaryBlobMode,exception) == MagickFalse) png_error(ping,"WriteBlob Failed"); ping_have_blob=MagickTrue; } png_write_info_before_PLTE(ping, ping_info); if (ping_have_tRNS != MagickFalse && ping_color_type < 4) { if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Calling png_set_tRNS with num_trans=%d",ping_num_trans); } if (ping_color_type == 3) (void) png_set_tRNS(ping, ping_info, ping_trans_alpha, ping_num_trans, NULL); else { (void) png_set_tRNS(ping, ping_info, NULL, 0, &ping_trans_color); if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " tRNS color =(%d,%d,%d)", (int) ping_trans_color.red, (int) ping_trans_color.green, (int) ping_trans_color.blue); } } } png_write_info(ping,ping_info); /* write orNT if image->orientation is defined */ if (image->orientation != UndefinedOrientation) { unsigned char chunk[6]; (void) WriteBlobMSBULong(image,1L); /* data length=1 */ PNGType(chunk,mng_orNT); LogPNGChunk(logging,mng_orNT,1L); /* PNG uses Exif orientation values */ chunk[4]=Magick_Orientation_to_Exif_Orientation(image->orientation); (void) WriteBlob(image,5,chunk); (void) WriteBlobMSBULong(image,crc32(0,chunk,5)); } ping_wrote_caNv = MagickFalse; /* write caNv chunk */ if (ping_exclude_caNv == MagickFalse) { if ((image->page.width != 0 && image->page.width != image->columns) || (image->page.height != 0 && image->page.height != image->rows) || image->page.x != 0 || image->page.y != 0) { unsigned char chunk[20]; (void) WriteBlobMSBULong(image,16L); /* data length=8 */ PNGType(chunk,mng_caNv); LogPNGChunk(logging,mng_caNv,16L); PNGLong(chunk+4,(png_uint_32) image->page.width); PNGLong(chunk+8,(png_uint_32) image->page.height); PNGsLong(chunk+12,(png_int_32) image->page.x); PNGsLong(chunk+16,(png_int_32) image->page.y); (void) WriteBlob(image,20,chunk); (void) WriteBlobMSBULong(image,crc32(0,chunk,20)); ping_wrote_caNv = MagickTrue; } } #if defined(PNG_oFFs_SUPPORTED) if (ping_exclude_oFFs == MagickFalse && ping_wrote_caNv == MagickFalse) { if (image->page.x || image->page.y) { png_set_oFFs(ping,ping_info,(png_int_32) image->page.x, (png_int_32) image->page.y, 0); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up oFFs chunk with x=%d, y=%d, units=0", (int) image->page.x, (int) image->page.y); } } #endif #if (PNG_LIBPNG_VER == 10206) /* avoid libpng-1.2.6 bug by setting PNG_HAVE_IDAT flag */ #define PNG_HAVE_IDAT 0x04 ping->mode |= PNG_HAVE_IDAT; #undef PNG_HAVE_IDAT #endif png_set_packing(ping); /* Allocate memory. */ rowbytes=image->columns; if (image_depth > 8) rowbytes*=2; switch (ping_color_type) { case PNG_COLOR_TYPE_RGB: rowbytes*=3; break; case PNG_COLOR_TYPE_GRAY_ALPHA: rowbytes*=2; break; case PNG_COLOR_TYPE_RGBA: rowbytes*=4; break; default: break; } if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing PNG image data"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Allocating %.20g bytes of memory for pixels",(double) rowbytes); } pixel_info=AcquireVirtualMemory(rowbytes,sizeof(*ping_pixels)); if (pixel_info == (MemoryInfo *) NULL) png_error(ping,"Allocation of memory for pixels failed"); ping_pixels=(unsigned char *) GetVirtualMemoryBlob(pixel_info); (void) memset(ping_pixels,0,rowbytes*sizeof(*ping_pixels)); /* Initialize image scanlines. */ quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) png_error(ping,"Memory allocation for quantum_info failed"); quantum_info->format=UndefinedQuantumFormat; SetQuantumDepth(image,quantum_info,image_depth); (void) SetQuantumEndian(image,quantum_info,MSBEndian); num_passes=png_set_interlace_handling(ping); if ((mng_info->write_png_colortype-1 == PNG_COLOR_TYPE_PALETTE) || ((!mng_info->write_png8 && !mng_info->write_png24 && !mng_info->write_png48 && !mng_info->write_png64 && !mng_info->write_png32) && (mng_info->IsPalette || (image_info->type == BilevelType)) && image_matte == MagickFalse && ping_have_non_bw == MagickFalse)) { /* Palette, Bilevel, or Opaque Monochrome */ QuantumType quantum_type; register const Quantum *p; quantum_type=RedQuantum; if (mng_info->IsPalette) { quantum_type=GrayQuantum; if (mng_info->write_png_colortype-1 == PNG_COLOR_TYPE_PALETTE) quantum_type=IndexQuantum; } SetQuantumDepth(image,quantum_info,8); for (pass=0; pass < num_passes; pass++) { /* Convert PseudoClass image to a PNG monochrome image. */ for (y=0; y < (ssize_t) image->rows; y++) { if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing row of pixels (0)"); p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,quantum_type,ping_pixels,exception); if (mng_info->write_png_colortype-1 != PNG_COLOR_TYPE_PALETTE) for (i=0; i < (ssize_t) image->columns; i++) *(ping_pixels+i)=(unsigned char) ((*(ping_pixels+i) > 127) ? 255 : 0); if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing row of pixels (1)"); png_write_row(ping,ping_pixels); status=SetImageProgress(image,SaveImageTag, (MagickOffsetType) (pass * image->rows + y), num_passes * image->rows); if (status == MagickFalse) break; } } } else /* Not Palette, Bilevel, or Opaque Monochrome */ { if ((!mng_info->write_png8 && !mng_info->write_png24 && !mng_info->write_png48 && !mng_info->write_png64 && !mng_info->write_png32) && (image_matte != MagickFalse || (ping_bit_depth >= MAGICKCORE_QUANTUM_DEPTH)) && (mng_info->IsPalette) && ping_have_color == MagickFalse) { register const Quantum *p; for (pass=0; pass < num_passes; pass++) { for (y=0; y < (ssize_t) image->rows; y++) { p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; if (ping_color_type == PNG_COLOR_TYPE_GRAY) { if (mng_info->IsPalette) (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,GrayQuantum,ping_pixels,exception); else (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,RedQuantum,ping_pixels,exception); if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing GRAY PNG pixels (2)"); } else /* PNG_COLOR_TYPE_GRAY_ALPHA */ { if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing GRAY_ALPHA PNG pixels (2)"); (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,GrayAlphaQuantum,ping_pixels,exception); } if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing row of pixels (2)"); png_write_row(ping,ping_pixels); status=SetImageProgress(image,SaveImageTag, (MagickOffsetType) (pass * image->rows + y), num_passes * image->rows); if (status == MagickFalse) break; } } } else { register const Quantum *p; for (pass=0; pass < num_passes; pass++) { if ((image_depth > 8) || mng_info->write_png24 || mng_info->write_png32 || mng_info->write_png48 || mng_info->write_png64 || (!mng_info->write_png8 && !mng_info->IsPalette)) { for (y=0; y < (ssize_t) image->rows; y++) { p=GetVirtualPixels(image,0,y,image->columns,1, exception); if (p == (const Quantum *) NULL) break; if (ping_color_type == PNG_COLOR_TYPE_GRAY) { if (image->storage_class == DirectClass) (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,RedQuantum,ping_pixels,exception); else (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,GrayQuantum,ping_pixels,exception); } else if (ping_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,GrayAlphaQuantum,ping_pixels, exception); if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing GRAY_ALPHA PNG pixels (3)"); } else if (image_matte != MagickFalse) (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,RGBAQuantum,ping_pixels,exception); else (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,RGBQuantum,ping_pixels,exception); if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing row of pixels (3)"); png_write_row(ping,ping_pixels); status=SetImageProgress(image,SaveImageTag, (MagickOffsetType) (pass * image->rows + y), num_passes * image->rows); if (status == MagickFalse) break; } } else /* not ((image_depth > 8) || mng_info->write_png24 || mng_info->write_png32 || mng_info->write_png48 || mng_info->write_png64 || (!mng_info->write_png8 && !mng_info->IsPalette)) */ { if ((ping_color_type != PNG_COLOR_TYPE_GRAY) && (ping_color_type != PNG_COLOR_TYPE_GRAY_ALPHA)) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " pass %d, Image Is not GRAY or GRAY_ALPHA",pass); SetQuantumDepth(image,quantum_info,8); image_depth=8; } for (y=0; y < (ssize_t) image->rows; y++) { if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " pass %d, Image Is RGB, 16-bit GRAY, or GRAY_ALPHA", pass); p=GetVirtualPixels(image,0,y,image->columns,1, exception); if (p == (const Quantum *) NULL) break; if (ping_color_type == PNG_COLOR_TYPE_GRAY) { SetQuantumDepth(image,quantum_info,image->depth); (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,GrayQuantum,ping_pixels,exception); } else if (ping_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { if (logging != MagickFalse && y == 0) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing GRAY_ALPHA PNG pixels (4)"); (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,GrayAlphaQuantum,ping_pixels, exception); } else { (void) ExportQuantumPixels(image,(CacheView *) NULL, quantum_info,IndexQuantum,ping_pixels,exception); if (logging != MagickFalse && y <= 2) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing row of non-gray pixels (4)"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " ping_pixels[0]=%d,ping_pixels[1]=%d", (int)ping_pixels[0],(int)ping_pixels[1]); } } png_write_row(ping,ping_pixels); status=SetImageProgress(image,SaveImageTag, (MagickOffsetType) (pass * image->rows + y), num_passes * image->rows); if (status == MagickFalse) break; } } } } } if (quantum_info != (QuantumInfo *) NULL) quantum_info=DestroyQuantumInfo(quantum_info); if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Wrote PNG image data"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Width: %.20g",(double) ping_width); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Height: %.20g",(double) ping_height); if (mng_info->write_png_depth) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Defined png:bit-depth: %d",mng_info->write_png_depth); } (void) LogMagickEvent(CoderEvent,GetMagickModule(), " PNG bit-depth written: %d",ping_bit_depth); if (mng_info->write_png_colortype) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Defined png:color-type: %d",mng_info->write_png_colortype-1); } (void) LogMagickEvent(CoderEvent,GetMagickModule(), " PNG color-type written: %d",ping_color_type); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " PNG Interlace method: %d",ping_interlace_method); } /* Generate text chunks after IDAT. */ if (ping_exclude_tEXt == MagickFalse || ping_exclude_zTXt == MagickFalse) { ResetImagePropertyIterator(image); property=GetNextImageProperty(image); while (property != (const char *) NULL) { png_textp text; value=GetImageProperty(image,property,exception); /* Don't write any "png:" or "jpeg:" properties; those are just for * "identify" or for passing through to another JPEG */ if ((LocaleNCompare(property,"png:",4) != 0 && LocaleNCompare(property,"jpeg:",5) != 0) && /* Suppress density and units if we wrote a pHYs chunk */ (ping_exclude_pHYs != MagickFalse || LocaleCompare(property,"density") != 0 || LocaleCompare(property,"units") != 0) && /* Suppress the IM-generated Date:create and Date:modify */ (ping_exclude_date == MagickFalse || LocaleNCompare(property, "Date:",5) != 0)) { if (value != (const char *) NULL) { #if PNG_LIBPNG_VER >= 10400 text=(png_textp) png_malloc(ping, (png_alloc_size_t) sizeof(png_text)); #else text=(png_textp) png_malloc(ping,(png_size_t) sizeof(png_text)); #endif text[0].key=(char *) property; text[0].text=(char *) value; text[0].text_length=strlen(value); if (ping_exclude_tEXt != MagickFalse) text[0].compression=PNG_TEXT_COMPRESSION_zTXt; else if (ping_exclude_zTXt != MagickFalse) text[0].compression=PNG_TEXT_COMPRESSION_NONE; else { text[0].compression=image_info->compression == NoCompression || (image_info->compression == UndefinedCompression && text[0].text_length < 128) ? PNG_TEXT_COMPRESSION_NONE : PNG_TEXT_COMPRESSION_zTXt ; } if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Setting up text chunk"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " keyword: '%s'",text[0].key); } png_set_text(ping,ping_info,text,1); png_free(ping,text); } } property=GetNextImageProperty(image); } } /* write eXIf profile */ if (ping_have_eXIf != MagickFalse && ping_exclude_eXIf == MagickFalse) { ResetImageProfileIterator(image); for (name=GetNextImageProfile(image); name != (char *) NULL; ) { if (LocaleCompare(name,"exif") == 0) { profile=GetImageProfile(image,name); if (profile != (StringInfo *) NULL) { png_uint_32 length; unsigned char chunk[4], *data; StringInfo *ping_profile; (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Have eXIf profile"); ping_profile=CloneStringInfo(profile); data=GetStringInfoDatum(ping_profile), length=(png_uint_32) GetStringInfoLength(ping_profile); PNGType(chunk,mng_eXIf); if (length < 7) { ping_profile=DestroyStringInfo(ping_profile); break; /* otherwise crashes */ } if (*data == 'E' && *(data+1) == 'x' && *(data+2) == 'i' && *(data+3) == 'f' && *(data+4) == '\0' && *(data+5) == '\0') { /* skip the "Exif\0\0" JFIF Exif Header ID */ length -= 6; data += 6; } LogPNGChunk(logging,chunk,length); (void) WriteBlobMSBULong(image,length); (void) WriteBlob(image,4,chunk); (void) WriteBlob(image,length,data); (void) WriteBlobMSBULong(image,crc32(crc32(0,chunk,4), data, (uInt) length)); ping_profile=DestroyStringInfo(ping_profile); break; } } name=GetNextImageProfile(image); } } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Writing PNG end info"); png_write_end(ping,ping_info); if (mng_info->need_fram && (int) image->dispose == BackgroundDispose) { if (mng_info->page.x || mng_info->page.y || (ping_width != mng_info->page.width) || (ping_height != mng_info->page.height)) { unsigned char chunk[32]; /* Write FRAM 4 with clipping boundaries followed by FRAM 1. */ (void) WriteBlobMSBULong(image,27L); /* data length=27 */ PNGType(chunk,mng_FRAM); LogPNGChunk(logging,mng_FRAM,27L); chunk[4]=4; chunk[5]=0; /* frame name separator (no name) */ chunk[6]=1; /* flag for changing delay, for next frame only */ chunk[7]=0; /* flag for changing frame timeout */ chunk[8]=1; /* flag for changing frame clipping for next frame */ chunk[9]=0; /* flag for changing frame sync_id */ PNGLong(chunk+10,(png_uint_32) (0L)); /* temporary 0 delay */ chunk[14]=0; /* clipping boundaries delta type */ PNGLong(chunk+15,(png_uint_32) (mng_info->page.x)); /* left cb */ PNGLong(chunk+19, (png_uint_32) (mng_info->page.x + ping_width)); PNGLong(chunk+23,(png_uint_32) (mng_info->page.y)); /* top cb */ PNGLong(chunk+27, (png_uint_32) (mng_info->page.y + ping_height)); (void) WriteBlob(image,31,chunk); (void) WriteBlobMSBULong(image,crc32(0,chunk,31)); mng_info->old_framing_mode=4; mng_info->framing_mode=1; } else mng_info->framing_mode=3; } if (mng_info->write_mng && !mng_info->need_fram && ((int) image->dispose == 3)) png_error(ping, "Cannot convert GIF with disposal method 3 to MNG-LC"); /* Free PNG resources. */ png_destroy_write_struct(&ping,&ping_info); pixel_info=RelinquishVirtualMemory(pixel_info); if (ping_have_blob != MagickFalse) (void) CloseBlob(image); image_info=DestroyImageInfo(image_info); image=DestroyImage(image); /* Store bit depth actually written */ s[0]=(char) ping_bit_depth; s[1]='\0'; (void) SetImageProperty(IMimage,"png:bit-depth-written",s,exception); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " exit WriteOnePNGImage()"); #ifdef IMPNG_SETJMP_NOT_THREAD_SAFE UnlockSemaphoreInfo(ping_semaphore); #endif /* } for navigation to beginning of SETJMP-protected block. Revert to * Throwing an Exception when an error occurs. */ return(MagickTrue); /* End write one PNG image */ }
1
CVE-2020-25664
CWE-787
Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]. Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
83
qemu
1e7aed70144b4673fc26e73062064b6724795e5f
static bool virtio_device_endian_needed(void *opaque) { VirtIODevice *vdev = opaque; assert(vdev->device_endian != VIRTIO_DEVICE_ENDIAN_UNKNOWN); if (!virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) { return vdev->device_endian != virtio_default_endian(); } /* Devices conforming to VIRTIO 1.0 or later are always LE. */ return vdev->device_endian != VIRTIO_DEVICE_ENDIAN_LITTLE; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,097
linux
3c0c5cfdcd4d69ffc4b9c0907cec99039f30a50a
static int pvc_getname(struct socket *sock, struct sockaddr *sockaddr, int *sockaddr_len, int peer) { struct sockaddr_atmpvc *addr; struct atm_vcc *vcc = ATM_SD(sock); if (!vcc->dev || !test_bit(ATM_VF_ADDR, &vcc->flags)) return -ENOTCONN; *sockaddr_len = sizeof(struct sockaddr_atmpvc); addr = (struct sockaddr_atmpvc *)sockaddr; addr->sap_family = AF_ATMPVC; addr->sap_addr.itf = vcc->dev->number; addr->sap_addr.vpi = vcc->vpi; addr->sap_addr.vci = vcc->vci; return 0; }
1
CVE-2012-6546
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
6,256
clamav-devel
dfc00cd3301a42b571454b51a6102eecf58407bc
int wwunpack(uint8_t *exe, uint32_t exesz, uint8_t *wwsect, struct cli_exe_section *sects, uint16_t scount, uint32_t pe, int desc) { uint8_t *structs = wwsect + 0x2a1, *compd, *ccur, *unpd, *ucur, bc; uint32_t src, srcend, szd, bt, bits; int error=0, i; cli_dbgmsg("in wwunpack\n"); while (1) { if (!CLI_ISCONTAINED(wwsect, sects[scount].rsz, structs, 17)) { cli_dbgmsg("WWPack: Array of structs out of section\n"); break; } src = sects[scount].rva - cli_readint32(structs); /* src delta / dst delta - not used / dwords / end of src */ structs+=8; szd = cli_readint32(structs) * 4; structs+=4; srcend = cli_readint32(structs); structs+=4; unpd = ucur = exe+src+srcend+4-szd; if (!szd || !CLI_ISCONTAINED(exe, exesz, unpd, szd)) { cli_dbgmsg("WWPack: Compressed data out of file\n"); break; } cli_dbgmsg("WWP: src: %x, szd: %x, srcend: %x - %x\n", src, szd, srcend, srcend+4-szd); if (!(compd = cli_malloc(szd))) { cli_dbgmsg("WWPack: Unable to allocate memory for compd\n"); break; } memcpy(compd, unpd, szd); memset(unpd, -1, szd); /*FIXME*/ ccur=compd; RESEED; while(!error) { uint32_t backbytes, backsize; uint8_t saved; BIT; if (!bits) { /* BYTE copy */ if(ccur-compd>=szd || !CLI_ISCONTAINED(exe, exesz, ucur, 1)) error=1; else *ucur++=*ccur++; continue; } BITS(2); if(bits==3) { /* WORD backcopy */ uint8_t shifted, subbed = 31; BITS(2); shifted = bits + 5; if(bits>=2) { shifted++; subbed += 0x80; } backbytes = (1<<shifted)-subbed; /* 1h, 21h, 61h, 161h */ BITS(shifted); /* 5, 6, 8, 9 */ if(error || bits == 0x1ff) break; backbytes+=bits; if(!CLI_ISCONTAINED(exe, exesz, ucur, 2) || !CLI_ISCONTAINED(exe, exesz, ucur-backbytes, 2)) { error=1; } else { ucur[0]=*(ucur-backbytes); ucur[1]=*(ucur-backbytes+1); ucur+=2; } continue; } /* BLOCK backcopy */ saved = bits; /* cmp al, 1 / pushf */ BITS(3); if (bits<6) { backbytes = bits; switch(bits) { case 4: /* 10,11 */ backbytes++; case 3: /* 8,9 */ BIT; backbytes+=bits; case 0: case 1: case 2: /* 5,6,7 */ backbytes+=5; break; case 5: /* 12 */ backbytes=12; break; } BITS(backbytes); bits+=(1<<backbytes)-31; } else if(bits==6) { BITS(0x0e); bits+=0x1fe1; } else { BITS(0x0f); bits+=0x5fe1; } backbytes = bits; /* popf / jb */ if (!saved) { BIT; if(!bits) { BIT; bits+=5; } else { BITS(3); if(bits) { bits+=6; } else { BITS(4); if(bits) { bits+=13; } else { uint8_t cnt = 4; uint16_t shifted = 0x0d; do { if(cnt==7) { cnt = 0x0e; shifted = 0; break; } shifted=((shifted+2)<<1)-1; BIT; cnt++; } while(!bits); BITS(cnt); bits+=shifted; } } } backsize = bits; } else { backsize = saved+2; } if(!CLI_ISCONTAINED(exe, exesz, ucur, backsize) || !CLI_ISCONTAINED(exe, exesz, ucur-backbytes, backsize)) error=1; else while(backsize--) { *ucur=*(ucur-backbytes); ucur++; } } free(compd); if(error) { cli_dbgmsg("WWPack: decompression error\n"); break; } if (error || !*structs++) break; } if(!error) { if (pe+6 > exesz || pe+7 > exesz || pe+0x28 > exesz || pe+0x50 > exesz || pe+0x14 > exesz) return CL_EFORMAT; exe[pe+6]=(uint8_t)scount; exe[pe+7]=(uint8_t)(scount>>8); cli_writeint32(&exe[pe+0x28], cli_readint32(wwsect+0x295)+sects[scount].rva+0x299); cli_writeint32(&exe[pe+0x50], cli_readint32(&exe[pe+0x50])-sects[scount].vsz); structs = &exe[(0xffff&cli_readint32(&exe[pe+0x14]))+pe+0x18]; for(i=0 ; i<scount ; i++) { if (!CLI_ISCONTAINED(exe, exesz, structs, 0x28)) { cli_dbgmsg("WWPack: structs pointer out of bounds\n"); return CL_EFORMAT; } cli_writeint32(structs+8, sects[i].vsz); cli_writeint32(structs+12, sects[i].rva); cli_writeint32(structs+16, sects[i].vsz); cli_writeint32(structs+20, sects[i].rva); structs+=0x28; } if (!CLI_ISCONTAINED(exe, exesz, structs, 0x28)) { cli_dbgmsg("WWPack: structs pointer out of bounds\n"); return CL_EFORMAT; } memset(structs, 0, 0x28); error = (uint32_t)cli_writen(desc, exe, exesz)!=exesz; } return error; }
1
CVE-2017-6420
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
6,495
FreeRDP
7b1d4b49391b4512402840431757703a96946820
static INLINE UINT32 ExtractRunLength(UINT32 code, const BYTE* pbOrderHdr, UINT32* advance) { UINT32 runLength; UINT32 ladvance; ladvance = 1; runLength = 0; switch (code) { case REGULAR_FGBG_IMAGE: runLength = (*pbOrderHdr) & g_MaskRegularRunLength; if (runLength == 0) { runLength = (*(pbOrderHdr + 1)) + 1; ladvance += 1; } else { runLength = runLength * 8; } break; case LITE_SET_FG_FGBG_IMAGE: runLength = (*pbOrderHdr) & g_MaskLiteRunLength; if (runLength == 0) { runLength = (*(pbOrderHdr + 1)) + 1; ladvance += 1; } else { runLength = runLength * 8; } break; case REGULAR_BG_RUN: case REGULAR_FG_RUN: case REGULAR_COLOR_RUN: case REGULAR_COLOR_IMAGE: runLength = (*pbOrderHdr) & g_MaskRegularRunLength; if (runLength == 0) { /* An extended (MEGA) run. */ runLength = (*(pbOrderHdr + 1)) + 32; ladvance += 1; } break; case LITE_SET_FG_FG_RUN: case LITE_DITHERED_RUN: runLength = (*pbOrderHdr) & g_MaskLiteRunLength; if (runLength == 0) { /* An extended (MEGA) run. */ runLength = (*(pbOrderHdr + 1)) + 16; ladvance += 1; } break; case MEGA_MEGA_BG_RUN: case MEGA_MEGA_FG_RUN: case MEGA_MEGA_SET_FG_RUN: case MEGA_MEGA_DITHERED_RUN: case MEGA_MEGA_COLOR_RUN: case MEGA_MEGA_FGBG_IMAGE: case MEGA_MEGA_SET_FGBG_IMAGE: case MEGA_MEGA_COLOR_IMAGE: runLength = ((UINT16)pbOrderHdr[1]) | ((UINT16)(pbOrderHdr[2] << 8)); ladvance += 2; break; } *advance = ladvance; return runLength; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,337
jasper
8f62b4761711d036fd8964df256b938c809b7fca
jas_image_t *bmp_decode(jas_stream_t *in, char *optstr) { jas_image_t *image; bmp_hdr_t hdr; bmp_info_t *info; uint_fast16_t cmptno; jas_image_cmptparm_t cmptparms[3]; jas_image_cmptparm_t *cmptparm; uint_fast16_t numcmpts; long n; if (optstr) { jas_eprintf("warning: ignoring BMP decoder options\n"); } jas_eprintf( "THE BMP FORMAT IS NOT FULLY SUPPORTED!\n" "THAT IS, THE JASPER SOFTWARE CANNOT DECODE ALL TYPES OF BMP DATA.\n" "IF YOU HAVE ANY PROBLEMS, PLEASE TRY CONVERTING YOUR IMAGE DATA\n" "TO THE PNM FORMAT, AND USING THIS FORMAT INSTEAD.\n" ); /* Read the bitmap header. */ if (bmp_gethdr(in, &hdr)) { jas_eprintf("cannot get header\n"); return 0; } /* Read the bitmap information. */ if (!(info = bmp_getinfo(in))) { jas_eprintf("cannot get info\n"); return 0; } /* Ensure that we support this type of BMP file. */ if (!bmp_issupported(&hdr, info)) { jas_eprintf("error: unsupported BMP encoding\n"); bmp_info_destroy(info); return 0; } /* Skip over any useless data between the end of the palette and start of the bitmap data. */ if ((n = hdr.off - (BMP_HDRLEN + BMP_INFOLEN + BMP_PALLEN(info))) < 0) { jas_eprintf("error: possibly bad bitmap offset?\n"); return 0; } if (n > 0) { jas_eprintf("skipping unknown data in BMP file\n"); if (bmp_gobble(in, n)) { bmp_info_destroy(info); return 0; } } /* Get the number of components. */ numcmpts = bmp_numcmpts(info); for (cmptno = 0, cmptparm = cmptparms; cmptno < numcmpts; ++cmptno, ++cmptparm) { cmptparm->tlx = 0; cmptparm->tly = 0; cmptparm->hstep = 1; cmptparm->vstep = 1; cmptparm->width = info->width; cmptparm->height = info->height; cmptparm->prec = 8; cmptparm->sgnd = false; } /* Create image object. */ if (!(image = jas_image_create(numcmpts, cmptparms, JAS_CLRSPC_UNKNOWN))) { bmp_info_destroy(info); return 0; } if (numcmpts == 3) { jas_image_setclrspc(image, JAS_CLRSPC_SRGB); jas_image_setcmpttype(image, 0, JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_RGB_R)); jas_image_setcmpttype(image, 1, JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_RGB_G)); jas_image_setcmpttype(image, 2, JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_RGB_B)); } else { jas_image_setclrspc(image, JAS_CLRSPC_SGRAY); jas_image_setcmpttype(image, 0, JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_GRAY_Y)); } /* Read the bitmap data. */ if (bmp_getdata(in, info, image)) { bmp_info_destroy(info); jas_image_destroy(image); return 0; } bmp_info_destroy(info); return image; }
1
CVE-2016-8690
CWE-476
NULL Pointer Dereference
The product dereferences a pointer that it expects to be valid but is NULL.
Phase: Implementation If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented. Phase: Requirements Select a programming language that is not susceptible to these issues. Phase: Implementation Check the results of all functions that return a value and verify that the value is non-null before acting upon it. Effectiveness: Moderate Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665). Phase: Architecture and Design Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values. Phase: Implementation Explicitly initialize all variables and other data stores, either during declaration or just before the first usage.
3,229
tensorflow
00302787b788c5ff04cb6f62aed5a74d936e86c0
const TfLiteTensor* GetOptionalInputTensor(const TfLiteContext* context, const TfLiteNode* node, int index) { const bool use_tensor = index < node->inputs->size && node->inputs->data[index] != kTfLiteOptionalTensor; if (use_tensor) { return GetMutableInput(context, node, index); } return nullptr; }
1
CVE-2020-15211
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
7,593
Chrome
744c2a2d90c3c9a33c818e1ea4b7ccb5010663a0
virtual void TearDown() { content::GetContentClient()->set_browser(old_browser_client_); }
1
CVE-2011-3084
CWE-264
Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.
Not Found in CWE Page
7,727
php
bf58162ddf970f63502837f366930e44d6a992cf
PHP_METHOD(Phar, webPhar) { zval *mimeoverride = NULL, *rewrite = NULL; char *alias = NULL, *error, *index_php = NULL, *f404 = NULL, *ru = NULL; int alias_len = 0, ret, f404_len = 0, free_pathinfo = 0, ru_len = 0; char *fname, *path_info, *mime_type = NULL, *entry, *pt; const char *basename; int fname_len, entry_len, code, index_php_len = 0, not_cgi; phar_archive_data *phar = NULL; phar_entry_info *info = NULL; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|s!s!saz", &alias, &alias_len, &index_php, &index_php_len, &f404, &f404_len, &mimeoverride, &rewrite) == FAILURE) { return; } phar_request_initialize(TSRMLS_C); fname = (char*)zend_get_executed_filename(TSRMLS_C); fname_len = strlen(fname); if (phar_open_executed_filename(alias, alias_len, &error TSRMLS_CC) != SUCCESS) { if (error) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "%s", error); efree(error); } return; } /* retrieve requested file within phar */ if (!(SG(request_info).request_method && SG(request_info).request_uri && (!strcmp(SG(request_info).request_method, "GET") || !strcmp(SG(request_info).request_method, "POST")))) { return; } #ifdef PHP_WIN32 fname = estrndup(fname, fname_len); phar_unixify_path_separators(fname, fname_len); #endif basename = zend_memrchr(fname, '/', fname_len); if (!basename) { basename = fname; } else { ++basename; } if ((strlen(sapi_module.name) == sizeof("cgi-fcgi")-1 && !strncmp(sapi_module.name, "cgi-fcgi", sizeof("cgi-fcgi")-1)) || (strlen(sapi_module.name) == sizeof("fpm-fcgi")-1 && !strncmp(sapi_module.name, "fpm-fcgi", sizeof("fpm-fcgi")-1)) || (strlen(sapi_module.name) == sizeof("cgi")-1 && !strncmp(sapi_module.name, "cgi", sizeof("cgi")-1))) { if (PG(http_globals)[TRACK_VARS_SERVER]) { HashTable *_server = Z_ARRVAL_P(PG(http_globals)[TRACK_VARS_SERVER]); zval **z_script_name, **z_path_info; if (SUCCESS != zend_hash_find(_server, "SCRIPT_NAME", sizeof("SCRIPT_NAME"), (void**)&z_script_name) || IS_STRING != Z_TYPE_PP(z_script_name) || !strstr(Z_STRVAL_PP(z_script_name), basename)) { return; } if (SUCCESS == zend_hash_find(_server, "PATH_INFO", sizeof("PATH_INFO"), (void**)&z_path_info) && IS_STRING == Z_TYPE_PP(z_path_info)) { entry_len = Z_STRLEN_PP(z_path_info); entry = estrndup(Z_STRVAL_PP(z_path_info), entry_len); path_info = emalloc(Z_STRLEN_PP(z_script_name) + entry_len + 1); memcpy(path_info, Z_STRVAL_PP(z_script_name), Z_STRLEN_PP(z_script_name)); memcpy(path_info + Z_STRLEN_PP(z_script_name), entry, entry_len + 1); free_pathinfo = 1; } else { entry_len = 0; entry = estrndup("", 0); path_info = Z_STRVAL_PP(z_script_name); } pt = estrndup(Z_STRVAL_PP(z_script_name), Z_STRLEN_PP(z_script_name)); } else { char *testit; testit = sapi_getenv("SCRIPT_NAME", sizeof("SCRIPT_NAME")-1 TSRMLS_CC); if (!(pt = strstr(testit, basename))) { efree(testit); return; } path_info = sapi_getenv("PATH_INFO", sizeof("PATH_INFO")-1 TSRMLS_CC); if (path_info) { entry = path_info; entry_len = strlen(entry); spprintf(&path_info, 0, "%s%s", testit, path_info); free_pathinfo = 1; } else { path_info = testit; free_pathinfo = 1; entry = estrndup("", 0); entry_len = 0; } pt = estrndup(testit, (pt - testit) + (fname_len - (basename - fname))); } not_cgi = 0; } else { path_info = SG(request_info).request_uri; if (!(pt = strstr(path_info, basename))) { /* this can happen with rewrite rules - and we have no idea what to do then, so return */ return; } entry_len = strlen(path_info); entry_len -= (pt - path_info) + (fname_len - (basename - fname)); entry = estrndup(pt + (fname_len - (basename - fname)), entry_len); pt = estrndup(path_info, (pt - path_info) + (fname_len - (basename - fname))); not_cgi = 1; } if (rewrite) { zend_fcall_info fci; zend_fcall_info_cache fcc; zval *params, *retval_ptr, **zp[1]; MAKE_STD_ZVAL(params); ZVAL_STRINGL(params, entry, entry_len, 1); zp[0] = &params; #if PHP_VERSION_ID < 50300 if (FAILURE == zend_fcall_info_init(rewrite, &fci, &fcc TSRMLS_CC)) { #else if (FAILURE == zend_fcall_info_init(rewrite, 0, &fci, &fcc, NULL, NULL TSRMLS_CC)) { #endif zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar error: invalid rewrite callback"); if (free_pathinfo) { efree(path_info); } return; } fci.param_count = 1; fci.params = zp; #if PHP_VERSION_ID < 50300 ++(params->refcount); #else Z_ADDREF_P(params); #endif fci.retval_ptr_ptr = &retval_ptr; if (FAILURE == zend_call_function(&fci, &fcc TSRMLS_CC)) { if (!EG(exception)) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar error: failed to call rewrite callback"); } if (free_pathinfo) { efree(path_info); } return; } if (!fci.retval_ptr_ptr || !retval_ptr) { if (free_pathinfo) { efree(path_info); } zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar error: rewrite callback must return a string or false"); return; } switch (Z_TYPE_P(retval_ptr)) { #if PHP_VERSION_ID >= 60000 case IS_UNICODE: zval_unicode_to_string(retval_ptr TSRMLS_CC); /* break intentionally omitted */ #endif case IS_STRING: efree(entry); if (fci.retval_ptr_ptr != &retval_ptr) { entry = estrndup(Z_STRVAL_PP(fci.retval_ptr_ptr), Z_STRLEN_PP(fci.retval_ptr_ptr)); entry_len = Z_STRLEN_PP(fci.retval_ptr_ptr); } else { entry = Z_STRVAL_P(retval_ptr); entry_len = Z_STRLEN_P(retval_ptr); } break; case IS_BOOL: phar_do_403(entry, entry_len TSRMLS_CC); if (free_pathinfo) { efree(path_info); } zend_bailout(); return; default: efree(retval_ptr); if (free_pathinfo) { efree(path_info); } zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar error: rewrite callback must return a string or false"); return; } } if (entry_len) { phar_postprocess_ru_web(fname, fname_len, &entry, &entry_len, &ru, &ru_len TSRMLS_CC); } if (!entry_len || (entry_len == 1 && entry[0] == '/')) { efree(entry); /* direct request */ if (index_php_len) { entry = index_php; entry_len = index_php_len; if (entry[0] != '/') { spprintf(&entry, 0, "/%s", index_php); ++entry_len; } } else { /* assume "index.php" is starting point */ entry = estrndup("/index.php", sizeof("/index.php")); entry_len = sizeof("/index.php")-1; } if (FAILURE == phar_get_archive(&phar, fname, fname_len, NULL, 0, NULL TSRMLS_CC) || (info = phar_get_entry_info(phar, entry, entry_len, NULL, 0 TSRMLS_CC)) == NULL) { phar_do_404(phar, fname, fname_len, f404, f404_len, entry, entry_len TSRMLS_CC); if (free_pathinfo) { efree(path_info); } zend_bailout(); } else { char *tmp = NULL, sa = '\0'; sapi_header_line ctr = {0}; ctr.response_code = 301; ctr.line_len = sizeof("HTTP/1.1 301 Moved Permanently")-1; ctr.line = "HTTP/1.1 301 Moved Permanently"; sapi_header_op(SAPI_HEADER_REPLACE, &ctr TSRMLS_CC); if (not_cgi) { tmp = strstr(path_info, basename) + fname_len; sa = *tmp; *tmp = '\0'; } ctr.response_code = 0; if (path_info[strlen(path_info)-1] == '/') { ctr.line_len = spprintf(&(ctr.line), 4096, "Location: %s%s", path_info, entry + 1); } else { ctr.line_len = spprintf(&(ctr.line), 4096, "Location: %s%s", path_info, entry); } if (not_cgi) { *tmp = sa; } if (free_pathinfo) { efree(path_info); } sapi_header_op(SAPI_HEADER_REPLACE, &ctr TSRMLS_CC); sapi_send_headers(TSRMLS_C); efree(ctr.line); zend_bailout(); } } if (FAILURE == phar_get_archive(&phar, fname, fname_len, NULL, 0, NULL TSRMLS_CC) || (info = phar_get_entry_info(phar, entry, entry_len, NULL, 0 TSRMLS_CC)) == NULL) { phar_do_404(phar, fname, fname_len, f404, f404_len, entry, entry_len TSRMLS_CC); #ifdef PHP_WIN32 efree(fname); #endif zend_bailout(); } if (mimeoverride && zend_hash_num_elements(Z_ARRVAL_P(mimeoverride))) { const char *ext = zend_memrchr(entry, '.', entry_len); zval **val; if (ext) { ++ext; if (SUCCESS == zend_hash_find(Z_ARRVAL_P(mimeoverride), ext, strlen(ext)+1, (void **) &val)) { switch (Z_TYPE_PP(val)) { case IS_LONG: if (Z_LVAL_PP(val) == PHAR_MIME_PHP || Z_LVAL_PP(val) == PHAR_MIME_PHPS) { mime_type = ""; code = Z_LVAL_PP(val); } else { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown mime type specifier used, only Phar::PHP, Phar::PHPS and a mime type string are allowed"); #ifdef PHP_WIN32 efree(fname); #endif RETURN_FALSE; } break; case IS_STRING: mime_type = Z_STRVAL_PP(val); code = PHAR_MIME_OTHER; break; default: zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown mime type specifier used (not a string or int), only Phar::PHP, Phar::PHPS and a mime type string are allowed"); #ifdef PHP_WIN32 efree(fname); #endif RETURN_FALSE; } } } } if (!mime_type) { code = phar_file_type(&PHAR_G(mime_types), entry, &mime_type TSRMLS_CC); } ret = phar_file_action(phar, info, mime_type, code, entry, entry_len, fname, pt, ru, ru_len TSRMLS_CC); } /* }}} */ /* {{{ proto void Phar::mungServer(array munglist) * Defines a list of up to 4 $_SERVER variables that should be modified for execution * to mask the presence of the phar archive. This should be used in conjunction with * Phar::webPhar(), and has no effect otherwise * SCRIPT_NAME, PHP_SELF, REQUEST_URI and SCRIPT_FILENAME */ PHP_METHOD(Phar, mungServer) { zval *mungvalues; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "a", &mungvalues) == FAILURE) { return; } if (!zend_hash_num_elements(Z_ARRVAL_P(mungvalues))) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "No values passed to Phar::mungServer(), expecting an array of any of these strings: PHP_SELF, REQUEST_URI, SCRIPT_FILENAME, SCRIPT_NAME"); return; } if (zend_hash_num_elements(Z_ARRVAL_P(mungvalues)) > 4) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Too many values passed to Phar::mungServer(), expecting an array of any of these strings: PHP_SELF, REQUEST_URI, SCRIPT_FILENAME, SCRIPT_NAME"); return; } phar_request_initialize(TSRMLS_C); for (zend_hash_internal_pointer_reset(Z_ARRVAL_P(mungvalues)); SUCCESS == zend_hash_has_more_elements(Z_ARRVAL_P(mungvalues)); zend_hash_move_forward(Z_ARRVAL_P(mungvalues))) { zval **data = NULL; if (SUCCESS != zend_hash_get_current_data(Z_ARRVAL_P(mungvalues), (void **) &data)) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "unable to retrieve array value in Phar::mungServer()"); return; } if (Z_TYPE_PP(data) != IS_STRING) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Non-string value passed to Phar::mungServer(), expecting an array of any of these strings: PHP_SELF, REQUEST_URI, SCRIPT_FILENAME, SCRIPT_NAME"); return; } if (Z_STRLEN_PP(data) == sizeof("PHP_SELF")-1 && !strncmp(Z_STRVAL_PP(data), "PHP_SELF", sizeof("PHP_SELF")-1)) { PHAR_GLOBALS->phar_SERVER_mung_list |= PHAR_MUNG_PHP_SELF; } if (Z_STRLEN_PP(data) == sizeof("REQUEST_URI")-1) { if (!strncmp(Z_STRVAL_PP(data), "REQUEST_URI", sizeof("REQUEST_URI")-1)) { PHAR_GLOBALS->phar_SERVER_mung_list |= PHAR_MUNG_REQUEST_URI; } if (!strncmp(Z_STRVAL_PP(data), "SCRIPT_NAME", sizeof("SCRIPT_NAME")-1)) { PHAR_GLOBALS->phar_SERVER_mung_list |= PHAR_MUNG_SCRIPT_NAME; } } if (Z_STRLEN_PP(data) == sizeof("SCRIPT_FILENAME")-1 && !strncmp(Z_STRVAL_PP(data), "SCRIPT_FILENAME", sizeof("SCRIPT_FILENAME")-1)) { PHAR_GLOBALS->phar_SERVER_mung_list |= PHAR_MUNG_SCRIPT_FILENAME; } } } /* }}} */ /* {{{ proto void Phar::interceptFileFuncs() * instructs phar to intercept fopen, file_get_contents, opendir, and all of the stat-related functions * and return stat on files within the phar for relative paths * * Once called, this cannot be reversed, and continue until the end of the request. * * This allows legacy scripts to be pharred unmodified */ PHP_METHOD(Phar, interceptFileFuncs) { if (zend_parse_parameters_none() == FAILURE) { return; } phar_intercept_functions(TSRMLS_C); } /* }}} */ /* {{{ proto array Phar::createDefaultStub([string indexfile[, string webindexfile]]) * Return a stub that can be used to run a phar-based archive without the phar extension * indexfile is the CLI startup filename, which defaults to "index.php", webindexfile * is the web startup filename, and also defaults to "index.php" */ PHP_METHOD(Phar, createDefaultStub) { char *index = NULL, *webindex = NULL, *stub, *error; int index_len = 0, webindex_len = 0; size_t stub_len; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|ss", &index, &index_len, &webindex, &webindex_len) == FAILURE) { return; } stub = phar_create_default_stub(index, webindex, &stub_len, &error TSRMLS_CC); if (error) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "%s", error); efree(error); return; } RETURN_STRINGL(stub, stub_len, 0); } /* }}} */ /* {{{ proto mixed Phar::mapPhar([string alias, [int dataoffset]]) * Reads the currently executed file (a phar) and registers its manifest */ PHP_METHOD(Phar, mapPhar) { char *alias = NULL, *error; int alias_len = 0; long dataoffset = 0; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|s!l", &alias, &alias_len, &dataoffset) == FAILURE) { return; } phar_request_initialize(TSRMLS_C); RETVAL_BOOL(phar_open_executed_filename(alias, alias_len, &error TSRMLS_CC) == SUCCESS); if (error) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "%s", error); efree(error); } } /* }}} */ /* {{{ proto mixed Phar::loadPhar(string filename [, string alias]) * Loads any phar archive with an alias */ PHP_METHOD(Phar, loadPhar) { char *fname, *alias = NULL, *error; int fname_len, alias_len = 0; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|s!", &fname, &fname_len, &alias, &alias_len) == FAILURE) { return; } phar_request_initialize(TSRMLS_C); RETVAL_BOOL(phar_open_from_filename(fname, fname_len, alias, alias_len, REPORT_ERRORS, NULL, &error TSRMLS_CC) == SUCCESS); if (error) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "%s", error); efree(error); } } /* }}} */ /* {{{ proto string Phar::apiVersion() * Returns the api version */ PHP_METHOD(Phar, apiVersion) { if (zend_parse_parameters_none() == FAILURE) { return; } RETURN_STRINGL(PHP_PHAR_API_VERSION, sizeof(PHP_PHAR_API_VERSION)-1, 1); } /* }}}*/ /* {{{ proto bool Phar::canCompress([int method]) * Returns whether phar extension supports compression using zlib/bzip2 */ PHP_METHOD(Phar, canCompress) { long method = 0; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|l", &method) == FAILURE) { return; } phar_request_initialize(TSRMLS_C); switch (method) { case PHAR_ENT_COMPRESSED_GZ: if (PHAR_G(has_zlib)) { RETURN_TRUE; } else { RETURN_FALSE; } case PHAR_ENT_COMPRESSED_BZ2: if (PHAR_G(has_bz2)) { RETURN_TRUE; } else { RETURN_FALSE; } default: if (PHAR_G(has_zlib) || PHAR_G(has_bz2)) { RETURN_TRUE; } else { RETURN_FALSE; } } } /* }}} */ /* {{{ proto bool Phar::canWrite() * Returns whether phar extension supports writing and creating phars */ PHP_METHOD(Phar, canWrite) { if (zend_parse_parameters_none() == FAILURE) { return; } RETURN_BOOL(!PHAR_G(readonly)); } /* }}} */ /* {{{ proto bool Phar::isValidPharFilename(string filename[, bool executable = true]) * Returns whether the given filename is a valid phar filename */ PHP_METHOD(Phar, isValidPharFilename) { char *fname; const char *ext_str; int fname_len, ext_len, is_executable; zend_bool executable = 1; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|b", &fname, &fname_len, &executable) == FAILURE) { return; } is_executable = executable; RETVAL_BOOL(phar_detect_phar_fname_ext(fname, fname_len, &ext_str, &ext_len, is_executable, 2, 1 TSRMLS_CC) == SUCCESS); } /* }}} */ #if HAVE_SPL /** * from spl_directory */ static void phar_spl_foreign_dtor(spl_filesystem_object *object TSRMLS_DC) /* {{{ */ { phar_archive_data *phar = (phar_archive_data *) object->oth; if (!phar->is_persistent) { phar_archive_delref(phar TSRMLS_CC); } object->oth = NULL; } /* }}} */ /** * from spl_directory */ static void phar_spl_foreign_clone(spl_filesystem_object *src, spl_filesystem_object *dst TSRMLS_DC) /* {{{ */ { phar_archive_data *phar_data = (phar_archive_data *) dst->oth; if (!phar_data->is_persistent) { ++(phar_data->refcount); } } /* }}} */ static spl_other_handler phar_spl_foreign_handler = { phar_spl_foreign_dtor, phar_spl_foreign_clone }; #endif /* HAVE_SPL */ /* {{{ proto void Phar::__construct(string fname [, int flags [, string alias]]) * Construct a Phar archive object * * proto void PharData::__construct(string fname [[, int flags [, string alias]], int file format = Phar::TAR]) * Construct a PharData archive object * * This function is used as the constructor for both the Phar and PharData * classes, hence the two prototypes above. */ PHP_METHOD(Phar, __construct) { #if !HAVE_SPL zend_throw_exception_ex(zend_exception_get_default(TSRMLS_C), 0 TSRMLS_CC, "Cannot instantiate Phar object without SPL extension"); #else char *fname, *alias = NULL, *error, *arch = NULL, *entry = NULL, *save_fname; int fname_len, alias_len = 0, arch_len, entry_len, is_data; #if PHP_VERSION_ID < 50300 long flags = 0; #else long flags = SPL_FILE_DIR_SKIPDOTS|SPL_FILE_DIR_UNIXPATHS; #endif long format = 0; phar_archive_object *phar_obj; phar_archive_data *phar_data; zval *zobj = getThis(), arg1, arg2; phar_obj = (phar_archive_object*)zend_object_store_get_object(getThis() TSRMLS_CC); is_data = instanceof_function(Z_OBJCE_P(zobj), phar_ce_data TSRMLS_CC); if (is_data) { if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|ls!l", &fname, &fname_len, &flags, &alias, &alias_len, &format) == FAILURE) { return; } } else { if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|ls!", &fname, &fname_len, &flags, &alias, &alias_len) == FAILURE) { return; } } if (phar_obj->arc.archive) { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Cannot call constructor twice"); return; } save_fname = fname; if (SUCCESS == phar_split_fname(fname, fname_len, &arch, &arch_len, &entry, &entry_len, !is_data, 2 TSRMLS_CC)) { /* use arch (the basename for the archive) for fname instead of fname */ /* this allows support for RecursiveDirectoryIterator of subdirectories */ #ifdef PHP_WIN32 phar_unixify_path_separators(arch, arch_len); #endif fname = arch; fname_len = arch_len; #ifdef PHP_WIN32 } else { arch = estrndup(fname, fname_len); arch_len = fname_len; fname = arch; phar_unixify_path_separators(arch, arch_len); #endif } if (phar_open_or_create_filename(fname, fname_len, alias, alias_len, is_data, REPORT_ERRORS, &phar_data, &error TSRMLS_CC) == FAILURE) { if (fname == arch && fname != save_fname) { efree(arch); fname = save_fname; } if (entry) { efree(entry); } if (error) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "%s", error); efree(error); } else { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Phar creation or opening failed"); } return; } if (is_data && phar_data->is_tar && phar_data->is_brandnew && format == PHAR_FORMAT_ZIP) { phar_data->is_zip = 1; phar_data->is_tar = 0; } if (fname == arch) { efree(arch); fname = save_fname; } if ((is_data && !phar_data->is_data) || (!is_data && phar_data->is_data)) { if (is_data) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "PharData class can only be used for non-executable tar and zip archives"); } else { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Phar class can only be used for executable tar and zip archives"); } efree(entry); return; } is_data = phar_data->is_data; if (!phar_data->is_persistent) { ++(phar_data->refcount); } phar_obj->arc.archive = phar_data; phar_obj->spl.oth_handler = &phar_spl_foreign_handler; if (entry) { fname_len = spprintf(&fname, 0, "phar://%s%s", phar_data->fname, entry); efree(entry); } else { fname_len = spprintf(&fname, 0, "phar://%s", phar_data->fname); } INIT_PZVAL(&arg1); ZVAL_STRINGL(&arg1, fname, fname_len, 0); INIT_PZVAL(&arg2); ZVAL_LONG(&arg2, flags); zend_call_method_with_2_params(&zobj, Z_OBJCE_P(zobj), &spl_ce_RecursiveDirectoryIterator->constructor, "__construct", NULL, &arg1, &arg2); if (!phar_data->is_persistent) { phar_obj->arc.archive->is_data = is_data; } else if (!EG(exception)) { /* register this guy so we can modify if necessary */ zend_hash_add(&PHAR_GLOBALS->phar_persist_map, (const char *) phar_obj->arc.archive, sizeof(phar_obj->arc.archive), (void *) &phar_obj, sizeof(phar_archive_object **), NULL); } phar_obj->spl.info_class = phar_ce_entry; efree(fname); #endif /* HAVE_SPL */ } /* }}} */ /* {{{ proto array Phar::getSupportedSignatures() * Return array of supported signature types */ PHP_METHOD(Phar, getSupportedSignatures) { if (zend_parse_parameters_none() == FAILURE) { return; } array_init(return_value); add_next_index_stringl(return_value, "MD5", 3, 1); add_next_index_stringl(return_value, "SHA-1", 5, 1); #ifdef PHAR_HASH_OK add_next_index_stringl(return_value, "SHA-256", 7, 1); add_next_index_stringl(return_value, "SHA-512", 7, 1); #endif #if PHAR_HAVE_OPENSSL add_next_index_stringl(return_value, "OpenSSL", 7, 1); #else if (zend_hash_exists(&module_registry, "openssl", sizeof("openssl"))) { add_next_index_stringl(return_value, "OpenSSL", 7, 1); } #endif } /* }}} */ /* {{{ proto array Phar::getSupportedCompression() * Return array of supported comparession algorithms */ PHP_METHOD(Phar, getSupportedCompression) { if (zend_parse_parameters_none() == FAILURE) { return; } array_init(return_value); phar_request_initialize(TSRMLS_C); if (PHAR_G(has_zlib)) { add_next_index_stringl(return_value, "GZ", 2, 1); } if (PHAR_G(has_bz2)) { add_next_index_stringl(return_value, "BZIP2", 5, 1); } } /* }}} */ /* {{{ proto array Phar::unlinkArchive(string archive) * Completely remove a phar archive from memory and disk */ PHP_METHOD(Phar, unlinkArchive) { char *fname, *error, *zname, *arch, *entry; int fname_len, zname_len, arch_len, entry_len; phar_archive_data *phar; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &fname, &fname_len) == FAILURE) { RETURN_FALSE; } if (!fname_len) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown phar archive \"\""); return; } if (FAILURE == phar_open_from_filename(fname, fname_len, NULL, 0, REPORT_ERRORS, &phar, &error TSRMLS_CC)) { if (error) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown phar archive \"%s\": %s", fname, error); efree(error); } else { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown phar archive \"%s\"", fname); } return; } zname = (char*)zend_get_executed_filename(TSRMLS_C); zname_len = strlen(zname); if (zname_len > 7 && !memcmp(zname, "phar://", 7) && SUCCESS == phar_split_fname(zname, zname_len, &arch, &arch_len, &entry, &entry_len, 2, 0 TSRMLS_CC)) { if (arch_len == fname_len && !memcmp(arch, fname, arch_len)) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar archive \"%s\" cannot be unlinked from within itself", fname); efree(arch); efree(entry); return; } efree(arch); efree(entry); } if (phar->is_persistent) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar archive \"%s\" is in phar.cache_list, cannot unlinkArchive()", fname); return; } if (phar->refcount) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar archive \"%s\" has open file handles or objects. fclose() all file handles, and unset() all objects prior to calling unlinkArchive()", fname); return; } fname = estrndup(phar->fname, phar->fname_len); /* invalidate phar cache */ PHAR_G(last_phar) = NULL; PHAR_G(last_phar_name) = PHAR_G(last_alias) = NULL; phar_archive_delref(phar TSRMLS_CC); unlink(fname); efree(fname); RETURN_TRUE; } /* }}} */ #if HAVE_SPL #define PHAR_ARCHIVE_OBJECT() \ phar_archive_object *phar_obj = (phar_archive_object*)zend_object_store_get_object(getThis() TSRMLS_CC); \ if (!phar_obj->arc.archive) { \ zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, \ "Cannot call method on an uninitialized Phar object"); \ return; \ } /* {{{ proto void Phar::__destruct() * if persistent, remove from the cache */ PHP_METHOD(Phar, __destruct) { phar_archive_object *phar_obj = (phar_archive_object*)zend_object_store_get_object(getThis() TSRMLS_CC); if (phar_obj->arc.archive && phar_obj->arc.archive->is_persistent) { zend_hash_del(&PHAR_GLOBALS->phar_persist_map, (const char *) phar_obj->arc.archive, sizeof(phar_obj->arc.archive)); } } /* }}} */ struct _phar_t { phar_archive_object *p; zend_class_entry *c; char *b; uint l; zval *ret; int count; php_stream *fp; }; static int phar_build(zend_object_iterator *iter, void *puser TSRMLS_DC) /* {{{ */ { zval **value; zend_uchar key_type; zend_bool close_fp = 1; ulong int_key; struct _phar_t *p_obj = (struct _phar_t*) puser; uint str_key_len, base_len = p_obj->l, fname_len; phar_entry_data *data; php_stream *fp; size_t contents_len; char *fname, *error = NULL, *base = p_obj->b, *opened, *save = NULL, *temp = NULL; phar_zstr key; char *str_key; zend_class_entry *ce = p_obj->c; phar_archive_object *phar_obj = p_obj->p; char *str = "[stream]"; iter->funcs->get_current_data(iter, &value TSRMLS_CC); if (EG(exception)) { return ZEND_HASH_APPLY_STOP; } if (!value) { /* failure in get_current_data */ zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned no value", ce->name); return ZEND_HASH_APPLY_STOP; } switch (Z_TYPE_PP(value)) { #if PHP_VERSION_ID >= 60000 case IS_UNICODE: zval_unicode_to_string(*(value) TSRMLS_CC); /* break intentionally omitted */ #endif case IS_STRING: break; case IS_RESOURCE: php_stream_from_zval_no_verify(fp, value); if (!fp) { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Iterator %v returned an invalid stream handle", ce->name); return ZEND_HASH_APPLY_STOP; } if (iter->funcs->get_current_key) { key_type = iter->funcs->get_current_key(iter, &key, &str_key_len, &int_key TSRMLS_CC); if (EG(exception)) { return ZEND_HASH_APPLY_STOP; } if (key_type == HASH_KEY_IS_LONG) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned an invalid key (must return a string)", ce->name); return ZEND_HASH_APPLY_STOP; } if (key_type > 9) { /* IS_UNICODE == 10 */ #if PHP_VERSION_ID < 60000 /* this can never happen, but fixes a compile warning */ spprintf(&str_key, 0, "%s", key); #else spprintf(&str_key, 0, "%v", key); ezfree(key); #endif } else { PHAR_STR(key, str_key); } save = str_key; if (str_key[str_key_len - 1] == '\0') { str_key_len--; } } else { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned an invalid key (must return a string)", ce->name); return ZEND_HASH_APPLY_STOP; } close_fp = 0; opened = (char *) estrndup(str, sizeof("[stream]") - 1); goto after_open_fp; case IS_OBJECT: if (instanceof_function(Z_OBJCE_PP(value), spl_ce_SplFileInfo TSRMLS_CC)) { char *test = NULL; zval dummy; spl_filesystem_object *intern = (spl_filesystem_object*)zend_object_store_get_object(*value TSRMLS_CC); if (!base_len) { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Iterator %v returns an SplFileInfo object, so base directory must be specified", ce->name); return ZEND_HASH_APPLY_STOP; } switch (intern->type) { case SPL_FS_DIR: #if PHP_VERSION_ID >= 60000 test = spl_filesystem_object_get_path(intern, NULL, NULL TSRMLS_CC).s; #elif PHP_VERSION_ID >= 50300 test = spl_filesystem_object_get_path(intern, NULL TSRMLS_CC); #else test = intern->path; #endif fname_len = spprintf(&fname, 0, "%s%c%s", test, DEFAULT_SLASH, intern->u.dir.entry.d_name); php_stat(fname, fname_len, FS_IS_DIR, &dummy TSRMLS_CC); if (Z_BVAL(dummy)) { /* ignore directories */ efree(fname); return ZEND_HASH_APPLY_KEEP; } test = expand_filepath(fname, NULL TSRMLS_CC); efree(fname); if (test) { fname = test; fname_len = strlen(fname); } else { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Could not resolve file path"); return ZEND_HASH_APPLY_STOP; } save = fname; goto phar_spl_fileinfo; case SPL_FS_INFO: case SPL_FS_FILE: #if PHP_VERSION_ID >= 60000 if (intern->file_name_type == IS_UNICODE) { zval zv; INIT_ZVAL(zv); Z_UNIVAL(zv) = intern->file_name; Z_UNILEN(zv) = intern->file_name_len; Z_TYPE(zv) = IS_UNICODE; zval_copy_ctor(&zv); zval_unicode_to_string(&zv TSRMLS_CC); fname = expand_filepath(Z_STRVAL(zv), NULL TSRMLS_CC); ezfree(Z_UNIVAL(zv)); } else { fname = expand_filepath(intern->file_name.s, NULL TSRMLS_CC); } #else fname = expand_filepath(intern->file_name, NULL TSRMLS_CC); #endif if (!fname) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Could not resolve file path"); return ZEND_HASH_APPLY_STOP; } fname_len = strlen(fname); save = fname; goto phar_spl_fileinfo; } } /* fall-through */ default: zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned an invalid value (must return a string)", ce->name); return ZEND_HASH_APPLY_STOP; } fname = Z_STRVAL_PP(value); fname_len = Z_STRLEN_PP(value); phar_spl_fileinfo: if (base_len) { temp = expand_filepath(base, NULL TSRMLS_CC); if (!temp) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Could not resolve file path"); if (save) { efree(save); } return ZEND_HASH_APPLY_STOP; } base = temp; base_len = strlen(base); if (strstr(fname, base)) { str_key_len = fname_len - base_len; if (str_key_len <= 0) { if (save) { efree(save); efree(temp); } return ZEND_HASH_APPLY_KEEP; } str_key = fname + base_len; if (*str_key == '/' || *str_key == '\\') { str_key++; str_key_len--; } } else { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned a path \"%s\" that is not in the base directory \"%s\"", ce->name, fname, base); if (save) { efree(save); efree(temp); } return ZEND_HASH_APPLY_STOP; } } else { if (iter->funcs->get_current_key) { key_type = iter->funcs->get_current_key(iter, &key, &str_key_len, &int_key TSRMLS_CC); if (EG(exception)) { return ZEND_HASH_APPLY_STOP; } if (key_type == HASH_KEY_IS_LONG) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned an invalid key (must return a string)", ce->name); return ZEND_HASH_APPLY_STOP; } if (key_type > 9) { /* IS_UNICODE == 10 */ #if PHP_VERSION_ID < 60000 /* this can never happen, but fixes a compile warning */ spprintf(&str_key, 0, "%s", key); #else spprintf(&str_key, 0, "%v", key); ezfree(key); #endif } else { PHAR_STR(key, str_key); } save = str_key; if (str_key[str_key_len - 1] == '\0') str_key_len--; } else { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned an invalid key (must return a string)", ce->name); return ZEND_HASH_APPLY_STOP; } } #if PHP_API_VERSION < 20100412 if (PG(safe_mode) && (!php_checkuid(fname, NULL, CHECKUID_ALLOW_ONLY_FILE))) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned a path \"%s\" that safe mode prevents opening", ce->name, fname); if (save) { efree(save); } if (temp) { efree(temp); } return ZEND_HASH_APPLY_STOP; } #endif if (php_check_open_basedir(fname TSRMLS_CC)) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned a path \"%s\" that open_basedir prevents opening", ce->name, fname); if (save) { efree(save); } if (temp) { efree(temp); } return ZEND_HASH_APPLY_STOP; } /* try to open source file, then create internal phar file and copy contents */ fp = php_stream_open_wrapper(fname, "rb", STREAM_MUST_SEEK|0, &opened); if (!fp) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Iterator %v returned a file that could not be opened \"%s\"", ce->name, fname); if (save) { efree(save); } if (temp) { efree(temp); } return ZEND_HASH_APPLY_STOP; } after_open_fp: if (str_key_len >= sizeof(".phar")-1 && !memcmp(str_key, ".phar", sizeof(".phar")-1)) { /* silently skip any files that would be added to the magic .phar directory */ if (save) { efree(save); } if (temp) { efree(temp); } if (opened) { efree(opened); } if (close_fp) { php_stream_close(fp); } return ZEND_HASH_APPLY_KEEP; } if (!(data = phar_get_or_create_entry_data(phar_obj->arc.archive->fname, phar_obj->arc.archive->fname_len, str_key, str_key_len, "w+b", 0, &error, 1 TSRMLS_CC))) { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Entry %s cannot be created: %s", str_key, error); efree(error); if (save) { efree(save); } if (opened) { efree(opened); } if (temp) { efree(temp); } if (close_fp) { php_stream_close(fp); } return ZEND_HASH_APPLY_STOP; } else { if (error) { efree(error); } /* convert to PHAR_UFP */ if (data->internal_file->fp_type == PHAR_MOD) { php_stream_close(data->internal_file->fp); } data->internal_file->fp = NULL; data->internal_file->fp_type = PHAR_UFP; data->internal_file->offset_abs = data->internal_file->offset = php_stream_tell(p_obj->fp); data->fp = NULL; phar_stream_copy_to_stream(fp, p_obj->fp, PHP_STREAM_COPY_ALL, &contents_len); data->internal_file->uncompressed_filesize = data->internal_file->compressed_filesize = php_stream_tell(p_obj->fp) - data->internal_file->offset; } if (close_fp) { php_stream_close(fp); } add_assoc_string(p_obj->ret, str_key, opened, 0); if (save) { efree(save); } if (temp) { efree(temp); } data->internal_file->compressed_filesize = data->internal_file->uncompressed_filesize = contents_len; phar_entry_delref(data TSRMLS_CC); return ZEND_HASH_APPLY_KEEP; } /* }}} */ /* {{{ proto array Phar::buildFromDirectory(string base_dir[, string regex]) * Construct a phar archive from an existing directory, recursively. * Optional second parameter is a regular expression for filtering directory contents. * * Return value is an array mapping phar index to actual files added. */ PHP_METHOD(Phar, buildFromDirectory) { char *dir, *error, *regex = NULL; int dir_len, regex_len = 0; zend_bool apply_reg = 0; zval arg, arg2, *iter, *iteriter, *regexiter = NULL; struct _phar_t pass; PHAR_ARCHIVE_OBJECT(); if (PHAR_G(readonly) && !phar_obj->arc.archive->is_data) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Cannot write to archive - write operations restricted by INI setting"); return; } if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|s", &dir, &dir_len, &regex, &regex_len) == FAILURE) { RETURN_FALSE; } MAKE_STD_ZVAL(iter); if (SUCCESS != object_init_ex(iter, spl_ce_RecursiveDirectoryIterator)) { zval_ptr_dtor(&iter); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Unable to instantiate directory iterator for %s", phar_obj->arc.archive->fname); RETURN_FALSE; } INIT_PZVAL(&arg); ZVAL_STRINGL(&arg, dir, dir_len, 0); INIT_PZVAL(&arg2); #if PHP_VERSION_ID < 50300 ZVAL_LONG(&arg2, 0); #else ZVAL_LONG(&arg2, SPL_FILE_DIR_SKIPDOTS|SPL_FILE_DIR_UNIXPATHS); #endif zend_call_method_with_2_params(&iter, spl_ce_RecursiveDirectoryIterator, &spl_ce_RecursiveDirectoryIterator->constructor, "__construct", NULL, &arg, &arg2); if (EG(exception)) { zval_ptr_dtor(&iter); RETURN_FALSE; } MAKE_STD_ZVAL(iteriter); if (SUCCESS != object_init_ex(iteriter, spl_ce_RecursiveIteratorIterator)) { zval_ptr_dtor(&iter); zval_ptr_dtor(&iteriter); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Unable to instantiate directory iterator for %s", phar_obj->arc.archive->fname); RETURN_FALSE; } zend_call_method_with_1_params(&iteriter, spl_ce_RecursiveIteratorIterator, &spl_ce_RecursiveIteratorIterator->constructor, "__construct", NULL, iter); if (EG(exception)) { zval_ptr_dtor(&iter); zval_ptr_dtor(&iteriter); RETURN_FALSE; } zval_ptr_dtor(&iter); if (regex_len > 0) { apply_reg = 1; MAKE_STD_ZVAL(regexiter); if (SUCCESS != object_init_ex(regexiter, spl_ce_RegexIterator)) { zval_ptr_dtor(&iteriter); zval_dtor(regexiter); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Unable to instantiate regex iterator for %s", phar_obj->arc.archive->fname); RETURN_FALSE; } INIT_PZVAL(&arg2); ZVAL_STRINGL(&arg2, regex, regex_len, 0); zend_call_method_with_2_params(&regexiter, spl_ce_RegexIterator, &spl_ce_RegexIterator->constructor, "__construct", NULL, iteriter, &arg2); } array_init(return_value); pass.c = apply_reg ? Z_OBJCE_P(regexiter) : Z_OBJCE_P(iteriter); pass.p = phar_obj; pass.b = dir; pass.l = dir_len; pass.count = 0; pass.ret = return_value; pass.fp = php_stream_fopen_tmpfile(); if (pass.fp == NULL) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar \"%s\" unable to create temporary file", phar_obj->arc.archive->fname); return; } if (phar_obj->arc.archive->is_persistent && FAILURE == phar_copy_on_write(&(phar_obj->arc.archive) TSRMLS_CC)) { zval_ptr_dtor(&iteriter); if (apply_reg) { zval_ptr_dtor(&regexiter); } php_stream_close(pass.fp); zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar \"%s\" is persistent, unable to copy on write", phar_obj->arc.archive->fname); return; } if (SUCCESS == spl_iterator_apply((apply_reg ? regexiter : iteriter), (spl_iterator_apply_func_t) phar_build, (void *) &pass TSRMLS_CC)) { zval_ptr_dtor(&iteriter); if (apply_reg) { zval_ptr_dtor(&regexiter); } phar_obj->arc.archive->ufp = pass.fp; phar_flush(phar_obj->arc.archive, 0, 0, 0, &error TSRMLS_CC); if (error) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "%s", error); efree(error); } } else { zval_ptr_dtor(&iteriter); if (apply_reg) { zval_ptr_dtor(&regexiter); } php_stream_close(pass.fp); } } /* }}} */ /* {{{ proto array Phar::buildFromIterator(Iterator iter[, string base_directory]) * Construct a phar archive from an iterator. The iterator must return a series of strings * that are full paths to files that should be added to the phar. The iterator key should * be the path that the file will have within the phar archive. * * If base directory is specified, then the key will be ignored, and instead the portion of * the current value minus the base directory will be used * * Returned is an array mapping phar index to actual file added */ PHP_METHOD(Phar, buildFromIterator) { zval *obj; char *error; uint base_len = 0; char *base = NULL; struct _phar_t pass; PHAR_ARCHIVE_OBJECT(); if (PHAR_G(readonly) && !phar_obj->arc.archive->is_data) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Cannot write out phar archive, phar is read-only"); return; } if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "O|s", &obj, zend_ce_traversable, &base, &base_len) == FAILURE) { RETURN_FALSE; } if (phar_obj->arc.archive->is_persistent && FAILURE == phar_copy_on_write(&(phar_obj->arc.archive) TSRMLS_CC)) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar \"%s\" is persistent, unable to copy on write", phar_obj->arc.archive->fname); return; } array_init(return_value); pass.c = Z_OBJCE_P(obj); pass.p = phar_obj; pass.b = base; pass.l = base_len; pass.ret = return_value; pass.count = 0; pass.fp = php_stream_fopen_tmpfile(); if (pass.fp == NULL) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "phar \"%s\": unable to create temporary file", phar_obj->arc.archive->fname); return; } if (SUCCESS == spl_iterator_apply(obj, (spl_iterator_apply_func_t) phar_build, (void *) &pass TSRMLS_CC)) { phar_obj->arc.archive->ufp = pass.fp; phar_flush(phar_obj->arc.archive, 0, 0, 0, &error TSRMLS_CC); if (error) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "%s", error); efree(error); } } else { php_stream_close(pass.fp); } } /* }}} */ /* {{{ proto int Phar::count() * Returns the number of entries in the Phar archive */ PHP_METHOD(Phar, count) { PHAR_ARCHIVE_OBJECT(); if (zend_parse_parameters_none() == FAILURE) { return; } RETURN_LONG(zend_hash_num_elements(&phar_obj->arc.archive->manifest)); } /* }}} */ /* {{{ proto bool Phar::isFileFormat(int format) * Returns true if the phar archive is based on the tar/zip/phar file format depending * on whether Phar::TAR, Phar::ZIP or Phar::PHAR was passed in */ PHP_METHOD(Phar, isFileFormat) { long type; PHAR_ARCHIVE_OBJECT(); if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &type) == FAILURE) { RETURN_FALSE; } switch (type) { case PHAR_FORMAT_TAR: RETURN_BOOL(phar_obj->arc.archive->is_tar); case PHAR_FORMAT_ZIP: RETURN_BOOL(phar_obj->arc.archive->is_zip); case PHAR_FORMAT_PHAR: RETURN_BOOL(!phar_obj->arc.archive->is_tar && !phar_obj->arc.archive->is_zip); default: zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "Unknown file format specified"); } } /* }}} */ static int phar_copy_file_contents(phar_entry_info *entry, php_stream *fp TSRMLS_DC) /* {{{ */ { char *error; off_t offset; phar_entry_info *link; if (FAILURE == phar_open_entry_fp(entry, &error, 1 TSRMLS_CC)) { if (error) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Cannot convert phar archive \"%s\", unable to open entry \"%s\" contents: %s", entry->phar->fname, entry->filename, error); efree(error); } else { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Cannot convert phar archive \"%s\", unable to open entry \"%s\" contents", entry->phar->fname, entry->filename); } return FAILURE; } /* copy old contents in entirety */ phar_seek_efp(entry, 0, SEEK_SET, 0, 1 TSRMLS_CC); offset = php_stream_tell(fp); link = phar_get_link_source(entry TSRMLS_CC); if (!link) { link = entry; } if (SUCCESS != phar_stream_copy_to_stream(phar_get_efp(link, 0 TSRMLS_CC), fp, link->uncompressed_filesize, NULL)) { zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Cannot convert phar archive \"%s\", unable to copy entry \"%s\" contents", entry->phar->fname, entry->filename); return FAILURE; } if (entry->fp_type == PHAR_MOD) { /* save for potential restore on error */ entry->cfp = entry->fp; entry->fp = NULL; } /* set new location of file contents */ entry->fp_type = PHAR_FP; entry->offset = offset; return SUCCESS; } /* }}} */ static zval *phar_rename_archive(phar_archive_data *phar, char *ext, zend_bool compress TSRMLS_DC) /* {{{ */ { const char *oldname = NULL; char *oldpath = NULL; char *basename = NULL, *basepath = NULL; char *newname = NULL, *newpath = NULL; zval *ret, arg1; zend_class_entry *ce; char *error; const char *pcr_error; int ext_len = ext ? strlen(ext) : 0; int oldname_len; phar_archive_data **pphar = NULL; php_stream_statbuf ssb; if (!ext) { if (phar->is_zip) { if (phar->is_data) { ext = "zip"; } else { ext = "phar.zip"; } } else if (phar->is_tar) { switch (phar->flags) { case PHAR_FILE_COMPRESSED_GZ: if (phar->is_data) { ext = "tar.gz"; } else { ext = "phar.tar.gz"; } break; case PHAR_FILE_COMPRESSED_BZ2: if (phar->is_data) { ext = "tar.bz2"; } else { ext = "phar.tar.bz2"; } break; default: if (phar->is_data) { ext = "tar"; } else { ext = "phar.tar"; } } } else { switch (phar->flags) { case PHAR_FILE_COMPRESSED_GZ: ext = "phar.gz"; break; case PHAR_FILE_COMPRESSED_BZ2: ext = "phar.bz2"; break; default: ext = "phar"; } } } else if (phar_path_check(&ext, &ext_len, &pcr_error) > pcr_is_ok) { if (phar->is_data) { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "data phar converted from \"%s\" has invalid extension %s", phar->fname, ext); } else { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "phar converted from \"%s\" has invalid extension %s", phar->fname, ext); } return NULL; } if (ext[0] == '.') { ++ext; } oldpath = estrndup(phar->fname, phar->fname_len); oldname = zend_memrchr(phar->fname, '/', phar->fname_len); ++oldname; oldname_len = strlen(oldname); basename = estrndup(oldname, oldname_len); spprintf(&newname, 0, "%s.%s", strtok(basename, "."), ext); efree(basename); basepath = estrndup(oldpath, (strlen(oldpath) - oldname_len)); phar->fname_len = spprintf(&newpath, 0, "%s%s", basepath, newname); phar->fname = newpath; phar->ext = newpath + phar->fname_len - strlen(ext) - 1; efree(basepath); efree(newname); if (PHAR_G(manifest_cached) && SUCCESS == zend_hash_find(&cached_phars, newpath, phar->fname_len, (void **) &pphar)) { efree(oldpath); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Unable to add newly converted phar \"%s\" to the list of phars, new phar name is in phar.cache_list", phar->fname); return NULL; } if (SUCCESS == zend_hash_find(&(PHAR_GLOBALS->phar_fname_map), newpath, phar->fname_len, (void **) &pphar)) { if ((*pphar)->fname_len == phar->fname_len && !memcmp((*pphar)->fname, phar->fname, phar->fname_len)) { if (!zend_hash_num_elements(&phar->manifest)) { (*pphar)->is_tar = phar->is_tar; (*pphar)->is_zip = phar->is_zip; (*pphar)->is_data = phar->is_data; (*pphar)->flags = phar->flags; (*pphar)->fp = phar->fp; phar->fp = NULL; phar_destroy_phar_data(phar TSRMLS_CC); phar = *pphar; phar->refcount++; newpath = oldpath; goto its_ok; } } efree(oldpath); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Unable to add newly converted phar \"%s\" to the list of phars, a phar with that name already exists", phar->fname); return NULL; } its_ok: if (SUCCESS == php_stream_stat_path(newpath, &ssb)) { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "phar \"%s\" exists and must be unlinked prior to conversion", newpath); efree(oldpath); return NULL; } if (!phar->is_data) { if (SUCCESS != phar_detect_phar_fname_ext(newpath, phar->fname_len, (const char **) &(phar->ext), &(phar->ext_len), 1, 1, 1 TSRMLS_CC)) { efree(oldpath); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "phar \"%s\" has invalid extension %s", phar->fname, ext); return NULL; } if (phar->alias) { if (phar->is_temporary_alias) { phar->alias = NULL; phar->alias_len = 0; } else { phar->alias = estrndup(newpath, strlen(newpath)); phar->alias_len = strlen(newpath); phar->is_temporary_alias = 1; zend_hash_update(&(PHAR_GLOBALS->phar_alias_map), newpath, phar->fname_len, (void*)&phar, sizeof(phar_archive_data*), NULL); } } } else { if (SUCCESS != phar_detect_phar_fname_ext(newpath, phar->fname_len, (const char **) &(phar->ext), &(phar->ext_len), 0, 1, 1 TSRMLS_CC)) { efree(oldpath); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "data phar \"%s\" has invalid extension %s", phar->fname, ext); return NULL; } phar->alias = NULL; phar->alias_len = 0; } if ((!pphar || phar == *pphar) && SUCCESS != zend_hash_update(&(PHAR_GLOBALS->phar_fname_map), newpath, phar->fname_len, (void*)&phar, sizeof(phar_archive_data*), NULL)) { efree(oldpath); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Unable to add newly converted phar \"%s\" to the list of phars", phar->fname); return NULL; } phar_flush(phar, 0, 0, 1, &error TSRMLS_CC); if (error) { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "%s", error); efree(error); efree(oldpath); return NULL; } efree(oldpath); if (phar->is_data) { ce = phar_ce_data; } else { ce = phar_ce_archive; } MAKE_STD_ZVAL(ret); if (SUCCESS != object_init_ex(ret, ce)) { zval_dtor(ret); zend_throw_exception_ex(spl_ce_BadMethodCallException, 0 TSRMLS_CC, "Unable to instantiate phar object when converting archive \"%s\"", phar->fname); return NULL; } INIT_PZVAL(&arg1); ZVAL_STRINGL(&arg1, phar->fname, phar->fname_len, 0); zend_call_method_with_1_params(&ret, ce, &ce->constructor, "__construct", NULL, &arg1); return ret; } /* }}} */ static zval *phar_convert_to_other(phar_archive_data *source, int convert, char *ext, php_uint32 flags TSRMLS_DC) /* {{{ */ { phar_archive_data *phar; phar_entry_info *entry, newentry; zval *ret; /* invalidate phar cache */ PHAR_G(last_phar) = NULL; PHAR_G(last_phar_name) = PHAR_G(last_alias) = NULL; phar = (phar_archive_data *) ecalloc(1, sizeof(phar_archive_data)); /* set whole-archive compression and type from parameter */ phar->flags = flags; phar->is_data = source->is_data; switch (convert) { case PHAR_FORMAT_TAR: phar->is_tar = 1; break; case PHAR_FORMAT_ZIP: phar->is_zip = 1; break; default: phar->is_data = 0; break; } zend_hash_init(&(phar->manifest), sizeof(phar_entry_info), zend_get_hash_value, destroy_phar_manifest_entry, 0); zend_hash_init(&phar->mounted_dirs, sizeof(char *), zend_get_hash_value, NULL, 0); zend_hash_init(&phar->virtual_dirs, sizeof(char *), zend_get_hash_value, NULL, 0); phar->fp = php_stream_fopen_tmpfile(); if (phar->fp == NULL) { zend_throw_exception_ex(phar_ce_PharException, 0 TSRMLS_CC, "unable to create temporary file"); return NULL; } phar->fname = source->fname; phar->fname_len = source->fname_len; phar->is_temporary_alias = source->is_temporary_alias; phar->alias = source->alias; if (source->metadata) { zval *t; t = source->metadata; ALLOC_ZVAL(phar->metadata); *phar->metadata = *t; zval_copy_ctor(phar->metadata); #if PHP_VERSION_ID < 50300 phar->metadata->refcount = 1; #else Z_SET_REFCOUNT_P(phar->metadata, 1); #endif phar->metadata_len = 0; } /* first copy each file's uncompressed contents to a temporary file and set per-file flags */ for (zend_hash_internal_pointer_reset(&source->manifest); SUCCESS == zend_hash_has_more_elements(&source->manifest); zend_hash_move_forward(&source->manifest)) { if (FAILURE == zend_hash_get_current_data(&source->manifest, (void **) &entry)) { zend_hash_destroy(&(phar->manifest)); php_stream_close(phar->fp); efree(phar); zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0 TSRMLS_CC, "Cannot convert phar archive \"%s\"", source->fname); return NULL; } newentry = *entry; if (newentry.link) { newentry.link = estrdup(newentry.link); goto no_copy; } if (newentry.tmp) { newentry.tmp = estrdup(newentry.tmp); goto no_copy; } newentry.metadata_str.c = 0; if (FAILURE == phar_copy_file_contents(&newentry, phar->fp TSRMLS_CC)) { zend_hash_destroy(&(phar->manifest)); php_stream_close(phar->fp); efree(phar); /* exception already thrown */ return NULL; } no_copy: newentry.filename = estrndup(newentry.filename, newentry.filename_len); if (newentry.metadata) { zval *t; t = newentry.metadata; ALLOC_ZVAL(newentry.metadata); *newentry.metadata = *t; zval_copy_ctor(newentry.metadata); #if PHP_VERSION_ID < 50300 newentry.metadata->refcount = 1; #else Z_SET_REFCOUNT_P(newentry.metadata, 1); #endif newentry.metadata_str.c = NULL; newentry.metadata_str.len = 0; } newentry.is_zip = phar->is_zip; newentry.is_tar = phar->is_tar; if (newentry.is_tar) { newentry.tar_type = (entry->is_dir ? TAR_DIR : TAR_FILE); } newentry.is_modified = 1; newentry.phar = phar; newentry.old_flags = newentry.flags & ~PHAR_ENT_COMPRESSION_MASK; /* remove compression from old_flags */ phar_set_inode(&newentry TSRMLS_CC); zend_hash_add(&(phar->manifest), newentry.filename, newentry.filename_len, (void*)&newentry, sizeof(phar_entry_info), NULL); phar_add_virtual_dirs(phar, newentry.filename, newentry.filename_len TSRMLS_CC); } if ((ret = phar_rename_archive(phar, ext, 0 TSRMLS_CC))) { return ret; } else { zend_hash_destroy(&(phar->manifest)); zend_hash_destroy(&(phar->mounted_dirs)); zend_hash_destroy(&(phar->virtual_dirs)); php_stream_close(phar->fp); efree(phar->fname); efree(phar); return NULL; /* }}} */
1
CVE-2015-5589
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
2,983
linux-2.6
f6b97b29513950bfbf621a83d85b6f86b39ec8db
static int nr_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; struct sock *sk = sock->sk; struct nr_sock *nr = nr_sk(sk); lock_sock(sk); if (peer != 0) { if (sk->sk_state != TCP_ESTABLISHED) { release_sock(sk); return -ENOTCONN; } sax->fsa_ax25.sax25_family = AF_NETROM; sax->fsa_ax25.sax25_ndigis = 1; sax->fsa_ax25.sax25_call = nr->user_addr; sax->fsa_digipeater[0] = nr->dest_addr; *uaddr_len = sizeof(struct full_sockaddr_ax25); } else { sax->fsa_ax25.sax25_family = AF_NETROM; sax->fsa_ax25.sax25_ndigis = 0; sax->fsa_ax25.sax25_call = nr->source_addr; *uaddr_len = sizeof(struct sockaddr_ax25); } release_sock(sk); return 0; }
1
CVE-2009-3001
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
8,812
savannah
94e01571507835ff59dd8ce2a0b56a4b566965a4
getenv_TZ (void) { return getenv ("TZ"); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,263
linux
7572777eef78ebdee1ecb7c258c0ef94d35bad16
static sector_t fuse_bmap(struct address_space *mapping, sector_t block) { struct inode *inode = mapping->host; struct fuse_conn *fc = get_fuse_conn(inode); struct fuse_req *req; struct fuse_bmap_in inarg; struct fuse_bmap_out outarg; int err; if (!inode->i_sb->s_bdev || fc->no_bmap) return 0; req = fuse_get_req(fc); if (IS_ERR(req)) return 0; memset(&inarg, 0, sizeof(inarg)); inarg.block = block; inarg.blocksize = inode->i_sb->s_blocksize; req->in.h.opcode = FUSE_BMAP; req->in.h.nodeid = get_node_id(inode); req->in.numargs = 1; req->in.args[0].size = sizeof(inarg); req->in.args[0].value = &inarg; req->out.numargs = 1; req->out.args[0].size = sizeof(outarg); req->out.args[0].value = &outarg; fuse_request_send(fc, req); err = req->out.h.error; fuse_put_request(fc, req); if (err == -ENOSYS) fc->no_bmap = 1; return err ? 0 : outarg.block; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
11,363
savannah
b3500af717010137046ec4076d1e1c0641e33727
FT_Bitmap_Convert( FT_Library library, const FT_Bitmap *source, FT_Bitmap *target, FT_Int alignment ) { FT_Error error = FT_Err_Ok; FT_Memory memory; FT_Int source_pitch, target_pitch; if ( !library ) return FT_THROW( Invalid_Library_Handle ); memory = library->memory; switch ( source->pixel_mode ) { case FT_PIXEL_MODE_MONO: case FT_PIXEL_MODE_GRAY: case FT_PIXEL_MODE_GRAY2: case FT_PIXEL_MODE_GRAY4: case FT_PIXEL_MODE_LCD: case FT_PIXEL_MODE_LCD_V: case FT_PIXEL_MODE_LCD_V: case FT_PIXEL_MODE_BGRA: { FT_Int pad, old_target_pitch; FT_Long old_size; old_target_pitch = target->pitch; old_target_pitch = -old_target_pitch; old_size = target->rows * old_target_pitch; target->pixel_mode = FT_PIXEL_MODE_GRAY; target->rows = source->rows; target->width = source->width; pad = 0; if ( alignment > 0 ) { pad = source->width % alignment; if ( pad != 0 ) pad = alignment - pad; } target_pitch = source->width + pad; if ( target_pitch > 0 && (FT_ULong)target->rows > FT_ULONG_MAX / target_pitch ) return FT_THROW( Invalid_Argument ); if ( target->rows * target_pitch > old_size && FT_QREALLOC( target->buffer, old_size, target->rows * target_pitch ) ) return error; target->pitch = target->pitch < 0 ? -target_pitch : target_pitch; } break; default: error = FT_THROW( Invalid_Argument ); } source_pitch = source->pitch; if ( source_pitch < 0 ) source_pitch = -source_pitch; switch ( source->pixel_mode ) { case FT_PIXEL_MODE_MONO: { FT_Byte* s = source->buffer; FT_Byte* t = target->buffer; FT_Int i; target->num_grays = 2; for ( i = source->rows; i > 0; i-- ) { FT_Byte* ss = s; FT_Byte* tt = t; FT_Int j; /* get the full bytes */ for ( j = source->width >> 3; j > 0; j-- ) { FT_Int val = ss[0]; /* avoid a byte->int cast on each line */ tt[0] = (FT_Byte)( ( val & 0x80 ) >> 7 ); tt[1] = (FT_Byte)( ( val & 0x40 ) >> 6 ); tt[2] = (FT_Byte)( ( val & 0x20 ) >> 5 ); tt[3] = (FT_Byte)( ( val & 0x10 ) >> 4 ); tt[4] = (FT_Byte)( ( val & 0x08 ) >> 3 ); tt[5] = (FT_Byte)( ( val & 0x04 ) >> 2 ); tt[6] = (FT_Byte)( ( val & 0x02 ) >> 1 ); tt[7] = (FT_Byte)( val & 0x01 ); tt += 8; ss += 1; } /* get remaining pixels (if any) */ j = source->width & 7; if ( j > 0 ) { FT_Int val = *ss; for ( ; j > 0; j-- ) { tt[0] = (FT_Byte)( ( val & 0x80 ) >> 7); val <<= 1; tt += 1; } } s += source_pitch; t += target_pitch; } } break; case FT_PIXEL_MODE_GRAY: case FT_PIXEL_MODE_LCD: case FT_PIXEL_MODE_LCD_V: { FT_Int width = source->width; FT_Byte* s = source->buffer; FT_Byte* t = target->buffer; FT_Int i; target->num_grays = 256; for ( i = source->rows; i > 0; i-- ) { FT_ARRAY_COPY( t, s, width ); s += source_pitch; t += target_pitch; } } break; case FT_PIXEL_MODE_GRAY2: { FT_Byte* s = source->buffer; FT_Byte* t = target->buffer; FT_Int i; target->num_grays = 4; for ( i = source->rows; i > 0; i-- ) { FT_Byte* ss = s; FT_Byte* tt = t; FT_Int j; /* get the full bytes */ for ( j = source->width >> 2; j > 0; j-- ) { FT_Int val = ss[0]; tt[0] = (FT_Byte)( ( val & 0xC0 ) >> 6 ); tt[1] = (FT_Byte)( ( val & 0x30 ) >> 4 ); tt[2] = (FT_Byte)( ( val & 0x0C ) >> 2 ); tt[3] = (FT_Byte)( ( val & 0x03 ) ); ss += 1; tt += 4; } j = source->width & 3; if ( j > 0 ) { FT_Int val = ss[0]; for ( ; j > 0; j-- ) { tt[0] = (FT_Byte)( ( val & 0xC0 ) >> 6 ); val <<= 2; tt += 1; } } s += source_pitch; t += target_pitch; } } break; case FT_PIXEL_MODE_GRAY4: { FT_Byte* s = source->buffer; FT_Byte* t = target->buffer; FT_Int i; target->num_grays = 16; for ( i = source->rows; i > 0; i-- ) { FT_Byte* ss = s; FT_Byte* tt = t; FT_Int j; /* get the full bytes */ for ( j = source->width >> 1; j > 0; j-- ) { FT_Int val = ss[0]; tt[0] = (FT_Byte)( ( val & 0xF0 ) >> 4 ); tt[1] = (FT_Byte)( ( val & 0x0F ) ); ss += 1; tt += 2; } if ( source->width & 1 ) tt[0] = (FT_Byte)( ( ss[0] & 0xF0 ) >> 4 ); s += source_pitch; t += target_pitch; } } break; case FT_PIXEL_MODE_BGRA: { FT_Byte* s = source->buffer; FT_Byte* t = target->buffer; FT_Int i; target->num_grays = 256; for ( i = source->rows; i > 0; i-- ) { FT_Byte* ss = s; FT_Byte* tt = t; FT_Int j; for ( j = source->width; j > 0; j-- ) { tt[0] = ft_gray_for_premultiplied_srgb_bgra( ss ); ss += 4; tt += 1; } s += source_pitch; t += target_pitch; } } break; default: ; } return error; }
1
CVE-2014-9665
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
7,367
php-src
c96d08b27226193dd51f2b50e84272235c6aaa69
static int get_http_body(php_stream *stream, int close, char *headers, char **response, int *out_size TSRMLS_DC) { char *header, *http_buf = NULL; int header_close = close, header_chunked = 0, header_length = 0, http_buf_size = 0; if (!close) { header = get_http_header_value(headers, "Connection: "); if (header) { if(!strncasecmp(header, "close", sizeof("close")-1)) header_close = 1; efree(header); } } header = get_http_header_value(headers, "Transfer-Encoding: "); if (header) { if(!strncasecmp(header, "chunked", sizeof("chunked")-1)) header_chunked = 1; efree(header); } header = get_http_header_value(headers, "Content-Length: "); if (header) { header_length = atoi(header); efree(header); if (!header_length && !header_chunked) { /* Empty response */ http_buf = emalloc(1); http_buf[0] = '\0'; (*response) = http_buf; (*out_size) = 0; return TRUE; } } if (header_chunked) { char ch, done, headerbuf[8192]; done = FALSE; while (!done) { int buf_size = 0; php_stream_gets(stream, headerbuf, sizeof(headerbuf)); if (sscanf(headerbuf, "%x", &buf_size) > 0 ) { if (buf_size > 0) { int len_size = 0; if (http_buf_size + buf_size + 1 < 0) { efree(http_buf); return FALSE; } http_buf = erealloc(http_buf, http_buf_size + buf_size + 1); while (len_size < buf_size) { int len_read = php_stream_read(stream, http_buf + http_buf_size, buf_size - len_size); if (len_read <= 0) { /* Error or EOF */ done = TRUE; break; } len_size += len_read; http_buf_size += len_read; } /* Eat up '\r' '\n' */ ch = php_stream_getc(stream); if (ch == '\r') { ch = php_stream_getc(stream); } if (ch != '\n') { /* Somthing wrong in chunked encoding */ if (http_buf) { efree(http_buf); } return FALSE; } } } else { /* Somthing wrong in chunked encoding */ if (http_buf) { efree(http_buf); } return FALSE; } if (buf_size == 0) { done = TRUE; } } /* Ignore trailer headers */ while (1) { if (!php_stream_gets(stream, headerbuf, sizeof(headerbuf))) { break; } if ((headerbuf[0] == '\r' && headerbuf[1] == '\n') || (headerbuf[0] == '\n')) { /* empty line marks end of headers */ break; } } if (http_buf == NULL) { http_buf = emalloc(1); } } else if (header_length) { if (header_length < 0 || header_length >= INT_MAX) { return FALSE; } http_buf = safe_emalloc(1, header_length, 1); while (http_buf_size < header_length) { int len_read = php_stream_read(stream, http_buf + http_buf_size, header_length - http_buf_size); if (len_read <= 0) { break; } http_buf_size += len_read; } } else if (header_close) { do { int len_read; http_buf = erealloc(http_buf, http_buf_size + 4096 + 1); len_read = php_stream_read(stream, http_buf + http_buf_size, 4096); if (len_read > 0) { http_buf_size += len_read; } } while(!php_stream_eof(stream)); } else { return FALSE; } http_buf[http_buf_size] = '\0'; (*response) = http_buf; (*out_size) = http_buf_size; return TRUE; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
21,778
linux
ed6fe9d614fc1bca95eb8c0ccd0e92db00ef9d5d
static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) { struct kiocb iocb; struct sock_iocb siocb; int ret; init_sync_kiocb(&iocb, NULL); iocb.private = &siocb; ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); if (-EIOCBQUEUED == ret) ret = wait_on_sync_kiocb(&iocb); return ret; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,757
linux
1fb254aa983bf190cfd685d40c64a480a9bafaee
xfs_vn_create( struct inode *dir, struct dentry *dentry, umode_t mode, bool flags) { return xfs_vn_mknod(dir, dentry, mode, 0); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,531
FreeRDP
f5e73cc7c9cd973b516a618da877c87b80950b65
BOOL autodetect_send_bandwidth_measure_payload(rdpContext* context, UINT16 payloadLength, UINT16 sequenceNumber) { wStream* s; UCHAR* buffer = NULL; BOOL bResult = FALSE; s = rdp_message_channel_pdu_init(context->rdp); if (!s) return FALSE; WLog_VRB(AUTODETECT_TAG, "sending Bandwidth Measure Payload PDU -> payloadLength=%" PRIu16 "", payloadLength); /* 4-bytes aligned */ payloadLength &= ~3; if (!Stream_EnsureRemainingCapacity(s, 8 + payloadLength)) { Stream_Release(s); return FALSE; } Stream_Write_UINT8(s, 0x08); /* headerLength (1 byte) */ Stream_Write_UINT8(s, TYPE_ID_AUTODETECT_REQUEST); /* headerTypeId (1 byte) */ Stream_Write_UINT16(s, sequenceNumber); /* sequenceNumber (2 bytes) */ Stream_Write_UINT16(s, RDP_BW_PAYLOAD_REQUEST_TYPE); /* requestType (2 bytes) */ Stream_Write_UINT16(s, payloadLength); /* payloadLength (2 bytes) */ /* Random data (better measurement in case the line is compressed) */ buffer = (UCHAR*)malloc(payloadLength); if (NULL == buffer) { Stream_Release(s); return FALSE; } winpr_RAND(buffer, payloadLength); Stream_Write(s, buffer, payloadLength); bResult = rdp_send_message_channel_pdu(context->rdp, s, SEC_AUTODETECT_REQ); free(buffer); return bResult; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,821
Android
04839626ed859623901ebd3a5fd483982186b59d
long Segment::DoLoadCluster( long long& pos, long& len) { if (m_pos < 0) return DoLoadClusterUnknownSize(pos, len); long long total, avail; long status = m_pReader->Length(&total, &avail); if (status < 0) //error return status; assert((total < 0) || (avail <= total)); const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; long long cluster_off = -1; //offset relative to start of segment long long cluster_size = -1; //size of cluster payload for (;;) { if ((total >= 0) && (m_pos >= total)) return 1; //no more clusters if ((segment_stop >= 0) && (m_pos >= segment_stop)) return 1; //no more clusters pos = m_pos; if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) //error return static_cast<long>(result); if (result > 0) //weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); if (id < 0) //error (or underflow) return static_cast<long>(id); pos += len; //consume ID if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) //error return static_cast<long>(result); if (result > 0) //weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) //error return static_cast<long>(size); pos += len; //consume length of size of element if (size == 0) //weird { m_pos = pos; continue; } const long long unknown_size = (1LL << (7 * len)) - 1; #if 0 //we must handle this to support live webm if (size == unknown_size) return E_FILE_FORMAT_INVALID; //TODO: allow this #endif if ((segment_stop >= 0) && (size != unknown_size) && ((pos + size) > segment_stop)) { return E_FILE_FORMAT_INVALID; } #if 0 //commented-out, to support incremental cluster parsing len = static_cast<long>(size); if ((pos + size) > avail) return E_BUFFER_NOT_FULL; #endif if (id == 0x0C53BB6B) //Cues ID { if (size == unknown_size) return E_FILE_FORMAT_INVALID; //TODO: liberalize if (m_pCues == NULL) { const long long element_size = (pos - idpos) + size; m_pCues = new Cues(this, pos, size, idpos, element_size); assert(m_pCues); //TODO } m_pos = pos + size; //consume payload continue; } if (id != 0x0F43B675) //Cluster ID { if (size == unknown_size) return E_FILE_FORMAT_INVALID; //TODO: liberalize m_pos = pos + size; //consume payload continue; } cluster_off = idpos - m_start; //relative pos if (size != unknown_size) cluster_size = size; break; } assert(cluster_off >= 0); //have cluster long long pos_; long len_; status = Cluster::HasBlockEntries(this, cluster_off, pos_, len_); if (status < 0) //error, or underflow { pos = pos_; len = len_; return status; } const long idx = m_clusterCount; if (m_clusterPreloadCount > 0) { assert(idx < m_clusterSize); Cluster* const pCluster = m_clusters[idx]; assert(pCluster); assert(pCluster->m_index < 0); const long long off = pCluster->GetPosition(); assert(off >= 0); if (off == cluster_off) //preloaded already { if (status == 0) //no entries found return E_FILE_FORMAT_INVALID; if (cluster_size >= 0) pos += cluster_size; else { const long long element_size = pCluster->GetElementSize(); if (element_size <= 0) return E_FILE_FORMAT_INVALID; //TODO: handle this case pos = pCluster->m_element_start + element_size; } pCluster->m_index = idx; //move from preloaded to loaded ++m_clusterCount; --m_clusterPreloadCount; m_pos = pos; //consume payload assert((segment_stop < 0) || (m_pos <= segment_stop)); return 0; //success } } if (status == 0) //no entries found { if (cluster_size < 0) return E_FILE_FORMAT_INVALID; //TODO: handle this pos += cluster_size; if ((total >= 0) && (pos >= total)) { m_pos = total; return 1; //no more clusters } if ((segment_stop >= 0) && (pos >= segment_stop)) { m_pos = segment_stop; return 1; //no more clusters } m_pos = pos; return 2; //try again } Cluster* const pCluster = Cluster::Create(this, idx, cluster_off); assert(pCluster); AppendCluster(pCluster); assert(m_clusters); assert(idx < m_clusterSize); assert(m_clusters[idx] == pCluster); if (cluster_size >= 0) { pos += cluster_size; m_pos = pos; assert((segment_stop < 0) || (m_pos <= segment_stop)); return 0; } m_pUnknownSize = pCluster; m_pos = -pos; return 0; //partial success, since we have a new cluster //// status == 0 means "no block entries found" //// pos designates start of payload //// m_pos has NOT been adjusted yet (in case we need to come back here) #if 0 if (cluster_size < 0) //unknown size { const long long payload_pos = pos; //absolute pos of cluster payload for (;;) //determine cluster size { if ((total >= 0) && (pos >= total)) break; if ((segment_stop >= 0) && (pos >= segment_stop)) break; //no more clusters if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) //error return static_cast<long>(result); if (result > 0) //weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); if (id < 0) //error (or underflow) return static_cast<long>(id); if (id == 0x0F43B675) //Cluster ID break; if (id == 0x0C53BB6B) //Cues ID break; switch (id) { case 0x20: //BlockGroup case 0x23: //Simple Block case 0x67: //TimeCode case 0x2B: //PrevSize break; default: assert(false); break; } pos += len; //consume ID (of sub-element) if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) //error return static_cast<long>(result); if (result > 0) //weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) //error return static_cast<long>(size); pos += len; //consume size field of element if (size == 0) //weird continue; const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) return E_FILE_FORMAT_INVALID; //not allowed for sub-elements if ((segment_stop >= 0) && ((pos + size) > segment_stop)) //weird return E_FILE_FORMAT_INVALID; pos += size; //consume payload of sub-element assert((segment_stop < 0) || (pos <= segment_stop)); } //determine cluster size cluster_size = pos - payload_pos; assert(cluster_size >= 0); pos = payload_pos; //reset and re-parse original cluster } if (m_clusterPreloadCount > 0) { assert(idx < m_clusterSize); Cluster* const pCluster = m_clusters[idx]; assert(pCluster); assert(pCluster->m_index < 0); const long long off = pCluster->GetPosition(); assert(off >= 0); if (off == cluster_off) //preloaded already return E_FILE_FORMAT_INVALID; //subtle } m_pos = pos + cluster_size; //consume payload assert((segment_stop < 0) || (m_pos <= segment_stop)); return 2; //try to find another cluster #endif }
1
CVE-2016-1621
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
3,946
linux
350a5c4dd2452ea999cc5e1d4a8dbf12de2f97ef
static int link_detach(union bpf_attr *attr) { struct bpf_link *link; int ret; if (CHECK_ATTR(BPF_LINK_DETACH)) return -EINVAL; link = bpf_link_get_from_fd(attr->link_detach.link_fd); if (IS_ERR(link)) return PTR_ERR(link); if (link->ops->detach) ret = link->ops->detach(link); else ret = -EOPNOTSUPP; bpf_link_put(link); return ret; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,233
Android
b9096dc
virtual status_t setCaptureState(bool active) { Parcel data, reply; data.writeInterfaceToken(ISoundTriggerHwService::getInterfaceDescriptor()); data.writeInt32(active); status_t status = remote()->transact(SET_CAPTURE_STATE, data, &reply); if (status == NO_ERROR) { status = reply.readInt32(); } return status; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,409
hhvm
ab6fdeb84fb090b48606b6f7933028cfe7bf3a5e
virtual void moduleInit() { Native::registerConstant<KindOfStaticString>( s_MCRYPT_3DES.get(), StaticString("tripledes").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_ARCFOUR.get(), StaticString("arcfour").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_ARCFOUR_IV.get(), StaticString("arcfour-iv").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_BLOWFISH.get(), StaticString("blowfish").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_BLOWFISH_COMPAT.get(), StaticString("blowfish-compat").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_CAST_128.get(), StaticString("cast-128").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_CAST_256.get(), StaticString("cast-256").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_CRYPT.get(), StaticString("crypt").get() ); Native::registerConstant<KindOfInt64>( s_MCRYPT_DECRYPT.get(), 1 ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_DES.get(), StaticString("des").get() ); Native::registerConstant<KindOfInt64>( s_MCRYPT_DEV_RANDOM.get(), RANDOM ); Native::registerConstant<KindOfInt64>( s_MCRYPT_DEV_URANDOM.get(), URANDOM ); Native::registerConstant<KindOfInt64>( s_MCRYPT_ENCRYPT.get(), 0 ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_ENIGNA.get(), StaticString("crypt").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_GOST.get(), StaticString("gost").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_IDEA.get(), StaticString("idea").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_LOKI97.get(), StaticString("loki97").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_MARS.get(), StaticString("mars").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_MODE_CBC.get(), StaticString("cbc").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_MODE_CFB.get(), StaticString("cfb").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_MODE_ECB.get(), StaticString("ecb").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_MODE_NOFB.get(), StaticString("nofb").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_MODE_OFB.get(), StaticString("ofb").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_MODE_STREAM.get(), StaticString("stream").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_PANAMA.get(), StaticString("panama").get() ); Native::registerConstant<KindOfInt64>( s_MCRYPT_RAND.get(), RAND ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_RC2.get(), StaticString("rc2").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_RC6.get(), StaticString("rc6").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_RIJNDAEL_128.get(), StaticString("rijndael-128").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_RIJNDAEL_192.get(), StaticString("rijndael-192").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_RIJNDAEL_256.get(), StaticString("rijndael-256").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_SAFER128.get(), StaticString("safer-sk128").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_SAFER64.get(), StaticString("safer-sk64").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_SAFERPLUS.get(), StaticString("saferplus").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_SERPENT.get(), StaticString("serpent").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_SKIPJACK.get(), StaticString("skipjack").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_THREEWAY.get(), StaticString("threeway").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_TRIPLEDES.get(), StaticString("tripledes").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_TWOFISH.get(), StaticString("twofish").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_WAKE.get(), StaticString("wake").get() ); Native::registerConstant<KindOfStaticString>( s_MCRYPT_XTEA.get(), StaticString("xtea").get() ); HHVM_FE(mcrypt_module_open); HHVM_FE(mcrypt_module_close); HHVM_FE(mcrypt_list_algorithms); HHVM_FE(mcrypt_list_modes); HHVM_FE(mcrypt_module_get_algo_block_size); HHVM_FE(mcrypt_module_get_algo_key_size); HHVM_FE(mcrypt_module_get_supported_key_sizes); HHVM_FE(mcrypt_module_is_block_algorithm_mode); HHVM_FE(mcrypt_module_is_block_algorithm); HHVM_FE(mcrypt_module_is_block_mode); HHVM_FE(mcrypt_module_self_test); HHVM_FE(mcrypt_create_iv); HHVM_FE(mcrypt_encrypt); HHVM_FE(mcrypt_decrypt); HHVM_FE(mcrypt_cbc); HHVM_FE(mcrypt_cfb); HHVM_FE(mcrypt_ecb); HHVM_FE(mcrypt_ofb); HHVM_FE(mcrypt_get_block_size); HHVM_FE(mcrypt_get_cipher_name); HHVM_FE(mcrypt_get_iv_size); HHVM_FE(mcrypt_get_key_size); HHVM_FE(mcrypt_enc_get_algorithms_name); HHVM_FE(mcrypt_enc_get_block_size); HHVM_FE(mcrypt_enc_get_iv_size); HHVM_FE(mcrypt_enc_get_key_size); HHVM_FE(mcrypt_enc_get_modes_name); HHVM_FE(mcrypt_enc_get_supported_key_sizes); HHVM_FE(mcrypt_enc_is_block_algorithm_mode); HHVM_FE(mcrypt_enc_is_block_algorithm); HHVM_FE(mcrypt_enc_is_block_mode); HHVM_FE(mcrypt_enc_self_test); HHVM_FE(mcrypt_generic_init); HHVM_FE(mcrypt_generic); HHVM_FE(mdecrypt_generic); HHVM_FE(mcrypt_generic_deinit); HHVM_FE(mcrypt_generic_end); loadSystemlib(); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
11,472
gpac
bceb03fd2be95097a7b409ea59914f332fb6bc86
GF_Err stsh_Read(GF_Box *s, GF_BitStream *bs) { GF_Err e; u32 count, i; GF_StshEntry *ent; GF_ShadowSyncBox *ptr = (GF_ShadowSyncBox *)s; count = gf_bs_read_u32(bs); for (i = 0; i < count; i++) { ent = (GF_StshEntry *) gf_malloc(sizeof(GF_StshEntry)); if (!ent) return GF_OUT_OF_MEM; ent->shadowedSampleNumber = gf_bs_read_u32(bs); ent->syncSampleNumber = gf_bs_read_u32(bs); e = gf_list_add(ptr->entries, ent); if (e) return e; } return GF_OK; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,131
stb
5ba0baaa269b3fd681828e0e3b3ac0f1472eaf40
static int stbi__process_frame_header(stbi__jpeg *z, int scan) { stbi__context *s = z->s; int Lf,p,i,q, h_max=1,v_max=1,c; Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); c = stbi__get8(s); if (c != 3 && c != 1 && c != 4) return stbi__err("bad component count","Corrupt JPEG"); s->img_n = c; for (i=0; i < c; ++i) { z->img_comp[i].data = NULL; z->img_comp[i].linebuf = NULL; } if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG"); z->rgb = 0; for (i=0; i < s->img_n; ++i) { static const unsigned char rgb[3] = { 'R', 'G', 'B' }; z->img_comp[i].id = stbi__get8(s); if (s->img_n == 3 && z->img_comp[i].id == rgb[i]) ++z->rgb; q = stbi__get8(s); z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG"); z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG"); z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG"); } if (scan != STBI__SCAN_load) return 1; if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) return stbi__err("too large", "Image too large to decode"); for (i=0; i < s->img_n; ++i) { if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; } // compute interleaved mcu info z->img_h_max = h_max; z->img_v_max = v_max; z->img_mcu_w = h_max * 8; z->img_mcu_h = v_max * 8; // these sizes can't be more than 17 bits z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; for (i=0; i < s->img_n; ++i) { // number of effective pixels (e.g. for non-interleaved MCU) z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; // to simplify generation, we'll allocate enough memory to decode // the bogus oversized data from using interleaved MCUs and their // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't // discard the extra data until colorspace conversion // // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier) // so these muls can't overflow with 32-bit ints (which we require) z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; z->img_comp[i].coeff = 0; z->img_comp[i].raw_coeff = 0; z->img_comp[i].linebuf = NULL; z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15); if (z->img_comp[i].raw_data == NULL) return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); // align blocks for idct using mmx/sse z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); if (z->progressive) { // w2, h2 are multiples of 8 (see above) z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8; z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8; z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15); if (z->img_comp[i].raw_coeff == NULL) return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15); } } return 1; }
1
CVE-2021-28021
CWE-787
Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]. Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
1,700
linux
c085c49920b2f900ba716b4ca1c1a55ece9872cc
static int br_mdb_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct net_device *dev; struct net *net = sock_net(skb->sk); struct nlmsghdr *nlh = NULL; int idx = 0, s_idx; s_idx = cb->args[0]; rcu_read_lock(); /* In theory this could be wrapped to 0... */ cb->seq = net->dev_base_seq + br_mdb_rehash_seq; for_each_netdev_rcu(net, dev) { if (dev->priv_flags & IFF_EBRIDGE) { struct br_port_msg *bpm; if (idx < s_idx) goto skip; nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_GETMDB, sizeof(*bpm), NLM_F_MULTI); if (nlh == NULL) break; bpm = nlmsg_data(nlh); bpm->ifindex = dev->ifindex; if (br_mdb_fill_info(skb, cb, dev) < 0) goto out; if (br_rports_fill_info(skb, cb, dev) < 0) goto out; cb->args[1] = 0; nlmsg_end(skb, nlh); skip: idx++; } } out: if (nlh) nlmsg_end(skb, nlh); rcu_read_unlock(); cb->args[0] = idx; return skb->len; }
1
CVE-2013-2636
CWE-399
Resource Management Errors
Weaknesses in this category are related to improper management of system resources.
Not Found in CWE Page
7,570
gpac
35ab4475a7df9b2a4bcab235e379c0c3ec543658
GF_Err gf_sm_load_init(GF_SceneLoader *load) { GF_Err e = GF_NOT_SUPPORTED; char *ext, szExt[50]; /*we need at least a scene graph*/ if (!load || (!load->ctx && !load->scene_graph) #ifndef GPAC_DISABLE_ISOM || (!load->fileName && !load->isom && !(load->flags & GF_SM_LOAD_FOR_PLAYBACK) ) #endif ) return GF_BAD_PARAM; if (!load->type) { #ifndef GPAC_DISABLE_ISOM if (load->isom) { load->type = GF_SM_LOAD_MP4; } else #endif { ext = (char *)strrchr(load->fileName, '.'); if (!ext) return GF_NOT_SUPPORTED; if (!stricmp(ext, ".gz")) { char *anext; ext[0] = 0; anext = (char *)strrchr(load->fileName, '.'); ext[0] = '.'; ext = anext; } strcpy(szExt, &ext[1]); strlwr(szExt); if (strstr(szExt, "bt")) load->type = GF_SM_LOAD_BT; else if (strstr(szExt, "wrl")) load->type = GF_SM_LOAD_VRML; else if (strstr(szExt, "x3dv")) load->type = GF_SM_LOAD_X3DV; #ifndef GPAC_DISABLE_LOADER_XMT else if (strstr(szExt, "xmt") || strstr(szExt, "xmta")) load->type = GF_SM_LOAD_XMTA; else if (strstr(szExt, "x3d")) load->type = GF_SM_LOAD_X3D; #endif else if (strstr(szExt, "swf")) load->type = GF_SM_LOAD_SWF; else if (strstr(szExt, "mov")) load->type = GF_SM_LOAD_QT; else if (strstr(szExt, "svg")) load->type = GF_SM_LOAD_SVG; else if (strstr(szExt, "xsr")) load->type = GF_SM_LOAD_XSR; else if (strstr(szExt, "xbl")) load->type = GF_SM_LOAD_XBL; else if (strstr(szExt, "xml")) { char *rtype = gf_xml_get_root_type(load->fileName, &e); if (rtype) { if (!strcmp(rtype, "SAFSession")) load->type = GF_SM_LOAD_XSR; else if (!strcmp(rtype, "XMT-A")) load->type = GF_SM_LOAD_XMTA; else if (!strcmp(rtype, "X3D")) load->type = GF_SM_LOAD_X3D; else if (!strcmp(rtype, "bindings")) load->type = GF_SM_LOAD_XBL; gf_free(rtype); } } } } if (!load->type) return e; if (!load->scene_graph) load->scene_graph = load->ctx->scene_graph; switch (load->type) { #ifndef GPAC_DISABLE_LOADER_BT case GF_SM_LOAD_BT: case GF_SM_LOAD_VRML: case GF_SM_LOAD_X3DV: return gf_sm_load_init_bt(load); #endif #ifndef GPAC_DISABLE_LOADER_XMT case GF_SM_LOAD_XMTA: case GF_SM_LOAD_X3D: return gf_sm_load_init_xmt(load); #endif #ifndef GPAC_DISABLE_SVG case GF_SM_LOAD_SVG: case GF_SM_LOAD_XSR: case GF_SM_LOAD_DIMS: return gf_sm_load_init_svg(load); case GF_SM_LOAD_XBL: e = gf_sm_load_init_xbl(load); load->process = gf_sm_load_run_xbl; load->done = gf_sm_load_done_xbl; return e; #endif #ifndef GPAC_DISABLE_SWF_IMPORT case GF_SM_LOAD_SWF: return gf_sm_load_init_swf(load); #endif #ifndef GPAC_DISABLE_LOADER_ISOM case GF_SM_LOAD_MP4: return gf_sm_load_init_isom(load); #endif #ifndef GPAC_DISABLE_QTVR case GF_SM_LOAD_QT: return gf_sm_load_init_qt(load); #endif default: return GF_NOT_SUPPORTED; } return GF_NOT_SUPPORTED; }
1
CVE-2018-20762
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
425
libxkbcommon
c1e5ac16e77a21f87bdf3bc4dea61b037a17dddb
ExprAppendMultiKeysymList(ExprDef *expr, ExprDef *append) { unsigned nSyms = darray_size(expr->keysym_list.syms); unsigned numEntries = darray_size(append->keysym_list.syms); darray_append(expr->keysym_list.symsMapIndex, nSyms); darray_append(expr->keysym_list.symsNumEntries, numEntries); darray_concat(expr->keysym_list.syms, append->keysym_list.syms); FreeStmt((ParseCommon *) &append); return expr; }
1
CVE-2018-15857
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
8,388
linux
fb58fdcd295b914ece1d829b24df00a17a9624bc
static void intel_iommu_domain_free(struct iommu_domain *domain) { domain_exit(to_dmar_domain(domain)); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,455
tensorflow
a68f68061e263a88321c104a6c911fe5598050a8
explicit SparseTensorAccessingOp(OpKernelConstruction* context) : OpKernel(context), sparse_tensors_map_(nullptr) {}
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,229
openssl
1421e0c584ae9120ca1b88098f13d6d2e90b83a3
int ssl3_accept(SSL *s) { BUF_MEM *buf; unsigned long alg_k,Time=(unsigned long)time(NULL); void (*cb)(const SSL *ssl,int type,int val)=NULL; int ret= -1; int new_state,state,skip=0; RAND_add(&Time,sizeof(Time),0); ERR_clear_error(); clear_sys_error(); if (s->info_callback != NULL) cb=s->info_callback; else if (s->ctx->info_callback != NULL) cb=s->ctx->info_callback; /* init things to blank */ s->in_handshake++; if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s); if (s->cert == NULL) { SSLerr(SSL_F_SSL3_ACCEPT,SSL_R_NO_CERTIFICATE_SET); return(-1); } #ifndef OPENSSL_NO_HEARTBEATS /* If we're awaiting a HeartbeatResponse, pretend we * already got and don't await it anymore, because * Heartbeats don't make sense during handshakes anyway. */ if (s->tlsext_hb_pending) { s->tlsext_hb_pending = 0; s->tlsext_hb_seq++; } #endif for (;;) { state=s->state; switch (s->state) { case SSL_ST_RENEGOTIATE: s->renegotiate=1; /* s->state=SSL_ST_ACCEPT; */ case SSL_ST_BEFORE: case SSL_ST_ACCEPT: case SSL_ST_BEFORE|SSL_ST_ACCEPT: case SSL_ST_OK|SSL_ST_ACCEPT: s->server=1; if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1); if ((s->version>>8) != 3) { SSLerr(SSL_F_SSL3_ACCEPT, ERR_R_INTERNAL_ERROR); return -1; } if (!ssl_security(s, SSL_SECOP_VERSION, 0, s->version, NULL)) { SSLerr(SSL_F_SSL3_ACCEPT, SSL_R_VERSION_TOO_LOW); return -1; } s->type=SSL_ST_ACCEPT; if (s->init_buf == NULL) { if ((buf=BUF_MEM_new()) == NULL) { ret= -1; goto end; } if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH)) { BUF_MEM_free(buf); ret= -1; goto end; } s->init_buf=buf; } if (!ssl3_setup_buffers(s)) { ret= -1; goto end; } s->init_num=0; s->s3->flags &= ~TLS1_FLAGS_SKIP_CERT_VERIFY; s->s3->flags &= ~SSL3_FLAGS_CCS_OK; /* Should have been reset by ssl3_get_finished, too. */ s->s3->change_cipher_spec = 0; if (s->state != SSL_ST_RENEGOTIATE) { /* Ok, we now need to push on a buffering BIO so that * the output is sent in a way that TCP likes :-) */ if (!ssl_init_wbio_buffer(s,1)) { ret= -1; goto end; } ssl3_init_finished_mac(s); s->state=SSL3_ST_SR_CLNT_HELLO_A; s->ctx->stats.sess_accept++; } else if (!s->s3->send_connection_binding && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { /* Server attempting to renegotiate with * client that doesn't support secure * renegotiation. */ SSLerr(SSL_F_SSL3_ACCEPT, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE_FAILURE); ret = -1; goto end; } else { /* s->state == SSL_ST_RENEGOTIATE, * we will just send a HelloRequest */ s->ctx->stats.sess_accept_renegotiate++; s->state=SSL3_ST_SW_HELLO_REQ_A; } break; case SSL3_ST_SW_HELLO_REQ_A: case SSL3_ST_SW_HELLO_REQ_B: s->shutdown=0; ret=ssl3_send_hello_request(s); if (ret <= 0) goto end; s->s3->tmp.next_state=SSL3_ST_SW_HELLO_REQ_C; s->state=SSL3_ST_SW_FLUSH; s->init_num=0; ssl3_init_finished_mac(s); break; case SSL3_ST_SW_HELLO_REQ_C: s->state=SSL_ST_OK; break; case SSL3_ST_SR_CLNT_HELLO_A: case SSL3_ST_SR_CLNT_HELLO_B: case SSL3_ST_SR_CLNT_HELLO_C: ret=ssl3_get_client_hello(s); if (ret <= 0) goto end; #ifndef OPENSSL_NO_SRP s->state = SSL3_ST_SR_CLNT_HELLO_D; case SSL3_ST_SR_CLNT_HELLO_D: { int al; if ((ret = ssl_check_srp_ext_ClientHello(s,&al)) < 0) { /* callback indicates firther work to be done */ s->rwstate=SSL_X509_LOOKUP; goto end; } if (ret != SSL_ERROR_NONE) { ssl3_send_alert(s,SSL3_AL_FATAL,al); /* This is not really an error but the only means to for a client to detect whether srp is supported. */ if (al != TLS1_AD_UNKNOWN_PSK_IDENTITY) SSLerr(SSL_F_SSL3_ACCEPT,SSL_R_CLIENTHELLO_TLSEXT); ret = SSL_TLSEXT_ERR_ALERT_FATAL; ret= -1; goto end; } } #endif s->renegotiate = 2; s->state=SSL3_ST_SW_SRVR_HELLO_A; s->init_num=0; break; case SSL3_ST_SW_SRVR_HELLO_A: case SSL3_ST_SW_SRVR_HELLO_B: ret=ssl3_send_server_hello(s); if (ret <= 0) goto end; #ifndef OPENSSL_NO_TLSEXT if (s->hit) { if (s->tlsext_ticket_expected) s->state=SSL3_ST_SW_SESSION_TICKET_A; else s->state=SSL3_ST_SW_CHANGE_A; } #else if (s->hit) s->state=SSL3_ST_SW_CHANGE_A; #endif else s->state = SSL3_ST_SW_CERT_A; s->init_num = 0; break; case SSL3_ST_SW_CERT_A: case SSL3_ST_SW_CERT_B: /* Check if it is anon DH or anon ECDH, */ /* normal PSK or KRB5 or SRP */ if (!(s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL|SSL_aKRB5|SSL_aSRP)) && !(s->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK)) { ret=ssl3_send_server_certificate(s); if (ret <= 0) goto end; #ifndef OPENSSL_NO_TLSEXT if (s->tlsext_status_expected) s->state=SSL3_ST_SW_CERT_STATUS_A; else s->state=SSL3_ST_SW_KEY_EXCH_A; } else { skip = 1; s->state=SSL3_ST_SW_KEY_EXCH_A; } #else } else skip=1; s->state=SSL3_ST_SW_KEY_EXCH_A; #endif s->init_num=0; break; case SSL3_ST_SW_KEY_EXCH_A: case SSL3_ST_SW_KEY_EXCH_B: alg_k = s->s3->tmp.new_cipher->algorithm_mkey; /* * clear this, it may get reset by * send_server_key_exchange */ s->s3->tmp.use_rsa_tmp=0; /* only send if a DH key exchange, fortezza or * RSA but we have a sign only certificate * * PSK: may send PSK identity hints * * For ECC ciphersuites, we send a serverKeyExchange * message only if the cipher suite is either * ECDH-anon or ECDHE. In other cases, the * server certificate contains the server's * public key for key exchange. */ if (0 /* PSK: send ServerKeyExchange if PSK identity * hint if provided */ #ifndef OPENSSL_NO_PSK || ((alg_k & SSL_kPSK) && s->ctx->psk_identity_hint) #endif #ifndef OPENSSL_NO_SRP /* SRP: send ServerKeyExchange */ || (alg_k & SSL_kSRP) #endif || (alg_k & SSL_kDHE) || (alg_k & SSL_kECDHE) || ((alg_k & SSL_kRSA) && (s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey == NULL || (SSL_C_IS_EXPORT(s->s3->tmp.new_cipher) && EVP_PKEY_size(s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey)*8 > SSL_C_EXPORT_PKEYLENGTH(s->s3->tmp.new_cipher) ) ) ) ) { ret=ssl3_send_server_key_exchange(s); if (ret <= 0) goto end; } else skip=1; s->state=SSL3_ST_SW_CERT_REQ_A; s->init_num=0; break; case SSL3_ST_SW_CERT_REQ_A: case SSL3_ST_SW_CERT_REQ_B: if (/* don't request cert unless asked for it: */ !(s->verify_mode & SSL_VERIFY_PEER) || /* if SSL_VERIFY_CLIENT_ONCE is set, * don't request cert during re-negotiation: */ ((s->session->peer != NULL) && (s->verify_mode & SSL_VERIFY_CLIENT_ONCE)) || /* never request cert in anonymous ciphersuites * (see section "Certificate request" in SSL 3 drafts * and in RFC 2246): */ ((s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL) && /* ... except when the application insists on verification * (against the specs, but s3_clnt.c accepts this for SSL 3) */ !(s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)) || /* never request cert in Kerberos ciphersuites */ (s->s3->tmp.new_cipher->algorithm_auth & SSL_aKRB5) || /* don't request certificate for SRP auth */ (s->s3->tmp.new_cipher->algorithm_auth & SSL_aSRP) /* With normal PSK Certificates and * Certificate Requests are omitted */ || (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK)) { /* no cert request */ skip=1; s->s3->tmp.cert_request=0; s->state=SSL3_ST_SW_SRVR_DONE_A; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return -1; } else { s->s3->tmp.cert_request=1; ret=ssl3_send_certificate_request(s); if (ret <= 0) goto end; #ifndef NETSCAPE_HANG_BUG s->state=SSL3_ST_SW_SRVR_DONE_A; #else s->state=SSL3_ST_SW_FLUSH; s->s3->tmp.next_state=SSL3_ST_SR_CERT_A; #endif s->init_num=0; } break; case SSL3_ST_SW_SRVR_DONE_A: case SSL3_ST_SW_SRVR_DONE_B: ret=ssl3_send_server_done(s); if (ret <= 0) goto end; s->s3->tmp.next_state=SSL3_ST_SR_CERT_A; s->state=SSL3_ST_SW_FLUSH; s->init_num=0; break; case SSL3_ST_SW_FLUSH: /* This code originally checked to see if * any data was pending using BIO_CTRL_INFO * and then flushed. This caused problems * as documented in PR#1939. The proposed * fix doesn't completely resolve this issue * as buggy implementations of BIO_CTRL_PENDING * still exist. So instead we just flush * unconditionally. */ s->rwstate=SSL_WRITING; if (BIO_flush(s->wbio) <= 0) { ret= -1; goto end; } s->rwstate=SSL_NOTHING; s->state=s->s3->tmp.next_state; break; case SSL3_ST_SR_CERT_A: case SSL3_ST_SR_CERT_B: if (s->s3->tmp.cert_request) { ret=ssl3_get_client_certificate(s); if (ret <= 0) goto end; } s->init_num=0; s->state=SSL3_ST_SR_KEY_EXCH_A; break; case SSL3_ST_SR_KEY_EXCH_A: case SSL3_ST_SR_KEY_EXCH_B: ret=ssl3_get_client_key_exchange(s); if (ret <= 0) goto end; if (ret == 2) { /* For the ECDH ciphersuites when * the client sends its ECDH pub key in * a certificate, the CertificateVerify * message is not sent. * Also for GOST ciphersuites when * the client uses its key from the certificate * for key exchange. */ #if defined(OPENSSL_NO_TLSEXT) || defined(OPENSSL_NO_NEXTPROTONEG) s->state=SSL3_ST_SR_FINISHED_A; #else if (s->s3->next_proto_neg_seen) s->state=SSL3_ST_SR_NEXT_PROTO_A; else s->state=SSL3_ST_SR_FINISHED_A; #endif s->init_num = 0; } else if (SSL_USE_SIGALGS(s)) { s->state=SSL3_ST_SR_CERT_VRFY_A; s->init_num=0; if (!s->session->peer) break; /* For sigalgs freeze the handshake buffer * at this point and digest cached records. */ if (!s->s3->handshake_buffer) { SSLerr(SSL_F_SSL3_ACCEPT,ERR_R_INTERNAL_ERROR); return -1; } s->s3->flags |= TLS1_FLAGS_KEEP_HANDSHAKE; if (!ssl3_digest_cached_records(s)) return -1; } else { int offset=0; int dgst_num; s->state=SSL3_ST_SR_CERT_VRFY_A; s->init_num=0; /* We need to get hashes here so if there is * a client cert, it can be verified * FIXME - digest processing for CertificateVerify * should be generalized. But it is next step */ if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return -1; for (dgst_num=0; dgst_num<SSL_MAX_DIGEST;dgst_num++) if (s->s3->handshake_dgst[dgst_num]) { int dgst_size; s->method->ssl3_enc->cert_verify_mac(s,EVP_MD_CTX_type(s->s3->handshake_dgst[dgst_num]),&(s->s3->tmp.cert_verify_md[offset])); dgst_size=EVP_MD_CTX_size(s->s3->handshake_dgst[dgst_num]); if (dgst_size < 0) { ret = -1; goto end; } offset+=dgst_size; } } break; case SSL3_ST_SR_CERT_VRFY_A: case SSL3_ST_SR_CERT_VRFY_B: /* * This *should* be the first time we enable CCS, but be * extra careful about surrounding code changes. We need * to set this here because we don't know if we're * expecting a CertificateVerify or not. */ if (!s->s3->change_cipher_spec) s->s3->flags |= SSL3_FLAGS_CCS_OK; /* we should decide if we expected this one */ ret=ssl3_get_cert_verify(s); if (ret <= 0) goto end; #if defined(OPENSSL_NO_TLSEXT) || defined(OPENSSL_NO_NEXTPROTONEG) s->state=SSL3_ST_SR_FINISHED_A; #else if (s->s3->next_proto_neg_seen) s->state=SSL3_ST_SR_NEXT_PROTO_A; else s->state=SSL3_ST_SR_FINISHED_A; #endif s->init_num=0; break; #if !defined(OPENSSL_NO_TLSEXT) && !defined(OPENSSL_NO_NEXTPROTONEG) case SSL3_ST_SR_NEXT_PROTO_A: case SSL3_ST_SR_NEXT_PROTO_B: /* * Enable CCS for resumed handshakes with NPN. * In a full handshake with NPN, we end up here through * SSL3_ST_SR_CERT_VRFY_B, where SSL3_FLAGS_CCS_OK was * already set. Receiving a CCS clears the flag, so make * sure not to re-enable it to ban duplicates. * s->s3->change_cipher_spec is set when a CCS is * processed in s3_pkt.c, and remains set until * the client's Finished message is read. */ if (!s->s3->change_cipher_spec) s->s3->flags |= SSL3_FLAGS_CCS_OK; ret=ssl3_get_next_proto(s); if (ret <= 0) goto end; s->init_num = 0; s->state=SSL3_ST_SR_FINISHED_A; break; #endif case SSL3_ST_SR_FINISHED_A: case SSL3_ST_SR_FINISHED_B: /* * Enable CCS for resumed handshakes without NPN. * In a full handshake, we end up here through * SSL3_ST_SR_CERT_VRFY_B, where SSL3_FLAGS_CCS_OK was * already set. Receiving a CCS clears the flag, so make * sure not to re-enable it to ban duplicates. * s->s3->change_cipher_spec is set when a CCS is * processed in s3_pkt.c, and remains set until * the client's Finished message is read. */ if (!s->s3->change_cipher_spec) s->s3->flags |= SSL3_FLAGS_CCS_OK; ret=ssl3_get_finished(s,SSL3_ST_SR_FINISHED_A, SSL3_ST_SR_FINISHED_B); if (ret <= 0) goto end; if (s->hit) s->state=SSL_ST_OK; #ifndef OPENSSL_NO_TLSEXT else if (s->tlsext_ticket_expected) s->state=SSL3_ST_SW_SESSION_TICKET_A; #endif else s->state=SSL3_ST_SW_CHANGE_A; s->init_num=0; break; #ifndef OPENSSL_NO_TLSEXT case SSL3_ST_SW_SESSION_TICKET_A: case SSL3_ST_SW_SESSION_TICKET_B: ret=ssl3_send_newsession_ticket(s); if (ret <= 0) goto end; s->state=SSL3_ST_SW_CHANGE_A; s->init_num=0; break; case SSL3_ST_SW_CERT_STATUS_A: case SSL3_ST_SW_CERT_STATUS_B: ret=ssl3_send_cert_status(s); if (ret <= 0) goto end; s->state=SSL3_ST_SW_KEY_EXCH_A; s->init_num=0; break; #endif case SSL3_ST_SW_CHANGE_A: case SSL3_ST_SW_CHANGE_B: s->session->cipher=s->s3->tmp.new_cipher; if (!s->method->ssl3_enc->setup_key_block(s)) { ret= -1; goto end; } ret=ssl3_send_change_cipher_spec(s, SSL3_ST_SW_CHANGE_A,SSL3_ST_SW_CHANGE_B); if (ret <= 0) goto end; s->state=SSL3_ST_SW_FINISHED_A; s->init_num=0; if (!s->method->ssl3_enc->change_cipher_state(s, SSL3_CHANGE_CIPHER_SERVER_WRITE)) { ret= -1; goto end; } break; case SSL3_ST_SW_FINISHED_A: case SSL3_ST_SW_FINISHED_B: ret=ssl3_send_finished(s, SSL3_ST_SW_FINISHED_A,SSL3_ST_SW_FINISHED_B, s->method->ssl3_enc->server_finished_label, s->method->ssl3_enc->server_finished_label_len); if (ret <= 0) goto end; s->state=SSL3_ST_SW_FLUSH; if (s->hit) { #if defined(OPENSSL_NO_TLSEXT) || defined(OPENSSL_NO_NEXTPROTONEG) s->s3->tmp.next_state=SSL3_ST_SR_FINISHED_A; #else if (s->s3->next_proto_neg_seen) { s->s3->tmp.next_state=SSL3_ST_SR_NEXT_PROTO_A; } else s->s3->tmp.next_state=SSL3_ST_SR_FINISHED_A; #endif } else s->s3->tmp.next_state=SSL_ST_OK; s->init_num=0; break; case SSL_ST_OK: /* clean a few things up */ ssl3_cleanup_key_block(s); BUF_MEM_free(s->init_buf); s->init_buf=NULL; /* remove buffering on output */ ssl_free_wbio_buffer(s); s->init_num=0; if (s->renegotiate == 2) /* skipped if we just sent a HelloRequest */ { s->renegotiate=0; s->new_session=0; ssl_update_cache(s,SSL_SESS_CACHE_SERVER); s->ctx->stats.sess_accept_good++; /* s->server=1; */ s->handshake_func=ssl3_accept; if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1); } ret = 1; goto end; /* break; */ default: SSLerr(SSL_F_SSL3_ACCEPT,SSL_R_UNKNOWN_STATE); ret= -1; goto end; /* break; */ } if (!s->s3->tmp.reuse_message && !skip) { if (s->debug) { if ((ret=BIO_flush(s->wbio)) <= 0) goto end; } if ((cb != NULL) && (s->state != state)) { new_state=s->state; s->state=state; cb(s,SSL_CB_ACCEPT_LOOP,1); s->state=new_state; } } skip=0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,478
php
1e9b175204e3286d64dfd6c9f09151c31b5e099a
PHP_METHOD(Phar, offsetUnset) { char *fname, *error; size_t fname_len; phar_entry_info *entry; PHAR_ARCHIVE_OBJECT(); if (PHAR_G(readonly) && !phar_obj->archive->is_data) { zend_throw_exception_ex(spl_ce_BadMethodCallException, 0, "Write operations disabled by the php.ini setting phar.readonly"); return; } if (zend_parse_parameters(ZEND_NUM_ARGS(), "s", &fname, &fname_len) == FAILURE) { return; } if (zend_hash_str_exists(&phar_obj->archive->manifest, fname, (uint) fname_len)) { if (NULL != (entry = zend_hash_str_find_ptr(&phar_obj->archive->manifest, fname, (uint) fname_len))) { if (entry->is_deleted) { /* entry is deleted, but has not been flushed to disk yet */ return; } if (phar_obj->archive->is_persistent) { if (FAILURE == phar_copy_on_write(&(phar_obj->archive))) { zend_throw_exception_ex(phar_ce_PharException, 0, "phar \"%s\" is persistent, unable to copy on write", phar_obj->archive->fname); return; } /* re-populate entry after copy on write */ entry = zend_hash_str_find_ptr(&phar_obj->archive->manifest, fname, (uint) fname_len); } entry->is_modified = 0; entry->is_deleted = 1; /* we need to "flush" the stream to save the newly deleted file on disk */ phar_flush(phar_obj->archive, 0, 0, 0, &error); if (error) { zend_throw_exception_ex(phar_ce_PharException, 0, "%s", error); efree(error); } RETURN_TRUE; } } else { RETURN_FALSE; } }
1
CVE-2016-4072
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
2,584
ImageMagick
73a2bad43d157acfe360595feee739b4cc4406cb
static Image *ReadPDFImage(const ImageInfo *image_info,ExceptionInfo *exception) { #define CMYKProcessColor "CMYKProcessColor" #define CropBox "CropBox" #define DefaultCMYK "DefaultCMYK" #define DeviceCMYK "DeviceCMYK" #define MediaBox "MediaBox" #define RenderPostscriptText "Rendering Postscript... " #define PDFRotate "Rotate" #define SpotColor "Separation" #define TrimBox "TrimBox" #define PDFVersion "PDF-" char command[MaxTextExtent], *density, filename[MaxTextExtent], geometry[MaxTextExtent], *options, input_filename[MaxTextExtent], message[MaxTextExtent], postscript_filename[MaxTextExtent]; const char *option; const DelegateInfo *delegate_info; double angle; GeometryInfo geometry_info; Image *image, *next, *pdf_image; ImageInfo *read_info; int c, file; MagickBooleanType cmyk, cropbox, fitPage, status, stop_on_error, trimbox; MagickStatusType flags; PointInfo delta; RectangleInfo bounding_box, page; register char *p; register ssize_t i; SegmentInfo bounds, hires_bounds; size_t scene, spotcolor; ssize_t count; assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); /* Open image file. */ image=AcquireImage(image_info); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } status=AcquireUniqueSymbolicLink(image_info->filename,input_filename); if (status == MagickFalse) { ThrowFileException(exception,FileOpenError,"UnableToCreateTemporaryFile", image_info->filename); image=DestroyImageList(image); return((Image *) NULL); } /* Set the page density. */ delta.x=DefaultResolution; delta.y=DefaultResolution; if ((image->x_resolution == 0.0) || (image->y_resolution == 0.0)) { flags=ParseGeometry(PSDensityGeometry,&geometry_info); image->x_resolution=geometry_info.rho; image->y_resolution=geometry_info.sigma; if ((flags & SigmaValue) == 0) image->y_resolution=image->x_resolution; } if (image_info->density != (char *) NULL) { flags=ParseGeometry(image_info->density,&geometry_info); image->x_resolution=geometry_info.rho; image->y_resolution=geometry_info.sigma; if ((flags & SigmaValue) == 0) image->y_resolution=image->x_resolution; } (void) ResetMagickMemory(&page,0,sizeof(page)); (void) ParseAbsoluteGeometry(PSPageGeometry,&page); if (image_info->page != (char *) NULL) (void) ParseAbsoluteGeometry(image_info->page,&page); page.width=(size_t) ceil((double) (page.width*image->x_resolution/delta.x)- 0.5); page.height=(size_t) ceil((double) (page.height*image->y_resolution/delta.y)- 0.5); /* Determine page geometry from the PDF media box. */ cmyk=image_info->colorspace == CMYKColorspace ? MagickTrue : MagickFalse; cropbox=MagickFalse; option=GetImageOption(image_info,"pdf:use-cropbox"); if (option != (const char *) NULL) cropbox=IsMagickTrue(option); stop_on_error=MagickFalse; option=GetImageOption(image_info,"pdf:stop-on-error"); if (option != (const char *) NULL) stop_on_error=IsMagickTrue(option); trimbox=MagickFalse; option=GetImageOption(image_info,"pdf:use-trimbox"); if (option != (const char *) NULL) trimbox=IsMagickTrue(option); count=0; spotcolor=0; (void) ResetMagickMemory(&bounding_box,0,sizeof(bounding_box)); (void) ResetMagickMemory(&bounds,0,sizeof(bounds)); (void) ResetMagickMemory(&hires_bounds,0,sizeof(hires_bounds)); (void) ResetMagickMemory(command,0,sizeof(command)); angle=0.0; p=command; for (c=ReadBlobByte(image); c != EOF; c=ReadBlobByte(image)) { /* Note PDF elements. */ if (c == '\n') c=' '; *p++=(char) c; if ((c != (int) '/') && (c != (int) '%') && ((size_t) (p-command) < (MaxTextExtent-1))) continue; *(--p)='\0'; p=command; if (LocaleNCompare(PDFRotate,command,strlen(PDFRotate)) == 0) (void) sscanf(command,"Rotate %lf",&angle); /* Is this a CMYK document? */ if (LocaleNCompare(DefaultCMYK,command,strlen(DefaultCMYK)) == 0) cmyk=MagickTrue; if (LocaleNCompare(DeviceCMYK,command,strlen(DeviceCMYK)) == 0) cmyk=MagickTrue; if (LocaleNCompare(CMYKProcessColor,command,strlen(CMYKProcessColor)) == 0) cmyk=MagickTrue; if (LocaleNCompare(SpotColor,command,strlen(SpotColor)) == 0) { char name[MaxTextExtent], property[MaxTextExtent], *value; register ssize_t i; /* Note spot names. */ (void) FormatLocaleString(property,MaxTextExtent,"pdf:SpotColor-%.20g", (double) spotcolor++); i=0; for (c=ReadBlobByte(image); c != EOF; c=ReadBlobByte(image)) { if ((isspace(c) != 0) || (c == '/') || ((i+1) == MaxTextExtent)) break; name[i++]=(char) c; } name[i]='\0'; value=AcquireString(name); (void) SubstituteString(&value,"#20"," "); (void) SetImageProperty(image,property,value); value=DestroyString(value); continue; } if (LocaleNCompare(PDFVersion,command,strlen(PDFVersion)) == 0) (void) SetImageProperty(image,"pdf:Version",command); if (image_info->page != (char *) NULL) continue; count=0; if (cropbox != MagickFalse) { if (LocaleNCompare(CropBox,command,strlen(CropBox)) == 0) { /* Note region defined by crop box. */ count=(ssize_t) sscanf(command,"CropBox [%lf %lf %lf %lf", &bounds.x1,&bounds.y1,&bounds.x2,&bounds.y2); if (count != 4) count=(ssize_t) sscanf(command,"CropBox[%lf %lf %lf %lf", &bounds.x1,&bounds.y1,&bounds.x2,&bounds.y2); } } else if (trimbox != MagickFalse) { if (LocaleNCompare(TrimBox,command,strlen(TrimBox)) == 0) { /* Note region defined by trim box. */ count=(ssize_t) sscanf(command,"TrimBox [%lf %lf %lf %lf", &bounds.x1,&bounds.y1,&bounds.x2,&bounds.y2); if (count != 4) count=(ssize_t) sscanf(command,"TrimBox[%lf %lf %lf %lf", &bounds.x1,&bounds.y1,&bounds.x2,&bounds.y2); } } else if (LocaleNCompare(MediaBox,command,strlen(MediaBox)) == 0) { /* Note region defined by media box. */ count=(ssize_t) sscanf(command,"MediaBox [%lf %lf %lf %lf", &bounds.x1,&bounds.y1,&bounds.x2,&bounds.y2); if (count != 4) count=(ssize_t) sscanf(command,"MediaBox[%lf %lf %lf %lf", &bounds.x1,&bounds.y1,&bounds.x2,&bounds.y2); } if (count != 4) continue; if ((fabs(bounds.x2-bounds.x1) <= fabs(hires_bounds.x2-hires_bounds.x1)) || (fabs(bounds.y2-bounds.y1) <= fabs(hires_bounds.y2-hires_bounds.y1))) continue; hires_bounds=bounds; } if ((fabs(hires_bounds.x2-hires_bounds.x1) >= MagickEpsilon) && (fabs(hires_bounds.y2-hires_bounds.y1) >= MagickEpsilon)) { /* Set PDF render geometry. */ (void) FormatLocaleString(geometry,MaxTextExtent,"%gx%g%+.15g%+.15g", hires_bounds.x2-bounds.x1,hires_bounds.y2-hires_bounds.y1, hires_bounds.x1,hires_bounds.y1); (void) SetImageProperty(image,"pdf:HiResBoundingBox",geometry); page.width=(size_t) ceil((double) ((hires_bounds.x2-hires_bounds.x1)* image->x_resolution/delta.x)-0.5); page.height=(size_t) ceil((double) ((hires_bounds.y2-hires_bounds.y1)* image->y_resolution/delta.y)-0.5); } fitPage=MagickFalse; option=GetImageOption(image_info,"pdf:fit-page"); if (option != (char *) NULL) { char *geometry; MagickStatusType flags; geometry=GetPageGeometry(option); flags=ParseMetaGeometry(geometry,&page.x,&page.y,&page.width, &page.height); if (flags == NoValue) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "InvalidGeometry","`%s'",option); image=DestroyImage(image); return((Image *) NULL); } page.width=(size_t) ceil((double) (page.width*image->x_resolution/delta.x) -0.5); page.height=(size_t) ceil((double) (page.height*image->y_resolution/ delta.y) -0.5); geometry=DestroyString(geometry); fitPage=MagickTrue; } (void) CloseBlob(image); if ((fabs(angle) == 90.0) || (fabs(angle) == 270.0)) { size_t swap; swap=page.width; page.width=page.height; page.height=swap; } if (IssRGBCompatibleColorspace(image_info->colorspace) != MagickFalse) cmyk=MagickFalse; /* Create Ghostscript control file. */ file=AcquireUniqueFileResource(postscript_filename); if (file == -1) { ThrowFileException(exception,FileOpenError,"UnableToCreateTemporaryFile", image_info->filename); image=DestroyImage(image); return((Image *) NULL); } count=write(file," ",1); file=close(file)-1; /* Render Postscript with the Ghostscript delegate. */ if (image_info->monochrome != MagickFalse) delegate_info=GetDelegateInfo("ps:mono",(char *) NULL,exception); else if (cmyk != MagickFalse) delegate_info=GetDelegateInfo("ps:cmyk",(char *) NULL,exception); else delegate_info=GetDelegateInfo("ps:alpha",(char *) NULL,exception); if (delegate_info == (const DelegateInfo *) NULL) { (void) RelinquishUniqueFileResource(postscript_filename); image=DestroyImage(image); return((Image *) NULL); } density=AcquireString(""); options=AcquireString(""); (void) FormatLocaleString(density,MaxTextExtent,"%gx%g",image->x_resolution, image->y_resolution); if ((image_info->page != (char *) NULL) || (fitPage != MagickFalse)) (void) FormatLocaleString(options,MaxTextExtent,"-g%.20gx%.20g ",(double) page.width,(double) page.height); if (fitPage != MagickFalse) (void) ConcatenateMagickString(options,"-dPSFitPage ",MaxTextExtent); if (cmyk != MagickFalse) (void) ConcatenateMagickString(options,"-dUseCIEColor ",MaxTextExtent); if (cropbox != MagickFalse) (void) ConcatenateMagickString(options,"-dUseCropBox ",MaxTextExtent); if (trimbox != MagickFalse) (void) ConcatenateMagickString(options,"-dUseTrimBox ",MaxTextExtent); if (stop_on_error != MagickFalse) (void) ConcatenateMagickString(options,"-dPDFSTOPONERROR ",MaxTextExtent); option=GetImageOption(image_info,"authenticate"); if (option != (char *) NULL) { char passphrase[MaxTextExtent]; (void) FormatLocaleString(passphrase,MaxTextExtent, "'-sPDFPassword=%s' ",option); (void) ConcatenateMagickString(options,passphrase,MaxTextExtent); } read_info=CloneImageInfo(image_info); *read_info->magick='\0'; if (read_info->number_scenes != 0) { char pages[MaxTextExtent]; (void) FormatLocaleString(pages,MaxTextExtent,"-dFirstPage=%.20g " "-dLastPage=%.20g",(double) read_info->scene+1,(double) (read_info->scene+read_info->number_scenes)); (void) ConcatenateMagickString(options,pages,MaxTextExtent); read_info->number_scenes=0; if (read_info->scenes != (char *) NULL) *read_info->scenes='\0'; } (void) CopyMagickString(filename,read_info->filename,MaxTextExtent); (void) AcquireUniqueFilename(filename); (void) RelinquishUniqueFileResource(filename); (void) ConcatenateMagickString(filename,"%d",MaxTextExtent); (void) FormatLocaleString(command,MaxTextExtent, GetDelegateCommands(delegate_info), read_info->antialias != MagickFalse ? 4 : 1, read_info->antialias != MagickFalse ? 4 : 1,density,options,filename, postscript_filename,input_filename); options=DestroyString(options); density=DestroyString(density); *message='\0'; status=InvokePDFDelegate(read_info->verbose,command,message,exception); (void) RelinquishUniqueFileResource(postscript_filename); (void) RelinquishUniqueFileResource(input_filename); pdf_image=(Image *) NULL; if (status == MagickFalse) for (i=1; ; i++) { (void) InterpretImageFilename(image_info,image,filename,(int) i, read_info->filename); if (IsPDFRendered(read_info->filename) == MagickFalse) break; (void) RelinquishUniqueFileResource(read_info->filename); } else for (i=1; ; i++) { (void) InterpretImageFilename(image_info,image,filename,(int) i, read_info->filename); if (IsPDFRendered(read_info->filename) == MagickFalse) break; read_info->blob=NULL; read_info->length=0; next=ReadImage(read_info,exception); (void) RelinquishUniqueFileResource(read_info->filename); if (next == (Image *) NULL) break; AppendImageToList(&pdf_image,next); } read_info=DestroyImageInfo(read_info); if (pdf_image == (Image *) NULL) { if (*message != '\0') (void) ThrowMagickException(exception,GetMagickModule(),DelegateError, "PDFDelegateFailed","`%s'",message); image=DestroyImage(image); return((Image *) NULL); } if (LocaleCompare(pdf_image->magick,"BMP") == 0) { Image *cmyk_image; cmyk_image=ConsolidateCMYKImages(pdf_image,exception); if (cmyk_image != (Image *) NULL) { pdf_image=DestroyImageList(pdf_image); pdf_image=cmyk_image; } } if (image_info->number_scenes != 0) { Image *clone_image; register ssize_t i; /* Add place holder images to meet the subimage specification requirement. */ for (i=0; i < (ssize_t) image_info->scene; i++) { clone_image=CloneImage(pdf_image,1,1,MagickTrue,exception); if (clone_image != (Image *) NULL) PrependImageToList(&pdf_image,clone_image); } } do { (void) CopyMagickString(pdf_image->filename,filename,MaxTextExtent); (void) CopyMagickString(pdf_image->magick,image->magick,MaxTextExtent); pdf_image->page=page; (void) CloneImageProfiles(pdf_image,image); (void) CloneImageProperties(pdf_image,image); next=SyncNextImageInList(pdf_image); if (next != (Image *) NULL) pdf_image=next; } while (next != (Image *) NULL); image=DestroyImage(image); scene=0; for (next=GetFirstImageInList(pdf_image); next != (Image *) NULL; ) { next->scene=scene++; next=GetNextImageInList(next); } return(GetFirstImageInList(pdf_image)); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,275
libarchive
a550daeecf6bc689ade371349892ea17b5b97c77
parse_device(dev_t *pdev, struct archive *a, char *val) { #define MAX_PACK_ARGS 3 unsigned long numbers[MAX_PACK_ARGS]; char *p, *dev; int argc; pack_t *pack; dev_t result; const char *error = NULL; memset(pdev, 0, sizeof(*pdev)); if ((dev = strchr(val, ',')) != NULL) { /* * Device's major/minor are given in a specified format. * Decode and pack it accordingly. */ *dev++ = '\0'; if ((pack = pack_find(val)) == NULL) { archive_set_error(a, ARCHIVE_ERRNO_FILE_FORMAT, "Unknown format `%s'", val); return ARCHIVE_WARN; } argc = 0; while ((p = la_strsep(&dev, ",")) != NULL) { if (*p == '\0') { archive_set_error(a, ARCHIVE_ERRNO_FILE_FORMAT, "Missing number"); return ARCHIVE_WARN; } numbers[argc++] = (unsigned long)mtree_atol(&p); if (argc > MAX_PACK_ARGS) { archive_set_error(a, ARCHIVE_ERRNO_FILE_FORMAT, "Too many arguments"); return ARCHIVE_WARN; } } if (argc < 2) { archive_set_error(a, ARCHIVE_ERRNO_FILE_FORMAT, "Not enough arguments"); return ARCHIVE_WARN; } result = (*pack)(argc, numbers, &error); if (error != NULL) { archive_set_error(a, ARCHIVE_ERRNO_FILE_FORMAT, "%s", error); return ARCHIVE_WARN; } } else { /* file system raw value. */ result = (dev_t)mtree_atol(&val); } *pdev = result; return ARCHIVE_OK; #undef MAX_PACK_ARGS }
1
CVE-2016-4301
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
3,245
ImageMagick
0f6fc2d5bf8f500820c3dbcf0d23ee14f2d9f734
MagickExport MemoryInfo *AcquireVirtualMemory(const size_t count, const size_t quantum) { MemoryInfo *memory_info; size_t length; length=count*quantum; if ((count == 0) || (quantum != (length/count))) { errno=ENOMEM; return((MemoryInfo *) NULL); } memory_info=(MemoryInfo *) MagickAssumeAligned(AcquireAlignedMemory(1, sizeof(*memory_info))); if (memory_info == (MemoryInfo *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); (void) ResetMagickMemory(memory_info,0,sizeof(*memory_info)); memory_info->length=length; memory_info->signature=MagickSignature; if (AcquireMagickResource(MemoryResource,length) != MagickFalse) { memory_info->blob=AcquireAlignedMemory(1,length); if (memory_info->blob != NULL) memory_info->type=AlignedVirtualMemory; else RelinquishMagickResource(MemoryResource,length); } if ((memory_info->blob == NULL) && (AcquireMagickResource(MapResource,length) != MagickFalse)) { /* Heap memory failed, try anonymous memory mapping. */ memory_info->blob=MapBlob(-1,IOMode,0,length); if (memory_info->blob != NULL) memory_info->type=MapVirtualMemory; else RelinquishMagickResource(MapResource,length); } if (memory_info->blob == NULL) { int file; /* Anonymous memory mapping failed, try file-backed memory mapping. */ file=AcquireUniqueFileResource(memory_info->filename); if (file != -1) { if ((lseek(file,length-1,SEEK_SET) >= 0) && (write(file,"",1) == 1)) { memory_info->blob=MapBlob(file,IOMode,0,length); if (memory_info->blob != NULL) { memory_info->type=MapVirtualMemory; (void) AcquireMagickResource(MapResource,length); } } (void) close(file); } } if (memory_info->blob == NULL) { memory_info->blob=AcquireMagickMemory(length); if (memory_info->blob != NULL) memory_info->type=UnalignedVirtualMemory; } if (memory_info->blob == NULL) memory_info=RelinquishVirtualMemory(memory_info); return(memory_info); }
1
CVE-2015-8896
CWE-189
Numeric Errors
Weaknesses in this category are related to improper calculation or conversion of numbers.
Not Found in CWE Page
5,064
linux
ae6650163c66a7eff1acd6eb8b0f752dcfa8eba5
static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) { int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); return sprintf(buf, "%s\n", autoclear ? "1" : "0"); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,873
ghostscript
937ccd17ac65935633b2ebc06cb7089b91e17e6b
static void gx_ttfReader__Read(ttfReader *self, void *p, int n) { gx_ttfReader *r = (gx_ttfReader *)self; const byte *q; if (!r->error) { if (r->extra_glyph_index != -1) { q = r->glyph_data.bits.data + r->pos; r->error = (r->glyph_data.bits.size - r->pos < n ? gs_note_error(gs_error_invalidfont) : 0); if (r->error == 0) memcpy(p, q, n); unsigned int cnt; for (cnt = 0; cnt < (uint)n; cnt += r->error) { r->error = r->pfont->data.string_proc(r->pfont, (ulong)r->pos + cnt, (ulong)n - cnt, &q); if (r->error < 0) break; else if ( r->error == 0) { memcpy((char *)p + cnt, q, n - cnt); break; } else { memcpy((char *)p + cnt, q, r->error); } } } } if (r->error) { memset(p, 0, n); return; } r->pos += n; }
1
CVE-2017-9727
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
6,817
sqlite
57f7ece78410a8aae86aa4625fb7556897db384c
static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ if( ALWAYS(z!=0) ){ double value; sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ if( negateFlag ) value = -value; sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,728
Bento4
41cad602709436628f07b4c4f64e9ff7a611f687
AP4_DataAtom::AP4_DataAtom(const AP4_MetaData::Value& value) : AP4_Atom(AP4_ATOM_TYPE_DATA, AP4_ATOM_HEADER_SIZE), m_DataType(DATA_TYPE_BINARY) { AP4_MemoryByteStream* memory = new AP4_MemoryByteStream(); AP4_Size payload_size = 8; m_Source = memory; switch (value.GetType()) { case AP4_MetaData::Value::TYPE_STRING_UTF_8: { m_DataType = DATA_TYPE_STRING_UTF_8; AP4_String string_value = value.ToString(); if (string_value.GetLength()) { memory->Write(string_value.GetChars(), string_value.GetLength()); } payload_size += string_value.GetLength(); break; } case AP4_MetaData::Value::TYPE_INT_08_BE: { m_DataType = DATA_TYPE_SIGNED_INT_BE; AP4_UI08 int_value = (AP4_UI08)value.ToInteger(); memory->Write(&int_value, 1); payload_size += 1; break; } case AP4_MetaData::Value::TYPE_INT_16_BE: { m_DataType = DATA_TYPE_SIGNED_INT_BE; AP4_UI16 int_value = (AP4_UI16)value.ToInteger(); memory->Write(&int_value, 2); payload_size += 2; break; } case AP4_MetaData::Value::TYPE_INT_32_BE: { m_DataType = DATA_TYPE_SIGNED_INT_BE; AP4_UI32 int_value = (AP4_UI32)value.ToInteger(); memory->Write(&int_value, 4); payload_size += 4; break; } case AP4_MetaData::Value::TYPE_JPEG: m_DataType = DATA_TYPE_JPEG; // FALLTHROUGH case AP4_MetaData::Value::TYPE_GIF: if (m_DataType == DATA_TYPE_BINARY) m_DataType = DATA_TYPE_GIF; // FALLTHROUGH case AP4_MetaData::Value::TYPE_BINARY: { AP4_DataBuffer buffer; value.ToBytes(buffer); if (buffer.GetDataSize()) { memory->Write(buffer.GetData(), buffer.GetDataSize()); } payload_size += buffer.GetDataSize(); break; } default: break; } const AP4_String& language = value.GetLanguage(); if (language == "en") { m_DataLang = LANGUAGE_ENGLISH; } else { // default m_DataLang = LANGUAGE_ENGLISH; } m_Size32 += payload_size; }
1
CVE-2017-14641
CWE-476
NULL Pointer Dereference
The product dereferences a pointer that it expects to be valid but is NULL.
Phase: Implementation If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented. Phase: Requirements Select a programming language that is not susceptible to these issues. Phase: Implementation Check the results of all functions that return a value and verify that the value is non-null before acting upon it. Effectiveness: Moderate Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665). Phase: Architecture and Design Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values. Phase: Implementation Explicitly initialize all variables and other data stores, either during declaration or just before the first usage.
9,878
wget
59b920874daa565a1323ffa1e756e80493190686
schemes_are_similar_p (enum url_scheme a, enum url_scheme b) { if (a == b) return true; #ifdef HAVE_SSL if ((a == SCHEME_HTTP && b == SCHEME_HTTPS) || (a == SCHEME_HTTPS && b == SCHEME_HTTP)) return true; #endif return false; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,602
linux
574823bfab82d9d8fa47f422778043fbb4b4f50e
static int mincore_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { spinlock_t *ptl; struct vm_area_struct *vma = walk->vma; pte_t *ptep; unsigned char *vec = walk->private; int nr = (end - addr) >> PAGE_SHIFT; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { memset(vec, 1, nr); spin_unlock(ptl); goto out; } if (pmd_trans_unstable(pmd)) { __mincore_unmapped_range(addr, end, vma, vec); goto out; } ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); for (; addr != end; ptep++, addr += PAGE_SIZE) { pte_t pte = *ptep; if (pte_none(pte)) __mincore_unmapped_range(addr, addr + PAGE_SIZE, vma, vec); else if (pte_present(pte)) *vec = 1; else { /* pte is a swap entry */ swp_entry_t entry = pte_to_swp_entry(pte); if (non_swap_entry(entry)) { /* * migration or hwpoison entries are always * uptodate */ *vec = 1; } else { #ifdef CONFIG_SWAP *vec = mincore_page(swap_address_space(entry), swp_offset(entry)); #else WARN_ON(1); *vec = 1; #endif } } vec++; } pte_unmap_unlock(ptep - 1, ptl); out: walk->private += nr; cond_resched(); return 0; }
1
CVE-2019-5489
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
7,025
Chrome
2aec794f26098c7a361c27d7c8f57119631cca8a
ExtensionDevToolsClientHost::ExtensionDevToolsClientHost( Profile* profile, DevToolsAgentHost* agent_host, const std::string& extension_id, const std::string& extension_name, const Debuggee& debuggee) : profile_(profile), agent_host_(agent_host), extension_id_(extension_id), last_request_id_(0), infobar_(nullptr), detach_reason_(api::debugger::DETACH_REASON_TARGET_CLOSED), extension_registry_observer_(this) { CopyDebuggee(&debuggee_, debuggee); g_attached_client_hosts.Get().insert(this); extension_registry_observer_.Add(ExtensionRegistry::Get(profile_)); registrar_.Add(this, chrome::NOTIFICATION_APP_TERMINATING, content::NotificationService::AllSources()); agent_host_->AttachClient(this); if (base::CommandLine::ForCurrentProcess()->HasSwitch( ::switches::kSilentDebuggerExtensionAPI)) { return; } const Extension* extension = ExtensionRegistry::Get(profile)->enabled_extensions().GetByID( extension_id); if (extension && Manifest::IsPolicyLocation(extension->location())) return; infobar_ = ExtensionDevToolsInfoBar::Create( extension_id, extension_name, this, base::Bind(&ExtensionDevToolsClientHost::InfoBarDismissed, base::Unretained(this))); }
1
CVE-2018-6140
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
7,314
matio
651a8e28099edb5fbb9e4e1d4d3238848f446c9a
Mat_VarWrite4(mat_t *mat,matvar_t *matvar) { typedef struct { mat_int32_t type; mat_int32_t mrows; mat_int32_t ncols; mat_int32_t imagf; mat_int32_t namelen; } Fmatrix; mat_int32_t nelems = 1, i; Fmatrix x; if ( NULL == mat || NULL == matvar || NULL == matvar->name || matvar->rank != 2 ) return -1; switch ( matvar->data_type ) { case MAT_T_DOUBLE: x.type = 0; break; case MAT_T_SINGLE: x.type = 10; break; case MAT_T_INT32: x.type = 20; break; case MAT_T_INT16: x.type = 30; break; case MAT_T_UINT16: x.type = 40; break; case MAT_T_UINT8: x.type = 50; break; default: return 2; } #if defined(__GLIBC__) #if (__BYTE_ORDER == __LITTLE_ENDIAN) #elif (__BYTE_ORDER == __BIG_ENDIAN) x.type += 1000; #else return -1; #endif #elif defined(_BIG_ENDIAN) && !defined(_LITTLE_ENDIAN) x.type += 1000; #elif defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN) #elif defined(__sparc) || defined(__sparc__) || defined(_POWER) || defined(__powerpc__) || \ defined(__ppc__) || defined(__hpux) || defined(_MIPSEB) || defined(_POWER) || defined(__s390__) x.type += 1000; #elif defined(__i386__) || defined(__alpha__) || defined(__ia64) || defined(__ia64__) || \ defined(_M_IX86) || defined(_M_IA64) || defined(_M_ALPHA) || defined(__amd64) || \ defined(__amd64__) || defined(_M_AMD64) || defined(__x86_64) || defined(__x86_64__) || \ defined(_M_X64) || defined(__bfin__) #else return -1; #endif x.namelen = (mat_int32_t)strlen(matvar->name) + 1; /* FIXME: SEEK_END is not Guaranteed by the C standard */ (void)fseek((FILE*)mat->fp,0,SEEK_END); /* Always write at end of file */ switch ( matvar->class_type ) { case MAT_C_CHAR: x.type++; /* Fall through */ case MAT_C_DOUBLE: case MAT_C_SINGLE: case MAT_C_INT32: case MAT_C_INT16: case MAT_C_UINT16: case MAT_C_UINT8: for ( i = 0; i < matvar->rank; i++ ) { mat_int32_t dim; dim = (mat_int32_t)matvar->dims[i]; nelems *= dim; } x.mrows = (mat_int32_t)matvar->dims[0]; x.ncols = (mat_int32_t)matvar->dims[1]; x.imagf = matvar->isComplex ? 1 : 0; fwrite(&x, sizeof(Fmatrix), 1, (FILE*)mat->fp); fwrite(matvar->name, sizeof(char), x.namelen, (FILE*)mat->fp); if ( matvar->isComplex ) { mat_complex_split_t *complex_data; complex_data = (mat_complex_split_t*)matvar->data; fwrite(complex_data->Re, matvar->data_size, nelems, (FILE*)mat->fp); fwrite(complex_data->Im, matvar->data_size, nelems, (FILE*)mat->fp); } else { fwrite(matvar->data, matvar->data_size, nelems, (FILE*)mat->fp); } break; case MAT_C_SPARSE: { mat_sparse_t* sparse; double tmp; int j; size_t stride = Mat_SizeOf(matvar->data_type); #if !defined(EXTENDED_SPARSE) if ( MAT_T_DOUBLE != matvar->data_type ) break; #endif sparse = (mat_sparse_t*)matvar->data; x.type += 2; x.mrows = sparse->njc > 0 ? sparse->jc[sparse->njc - 1] + 1 : 1; x.ncols = matvar->isComplex ? 4 : 3; x.imagf = 0; fwrite(&x, sizeof(Fmatrix), 1, (FILE*)mat->fp); fwrite(matvar->name, sizeof(char), x.namelen, (FILE*)mat->fp); for ( i = 0; i < sparse->njc - 1; i++ ) { for ( j = sparse->jc[i]; j < sparse->jc[i + 1] && j < sparse->ndata; j++ ) { tmp = sparse->ir[j] + 1; fwrite(&tmp, sizeof(double), 1, (FILE*)mat->fp); } } tmp = (double)matvar->dims[0]; fwrite(&tmp, sizeof(double), 1, (FILE*)mat->fp); for ( i = 0; i < sparse->njc - 1; i++ ) { for ( j = sparse->jc[i]; j < sparse->jc[i + 1] && j < sparse->ndata; j++ ) { tmp = i + 1; fwrite(&tmp, sizeof(double), 1, (FILE*)mat->fp); } } tmp = (double)matvar->dims[1]; fwrite(&tmp, sizeof(double), 1, (FILE*)mat->fp); tmp = 0.; if ( matvar->isComplex ) { mat_complex_split_t *complex_data; char* re, *im; complex_data = (mat_complex_split_t*)sparse->data; re = (char*)complex_data->Re; im = (char*)complex_data->Im; for ( i = 0; i < sparse->njc - 1; i++ ) { for ( j = sparse->jc[i]; j < sparse->jc[i + 1] && j < sparse->ndata; j++ ) { fwrite(re + j*stride, stride, 1, (FILE*)mat->fp); } } fwrite(&tmp, stride, 1, (FILE*)mat->fp); for ( i = 0; i < sparse->njc - 1; i++ ) { for ( j = sparse->jc[i]; j < sparse->jc[i + 1] && j < sparse->ndata; j++ ) { fwrite(im + j*stride, stride, 1, (FILE*)mat->fp); } } } else { char *data = (char*)sparse->data; for ( i = 0; i < sparse->njc - 1; i++ ) { for ( j = sparse->jc[i]; j < sparse->jc[i + 1] && j < sparse->ndata; j++ ) { fwrite(data + j*stride, stride, 1, (FILE*)mat->fp); } } } fwrite(&tmp, stride, 1, (FILE*)mat->fp); break; } default: break; } return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,217
qemu
6d4b9e55fc625514a38d27cff4b9933f617fa7dc
static CURLState *curl_init_state(BDRVCURLState *s) { CURLState *state = NULL; int i, j; do { for (i=0; i<CURL_NUM_STATES; i++) { for (j=0; j<CURL_NUM_ACB; j++) if (s->states[i].acb[j]) continue; if (s->states[i].in_use) continue; state = &s->states[i]; state->in_use = 1; break; } if (!state) { g_usleep(100); curl_multi_do(s); } } while(!state); if (state->curl) goto has_curl; state->curl = curl_easy_init(); if (!state->curl) return NULL; curl_easy_setopt(state->curl, CURLOPT_URL, s->url); curl_easy_setopt(state->curl, CURLOPT_TIMEOUT, 5); curl_easy_setopt(state->curl, CURLOPT_WRITEFUNCTION, (void *)curl_read_cb); curl_easy_setopt(state->curl, CURLOPT_WRITEDATA, (void *)state); curl_easy_setopt(state->curl, CURLOPT_PRIVATE, (void *)state); curl_easy_setopt(state->curl, CURLOPT_AUTOREFERER, 1); curl_easy_setopt(state->curl, CURLOPT_FOLLOWLOCATION, 1); curl_easy_setopt(state->curl, CURLOPT_NOSIGNAL, 1); curl_easy_setopt(state->curl, CURLOPT_ERRORBUFFER, state->errmsg); curl_easy_setopt(state->curl, CURLOPT_FAILONERROR, 1); /* Restrict supported protocols to avoid security issues in the more * obscure protocols. For example, do not allow POP3/SMTP/IMAP see * CVE-2013-0249. * * Restricting protocols is only supported from 7.19.4 upwards. */ #if LIBCURL_VERSION_NUM >= 0x071304 curl_easy_setopt(state->curl, CURLOPT_PROTOCOLS, PROTOCOLS); curl_easy_setopt(state->curl, CURLOPT_REDIR_PROTOCOLS, PROTOCOLS); #endif #ifdef DEBUG_VERBOSE curl_easy_setopt(state->curl, CURLOPT_VERBOSE, 1); #endif has_curl: state->s = s; return state; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,718
gpac
04dbf08bff4d61948bab80c3f9096ecc60c7f302
static s32 avc_parse_slice(GF_BitStream *bs, AVCState *avc, Bool svc_idr_flag, AVCSliceInfo *si) { s32 pps_id, num_ref_idx_l0_active_minus1 = 0, num_ref_idx_l1_active_minus1 = 0; /*s->current_picture.reference= h->nal_ref_idc != 0;*/ gf_bs_read_ue_log(bs, "first_mb_in_slice"); si->slice_type = gf_bs_read_ue_log(bs, "slice_type"); if (si->slice_type > 9) return -1; pps_id = gf_bs_read_ue_log(bs, "pps_id"); if ((pps_id<0) || (pps_id > 255)) return -1; si->pps = &avc->pps[pps_id]; if (!si->pps->slice_group_count) return -2; si->sps = &avc->sps[si->pps->sps_id]; if (!si->sps->log2_max_frame_num) return -2; avc->sps_active_idx = si->pps->sps_id; avc->pps_active_idx = pps_id; si->frame_num = gf_bs_read_int_log(bs, si->sps->log2_max_frame_num, "frame_num"); si->field_pic_flag = 0; si->bottom_field_flag = 0; if (!si->sps->frame_mbs_only_flag) { si->field_pic_flag = gf_bs_read_int_log(bs, 1, "field_pic_flag"); if (si->field_pic_flag) si->bottom_field_flag = gf_bs_read_int_log(bs, 1, "bottom_field_flag"); } if ((si->nal_unit_type == GF_AVC_NALU_IDR_SLICE) || svc_idr_flag) si->idr_pic_id = gf_bs_read_ue_log(bs, "idr_pic_id"); if (si->sps->poc_type == 0) { si->poc_lsb = gf_bs_read_int_log(bs, si->sps->log2_max_poc_lsb, "poc_lsb"); if (si->pps->pic_order_present && !si->field_pic_flag) { si->delta_poc_bottom = gf_bs_read_se_log(bs, "poc_lsb"); } } else if ((si->sps->poc_type == 1) && !si->sps->delta_pic_order_always_zero_flag) { si->delta_poc[0] = gf_bs_read_se_log(bs, "delta_poc0"); if ((si->pps->pic_order_present == 1) && !si->field_pic_flag) si->delta_poc[1] = gf_bs_read_se_log(bs, "delta_poc1"); } if (si->pps->redundant_pic_cnt_present) { si->redundant_pic_cnt = gf_bs_read_ue_log(bs, "redundant_pic_cnt"); } if (si->slice_type % 5 == GF_AVC_TYPE_B) { gf_bs_read_int_log(bs, 1, "direct_spatial_mv_pred_flag"); } num_ref_idx_l0_active_minus1 = si->pps->num_ref_idx_l0_default_active_minus1; num_ref_idx_l1_active_minus1 = si->pps->num_ref_idx_l1_default_active_minus1; if (si->slice_type % 5 == GF_AVC_TYPE_P || si->slice_type % 5 == GF_AVC_TYPE_SP || si->slice_type % 5 == GF_AVC_TYPE_B) { Bool num_ref_idx_active_override_flag = gf_bs_read_int_log(bs, 1, "num_ref_idx_active_override_flag"); if (num_ref_idx_active_override_flag) { num_ref_idx_l0_active_minus1 = gf_bs_read_ue_log(bs, "num_ref_idx_l0_active_minus1"); if (si->slice_type % 5 == GF_AVC_TYPE_B) { num_ref_idx_l1_active_minus1 = gf_bs_read_ue_log(bs, "num_ref_idx_l1_active_minus1"); } } } if (si->nal_unit_type == 20 || si->nal_unit_type == 21) { //ref_pic_list_mvc_modification(); /* specified in Annex H */ GF_LOG(GF_LOG_ERROR, GF_LOG_CODING, ("[avc-h264] unimplemented ref_pic_list_mvc_modification() in slide header\n")); assert(0); return -1; } else { ref_pic_list_modification(bs, si->slice_type); } if ((si->pps->weighted_pred_flag && (si->slice_type % 5 == GF_AVC_TYPE_P || si->slice_type % 5 == GF_AVC_TYPE_SP)) || (si->pps->weighted_bipred_idc == 1 && si->slice_type % 5 == GF_AVC_TYPE_B)) { pred_weight_table(bs, si->slice_type, si->sps->ChromaArrayType, num_ref_idx_l0_active_minus1, num_ref_idx_l1_active_minus1); } if (si->nal_ref_idc != 0) { dec_ref_pic_marking(bs, (si->nal_unit_type == GF_AVC_NALU_IDR_SLICE)); } if (si->pps->entropy_coding_mode_flag && si->slice_type % 5 != GF_AVC_TYPE_I && si->slice_type % 5 != GF_AVC_TYPE_SI) { gf_bs_read_ue_log(bs, "cabac_init_idc"); } /*slice_qp_delta = */gf_bs_read_se(bs); if (si->slice_type % 5 == GF_AVC_TYPE_SP || si->slice_type % 5 == GF_AVC_TYPE_SI) { if (si->slice_type % 5 == GF_AVC_TYPE_SP) { gf_bs_read_int_log(bs, 1, "sp_for_switch_flag"); } gf_bs_read_se_log(bs, "slice_qs_delta"); } if (si->pps->deblocking_filter_control_present_flag) { if (gf_bs_read_ue_log(bs, "disable_deblocking_filter_idc") != 1) { gf_bs_read_se_log(bs, "slice_alpha_c0_offset_div2"); gf_bs_read_se_log(bs, "slice_beta_offset_div2"); } } if (si->pps->slice_group_count > 1 && si->pps->mb_slice_group_map_type >= 3 && si->pps->mb_slice_group_map_type <= 5) { gf_bs_read_int_log(bs, (u32)ceil(log1p((si->pps->pic_size_in_map_units_minus1 + 1) / (si->pps->slice_group_change_rate_minus1 + 1) ) / log(2)), "slice_group_change_cycle"); } return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,433
sudo
b301b46b79c6e2a76d530fa36d05992e74952ee8
display_usage(int (*output)(const char *)) { struct sudo_lbuf lbuf; char *uvec[6]; int i, ulen; /* * Use usage vectors appropriate to the progname. */ if (strcmp(getprogname(), "sudoedit") == 0) { uvec[0] = &SUDO_USAGE5[3]; uvec[1] = NULL; } else { uvec[0] = SUDO_USAGE1; uvec[1] = SUDO_USAGE2; uvec[2] = SUDO_USAGE3; uvec[3] = SUDO_USAGE4; uvec[4] = SUDO_USAGE5; uvec[5] = NULL; } /* * Print usage and wrap lines as needed, depending on the * tty width. */ ulen = (int)strlen(getprogname()) + 8; sudo_lbuf_init(&lbuf, output, ulen, NULL, user_details.ts_cols); for (i = 0; uvec[i] != NULL; i++) { sudo_lbuf_append(&lbuf, "usage: %s%s", getprogname(), uvec[i]); sudo_lbuf_print(&lbuf); } sudo_lbuf_destroy(&lbuf); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,316
qemu
670e56d3ed2918b3861d9216f2c0540d9e9ae0d5
static int mptsas_process_scsi_io_request(MPTSASState *s, MPIMsgSCSIIORequest *scsi_io, hwaddr addr) { MPTSASRequest *req; MPIMsgSCSIIOReply reply; SCSIDevice *sdev; int status; mptsas_fix_scsi_io_endianness(scsi_io); trace_mptsas_process_scsi_io_request(s, scsi_io->Bus, scsi_io->TargetID, scsi_io->LUN[1], scsi_io->DataLength); status = mptsas_scsi_device_find(s, scsi_io->Bus, scsi_io->TargetID, scsi_io->LUN, &sdev); if (status) { goto bad; } req = g_new(MPTSASRequest, 1); QTAILQ_INSERT_TAIL(&s->pending, req, next); req->scsi_io = *scsi_io; req->dev = s; status = mptsas_build_sgl(s, req, addr); if (status) { goto free_bad; } if (req->qsg.size < scsi_io->DataLength) { trace_mptsas_sgl_overflow(s, scsi_io->MsgContext, scsi_io->DataLength, req->qsg.size); status = MPI_IOCSTATUS_INVALID_SGL; goto free_bad; } req->sreq = scsi_req_new(sdev, scsi_io->MsgContext, scsi_io->LUN[1], scsi_io->CDB, req); if (req->sreq->cmd.xfer > scsi_io->DataLength) { goto overrun; } switch (scsi_io->Control & MPI_SCSIIO_CONTROL_DATADIRECTION_MASK) { case MPI_SCSIIO_CONTROL_NODATATRANSFER: if (req->sreq->cmd.mode != SCSI_XFER_NONE) { goto overrun; } break; case MPI_SCSIIO_CONTROL_WRITE: if (req->sreq->cmd.mode != SCSI_XFER_TO_DEV) { goto overrun; } break; case MPI_SCSIIO_CONTROL_READ: if (req->sreq->cmd.mode != SCSI_XFER_FROM_DEV) { goto overrun; } break; } if (scsi_req_enqueue(req->sreq)) { scsi_req_continue(req->sreq); } return 0; overrun: trace_mptsas_scsi_overflow(s, scsi_io->MsgContext, req->sreq->cmd.xfer, scsi_io->DataLength); status = MPI_IOCSTATUS_SCSI_DATA_OVERRUN; free_bad: mptsas_free_request(req); bad: memset(&reply, 0, sizeof(reply)); reply.TargetID = scsi_io->TargetID; reply.Bus = scsi_io->Bus; reply.MsgLength = sizeof(reply) / 4; reply.Function = scsi_io->Function; reply.CDBLength = scsi_io->CDBLength; reply.SenseBufferLength = scsi_io->SenseBufferLength; reply.MsgContext = scsi_io->MsgContext; reply.SCSIState = MPI_SCSI_STATE_NO_SCSI_STATUS; reply.IOCStatus = status; mptsas_fix_scsi_io_reply_endianness(&reply); mptsas_reply(s, (MPIDefaultReply *)&reply); return 0; }
1
CVE-2016-7423
CWE-787
Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]. Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
5,659
Android
50270d98e26fa18b20ca88216c3526667b724ba7
OMX_ERRORTYPE SoftMPEG4Encoder::initEncParams() { CHECK(mHandle != NULL); memset(mHandle, 0, sizeof(tagvideoEncControls)); CHECK(mEncParams != NULL); memset(mEncParams, 0, sizeof(tagvideoEncOptions)); if (!PVGetDefaultEncOption(mEncParams, 0)) { ALOGE("Failed to get default encoding parameters"); return OMX_ErrorUndefined; } mEncParams->encMode = mEncodeMode; mEncParams->encWidth[0] = mWidth; mEncParams->encHeight[0] = mHeight; mEncParams->encFrameRate[0] = mFramerate >> 16; // mFramerate is in Q16 format mEncParams->rcType = VBR_1; mEncParams->vbvDelay = 5.0f; mEncParams->profile_level = CORE_PROFILE_LEVEL2; mEncParams->packetSize = 32; mEncParams->rvlcEnable = PV_OFF; mEncParams->numLayers = 1; mEncParams->timeIncRes = 1000; mEncParams->tickPerSrc = ((int64_t)mEncParams->timeIncRes << 16) / mFramerate; mEncParams->bitRate[0] = mBitrate; mEncParams->iQuant[0] = 15; mEncParams->pQuant[0] = 12; mEncParams->quantType[0] = 0; mEncParams->noFrameSkipped = PV_OFF; if (mColorFormat != OMX_COLOR_FormatYUV420Planar || mInputDataIsMeta) { free(mInputFrameData); mInputFrameData = (uint8_t *) malloc((mWidth * mHeight * 3 ) >> 1); CHECK(mInputFrameData != NULL); } if (mWidth % 16 != 0 || mHeight % 16 != 0) { ALOGE("Video frame size %dx%d must be a multiple of 16", mWidth, mHeight); return OMX_ErrorBadParameter; } if (mIDRFrameRefreshIntervalInSec < 0) { mEncParams->intraPeriod = -1; } else if (mIDRFrameRefreshIntervalInSec == 0) { mEncParams->intraPeriod = 1; // All I frames } else { mEncParams->intraPeriod = (mIDRFrameRefreshIntervalInSec * mFramerate) >> 16; } mEncParams->numIntraMB = 0; mEncParams->sceneDetect = PV_ON; mEncParams->searchRange = 16; mEncParams->mv8x8Enable = PV_OFF; mEncParams->gobHeaderInterval = 0; mEncParams->useACPred = PV_ON; mEncParams->intraDCVlcTh = 0; return OMX_ErrorNone; }
1
CVE-2016-0803
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
511
qemu
c689b4f1bac352dcfd6ecb9a1d45337de0f1de67
static bool ga_create_file(const char *path) { int fd = open(path, O_CREAT | O_WRONLY, S_IWUSR | S_IRUSR); if (fd == -1) { g_warning("unable to open/create file %s: %s", path, strerror(errno)); return false; } close(fd); return true; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,607
linux-2.6
214b7049a7929f03bbd2786aaef04b8b79db34e2
void __inode_dir_notify(struct inode *inode, unsigned long event) { struct dnotify_struct * dn; struct dnotify_struct **prev; struct fown_struct * fown; int changed = 0; spin_lock(&inode->i_lock); prev = &inode->i_dnotify; while ((dn = *prev) != NULL) { if ((dn->dn_mask & event) == 0) { prev = &dn->dn_next; continue; } fown = &dn->dn_filp->f_owner; send_sigio(fown, dn->dn_fd, POLL_MSG); if (dn->dn_mask & DN_MULTISHOT) prev = &dn->dn_next; else { *prev = dn->dn_next; changed = 1; kmem_cache_free(dn_cache, dn); } } if (changed) redo_inode_mask(inode); spin_unlock(&inode->i_lock); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
21,501
linux-2.6
9ef1d4c7c7aca1cd436612b6ca785b726ffb8ed8
static struct Qdisc *qdisc_leaf(struct Qdisc *p, u32 classid) { unsigned long cl; struct Qdisc *leaf; struct Qdisc_class_ops *cops = p->ops->cl_ops; if (cops == NULL) return NULL; cl = cops->get(p, classid); if (cl == 0) return NULL; leaf = cops->leaf(p, cl); cops->put(p, cl); return leaf; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,130
envoy
9371333230b1a6e1be2eccf4868771e11af6253a
PathMatcherImpl(const RequirementRule& rule) : BaseMatcherImpl(rule), path_(rule.match().path()), path_matcher_(Matchers::PathMatcher::createExact(path_, !case_sensitive_)) {}
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,164
libtiff
5ad9d8016fbb60109302d558f7edb2cb2a3bb8e3
DECLAREwriteFunc(writeBufferToContigTiles) { uint32 imagew = TIFFScanlineSize(out); uint32 tilew = TIFFTileRowSize(out); int iskew = imagew - tilew; tsize_t tilesize = TIFFTileSize(out); tdata_t obuf; uint8* bufp = (uint8*) buf; uint32 tl, tw; uint32 row; (void) spp; obuf = _TIFFmalloc(TIFFTileSize(out)); if (obuf == NULL) return 0; _TIFFmemset(obuf, 0, tilesize); (void) TIFFGetField(out, TIFFTAG_TILELENGTH, &tl); (void) TIFFGetField(out, TIFFTAG_TILEWIDTH, &tw); for (row = 0; row < imagelength; row += tilelength) { uint32 nrow = (row+tl > imagelength) ? imagelength-row : tl; uint32 colb = 0; uint32 col; for (col = 0; col < imagewidth; col += tw) { /* * Tile is clipped horizontally. Calculate * visible portion and skewing factors. */ if (colb + tilew > imagew) { uint32 width = imagew - colb; int oskew = tilew - width; cpStripToTile(obuf, bufp + colb, nrow, width, oskew, oskew + iskew); } else cpStripToTile(obuf, bufp + colb, nrow, tilew, 0, iskew); if (TIFFWriteTile(out, obuf, col, row, 0, 0) < 0) { TIFFError(TIFFFileName(out), "Error, can't write tile at %lu %lu", (unsigned long) col, (unsigned long) row); _TIFFfree(obuf); return 0; } colb += tilew; } bufp += nrow * imagew; } _TIFFfree(obuf); return 1; }
1
CVE-2016-9540
CWE-787
Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]. Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
7,450
libvncserver
85a778c0e45e87e35ee7199f1f25020648e8b812
static void FillRectangle(rfbClient* client, int x, int y, int w, int h, uint32_t colour) { int i,j; #define FILL_RECT(BPP) \ for(j=y*client->width;j<(y+h)*client->width;j+=client->width) \ for(i=x;i<x+w;i++) \ ((uint##BPP##_t*)client->frameBuffer)[j+i]=colour; switch(client->format.bitsPerPixel) { case 8: FILL_RECT(8); break; case 16: FILL_RECT(16); break; case 32: FILL_RECT(32); break; default: rfbClientLog("Unsupported bitsPerPixel: %d\n",client->format.bitsPerPixel); } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
21,907
php-src
abd159cce48f3e34f08e4751c568e09677d5ec9c
PHPAPI PHP_FUNCTION(fread) { zval *arg1; long len; php_stream *stream; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rl", &arg1, &len) == FAILURE) { RETURN_FALSE; } PHP_STREAM_TO_ZVAL(stream, &arg1); if (len <= 0) { php_error_docref(NULL TSRMLS_CC, E_WARNING, "Length parameter must be greater than 0"); RETURN_FALSE; } if (len > INT_MAX) { /* string length is int in 5.x so we can not read more than int */ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Length parameter must be no more than %d", INT_MAX); RETURN_FALSE; } Z_STRVAL_P(return_value) = emalloc(len + 1); Z_STRLEN_P(return_value) = php_stream_read(stream, Z_STRVAL_P(return_value), len); /* needed because recv/read/gzread doesnt put a null at the end*/ Z_STRVAL_P(return_value)[Z_STRLEN_P(return_value)] = 0; Z_TYPE_P(return_value) = IS_STRING; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
21,066
FreeRDP
09b9d4f1994a674c4ec85b4947aa656eda1aed8a
BOOL gdi_register_graphics(rdpGraphics* graphics) { rdpBitmap bitmap; rdpGlyph glyph; bitmap.size = sizeof(gdiBitmap); bitmap.New = gdi_Bitmap_New; bitmap.Free = gdi_Bitmap_Free; bitmap.Paint = gdi_Bitmap_Paint; bitmap.Decompress = gdi_Bitmap_Decompress; bitmap.SetSurface = gdi_Bitmap_SetSurface; graphics_register_bitmap(graphics, &bitmap); glyph.size = sizeof(gdiGlyph); glyph.New = gdi_Glyph_New; glyph.Free = gdi_Glyph_Free; glyph.Draw = gdi_Glyph_Draw; glyph.BeginDraw = gdi_Glyph_BeginDraw; glyph.EndDraw = gdi_Glyph_EndDraw; glyph.SetBounds = gdi_Glyph_SetBounds; graphics_register_glyph(graphics, &glyph); return TRUE; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,203
Chrome
d0947db40187f4708c58e64cbd6013faf9eddeed
xmlParseNameComplex(xmlParserCtxtPtr ctxt) { int len = 0, l; int c; int count = 0; #ifdef DEBUG nbParseNameComplex++; #endif /* * Handler for more complex cases */ GROW; c = CUR_CHAR(l); if ((ctxt->options & XML_PARSE_OLD10) == 0) { /* * Use the new checks of production [4] [4a] amd [5] of the * Update 5 of XML-1.0 */ if ((c == ' ') || (c == '>') || (c == '/') || /* accelerators */ (!(((c >= 'a') && (c <= 'z')) || ((c >= 'A') && (c <= 'Z')) || (c == '_') || (c == ':') || ((c >= 0xC0) && (c <= 0xD6)) || ((c >= 0xD8) && (c <= 0xF6)) || ((c >= 0xF8) && (c <= 0x2FF)) || ((c >= 0x370) && (c <= 0x37D)) || ((c >= 0x37F) && (c <= 0x1FFF)) || ((c >= 0x200C) && (c <= 0x200D)) || ((c >= 0x2070) && (c <= 0x218F)) || ((c >= 0x2C00) && (c <= 0x2FEF)) || ((c >= 0x3001) && (c <= 0xD7FF)) || ((c >= 0xF900) && (c <= 0xFDCF)) || ((c >= 0xFDF0) && (c <= 0xFFFD)) || ((c >= 0x10000) && (c <= 0xEFFFF))))) { return(NULL); } len += l; NEXTL(l); c = CUR_CHAR(l); while ((c != ' ') && (c != '>') && (c != '/') && /* accelerators */ (((c >= 'a') && (c <= 'z')) || ((c >= 'A') && (c <= 'Z')) || ((c >= '0') && (c <= '9')) || /* !start */ (c == '_') || (c == ':') || (c == '-') || (c == '.') || (c == 0xB7) || /* !start */ ((c >= 0xC0) && (c <= 0xD6)) || ((c >= 0xD8) && (c <= 0xF6)) || ((c >= 0xF8) && (c <= 0x2FF)) || ((c >= 0x300) && (c <= 0x36F)) || /* !start */ ((c >= 0x370) && (c <= 0x37D)) || ((c >= 0x37F) && (c <= 0x1FFF)) || ((c >= 0x200C) && (c <= 0x200D)) || ((c >= 0x203F) && (c <= 0x2040)) || /* !start */ ((c >= 0x2070) && (c <= 0x218F)) || ((c >= 0x2C00) && (c <= 0x2FEF)) || ((c >= 0x3001) && (c <= 0xD7FF)) || ((c >= 0xF900) && (c <= 0xFDCF)) || ((c >= 0xFDF0) && (c <= 0xFFFD)) || ((c >= 0x10000) && (c <= 0xEFFFF)) )) { if (count++ > 100) { count = 0; GROW; } len += l; NEXTL(l); c = CUR_CHAR(l); } } else { if ((c == ' ') || (c == '>') || (c == '/') || /* accelerators */ (!IS_LETTER(c) && (c != '_') && (c != ':'))) { return(NULL); } len += l; NEXTL(l); c = CUR_CHAR(l); while ((c != ' ') && (c != '>') && (c != '/') && /* test bigname.xml */ ((IS_LETTER(c)) || (IS_DIGIT(c)) || (c == '.') || (c == '-') || (c == '_') || (c == ':') || (IS_COMBINING(c)) || (IS_EXTENDER(c)))) { if (count++ > 100) { count = 0; GROW; } len += l; NEXTL(l); c = CUR_CHAR(l); } } if ((*ctxt->input->cur == '\n') && (ctxt->input->cur[-1] == '\r')) return(xmlDictLookup(ctxt->dict, ctxt->input->cur - (len + 1), len)); return(xmlDictLookup(ctxt->dict, ctxt->input->cur - len, len)); }
1
CVE-2013-2877
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
1,941
ImageMagick
e14fd0a2801f73bdc123baf4fbab97dec55919eb
static Image *ReadPSDImage(const ImageInfo *image_info,ExceptionInfo *exception) { Image *image; MagickBooleanType has_merged_image, skip_layers; MagickOffsetType offset; MagickSizeType length; MagickBooleanType status; PSDInfo psd_info; register ssize_t i; ssize_t count; unsigned char *data; /* Open image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); image=AcquireImage(image_info,exception); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } /* Read image header. */ image->endian=MSBEndian; count=ReadBlob(image,4,(unsigned char *) psd_info.signature); psd_info.version=ReadBlobMSBShort(image); if ((count == 0) || (LocaleNCompare(psd_info.signature,"8BPS",4) != 0) || ((psd_info.version != 1) && (psd_info.version != 2))) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); (void) ReadBlob(image,6,psd_info.reserved); psd_info.channels=ReadBlobMSBShort(image); if (psd_info.channels > MaxPSDChannels) ThrowReaderException(CorruptImageError,"MaximumChannelsExceeded"); psd_info.rows=ReadBlobMSBLong(image); psd_info.columns=ReadBlobMSBLong(image); if ((psd_info.version == 1) && ((psd_info.rows > 30000) || (psd_info.columns > 30000))) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); psd_info.depth=ReadBlobMSBShort(image); if ((psd_info.depth != 1) && (psd_info.depth != 8) && (psd_info.depth != 16)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); psd_info.mode=ReadBlobMSBShort(image); if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Image is %.20g x %.20g with channels=%.20g, depth=%.20g, mode=%s", (double) psd_info.columns,(double) psd_info.rows,(double) psd_info.channels,(double) psd_info.depth,ModeToString((PSDImageType) psd_info.mode)); /* Initialize image. */ image->depth=psd_info.depth; image->columns=psd_info.columns; image->rows=psd_info.rows; status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) return(DestroyImageList(image)); if (SetImageBackgroundColor(image,exception) == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } if (psd_info.mode == LabMode) SetImageColorspace(image,LabColorspace,exception); if (psd_info.mode == CMYKMode) { SetImageColorspace(image,CMYKColorspace,exception); image->alpha_trait=psd_info.channels > 4 ? BlendPixelTrait : UndefinedPixelTrait; } else if ((psd_info.mode == BitmapMode) || (psd_info.mode == GrayscaleMode) || (psd_info.mode == DuotoneMode)) { status=AcquireImageColormap(image,psd_info.depth != 16 ? 256 : 65536, exception); if (status == MagickFalse) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Image colormap allocated"); SetImageColorspace(image,GRAYColorspace,exception); image->alpha_trait=psd_info.channels > 1 ? BlendPixelTrait : UndefinedPixelTrait; } else image->alpha_trait=psd_info.channels > 3 ? BlendPixelTrait : UndefinedPixelTrait; /* Read PSD raster colormap only present for indexed and duotone images. */ length=ReadBlobMSBLong(image); if (length != 0) { if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " reading colormap"); if (psd_info.mode == DuotoneMode) { /* Duotone image data; the format of this data is undocumented. */ data=(unsigned char *) AcquireQuantumMemory((size_t) length, sizeof(*data)); if (data == (unsigned char *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); (void) ReadBlob(image,(size_t) length,data); data=(unsigned char *) RelinquishMagickMemory(data); } else { size_t number_colors; /* Read PSD raster colormap. */ number_colors=length/3; if (number_colors > 65536) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); if (AcquireImageColormap(image,number_colors,exception) == MagickFalse) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); for (i=0; i < (ssize_t) image->colors; i++) image->colormap[i].red=ScaleCharToQuantum((unsigned char) ReadBlobByte(image)); for (i=0; i < (ssize_t) image->colors; i++) image->colormap[i].green=ScaleCharToQuantum((unsigned char) ReadBlobByte(image)); for (i=0; i < (ssize_t) image->colors; i++) image->colormap[i].blue=ScaleCharToQuantum((unsigned char) ReadBlobByte(image)); image->alpha_trait=UndefinedPixelTrait; } } has_merged_image=MagickTrue; length=ReadBlobMSBLong(image); if (length != 0) { unsigned char *blocks; /* Image resources block. */ if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " reading image resource blocks - %.20g bytes",(double) ((MagickOffsetType) length)); blocks=(unsigned char *) AcquireQuantumMemory((size_t) length, sizeof(*blocks)); if (blocks == (unsigned char *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); count=ReadBlob(image,(size_t) length,blocks); if ((count != (ssize_t) length) || (LocaleNCompare((char *) blocks,"8BIM",4) != 0)) { blocks=(unsigned char *) RelinquishMagickMemory(blocks); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } ParseImageResourceBlocks(image,blocks,(size_t) length,&has_merged_image, exception); blocks=(unsigned char *) RelinquishMagickMemory(blocks); } /* Layer and mask block. */ length=GetPSDSize(&psd_info,image); if (length == 8) { length=ReadBlobMSBLong(image); length=ReadBlobMSBLong(image); } offset=TellBlob(image); skip_layers=MagickFalse; if ((image_info->number_scenes == 1) && (image_info->scene == 0) && (has_merged_image != MagickFalse)) { if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " read composite only"); skip_layers=MagickTrue; } if (length == 0) { if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image has no layers"); } else { if (ReadPSDLayers(image,image_info,&psd_info,skip_layers,exception) != MagickTrue) { (void) CloseBlob(image); image=DestroyImageList(image); return((Image *) NULL); } /* Skip the rest of the layer and mask information. */ SeekBlob(image,offset+length,SEEK_SET); } /* If we are only "pinging" the image, then we're done - so return. */ if (image_info->ping != MagickFalse) { (void) CloseBlob(image); return(GetFirstImageInList(image)); } /* Read the precombined layer, present for PSD < 4 compatibility. */ if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " reading the precombined layer"); if ((has_merged_image != MagickFalse) || (GetImageListLength(image) == 1)) has_merged_image=(MagickBooleanType) ReadPSDMergedImage(image_info,image, &psd_info,exception); if ((has_merged_image == MagickFalse) && (GetImageListLength(image) == 1) && (length != 0)) { SeekBlob(image,offset,SEEK_SET); status=ReadPSDLayers(image,image_info,&psd_info,MagickFalse,exception); if (status != MagickTrue) { (void) CloseBlob(image); image=DestroyImageList(image); return((Image *) NULL); } } if ((has_merged_image == MagickFalse) && (GetImageListLength(image) > 1)) { Image *merged; SetImageAlphaChannel(image,TransparentAlphaChannel,exception); image->background_color.alpha=TransparentAlpha; image->background_color.alpha_trait=BlendPixelTrait; merged=MergeImageLayers(image,FlattenLayer,exception); ReplaceImageInList(&image,merged); } (void) CloseBlob(image); return(GetFirstImageInList(image)); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,491
openssl
77c77f0a1b9f15b869ca3342186dfbedd1119d0e
int ssl3_do_change_cipher_spec(SSL *s) { int i; const char *sender; int slen; if (s->state & SSL_ST_ACCEPT) i = SSL3_CHANGE_CIPHER_SERVER_READ; else i = SSL3_CHANGE_CIPHER_CLIENT_READ; if (s->s3->tmp.key_block == NULL) { if (s->session == NULL || s->session->master_key_length == 0) { /* might happen if dtls1_read_bytes() calls this */ SSLerr(SSL_F_SSL3_DO_CHANGE_CIPHER_SPEC, SSL_R_CCS_RECEIVED_EARLY); return (0); } s->session->cipher = s->s3->tmp.new_cipher; if (!s->method->ssl3_enc->setup_key_block(s)) return (0); } if (!s->method->ssl3_enc->change_cipher_state(s, i)) return (0); /* * we have to record the message digest at this point so we can get it * before we read the finished message */ if (s->state & SSL_ST_CONNECT) { sender = s->method->ssl3_enc->server_finished_label; slen = s->method->ssl3_enc->server_finished_label_len; } else { sender = s->method->ssl3_enc->client_finished_label; slen = s->method->ssl3_enc->client_finished_label_len; } i = s->method->ssl3_enc->final_finish_mac(s, sender, slen, s->s3->tmp.peer_finish_md); if (i == 0) { SSLerr(SSL_F_SSL3_DO_CHANGE_CIPHER_SPEC, ERR_R_INTERNAL_ERROR); return 0; } s->s3->tmp.peer_finish_md_len = i; return (1); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,761
ImageMagick
1e59b29e520d2beab73e8c78aacd5f1c0d76196d
static MagickBooleanType InsertRow(int bpp,unsigned char *p,ssize_t y, Image *image) { ExceptionInfo *exception; int bit; ssize_t x; register PixelPacket *q; IndexPacket index; register IndexPacket *indexes; exception=(&image->exception); q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) return(MagickFalse); indexes=GetAuthenticIndexQueue(image); switch (bpp) { case 1: /* Convert bitmap scanline. */ { for (x=0; x < ((ssize_t) image->columns-7); x+=8) { for (bit=0; bit < 8; bit++) { index=((*p) & (0x80 >> bit) ? 0x01 : 0x00); SetPixelIndex(indexes+x+bit,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; } p++; } if ((image->columns % 8) != 0) { for (bit=0; bit < (ssize_t) (image->columns % 8); bit++) { index=((*p) & (0x80 >> bit) ? 0x01 : 0x00); SetPixelIndex(indexes+x+bit,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; } p++; } break; } case 2: /* Convert PseudoColor scanline. */ { if ((image->storage_class != PseudoClass) || (indexes == (IndexPacket *) NULL)) break; for (x=0; x < ((ssize_t) image->columns-3); x+=4) { index=ConstrainColormapIndex(image,(*p >> 6) & 0x3); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; index=ConstrainColormapIndex(image,(*p >> 4) & 0x3); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; index=ConstrainColormapIndex(image,(*p >> 2) & 0x3); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; index=ConstrainColormapIndex(image,(*p) & 0x3); SetPixelIndex(indexes+x+1,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; p++; } if ((image->columns % 4) != 0) { index=ConstrainColormapIndex(image,(*p >> 6) & 0x3); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; if ((image->columns % 4) > 1) { index=ConstrainColormapIndex(image,(*p >> 4) & 0x3); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; if ((image->columns % 4) > 2) { index=ConstrainColormapIndex(image,(*p >> 2) & 0x3); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; } } p++; } break; } case 4: /* Convert PseudoColor scanline. */ { for (x=0; x < ((ssize_t) image->columns-1); x+=2) { index=ConstrainColormapIndex(image,(*p >> 4) & 0x0f); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); q++; index=ConstrainColormapIndex(image,(*p) & 0x0f); SetPixelIndex(indexes+x+1,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); p++; q++; } if ((image->columns % 2) != 0) { index=ConstrainColormapIndex(image,(*p >> 4) & 0x0f); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); p++; q++; } break; } case 8: /* Convert PseudoColor scanline. */ { for (x=0; x < (ssize_t) image->columns; x++) { index=ConstrainColormapIndex(image,*p); SetPixelIndex(indexes+x,index); if (index < image->colors) SetPixelRGBO(q,image->colormap+(ssize_t) index); p++; q++; } } break; case 24: /* Convert DirectColor scanline. */ for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(q,ScaleCharToQuantum(*p++)); SetPixelGreen(q,ScaleCharToQuantum(*p++)); SetPixelBlue(q,ScaleCharToQuantum(*p++)); q++; } break; } if (!SyncAuthenticPixels(image,exception)) return(MagickFalse); return(MagickTrue); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,032
WavPack
26cb47f99d481ad9b93eeff80d26e6b63bbd7e15
int ParseWave64HeaderConfig (FILE *infile, char *infilename, char *fourcc, WavpackContext *wpc, WavpackConfig *config) { int64_t total_samples = 0, infilesize; Wave64ChunkHeader chunk_header; Wave64FileHeader filehdr; WaveHeader WaveHeader; uint32_t bcount; infilesize = DoGetFileSize (infile); memcpy (&filehdr, fourcc, 4); if (!DoReadFile (infile, ((char *) &filehdr) + 4, sizeof (Wave64FileHeader) - 4, &bcount) || bcount != sizeof (Wave64FileHeader) - 4 || memcmp (filehdr.ckID, riff_guid, sizeof (riff_guid)) || memcmp (filehdr.formType, wave_guid, sizeof (wave_guid))) { error_line ("%s is not a valid .W64 file!", infilename); return WAVPACK_SOFT_ERROR; } else if (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, &filehdr, sizeof (filehdr))) { error_line ("%s", WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } #if 1 // this might be a little too picky... WavpackLittleEndianToNative (&filehdr, Wave64ChunkHeaderFormat); if (infilesize && !(config->qmode & QMODE_IGNORE_LENGTH) && filehdr.ckSize && filehdr.ckSize + 1 && filehdr.ckSize != infilesize) { error_line ("%s is not a valid .W64 file!", infilename); return WAVPACK_SOFT_ERROR; } #endif while (1) { if (!DoReadFile (infile, &chunk_header, sizeof (Wave64ChunkHeader), &bcount) || bcount != sizeof (Wave64ChunkHeader)) { error_line ("%s is not a valid .W64 file!", infilename); return WAVPACK_SOFT_ERROR; } else if (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, &chunk_header, sizeof (Wave64ChunkHeader))) { error_line ("%s", WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } WavpackLittleEndianToNative (&chunk_header, Wave64ChunkHeaderFormat); chunk_header.ckSize -= sizeof (chunk_header); if (!memcmp (chunk_header.ckID, fmt_guid, sizeof (fmt_guid))) { int supported = TRUE, format; chunk_header.ckSize = (chunk_header.ckSize + 7) & ~7L; if (chunk_header.ckSize < 16 || chunk_header.ckSize > sizeof (WaveHeader) || !DoReadFile (infile, &WaveHeader, (uint32_t) chunk_header.ckSize, &bcount) || bcount != chunk_header.ckSize) { error_line ("%s is not a valid .W64 file!", infilename); return WAVPACK_SOFT_ERROR; } else if (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, &WaveHeader, (uint32_t) chunk_header.ckSize)) { error_line ("%s", WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } WavpackLittleEndianToNative (&WaveHeader, WaveHeaderFormat); if (debug_logging_mode) { error_line ("format tag size = %d", chunk_header.ckSize); error_line ("FormatTag = %x, NumChannels = %d, BitsPerSample = %d", WaveHeader.FormatTag, WaveHeader.NumChannels, WaveHeader.BitsPerSample); error_line ("BlockAlign = %d, SampleRate = %d, BytesPerSecond = %d", WaveHeader.BlockAlign, WaveHeader.SampleRate, WaveHeader.BytesPerSecond); if (chunk_header.ckSize > 16) error_line ("cbSize = %d, ValidBitsPerSample = %d", WaveHeader.cbSize, WaveHeader.ValidBitsPerSample); if (chunk_header.ckSize > 20) error_line ("ChannelMask = %x, SubFormat = %d", WaveHeader.ChannelMask, WaveHeader.SubFormat); } if (chunk_header.ckSize > 16 && WaveHeader.cbSize == 2) config->qmode |= QMODE_ADOBE_MODE; format = (WaveHeader.FormatTag == 0xfffe && chunk_header.ckSize == 40) ? WaveHeader.SubFormat : WaveHeader.FormatTag; config->bits_per_sample = (chunk_header.ckSize == 40 && WaveHeader.ValidBitsPerSample) ? WaveHeader.ValidBitsPerSample : WaveHeader.BitsPerSample; if (format != 1 && format != 3) supported = FALSE; if (format == 3 && config->bits_per_sample != 32) supported = FALSE; if (!WaveHeader.NumChannels || WaveHeader.NumChannels > 256 || WaveHeader.BlockAlign / WaveHeader.NumChannels < (config->bits_per_sample + 7) / 8 || WaveHeader.BlockAlign / WaveHeader.NumChannels > 4 || WaveHeader.BlockAlign % WaveHeader.NumChannels) supported = FALSE; if (config->bits_per_sample < 1 || config->bits_per_sample > 32) supported = FALSE; if (!supported) { error_line ("%s is an unsupported .W64 format!", infilename); return WAVPACK_SOFT_ERROR; } if (chunk_header.ckSize < 40) { if (!config->channel_mask && !(config->qmode & QMODE_CHANS_UNASSIGNED)) { if (WaveHeader.NumChannels <= 2) config->channel_mask = 0x5 - WaveHeader.NumChannels; else if (WaveHeader.NumChannels <= 18) config->channel_mask = (1 << WaveHeader.NumChannels) - 1; else config->channel_mask = 0x3ffff; } } else if (WaveHeader.ChannelMask && (config->channel_mask || (config->qmode & QMODE_CHANS_UNASSIGNED))) { error_line ("this W64 file already has channel order information!"); return WAVPACK_SOFT_ERROR; } else if (WaveHeader.ChannelMask) config->channel_mask = WaveHeader.ChannelMask; if (format == 3) config->float_norm_exp = 127; else if ((config->qmode & QMODE_ADOBE_MODE) && WaveHeader.BlockAlign / WaveHeader.NumChannels == 4) { if (WaveHeader.BitsPerSample == 24) config->float_norm_exp = 127 + 23; else if (WaveHeader.BitsPerSample == 32) config->float_norm_exp = 127 + 15; } if (debug_logging_mode) { if (config->float_norm_exp == 127) error_line ("data format: normalized 32-bit floating point"); else error_line ("data format: %d-bit integers stored in %d byte(s)", config->bits_per_sample, WaveHeader.BlockAlign / WaveHeader.NumChannels); } } else if (!memcmp (chunk_header.ckID, data_guid, sizeof (data_guid))) { // on the data chunk, get size and exit loop if (!WaveHeader.NumChannels) { // make sure we saw "fmt" chunk error_line ("%s is not a valid .W64 file!", infilename); return WAVPACK_SOFT_ERROR; } if ((config->qmode & QMODE_IGNORE_LENGTH) || chunk_header.ckSize <= 0) { config->qmode |= QMODE_IGNORE_LENGTH; if (infilesize && DoGetFilePosition (infile) != -1) total_samples = (infilesize - DoGetFilePosition (infile)) / WaveHeader.BlockAlign; else total_samples = -1; } else { if (infilesize && infilesize - chunk_header.ckSize > 16777216) { error_line ("this .W64 file has over 16 MB of extra RIFF data, probably is corrupt!"); return WAVPACK_SOFT_ERROR; } total_samples = chunk_header.ckSize / WaveHeader.BlockAlign; if (!total_samples) { error_line ("this .W64 file has no audio samples, probably is corrupt!"); return WAVPACK_SOFT_ERROR; } if (total_samples > MAX_WAVPACK_SAMPLES) { error_line ("%s has too many samples for WavPack!", infilename); return WAVPACK_SOFT_ERROR; } } config->bytes_per_sample = WaveHeader.BlockAlign / WaveHeader.NumChannels; config->num_channels = WaveHeader.NumChannels; config->sample_rate = WaveHeader.SampleRate; break; } else { // just copy unknown chunks to output file int bytes_to_copy = (chunk_header.ckSize + 7) & ~7L; char *buff; if (bytes_to_copy < 0 || bytes_to_copy > 4194304) { error_line ("%s is not a valid .W64 file!", infilename); return WAVPACK_SOFT_ERROR; } buff = malloc (bytes_to_copy); if (debug_logging_mode) error_line ("extra unknown chunk \"%c%c%c%c\" of %d bytes", chunk_header.ckID [0], chunk_header.ckID [1], chunk_header.ckID [2], chunk_header.ckID [3], chunk_header.ckSize); if (!DoReadFile (infile, buff, bytes_to_copy, &bcount) || bcount != bytes_to_copy || (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, buff, bytes_to_copy))) { error_line ("%s", WavpackGetErrorMessage (wpc)); free (buff); return WAVPACK_SOFT_ERROR; } free (buff); } } if (!WavpackSetConfiguration64 (wpc, config, total_samples, NULL)) { error_line ("%s: %s", infilename, WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } return WAVPACK_NO_ERROR; }
1
CVE-2018-10537
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
9,877
Android
014b01706cc64dc9c2ad94a96f62e07c058d0b5d
void close_all_sockets(atransport* t) { asocket* s; /* this is a little gross, but since s->close() *will* modify ** the list out from under you, your options are limited. */ std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); restart: for (s = local_socket_list.next; s != &local_socket_list; s = s->next) { if (s->transport == t || (s->peer && s->peer->transport == t)) { local_socket_close(s); goto restart; } } }
1
CVE-2016-3890
CWE-264
Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.
Not Found in CWE Page
7,849
systemd
cb31827d62066a04b02111df3052949fda4b6888
enum nss_status _nss_mymachines_getpwnam_r( const char *name, struct passwd *pwd, char *buffer, size_t buflen, int *errnop) { _cleanup_bus_error_free_ sd_bus_error error = SD_BUS_ERROR_NULL; _cleanup_bus_message_unref_ sd_bus_message* reply = NULL; _cleanup_bus_flush_close_unref_ sd_bus *bus = NULL; const char *p, *e, *machine; uint32_t mapped; uid_t uid; size_t l; int r; assert(name); assert(pwd); p = startswith(name, "vu-"); if (!p) goto not_found; e = strrchr(p, '-'); if (!e || e == p) goto not_found; r = parse_uid(e + 1, &uid); if (r < 0) goto not_found; machine = strndupa(p, e - p); if (!machine_name_is_valid(machine)) goto not_found; r = sd_bus_open_system(&bus); if (r < 0) goto fail; r = sd_bus_call_method(bus, "org.freedesktop.machine1", "/org/freedesktop/machine1", "org.freedesktop.machine1.Manager", "MapFromMachineUser", &error, &reply, "su", machine, (uint32_t) uid); if (r < 0) { if (sd_bus_error_has_name(&error, BUS_ERROR_NO_SUCH_USER_MAPPING)) goto not_found; goto fail; } r = sd_bus_message_read(reply, "u", &mapped); if (r < 0) goto fail; l = strlen(name); if (buflen < l+1) { *errnop = ENOMEM; return NSS_STATUS_TRYAGAIN; } memcpy(buffer, name, l+1); pwd->pw_name = buffer; pwd->pw_uid = mapped; pwd->pw_gid = 65534; /* nobody */ pwd->pw_gecos = buffer; pwd->pw_passwd = (char*) "*"; /* locked */ pwd->pw_dir = (char*) "/"; pwd->pw_shell = (char*) "/sbin/nologin"; *errnop = 0; return NSS_STATUS_SUCCESS; not_found: *errnop = 0; return NSS_STATUS_NOTFOUND; fail: *errnop = -r; return NSS_STATUS_UNAVAIL; }
1
CVE-2015-7510
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
4,001
linux
212925802454672e6cd2949a727f5e2c1377bf06
bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) { if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) return false; if (is_data_mapping(flags) && mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { /* Workaround for Valgrind */ if (rlimit(RLIMIT_DATA) == 0 && mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) return true; if (!ignore_rlimit_data) { pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", current->comm, current->pid, (mm->data_vm + npages) << PAGE_SHIFT, rlimit(RLIMIT_DATA)); return false; } } return true; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,261
Chrome
47ae3dfdee9a0796a079cd4eadf2f75b34f257ae
ChooserContextBase::GetGrantedObjects(const GURL& requesting_origin, const GURL& embedding_origin) { DCHECK_EQ(requesting_origin, requesting_origin.GetOrigin()); DCHECK_EQ(embedding_origin, embedding_origin.GetOrigin()); if (!CanRequestObjectPermission(requesting_origin, embedding_origin)) return {}; std::vector<std::unique_ptr<Object>> results; content_settings::SettingInfo info; std::unique_ptr<base::DictionaryValue> setting = GetWebsiteSetting(requesting_origin, embedding_origin, &info); std::unique_ptr<base::Value> objects; if (!setting->Remove(kObjectListKey, &objects)) return results; std::unique_ptr<base::ListValue> object_list = base::ListValue::From(std::move(objects)); if (!object_list) return results; for (auto& object : *object_list) { base::DictionaryValue* object_dict; if (object.GetAsDictionary(&object_dict) && IsValidObject(*object_dict)) { results.push_back(std::make_unique<Object>( requesting_origin, embedding_origin, object_dict, info.source, host_content_settings_map_->is_incognito())); } } return results; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,450
Chrome
297ae873b471a46929ea39697b121c0b411434ee
bool CustomButton::OnMousePressed(const ui::MouseEvent& event) { if (state_ != STATE_DISABLED) { if (ShouldEnterPushedState(event) && HitTestPoint(event.location())) SetState(STATE_PRESSED); if (request_focus_on_press_) RequestFocus(); if (IsTriggerableEvent(event) && notify_action_ == NOTIFY_ON_PRESS) { NotifyClick(event); } } return true; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,596
openssh-portable
d4697fe9a28dab7255c60433e4dd23cf7fce8a8b
mm_answer_pam_init_ctx(int sock, Buffer *m) { debug3("%s", __func__); authctxt->user = buffer_get_string(m, NULL); sshpam_ctxt = (sshpam_device.init_ctx)(authctxt); sshpam_authok = NULL; buffer_clear(m); if (sshpam_ctxt != NULL) { monitor_permit(mon_dispatch, MONITOR_REQ_PAM_FREE_CTX, 1); buffer_put_int(m, 1); } else { buffer_put_int(m, 0); } mm_request_send(sock, MONITOR_ANS_PAM_INIT_CTX, m); return (0); }
1
CVE-2015-6563
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
9,000
savannah
1fc9c95ec144499e69dc8ec76dbe07799d7d82cd
check_retry_on_http_error (const int statcode) { const char *tok = opt.retry_on_http_error; while (tok && *tok) { if (atoi (tok) == statcode) return true; if ((tok = strchr (tok, ','))) ++tok; } return false; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,638
Chrome
9fd9d629fcf836bb0d6210015d33a299cf6bca34
UserCloudPolicyManagerChromeOS::UserCloudPolicyManagerChromeOS( scoped_ptr<CloudPolicyStore> store, scoped_ptr<CloudExternalDataManager> external_data_manager, const base::FilePath& component_policy_cache_path, bool wait_for_policy_fetch, base::TimeDelta initial_policy_fetch_timeout, const scoped_refptr<base::SequencedTaskRunner>& task_runner, const scoped_refptr<base::SequencedTaskRunner>& file_task_runner, const scoped_refptr<base::SequencedTaskRunner>& io_task_runner) : CloudPolicyManager( PolicyNamespaceKey(dm_protocol::kChromeUserPolicyType, std::string()), store.get(), task_runner, file_task_runner, io_task_runner), store_(store.Pass()), external_data_manager_(external_data_manager.Pass()), component_policy_cache_path_(component_policy_cache_path), wait_for_policy_fetch_(wait_for_policy_fetch), policy_fetch_timeout_(false, false) { time_init_started_ = base::Time::Now(); if (wait_for_policy_fetch_) { policy_fetch_timeout_.Start( FROM_HERE, initial_policy_fetch_timeout, base::Bind(&UserCloudPolicyManagerChromeOS::OnBlockingFetchTimeout, base::Unretained(this))); } }
1
CVE-2013-6623
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
5,804
ghostscript
661e8d8fb8248c38d67958beda32f3a5876d0c3f
zgetdefaultdevice(i_ctx_t *i_ctx_p) { os_ptr op = osp; const gx_device *dev; dev = gs_getdefaultlibdevice(imemory); if (dev == 0) /* couldn't find a default device */ return_error(gs_error_unknownerror); push(1); make_tav(op, t_device, avm_foreign | a_readonly, pdevice, (gx_device *) dev); return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,748
cJSON
94df772485c92866ca417d92137747b2e3b0a917
static const char *parse_string(cJSON *item,const char *str,const char **ep) { const char *ptr=str+1,*end_ptr=str+1;char *ptr2;char *out;int len=0;unsigned uc,uc2; if (*str!='\"') {*ep=str;return 0;} /* not a string! */ while (*end_ptr!='\"' && *end_ptr && ++len) if (*end_ptr++ == '\\') end_ptr++; /* Skip escaped quotes. */ out=(char*)cJSON_malloc(len+1); /* This is how long we need for the string, roughly. */ if (!out) return 0; item->valuestring=out; /* assign here so out will be deleted during cJSON_Delete() later */ item->type=cJSON_String; ptr=str+1;ptr2=out; while (ptr < end_ptr) { if (*ptr!='\\') *ptr2++=*ptr++; else { ptr++; switch (*ptr) { case 'b': *ptr2++='\b'; break; case 'f': *ptr2++='\f'; break; case 'n': *ptr2++='\n'; break; case 'r': *ptr2++='\r'; break; case 't': *ptr2++='\t'; break; case 'u': /* transcode utf16 to utf8. */ uc=parse_hex4(ptr+1);ptr+=4; /* get the unicode char. */ if (ptr >= end_ptr) {*ep=str;return 0;} /* invalid */ if ((uc>=0xDC00 && uc<=0xDFFF) || uc==0) {*ep=str;return 0;} /* check for invalid. */ if (uc>=0xD800 && uc<=0xDBFF) /* UTF16 surrogate pairs. */ { if (ptr+6 > end_ptr) {*ep=str;return 0;} /* invalid */ if (ptr[1]!='\\' || ptr[2]!='u') {*ep=str;return 0;} /* missing second-half of surrogate. */ uc2=parse_hex4(ptr+3);ptr+=6; if (uc2<0xDC00 || uc2>0xDFFF) {*ep=str;return 0;} /* invalid second-half of surrogate. */ uc=0x10000 + (((uc&0x3FF)<<10) | (uc2&0x3FF)); } len=4;if (uc<0x80) len=1;else if (uc<0x800) len=2;else if (uc<0x10000) len=3; ptr2+=len; switch (len) { case 4: *--ptr2 =((uc | 0x80) & 0xBF); uc >>= 6; case 3: *--ptr2 =((uc | 0x80) & 0xBF); uc >>= 6; case 2: *--ptr2 =((uc | 0x80) & 0xBF); uc >>= 6; case 1: *--ptr2 =(uc | firstByteMark[len]); } ptr2+=len; break; default: *ptr2++=*ptr; break; } ptr++; } } *ptr2=0; if (*ptr=='\"') ptr++; return ptr; }
1
CVE-2016-10749
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
8,310
php-src
5b597a2e5b28e2d5a52fc1be13f425f08f47cb62
static void _php_mb_regex_globals_dtor(zend_mb_regex_globals *pglobals TSRMLS_DC) { zend_hash_destroy(&pglobals->ht_rc); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,820
vim
1889f499a4f248cd84e0e0bf6d0d820016774494
compile_nested_function(exarg_T *eap, cctx_T *cctx, garray_T *lines_to_free) { int is_global = *eap->arg == 'g' && eap->arg[1] == ':'; char_u *name_start = eap->arg; char_u *name_end = to_name_end(eap->arg, TRUE); int off; char_u *func_name; char_u *lambda_name; ufunc_T *ufunc; int r = FAIL; compiletype_T compile_type; isn_T *funcref_isn = NULL; if (eap->forceit) { emsg(_(e_cannot_use_bang_with_nested_def)); return NULL; } if (*name_start == '/') { name_end = skip_regexp(name_start + 1, '/', TRUE); if (*name_end == '/') ++name_end; set_nextcmd(eap, name_end); } if (name_end == name_start || *skipwhite(name_end) != '(') { if (!ends_excmd2(name_start, name_end)) { if (*skipwhite(name_end) == '.') semsg(_(e_cannot_define_dict_func_in_vim9_script_str), eap->cmd); else semsg(_(e_invalid_command_str), eap->cmd); return NULL; } // "def" or "def Name": list functions if (generate_DEF(cctx, name_start, name_end - name_start) == FAIL) return NULL; return eap->nextcmd == NULL ? (char_u *)"" : eap->nextcmd; } // Only g:Func() can use a namespace. if (name_start[1] == ':' && !is_global) { semsg(_(e_namespace_not_supported_str), name_start); return NULL; } if (cctx->ctx_skip != SKIP_YES && check_defined(name_start, name_end - name_start, cctx, NULL, FALSE) == FAIL) return NULL; if (!ASCII_ISUPPER(is_global ? name_start[2] : name_start[0])) { semsg(_(e_function_name_must_start_with_capital_str), name_start); return NULL; } eap->arg = name_end; fill_exarg_from_cctx(eap, cctx); eap->forceit = FALSE; // We use the special <Lamba>99 name, but it's not really a lambda. lambda_name = vim_strsave(get_lambda_name()); if (lambda_name == NULL) return NULL; // This may free the current line, make a copy of the name. off = is_global ? 2 : 0; func_name = vim_strnsave(name_start + off, name_end - name_start - off); if (func_name == NULL) { r = FAIL; goto theend; } ufunc = define_function(eap, lambda_name, lines_to_free); if (ufunc == NULL) { r = eap->skip ? OK : FAIL; goto theend; } if (eap->nextcmd != NULL) { semsg(_(e_text_found_after_str_str), eap->cmdidx == CMD_def ? "enddef" : "endfunction", eap->nextcmd); r = FAIL; func_ptr_unref(ufunc); goto theend; } // copy over the block scope IDs before compiling if (!is_global && cctx->ctx_ufunc->uf_block_depth > 0) { int block_depth = cctx->ctx_ufunc->uf_block_depth; ufunc->uf_block_ids = ALLOC_MULT(int, block_depth); if (ufunc->uf_block_ids != NULL) { mch_memmove(ufunc->uf_block_ids, cctx->ctx_ufunc->uf_block_ids, sizeof(int) * block_depth); ufunc->uf_block_depth = block_depth; } } // Define the funcref before compiling, so that it is found by any // recursive call. if (is_global) { r = generate_NEWFUNC(cctx, lambda_name, func_name); func_name = NULL; lambda_name = NULL; } else { // Define a local variable for the function reference. lvar_T *lvar = reserve_local(cctx, func_name, name_end - name_start, TRUE, ufunc->uf_func_type); if (lvar == NULL) goto theend; if (generate_FUNCREF(cctx, ufunc, &funcref_isn) == FAIL) goto theend; r = generate_STORE(cctx, ISN_STORE, lvar->lv_idx, NULL); } compile_type = get_compile_type(ufunc); #ifdef FEAT_PROFILE // If the outer function is profiled, also compile the nested function for // profiling. if (cctx->ctx_compile_type == CT_PROFILE) compile_type = CT_PROFILE; #endif if (func_needs_compiling(ufunc, compile_type) && compile_def_function(ufunc, TRUE, compile_type, cctx) == FAIL) { func_ptr_unref(ufunc); goto theend; } #ifdef FEAT_PROFILE // When the outer function is compiled for profiling, the nested function // may be called without profiling. Compile it here in the right context. if (compile_type == CT_PROFILE && func_needs_compiling(ufunc, CT_NONE)) compile_def_function(ufunc, FALSE, CT_NONE, cctx); #endif // If a FUNCREF instruction was generated, set the index after compiling. if (funcref_isn != NULL && ufunc->uf_def_status == UF_COMPILED) funcref_isn->isn_arg.funcref.fr_dfunc_idx = ufunc->uf_dfunc_idx; theend: vim_free(lambda_name); vim_free(func_name); return r == FAIL ? NULL : (char_u *)""; }
1
CVE-2022-2862
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
8,244
ImageMagick
548701354191a3dda5cffc6d415374b35b01d0b9
static Image *ReadPWPImage(const ImageInfo *image_info,ExceptionInfo *exception) { FILE *file; Image *image, *next_image, *pwp_image; ImageInfo *read_info; int c, unique_file; MagickBooleanType status; register Image *p; register ssize_t i; size_t filesize, length; ssize_t count; unsigned char magick[MagickPathExtent]; /* Open image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); pwp_image=AcquireImage(image_info,exception); image=pwp_image; status=OpenBlob(image_info,pwp_image,ReadBinaryBlobMode,exception); if (status == MagickFalse) return((Image *) NULL); count=ReadBlob(pwp_image,5,magick); if ((count != 5) || (LocaleNCompare((char *) magick,"SFW95",5) != 0)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); read_info=CloneImageInfo(image_info); (void) SetImageInfoProgressMonitor(read_info,(MagickProgressMonitor) NULL, (void *) NULL); SetImageInfoBlob(read_info,(void *) NULL,0); unique_file=AcquireUniqueFileResource(read_info->filename); for ( ; ; ) { for (c=ReadBlobByte(pwp_image); c != EOF; c=ReadBlobByte(pwp_image)) { for (i=0; i < 17; i++) magick[i]=magick[i+1]; magick[17]=(unsigned char) c; if (LocaleNCompare((char *) (magick+12),"SFW94A",6) == 0) break; } if (c == EOF) break; if (LocaleNCompare((char *) (magick+12),"SFW94A",6) != 0) { (void) RelinquishUniqueFileResource(read_info->filename); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } /* Dump SFW image to a temporary file. */ file=(FILE *) NULL; if (unique_file != -1) file=fdopen(unique_file,"wb"); if ((unique_file == -1) || (file == (FILE *) NULL)) { (void) RelinquishUniqueFileResource(read_info->filename); ThrowFileException(exception,FileOpenError,"UnableToWriteFile", image->filename); image=DestroyImageList(image); return((Image *) NULL); } length=fwrite("SFW94A",1,6,file); (void) length; filesize=65535UL*magick[2]+256L*magick[1]+magick[0]; for (i=0; i < (ssize_t) filesize; i++) { c=ReadBlobByte(pwp_image); (void) fputc(c,file); } (void) fclose(file); next_image=ReadImage(read_info,exception); if (next_image == (Image *) NULL) break; (void) FormatLocaleString(next_image->filename,MagickPathExtent, "slide_%02ld.sfw",(long) next_image->scene); if (image == (Image *) NULL) image=next_image; else { /* Link image into image list. */ for (p=image; p->next != (Image *) NULL; p=GetNextImageInList(p)) ; next_image->previous=p; next_image->scene=p->scene+1; p->next=next_image; } if (image_info->number_scenes != 0) if (next_image->scene >= (image_info->scene+image_info->number_scenes-1)) break; status=SetImageProgress(image,LoadImagesTag,TellBlob(pwp_image), GetBlobSize(pwp_image)); if (status == MagickFalse) break; } if (unique_file != -1) (void) close(unique_file); (void) RelinquishUniqueFileResource(read_info->filename); read_info=DestroyImageInfo(read_info); if (EOFBlob(image) != MagickFalse) { char *message; message=GetExceptionMessage(errno); (void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError, "UnexpectedEndOfFile","`%s': %s",image->filename,message); message=DestroyString(message); } (void) CloseBlob(image); return(GetFirstImageInList(image)); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,718
Chrome
20b65d00ca3d8696430e22efad7485366f8c3a21
void NormalPageArena::VerifyMarking() { #if DCHECK_IS_ON() SetAllocationPoint(nullptr, 0); for (NormalPage* page = static_cast<NormalPage*>(first_page_); page; page = static_cast<NormalPage*>(page->Next())) page->VerifyMarking(); #endif // DCHECK_IS_ON() }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,362
zstd
3e5cdf1b6a85843e991d7d10f6a2567c15580da0
static int fuzzerTests(U32 seed, U32 nbTests, unsigned startTest, U32 const maxDurationS, double compressibility, int bigTests) { static const U32 maxSrcLog = 23; static const U32 maxSampleLog = 22; size_t const srcBufferSize = (size_t)1<<maxSrcLog; size_t const dstBufferSize = (size_t)1<<maxSampleLog; size_t const cBufferSize = ZSTD_compressBound(dstBufferSize); BYTE* cNoiseBuffer[5]; BYTE* const cBuffer = (BYTE*) malloc (cBufferSize); BYTE* const dstBuffer = (BYTE*) malloc (dstBufferSize); BYTE* const mirrorBuffer = (BYTE*) malloc (dstBufferSize); ZSTD_CCtx* const refCtx = ZSTD_createCCtx(); ZSTD_CCtx* const ctx = ZSTD_createCCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx(); U32 result = 0; U32 testNb = 0; U32 coreSeed = seed; UTIL_time_t const startClock = UTIL_getTime(); U64 const maxClockSpan = maxDurationS * SEC_TO_MICRO; int const cLevelLimiter = bigTests ? 3 : 2; /* allocation */ cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize); cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize); cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize); cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize); cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize); CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4] || !dstBuffer || !mirrorBuffer || !cBuffer || !refCtx || !ctx || !dctx, "Not enough memory, fuzzer tests cancelled"); /* Create initial samples */ RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */ RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */ RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed); RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */ RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */ /* catch up testNb */ for (testNb=1; testNb < startTest; testNb++) FUZ_rand(&coreSeed); /* main test loop */ for ( ; (testNb <= nbTests) || (UTIL_clockSpanMicro(startClock) < maxClockSpan); testNb++ ) { BYTE* srcBuffer; /* jumping pointer */ U32 lseed; size_t sampleSize, maxTestSize, totalTestSize; size_t cSize, totalCSize, totalGenSize; U64 crcOrig; BYTE* sampleBuffer; const BYTE* dict; size_t dictSize; /* notification */ if (nbTests >= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); } else { DISPLAYUPDATE(2, "\r%6u ", testNb); } FUZ_rand(&coreSeed); { U32 const prime1 = 2654435761U; lseed = coreSeed ^ prime1; } /* srcBuffer selection [0-4] */ { U32 buffNb = FUZ_rand(&lseed) & 0x7F; if (buffNb & 7) buffNb=2; /* most common : compressible (P) */ else { buffNb >>= 3; if (buffNb & 7) { const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */ buffNb = tnb[buffNb >> 3]; } else { const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */ buffNb = tnb[buffNb >> 3]; } } srcBuffer = cNoiseBuffer[buffNb]; } /* select src segment */ sampleSize = FUZ_randomLength(&lseed, maxSampleLog); /* create sample buffer (to catch read error with valgrind & sanitizers) */ sampleBuffer = (BYTE*)malloc(sampleSize); CHECK(sampleBuffer==NULL, "not enough memory for sample buffer"); { size_t const sampleStart = FUZ_rand(&lseed) % (srcBufferSize - sampleSize); memcpy(sampleBuffer, srcBuffer + sampleStart, sampleSize); } crcOrig = XXH64(sampleBuffer, sampleSize, 0); /* compression tests */ { int const cLevelPositive = ( FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (FUZ_highbit32((U32)sampleSize) / cLevelLimiter)) ) + 1; int const cLevel = ((FUZ_rand(&lseed) & 15) == 3) ? - (int)((FUZ_rand(&lseed) & 7) + 1) : /* test negative cLevel */ cLevelPositive; DISPLAYLEVEL(5, "fuzzer t%u: Simple compression test (level %i) \n", testNb, cLevel); cSize = ZSTD_compressCCtx(ctx, cBuffer, cBufferSize, sampleBuffer, sampleSize, cLevel); CHECK(ZSTD_isError(cSize), "ZSTD_compressCCtx failed : %s", ZSTD_getErrorName(cSize)); /* compression failure test : too small dest buffer */ if (cSize > 3) { const size_t missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ const size_t tooSmallSize = cSize - missing; const U32 endMark = 0x4DC2B1A9; memcpy(dstBuffer+tooSmallSize, &endMark, 4); { size_t const errorCode = ZSTD_compressCCtx(ctx, dstBuffer, tooSmallSize, sampleBuffer, sampleSize, cLevel); CHECK(!ZSTD_isError(errorCode), "ZSTD_compressCCtx should have failed ! (buffer too small : %u < %u)", (U32)tooSmallSize, (U32)cSize); } { U32 endCheck; memcpy(&endCheck, dstBuffer+tooSmallSize, 4); CHECK(endCheck != endMark, "ZSTD_compressCCtx : dst buffer overflow"); } } } /* frame header decompression test */ { ZSTD_frameHeader zfh; CHECK_Z( ZSTD_getFrameHeader(&zfh, cBuffer, cSize) ); CHECK(zfh.frameContentSize != sampleSize, "Frame content size incorrect"); } /* Decompressed size test */ { unsigned long long const rSize = ZSTD_findDecompressedSize(cBuffer, cSize); CHECK(rSize != sampleSize, "decompressed size incorrect"); } /* successful decompression test */ DISPLAYLEVEL(5, "fuzzer t%u: simple decompression test \n", testNb); { size_t const margin = (FUZ_rand(&lseed) & 1) ? 0 : (FUZ_rand(&lseed) & 31) + 1; size_t const dSize = ZSTD_decompress(dstBuffer, sampleSize + margin, cBuffer, cSize); CHECK(dSize != sampleSize, "ZSTD_decompress failed (%s) (srcSize : %u ; cSize : %u)", ZSTD_getErrorName(dSize), (U32)sampleSize, (U32)cSize); { U64 const crcDest = XXH64(dstBuffer, sampleSize, 0); CHECK(crcOrig != crcDest, "decompression result corrupted (pos %u / %u)", (U32)findDiff(sampleBuffer, dstBuffer, sampleSize), (U32)sampleSize); } } free(sampleBuffer); /* no longer useful after this point */ /* truncated src decompression test */ DISPLAYLEVEL(5, "fuzzer t%u: decompression of truncated source \n", testNb); { size_t const missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ size_t const tooSmallSize = cSize - missing; void* cBufferTooSmall = malloc(tooSmallSize); /* valgrind will catch read overflows */ CHECK(cBufferTooSmall == NULL, "not enough memory !"); memcpy(cBufferTooSmall, cBuffer, tooSmallSize); { size_t const errorCode = ZSTD_decompress(dstBuffer, dstBufferSize, cBufferTooSmall, tooSmallSize); CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed ! (truncated src buffer)"); } free(cBufferTooSmall); } /* too small dst decompression test */ DISPLAYLEVEL(5, "fuzzer t%u: decompress into too small dst buffer \n", testNb); if (sampleSize > 3) { size_t const missing = (FUZ_rand(&lseed) % (sampleSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ size_t const tooSmallSize = sampleSize - missing; static const BYTE token = 0xA9; dstBuffer[tooSmallSize] = token; { size_t const errorCode = ZSTD_decompress(dstBuffer, tooSmallSize, cBuffer, cSize); CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed : %u > %u (dst buffer too small)", (U32)errorCode, (U32)tooSmallSize); } CHECK(dstBuffer[tooSmallSize] != token, "ZSTD_decompress : dst buffer overflow"); } /* noisy src decompression test */ if (cSize > 6) { /* insert noise into src */ { U32 const maxNbBits = FUZ_highbit32((U32)(cSize-4)); size_t pos = 4; /* preserve magic number (too easy to detect) */ for (;;) { /* keep some original src */ { U32 const nbBits = FUZ_rand(&lseed) % maxNbBits; size_t const mask = (1<<nbBits) - 1; size_t const skipLength = FUZ_rand(&lseed) & mask; pos += skipLength; } if (pos >= cSize) break; /* add noise */ { U32 const nbBitsCodes = FUZ_rand(&lseed) % maxNbBits; U32 const nbBits = nbBitsCodes ? nbBitsCodes-1 : 0; size_t const mask = (1<<nbBits) - 1; size_t const rNoiseLength = (FUZ_rand(&lseed) & mask) + 1; size_t const noiseLength = MIN(rNoiseLength, cSize-pos); size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseLength); memcpy(cBuffer + pos, srcBuffer + noiseStart, noiseLength); pos += noiseLength; } } } /* decompress noisy source */ DISPLAYLEVEL(5, "fuzzer t%u: decompress noisy source \n", testNb); { U32 const endMark = 0xA9B1C3D6; memcpy(dstBuffer+sampleSize, &endMark, 4); { size_t const decompressResult = ZSTD_decompress(dstBuffer, sampleSize, cBuffer, cSize); /* result *may* be an unlikely success, but even then, it must strictly respect dst buffer boundaries */ CHECK((!ZSTD_isError(decompressResult)) && (decompressResult>sampleSize), "ZSTD_decompress on noisy src : result is too large : %u > %u (dst buffer)", (U32)decompressResult, (U32)sampleSize); } { U32 endCheck; memcpy(&endCheck, dstBuffer+sampleSize, 4); CHECK(endMark!=endCheck, "ZSTD_decompress on noisy src : dst buffer overflow"); } } } /* noisy src decompression test */ /*===== Bufferless streaming compression test, scattered segments and dictionary =====*/ DISPLAYLEVEL(5, "fuzzer t%u: Bufferless streaming compression test \n", testNb); { U32 const testLog = FUZ_rand(&lseed) % maxSrcLog; U32 const dictLog = FUZ_rand(&lseed) % maxSrcLog; int const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (MAX(testLog, dictLog) / cLevelLimiter))) + 1; maxTestSize = FUZ_rLogLength(&lseed, testLog); if (maxTestSize >= dstBufferSize) maxTestSize = dstBufferSize-1; dictSize = FUZ_rLogLength(&lseed, dictLog); /* needed also for decompression */ dict = srcBuffer + (FUZ_rand(&lseed) % (srcBufferSize - dictSize)); DISPLAYLEVEL(6, "fuzzer t%u: Compressing up to <=%u bytes at level %i with dictionary size %u \n", testNb, (U32)maxTestSize, cLevel, (U32)dictSize); if (FUZ_rand(&lseed) & 0xF) { CHECK_Z ( ZSTD_compressBegin_usingDict(refCtx, dict, dictSize, cLevel) ); } else { ZSTD_compressionParameters const cPar = ZSTD_getCParams(cLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize); ZSTD_frameParameters const fPar = { FUZ_rand(&lseed)&1 /* contentSizeFlag */, !(FUZ_rand(&lseed)&3) /* contentChecksumFlag*/, 0 /*NodictID*/ }; /* note : since dictionary is fake, dictIDflag has no impact */ ZSTD_parameters const p = FUZ_makeParams(cPar, fPar); CHECK_Z ( ZSTD_compressBegin_advanced(refCtx, dict, dictSize, p, 0) ); } CHECK_Z( ZSTD_copyCCtx(ctx, refCtx, 0) ); } { U32 const nbChunks = (FUZ_rand(&lseed) & 127) + 2; U32 n; XXH64_state_t xxhState; XXH64_reset(&xxhState, 0); for (totalTestSize=0, cSize=0, n=0 ; n<nbChunks ; n++) { size_t const segmentSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const segmentStart = FUZ_rand(&lseed) % (srcBufferSize - segmentSize); if (cBufferSize-cSize < ZSTD_compressBound(segmentSize)) break; /* avoid invalid dstBufferTooSmall */ if (totalTestSize+segmentSize > maxTestSize) break; { size_t const compressResult = ZSTD_compressContinue(ctx, cBuffer+cSize, cBufferSize-cSize, srcBuffer+segmentStart, segmentSize); CHECK (ZSTD_isError(compressResult), "multi-segments compression error : %s", ZSTD_getErrorName(compressResult)); cSize += compressResult; } XXH64_update(&xxhState, srcBuffer+segmentStart, segmentSize); memcpy(mirrorBuffer + totalTestSize, srcBuffer+segmentStart, segmentSize); totalTestSize += segmentSize; } { size_t const flushResult = ZSTD_compressEnd(ctx, cBuffer+cSize, cBufferSize-cSize, NULL, 0); CHECK (ZSTD_isError(flushResult), "multi-segments epilogue error : %s", ZSTD_getErrorName(flushResult)); cSize += flushResult; } crcOrig = XXH64_digest(&xxhState); } /* streaming decompression test */ DISPLAYLEVEL(5, "fuzzer t%u: Bufferless streaming decompression test \n", testNb); /* ensure memory requirement is good enough (should always be true) */ { ZSTD_frameHeader zfh; CHECK( ZSTD_getFrameHeader(&zfh, cBuffer, ZSTD_frameHeaderSize_max), "ZSTD_getFrameHeader(): error retrieving frame information"); { size_t const roundBuffSize = ZSTD_decodingBufferSize_min(zfh.windowSize, zfh.frameContentSize); CHECK_Z(roundBuffSize); CHECK((roundBuffSize > totalTestSize) && (zfh.frameContentSize!=ZSTD_CONTENTSIZE_UNKNOWN), "ZSTD_decodingBufferSize_min() requires more memory (%u) than necessary (%u)", (U32)roundBuffSize, (U32)totalTestSize ); } } if (dictSize<8) dictSize=0, dict=NULL; /* disable dictionary */ CHECK_Z( ZSTD_decompressBegin_usingDict(dctx, dict, dictSize) ); totalCSize = 0; totalGenSize = 0; while (totalCSize < cSize) { size_t const inSize = ZSTD_nextSrcSizeToDecompress(dctx); size_t const genSize = ZSTD_decompressContinue(dctx, dstBuffer+totalGenSize, dstBufferSize-totalGenSize, cBuffer+totalCSize, inSize); CHECK (ZSTD_isError(genSize), "ZSTD_decompressContinue error : %s", ZSTD_getErrorName(genSize)); totalGenSize += genSize; totalCSize += inSize; } CHECK (ZSTD_nextSrcSizeToDecompress(dctx) != 0, "frame not fully decoded"); CHECK (totalGenSize != totalTestSize, "streaming decompressed data : wrong size") CHECK (totalCSize != cSize, "compressed data should be fully read") { U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0); CHECK(crcOrig != crcDest, "streaming decompressed data corrupted (pos %u / %u)", (U32)findDiff(mirrorBuffer, dstBuffer, totalTestSize), (U32)totalTestSize); } } /* for ( ; (testNb <= nbTests) */ DISPLAY("\r%u fuzzer tests completed \n", testNb-1); _cleanup: ZSTD_freeCCtx(refCtx); ZSTD_freeCCtx(ctx); ZSTD_freeDCtx(dctx); free(cNoiseBuffer[0]); free(cNoiseBuffer[1]); free(cNoiseBuffer[2]); free(cNoiseBuffer[3]); free(cNoiseBuffer[4]); free(cBuffer); free(dstBuffer); free(mirrorBuffer); return result; _output_error: result = 1; goto _cleanup; }
1
CVE-2019-11922
CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.
Phase: Architecture and Design In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance. Phase: Architecture and Design Use thread-safe capabilities such as the data access abstraction in Spring. Phase: Architecture and Design Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring. Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400). Phase: Implementation When using multithreading and operating on shared variables, only use thread-safe functions. Phase: Implementation Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write. Phase: Implementation Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412. Phase: Implementation Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization. Phase: Implementation Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop. Phase: Implementation Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help. Phases: Architecture and Design; Operation Strategy: Environment Hardening Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations
2,597
Chrome
0c14577c9905bd8161159ec7eaac810c594508d0
gfx::NativeView OmniboxViewWin::GetRelativeWindowForNativeView( gfx::NativeView edit_native_view) { HWND ime_window = ImmGetDefaultIMEWnd(edit_native_view); return ime_window ? ime_window : HWND_NOTOPMOST; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,795
linux
ee53664bda169f519ce3c6a22d378f0b946c8178
static inline int pmd_numa(pmd_t pmd) { return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,072
openssl
0c27d793745c7837b13646302b6890a556b7017a
static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp, const unsigned char *dgst, int dlen) { BN_CTX *ctx = NULL; BIGNUM *k = NULL, *r = NULL, *X = NULL; const BIGNUM *order; EC_POINT *tmp_point = NULL; const EC_GROUP *group; int ret = 0; int order_bits; if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!EC_KEY_can_sign(eckey)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING); return 0; } if (ctx_in == NULL) { if ((ctx = BN_CTX_new()) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_MALLOC_FAILURE); return 0; } } else ctx = ctx_in; k = BN_new(); /* this value is later returned in *kinvp */ r = BN_new(); /* this value is later returned in *rp */ X = BN_new(); if (k == NULL || r == NULL || X == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_MALLOC_FAILURE); goto err; } if ((tmp_point = EC_POINT_new(group)) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } order = EC_GROUP_get0_order(group); if (order == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } /* Preallocate space */ order_bits = BN_num_bits(order); if (!BN_set_bit(k, order_bits) || !BN_set_bit(r, order_bits) || !BN_set_bit(X, order_bits)) goto err; do { /* get random k */ do if (dgst != NULL) { if (!BN_generate_dsa_nonce (k, order, EC_KEY_get0_private_key(eckey), dgst, dlen, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } } else { if (!BN_rand_range(k, order)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } } while (BN_is_zero(k)); /* * We do not want timing information to leak the length of k, so we * compute G*k using an equivalent scalar of fixed bit-length. * * We unconditionally perform both of these additions to prevent a * small timing information leakage. We then choose the sum that is * one bit longer than the order. This guarantees the code * path used in the constant time implementations elsewhere. * * TODO: revisit the BN_copy aiming for a memory access agnostic * conditional copy. */ if (!BN_add(r, k, order) || !BN_add(X, r, order) || !BN_copy(k, BN_num_bits(r) > order_bits ? r : X)) goto err; /* compute r the x-coordinate of generator * k */ if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == NID_X9_62_prime_field) { if (!EC_POINT_get_affine_coordinates_GFp (group, tmp_point, X, NULL, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } } #ifndef OPENSSL_NO_EC2M else { /* NID_X9_62_characteristic_two_field */ if (!EC_POINT_get_affine_coordinates_GF2m(group, tmp_point, X, NULL, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } } #endif if (!BN_nnmod(r, X, order, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } } while (BN_is_zero(r)); /* compute the inverse of k */ if (EC_GROUP_get_mont_data(group) != NULL) { /* * We want inverse in constant time, therefore we utilize the fact * order must be prime and use Fermats Little Theorem instead. */ if (!BN_set_word(X, 2)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } if (!BN_mod_sub(X, order, X, order, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } BN_set_flags(X, BN_FLG_CONSTTIME); if (!BN_mod_exp_mont_consttime (k, k, X, order, ctx, EC_GROUP_get_mont_data(group))) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } } else { if (!BN_mod_inverse(k, k, order, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } } /* clear old values if necessary */ BN_clear_free(*rp); BN_clear_free(*kinvp); /* save the pre-computed values */ *rp = r; *kinvp = k; ret = 1; err: if (!ret) { BN_clear_free(k); BN_clear_free(r); } if (ctx != ctx_in) BN_CTX_free(ctx); EC_POINT_free(tmp_point); BN_clear_free(X); return (ret); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,606
linux
99d825822eade8d827a1817357cbf3f889a552d6
int get_rock_ridge_filename(struct iso_directory_record *de, char *retname, struct inode *inode) { struct rock_state rs; struct rock_ridge *rr; int sig; int retnamlen = 0; int truncate = 0; int ret = 0; if (!ISOFS_SB(inode->i_sb)->s_rock) return 0; *retname = 0; init_rock_state(&rs, inode); setup_rock_ridge(de, inode, &rs); repeat: while (rs.len > 2) { /* There may be one byte for padding somewhere */ rr = (struct rock_ridge *)rs.chr; /* * Ignore rock ridge info if rr->len is out of range, but * don't return -EIO because that would make the file * invisible. */ if (rr->len < 3) goto out; /* Something got screwed up here */ sig = isonum_721(rs.chr); if (rock_check_overflow(&rs, sig)) goto eio; rs.chr += rr->len; rs.len -= rr->len; /* * As above, just ignore the rock ridge info if rr->len * is bogus. */ if (rs.len < 0) goto out; /* Something got screwed up here */ switch (sig) { case SIG('R', 'R'): if ((rr->u.RR.flags[0] & RR_NM) == 0) goto out; break; case SIG('S', 'P'): if (check_sp(rr, inode)) goto out; break; case SIG('C', 'E'): rs.cont_extent = isonum_733(rr->u.CE.extent); rs.cont_offset = isonum_733(rr->u.CE.offset); rs.cont_size = isonum_733(rr->u.CE.size); break; case SIG('N', 'M'): if (truncate) break; if (rr->len < 5) break; /* * If the flags are 2 or 4, this indicates '.' or '..'. * We don't want to do anything with this, because it * screws up the code that calls us. We don't really * care anyways, since we can just use the non-RR * name. */ if (rr->u.NM.flags & 6) break; if (rr->u.NM.flags & ~1) { printk("Unsupported NM flag settings (%d)\n", rr->u.NM.flags); break; } if ((strlen(retname) + rr->len - 5) >= 254) { truncate = 1; break; } strncat(retname, rr->u.NM.name, rr->len - 5); retnamlen += rr->len - 5; break; case SIG('R', 'E'): kfree(rs.buffer); return -1; default: break; } } ret = rock_continue(&rs); if (ret == 0) goto repeat; if (ret == 1) return retnamlen; /* If 0, this file did not have a NM field */ out: kfree(rs.buffer); return ret; eio: ret = -EIO; goto out; }
1
CVE-2016-4913
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
8,114
jerryscript
efe63a5bbc5106164a08ee2eb415a7a701f5311f
parser_parse_import_statement (parser_context_t *context_p) /**< parser context */ { JERRY_ASSERT (context_p->token.type == LEXER_KEYW_IMPORT); JERRY_ASSERT (context_p->module_names_p == NULL); if (lexer_check_next_characters (context_p, LIT_CHAR_LEFT_PAREN, LIT_CHAR_DOT)) { if (context_p->status_flags & PARSER_IS_FUNCTION) { parser_parse_expression_statement (context_p, PARSE_EXPR); return; } parser_parse_block_expression (context_p, PARSE_EXPR); return; } parser_module_check_request_place (context_p); lexer_next_token (context_p); /* Check for a ModuleSpecifier*/ if (context_p->token.type != LEXER_LITERAL || context_p->token.lit_location.type != LEXER_STRING_LITERAL) { if (!(context_p->token.type == LEXER_LEFT_BRACE || context_p->token.type == LEXER_MULTIPLY || (context_p->token.type == LEXER_LITERAL && context_p->token.lit_location.type == LEXER_IDENT_LITERAL))) { parser_raise_error (context_p, PARSER_ERR_LEFT_BRACE_MULTIPLY_LITERAL_EXPECTED); } if (context_p->token.type == LEXER_LITERAL) { /* Handle ImportedDefaultBinding */ lexer_construct_literal_object (context_p, &context_p->token.lit_location, LEXER_IDENT_LITERAL); ecma_string_t *local_name_p = parser_new_ecma_string_from_literal (context_p->lit_object.literal_p); if (parser_module_check_duplicate_import (context_p, local_name_p)) { ecma_deref_ecma_string (local_name_p); parser_raise_error (context_p, PARSER_ERR_DUPLICATED_IMPORT_BINDING); } ecma_string_t *import_name_p = ecma_get_magic_string (LIT_MAGIC_STRING_DEFAULT); parser_module_add_names_to_node (context_p, import_name_p, local_name_p); ecma_deref_ecma_string (local_name_p); ecma_deref_ecma_string (import_name_p); lexer_next_token (context_p); if (context_p->token.type == LEXER_COMMA) { lexer_next_token (context_p); if (context_p->token.type != LEXER_MULTIPLY && context_p->token.type != LEXER_LEFT_BRACE) { parser_raise_error (context_p, PARSER_ERR_LEFT_BRACE_MULTIPLY_EXPECTED); } } else if (!lexer_token_is_identifier (context_p, "from", 4)) { parser_raise_error (context_p, PARSER_ERR_FROM_COMMA_EXPECTED); } } if (context_p->token.type == LEXER_MULTIPLY) { /* NameSpaceImport */ lexer_next_token (context_p); if (!lexer_token_is_identifier (context_p, "as", 2)) { parser_raise_error (context_p, PARSER_ERR_AS_EXPECTED); } lexer_next_token (context_p); if (context_p->token.type != LEXER_LITERAL) { parser_raise_error (context_p, PARSER_ERR_IDENTIFIER_EXPECTED); } lexer_construct_literal_object (context_p, &context_p->token.lit_location, LEXER_IDENT_LITERAL); ecma_string_t *local_name_p = parser_new_ecma_string_from_literal (context_p->lit_object.literal_p); if (parser_module_check_duplicate_import (context_p, local_name_p)) { ecma_deref_ecma_string (local_name_p); parser_raise_error (context_p, PARSER_ERR_DUPLICATED_IMPORT_BINDING); } ecma_string_t *import_name_p = ecma_get_magic_string (LIT_MAGIC_STRING_ASTERIX_CHAR); parser_module_add_names_to_node (context_p, import_name_p, local_name_p); ecma_deref_ecma_string (local_name_p); ecma_deref_ecma_string (import_name_p); lexer_next_token (context_p); } else if (context_p->token.type == LEXER_LEFT_BRACE) { /* Handle NamedImports */ parser_module_parse_import_clause (context_p); } if (!lexer_token_is_identifier (context_p, "from", 4)) { parser_raise_error (context_p, PARSER_ERR_FROM_EXPECTED); } lexer_next_token (context_p); } parser_module_handle_module_specifier (context_p, NULL); } /* parser_parse_import_statement */
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,108
tensorflow
9e62869465573cb2d9b5053f1fa02a81fce21d69
void Compute(OpKernelContext* ctx) override { const Tensor& input = ctx->input(kInputTensorIndex); const Tensor& input_min = ctx->input(kInputMinIndex); const Tensor& input_max = ctx->input(kInputMaxIndex); const size_t depth = input_max.NumElements(); OP_REQUIRES( ctx, input_min.dim_size(0) == depth, errors::InvalidArgument("input_min has incorrect size, expected ", depth, " was ", input_min.dim_size(0))); OP_REQUIRES( ctx, input_max.dim_size(0) == depth, errors::InvalidArgument("input_max has incorrect size, expected ", depth, " was ", input_max.dim_size(0))); OP_REQUIRES( ctx, input_min.NumElements() == depth, errors::InvalidArgument("input_min must have the same number of " "elements as input_max, got ", input_min.NumElements(), " and ", depth)); OP_REQUIRES(ctx, input.NumElements() > 0, errors::InvalidArgument("input must not be empty")); OP_REQUIRES(ctx, input.dims() == 4, errors::InvalidArgument("input must be in NHWC format")); OP_REQUIRES( ctx, input.dim_size(3) == depth, errors::InvalidArgument( "input must have same number of channels as length of input_min: ", input.dim_size(3), " vs ", depth)); const float* input_min_data = input_min.flat<float>().data(); const float* input_max_data = input_max.flat<float>().data(); std::vector<float> ranges(depth); bool is_non_negative = true; Eigen::array<int, 2> shuffling({1, 0}); auto input_matrix = input.flat_inner_dims<qint32>(); // TODO: verify performance of not transposing and finding the min max // directly from input_matrix vs the one presented below of transposing and // using the transposed matrix as the transposing operation in itself might // be more costly. // Note that this operation is a calibration step for quantization and will // cease to exist in the final inference graph(will exist as a const node). auto transposed_input = input_matrix.shuffle(shuffling); // Find the ranges of each channel in parallel. float out_min_max = std::numeric_limits<float>::min(); #ifdef ENABLE_ONEDNN_OPENMP #ifdef _MSC_VER #pragma omp parallel for #else #pragma omp parallel for reduction(max : out_min_max) #endif #endif // ENABLE_ONEDNN_OPENMP // TODO: Add eigen parallel_for for (int64_t i = 0; i < depth; ++i) { Eigen::Tensor<qint32, 0, Eigen::RowMajor> min = transposed_input.chip<0>(i).minimum(); Eigen::Tensor<qint32, 0, Eigen::RowMajor> max = transposed_input.chip<0>(i).maximum(); const int32_t min_per_channel = min(); const int32_t max_per_channel = max(); const int32_t abs_max = std::max(std::abs(min_per_channel), std::abs(max_per_channel)); float scale = std::max(std::abs(input_min_data[i]), std::abs(input_max_data[i])); ranges[i] = scale * static_cast<float>(abs_max) / static_cast<float>(1L << 31); if (min_per_channel < 0) is_non_negative = false; // Thread-local out_min_max. out_min_max = std::max(out_min_max, ranges[i]); } // All local out_min_max gets max-reduced into one global out_min_max at // the end of the loop by specifying reduction(max:out_min_max) along with // omp parallel for. // Fixing max to clip_value_max_ (example 6.0 to support relu6) if (out_min_max > clip_value_max_) out_min_max = clip_value_max_; Tensor* output_min = nullptr; Tensor* output_max = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output(kOutputMinIndex, {}, &output_min)); OP_REQUIRES_OK(ctx, ctx->allocate_output(kOutputMaxIndex, {}, &output_max)); output_min->flat<float>()(0) = is_non_negative ? 0.0f : -out_min_max; output_max->flat<float>()(0) = out_min_max; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,173
linux
8d0c2d10dd72c5292eda7a06231056a4c972e4cc
static ext3_fsblk_t get_sb_block(void **data, struct super_block *sb) { ext3_fsblk_t sb_block; char *options = (char *) *data; if (!options || strncmp(options, "sb=", 3) != 0) return 1; /* Default location */ options += 3; /*todo: use simple_strtoll with >32bit ext3 */ sb_block = simple_strtoul(options, &options, 0); if (*options && *options != ',') { ext3_msg(sb, "error: invalid sb specification: %s", (char *) *data); return 1; } if (*options == ',') options++; *data = (void *) options; return sb_block; }
1
CVE-2013-1848
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
5,505
poppler
fc071d800cb4329a3ccf898d7bf16b4db7323ad8
void DCTStream::init() { jpeg_std_error(&jerr); jerr.error_exit = &exitErrorHandler; src.pub.init_source = str_init_source; src.pub.fill_input_buffer = str_fill_input_buffer; src.pub.skip_input_data = str_skip_input_data; src.pub.resync_to_restart = jpeg_resync_to_restart; src.pub.term_source = str_term_source; src.pub.next_input_byte = NULL; src.str = str; src.index = 0; src.abort = false; current = NULL; limit = NULL; limit = NULL; cinfo.err = &jerr; jpeg_create_decompress(&cinfo); cinfo.src = (jpeg_source_mgr *)&src; row_buffer = NULL; }
1
CVE-2010-5110
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
8,599
Chrome
04aaacb936a08d70862d6d9d7e8354721ae46be8
void StoreExistingGroupExistingCache() { MakeCacheAndGroup(kManifestUrl, 1, 1, true); EXPECT_EQ(kDefaultEntrySize, storage()->usage_map_[kOrigin]); base::Time now = base::Time::Now(); cache_->AddEntry(kEntryUrl, AppCacheEntry(AppCacheEntry::MASTER, 1, 100)); cache_->set_update_time(now); PushNextTask(base::BindOnce( &AppCacheStorageImplTest::Verify_StoreExistingGroupExistingCache, base::Unretained(this), now)); EXPECT_EQ(cache_.get(), group_->newest_complete_cache()); storage()->StoreGroupAndNewestCache(group_.get(), cache_.get(), delegate()); EXPECT_FALSE(delegate()->stored_group_success_); }
1
CVE-2019-5837
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
2,932
linux
af368027a49a751d6ff4ee9e3f9961f35bb4fede
static int _snd_timer_stop(struct snd_timer_instance * timeri, int keep_flag, int event) { struct snd_timer *timer; unsigned long flags; if (snd_BUG_ON(!timeri)) return -ENXIO; if (timeri->flags & SNDRV_TIMER_IFLG_SLAVE) { if (!keep_flag) { spin_lock_irqsave(&slave_active_lock, flags); timeri->flags &= ~SNDRV_TIMER_IFLG_RUNNING; spin_unlock_irqrestore(&slave_active_lock, flags); } goto __end; } timer = timeri->timer; if (!timer) return -EINVAL; spin_lock_irqsave(&timer->lock, flags); list_del_init(&timeri->ack_list); list_del_init(&timeri->active_list); if ((timeri->flags & SNDRV_TIMER_IFLG_RUNNING) && !(--timer->running)) { timer->hw.stop(timer); if (timer->flags & SNDRV_TIMER_FLG_RESCHED) { timer->flags &= ~SNDRV_TIMER_FLG_RESCHED; snd_timer_reschedule(timer, 0); if (timer->flags & SNDRV_TIMER_FLG_CHANGE) { timer->flags &= ~SNDRV_TIMER_FLG_CHANGE; timer->hw.start(timer); } } } if (!keep_flag) timeri->flags &= ~(SNDRV_TIMER_IFLG_RUNNING | SNDRV_TIMER_IFLG_START); spin_unlock_irqrestore(&timer->lock, flags); __end: if (event != SNDRV_TIMER_EVENT_RESOLUTION) snd_timer_notify1(timeri, event); return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,785
virglrenderer
48f67f60967f963b698ec8df57ec6912a43d6282
static void vrend_hw_emit_framebuffer_state(struct vrend_context *ctx) { static const GLenum buffers[8] = { GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT, GL_COLOR_ATTACHMENT2_EXT, GL_COLOR_ATTACHMENT3_EXT, GL_COLOR_ATTACHMENT4_EXT, GL_COLOR_ATTACHMENT5_EXT, GL_COLOR_ATTACHMENT6_EXT, GL_COLOR_ATTACHMENT7_EXT, }; glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, ctx->sub->fb_id); if (ctx->sub->nr_cbufs == 0) { glReadBuffer(GL_NONE); glDisable(GL_FRAMEBUFFER_SRGB_EXT); } else { struct vrend_surface *surf = NULL; int i; for (i = 0; i < ctx->sub->nr_cbufs; i++) { if (ctx->sub->surf[i]) { surf = ctx->sub->surf[i]; } } if (util_format_is_srgb(surf->format)) { glEnable(GL_FRAMEBUFFER_SRGB_EXT); } else { glDisable(GL_FRAMEBUFFER_SRGB_EXT); } } glDrawBuffers(ctx->sub->nr_cbufs, buffers); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,859
linux
9f645bcc566a1e9f921bdae7528a01ced5bc3713
static int uvesafb_setcmap(struct fb_cmap *cmap, struct fb_info *info) { struct uvesafb_pal_entry *entries; int shift = 16 - dac_width; int i, err = 0; if (info->var.bits_per_pixel == 8) { if (cmap->start + cmap->len > info->cmap.start + info->cmap.len || cmap->start < info->cmap.start) return -EINVAL; entries = kmalloc(sizeof(*entries) * cmap->len, GFP_KERNEL); if (!entries) return -ENOMEM; for (i = 0; i < cmap->len; i++) { entries[i].red = cmap->red[i] >> shift; entries[i].green = cmap->green[i] >> shift; entries[i].blue = cmap->blue[i] >> shift; entries[i].pad = 0; } err = uvesafb_setpalette(entries, cmap->len, cmap->start, info); kfree(entries); } else { /* * For modes with bpp > 8, we only set the pseudo palette in * the fb_info struct. We rely on uvesafb_setcolreg to do all * sanity checking. */ for (i = 0; i < cmap->len; i++) { err |= uvesafb_setcolreg(cmap->start + i, cmap->red[i], cmap->green[i], cmap->blue[i], 0, info); } } return err; }
1
CVE-2018-13406
CWE-190
Integer Overflow or Wraparound
The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number.
Phase: Requirements Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified simply, and require strict conformance to the protocol. Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. If possible, choose a language or compiler that performs automatic bounds checking. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Use libraries or frameworks that make it easier to handle numbers without unexpected consequences. Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106] Phase: Implementation Strategy: Input Validation Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range. Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values. Phase: Implementation Understand the programming language's underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7] Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation. Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Phase: Implementation Strategy: Compilation or Build Hardening Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system.
1,206
bdwgc
be9df82919960214ee4b9d3313523bff44fd99e1
GC_API void GC_CALL GC_incr_bytes_freed(size_t n) { GC_bytes_freed += n; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,357
libsass
25c9b4952f5838b615da996035453967d0420f57
bool List::operator== (const Expression& rhs) const { if (List_Ptr_Const r = Cast<List>(&rhs)) { if (length() != r->length()) return false; if (separator() != r->separator()) return false; for (size_t i = 0, L = length(); i < L; ++i) { Expression_Obj rv = r->at(i); Expression_Obj lv = this->at(i); if (!lv || !rv) return false; if (!(*lv == *rv)) return false; } return true; } return false; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,434
linux
fe685aabf7c8c9f138e5ea900954d295bf229175
static struct dentry *isofs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { struct isofs_fid *ifid = (struct isofs_fid *)fid; if (fh_type != 2) return NULL; return isofs_export_iget(sb, fh_len > 2 ? ifid->parent_block : 0, ifid->parent_offset, fh_len > 4 ? ifid->parent_generation : 0); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,905
tcpdump
d7505276842e85bfd067fa21cdb32b8a2dc3c5e4
icmp6_nodeinfo_print(netdissect_options *ndo, u_int icmp6len, const u_char *bp, const u_char *ep) { const struct icmp6_nodeinfo *ni6; const struct icmp6_hdr *dp; const u_char *cp; size_t siz, i; int needcomma; if (ep < bp) return; dp = (const struct icmp6_hdr *)bp; ni6 = (const struct icmp6_nodeinfo *)bp; siz = ep - bp; switch (ni6->ni_type) { case ICMP6_NI_QUERY: if (siz == sizeof(*dp) + 4) { /* KAME who-are-you */ ND_PRINT((ndo," who-are-you request")); break; } ND_PRINT((ndo," node information query")); ND_TCHECK2(*dp, sizeof(*ni6)); ni6 = (const struct icmp6_nodeinfo *)dp; ND_PRINT((ndo," (")); /*)*/ switch (EXTRACT_16BITS(&ni6->ni_qtype)) { case NI_QTYPE_NOOP: ND_PRINT((ndo,"noop")); break; case NI_QTYPE_SUPTYPES: ND_PRINT((ndo,"supported qtypes")); i = EXTRACT_16BITS(&ni6->ni_flags); if (i) ND_PRINT((ndo," [%s]", (i & 0x01) ? "C" : "")); break; case NI_QTYPE_FQDN: ND_PRINT((ndo,"DNS name")); break; case NI_QTYPE_NODEADDR: ND_PRINT((ndo,"node addresses")); i = ni6->ni_flags; if (!i) break; /* NI_NODEADDR_FLAG_TRUNCATE undefined for query */ ND_PRINT((ndo," [%s%s%s%s%s%s]", (i & NI_NODEADDR_FLAG_ANYCAST) ? "a" : "", (i & NI_NODEADDR_FLAG_GLOBAL) ? "G" : "", (i & NI_NODEADDR_FLAG_SITELOCAL) ? "S" : "", (i & NI_NODEADDR_FLAG_LINKLOCAL) ? "L" : "", (i & NI_NODEADDR_FLAG_COMPAT) ? "C" : "", (i & NI_NODEADDR_FLAG_ALL) ? "A" : "")); break; default: ND_PRINT((ndo,"unknown")); break; } if (ni6->ni_qtype == NI_QTYPE_NOOP || ni6->ni_qtype == NI_QTYPE_SUPTYPES) { if (siz != sizeof(*ni6)) if (ndo->ndo_vflag) ND_PRINT((ndo,", invalid len")); /*(*/ ND_PRINT((ndo,")")); break; } /* XXX backward compat, icmp-name-lookup-03 */ if (siz == sizeof(*ni6)) { ND_PRINT((ndo,", 03 draft")); /*(*/ ND_PRINT((ndo,")")); break; } switch (ni6->ni_code) { case ICMP6_NI_SUBJ_IPV6: if (!ND_TTEST2(*dp, sizeof(*ni6) + sizeof(struct in6_addr))) break; if (siz != sizeof(*ni6) + sizeof(struct in6_addr)) { if (ndo->ndo_vflag) ND_PRINT((ndo,", invalid subject len")); break; } ND_PRINT((ndo,", subject=%s", ip6addr_string(ndo, ni6 + 1))); break; case ICMP6_NI_SUBJ_FQDN: ND_PRINT((ndo,", subject=DNS name")); cp = (const u_char *)(ni6 + 1); if (cp[0] == ep - cp - 1) { /* icmp-name-lookup-03, pascal string */ if (ndo->ndo_vflag) ND_PRINT((ndo,", 03 draft")); cp++; ND_PRINT((ndo,", \"")); while (cp < ep) { safeputchar(ndo, *cp); cp++; } ND_PRINT((ndo,"\"")); } else dnsname_print(ndo, cp, ep); break; case ICMP6_NI_SUBJ_IPV4: if (!ND_TTEST2(*dp, sizeof(*ni6) + sizeof(struct in_addr))) break; if (siz != sizeof(*ni6) + sizeof(struct in_addr)) { if (ndo->ndo_vflag) ND_PRINT((ndo,", invalid subject len")); break; } ND_PRINT((ndo,", subject=%s", ipaddr_string(ndo, ni6 + 1))); break; default: ND_PRINT((ndo,", unknown subject")); break; } /*(*/ ND_PRINT((ndo,")")); break; case ICMP6_NI_REPLY: if (icmp6len > siz) { ND_PRINT((ndo,"[|icmp6: node information reply]")); break; } needcomma = 0; ND_TCHECK2(*dp, sizeof(*ni6)); ni6 = (const struct icmp6_nodeinfo *)dp; ND_PRINT((ndo," node information reply")); ND_PRINT((ndo," (")); /*)*/ switch (ni6->ni_code) { case ICMP6_NI_SUCCESS: if (ndo->ndo_vflag) { ND_PRINT((ndo,"success")); needcomma++; } break; case ICMP6_NI_REFUSED: ND_PRINT((ndo,"refused")); needcomma++; if (siz != sizeof(*ni6)) if (ndo->ndo_vflag) ND_PRINT((ndo,", invalid length")); break; case ICMP6_NI_UNKNOWN: ND_PRINT((ndo,"unknown")); needcomma++; if (siz != sizeof(*ni6)) if (ndo->ndo_vflag) ND_PRINT((ndo,", invalid length")); break; } if (ni6->ni_code != ICMP6_NI_SUCCESS) { /*(*/ ND_PRINT((ndo,")")); break; } switch (EXTRACT_16BITS(&ni6->ni_qtype)) { case NI_QTYPE_NOOP: if (needcomma) ND_PRINT((ndo,", ")); ND_PRINT((ndo,"noop")); if (siz != sizeof(*ni6)) if (ndo->ndo_vflag) ND_PRINT((ndo,", invalid length")); break; case NI_QTYPE_SUPTYPES: if (needcomma) ND_PRINT((ndo,", ")); ND_PRINT((ndo,"supported qtypes")); i = EXTRACT_16BITS(&ni6->ni_flags); if (i) ND_PRINT((ndo," [%s]", (i & 0x01) ? "C" : "")); break; case NI_QTYPE_FQDN: if (needcomma) ND_PRINT((ndo,", ")); ND_PRINT((ndo,"DNS name")); cp = (const u_char *)(ni6 + 1) + 4; ND_TCHECK(cp[0]); if (cp[0] == ep - cp - 1) { /* icmp-name-lookup-03, pascal string */ if (ndo->ndo_vflag) ND_PRINT((ndo,", 03 draft")); cp++; ND_PRINT((ndo,", \"")); while (cp < ep) { safeputchar(ndo, *cp); cp++; } ND_PRINT((ndo,"\"")); } else dnsname_print(ndo, cp, ep); if ((EXTRACT_16BITS(&ni6->ni_flags) & 0x01) != 0) ND_PRINT((ndo," [TTL=%u]", EXTRACT_32BITS(ni6 + 1))); break; case NI_QTYPE_NODEADDR: if (needcomma) ND_PRINT((ndo,", ")); ND_PRINT((ndo,"node addresses")); i = sizeof(*ni6); while (i < siz) { if (i + sizeof(struct in6_addr) + sizeof(int32_t) > siz) break; ND_PRINT((ndo," %s", ip6addr_string(ndo, bp + i))); i += sizeof(struct in6_addr); ND_PRINT((ndo,"(%d)", (int32_t)EXTRACT_32BITS(bp + i))); i += sizeof(int32_t); } i = ni6->ni_flags; if (!i) break; ND_PRINT((ndo," [%s%s%s%s%s%s%s]", (i & NI_NODEADDR_FLAG_ANYCAST) ? "a" : "", (i & NI_NODEADDR_FLAG_GLOBAL) ? "G" : "", (i & NI_NODEADDR_FLAG_SITELOCAL) ? "S" : "", (i & NI_NODEADDR_FLAG_LINKLOCAL) ? "L" : "", (i & NI_NODEADDR_FLAG_COMPAT) ? "C" : "", (i & NI_NODEADDR_FLAG_ALL) ? "A" : "", (i & NI_NODEADDR_FLAG_TRUNCATE) ? "T" : "")); break; default: if (needcomma) ND_PRINT((ndo,", ")); ND_PRINT((ndo,"unknown")); break; } /*(*/ ND_PRINT((ndo,")")); break; } return; trunc: ND_PRINT((ndo, "[|icmp6]")); }
1
CVE-2018-14882
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
2,342
FreeRDP
0773bb9303d24473fe1185d85a424dfe159aff53
void* sspi_SecureHandleGetLowerPointer(SecHandle* handle) { void* pointer; if (!handle) return NULL; pointer = (void*) ~((size_t) handle->dwLower); return pointer; }
1
CVE-2013-4119
CWE-476
NULL Pointer Dereference
The product dereferences a pointer that it expects to be valid but is NULL.
Phase: Implementation If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented. Phase: Requirements Select a programming language that is not susceptible to these issues. Phase: Implementation Check the results of all functions that return a value and verify that the value is non-null before acting upon it. Effectiveness: Moderate Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665). Phase: Architecture and Design Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values. Phase: Implementation Explicitly initialize all variables and other data stores, either during declaration or just before the first usage.
5,119
tensorflow
3ade2efec2e90c6237de32a19680caaa3ebc2845
static inline Status ParseAndCheckBoxSizes(const Tensor& boxes, const Tensor& box_index, int* num_boxes) { if (boxes.NumElements() == 0 && box_index.NumElements() == 0) { *num_boxes = 0; return Status::OK(); } // The shape of 'boxes' is [num_boxes, 4]. if (boxes.dims() != 2) { return errors::InvalidArgument("boxes must be 2-D", boxes.shape().DebugString()); } *num_boxes = boxes.dim_size(0); if (boxes.dim_size(1) != 4) { return errors::InvalidArgument("boxes must have 4 columns"); } // The shape of 'box_index' is [num_boxes]. if (box_index.dims() != 1) { return errors::InvalidArgument("box_index must be 1-D", box_index.shape().DebugString()); } if (box_index.dim_size(0) != *num_boxes) { return errors::InvalidArgument("box_index has incompatible shape"); } return Status::OK(); }
1
CVE-2020-15266
CWE-787
Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]. Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
4,490
vim
6f98371532fcff911b462d51bc64f2ce8a6ae682
do_arg_all( int count, int forceit, // hide buffers in current windows int keep_tabs) // keep current tabs, for ":tab drop file" { int i; win_T *wp, *wpnext; char_u *opened; // Array of weight for which args are open: // 0: not opened // 1: opened in other tab // 2: opened in curtab // 3: opened in curtab and curwin // int opened_len; // length of opened[] int use_firstwin = FALSE; // use first window for arglist int tab_drop_empty_window = FALSE; int split_ret = OK; int p_ea_save; alist_T *alist; // argument list to be used buf_T *buf; tabpage_T *tpnext; int had_tab = cmdmod.cmod_tab; win_T *old_curwin, *last_curwin; tabpage_T *old_curtab, *last_curtab; win_T *new_curwin = NULL; tabpage_T *new_curtab = NULL; #ifdef FEAT_CMDWIN if (cmdwin_type != 0) { emsg(_(e_invalid_in_cmdline_window)); return; } #endif if (ARGCOUNT <= 0) { // Don't give an error message. We don't want it when the ":all" // command is in the .vimrc. return; } setpcmark(); opened_len = ARGCOUNT; opened = alloc_clear(opened_len); if (opened == NULL) return; // Autocommands may do anything to the argument list. Make sure it's not // freed while we are working here by "locking" it. We still have to // watch out for its size to be changed. alist = curwin->w_alist; ++alist->al_refcount; old_curwin = curwin; old_curtab = curtab; # ifdef FEAT_GUI need_mouse_correct = TRUE; # endif // Try closing all windows that are not in the argument list. // Also close windows that are not full width; // When 'hidden' or "forceit" set the buffer becomes hidden. // Windows that have a changed buffer and can't be hidden won't be closed. // When the ":tab" modifier was used do this for all tab pages. if (had_tab > 0) goto_tabpage_tp(first_tabpage, TRUE, TRUE); for (;;) { tpnext = curtab->tp_next; for (wp = firstwin; wp != NULL; wp = wpnext) { wpnext = wp->w_next; buf = wp->w_buffer; if (buf->b_ffname == NULL || (!keep_tabs && (buf->b_nwindows > 1 || wp->w_width != Columns))) i = opened_len; else { // check if the buffer in this window is in the arglist for (i = 0; i < opened_len; ++i) { if (i < alist->al_ga.ga_len && (AARGLIST(alist)[i].ae_fnum == buf->b_fnum || fullpathcmp(alist_name(&AARGLIST(alist)[i]), buf->b_ffname, TRUE, TRUE) & FPC_SAME)) { int weight = 1; if (old_curtab == curtab) { ++weight; if (old_curwin == wp) ++weight; } if (weight > (int)opened[i]) { opened[i] = (char_u)weight; if (i == 0) { if (new_curwin != NULL) new_curwin->w_arg_idx = opened_len; new_curwin = wp; new_curtab = curtab; } } else if (keep_tabs) i = opened_len; if (wp->w_alist != alist) { // Use the current argument list for all windows // containing a file from it. alist_unlink(wp->w_alist); wp->w_alist = alist; ++wp->w_alist->al_refcount; } break; } } } wp->w_arg_idx = i; if (i == opened_len && !keep_tabs)// close this window { if (buf_hide(buf) || forceit || buf->b_nwindows > 1 || !bufIsChanged(buf)) { // If the buffer was changed, and we would like to hide it, // try autowriting. if (!buf_hide(buf) && buf->b_nwindows <= 1 && bufIsChanged(buf)) { bufref_T bufref; set_bufref(&bufref, buf); (void)autowrite(buf, FALSE); // check if autocommands removed the window if (!win_valid(wp) || !bufref_valid(&bufref)) { wpnext = firstwin; // start all over... continue; } } // don't close last window if (ONE_WINDOW && (first_tabpage->tp_next == NULL || !had_tab)) use_firstwin = TRUE; else { win_close(wp, !buf_hide(buf) && !bufIsChanged(buf)); // check if autocommands removed the next window if (!win_valid(wpnext)) wpnext = firstwin; // start all over... } } } } // Without the ":tab" modifier only do the current tab page. if (had_tab == 0 || tpnext == NULL) break; // check if autocommands removed the next tab page if (!valid_tabpage(tpnext)) tpnext = first_tabpage; // start all over... goto_tabpage_tp(tpnext, TRUE, TRUE); } // Open a window for files in the argument list that don't have one. // ARGCOUNT may change while doing this, because of autocommands. if (count > opened_len || count <= 0) count = opened_len; // Don't execute Win/Buf Enter/Leave autocommands here. ++autocmd_no_enter; ++autocmd_no_leave; last_curwin = curwin; last_curtab = curtab; win_enter(lastwin, FALSE); // ":tab drop file" should re-use an empty window to avoid "--remote-tab" // leaving an empty tab page when executed locally. if (keep_tabs && BUFEMPTY() && curbuf->b_nwindows == 1 && curbuf->b_ffname == NULL && !curbuf->b_changed) { use_firstwin = TRUE; tab_drop_empty_window = TRUE; } for (i = 0; i < count && !got_int; ++i) { if (alist == &global_alist && i == global_alist.al_ga.ga_len - 1) arg_had_last = TRUE; if (opened[i] > 0) { // Move the already present window to below the current window if (curwin->w_arg_idx != i) { FOR_ALL_WINDOWS(wpnext) { if (wpnext->w_arg_idx == i) { if (keep_tabs) { new_curwin = wpnext; new_curtab = curtab; } else if (wpnext->w_frame->fr_parent != curwin->w_frame->fr_parent) { emsg(_("E249: window layout changed unexpectedly")); i = count; break; } else win_move_after(wpnext, curwin); break; } } } } else if (split_ret == OK) { // trigger events for tab drop if (tab_drop_empty_window && i == count - 1) --autocmd_no_enter; if (!use_firstwin) // split current window { p_ea_save = p_ea; p_ea = TRUE; // use space from all windows split_ret = win_split(0, WSP_ROOM | WSP_BELOW); p_ea = p_ea_save; if (split_ret == FAIL) continue; } else // first window: do autocmd for leaving this buffer --autocmd_no_leave; // edit file "i" curwin->w_arg_idx = i; if (i == 0) { new_curwin = curwin; new_curtab = curtab; } (void)do_ecmd(0, alist_name(&AARGLIST(alist)[i]), NULL, NULL, ECMD_ONE, ((buf_hide(curwin->w_buffer) || bufIsChanged(curwin->w_buffer)) ? ECMD_HIDE : 0) + ECMD_OLDBUF, curwin); if (tab_drop_empty_window && i == count - 1) ++autocmd_no_enter; if (use_firstwin) ++autocmd_no_leave; use_firstwin = FALSE; } ui_breakcheck(); // When ":tab" was used open a new tab for a new window repeatedly. if (had_tab > 0 && tabpage_index(NULL) <= p_tpm) cmdmod.cmod_tab = 9999; } // Remove the "lock" on the argument list. alist_unlink(alist); --autocmd_no_enter; // restore last referenced tabpage's curwin if (last_curtab != new_curtab) { if (valid_tabpage(last_curtab)) goto_tabpage_tp(last_curtab, TRUE, TRUE); if (win_valid(last_curwin)) win_enter(last_curwin, FALSE); } // to window with first arg if (valid_tabpage(new_curtab)) goto_tabpage_tp(new_curtab, TRUE, TRUE); if (win_valid(new_curwin)) win_enter(new_curwin, FALSE); --autocmd_no_leave; vim_free(opened); }
1
CVE-2021-4166
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
4,432
linux
06b6a1cf6e776426766298d055bb3991957d90a7
static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc) { unsigned long flags; if (!*inc) { read_lock_irqsave(&rs->rs_recv_lock, flags); if (!list_empty(&rs->rs_recv_queue)) { *inc = list_entry(rs->rs_recv_queue.next, struct rds_incoming, i_item); rds_inc_addref(*inc); } read_unlock_irqrestore(&rs->rs_recv_lock, flags); } return *inc != NULL; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,517