project
stringclasses
765 values
commit_id
stringlengths
6
81
func
stringlengths
19
482k
vul
int64
0
1
CVE ID
stringlengths
13
16
CWE ID
stringclasses
13 values
CWE Name
stringclasses
13 values
CWE Description
stringclasses
13 values
Potential Mitigation
stringclasses
11 values
__index_level_0__
int64
0
23.9k
FreeRDP
e7bffa64ef5ed70bac94f823e2b95262642f5296
static CACHE_BITMAP_V3_ORDER* update_read_cache_bitmap_v3_order(rdpUpdate* update, wStream* s, UINT16 flags) { BOOL rc; BYTE bitsPerPixelId; BITMAP_DATA_EX* bitmapData; UINT32 new_len; BYTE* new_data; CACHE_BITMAP_V3_ORDER* cache_bitmap_v3; if (!update || !s) return NULL; cache_bitmap_v3 = calloc(1, sizeof(CACHE_BITMAP_V3_ORDER)); if (!cache_bitmap_v3) goto fail; cache_bitmap_v3->cacheId = flags & 0x00000003; cache_bitmap_v3->flags = (flags & 0x0000FF80) >> 7; bitsPerPixelId = (flags & 0x00000078) >> 3; cache_bitmap_v3->bpp = get_cbr2_bpp(bitsPerPixelId, &rc); if (!rc) goto fail; if (Stream_GetRemainingLength(s) < 21) goto fail; Stream_Read_UINT16(s, cache_bitmap_v3->cacheIndex); /* cacheIndex (2 bytes) */ Stream_Read_UINT32(s, cache_bitmap_v3->key1); /* key1 (4 bytes) */ Stream_Read_UINT32(s, cache_bitmap_v3->key2); /* key2 (4 bytes) */ bitmapData = &cache_bitmap_v3->bitmapData; Stream_Read_UINT8(s, bitmapData->bpp); if ((bitmapData->bpp < 1) || (bitmapData->bpp > 32)) { WLog_Print(update->log, WLOG_ERROR, "invalid bpp value %" PRIu32 "", bitmapData->bpp); goto fail; } Stream_Seek_UINT8(s); /* reserved1 (1 byte) */ Stream_Seek_UINT8(s); /* reserved2 (1 byte) */ Stream_Read_UINT8(s, bitmapData->codecID); /* codecID (1 byte) */ Stream_Read_UINT16(s, bitmapData->width); /* width (2 bytes) */ Stream_Read_UINT16(s, bitmapData->height); /* height (2 bytes) */ Stream_Read_UINT32(s, new_len); /* length (4 bytes) */ if ((new_len == 0) || (Stream_GetRemainingLength(s) < new_len)) goto fail; new_data = (BYTE*)realloc(bitmapData->data, new_len); if (!new_data) goto fail; bitmapData->data = new_data; bitmapData->length = new_len; Stream_Read(s, bitmapData->data, bitmapData->length); return cache_bitmap_v3; fail: free_cache_bitmap_v3_order(update->context, cache_bitmap_v3); return NULL; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,309
cryptopp
07dbcc3d9644b18e05c1776db2a57fe04d780965
void Inflator::OutputByte(byte b) { m_window[m_current++] = b; if (m_current == m_window.size()) { ProcessDecompressedData(m_window + m_lastFlush, m_window.size() - m_lastFlush); m_lastFlush = 0; m_current = 0; m_wrappedAround = true; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,382
linux
2a3f7221acddfe1caa9ff09b3a8158c39b2fdeac
card_id_show_attr(struct device *dev, struct device_attribute *attr, char *buf) { struct snd_card *card = container_of(dev, struct snd_card, card_dev); return scnprintf(buf, PAGE_SIZE, "%s\n", card->id); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,384
linux
0d0e57697f162da4aa218b5feafe614fb666db07
static bool is_spillable_regtype(enum bpf_reg_type type) { switch (type) { case PTR_TO_MAP_VALUE: case PTR_TO_MAP_VALUE_OR_NULL: case PTR_TO_MAP_VALUE_ADJ: case PTR_TO_STACK: case PTR_TO_CTX: case PTR_TO_PACKET: case PTR_TO_PACKET_END: case FRAME_PTR: case CONST_PTR_TO_MAP: return true; default: return false; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,790
openvpn
37bc691e7d26ea4eb61a8a434ebd7a9ae76225ab
int_compare_function(const void *key1, const void *key2) { return (unsigned long)key1 == (unsigned long)key2; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,476
tensorflow
002408c3696b173863228223d535f9de72a101a9
void Compute(OpKernelContext* context) override { // Here's the basic idea: // Batch and depth dimension are independent from row and col dimension. And // because FractionalAvgPool currently only support pooling along row and // col, we can basically think of this 4D tensor backpropagation as // operation of a series of 2D planes. // // For each element of a 'slice' (2D plane) of output_backprop, we need to // figure out its contributors when doing FractionalAvgPool operation. This // can be done based on row_pooling_sequence, col_pooling_seq and // overlapping. // Once we figure out the original contributors, we just need to evenly // divide the value of this element among these contributors. // // Internally, we divide the out_backprop tensor and store it in a temporary // tensor of double type. And cast it to the corresponding type. typedef Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> ConstEigenMatrixMap; typedef Eigen::Map<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>> EigenDoubleMatrixMap; // Grab the inputs. const Tensor& orig_input_tensor_shape = context->input(0); OP_REQUIRES(context, orig_input_tensor_shape.dims() == 1 && orig_input_tensor_shape.NumElements() == 4, errors::InvalidArgument("original input tensor shape must be" "1-dimensional and 4 elements")); const Tensor& out_backprop = context->input(1); const Tensor& row_seq_tensor = context->input(2); const Tensor& col_seq_tensor = context->input(3); const int64_t out_batch = out_backprop.dim_size(0); const int64_t out_rows = out_backprop.dim_size(1); const int64_t out_cols = out_backprop.dim_size(2); const int64_t out_depth = out_backprop.dim_size(3); OP_REQUIRES(context, row_seq_tensor.NumElements() > out_rows, errors::InvalidArgument("Given out_backprop shape ", out_backprop.shape().DebugString(), ", row_seq_tensor must have at least ", out_rows + 1, " elements, but got ", row_seq_tensor.NumElements())); OP_REQUIRES(context, col_seq_tensor.NumElements() > out_cols, errors::InvalidArgument("Given out_backprop shape ", out_backprop.shape().DebugString(), ", col_seq_tensor must have at least ", out_cols + 1, " elements, but got ", col_seq_tensor.NumElements())); auto row_seq_tensor_flat = row_seq_tensor.flat<int64_t>(); auto col_seq_tensor_flat = col_seq_tensor.flat<int64_t>(); auto orig_input_tensor_shape_flat = orig_input_tensor_shape.flat<int64_t>(); const int64_t in_batch = orig_input_tensor_shape_flat(0); const int64_t in_rows = orig_input_tensor_shape_flat(1); const int64_t in_cols = orig_input_tensor_shape_flat(2); const int64_t in_depth = orig_input_tensor_shape_flat(3); OP_REQUIRES( context, in_batch != 0, errors::InvalidArgument("Batch dimension of input must not be 0")); OP_REQUIRES( context, in_rows != 0, errors::InvalidArgument("Rows dimension of input must not be 0")); OP_REQUIRES( context, in_cols != 0, errors::InvalidArgument("Columns dimension of input must not be 0")); OP_REQUIRES( context, in_depth != 0, errors::InvalidArgument("Depth dimension of input must not be 0")); constexpr int tensor_in_and_out_dims = 4; // Transform orig_input_tensor_shape into TensorShape TensorShape in_shape; for (auto i = 0; i < tensor_in_and_out_dims; ++i) { in_shape.AddDim(orig_input_tensor_shape_flat(i)); } // Create intermediate in_backprop. Tensor in_backprop_tensor_temp; OP_REQUIRES_OK(context, context->forward_input_or_allocate_temp( {0}, DataTypeToEnum<double>::v(), in_shape, &in_backprop_tensor_temp)); in_backprop_tensor_temp.flat<double>().setZero(); // Transform 4D tensor to 2D matrix. EigenDoubleMatrixMap in_backprop_tensor_temp_mat( in_backprop_tensor_temp.flat<double>().data(), in_depth, in_cols * in_rows * in_batch); ConstEigenMatrixMap out_backprop_mat(out_backprop.flat<T>().data(), out_depth, out_cols * out_rows * out_batch); // Loop through each element of out_backprop and evenly distribute the // element to the corresponding pooling cell. const int64_t in_max_row_index = in_rows - 1; const int64_t in_max_col_index = in_cols - 1; for (int64_t b = 0; b < out_batch; ++b) { for (int64_t r = 0; r < out_rows; ++r) { const int64_t in_row_start = row_seq_tensor_flat(r); int64_t in_row_end = overlapping_ ? row_seq_tensor_flat(r + 1) : row_seq_tensor_flat(r + 1) - 1; in_row_end = std::min(in_row_end, in_max_row_index); OP_REQUIRES(context, in_row_start >= 0 && in_row_end >= 0, errors::InvalidArgument( "Row sequence tensor values must not be negative, got ", row_seq_tensor_flat)); for (int64_t c = 0; c < out_cols; ++c) { const int64_t in_col_start = col_seq_tensor_flat(c); int64_t in_col_end = overlapping_ ? col_seq_tensor_flat(c + 1) : col_seq_tensor_flat(c + 1) - 1; in_col_end = std::min(in_col_end, in_max_col_index); OP_REQUIRES( context, in_col_start >= 0 && in_col_end >= 0, errors::InvalidArgument( "Column sequence tensor values must not be negative, got ", col_seq_tensor_flat)); const int64_t num_elements_in_pooling_cell = (in_row_end - in_row_start + 1) * (in_col_end - in_col_start + 1); const int64_t out_index = (b * out_rows + r) * out_cols + c; // Now we can evenly distribute out_backprop(b, h, w, *) to // in_backprop(b, hs:he, ws:we, *). for (int64_t in_r = in_row_start; in_r <= in_row_end; ++in_r) { for (int64_t in_c = in_col_start; in_c <= in_col_end; ++in_c) { const int64_t in_index = (b * in_rows + in_r) * in_cols + in_c; // Walk through each channel (depth). for (int64_t d = 0; d < out_depth; ++d) { const double out_backprop_element = static_cast<double>( out_backprop_mat.coeffRef(d, out_index)); double& in_backprop_ref = in_backprop_tensor_temp_mat.coeffRef(d, in_index); in_backprop_ref += out_backprop_element / num_elements_in_pooling_cell; } } } } } } // Depending on the type, cast double to type T. Tensor* in_backprop_tensor = nullptr; OP_REQUIRES_OK(context, context->forward_input_or_allocate_output( {0}, 0, in_shape, &in_backprop_tensor)); auto in_backprop_tensor_flat = in_backprop_tensor->flat<T>(); auto in_backprop_tensor_temp_flat = in_backprop_tensor_temp.flat<double>(); for (int64_t i = 0; i < in_backprop_tensor_flat.size(); ++i) { in_backprop_tensor_flat(i) = static_cast<T>(in_backprop_tensor_temp_flat(i)); } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,104
vim
57df9e8a9f9ae1aafdde9b86b10ad907627a87dc
free_operatorfunc_option(void) { # ifdef FEAT_EVAL free_callback(&opfunc_cb); # endif }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,845
exim
e2f5dc151e2e79058e93924e6d35510557f0535d
find_option(uschar *name, optionlist *ol, int last) { int first = 0; while (last > first) { int middle = (first + last)/2; int c = Ustrcmp(name, ol[middle].name); if (c == 0) return ol + middle; else if (c > 0) first = middle + 1; else last = middle; } return NULL; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,532
linux
2b472611a32a72f4a118c069c2d62a1a3f087afd
static ssize_t sleep_millisecs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,546
linux
362bca57f5d78220f8b5907b875961af9436e229
static void snd_pcm_substream_proc_status_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_pcm_substream *substream = entry->private_data; struct snd_pcm_runtime *runtime; struct snd_pcm_status status; int err; mutex_lock(&substream->pcm->open_mutex); runtime = substream->runtime; if (!runtime) { snd_iprintf(buffer, "closed\n"); goto unlock; } memset(&status, 0, sizeof(status)); err = snd_pcm_status(substream, &status); if (err < 0) { snd_iprintf(buffer, "error %d\n", err); goto unlock; } snd_iprintf(buffer, "state: %s\n", snd_pcm_state_name(status.state)); snd_iprintf(buffer, "owner_pid : %d\n", pid_vnr(substream->pid)); snd_iprintf(buffer, "trigger_time: %ld.%09ld\n", status.trigger_tstamp.tv_sec, status.trigger_tstamp.tv_nsec); snd_iprintf(buffer, "tstamp : %ld.%09ld\n", status.tstamp.tv_sec, status.tstamp.tv_nsec); snd_iprintf(buffer, "delay : %ld\n", status.delay); snd_iprintf(buffer, "avail : %ld\n", status.avail); snd_iprintf(buffer, "avail_max : %ld\n", status.avail_max); snd_iprintf(buffer, "-----\n"); snd_iprintf(buffer, "hw_ptr : %ld\n", runtime->status->hw_ptr); snd_iprintf(buffer, "appl_ptr : %ld\n", runtime->control->appl_ptr); unlock: mutex_unlock(&substream->pcm->open_mutex); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
21,098
krb5
f0c094a1b745d91ef2f9a4eae2149aac026a5789
krb5_anonymous_realm() { return &anon_realm_data; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,140
Chrome
04aaacb936a08d70862d6d9d7e8354721ae46be8
void AppCache::RemoveEntry(const GURL& url) { auto found = entries_.find(url); DCHECK(found != entries_.end()); cache_size_ -= found->second.response_size(); entries_.erase(found); }
1
CVE-2019-5837
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
7,352
sudo
fa8ffeb17523494f0e8bb49a25e53635f4509078
tgetpass_display_error(enum tgetpass_errval errval) { debug_decl(tgetpass_display_error, SUDO_DEBUG_CONV); switch (errval) { case TGP_ERRVAL_NOERROR: break; case TGP_ERRVAL_TIMEOUT: sudo_warnx(U_("timed out reading password")); break; case TGP_ERRVAL_NOPASSWORD: sudo_warnx(U_("no password was provided")); break; case TGP_ERRVAL_READERROR: sudo_warn(U_("unable to read password")); break; } debug_return; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,249
vim
05b27615481e72e3b338bb12990fb3e0c2ecc2a9
frame_setwidth(frame_T *curfrp, int width) { int room; // total number of lines available int take; // number of lines taken from other windows int run; frame_T *frp; int w; int room_reserved; // If the width already is the desired value, nothing to do. if (curfrp->fr_width == width) return; if (curfrp->fr_parent == NULL) // topframe: can't change width return; if (curfrp->fr_parent->fr_layout == FR_COL) { // Column of frames: Also need to resize frames above and below of // this one. First check for the minimal width of these. w = frame_minwidth(curfrp->fr_parent, NULL); if (width < w) width = w; frame_setwidth(curfrp->fr_parent, width); } else { /* * Row of frames: try to change only frames in this row. * * Do this twice: * 1: compute room available, if it's not enough try resizing the * containing frame. * 2: compute the room available and adjust the width to it. */ for (run = 1; run <= 2; ++run) { room = 0; room_reserved = 0; FOR_ALL_FRAMES(frp, curfrp->fr_parent->fr_child) { if (frp != curfrp && frp->fr_win != NULL && frp->fr_win->w_p_wfw) room_reserved += frp->fr_width; room += frp->fr_width; if (frp != curfrp) room -= frame_minwidth(frp, NULL); } if (width <= room) break; if (run == 2 || curfrp->fr_height >= ROWS_AVAIL) { if (width > room) width = room; break; } frame_setwidth(curfrp->fr_parent, width + frame_minwidth(curfrp->fr_parent, NOWIN) - (int)p_wmw - 1); } /* * Compute the number of lines we will take from others frames (can be * negative!). */ take = width - curfrp->fr_width; // If there is not enough room, also reduce the width of a window // with 'winfixwidth' set. if (width > room - room_reserved) room_reserved = room - width; // If there is only a 'winfixwidth' window and making the // window smaller, need to make the other window narrower. if (take < 0 && room - curfrp->fr_width < room_reserved) room_reserved = 0; /* * set the current frame to the new width */ frame_new_width(curfrp, width, FALSE, FALSE); /* * First take lines from the frames right of the current frame. If * that is not enough, takes lines from frames left of the current * frame. */ for (run = 0; run < 2; ++run) { if (run == 0) frp = curfrp->fr_next; // 1st run: start with next window else frp = curfrp->fr_prev; // 2nd run: start with prev window while (frp != NULL && take != 0) { w = frame_minwidth(frp, NULL); if (room_reserved > 0 && frp->fr_win != NULL && frp->fr_win->w_p_wfw) { if (room_reserved >= frp->fr_width) room_reserved -= frp->fr_width; else { if (frp->fr_width - room_reserved > take) room_reserved = frp->fr_width - take; take -= frp->fr_width - room_reserved; frame_new_width(frp, room_reserved, FALSE, FALSE); room_reserved = 0; } } else { if (frp->fr_width - take < w) { take -= frp->fr_width - w; frame_new_width(frp, w, FALSE, FALSE); } else { frame_new_width(frp, frp->fr_width - take, FALSE, FALSE); take = 0; } } if (run == 0) frp = frp->fr_next; else frp = frp->fr_prev; } } } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,656
libxml2
f1063fdbe7fa66332bbb76874101c2a7b51b519f
xmlParseStartTag2(xmlParserCtxtPtr ctxt, const xmlChar **pref, const xmlChar **URI, int *tlen) { const xmlChar *localname; const xmlChar *prefix; const xmlChar *attname; const xmlChar *aprefix; const xmlChar *nsname; xmlChar *attvalue; const xmlChar **atts = ctxt->atts; int maxatts = ctxt->maxatts; int nratts, nbatts, nbdef; int i, j, nbNs, attval, oldline, oldcol; const xmlChar *base; unsigned long cur; int nsNr = ctxt->nsNr; if (RAW != '<') return(NULL); NEXT1; /* * NOTE: it is crucial with the SAX2 API to never call SHRINK beyond that * point since the attribute values may be stored as pointers to * the buffer and calling SHRINK would destroy them ! * The Shrinking is only possible once the full set of attribute * callbacks have been done. */ reparse: SHRINK; base = ctxt->input->base; cur = ctxt->input->cur - ctxt->input->base; oldline = ctxt->input->line; oldcol = ctxt->input->col; nbatts = 0; nratts = 0; nbdef = 0; nbNs = 0; attval = 0; /* Forget any namespaces added during an earlier parse of this element. */ ctxt->nsNr = nsNr; localname = xmlParseQName(ctxt, &prefix); if (localname == NULL) { xmlFatalErrMsg(ctxt, XML_ERR_NAME_REQUIRED, "StartTag: invalid element name\n"); return(NULL); } *tlen = ctxt->input->cur - ctxt->input->base - cur; /* * Now parse the attributes, it ends up with the ending * * (S Attribute)* S? */ SKIP_BLANKS; GROW; if (ctxt->input->base != base) goto base_changed; while (((RAW != '>') && ((RAW != '/') || (NXT(1) != '>')) && (IS_BYTE_CHAR(RAW))) && (ctxt->instate != XML_PARSER_EOF)) { const xmlChar *q = CUR_PTR; unsigned int cons = ctxt->input->consumed; int len = -1, alloc = 0; attname = xmlParseAttribute2(ctxt, prefix, localname, &aprefix, &attvalue, &len, &alloc); if (ctxt->input->base != base) { if ((attvalue != NULL) && (alloc != 0)) xmlFree(attvalue); attvalue = NULL; goto base_changed; } if ((attname != NULL) && (attvalue != NULL)) { if (len < 0) len = xmlStrlen(attvalue); if ((attname == ctxt->str_xmlns) && (aprefix == NULL)) { const xmlChar *URL = xmlDictLookup(ctxt->dict, attvalue, len); xmlURIPtr uri; if (URL == NULL) { xmlErrMemory(ctxt, "dictionary allocation failure"); if ((attvalue != NULL) && (alloc != 0)) xmlFree(attvalue); return(NULL); } if (*URL != 0) { uri = xmlParseURI((const char *) URL); if (uri == NULL) { xmlNsErr(ctxt, XML_WAR_NS_URI, "xmlns: '%s' is not a valid URI\n", URL, NULL, NULL); } else { if (uri->scheme == NULL) { xmlNsWarn(ctxt, XML_WAR_NS_URI_RELATIVE, "xmlns: URI %s is not absolute\n", URL, NULL, NULL); } xmlFreeURI(uri); } if (URL == ctxt->str_xml_ns) { if (attname != ctxt->str_xml) { xmlNsErr(ctxt, XML_NS_ERR_XML_NAMESPACE, "xml namespace URI cannot be the default namespace\n", NULL, NULL, NULL); } goto skip_default_ns; } if ((len == 29) && (xmlStrEqual(URL, BAD_CAST "http://www.w3.org/2000/xmlns/"))) { xmlNsErr(ctxt, XML_NS_ERR_XML_NAMESPACE, "reuse of the xmlns namespace name is forbidden\n", NULL, NULL, NULL); goto skip_default_ns; } } /* * check that it's not a defined namespace */ for (j = 1;j <= nbNs;j++) if (ctxt->nsTab[ctxt->nsNr - 2 * j] == NULL) break; if (j <= nbNs) xmlErrAttributeDup(ctxt, NULL, attname); else if (nsPush(ctxt, NULL, URL) > 0) nbNs++; skip_default_ns: if (alloc != 0) xmlFree(attvalue); if ((RAW == '>') || (((RAW == '/') && (NXT(1) == '>')))) break; if (!IS_BLANK_CH(RAW)) { xmlFatalErrMsg(ctxt, XML_ERR_SPACE_REQUIRED, "attributes construct error\n"); break; } SKIP_BLANKS; continue; } if (aprefix == ctxt->str_xmlns) { const xmlChar *URL = xmlDictLookup(ctxt->dict, attvalue, len); xmlURIPtr uri; if (attname == ctxt->str_xml) { if (URL != ctxt->str_xml_ns) { xmlNsErr(ctxt, XML_NS_ERR_XML_NAMESPACE, "xml namespace prefix mapped to wrong URI\n", NULL, NULL, NULL); } /* * Do not keep a namespace definition node */ goto skip_ns; } if (URL == ctxt->str_xml_ns) { if (attname != ctxt->str_xml) { xmlNsErr(ctxt, XML_NS_ERR_XML_NAMESPACE, "xml namespace URI mapped to wrong prefix\n", NULL, NULL, NULL); } goto skip_ns; } if (attname == ctxt->str_xmlns) { xmlNsErr(ctxt, XML_NS_ERR_XML_NAMESPACE, "redefinition of the xmlns prefix is forbidden\n", NULL, NULL, NULL); goto skip_ns; } if ((len == 29) && (xmlStrEqual(URL, BAD_CAST "http://www.w3.org/2000/xmlns/"))) { xmlNsErr(ctxt, XML_NS_ERR_XML_NAMESPACE, "reuse of the xmlns namespace name is forbidden\n", NULL, NULL, NULL); goto skip_ns; } if ((URL == NULL) || (URL[0] == 0)) { xmlNsErr(ctxt, XML_NS_ERR_XML_NAMESPACE, "xmlns:%s: Empty XML namespace is not allowed\n", attname, NULL, NULL); goto skip_ns; } else { uri = xmlParseURI((const char *) URL); if (uri == NULL) { xmlNsErr(ctxt, XML_WAR_NS_URI, "xmlns:%s: '%s' is not a valid URI\n", attname, URL, NULL); } else { if ((ctxt->pedantic) && (uri->scheme == NULL)) { xmlNsWarn(ctxt, XML_WAR_NS_URI_RELATIVE, "xmlns:%s: URI %s is not absolute\n", attname, URL, NULL); } xmlFreeURI(uri); } } /* * check that it's not a defined namespace */ for (j = 1;j <= nbNs;j++) if (ctxt->nsTab[ctxt->nsNr - 2 * j] == attname) break; if (j <= nbNs) xmlErrAttributeDup(ctxt, aprefix, attname); else if (nsPush(ctxt, attname, URL) > 0) nbNs++; skip_ns: if (alloc != 0) xmlFree(attvalue); if ((RAW == '>') || (((RAW == '/') && (NXT(1) == '>')))) break; if (!IS_BLANK_CH(RAW)) { xmlFatalErrMsg(ctxt, XML_ERR_SPACE_REQUIRED, "attributes construct error\n"); break; } SKIP_BLANKS; if (ctxt->input->base != base) goto base_changed; continue; } /* * Add the pair to atts */ if ((atts == NULL) || (nbatts + 5 > maxatts)) { if (xmlCtxtGrowAttrs(ctxt, nbatts + 5) < 0) { if (attvalue[len] == 0) xmlFree(attvalue); goto failed; } maxatts = ctxt->maxatts; atts = ctxt->atts; } ctxt->attallocs[nratts++] = alloc; atts[nbatts++] = attname; atts[nbatts++] = aprefix; atts[nbatts++] = NULL; /* the URI will be fetched later */ atts[nbatts++] = attvalue; attvalue += len; atts[nbatts++] = attvalue; /* * tag if some deallocation is needed */ if (alloc != 0) attval = 1; } else { if ((attvalue != NULL) && (attvalue[len] == 0)) xmlFree(attvalue); } failed: GROW if (ctxt->instate == XML_PARSER_EOF) break; if (ctxt->input->base != base) goto base_changed; if ((RAW == '>') || (((RAW == '/') && (NXT(1) == '>')))) break; if (!IS_BLANK_CH(RAW)) { xmlFatalErrMsg(ctxt, XML_ERR_SPACE_REQUIRED, "attributes construct error\n"); break; } SKIP_BLANKS; if ((cons == ctxt->input->consumed) && (q == CUR_PTR) && (attname == NULL) && (attvalue == NULL)) { xmlFatalErr(ctxt, XML_ERR_INTERNAL_ERROR, "xmlParseStartTag: problem parsing attributes\n"); break; } GROW; if (ctxt->input->base != base) goto base_changed; } /* * The attributes defaulting */ if (ctxt->attsDefault != NULL) { xmlDefAttrsPtr defaults; defaults = xmlHashLookup2(ctxt->attsDefault, localname, prefix); if (defaults != NULL) { for (i = 0;i < defaults->nbAttrs;i++) { attname = defaults->values[5 * i]; aprefix = defaults->values[5 * i + 1]; /* * special work for namespaces defaulted defs */ if ((attname == ctxt->str_xmlns) && (aprefix == NULL)) { /* * check that it's not a defined namespace */ for (j = 1;j <= nbNs;j++) if (ctxt->nsTab[ctxt->nsNr - 2 * j] == NULL) break; if (j <= nbNs) continue; nsname = xmlGetNamespace(ctxt, NULL); if (nsname != defaults->values[5 * i + 2]) { if (nsPush(ctxt, NULL, defaults->values[5 * i + 2]) > 0) nbNs++; } } else if (aprefix == ctxt->str_xmlns) { /* * check that it's not a defined namespace */ for (j = 1;j <= nbNs;j++) if (ctxt->nsTab[ctxt->nsNr - 2 * j] == attname) break; if (j <= nbNs) continue; nsname = xmlGetNamespace(ctxt, attname); if (nsname != defaults->values[2]) { if (nsPush(ctxt, attname, defaults->values[5 * i + 2]) > 0) nbNs++; } } else { /* * check that it's not a defined attribute */ for (j = 0;j < nbatts;j+=5) { if ((attname == atts[j]) && (aprefix == atts[j+1])) break; } if (j < nbatts) continue; if ((atts == NULL) || (nbatts + 5 > maxatts)) { if (xmlCtxtGrowAttrs(ctxt, nbatts + 5) < 0) { return(NULL); } maxatts = ctxt->maxatts; atts = ctxt->atts; } atts[nbatts++] = attname; atts[nbatts++] = aprefix; if (aprefix == NULL) atts[nbatts++] = NULL; else atts[nbatts++] = xmlGetNamespace(ctxt, aprefix); atts[nbatts++] = defaults->values[5 * i + 2]; atts[nbatts++] = defaults->values[5 * i + 3]; if ((ctxt->standalone == 1) && (defaults->values[5 * i + 4] != NULL)) { xmlValidityError(ctxt, XML_DTD_STANDALONE_DEFAULTED, "standalone: attribute %s on %s defaulted from external subset\n", attname, localname); } nbdef++; } } } } /* * The attributes checkings */ for (i = 0; i < nbatts;i += 5) { /* * The default namespace does not apply to attribute names. */ if (atts[i + 1] != NULL) { nsname = xmlGetNamespace(ctxt, atts[i + 1]); if (nsname == NULL) { xmlNsErr(ctxt, XML_NS_ERR_UNDEFINED_NAMESPACE, "Namespace prefix %s for %s on %s is not defined\n", atts[i + 1], atts[i], localname); } atts[i + 2] = nsname; } else nsname = NULL; /* * [ WFC: Unique Att Spec ] * No attribute name may appear more than once in the same * start-tag or empty-element tag. * As extended by the Namespace in XML REC. */ for (j = 0; j < i;j += 5) { if (atts[i] == atts[j]) { if (atts[i+1] == atts[j+1]) { xmlErrAttributeDup(ctxt, atts[i+1], atts[i]); break; } if ((nsname != NULL) && (atts[j + 2] == nsname)) { xmlNsErr(ctxt, XML_NS_ERR_ATTRIBUTE_REDEFINED, "Namespaced Attribute %s in '%s' redefined\n", atts[i], nsname, NULL); break; } } } } nsname = xmlGetNamespace(ctxt, prefix); if ((prefix != NULL) && (nsname == NULL)) { xmlNsErr(ctxt, XML_NS_ERR_UNDEFINED_NAMESPACE, "Namespace prefix %s on %s is not defined\n", prefix, localname, NULL); } *pref = prefix; *URI = nsname; /* * SAX: Start of Element ! */ if ((ctxt->sax != NULL) && (ctxt->sax->startElementNs != NULL) && (!ctxt->disableSAX)) { if (nbNs > 0) ctxt->sax->startElementNs(ctxt->userData, localname, prefix, nsname, nbNs, &ctxt->nsTab[ctxt->nsNr - 2 * nbNs], nbatts / 5, nbdef, atts); else ctxt->sax->startElementNs(ctxt->userData, localname, prefix, nsname, 0, NULL, nbatts / 5, nbdef, atts); } /* * Free up attribute allocated strings if needed */ if (attval != 0) { for (i = 3,j = 0; j < nratts;i += 5,j++) if ((ctxt->attallocs[j] != 0) && (atts[i] != NULL)) xmlFree((xmlChar *) atts[i]); } return(localname); base_changed: /* * the attribute strings are valid iif the base didn't changed */ if (attval != 0) { for (i = 3,j = 0; j < nratts;i += 5,j++) if ((ctxt->attallocs[j] != 0) && (atts[i] != NULL)) xmlFree((xmlChar *) atts[i]); } ctxt->input->cur = ctxt->input->base + cur; ctxt->input->line = oldline; ctxt->input->col = oldcol; if (ctxt->wellFormed == 1) { goto reparse; } return(NULL); }
1
CVE-2015-7500
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
4,506
linux
a117dacde0288f3ec60b6e5bcedae8fa37ee0dfc
static long __tun_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg, int ifreq_len) { struct tun_file *tfile = file->private_data; struct tun_struct *tun; void __user* argp = (void __user*)arg; struct sock_fprog fprog; struct ifreq ifr; int sndbuf; int vnet_hdr_sz; int ret; if (cmd == TUNSETIFF || _IOC_TYPE(cmd) == 0x89) if (copy_from_user(&ifr, argp, ifreq_len)) return -EFAULT; if (cmd == TUNGETFEATURES) { /* Currently this just means: "what IFF flags are valid?". * This is needed because we never checked for invalid flags on * TUNSETIFF. */ return put_user(IFF_TUN | IFF_TAP | IFF_NO_PI | IFF_ONE_QUEUE | IFF_VNET_HDR, (unsigned int __user*)argp); } rtnl_lock(); tun = __tun_get(tfile); if (cmd == TUNSETIFF && !tun) { ifr.ifr_name[IFNAMSIZ-1] = '\0'; ret = tun_set_iff(tfile->net, file, &ifr); if (ret) goto unlock; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; goto unlock; } ret = -EBADFD; if (!tun) goto unlock; tun_debug(KERN_INFO, tun, "tun_chr_ioctl cmd %d\n", cmd); ret = 0; switch (cmd) { case TUNGETIFF: ret = tun_get_iff(current->nsproxy->net_ns, tun, &ifr); if (ret) break; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; break; case TUNSETNOCSUM: /* Disable/Enable checksum */ /* [unimplemented] */ tun_debug(KERN_INFO, tun, "ignored: set checksum %s\n", arg ? "disabled" : "enabled"); break; case TUNSETPERSIST: /* Disable/Enable persist mode */ if (arg) tun->flags |= TUN_PERSIST; else tun->flags &= ~TUN_PERSIST; tun_debug(KERN_INFO, tun, "persist %s\n", arg ? "enabled" : "disabled"); break; case TUNSETOWNER: /* Set owner of the device */ tun->owner = (uid_t) arg; tun_debug(KERN_INFO, tun, "owner set to %d\n", tun->owner); break; case TUNSETGROUP: /* Set group of the device */ tun->group= (gid_t) arg; tun_debug(KERN_INFO, tun, "group set to %d\n", tun->group); break; case TUNSETLINK: /* Only allow setting the type when the interface is down */ if (tun->dev->flags & IFF_UP) { tun_debug(KERN_INFO, tun, "Linktype set failed because interface is up\n"); ret = -EBUSY; } else { tun->dev->type = (int) arg; tun_debug(KERN_INFO, tun, "linktype set to %d\n", tun->dev->type); ret = 0; } break; #ifdef TUN_DEBUG case TUNSETDEBUG: tun->debug = arg; break; #endif case TUNSETOFFLOAD: ret = set_offload(tun, arg); break; case TUNSETTXFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != TUN_TAP_DEV) break; ret = update_filter(&tun->txflt, (void __user *)arg); break; case SIOCGIFHWADDR: /* Get hw address */ memcpy(ifr.ifr_hwaddr.sa_data, tun->dev->dev_addr, ETH_ALEN); ifr.ifr_hwaddr.sa_family = tun->dev->type; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; break; case SIOCSIFHWADDR: /* Set hw address */ tun_debug(KERN_DEBUG, tun, "set hw address: %pM\n", ifr.ifr_hwaddr.sa_data); ret = dev_set_mac_address(tun->dev, &ifr.ifr_hwaddr); break; case TUNGETSNDBUF: sndbuf = tun->socket.sk->sk_sndbuf; if (copy_to_user(argp, &sndbuf, sizeof(sndbuf))) ret = -EFAULT; break; case TUNSETSNDBUF: if (copy_from_user(&sndbuf, argp, sizeof(sndbuf))) { ret = -EFAULT; break; } tun->socket.sk->sk_sndbuf = sndbuf; break; case TUNGETVNETHDRSZ: vnet_hdr_sz = tun->vnet_hdr_sz; if (copy_to_user(argp, &vnet_hdr_sz, sizeof(vnet_hdr_sz))) ret = -EFAULT; break; case TUNSETVNETHDRSZ: if (copy_from_user(&vnet_hdr_sz, argp, sizeof(vnet_hdr_sz))) { ret = -EFAULT; break; } if (vnet_hdr_sz < (int)sizeof(struct virtio_net_hdr)) { ret = -EINVAL; break; } tun->vnet_hdr_sz = vnet_hdr_sz; break; case TUNATTACHFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != TUN_TAP_DEV) break; ret = -EFAULT; if (copy_from_user(&fprog, argp, sizeof(fprog))) break; ret = sk_attach_filter(&fprog, tun->socket.sk); break; case TUNDETACHFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != TUN_TAP_DEV) break; ret = sk_detach_filter(tun->socket.sk); break; default: ret = -EINVAL; break; } unlock: rtnl_unlock(); if (tun) tun_put(tun); return ret; }
1
CVE-2012-6547
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
5,705
linux
fa00c437eef8dc2e7b25f8cd868cfa405fcc2bb3
static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg) { struct fib* srbfib; int status; struct aac_srb *srbcmd = NULL; struct user_aac_srb *user_srbcmd = NULL; struct user_aac_srb __user *user_srb = arg; struct aac_srb_reply __user *user_reply; struct aac_srb_reply* reply; u32 fibsize = 0; u32 flags = 0; s32 rcode = 0; u32 data_dir; void __user *sg_user[32]; void *sg_list[32]; u32 sg_indx = 0; u32 byte_count = 0; u32 actual_fibsize64, actual_fibsize = 0; int i; if (dev->in_reset) { dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n")); return -EBUSY; } if (!capable(CAP_SYS_ADMIN)){ dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n")); return -EPERM; } /* * Allocate and initialize a Fib then setup a SRB command */ if (!(srbfib = aac_fib_alloc(dev))) { return -ENOMEM; } aac_fib_init(srbfib); /* raw_srb FIB is not FastResponseCapable */ srbfib->hw_fib_va->header.XferState &= ~cpu_to_le32(FastResponseCapable); srbcmd = (struct aac_srb*) fib_data(srbfib); memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */ if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){ dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n")); rcode = -EFAULT; goto cleanup; } if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) || (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) { rcode = -EINVAL; goto cleanup; } user_srbcmd = kmalloc(fibsize, GFP_KERNEL); if (!user_srbcmd) { dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n")); rcode = -ENOMEM; goto cleanup; } if(copy_from_user(user_srbcmd, user_srb,fibsize)){ dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n")); rcode = -EFAULT; goto cleanup; } user_reply = arg+fibsize; flags = user_srbcmd->flags; /* from user in cpu order */ // Fix up srb for endian and force some values srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this srbcmd->channel = cpu_to_le32(user_srbcmd->channel); srbcmd->id = cpu_to_le32(user_srbcmd->id); srbcmd->lun = cpu_to_le32(user_srbcmd->lun); srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout); srbcmd->flags = cpu_to_le32(flags); srbcmd->retry_limit = 0; // Obsolete parameter srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size); memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb)); switch (flags & (SRB_DataIn | SRB_DataOut)) { case SRB_DataOut: data_dir = DMA_TO_DEVICE; break; case (SRB_DataIn | SRB_DataOut): data_dir = DMA_BIDIRECTIONAL; break; case SRB_DataIn: data_dir = DMA_FROM_DEVICE; break; default: data_dir = DMA_NONE; } if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) { dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n", le32_to_cpu(srbcmd->sg.count))); rcode = -EINVAL; goto cleanup; } actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + ((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry)); actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) * (sizeof(struct sgentry64) - sizeof(struct sgentry)); /* User made a mistake - should not continue */ if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) { dprintk((KERN_DEBUG"aacraid: Bad Size specified in " "Raw SRB command calculated fibsize=%lu;%lu " "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu " "issued fibsize=%d\n", actual_fibsize, actual_fibsize64, user_srbcmd->sg.count, sizeof(struct aac_srb), sizeof(struct sgentry), sizeof(struct sgentry64), fibsize)); rcode = -EINVAL; goto cleanup; } if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) { dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n")); rcode = -EINVAL; goto cleanup; } byte_count = 0; if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) { struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg; struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg; /* * This should also catch if user used the 32 bit sgmap */ if (actual_fibsize64 == fibsize) { actual_fibsize = actual_fibsize64; for (i = 0; i < upsg->count; i++) { u64 addr; void* p; if (upsg->sg[i].count > ((dev->adapter_info.options & AAC_OPT_NEW_COMM) ? (dev->scsi_host_ptr->max_sectors << 9) : 65536)) { rcode = -EINVAL; goto cleanup; } /* Does this really need to be GFP_DMA? */ p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA); if(!p) { dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", upsg->sg[i].count,i,upsg->count)); rcode = -ENOMEM; goto cleanup; } addr = (u64)upsg->sg[i].addr[0]; addr += ((u64)upsg->sg[i].addr[1]) << 32; sg_user[i] = (void __user *)(uintptr_t)addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){ dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir); psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); psg->sg[i].addr[1] = cpu_to_le32(addr>>32); byte_count += upsg->sg[i].count; psg->sg[i].count = cpu_to_le32(upsg->sg[i].count); } } else { struct user_sgmap* usg; usg = kmemdup(upsg, actual_fibsize - sizeof(struct aac_srb) + sizeof(struct sgmap), GFP_KERNEL); if (!usg) { dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n")); rcode = -ENOMEM; goto cleanup; } actual_fibsize = actual_fibsize64; for (i = 0; i < usg->count; i++) { u64 addr; void* p; if (usg->sg[i].count > ((dev->adapter_info.options & AAC_OPT_NEW_COMM) ? (dev->scsi_host_ptr->max_sectors << 9) : 65536)) { kfree(usg); rcode = -EINVAL; goto cleanup; } /* Does this really need to be GFP_DMA? */ p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA); if(!p) { dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", usg->sg[i].count,i,usg->count)); kfree(usg); rcode = -ENOMEM; goto cleanup; } sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){ kfree (usg); dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir); psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); psg->sg[i].addr[1] = cpu_to_le32(addr>>32); byte_count += usg->sg[i].count; psg->sg[i].count = cpu_to_le32(usg->sg[i].count); } kfree (usg); } srbcmd->count = cpu_to_le32(byte_count); if (user_srbcmd->sg.count) psg->count = cpu_to_le32(sg_indx+1); else psg->count = 0; status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL); } else { struct user_sgmap* upsg = &user_srbcmd->sg; struct sgmap* psg = &srbcmd->sg; if (actual_fibsize64 == fibsize) { struct user_sgmap64* usg = (struct user_sgmap64 *)upsg; for (i = 0; i < upsg->count; i++) { uintptr_t addr; void* p; if (usg->sg[i].count > ((dev->adapter_info.options & AAC_OPT_NEW_COMM) ? (dev->scsi_host_ptr->max_sectors << 9) : 65536)) { rcode = -EINVAL; goto cleanup; } /* Does this really need to be GFP_DMA? */ p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA); if(!p) { dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", usg->sg[i].count,i,usg->count)); rcode = -ENOMEM; goto cleanup; } addr = (u64)usg->sg[i].addr[0]; addr += ((u64)usg->sg[i].addr[1]) << 32; sg_user[i] = (void __user *)addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if(copy_from_user(p,sg_user[i],usg->sg[i].count)){ dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir); psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff); byte_count += usg->sg[i].count; psg->sg[i].count = cpu_to_le32(usg->sg[i].count); } } else { for (i = 0; i < upsg->count; i++) { dma_addr_t addr; void* p; if (upsg->sg[i].count > ((dev->adapter_info.options & AAC_OPT_NEW_COMM) ? (dev->scsi_host_ptr->max_sectors << 9) : 65536)) { rcode = -EINVAL; goto cleanup; } p = kmalloc(upsg->sg[i].count, GFP_KERNEL); if (!p) { dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", upsg->sg[i].count, i, upsg->count)); rcode = -ENOMEM; goto cleanup; } sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr; sg_list[i] = p; // save so we can clean up later sg_indx = i; if (flags & SRB_DataOut) { if(copy_from_user(p, sg_user[i], upsg->sg[i].count)) { dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); rcode = -EFAULT; goto cleanup; } } addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir); psg->sg[i].addr = cpu_to_le32(addr); byte_count += upsg->sg[i].count; psg->sg[i].count = cpu_to_le32(upsg->sg[i].count); } } srbcmd->count = cpu_to_le32(byte_count); if (user_srbcmd->sg.count) psg->count = cpu_to_le32(sg_indx+1); else psg->count = 0; status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL); } if (status == -ERESTARTSYS) { rcode = -ERESTARTSYS; goto cleanup; } if (status != 0){ dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n")); rcode = -ENXIO; goto cleanup; } if (flags & SRB_DataIn) { for(i = 0 ; i <= sg_indx; i++){ byte_count = le32_to_cpu( (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count : srbcmd->sg.sg[i].count); if(copy_to_user(sg_user[i], sg_list[i], byte_count)){ dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n")); rcode = -EFAULT; goto cleanup; } } } reply = (struct aac_srb_reply *) fib_data(srbfib); if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){ dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n")); rcode = -EFAULT; goto cleanup; } cleanup: kfree(user_srbcmd); for(i=0; i <= sg_indx; i++){ kfree(sg_list[i]); } if (rcode != -ERESTARTSYS) { aac_fib_complete(srbfib); aac_fib_free(srbfib); } return rcode; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,146
openssl
4b390b6c3f8df925dc92a3dd6b022baa9a2f4650
MSG_PROCESS_RETURN tls_process_change_cipher_spec(SSL *s, PACKET *pkt) { int al; long remain; remain = PACKET_remaining(pkt); /* * 'Change Cipher Spec' is just a single byte, which should already have * been consumed by ssl_get_message() so there should be no bytes left, * unless we're using DTLS1_BAD_VER, which has an extra 2 bytes */ if (SSL_IS_DTLS(s)) { if ((s->version == DTLS1_BAD_VER && remain != DTLS1_CCS_HEADER_LENGTH + 1) || (s->version != DTLS1_BAD_VER && remain != DTLS1_CCS_HEADER_LENGTH - 1)) { al = SSL_AD_ILLEGAL_PARAMETER; SSLerr(SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC, SSL_R_BAD_CHANGE_CIPHER_SPEC); goto f_err; } } else { if (remain != 0) { al = SSL_AD_ILLEGAL_PARAMETER; SSLerr(SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC, SSL_R_BAD_CHANGE_CIPHER_SPEC); goto f_err; } } /* Check we have a cipher to change to */ if (s->s3->tmp.new_cipher == NULL) { al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC, SSL_R_CCS_RECEIVED_EARLY); goto f_err; } s->s3->change_cipher_spec = 1; if (!ssl3_do_change_cipher_spec(s)) { al = SSL_AD_INTERNAL_ERROR; SSLerr(SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC, ERR_R_INTERNAL_ERROR); goto f_err; } if (SSL_IS_DTLS(s)) { dtls1_reset_seq_numbers(s, SSL3_CC_READ); if (s->version == DTLS1_BAD_VER) s->d1->handshake_read_seq++; #ifndef OPENSSL_NO_SCTP /* * Remember that a CCS has been received, so that an old key of * SCTP-Auth can be deleted when a CCS is sent. Will be ignored if no * SCTP is used */ BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD, 1, NULL); #endif } return MSG_PROCESS_CONTINUE_READING; f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); ossl_statem_set_error(s); return MSG_PROCESS_ERROR; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,020
linux
86acdca1b63e6890540fa19495cfc708beff3d8b
static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) { struct inode *inode = dentry->d_inode; int error = -EACCES; /* We don't need a base pointer in the /proc filesystem */ path_put(&nd->path); /* Are we allowed to snoop on the tasks file descriptors? */ if (!proc_fd_access_allowed(inode)) goto out; error = PROC_I(inode)->op.proc_get_link(inode, &nd->path); nd->last_type = LAST_BIND; out: return ERR_PTR(error); }
1
CVE-2014-0203
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
7,332
libgit2
c1577110467b701dcbcf9439ac225ea851b47d22
int git_delta_apply( void **out, size_t *out_len, const unsigned char *base, size_t base_len, const unsigned char *delta, size_t delta_len) { const unsigned char *delta_end = delta + delta_len; size_t base_sz, res_sz, alloc_sz; unsigned char *res_dp; *out = NULL; *out_len = 0; /* * Check that the base size matches the data we were given; * if not we would underflow while accessing data from the * base object, resulting in data corruption or segfault. */ if ((hdr_sz(&base_sz, &delta, delta_end) < 0) || (base_sz != base_len)) { giterr_set(GITERR_INVALID, "failed to apply delta: base size does not match given data"); return -1; } if (hdr_sz(&res_sz, &delta, delta_end) < 0) { giterr_set(GITERR_INVALID, "failed to apply delta: base size does not match given data"); return -1; } GITERR_CHECK_ALLOC_ADD(&alloc_sz, res_sz, 1); res_dp = git__malloc(alloc_sz); GITERR_CHECK_ALLOC(res_dp); res_dp[res_sz] = '\0'; *out = res_dp; *out_len = res_sz; while (delta < delta_end) { unsigned char cmd = *delta++; if (cmd & 0x80) { /* cmd is a copy instruction; copy from the base. */ size_t off = 0, len = 0; #define ADD_DELTA(o, shift) { if (delta < delta_end) (o) |= ((unsigned) *delta++ << shift); else goto fail; } if (cmd & 0x01) ADD_DELTA(off, 0UL); if (cmd & 0x02) ADD_DELTA(off, 8UL); if (cmd & 0x04) ADD_DELTA(off, 16UL); if (cmd & 0x08) ADD_DELTA(off, 24UL); if (cmd & 0x10) ADD_DELTA(len, 0UL); if (cmd & 0x20) ADD_DELTA(len, 8UL); if (cmd & 0x40) ADD_DELTA(len, 16UL); if (!len) len = 0x10000; #undef ADD_DELTA if (base_len < off + len || res_sz < len) goto fail; memcpy(res_dp, base + off, len); res_dp += len; res_sz -= len; } else if (cmd) { /* * cmd is a literal insert instruction; copy from * the delta stream itself. */ if (delta_end - delta < cmd || res_sz < cmd) goto fail; memcpy(res_dp, delta, cmd); delta += cmd; res_dp += cmd; res_sz -= cmd; } else { /* cmd == 0 is reserved for future encodings. */ goto fail; } } if (delta != delta_end || res_sz) goto fail; return 0; fail: git__free(*out); *out = NULL; *out_len = 0; giterr_set(GITERR_INVALID, "failed to apply delta"); return -1; }
1
CVE-2018-10887
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
87
linux
64f3b9e203bd06855072e295557dca1485a2ecba
static inline u8 ip4_frag_ecn(u8 tos) { tos = (tos & INET_ECN_MASK) + 1; /* * After the last operation we have (in binary): * INET_ECN_NOT_ECT => 001 * INET_ECN_ECT_1 => 010 * INET_ECN_ECT_0 => 011 * INET_ECN_CE => 100 */ return (tos & 2) ? 0 : tos; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,739
libfep
293d9d3f
fep_client_open (const char *address) { FepClient *client; struct sockaddr_un sun; ssize_t sun_len; int retval; if (!address) address = getenv ("LIBFEP_CONTROL_SOCK"); if (!address) return NULL; if (strlen (address) + 1 >= sizeof(sun.sun_path)) { fep_log (FEP_LOG_LEVEL_WARNING, "unix domain socket path too long: %d + 1 >= %d", strlen (address), sizeof (sun.sun_path)); free (address); return NULL; } client = xzalloc (sizeof(FepClient)); client->filter_running = false; client->messages = NULL; memset (&sun, 0, sizeof(struct sockaddr_un)); sun.sun_family = AF_UNIX; #ifdef __linux__ sun.sun_path[0] = '\0'; memcpy (sun.sun_path + 1, address, strlen (address)); sun_len = offsetof (struct sockaddr_un, sun_path) + strlen (address) + 1; #else memcpy (sun.sun_path, address, strlen (address)); sun_len = sizeof (struct sockaddr_un); #endif client->control = socket (AF_UNIX, SOCK_STREAM, 0); if (client->control < 0) { free (client); return NULL; } retval = connect (client->control, (const struct sockaddr *) &sun, sun_len); if (retval < 0) { close (client->control); free (client); return NULL; } return client; }
1
CVE-2014-3980
CWE-264
Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.
Not Found in CWE Page
4,330
core
2c3f37672277b1f73f84722802aaa0ab1ab3e413
auth_request_get_var_expand_table_full(const struct auth_request *auth_request, auth_request_escape_func_t *escape_func, unsigned int *count) { const unsigned int auth_count = N_ELEMENTS(auth_request_var_expand_static_tab); struct var_expand_table *tab, *ret_tab; const char *orig_user, *auth_user; if (escape_func == NULL) escape_func = escape_none; /* keep the extra fields at the beginning. the last static_tab field contains the ending NULL-fields. */ tab = ret_tab = t_malloc((*count + auth_count) * sizeof(*tab)); memset(tab, 0, *count * sizeof(*tab)); tab += *count; *count += auth_count; memcpy(tab, auth_request_var_expand_static_tab, auth_count * sizeof(*tab)); tab[0].value = escape_func(auth_request->user, auth_request); tab[1].value = escape_func(t_strcut(auth_request->user, '@'), auth_request); tab[2].value = strchr(auth_request->user, '@'); if (tab[2].value != NULL) tab[2].value = escape_func(tab[2].value+1, auth_request); tab[3].value = escape_func(auth_request->service, auth_request); /* tab[4] = we have no home dir */ if (auth_request->local_ip.family != 0) tab[5].value = net_ip2addr(&auth_request->local_ip); if (auth_request->remote_ip.family != 0) tab[6].value = net_ip2addr(&auth_request->remote_ip); tab[7].value = dec2str(auth_request->client_pid); if (auth_request->mech_password != NULL) { tab[8].value = escape_func(auth_request->mech_password, auth_request); } if (auth_request->userdb_lookup) { tab[9].value = auth_request->userdb == NULL ? "" : dec2str(auth_request->userdb->userdb->id); } else { tab[9].value = auth_request->passdb == NULL ? "" : dec2str(auth_request->passdb->passdb->id); } tab[10].value = auth_request->mech_name == NULL ? "" : escape_func(auth_request->mech_name, auth_request); tab[11].value = auth_request->secured ? "secured" : ""; tab[12].value = dec2str(auth_request->local_port); tab[13].value = dec2str(auth_request->remote_port); tab[14].value = auth_request->valid_client_cert ? "valid" : ""; if (auth_request->requested_login_user != NULL) { const char *login_user = auth_request->requested_login_user; tab[15].value = escape_func(login_user, auth_request); tab[16].value = escape_func(t_strcut(login_user, '@'), auth_request); tab[17].value = strchr(login_user, '@'); if (tab[17].value != NULL) { tab[17].value = escape_func(tab[17].value+1, auth_request); } } tab[18].value = auth_request->session_id == NULL ? NULL : escape_func(auth_request->session_id, auth_request); if (auth_request->real_local_ip.family != 0) tab[19].value = net_ip2addr(&auth_request->real_local_ip); if (auth_request->real_remote_ip.family != 0) tab[20].value = net_ip2addr(&auth_request->real_remote_ip); tab[21].value = dec2str(auth_request->real_local_port); tab[22].value = dec2str(auth_request->real_remote_port); tab[23].value = strchr(auth_request->user, '@'); if (tab[23].value != NULL) { tab[23].value = escape_func(t_strcut(tab[23].value+1, '@'), auth_request); } tab[24].value = strrchr(auth_request->user, '@'); if (tab[24].value != NULL) tab[24].value = escape_func(tab[24].value+1, auth_request); tab[25].value = auth_request->master_user == NULL ? NULL : escape_func(auth_request->master_user, auth_request); tab[26].value = auth_request->session_pid == (pid_t)-1 ? NULL : dec2str(auth_request->session_pid); orig_user = auth_request->original_username != NULL ? auth_request->original_username : auth_request->user; tab[27].value = escape_func(orig_user, auth_request); tab[28].value = escape_func(t_strcut(orig_user, '@'), auth_request); tab[29].value = strchr(orig_user, '@'); if (tab[29].value != NULL) tab[29].value = escape_func(tab[29].value+1, auth_request); if (auth_request->master_user != NULL) auth_user = auth_request->master_user; else auth_user = orig_user; tab[30].value = escape_func(auth_user, auth_request); tab[31].value = escape_func(t_strcut(auth_user, '@'), auth_request); tab[32].value = strchr(auth_user, '@'); if (tab[32].value != NULL) tab[32].value = escape_func(tab[32].value+1, auth_request); if (auth_request->local_name != NULL) tab[33].value = escape_func(auth_request->local_name, auth_request); else tab[33].value = ""; return ret_tab; }
1
CVE-2016-8652
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
5,178
sqlite
8654186b0236d556aa85528c2573ee0b6ab71be3
void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,313
Chrome
116d0963cadfbf55ef2ec3d13781987c4d80517a
void PrintMsg_Print_Params::Reset() { page_size = gfx::Size(); content_size = gfx::Size(); printable_area = gfx::Rect(); margin_top = 0; margin_left = 0; dpi = 0; min_shrink = 0; max_shrink = 0; desired_dpi = 0; document_cookie = 0; selection_only = false; supports_alpha_blend = false; preview_ui_addr = std::string(); preview_request_id = 0; is_first_request = false; print_scaling_option = WebKit::WebPrintScalingOptionSourceSize; print_to_pdf = false; display_header_footer = false; date = string16(); title = string16(); url = string16(); }
1
CVE-2012-2891
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
6,575
linux
8275cdd0e7ac550dcce2b3ef6d2fb3b808c1ae59
xfs_attr_shortform_addname(xfs_da_args_t *args) { int newsize, forkoff, retval; trace_xfs_attr_sf_addname(args); retval = xfs_attr_shortform_lookup(args); if ((args->flags & ATTR_REPLACE) && (retval == ENOATTR)) { return(retval); } else if (retval == EEXIST) { if (args->flags & ATTR_CREATE) return(retval); retval = xfs_attr_shortform_remove(args); ASSERT(retval == 0); } if (args->namelen >= XFS_ATTR_SF_ENTSIZE_MAX || args->valuelen >= XFS_ATTR_SF_ENTSIZE_MAX) return(XFS_ERROR(ENOSPC)); newsize = XFS_ATTR_SF_TOTSIZE(args->dp); newsize += XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); forkoff = xfs_attr_shortform_bytesfit(args->dp, newsize); if (!forkoff) return(XFS_ERROR(ENOSPC)); xfs_attr_shortform_add(args, forkoff); return(0); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,682
OpenSC
c3f23b836e5a1766c36617fe1da30d22f7b63de2
static u8 acl_to_byte(const sc_acl_entry_t *e) { switch (e->method) { case SC_AC_NONE: return 0x00; case SC_AC_CHV: switch (e->key_ref) { case 1: return 0x01; break; case 2: return 0x02; break; default: return 0x00; } break; case SC_AC_TERM: return 0x04; case SC_AC_NEVER: return 0x0F; } return 0x00; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,787
qemu
065e6298a75164b4347682b63381dbe752c2b156
int qemu_fdt_nop_node(void *fdt, const char *node_path) { int r; r = fdt_nop_node(fdt, findnode_nofail(fdt, node_path)); if (r < 0) { error_report("%s: Couldn't nop node %s: %s", __func__, node_path, fdt_strerror(r)); exit(1); } return r; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,703
Chrome
805eabb91d386c86bd64336c7643f6dfa864151d
void DidCreateTemporary(File::Error error, const FilePath& path) { error_ = error; path_ = path; MessageLoop::current()->QuitWhenIdle(); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,854
FFmpeg
e43a0a232dbf6d3c161823c2e07c52e76227a1bc
static int filter_frame(AVFilterLink *inlink, AVFrame *in) { DelogoContext *s = inlink->dst->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); AVFrame *out; int hsub0 = desc->log2_chroma_w; int vsub0 = desc->log2_chroma_h; int direct = 0; int plane; AVRational sar; if (av_frame_is_writable(in)) { direct = 1; out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } sar = in->sample_aspect_ratio; /* Assume square pixels if SAR is unknown */ if (!sar.num) sar.num = sar.den = 1; for (plane = 0; plane < 4 && in->data[plane]; plane++) { int hsub = plane == 1 || plane == 2 ? hsub0 : 0; int vsub = plane == 1 || plane == 2 ? vsub0 : 0; apply_delogo(out->data[plane], out->linesize[plane], in ->data[plane], in ->linesize[plane], FF_CEIL_RSHIFT(inlink->w, hsub), FF_CEIL_RSHIFT(inlink->h, vsub), sar, s->x>>hsub, s->y>>vsub, /* Up and left borders were rounded down, inject lost bits * into width and height to avoid error accumulation */ FF_CEIL_RSHIFT(s->w + (s->x & ((1<<hsub)-1)), hsub), FF_CEIL_RSHIFT(s->h + (s->y & ((1<<vsub)-1)), vsub), s->band>>FFMIN(hsub, vsub), s->show, direct); } if (!direct) av_frame_free(&in); return ff_filter_frame(outlink, out); }
1
CVE-2013-4263
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
3,469
ImageMagick
f595a1985233c399a05c0c37cc41de16a90dd025
MagickExport MagickBooleanType AnnotateImage(Image *image, const DrawInfo *draw_info,ExceptionInfo *exception) { char *p, primitive[MagickPathExtent], *text, **textlist; DrawInfo *annotate, *annotate_info; GeometryInfo geometry_info; MagickBooleanType status; PointInfo offset; RectangleInfo geometry; register ssize_t i; TypeMetric metrics; size_t height, number_lines; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (DrawInfo *) NULL); assert(draw_info->signature == MagickCoreSignature); if (draw_info->text == (char *) NULL) return(MagickFalse); if (*draw_info->text == '\0') return(MagickTrue); annotate=CloneDrawInfo((ImageInfo *) NULL,draw_info); text=annotate->text; annotate->text=(char *) NULL; annotate_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); number_lines=1; for (p=text; *p != '\0'; p++) if (*p == '\n') number_lines++; textlist=AcquireQuantumMemory(number_lines+1,sizeof(*textlist)); if (textlist == (char **) NULL) return(MagickFalse); p=text; for (i=0; i < number_lines; i++) { char *q; textlist[i]=p; for (q=p; *q != '\0'; q++) if ((*q == '\r') || (*q == '\n')) break; if (*q == '\r') { *q='\0'; q++; } *q='\0'; p=q+1; } textlist[i]=(char *) NULL; SetGeometry(image,&geometry); SetGeometryInfo(&geometry_info); if (annotate_info->geometry != (char *) NULL) { (void) ParsePageGeometry(image,annotate_info->geometry,&geometry, exception); (void) ParseGeometry(annotate_info->geometry,&geometry_info); } if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); if (IsGrayColorspace(image->colorspace) != MagickFalse) (void) SetImageColorspace(image,sRGBColorspace,exception); status=MagickTrue; (void) memset(&metrics,0,sizeof(metrics)); for (i=0; textlist[i] != (char *) NULL; i++) { if (*textlist[i] == '\0') continue; /* Position text relative to image. */ annotate_info->affine.tx=geometry_info.xi-image->page.x; annotate_info->affine.ty=geometry_info.psi-image->page.y; (void) CloneString(&annotate->text,textlist[i]); if ((metrics.width == 0) || (annotate->gravity != NorthWestGravity)) (void) GetTypeMetrics(image,annotate,&metrics,exception); height=(ssize_t) (metrics.ascent-metrics.descent+ draw_info->interline_spacing+0.5); switch (annotate->gravity) { case UndefinedGravity: default: { offset.x=annotate_info->affine.tx+i*annotate_info->affine.ry*height; offset.y=annotate_info->affine.ty+i*annotate_info->affine.sy*height; break; } case NorthWestGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+i* annotate_info->affine.ry*height+annotate_info->affine.ry* (metrics.ascent+metrics.descent); offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+i* annotate_info->affine.sy*height+annotate_info->affine.sy* metrics.ascent; break; } case NorthGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+ geometry.width/2.0+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width/2.0+annotate_info->affine.ry* (metrics.ascent+metrics.descent); offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+i* annotate_info->affine.sy*height+annotate_info->affine.sy* metrics.ascent-annotate_info->affine.rx*metrics.width/2.0; break; } case NorthEastGravity: { offset.x=(geometry.width == 0 ? 1.0 : -1.0)*annotate_info->affine.tx+ geometry.width+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width+annotate_info->affine.ry* (metrics.ascent+metrics.descent)-1.0; offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+i* annotate_info->affine.sy*height+annotate_info->affine.sy* metrics.ascent-annotate_info->affine.rx*metrics.width; break; } case WestGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+i* annotate_info->affine.ry*height+annotate_info->affine.ry* (metrics.ascent+metrics.descent-(number_lines-1.0)*height)/2.0; offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+ geometry.height/2.0+i*annotate_info->affine.sy*height+ annotate_info->affine.sy*(metrics.ascent+metrics.descent- (number_lines-1.0)*height)/2.0; break; } case CenterGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+ geometry.width/2.0+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width/2.0+annotate_info->affine.ry* (metrics.ascent+metrics.descent-(number_lines-1.0)*height)/2.0; offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+ geometry.height/2.0+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width/2.0+annotate_info->affine.sy* (metrics.ascent+metrics.descent-(number_lines-1.0)*height)/2.0; break; } case EastGravity: { offset.x=(geometry.width == 0 ? 1.0 : -1.0)*annotate_info->affine.tx+ geometry.width+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width+ annotate_info->affine.ry*(metrics.ascent+metrics.descent- (number_lines-1.0)*height)/2.0-1.0; offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+ geometry.height/2.0+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width+ annotate_info->affine.sy*(metrics.ascent+metrics.descent- (number_lines-1.0)*height)/2.0; break; } case SouthWestGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+i* annotate_info->affine.ry*height-annotate_info->affine.ry* (number_lines-1.0)*height; offset.y=(geometry.height == 0 ? 1.0 : -1.0)*annotate_info->affine.ty+ geometry.height+i*annotate_info->affine.sy*height- annotate_info->affine.sy*(number_lines-1.0)*height+metrics.descent; break; } case SouthGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+ geometry.width/2.0+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width/2.0- annotate_info->affine.ry*(number_lines-1.0)*height/2.0; offset.y=(geometry.height == 0 ? 1.0 : -1.0)*annotate_info->affine.ty+ geometry.height+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width/2.0- annotate_info->affine.sy*(number_lines-1.0)*height+metrics.descent; break; } case SouthEastGravity: { offset.x=(geometry.width == 0 ? 1.0 : -1.0)*annotate_info->affine.tx+ geometry.width+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width- annotate_info->affine.ry*(number_lines-1.0)*height-1.0; offset.y=(geometry.height == 0 ? 1.0 : -1.0)*annotate_info->affine.ty+ geometry.height+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width- annotate_info->affine.sy*(number_lines-1.0)*height+metrics.descent; break; } } switch (annotate->align) { case LeftAlign: { offset.x=annotate_info->affine.tx+i*annotate_info->affine.ry*height; offset.y=annotate_info->affine.ty+i*annotate_info->affine.sy*height; break; } case CenterAlign: { offset.x=annotate_info->affine.tx+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width/2.0; offset.y=annotate_info->affine.ty+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width/2.0; break; } case RightAlign: { offset.x=annotate_info->affine.tx+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width; offset.y=annotate_info->affine.ty+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width; break; } default: break; } if (draw_info->undercolor.alpha != TransparentAlpha) { DrawInfo *undercolor_info; /* Text box. */ undercolor_info=CloneDrawInfo((ImageInfo *) NULL,(DrawInfo *) NULL); undercolor_info->fill=draw_info->undercolor; undercolor_info->affine=draw_info->affine; undercolor_info->affine.tx=offset.x-draw_info->affine.ry*metrics.ascent; undercolor_info->affine.ty=offset.y-draw_info->affine.sy*metrics.ascent; (void) FormatLocaleString(primitive,MagickPathExtent, "rectangle 0.0,0.0 %g,%g",metrics.origin.x,(double) height); (void) CloneString(&undercolor_info->primitive,primitive); (void) DrawImage(image,undercolor_info,exception); (void) DestroyDrawInfo(undercolor_info); } annotate_info->affine.tx=offset.x; annotate_info->affine.ty=offset.y; (void) FormatLocaleString(primitive,MagickPathExtent,"stroke-width %g " "line 0,0 %g,0",metrics.underline_thickness,metrics.width); if (annotate->decorate == OverlineDecoration) { annotate_info->affine.ty-=(draw_info->affine.sy*(metrics.ascent+ metrics.descent-metrics.underline_position)); (void) CloneString(&annotate_info->primitive,primitive); (void) DrawImage(image,annotate_info,exception); } else if (annotate->decorate == UnderlineDecoration) { annotate_info->affine.ty-=(draw_info->affine.sy* metrics.underline_position); (void) CloneString(&annotate_info->primitive,primitive); (void) DrawImage(image,annotate_info,exception); } /* Annotate image with text. */ status=RenderType(image,annotate,&offset,&metrics,exception); if (status == MagickFalse) break; if (annotate->decorate == LineThroughDecoration) { annotate_info->affine.ty-=(draw_info->affine.sy*(height+ metrics.underline_position+metrics.descent)/2.0); (void) CloneString(&annotate_info->primitive,primitive); (void) DrawImage(image,annotate_info,exception); } } /* Relinquish resources. */ annotate_info=DestroyDrawInfo(annotate_info); annotate=DestroyDrawInfo(annotate); textlist=(char **) RelinquishMagickMemory(textlist); return(status); }
1
CVE-2019-13301
CWE-399
Resource Management Errors
Weaknesses in this category are related to improper management of system resources.
Not Found in CWE Page
9,463
Chrome
6a310d99a741f9ba5e4e537c5ec49d3adbe5876f
void AXTree::UpdateData(const AXTreeData& new_data) { if (data_ == new_data) return; AXTreeData old_data = data_; data_ = new_data; for (AXTreeObserver& observer : observers_) observer.OnTreeDataChanged(this, old_data, new_data); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,091
libarchive
ba641f73f3d758d9032b3f0e5597a9c6e593a505
process_extra(struct archive_read *a, const char *p, size_t extra_length, struct zip_entry* zip_entry) { unsigned offset = 0; if (extra_length == 0) { return ARCHIVE_OK; } if (extra_length < 4) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Too-small extra data: Need at least 4 bytes, but only found %d bytes", (int)extra_length); return ARCHIVE_FAILED; } while (offset <= extra_length - 4) { unsigned short headerid = archive_le16dec(p + offset); unsigned short datasize = archive_le16dec(p + offset + 2); offset += 4; if (offset + datasize > extra_length) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Extra data overflow: Need %d bytes but only found %d bytes", (int)datasize, (int)(extra_length - offset)); return ARCHIVE_FAILED; } #ifdef DEBUG fprintf(stderr, "Header id 0x%04x, length %d\n", headerid, datasize); #endif switch (headerid) { case 0x0001: /* Zip64 extended information extra field. */ zip_entry->flags |= LA_USED_ZIP64; if (zip_entry->uncompressed_size == 0xffffffff) { uint64_t t = 0; if (datasize < 8 || (t = archive_le64dec(p + offset)) > INT64_MAX) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Malformed 64-bit uncompressed size"); return ARCHIVE_FAILED; } zip_entry->uncompressed_size = t; offset += 8; datasize -= 8; } if (zip_entry->compressed_size == 0xffffffff) { uint64_t t = 0; if (datasize < 8 || (t = archive_le64dec(p + offset)) > INT64_MAX) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Malformed 64-bit compressed size"); return ARCHIVE_FAILED; } zip_entry->compressed_size = t; offset += 8; datasize -= 8; } if (zip_entry->local_header_offset == 0xffffffff) { uint64_t t = 0; if (datasize < 8 || (t = archive_le64dec(p + offset)) > INT64_MAX) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Malformed 64-bit local header offset"); return ARCHIVE_FAILED; } zip_entry->local_header_offset = t; offset += 8; datasize -= 8; } /* archive_le32dec(p + offset) gives disk * on which file starts, but we don't handle * multi-volume Zip files. */ break; #ifdef DEBUG case 0x0017: { /* Strong encryption field. */ if (archive_le16dec(p + offset) == 2) { unsigned algId = archive_le16dec(p + offset + 2); unsigned bitLen = archive_le16dec(p + offset + 4); int flags = archive_le16dec(p + offset + 6); fprintf(stderr, "algId=0x%04x, bitLen=%u, " "flgas=%d\n", algId, bitLen,flags); } break; } #endif case 0x5455: { /* Extended time field "UT". */ int flags; if (datasize == 0) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Incomplete extended time field"); return ARCHIVE_FAILED; } flags = p[offset]; offset++; datasize--; /* Flag bits indicate which dates are present. */ if (flags & 0x01) { #ifdef DEBUG fprintf(stderr, "mtime: %lld -> %d\n", (long long)zip_entry->mtime, archive_le32dec(p + offset)); #endif if (datasize < 4) break; zip_entry->mtime = archive_le32dec(p + offset); offset += 4; datasize -= 4; } if (flags & 0x02) { if (datasize < 4) break; zip_entry->atime = archive_le32dec(p + offset); offset += 4; datasize -= 4; } if (flags & 0x04) { if (datasize < 4) break; zip_entry->ctime = archive_le32dec(p + offset); offset += 4; datasize -= 4; } break; } case 0x5855: { /* Info-ZIP Unix Extra Field (old version) "UX". */ if (datasize >= 8) { zip_entry->atime = archive_le32dec(p + offset); zip_entry->mtime = archive_le32dec(p + offset + 4); } if (datasize >= 12) { zip_entry->uid = archive_le16dec(p + offset + 8); zip_entry->gid = archive_le16dec(p + offset + 10); } break; } case 0x6c78: { /* Experimental 'xl' field */ /* * Introduced Dec 2013 to provide a way to * include external file attributes (and other * fields that ordinarily appear only in * central directory) in local file header. * This provides file type and permission * information necessary to support full * streaming extraction. Currently being * discussed with other Zip developers * ... subject to change. * * Format: * The field starts with a bitmap that specifies * which additional fields are included. The * bitmap is variable length and can be extended in * the future. * * n bytes - feature bitmap: first byte has low-order * 7 bits. If high-order bit is set, a subsequent * byte holds the next 7 bits, etc. * * if bitmap & 1, 2 byte "version made by" * if bitmap & 2, 2 byte "internal file attributes" * if bitmap & 4, 4 byte "external file attributes" * if bitmap & 8, 2 byte comment length + n byte comment */ int bitmap, bitmap_last; if (datasize < 1) break; bitmap_last = bitmap = 0xff & p[offset]; offset += 1; datasize -= 1; /* We only support first 7 bits of bitmap; skip rest. */ while ((bitmap_last & 0x80) != 0 && datasize >= 1) { bitmap_last = p[offset]; offset += 1; datasize -= 1; } if (bitmap & 1) { /* 2 byte "version made by" */ if (datasize < 2) break; zip_entry->system = archive_le16dec(p + offset) >> 8; offset += 2; datasize -= 2; } if (bitmap & 2) { /* 2 byte "internal file attributes" */ uint32_t internal_attributes; if (datasize < 2) break; internal_attributes = archive_le16dec(p + offset); /* Not used by libarchive at present. */ (void)internal_attributes; /* UNUSED */ offset += 2; datasize -= 2; } if (bitmap & 4) { /* 4 byte "external file attributes" */ uint32_t external_attributes; if (datasize < 4) break; external_attributes = archive_le32dec(p + offset); if (zip_entry->system == 3) { zip_entry->mode = external_attributes >> 16; } else if (zip_entry->system == 0) { if (0x10 == (external_attributes & 0x10)) { zip_entry->mode = AE_IFDIR | 0775; } else { zip_entry->mode = AE_IFREG | 0664; } if (0x01 == (external_attributes & 0x01)) { zip_entry->mode &= 0555; } } else { zip_entry->mode = 0; } offset += 4; datasize -= 4; } if (bitmap & 8) { /* 2 byte comment length + comment */ uint32_t comment_length; if (datasize < 2) break; comment_length = archive_le16dec(p + offset); offset += 2; datasize -= 2; if (datasize < comment_length) break; /* Comment is not supported by libarchive */ offset += comment_length; datasize -= comment_length; } break; } case 0x7855: /* Info-ZIP Unix Extra Field (type 2) "Ux". */ #ifdef DEBUG fprintf(stderr, "uid %d gid %d\n", archive_le16dec(p + offset), archive_le16dec(p + offset + 2)); #endif if (datasize >= 2) zip_entry->uid = archive_le16dec(p + offset); if (datasize >= 4) zip_entry->gid = archive_le16dec(p + offset + 2); break; case 0x7875: { /* Info-Zip Unix Extra Field (type 3) "ux". */ int uidsize = 0, gidsize = 0; /* TODO: support arbitrary uidsize/gidsize. */ if (datasize >= 1 && p[offset] == 1) {/* version=1 */ if (datasize >= 4) { /* get a uid size. */ uidsize = 0xff & (int)p[offset+1]; if (uidsize == 2) zip_entry->uid = archive_le16dec( p + offset + 2); else if (uidsize == 4 && datasize >= 6) zip_entry->uid = archive_le32dec( p + offset + 2); } if (datasize >= (2 + uidsize + 3)) { /* get a gid size. */ gidsize = 0xff & (int)p[offset+2+uidsize]; if (gidsize == 2) zip_entry->gid = archive_le16dec( p+offset+2+uidsize+1); else if (gidsize == 4 && datasize >= (2 + uidsize + 5)) zip_entry->gid = archive_le32dec( p+offset+2+uidsize+1); } } break; } case 0x9901: /* WinZip AES extra data field. */ if (datasize < 6) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Incomplete AES field"); return ARCHIVE_FAILED; } if (p[offset + 2] == 'A' && p[offset + 3] == 'E') { /* Vendor version. */ zip_entry->aes_extra.vendor = archive_le16dec(p + offset); /* AES encryption strength. */ zip_entry->aes_extra.strength = p[offset + 4]; /* Actual compression method. */ zip_entry->aes_extra.compression = p[offset + 5]; } break; default: break; } offset += datasize; } if (offset != extra_length) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Malformed extra data: Consumed %d bytes of %d bytes", (int)offset, (int)extra_length); return ARCHIVE_FAILED; } return ARCHIVE_OK; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,812
pam-u2f
aab0c31a3bfed8912a271685d6ec909f61380155
int get_devices_from_authfile(const char *authfile, const char *username, unsigned max_devs, int verbose, FILE *debug_file, device_t *devices, unsigned *n_devs) { char *buf = NULL; char *s_user, *s_token; int retval = 0; int fd = -1; struct stat st; struct passwd *pw = NULL, pw_s; char buffer[BUFSIZE]; int gpu_ret; FILE *opwfile = NULL; unsigned i, j; /* Ensure we never return uninitialized count. */ *n_devs = 0; fd = open(authfile, O_RDONLY | O_CLOEXEC | O_NOCTTY); if (fd < 0) { if (verbose) D(debug_file, "Cannot open file: %s (%s)", authfile, strerror(errno)); goto err; } if (fstat(fd, &st) < 0) { if (verbose) D(debug_file, "Cannot stat file: %s (%s)", authfile, strerror(errno)); goto err; } if (!S_ISREG(st.st_mode)) { if (verbose) D(debug_file, "%s is not a regular file", authfile); goto err; } if (st.st_size == 0) { if (verbose) D(debug_file, "File %s is empty", authfile); goto err; } gpu_ret = getpwuid_r(st.st_uid, &pw_s, buffer, sizeof(buffer), &pw); if (gpu_ret != 0 || pw == NULL) { D(debug_file, "Unable to retrieve credentials for uid %u, (%s)", st.st_uid, strerror(errno)); goto err; } if (strcmp(pw->pw_name, username) != 0 && strcmp(pw->pw_name, "root") != 0) { if (strcmp(username, "root") != 0) { D(debug_file, "The owner of the authentication file is neither %s nor root", username); } else { D(debug_file, "The owner of the authentication file is not root"); } goto err; } opwfile = fdopen(fd, "r"); if (opwfile == NULL) { if (verbose) D(debug_file, "fdopen: %s", strerror(errno)); goto err; } else { fd = -1; /* fd belongs to opwfile */ } buf = malloc(sizeof(char) * (DEVSIZE * max_devs)); if (!buf) { if (verbose) D(debug_file, "Unable to allocate memory"); goto err; } retval = -2; while (fgets(buf, (int)(DEVSIZE * (max_devs - 1)), opwfile)) { char *saveptr = NULL; size_t len = strlen(buf); if (len > 0 && buf[len - 1] == '\n') buf[len - 1] = '\0'; if (verbose) D(debug_file, "Authorization line: %s", buf); s_user = strtok_r(buf, ":", &saveptr); if (s_user && strcmp(username, s_user) == 0) { if (verbose) D(debug_file, "Matched user: %s", s_user); retval = -1; // We found at least one line for the user // only keep last line for this user for (i = 0; i < *n_devs; i++) { free(devices[i].keyHandle); free(devices[i].publicKey); devices[i].keyHandle = NULL; devices[i].publicKey = NULL; } *n_devs = 0; i = 0; while ((s_token = strtok_r(NULL, ",", &saveptr))) { if ((*n_devs)++ > max_devs - 1) { *n_devs = max_devs; if (verbose) D(debug_file, "Found more than %d devices, ignoring the remaining ones", max_devs); break; } devices[i].keyHandle = NULL; devices[i].publicKey = NULL; if (verbose) D(debug_file, "KeyHandle for device number %d: %s", i + 1, s_token); devices[i].keyHandle = strdup(s_token); if (!devices[i].keyHandle) { if (verbose) D(debug_file, "Unable to allocate memory for keyHandle number %d", i); goto err; } s_token = strtok_r(NULL, ":", &saveptr); if (!s_token) { if (verbose) D(debug_file, "Unable to retrieve publicKey number %d", i + 1); goto err; } if (verbose) D(debug_file, "publicKey for device number %d: %s", i + 1, s_token); if (strlen(s_token) % 2 != 0) { if (verbose) D(debug_file, "Length of key number %d not even", i + 1); goto err; } devices[i].key_len = strlen(s_token) / 2; if (verbose) D(debug_file, "Length of key number %d is %zu", i + 1, devices[i].key_len); devices[i].publicKey = malloc((sizeof(unsigned char) * devices[i].key_len)); if (!devices[i].publicKey) { if (verbose) D(debug_file, "Unable to allocate memory for publicKey number %d", i); goto err; } for (j = 0; j < devices[i].key_len; j++) { unsigned int x; if (sscanf(&s_token[2 * j], "%2x", &x) != 1) { if (verbose) D(debug_file, "Invalid hex number in key"); goto err; } devices[i].publicKey[j] = (unsigned char)x; } i++; } } } if (verbose) D(debug_file, "Found %d device(s) for user %s", *n_devs, username); retval = 1; goto out; err: for (i = 0; i < *n_devs; i++) { free(devices[i].keyHandle); free(devices[i].publicKey); devices[i].keyHandle = NULL; devices[i].publicKey = NULL; } *n_devs = 0; out: if (buf) { free(buf); buf = NULL; } if (opwfile) fclose(opwfile); if (fd != -1) close(fd); return retval; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,163
tensorflow
15691e456c7dc9bd6be203b09765b063bf4a380c
inline void BinaryBroadcastFiveFold(const ArithmeticParams& unswitched_params, const RuntimeShape& unswitched_input1_shape, const T* unswitched_input1_data, const RuntimeShape& unswitched_input2_shape, const T* unswitched_input2_data, const RuntimeShape& output_shape, T* output_data, ElementwiseF elementwise_f, ScalarBroadcastF scalar_broadcast_f) { ArithmeticParams switched_params = unswitched_params; switched_params.input1_offset = unswitched_params.input2_offset; switched_params.input1_multiplier = unswitched_params.input2_multiplier; switched_params.input1_shift = unswitched_params.input2_shift; switched_params.input2_offset = unswitched_params.input1_offset; switched_params.input2_multiplier = unswitched_params.input1_multiplier; switched_params.input2_shift = unswitched_params.input1_shift; const bool use_unswitched = unswitched_params.broadcast_category == tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast; const ArithmeticParams& params = use_unswitched ? unswitched_params : switched_params; const T* input1_data = use_unswitched ? unswitched_input1_data : unswitched_input2_data; const T* input2_data = use_unswitched ? unswitched_input2_data : unswitched_input1_data; // Fivefold nested loops. The second input resets its position for each // iteration of the second loop. The first input resets its position at the // beginning of the fourth loop. The innermost loop is an elementwise add of // sections of the arrays. T* output_data_ptr = output_data; const T* input1_data_ptr = input1_data; const T* input2_data_reset = input2_data; // In the fivefold pattern, y0, y2 and y4 are not broadcast, and so shared // between input shapes. y3 for input 1 is always broadcast, and so the // dimension there is 1, whereas optionally y1 might be broadcast for // input 2. Put another way, input1.shape.FlatSize = y0 * y1 * y2 * y4, // input2.shape.FlatSize = y0 * y2 * y3 * y4. int y0 = params.broadcast_shape[0]; int y1 = params.broadcast_shape[1]; int y2 = params.broadcast_shape[2]; int y3 = params.broadcast_shape[3]; int y4 = params.broadcast_shape[4]; if (y4 > 1) { // General fivefold pattern, with y4 > 1 so there is a non-broadcast inner // dimension. for (int i0 = 0; i0 < y0; ++i0) { const T* input2_data_ptr = nullptr; for (int i1 = 0; i1 < y1; ++i1) { input2_data_ptr = input2_data_reset; for (int i2 = 0; i2 < y2; ++i2) { for (int i3 = 0; i3 < y3; ++i3) { elementwise_f(y4, params, input1_data_ptr, input2_data_ptr, output_data_ptr); input2_data_ptr += y4; output_data_ptr += y4; } // We have broadcast y4 of input1 data y3 times, and now move on. input1_data_ptr += y4; } } // We have broadcast y2*y3*y4 of input2 data y1 times, and now move on. input2_data_reset = input2_data_ptr; } } else if (input1_data_ptr != nullptr) { // Special case of y4 == 1, in which the innermost loop is a single // element and can be combined with the next (y3) as an inner broadcast. // // Note that this handles the case of pure scalar broadcast when // y0 == y1 == y2 == 1. With low overhead it handles cases such as scalar // broadcast with batch (as y2 > 1). // // NOTE The process is the same as the above general case except // simplified for y4 == 1 and the loop over y3 is contained within the // AddScalarBroadcast function. for (int i0 = 0; i0 < y0; ++i0) { const T* input2_data_ptr = nullptr; for (int i1 = 0; i1 < y1; ++i1) { input2_data_ptr = input2_data_reset; for (int i2 = 0; i2 < y2; ++i2) { scalar_broadcast_f(y3, params, *input1_data_ptr, input2_data_ptr, output_data_ptr); input2_data_ptr += y3; output_data_ptr += y3; input1_data_ptr += 1; } } input2_data_reset = input2_data_ptr; } } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,731
ppp
7658e8257183f062dc01f87969c140707c7e52cb
options_from_list(w, priv) struct wordlist *w; int priv; { char *argv[MAXARGS]; option_t *opt; int i, n, ret = 0; struct wordlist *w0; privileged_option = priv; option_source = "secrets file"; option_priority = OPRIO_SECFILE; while (w != NULL) { opt = find_option(w->word); if (opt == NULL) { option_error("In secrets file: unrecognized option '%s'", w->word); goto err; } n = n_arguments(opt); w0 = w; for (i = 0; i < n; ++i) { w = w->next; if (w == NULL) { option_error( "In secrets file: too few parameters for option '%s'", w0->word); goto err; } argv[i] = w->word; } if (!process_option(opt, w0->word, argv)) goto err; w = w->next; } ret = 1; err: return ret; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,712
qemu
940973ae0b45c9b6817bab8e4cf4df99a9ef83d7
void ide_sector_write(IDEState *s) { int64_t sector_num; int n; s->status = READY_STAT | SEEK_STAT | BUSY_STAT; sector_num = ide_get_sector(s); #if defined(DEBUG_IDE) printf("sector=%" PRId64 "\n", sector_num); #endif n = s->nsector; if (n > s->req_nb_sectors) { n = s->req_nb_sectors; } s->iov.iov_base = s->io_buffer; s->iov.iov_len = n * BDRV_SECTOR_SIZE; qemu_iovec_init_external(&s->qiov, &s->iov, 1); bdrv_acct_start(s->bs, &s->acct, n * BDRV_SECTOR_SIZE, BDRV_ACCT_READ); s->pio_aiocb = bdrv_aio_writev(s->bs, sector_num, &s->qiov, n, ide_sector_write_cb, s); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,714
linux
dd504589577d8e8e70f51f997ad487a4cb6c026f
static void skcipher_free_async_sgls(struct skcipher_async_req *sreq) { struct skcipher_async_rsgl *rsgl, *tmp; struct scatterlist *sgl; struct scatterlist *sg; int i, n; list_for_each_entry_safe(rsgl, tmp, &sreq->list, list) { af_alg_free_sg(&rsgl->sgl); if (rsgl != &sreq->first_sgl) kfree(rsgl); } sgl = sreq->tsg; n = sg_nents(sgl); for_each_sg(sgl, sg, n, i) put_page(sg_page(sg)); kfree(sreq->tsg); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,254
samba
745b99fc6b75db33cdb0a58df1a3f2a5063bc76e
static int ldb_wildcard_compare(struct ldb_context *ldb, const struct ldb_parse_tree *tree, const struct ldb_val value, bool *matched) { const struct ldb_schema_attribute *a; struct ldb_val val; struct ldb_val cnk; struct ldb_val *chunk; uint8_t *save_p = NULL; unsigned int c = 0; a = ldb_schema_attribute_by_name(ldb, tree->u.substring.attr); if (!a) { return LDB_ERR_INVALID_ATTRIBUTE_SYNTAX; } if (tree->u.substring.chunks == NULL) { *matched = false; return LDB_SUCCESS; } if (a->syntax->canonicalise_fn(ldb, ldb, &value, &val) != 0) { return LDB_ERR_INVALID_ATTRIBUTE_SYNTAX; } save_p = val.data; cnk.data = NULL; if ( ! tree->u.substring.start_with_wildcard ) { chunk = tree->u.substring.chunks[c]; if (a->syntax->canonicalise_fn(ldb, ldb, chunk, &cnk) != 0) goto mismatch; /* This deals with wildcard prefix searches on binary attributes (eg objectGUID) */ if (cnk.length > val.length) { goto mismatch; } /* * Empty strings are returned as length 0. Ensure * we can cope with this. */ if (cnk.length == 0) { goto mismatch; } if (memcmp((char *)val.data, (char *)cnk.data, cnk.length) != 0) goto mismatch; val.length -= cnk.length; val.data += cnk.length; c++; talloc_free(cnk.data); cnk.data = NULL; } while (tree->u.substring.chunks[c]) { uint8_t *p; chunk = tree->u.substring.chunks[c]; if(a->syntax->canonicalise_fn(ldb, ldb, chunk, &cnk) != 0) goto mismatch; /* * Empty strings are returned as length 0. Ensure * we can cope with this. */ if (cnk.length == 0) { goto mismatch; } /* * Values might be binary blobs. Don't use string * search, but memory search instead. */ p = memmem((const void *)val.data,val.length, (const void *)cnk.data, cnk.length); if (p == NULL) goto mismatch; if ( (! tree->u.substring.chunks[c + 1]) && (! tree->u.substring.end_with_wildcard) ) { uint8_t *g; uint8_t *end = val.data + val.length; do { /* greedy */ g = memmem(p + cnk.length, end - (p + cnk.length), (const uint8_t *)cnk.data, cnk.length); if (g) p = g; } while(g); } val.length = val.length - (p - (uint8_t *)(val.data)) - cnk.length; val.data = (uint8_t *)(p + cnk.length); c++; talloc_free(cnk.data); cnk.data = NULL; } /* last chunk may not have reached end of string */ if ( (! tree->u.substring.end_with_wildcard) && (*(val.data) != 0) ) goto mismatch; talloc_free(save_p); *matched = true; return LDB_SUCCESS; mismatch: *matched = false; talloc_free(save_p); talloc_free(cnk.data); return LDB_SUCCESS; }
1
CVE-2019-3824
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
1,250
Android
7fa3f552a6f34ed05c15e64ea30b8eed53f77a41
bool SampleTable::isValid() const { return mChunkOffsetOffset >= 0 && mSampleToChunkOffset >= 0 && mSampleSizeOffset >= 0 && mHasTimeToSample; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,902
Android
acc192347665943ca674acf117e4f74a88436922
FLAC__StreamDecoderTellStatus FLACParser::tellCallback( FLAC__uint64 *absolute_byte_offset) { *absolute_byte_offset = mCurrentPos; return FLAC__STREAM_DECODER_TELL_STATUS_OK; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,988
openjpeg
baf0c1ad4572daa89caa3b12985bdd93530f0dd7
static void opj_applyLUT8u_8u32s_C1P3R( OPJ_UINT8 const* pSrc, OPJ_INT32 srcStride, OPJ_INT32* const* pDst, OPJ_INT32 const* pDstStride, OPJ_UINT8 const* const* pLUT, OPJ_UINT32 width, OPJ_UINT32 height) { OPJ_UINT32 y; OPJ_INT32* pR = pDst[0]; OPJ_INT32* pG = pDst[1]; OPJ_INT32* pB = pDst[2]; OPJ_UINT8 const* pLUT_R = pLUT[0]; OPJ_UINT8 const* pLUT_G = pLUT[1]; OPJ_UINT8 const* pLUT_B = pLUT[2]; for (y = height; y != 0U; --y) { OPJ_UINT32 x; for (x = 0; x < width; x++) { OPJ_UINT8 idx = pSrc[x]; pR[x] = (OPJ_INT32)pLUT_R[idx]; pG[x] = (OPJ_INT32)pLUT_G[idx]; pB[x] = (OPJ_INT32)pLUT_B[idx]; } pSrc += srcStride; pR += pDstStride[0]; pG += pDstStride[1]; pB += pDstStride[2]; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,972
Android
cc274e2abe8b2a6698a5c47d8aa4bb45f1f9538d
Cluster* Cluster::Create(Segment* pSegment, long idx, long long off) { assert(pSegment); assert(off >= 0); const long long element_start = pSegment->m_start + off; Cluster* const pCluster = new Cluster(pSegment, idx, element_start); assert(pCluster); return pCluster; }
1
CVE-2016-2464
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
7,487
Chrome
d0947db40187f4708c58e64cbd6013faf9eddeed
xmlParseConditionalSections(xmlParserCtxtPtr ctxt) { int id = ctxt->input->id; SKIP(3); SKIP_BLANKS; if (CMP7(CUR_PTR, 'I', 'N', 'C', 'L', 'U', 'D', 'E')) { SKIP(7); SKIP_BLANKS; if (RAW != '[') { xmlFatalErr(ctxt, XML_ERR_CONDSEC_INVALID, NULL); } else { if (ctxt->input->id != id) { xmlValidityError(ctxt, XML_ERR_ENTITY_BOUNDARY, "All markup of the conditional section is not in the same entity\n", NULL, NULL); } NEXT; } if (xmlParserDebugEntities) { if ((ctxt->input != NULL) && (ctxt->input->filename)) xmlGenericError(xmlGenericErrorContext, "%s(%d): ", ctxt->input->filename, ctxt->input->line); xmlGenericError(xmlGenericErrorContext, "Entering INCLUDE Conditional Section\n"); } while (((RAW != 0) && ((RAW != ']') || (NXT(1) != ']') || (NXT(2) != '>'))) && (ctxt->instate != XML_PARSER_EOF)) { const xmlChar *check = CUR_PTR; unsigned int cons = ctxt->input->consumed; if ((RAW == '<') && (NXT(1) == '!') && (NXT(2) == '[')) { xmlParseConditionalSections(ctxt); } else if (IS_BLANK_CH(CUR)) { NEXT; } else if (RAW == '%') { xmlParsePEReference(ctxt); } else xmlParseMarkupDecl(ctxt); /* * Pop-up of finished entities. */ while ((RAW == 0) && (ctxt->inputNr > 1)) xmlPopInput(ctxt); if ((CUR_PTR == check) && (cons == ctxt->input->consumed)) { xmlFatalErr(ctxt, XML_ERR_EXT_SUBSET_NOT_FINISHED, NULL); break; } } if (xmlParserDebugEntities) { if ((ctxt->input != NULL) && (ctxt->input->filename)) xmlGenericError(xmlGenericErrorContext, "%s(%d): ", ctxt->input->filename, ctxt->input->line); xmlGenericError(xmlGenericErrorContext, "Leaving INCLUDE Conditional Section\n"); } } else if (CMP6(CUR_PTR, 'I', 'G', 'N', 'O', 'R', 'E')) { int state; xmlParserInputState instate; int depth = 0; SKIP(6); SKIP_BLANKS; if (RAW != '[') { xmlFatalErr(ctxt, XML_ERR_CONDSEC_INVALID, NULL); } else { if (ctxt->input->id != id) { xmlValidityError(ctxt, XML_ERR_ENTITY_BOUNDARY, "All markup of the conditional section is not in the same entity\n", NULL, NULL); } NEXT; } if (xmlParserDebugEntities) { if ((ctxt->input != NULL) && (ctxt->input->filename)) xmlGenericError(xmlGenericErrorContext, "%s(%d): ", ctxt->input->filename, ctxt->input->line); xmlGenericError(xmlGenericErrorContext, "Entering IGNORE Conditional Section\n"); } /* * Parse up to the end of the conditional section * But disable SAX event generating DTD building in the meantime */ state = ctxt->disableSAX; instate = ctxt->instate; if (ctxt->recovery == 0) ctxt->disableSAX = 1; ctxt->instate = XML_PARSER_IGNORE; while (((depth >= 0) && (RAW != 0)) && (ctxt->instate != XML_PARSER_EOF)) { if ((RAW == '<') && (NXT(1) == '!') && (NXT(2) == '[')) { depth++; SKIP(3); continue; } if ((RAW == ']') && (NXT(1) == ']') && (NXT(2) == '>')) { if (--depth >= 0) SKIP(3); continue; } NEXT; continue; } ctxt->disableSAX = state; ctxt->instate = instate; if (xmlParserDebugEntities) { if ((ctxt->input != NULL) && (ctxt->input->filename)) xmlGenericError(xmlGenericErrorContext, "%s(%d): ", ctxt->input->filename, ctxt->input->line); xmlGenericError(xmlGenericErrorContext, "Leaving IGNORE Conditional Section\n"); } } else { xmlFatalErr(ctxt, XML_ERR_CONDSEC_INVALID_KEYWORD, NULL); } if (RAW == 0) SHRINK; if (RAW == 0) { xmlFatalErr(ctxt, XML_ERR_CONDSEC_NOT_FINISHED, NULL); } else { if (ctxt->input->id != id) { xmlValidityError(ctxt, XML_ERR_ENTITY_BOUNDARY, "All markup of the conditional section is not in the same entity\n", NULL, NULL); } SKIP(3); } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
21,838
gd-libgd
47eb44b2e90ca88a08dca9f9a1aa9041e9587f43
GetCode_(gdIOCtx *fd, CODE_STATIC_DATA *scd, int code_size, int flag, int *ZeroDataBlockP) { int i, j, ret; unsigned char count; if(flag) { scd->curbit = 0; scd->lastbit = 0; scd->last_byte = 0; scd->done = FALSE; return 0; } if((scd->curbit + code_size) >= scd->lastbit) { if(scd->done) { if(scd->curbit >= scd->lastbit) { /* Oh well */ } return -1; } scd->buf[0] = scd->buf[scd->last_byte - 2]; scd->buf[1] = scd->buf[scd->last_byte - 1]; if((count = GetDataBlock(fd, &scd->buf[2], ZeroDataBlockP)) <= 0) { scd->done = TRUE; } scd->last_byte = 2 + count; scd->curbit = (scd->curbit - scd->lastbit) + 16; scd->lastbit = (2 + count) * 8; } ret = 0; for (i = scd->curbit, j = 0; j < code_size; ++i, ++j) { if (i < CSD_BUF_SIZE * 8) { ret |= ((scd->buf[i / 8] & (1 << (i % 8))) != 0) << j; } else { ret = -1; break; } } scd->curbit += code_size; return ret; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,287
linux
7ed47b7d142ec99ad6880bbbec51e9f12b3af74c
static void __exit ghash_mod_exit(void) { crypto_unregister_shash(&ghash_alg); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,764
exim
d740d2111f189760593a303124ff6b9b1f83453d
do_local_deliveries(void) { open_db dbblock; open_db *dbm_file = NULL; time_t now = time(NULL); /* Loop until we have exhausted the supply of local deliveries */ while (addr_local) { struct timeval delivery_start; struct timeval deliver_time; address_item *addr2, *addr3, *nextaddr; int logflags = LOG_MAIN; int logchar = dont_deliver? '*' : '='; transport_instance *tp; uschar * serialize_key = NULL; /* Pick the first undelivered address off the chain */ address_item *addr = addr_local; addr_local = addr->next; addr->next = NULL; DEBUG(D_deliver|D_transport) debug_printf("--------> %s <--------\n", addr->address); /* An internal disaster if there is no transport. Should not occur! */ if (!(tp = addr->transport)) { logflags |= LOG_PANIC; disable_logging = FALSE; /* Jic */ addr->message = addr->router ? string_sprintf("No transport set by %s router", addr->router->name) : string_sprintf("No transport set by system filter"); post_process_one(addr, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0); continue; } /* Check that this base address hasn't previously been delivered to this transport. The check is necessary at this point to handle homonymic addresses correctly in cases where the pattern of redirection changes between delivery attempts. Non-homonymic previous delivery is detected earlier, at routing time. */ if (previously_transported(addr, FALSE)) continue; /* There are weird cases where logging is disabled */ disable_logging = tp->disable_logging; /* Check for batched addresses and possible amalgamation. Skip all the work if either batch_max <= 1 or there aren't any other addresses for local delivery. */ if (tp->batch_max > 1 && addr_local) { int batch_count = 1; BOOL uses_dom = readconf_depends((driver_instance *)tp, US"domain"); BOOL uses_lp = ( testflag(addr, af_pfr) && (testflag(addr, af_file) || addr->local_part[0] == '|') ) || readconf_depends((driver_instance *)tp, US"local_part"); uschar *batch_id = NULL; address_item **anchor = &addr_local; address_item *last = addr; address_item *next; /* Expand the batch_id string for comparison with other addresses. Expansion failure suppresses batching. */ if (tp->batch_id) { deliver_set_expansions(addr); batch_id = expand_string(tp->batch_id); deliver_set_expansions(NULL); if (!batch_id) { log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand batch_id option " "in %s transport (%s): %s", tp->name, addr->address, expand_string_message); batch_count = tp->batch_max; } } /* Until we reach the batch_max limit, pick off addresses which have the same characteristics. These are: same transport not previously delivered (see comment about 50 lines above) same local part if the transport's configuration contains $local_part or if this is a file or pipe delivery from a redirection same domain if the transport's configuration contains $domain same errors address same additional headers same headers to be removed same uid/gid for running the transport same first host if a host list is set */ while ((next = *anchor) && batch_count < tp->batch_max) { BOOL ok = tp == next->transport && !previously_transported(next, TRUE) && testflag(addr, af_pfr) == testflag(next, af_pfr) && testflag(addr, af_file) == testflag(next, af_file) && (!uses_lp || Ustrcmp(next->local_part, addr->local_part) == 0) && (!uses_dom || Ustrcmp(next->domain, addr->domain) == 0) && same_strings(next->prop.errors_address, addr->prop.errors_address) && same_headers(next->prop.extra_headers, addr->prop.extra_headers) && same_strings(next->prop.remove_headers, addr->prop.remove_headers) && same_ugid(tp, addr, next) && ( !addr->host_list && !next->host_list || addr->host_list && next->host_list && Ustrcmp(addr->host_list->name, next->host_list->name) == 0 ); /* If the transport has a batch_id setting, batch_id will be non-NULL from the expansion outside the loop. Expand for this address and compare. Expansion failure makes this address ineligible for batching. */ if (ok && batch_id) { uschar *bid; address_item *save_nextnext = next->next; next->next = NULL; /* Expansion for a single address */ deliver_set_expansions(next); next->next = save_nextnext; bid = expand_string(tp->batch_id); deliver_set_expansions(NULL); if (!bid) { log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand batch_id option " "in %s transport (%s): %s", tp->name, next->address, expand_string_message); ok = FALSE; } else ok = (Ustrcmp(batch_id, bid) == 0); } /* Take address into batch if OK. */ if (ok) { *anchor = next->next; /* Include the address */ next->next = NULL; last->next = next; last = next; batch_count++; } else anchor = &next->next; /* Skip the address */ } } /* We now have one or more addresses that can be delivered in a batch. Check whether the transport is prepared to accept a message of this size. If not, fail them all forthwith. If the expansion fails, or does not yield an integer, defer delivery. */ if (tp->message_size_limit) { int rc = check_message_size(tp, addr); if (rc != OK) { replicate_status(addr); while (addr) { addr2 = addr->next; post_process_one(addr, rc, logflags, EXIM_DTYPE_TRANSPORT, 0); addr = addr2; } continue; /* With next batch of addresses */ } } /* If we are not running the queue, or if forcing, all deliveries will be attempted. Otherwise, we must respect the retry times for each address. Even when not doing this, we need to set up the retry key string, and determine whether a retry record exists, because after a successful delivery, a delete retry item must be set up. Keep the retry database open only for the duration of these checks, rather than for all local deliveries, because some local deliveries (e.g. to pipes) can take a substantial time. */ if (!(dbm_file = dbfn_open(US"retry", O_RDONLY, &dbblock, FALSE))) { DEBUG(D_deliver|D_retry|D_hints_lookup) debug_printf("no retry data available\n"); } addr2 = addr; addr3 = NULL; while (addr2) { BOOL ok = TRUE; /* to deliver this address */ uschar *retry_key; /* Set up the retry key to include the domain or not, and change its leading character from "R" to "T". Must make a copy before doing this, because the old key may be pointed to from a "delete" retry item after a routing delay. */ retry_key = string_copy( tp->retry_use_local_part ? addr2->address_retry_key : addr2->domain_retry_key); *retry_key = 'T'; /* Inspect the retry data. If there is no hints file, delivery happens. */ if (dbm_file) { dbdata_retry *retry_record = dbfn_read(dbm_file, retry_key); /* If there is no retry record, delivery happens. If there is, remember it exists so it can be deleted after a successful delivery. */ if (retry_record) { setflag(addr2, af_lt_retry_exists); /* A retry record exists for this address. If queue running and not forcing, inspect its contents. If the record is too old, or if its retry time has come, or if it has passed its cutoff time, delivery will go ahead. */ DEBUG(D_retry) { debug_printf("retry record exists: age=%s ", readconf_printtime(now - retry_record->time_stamp)); debug_printf("(max %s)\n", readconf_printtime(retry_data_expire)); debug_printf(" time to retry = %s expired = %d\n", readconf_printtime(retry_record->next_try - now), retry_record->expired); } if (queue_running && !deliver_force) { ok = (now - retry_record->time_stamp > retry_data_expire) || (now >= retry_record->next_try) || retry_record->expired; /* If we haven't reached the retry time, there is one more check to do, which is for the ultimate address timeout. */ if (!ok) ok = retry_ultimate_address_timeout(retry_key, addr2->domain, retry_record, now); } } else DEBUG(D_retry) debug_printf("no retry record exists\n"); } /* This address is to be delivered. Leave it on the chain. */ if (ok) { addr3 = addr2; addr2 = addr2->next; } /* This address is to be deferred. Take it out of the chain, and post-process it as complete. Must take it out of the chain first, because post processing puts it on another chain. */ else { address_item *this = addr2; this->message = US"Retry time not yet reached"; this->basic_errno = ERRNO_LRETRY; addr2 = addr3 ? (addr3->next = addr2->next) : (addr = addr2->next); post_process_one(this, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0); } } if (dbm_file) dbfn_close(dbm_file); /* If there are no addresses left on the chain, they all deferred. Loop for the next set of addresses. */ if (!addr) continue; /* If the transport is limited for parallellism, enforce that here. We use a hints DB entry, incremented here and decremented after the transport (and any shadow transport) completes. */ if (tpt_parallel_check(tp, addr, &serialize_key)) { if (expand_string_message) { logflags |= LOG_PANIC; do { addr = addr->next; post_process_one(addr, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0); } while ((addr = addr2)); } continue; /* Loop for the next set of addresses. */ } /* So, finally, we do have some addresses that can be passed to the transport. Before doing so, set up variables that are relevant to a single delivery. */ deliver_set_expansions(addr); gettimeofday(&delivery_start, NULL); deliver_local(addr, FALSE); timesince(&deliver_time, &delivery_start); /* If a shadow transport (which must perforce be another local transport), is defined, and its condition is met, we must pass the message to the shadow too, but only those addresses that succeeded. We do this by making a new chain of addresses - also to keep the original chain uncontaminated. We must use a chain rather than doing it one by one, because the shadow transport may batch. NOTE: if the condition fails because of a lookup defer, there is nothing we can do! */ if ( tp->shadow && ( !tp->shadow_condition || expand_check_condition(tp->shadow_condition, tp->name, US"transport") ) ) { transport_instance *stp; address_item *shadow_addr = NULL; address_item **last = &shadow_addr; for (stp = transports; stp; stp = stp->next) if (Ustrcmp(stp->name, tp->shadow) == 0) break; if (!stp) log_write(0, LOG_MAIN|LOG_PANIC, "shadow transport \"%s\" not found ", tp->shadow); /* Pick off the addresses that have succeeded, and make clones. Put into the shadow_message field a pointer to the shadow_message field of the real address. */ else for (addr2 = addr; addr2; addr2 = addr2->next) if (addr2->transport_return == OK) { addr3 = store_get(sizeof(address_item)); *addr3 = *addr2; addr3->next = NULL; addr3->shadow_message = US &addr2->shadow_message; addr3->transport = stp; addr3->transport_return = DEFER; addr3->return_filename = NULL; addr3->return_file = -1; *last = addr3; last = &addr3->next; } /* If we found any addresses to shadow, run the delivery, and stick any message back into the shadow_message field in the original. */ if (shadow_addr) { int save_count = transport_count; DEBUG(D_deliver|D_transport) debug_printf(">>>>>>>>>>>>>>>> Shadow delivery >>>>>>>>>>>>>>>>\n"); deliver_local(shadow_addr, TRUE); for(; shadow_addr; shadow_addr = shadow_addr->next) { int sresult = shadow_addr->transport_return; *(uschar **)shadow_addr->shadow_message = sresult == OK ? string_sprintf(" ST=%s", stp->name) : string_sprintf(" ST=%s (%s%s%s)", stp->name, shadow_addr->basic_errno <= 0 ? US"" : US strerror(shadow_addr->basic_errno), shadow_addr->basic_errno <= 0 || !shadow_addr->message ? US"" : US": ", shadow_addr->message ? shadow_addr->message : shadow_addr->basic_errno <= 0 ? US"unknown error" : US""); DEBUG(D_deliver|D_transport) debug_printf("%s shadow transport returned %s for %s\n", stp->name, sresult == OK ? "OK" : sresult == DEFER ? "DEFER" : sresult == FAIL ? "FAIL" : sresult == PANIC ? "PANIC" : "?", shadow_addr->address); } DEBUG(D_deliver|D_transport) debug_printf(">>>>>>>>>>>>>>>> End shadow delivery >>>>>>>>>>>>>>>>\n"); transport_count = save_count; /* Restore original transport count */ } } /* Cancel the expansions that were set up for the delivery. */ deliver_set_expansions(NULL); /* If the transport was parallelism-limited, decrement the hints DB record. */ if (serialize_key) enq_end(serialize_key); /* Now we can process the results of the real transport. We must take each address off the chain first, because post_process_one() puts it on another chain. */ for (addr2 = addr; addr2; addr2 = nextaddr) { int result = addr2->transport_return; nextaddr = addr2->next; DEBUG(D_deliver|D_transport) debug_printf("%s transport returned %s for %s\n", tp->name, result == OK ? "OK" : result == DEFER ? "DEFER" : result == FAIL ? "FAIL" : result == PANIC ? "PANIC" : "?", addr2->address); /* If there is a retry_record, or if delivery is deferred, build a retry item for setting a new retry time or deleting the old retry record from the database. These items are handled all together after all addresses have been handled (so the database is open just for a short time for updating). */ if (result == DEFER || testflag(addr2, af_lt_retry_exists)) { int flags = result == DEFER ? 0 : rf_delete; uschar *retry_key = string_copy(tp->retry_use_local_part ? addr2->address_retry_key : addr2->domain_retry_key); *retry_key = 'T'; retry_add_item(addr2, retry_key, flags); } /* Done with this address */ if (result == OK) { addr2->more_errno = deliver_time.tv_sec; addr2->delivery_usec = deliver_time.tv_usec; } post_process_one(addr2, result, logflags, EXIM_DTYPE_TRANSPORT, logchar); /* If a pipe delivery generated text to be sent back, the result may be changed to FAIL, and we must copy this for subsequent addresses in the batch. */ if (addr2->transport_return != result) { for (addr3 = nextaddr; addr3; addr3 = addr3->next) { addr3->transport_return = addr2->transport_return; addr3->basic_errno = addr2->basic_errno; addr3->message = addr2->message; } result = addr2->transport_return; } /* Whether or not the result was changed to FAIL, we need to copy the return_file value from the first address into all the addresses of the batch, so they are all listed in the error message. */ addr2->return_file = addr->return_file; /* Change log character for recording successful deliveries. */ if (result == OK) logchar = '-'; } } /* Loop back for next batch of addresses */ }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,829
thrift
cfaadcc4adcfde2a8232c62ec89870b73ef40df1
static uint64_t fromWire64(uint64_t x) {return ntohll(x);}
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,385
linux
f2e323ec96077642d397bb1c355def536d489d16
static int ttusbdecfe_dvbt_read_status(struct dvb_frontend *fe, fe_status_t *status) { struct ttusbdecfe_state* state = fe->demodulator_priv; u8 b[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; u8 result[4]; int len, ret; *status=0; ret=state->config->send_command(fe, 0x73, sizeof(b), b, &len, result); if(ret) return ret; if(len != 4) { printk(KERN_ERR "%s: unexpected reply\n", __func__); return -EIO; } switch(result[3]) { case 1: /* not tuned yet */ case 2: /* no signal/no lock*/ break; case 3: /* signal found and locked*/ *status = FE_HAS_SIGNAL | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_CARRIER | FE_HAS_LOCK; break; case 4: *status = FE_TIMEDOUT; break; default: pr_info("%s: returned unknown value: %d\n", __func__, result[3]); return -EIO; } return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,089
lighttpd1.4
b03b86f47b0d5a553137f081fadc482b4af1372d
connection_get_state (request_state_t state) { switch (state) { case CON_STATE_CONNECT: return "connect"; case CON_STATE_READ: return "read"; case CON_STATE_READ_POST: return "readpost"; case CON_STATE_WRITE: return "write"; case CON_STATE_CLOSE: return "close"; case CON_STATE_ERROR: return "error"; case CON_STATE_HANDLE_REQUEST: return "handle-req"; case CON_STATE_REQUEST_START: return "req-start"; case CON_STATE_REQUEST_END: return "req-end"; case CON_STATE_RESPONSE_START: return "resp-start"; case CON_STATE_RESPONSE_END: return "resp-end"; default: return "(unknown)"; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,824
xserver
144849ea27230962227e62a943b399e2ab304787
SProcXkbGetKbdByName(ClientPtr client) { REQUEST(xkbGetKbdByNameReq); swaps(&stuff->length); REQUEST_AT_LEAST_SIZE(xkbGetKbdByNameReq); swaps(&stuff->deviceSpec); swaps(&stuff->want); swaps(&stuff->need); return ProcXkbGetKbdByName(client); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,658
linux
3b0541791453fbe7f42867e310e0c9eb6295364d
static int sas_ex_manuf_info(struct domain_device *dev) { u8 *mi_req; u8 *mi_resp; int res; mi_req = alloc_smp_req(MI_REQ_SIZE); if (!mi_req) return -ENOMEM; mi_resp = alloc_smp_resp(MI_RESP_SIZE); if (!mi_resp) { kfree(mi_req); return -ENOMEM; } mi_req[1] = SMP_REPORT_MANUF_INFO; res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); if (res) { pr_notice("MI: ex %016llx failed:0x%x\n", SAS_ADDR(dev->sas_addr), res); goto out; } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { pr_debug("MI ex %016llx returned SMP result:0x%x\n", SAS_ADDR(dev->sas_addr), mi_resp[2]); goto out; } ex_assign_manuf_info(dev, mi_resp); out: kfree(mi_req); kfree(mi_resp); return res; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,068
Android
22f824feac43d5758f9a70b77f2aca840ba62c3b
virtual void notifyResolution( uint32_t width, uint32_t height) { Parcel data, reply; data.writeInterfaceToken(ICrypto::getInterfaceDescriptor()); data.writeInt32(width); data.writeInt32(height); remote()->transact(NOTIFY_RESOLUTION, data, &reply); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,446
Chrome
deaa07bec5d105ffc546d37eba3da4cba341fc03
void ObserverOnLogoAvailable(LogoObserver* observer, bool from_cache, LogoCallbackReason type, const base::Optional<Logo>& logo) { switch (type) { case LogoCallbackReason::DISABLED: case LogoCallbackReason::CANCELED: case LogoCallbackReason::FAILED: break; case LogoCallbackReason::REVALIDATED: break; case LogoCallbackReason::DETERMINED: observer->OnLogoAvailable(logo ? &logo.value() : nullptr, from_cache); break; } if (!from_cache) { observer->OnObserverRemoved(); } }
1
CVE-2015-1290
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
8,721
tnef
8dccf79857ceeb7a6d3e42c1e762e7b865d5344d
parse_file (FILE* input_file, char* directory, char *body_filename, char *body_pref, int flags) { uint32 d; uint16 key; Attr *attr = NULL; File *file = NULL; int rtf_size = 0, html_size = 0; MessageBody body; memset (&body, '\0', sizeof (MessageBody)); /* store the program options in our file global variables */ g_flags = flags; /* check that this is in fact a TNEF file */ d = geti32(input_file); if (d != TNEF_SIGNATURE) { fprintf (stdout, "Seems not to be a TNEF file\n"); return 1; } /* Get the key */ key = geti16(input_file); debug_print ("TNEF Key: %hx\n", key); /* The rest of the file is a series of 'messages' and 'attachments' */ while ( data_left( input_file ) ) { attr = read_object( input_file ); if ( attr == NULL ) break; /* This signals the beginning of a file */ if (attr->name == attATTACHRENDDATA) { if (file) { file_write (file, directory); file_free (file); } else { file = CHECKED_XCALLOC (File, 1); } } /* Add the data to our lists. */ switch (attr->lvl_type) { case LVL_MESSAGE: if (attr->name == attBODY) { body.text_body = get_text_data (attr); } else if (attr->name == attMAPIPROPS) { MAPI_Attr **mapi_attrs = mapi_attr_read (attr->len, attr->buf); if (mapi_attrs) { int i; for (i = 0; mapi_attrs[i]; i++) { MAPI_Attr *a = mapi_attrs[i]; if (a->name == MAPI_BODY_HTML) { body.html_bodies = get_html_data (a); html_size = a->num_values; } else if (a->name == MAPI_RTF_COMPRESSED) { body.rtf_bodies = get_rtf_data (a); rtf_size = a->num_values; } } /* cannot save attributes to file, since they * are not attachment attributes */ /* file_add_mapi_attrs (file, mapi_attrs); */ mapi_attr_free_list (mapi_attrs); XFREE (mapi_attrs); } } break; case LVL_ATTACHMENT: file_add_attr (file, attr); break; default: fprintf (stderr, "Invalid lvl type on attribute: %d\n", attr->lvl_type); return 1; break; } attr_free (attr); XFREE (attr); } if (file) { file_write (file, directory); file_free (file); XFREE (file); } /* Write the message body */ if (flags & SAVEBODY) { int i = 0; int all_flag = 0; if (strcmp (body_pref, "all") == 0) { all_flag = 1; body_pref = "rht"; } for (; i < 3; i++) { File **files = get_body_files (body_filename, body_pref[i], &body); if (files) { int j = 0; for (; files[j]; j++) { file_write(files[j], directory); file_free (files[j]); XFREE(files[j]); } XFREE(files); if (!all_flag) break; } } } if (body.text_body) { free_bodies(body.text_body, 1); XFREE(body.text_body); } if (rtf_size > 0) { free_bodies(body.rtf_bodies, rtf_size); XFREE(body.rtf_bodies); } if (html_size > 0) { free_bodies(body.html_bodies, html_size); XFREE(body.html_bodies); } return 0; }
1
CVE-2017-6310
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
4,444
openssl
9cb177301fdab492e4cfef376b28339afe3ef663
static LDOUBLE pow_10(int in_exp) { LDOUBLE result = 1; while (in_exp) { result *= 10; in_exp--; } return result; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,196
ImageMagick
f6e9d0d9955e85bdd7540b251cd50d598dacc5e6
static void *AcquireBZIPMemory(void *context,int items,int size) { (void) context; return((void *) AcquireQuantumMemory((size_t) items,(size_t) size)); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,584
Chrome
f335421145bb7f82c60fb9d61babcd6ce2e4b21e
bool Extension::LoadManagedModeSites( const DictionaryValue* content_pack_value, string16* error) { if (!content_pack_value->HasKey(keys::kContentPackSites)) return true; FilePath::StringType site_list_str; if (!content_pack_value->GetString(keys::kContentPackSites, &site_list_str)) { *error = ASCIIToUTF16(errors::kInvalidContentPackSites); return false; } content_pack_site_list_ = FilePath(site_list_str); return true; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,747
Chrome
62154472bd2c43e1790dd1bd8a527c1db9118d88
void WebBluetoothServiceImpl::RemoteServerGetPrimaryServicesImpl( const blink::WebBluetoothDeviceId& device_id, blink::mojom::WebBluetoothGATTQueryQuantity quantity, const base::Optional<BluetoothUUID>& services_uuid, RemoteServerGetPrimaryServicesCallback callback, device::BluetoothDevice* device) { DCHECK_CURRENTLY_ON(BrowserThread::UI); if (!device->IsGattConnected()) { RecordGetPrimaryServicesOutcome( quantity, UMAGetPrimaryServiceOutcome::DEVICE_DISCONNECTED); std::move(callback).Run(blink::mojom::WebBluetoothResult::NO_SERVICES_FOUND, base::nullopt /* services */); return; } DCHECK(device->IsGattServicesDiscoveryComplete()); std::vector<device::BluetoothRemoteGattService*> services = services_uuid ? device->GetPrimaryServicesByUUID(services_uuid.value()) : device->GetPrimaryServices(); std::vector<blink::mojom::WebBluetoothRemoteGATTServicePtr> response_services; for (device::BluetoothRemoteGattService* service : services) { if (!allowed_devices().IsAllowedToAccessService(device_id, service->GetUUID())) { continue; } std::string service_instance_id = service->GetIdentifier(); const std::string& device_address = device->GetAddress(); auto insert_result = service_id_to_device_address_.insert( make_pair(service_instance_id, device_address)); if (!insert_result.second) DCHECK_EQ(insert_result.first->second, device_address); blink::mojom::WebBluetoothRemoteGATTServicePtr service_ptr = blink::mojom::WebBluetoothRemoteGATTService::New(); service_ptr->instance_id = service_instance_id; service_ptr->uuid = service->GetUUID(); response_services.push_back(std::move(service_ptr)); if (quantity == blink::mojom::WebBluetoothGATTQueryQuantity::SINGLE) { break; } } if (!response_services.empty()) { DVLOG(1) << "Services found in device."; RecordGetPrimaryServicesOutcome(quantity, UMAGetPrimaryServiceOutcome::SUCCESS); std::move(callback).Run(blink::mojom::WebBluetoothResult::SUCCESS, std::move(response_services)); return; } DVLOG(1) << "Services not found in device."; RecordGetPrimaryServicesOutcome( quantity, services_uuid ? UMAGetPrimaryServiceOutcome::NOT_FOUND : UMAGetPrimaryServiceOutcome::NO_SERVICES); std::move(callback).Run( services_uuid ? blink::mojom::WebBluetoothResult::SERVICE_NOT_FOUND : blink::mojom::WebBluetoothResult::NO_SERVICES_FOUND, base::nullopt /* services */); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,332
drogon
3c785326c63a34aa1799a639ae185bc9453cb447
int HttpFileImpl::save() const { return save(HttpAppFrameworkImpl::instance().getUploadPath()); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,954
skiboot
5be38b672c1410e2f10acd3ad2eecfdc81d5daf7
static char *char_to_wchar(const char *key, const size_t keylen) { int i; char *str; str = zalloc(keylen * 2); if (!str) return NULL; for (i = 0; i < keylen*2; key++) { str[i++] = *key; str[i++] = '\0'; } return str; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,857
linux
0ddcff49b672239dda94d70d0fcf50317a9f4b51
static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { hwsim_set_chanctx_magic(ctx); wiphy_dbg(hw->wiphy, "add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n", ctx->def.chan->center_freq, ctx->def.width, ctx->def.center_freq1, ctx->def.center_freq2); return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,436
linux
dab6cf55f81a6e16b8147aed9a843e1691dcd318
static int s390_regs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int rc = 0; if (target == current) save_access_regs(target->thread.acrs); if (kbuf) { const unsigned long *k = kbuf; while (count > 0 && !rc) { rc = __poke_user(target, pos, *k++); count -= sizeof(*k); pos += sizeof(*k); } } else { const unsigned long __user *u = ubuf; while (count > 0 && !rc) { unsigned long word; rc = __get_user(word, u++); if (rc) break; rc = __poke_user(target, pos, word); count -= sizeof(*u); pos += sizeof(*u); } } if (rc == 0 && target == current) restore_access_regs(target->thread.acrs); return rc; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,665
Chrome
a81c185f34b34ef8410239506825b185b332c00b
void GaiaCookieManagerService::OnListAccountsFailure( const GoogleServiceAuthError& error) { VLOG(1) << "ListAccounts failed"; DCHECK(requests_.front().request_type() == GaiaCookieRequestType::LIST_ACCOUNTS); if (++fetcher_retries_ < kMaxFetcherRetries && error.IsTransientError()) { fetcher_backoff_.InformOfRequest(false); UMA_HISTOGRAM_ENUMERATION("Signin.ListAccountsRetry", error.state(), GoogleServiceAuthError::NUM_STATES); fetcher_timer_.Start( FROM_HERE, fetcher_backoff_.GetTimeUntilRelease(), base::Bind(&SigninClient::DelayNetworkCall, base::Unretained(signin_client_), base::Bind( &GaiaCookieManagerService::StartFetchingListAccounts, base::Unretained(this)))); return; } UMA_HISTOGRAM_ENUMERATION("Signin.ListAccountsFailure", error.state(), GoogleServiceAuthError::NUM_STATES); for (auto& observer : observer_list_) { observer.OnGaiaAccountsInCookieUpdated(listed_accounts_, signed_out_accounts_, error); } HandleNextRequest(); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,884
Chrome
ed5c0b5ff5cec5a12235b868d0f3ba7e0c0f2a24
void OnGetSystemSalt(const GetSystemSaltCallback& callback, dbus::Response* response) { if (!response) { callback.Run(DBUS_METHOD_CALL_FAILURE, std::vector<uint8>()); return; } dbus::MessageReader reader(response); const uint8* bytes = NULL; size_t length = 0; if (!reader.PopArrayOfBytes(&bytes, &length)) { callback.Run(DBUS_METHOD_CALL_FAILURE, std::vector<uint8>()); return; } callback.Run(DBUS_METHOD_CALL_SUCCESS, std::vector<uint8>(bytes, bytes + length)); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,721
collectd
d16c24542b2f96a194d43a73c2e5778822b9cb47
static int csnmp_strvbcopy(char *dst, /* {{{ */ const struct variable_list *vb, size_t dst_size) { char *src; size_t num_chars; if (vb->type == ASN_OCTET_STR) src = (char *)vb->val.string; else if (vb->type == ASN_BIT_STR) src = (char *)vb->val.bitstring; else if (vb->type == ASN_IPADDRESS) { return ssnprintf(dst, dst_size, "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 "", (uint8_t)vb->val.string[0], (uint8_t)vb->val.string[1], (uint8_t)vb->val.string[2], (uint8_t)vb->val.string[3]); } else { dst[0] = 0; return (EINVAL); } num_chars = dst_size - 1; if (num_chars > vb->val_len) num_chars = vb->val_len; for (size_t i = 0; i < num_chars; i++) { /* Check for control characters. */ if ((unsigned char)src[i] < 32) return (csnmp_strvbcopy_hexstring(dst, vb, dst_size)); dst[i] = src[i]; } dst[num_chars] = 0; dst[dst_size - 1] = 0; if (dst_size <= vb->val_len) return ENOMEM; return 0; } /* }}} int csnmp_strvbcopy */
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,901
netdata
92327c9ec211bd1616315abcb255861b130b97ca
inline int web_client_api_request_v1_data(RRDHOST *host, struct web_client *w, char *url) { debug(D_WEB_CLIENT, "%llu: API v1 data with URL '%s'", w->id, url); int ret = 400; BUFFER *dimensions = NULL; buffer_flush(w->response.data); char *google_version = "0.6", *google_reqId = "0", *google_sig = "0", *google_out = "json", *responseHandler = NULL, *outFileName = NULL; time_t last_timestamp_in_data = 0, google_timestamp = 0; char *chart = NULL , *before_str = NULL , *after_str = NULL , *group_time_str = NULL , *points_str = NULL; int group = RRDR_GROUPING_AVERAGE; uint32_t format = DATASOURCE_JSON; uint32_t options = 0x00000000; while(url) { char *value = mystrsep(&url, "?&"); if(!value || !*value) continue; char *name = mystrsep(&value, "="); if(!name || !*name) continue; if(!value || !*value) continue; debug(D_WEB_CLIENT, "%llu: API v1 data query param '%s' with value '%s'", w->id, name, value); // name and value are now the parameters // they are not null and not empty if(!strcmp(name, "chart")) chart = value; else if(!strcmp(name, "dimension") || !strcmp(name, "dim") || !strcmp(name, "dimensions") || !strcmp(name, "dims")) { if(!dimensions) dimensions = buffer_create(100); buffer_strcat(dimensions, "|"); buffer_strcat(dimensions, value); } else if(!strcmp(name, "after")) after_str = value; else if(!strcmp(name, "before")) before_str = value; else if(!strcmp(name, "points")) points_str = value; else if(!strcmp(name, "gtime")) group_time_str = value; else if(!strcmp(name, "group")) { group = web_client_api_request_v1_data_group(value, RRDR_GROUPING_AVERAGE); } else if(!strcmp(name, "format")) { format = web_client_api_request_v1_data_format(value); } else if(!strcmp(name, "options")) { options |= web_client_api_request_v1_data_options(value); } else if(!strcmp(name, "callback")) { responseHandler = value; } else if(!strcmp(name, "filename")) { outFileName = value; } else if(!strcmp(name, "tqx")) { // parse Google Visualization API options // https://developers.google.com/chart/interactive/docs/dev/implementing_data_source char *tqx_name, *tqx_value; while(value) { tqx_value = mystrsep(&value, ";"); if(!tqx_value || !*tqx_value) continue; tqx_name = mystrsep(&tqx_value, ":"); if(!tqx_name || !*tqx_name) continue; if(!tqx_value || !*tqx_value) continue; if(!strcmp(tqx_name, "version")) google_version = tqx_value; else if(!strcmp(tqx_name, "reqId")) google_reqId = tqx_value; else if(!strcmp(tqx_name, "sig")) { google_sig = tqx_value; google_timestamp = strtoul(google_sig, NULL, 0); } else if(!strcmp(tqx_name, "out")) { google_out = tqx_value; format = web_client_api_request_v1_data_google_format(google_out); } else if(!strcmp(tqx_name, "responseHandler")) responseHandler = tqx_value; else if(!strcmp(tqx_name, "outFileName")) outFileName = tqx_value; } } } if(!chart || !*chart) { buffer_sprintf(w->response.data, "No chart id is given at the request."); goto cleanup; } RRDSET *st = rrdset_find(host, chart); if(!st) st = rrdset_find_byname(host, chart); if(!st) { buffer_strcat(w->response.data, "Chart is not found: "); buffer_strcat_htmlescape(w->response.data, chart); ret = 404; goto cleanup; } st->last_accessed_time = now_realtime_sec(); long long before = (before_str && *before_str)?str2l(before_str):0; long long after = (after_str && *after_str) ?str2l(after_str):0; int points = (points_str && *points_str)?str2i(points_str):0; long group_time = (group_time_str && *group_time_str)?str2l(group_time_str):0; debug(D_WEB_CLIENT, "%llu: API command 'data' for chart '%s', dimensions '%s', after '%lld', before '%lld', points '%d', group '%d', format '%u', options '0x%08x'" , w->id , chart , (dimensions)?buffer_tostring(dimensions):"" , after , before , points , group , format , options ); if(outFileName && *outFileName) { buffer_sprintf(w->response.header, "Content-Disposition: attachment; filename=\"%s\"\r\n", outFileName); debug(D_WEB_CLIENT, "%llu: generating outfilename header: '%s'", w->id, outFileName); } if(format == DATASOURCE_DATATABLE_JSONP) { if(responseHandler == NULL) responseHandler = "google.visualization.Query.setResponse"; debug(D_WEB_CLIENT_ACCESS, "%llu: GOOGLE JSON/JSONP: version = '%s', reqId = '%s', sig = '%s', out = '%s', responseHandler = '%s', outFileName = '%s'", w->id, google_version, google_reqId, google_sig, google_out, responseHandler, outFileName ); buffer_sprintf(w->response.data, "%s({version:'%s',reqId:'%s',status:'ok',sig:'%ld',table:", responseHandler, google_version, google_reqId, st->last_updated.tv_sec); } else if(format == DATASOURCE_JSONP) { if(responseHandler == NULL) responseHandler = "callback"; buffer_strcat(w->response.data, responseHandler); buffer_strcat(w->response.data, "("); } ret = rrdset2anything_api_v1(st, w->response.data, dimensions, format, points, after, before, group, group_time , options, &last_timestamp_in_data); if(format == DATASOURCE_DATATABLE_JSONP) { if(google_timestamp < last_timestamp_in_data) buffer_strcat(w->response.data, "});"); else { // the client already has the latest data buffer_flush(w->response.data); buffer_sprintf(w->response.data, "%s({version:'%s',reqId:'%s',status:'error',errors:[{reason:'not_modified',message:'Data not modified'}]});", responseHandler, google_version, google_reqId); } } else if(format == DATASOURCE_JSONP) buffer_strcat(w->response.data, ");"); cleanup: buffer_free(dimensions); return ret; }
1
CVE-2018-18839
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
3,978
krb5
8ee70ec63931d1e38567905387ab9b1d45734d81
find_alternate_tgs(krb5_kdc_req *request, krb5_db_entry **server_ptr) { krb5_error_code retval; krb5_principal *plist = NULL, *pl2, tmpprinc; krb5_data tmp; krb5_db_entry *server = NULL; *server_ptr = NULL; /* * Call to krb5_princ_component is normally not safe but is so * here only because find_alternate_tgs() is only called from * somewhere that has already checked the number of components in * the principal. */ if ((retval = krb5_walk_realm_tree(kdc_context, krb5_princ_realm(kdc_context, request->server), krb5_princ_component(kdc_context, request->server, 1), &plist, KRB5_REALM_BRANCH_CHAR))) return retval; /* move to the end */ for (pl2 = plist; *pl2; pl2++); /* the first entry in this array is for krbtgt/local@local, so we ignore it */ while (--pl2 > plist) { tmp = *krb5_princ_realm(kdc_context, *pl2); krb5_princ_set_realm(kdc_context, *pl2, krb5_princ_realm(kdc_context, tgs_server)); retval = krb5_db_get_principal(kdc_context, *pl2, 0, &server); krb5_princ_set_realm(kdc_context, *pl2, &tmp); if (retval == KRB5_KDB_NOENTRY) continue; else if (retval) goto cleanup; /* Found it. */ tmp = *krb5_princ_realm(kdc_context, *pl2); krb5_princ_set_realm(kdc_context, *pl2, krb5_princ_realm(kdc_context, tgs_server)); retval = krb5_copy_principal(kdc_context, *pl2, &tmpprinc); if (retval) goto cleanup; krb5_princ_set_realm(kdc_context, *pl2, &tmp); krb5_free_principal(kdc_context, request->server); request->server = tmpprinc; log_tgs_alt_tgt(request->server); *server_ptr = server; server = NULL; goto cleanup; } retval = KRB5_KDB_NOENTRY; cleanup: krb5_free_realm_tree(kdc_context, plist); krb5_db_free_principal(kdc_context, server); return retval; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,902
Chrome
d59a4441697f6253e7dc3f7ae5caad6e5fd2c778
ImageBitmap::ImageBitmap(ImageData* data, Optional<IntRect> cropRect, const ImageBitmapOptions& options) { IntRect dataSrcRect = IntRect(IntPoint(), data->size()); ParsedOptions parsedOptions = parseOptions(options, cropRect, data->bitmapSourceSize()); if (dstBufferSizeHasOverflow(parsedOptions)) return; IntRect srcRect = cropRect ? intersection(parsedOptions.cropRect, dataSrcRect) : dataSrcRect; if (!parsedOptions.premultiplyAlpha) { unsigned char* srcAddr = data->data()->data(); SkImageInfo info = SkImageInfo::Make( parsedOptions.cropRect.width(), parsedOptions.cropRect.height(), kN32_SkColorType, kUnpremul_SkAlphaType); size_t bytesPerPixel = static_cast<size_t>(info.bytesPerPixel()); size_t srcPixelBytesPerRow = bytesPerPixel * data->size().width(); size_t dstPixelBytesPerRow = bytesPerPixel * parsedOptions.cropRect.width(); sk_sp<SkImage> skImage; if (parsedOptions.cropRect == IntRect(IntPoint(), data->size())) { swizzleImageData(srcAddr, data->size().height(), srcPixelBytesPerRow, parsedOptions.flipY); skImage = SkImage::MakeRasterCopy(SkPixmap(info, srcAddr, dstPixelBytesPerRow)); swizzleImageData(srcAddr, data->size().height(), srcPixelBytesPerRow, parsedOptions.flipY); } else { RefPtr<ArrayBuffer> dstBuffer = ArrayBuffer::createOrNull( static_cast<size_t>(parsedOptions.cropRect.height()) * parsedOptions.cropRect.width(), bytesPerPixel); if (!dstBuffer) return; RefPtr<Uint8Array> copiedDataBuffer = Uint8Array::create(dstBuffer, 0, dstBuffer->byteLength()); if (!srcRect.isEmpty()) { IntPoint srcPoint = IntPoint( (parsedOptions.cropRect.x() > 0) ? parsedOptions.cropRect.x() : 0, (parsedOptions.cropRect.y() > 0) ? parsedOptions.cropRect.y() : 0); IntPoint dstPoint = IntPoint( (parsedOptions.cropRect.x() >= 0) ? 0 : -parsedOptions.cropRect.x(), (parsedOptions.cropRect.y() >= 0) ? 0 : -parsedOptions.cropRect.y()); int copyHeight = data->size().height() - srcPoint.y(); if (parsedOptions.cropRect.height() < copyHeight) copyHeight = parsedOptions.cropRect.height(); int copyWidth = data->size().width() - srcPoint.x(); if (parsedOptions.cropRect.width() < copyWidth) copyWidth = parsedOptions.cropRect.width(); for (int i = 0; i < copyHeight; i++) { size_t srcStartCopyPosition = (i + srcPoint.y()) * srcPixelBytesPerRow + srcPoint.x() * bytesPerPixel; size_t srcEndCopyPosition = srcStartCopyPosition + copyWidth * bytesPerPixel; size_t dstStartCopyPosition; if (parsedOptions.flipY) dstStartCopyPosition = (parsedOptions.cropRect.height() - 1 - dstPoint.y() - i) * dstPixelBytesPerRow + dstPoint.x() * bytesPerPixel; else dstStartCopyPosition = (dstPoint.y() + i) * dstPixelBytesPerRow + dstPoint.x() * bytesPerPixel; for (size_t j = 0; j < srcEndCopyPosition - srcStartCopyPosition; j++) { if (kN32_SkColorType == kBGRA_8888_SkColorType) { if (j % 4 == 0) copiedDataBuffer->data()[dstStartCopyPosition + j] = srcAddr[srcStartCopyPosition + j + 2]; else if (j % 4 == 2) copiedDataBuffer->data()[dstStartCopyPosition + j] = srcAddr[srcStartCopyPosition + j - 2]; else copiedDataBuffer->data()[dstStartCopyPosition + j] = srcAddr[srcStartCopyPosition + j]; } else { copiedDataBuffer->data()[dstStartCopyPosition + j] = srcAddr[srcStartCopyPosition + j]; } } } } skImage = newSkImageFromRaster(info, std::move(copiedDataBuffer), dstPixelBytesPerRow); } if (!skImage) return; if (parsedOptions.shouldScaleInput) m_image = StaticBitmapImage::create(scaleSkImage( skImage, parsedOptions.resizeWidth, parsedOptions.resizeHeight, parsedOptions.resizeQuality)); else m_image = StaticBitmapImage::create(skImage); if (!m_image) return; m_image->setPremultiplied(parsedOptions.premultiplyAlpha); return; } std::unique_ptr<ImageBuffer> buffer = ImageBuffer::create( parsedOptions.cropRect.size(), NonOpaque, DoNotInitializeImagePixels); if (!buffer) return; if (srcRect.isEmpty()) { m_image = StaticBitmapImage::create(buffer->newSkImageSnapshot( PreferNoAcceleration, SnapshotReasonUnknown)); return; } IntPoint dstPoint = IntPoint(std::min(0, -parsedOptions.cropRect.x()), std::min(0, -parsedOptions.cropRect.y())); if (parsedOptions.cropRect.x() < 0) dstPoint.setX(-parsedOptions.cropRect.x()); if (parsedOptions.cropRect.y() < 0) dstPoint.setY(-parsedOptions.cropRect.y()); buffer->putByteArray(Unmultiplied, data->data()->data(), data->size(), srcRect, dstPoint); sk_sp<SkImage> skImage = buffer->newSkImageSnapshot(PreferNoAcceleration, SnapshotReasonUnknown); if (parsedOptions.flipY) skImage = flipSkImageVertically(skImage.get(), PremultiplyAlpha); if (!skImage) return; if (parsedOptions.shouldScaleInput) { sk_sp<SkSurface> surface = SkSurface::MakeRasterN32Premul( parsedOptions.resizeWidth, parsedOptions.resizeHeight); if (!surface) return; SkPaint paint; paint.setFilterQuality(parsedOptions.resizeQuality); SkRect dstDrawRect = SkRect::MakeWH(parsedOptions.resizeWidth, parsedOptions.resizeHeight); surface->getCanvas()->drawImageRect(skImage, dstDrawRect, &paint); skImage = surface->makeImageSnapshot(); } m_image = StaticBitmapImage::create(std::move(skImage)); }
1
CVE-2016-5209
CWE-787
Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]. Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
7,197
Chrome
1a828911013ff501b87aacc5b555e470b31f2909
void Clipboard::ReadAsciiText(Clipboard::Buffer buffer, std::string* result) const { GtkClipboard* clipboard = LookupBackingClipboard(buffer); if (clipboard == NULL) return; result->clear(); gchar* text = gtk_clipboard_wait_for_text(clipboard); if (text == NULL) return; result->assign(text); g_free(text); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,550
php-src
fb58e69a84f4fde603a630d2c9df2fa3be16d846
static size_t encoding_filter_script_to_internal(unsigned char **to, size_t *to_length, const unsigned char *from, size_t from_length TSRMLS_DC) { const zend_encoding *internal_encoding = zend_multibyte_get_internal_encoding(TSRMLS_C); assert(internal_encoding && zend_multibyte_check_lexer_compatibility(internal_encoding)); return zend_multibyte_encoding_converter(to, to_length, from, from_length, internal_encoding, LANG_SCNG(script_encoding) TSRMLS_CC); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,754
libmspack
8759da8db6ec9e866cb8eb143313f397f925bb4f
static int read_spaninfo(struct mschm_decompressor_p *self, struct mschmd_sec_mscompressed *sec, off_t *length_ptr) { struct mspack_system *sys = self->system; unsigned char *data; /* find SpanInfo file */ int err = find_sys_file(self, sec, &sec->spaninfo, spaninfo_name); if (err) return MSPACK_ERR_DATAFORMAT; /* check it's large enough */ if (sec->spaninfo->length != 8) { D(("SpanInfo file is wrong size")) return MSPACK_ERR_DATAFORMAT; } /* read the SpanInfo file */ if (!(data = read_sys_file(self, sec->spaninfo))) { D(("can't read SpanInfo file")) return self->error; } /* get the uncompressed length of the LZX stream */ err = read_off64(length_ptr, data, sys, self->d->infh); sys->free(data); if (err) return MSPACK_ERR_DATAFORMAT; if (*length_ptr <= 0) { D(("output length is invalid")) return MSPACK_ERR_DATAFORMAT; } return MSPACK_ERR_OK; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,218
linux
2638fd0f92d4397884fd991d8f4925cb3f081901
tcpmss_tg4(struct sk_buff *skb, const struct xt_action_param *par) { struct iphdr *iph = ip_hdr(skb); __be16 newlen; int ret; ret = tcpmss_mangle_packet(skb, par, PF_INET, iph->ihl * 4, sizeof(*iph) + sizeof(struct tcphdr)); if (ret < 0) return NF_DROP; if (ret > 0) { iph = ip_hdr(skb); newlen = htons(ntohs(iph->tot_len) + ret); csum_replace2(&iph->check, iph->tot_len, newlen); iph->tot_len = newlen; } return XT_CONTINUE; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,708
linux-2.6
b3563c4fbff906991a1b4ef4609f99cca2a0de6a
void __rta_fill(struct sk_buff *skb, int attrtype, int attrlen, const void *data) { struct rtattr *rta; int size = RTA_LENGTH(attrlen); rta = (struct rtattr*)skb_put(skb, RTA_ALIGN(size)); rta->rta_type = attrtype; rta->rta_len = size; memcpy(RTA_DATA(rta), data, attrlen); }
1
CVE-2005-4881
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
1,704
savannah
8d22746c9e5af80ff4304aef440986403a5072e2
psh_hint_table_init( PSH_Hint_Table table, PS_Hint_Table hints, PS_Mask_Table hint_masks, PS_Mask_Table counter_masks, FT_Memory memory ) { FT_UInt count; FT_Error error; FT_UNUSED( counter_masks ); count = hints->num_hints; /* allocate our tables */ if ( FT_NEW_ARRAY( table->sort, 2 * count ) || FT_NEW_ARRAY( table->hints, count ) || FT_NEW_ARRAY( table->zones, 2 * count + 1 ) ) goto Exit; table->max_hints = count; table->sort_global = table->sort + count; table->num_hints = 0; table->num_zones = 0; table->zone = 0; /* initialize the `table->hints' array */ { PSH_Hint write = table->hints; PS_Hint read = hints->hints; for ( ; count > 0; count--, write++, read++ ) { write->org_pos = read->pos; write->org_len = read->len; write->flags = read->flags; } } /* we now need to determine the initial `parent' stems; first */ /* activate the hints that are given by the initial hint masks */ if ( hint_masks ) { PS_Mask mask = hint_masks->masks; count = hint_masks->num_masks; table->hint_masks = hint_masks; for ( ; count > 0; count--, mask++ ) psh_hint_table_record_mask( table, mask ); } /* finally, do a linear parse in case some hints were left alone */ if ( table->num_hints != table->max_hints ) { FT_UInt idx; FT_TRACE0(( "psh_hint_table_init: missing/incorrect hint masks\n" )); count = table->max_hints; for ( idx = 0; idx < count; idx++ ) psh_hint_table_record( table, idx ); } Exit: return error; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,751
Chrome
5f8671e7667b8b133bd3664100012a3906e92d65
void Wait() { run_loop_.reset(new base::RunLoop()); run_loop_->Run(); run_loop_.reset(); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,078
md4c
4fc808d8fe8d8904f8525bb4231d854f45e23a19
md_analyze_line(MD_CTX* ctx, OFF beg, OFF* p_end, const MD_LINE_ANALYSIS* pivot_line, MD_LINE_ANALYSIS* line) { unsigned total_indent = 0; int n_parents = 0; int n_brothers = 0; int n_children = 0; MD_CONTAINER container = { 0 }; int prev_line_has_list_loosening_effect = ctx->last_line_has_list_loosening_effect; OFF off = beg; OFF hr_killer = 0; int ret = 0; line->indent = md_line_indentation(ctx, total_indent, off, &off); total_indent += line->indent; line->beg = off; /* Given the indentation and block quote marks '>', determine how many of * the current containers are our parents. */ while(n_parents < ctx->n_containers) { MD_CONTAINER* c = &ctx->containers[n_parents]; if(c->ch == _T('>') && line->indent < ctx->code_indent_offset && off < ctx->size && CH(off) == _T('>')) { /* Block quote mark. */ off++; total_indent++; line->indent = md_line_indentation(ctx, total_indent, off, &off); total_indent += line->indent; /* The optional 1st space after '>' is part of the block quote mark. */ if(line->indent > 0) line->indent--; line->beg = off; } else if(c->ch != _T('>') && line->indent >= c->contents_indent) { /* List. */ line->indent -= c->contents_indent; } else { break; } n_parents++; } if(off >= ctx->size || ISNEWLINE(off)) { /* Blank line does not need any real indentation to be nested inside * a list. */ if(n_brothers + n_children == 0) { while(n_parents < ctx->n_containers && ctx->containers[n_parents].ch != _T('>')) n_parents++; } } while(TRUE) { /* Check whether we are fenced code continuation. */ if(pivot_line->type == MD_LINE_FENCEDCODE) { line->beg = off; /* We are another MD_LINE_FENCEDCODE unless we are closing fence * which we transform into MD_LINE_BLANK. */ if(line->indent < ctx->code_indent_offset) { if(md_is_closing_code_fence(ctx, CH(pivot_line->beg), off, &off)) { line->type = MD_LINE_BLANK; ctx->last_line_has_list_loosening_effect = FALSE; break; } } /* Change indentation accordingly to the initial code fence. */ if(n_parents == ctx->n_containers) { if(line->indent > pivot_line->indent) line->indent -= pivot_line->indent; else line->indent = 0; line->type = MD_LINE_FENCEDCODE; break; } } /* Check whether we are HTML block continuation. */ if(pivot_line->type == MD_LINE_HTML && ctx->html_block_type > 0) { if(n_parents < ctx->n_containers) { /* HTML block is implicitly ended if the enclosing container * block ends. */ ctx->html_block_type = 0; } else { int html_block_type; html_block_type = md_is_html_block_end_condition(ctx, off, &off); if(html_block_type > 0) { MD_ASSERT(html_block_type == ctx->html_block_type); /* Make sure this is the last line of the block. */ ctx->html_block_type = 0; /* Some end conditions serve as blank lines at the same time. */ if(html_block_type == 6 || html_block_type == 7) { line->type = MD_LINE_BLANK; line->indent = 0; break; } } line->type = MD_LINE_HTML; n_parents = ctx->n_containers; break; } } /* Check for blank line. */ if(off >= ctx->size || ISNEWLINE(off)) { if(pivot_line->type == MD_LINE_INDENTEDCODE && n_parents == ctx->n_containers) { line->type = MD_LINE_INDENTEDCODE; if(line->indent > ctx->code_indent_offset) line->indent -= ctx->code_indent_offset; else line->indent = 0; ctx->last_line_has_list_loosening_effect = FALSE; } else { line->type = MD_LINE_BLANK; ctx->last_line_has_list_loosening_effect = (n_parents > 0 && n_brothers + n_children == 0 && ctx->containers[n_parents-1].ch != _T('>')); #if 1 /* See https://github.com/mity/md4c/issues/6 * * This ugly checking tests we are in (yet empty) list item but * not its very first line (i.e. not the line with the list * item mark). * * If we are such a blank line, then any following non-blank * line which would be part of the list item actually has to * end the list because according to the specification, "a list * item can begin with at most one blank line." */ if(n_parents > 0 && ctx->containers[n_parents-1].ch != _T('>') && n_brothers + n_children == 0 && ctx->current_block == NULL && ctx->n_block_bytes > (int) sizeof(MD_BLOCK)) { MD_BLOCK* top_block = (MD_BLOCK*) ((char*)ctx->block_bytes + ctx->n_block_bytes - sizeof(MD_BLOCK)); if(top_block->type == MD_BLOCK_LI) ctx->last_list_item_starts_with_two_blank_lines = TRUE; } #endif } break; } else { #if 1 /* This is the 2nd half of the hack. If the flag is set (i.e. there * was a 2nd blank line at the beginning of the list item) and if * we would otherwise still belong to the list item, we enforce * the end of the list. */ ctx->last_line_has_list_loosening_effect = FALSE; if(ctx->last_list_item_starts_with_two_blank_lines) { if(n_parents > 0 && ctx->containers[n_parents-1].ch != _T('>') && n_brothers + n_children == 0 && ctx->current_block == NULL && ctx->n_block_bytes > (int) sizeof(MD_BLOCK)) { MD_BLOCK* top_block = (MD_BLOCK*) ((char*)ctx->block_bytes + ctx->n_block_bytes - sizeof(MD_BLOCK)); if(top_block->type == MD_BLOCK_LI) n_parents--; } ctx->last_list_item_starts_with_two_blank_lines = FALSE; } #endif } /* Check whether we are Setext underline. */ if(line->indent < ctx->code_indent_offset && pivot_line->type == MD_LINE_TEXT && (CH(off) == _T('=') || CH(off) == _T('-')) && (n_parents == ctx->n_containers)) { unsigned level; if(md_is_setext_underline(ctx, off, &off, &level)) { line->type = MD_LINE_SETEXTUNDERLINE; line->data = level; break; } } /* Check for thematic break line. */ if(line->indent < ctx->code_indent_offset && ISANYOF(off, _T("-_*")) && off >= hr_killer) { if(md_is_hr_line(ctx, off, &off, &hr_killer)) { line->type = MD_LINE_HR; break; } } /* Check for "brother" container. I.e. whether we are another list item * in already started list. */ if(n_parents < ctx->n_containers && n_brothers + n_children == 0) { OFF tmp; if(md_is_container_mark(ctx, line->indent, off, &tmp, &container) && md_is_container_compatible(&ctx->containers[n_parents], &container)) { pivot_line = &md_dummy_blank_line; off = tmp; total_indent += container.contents_indent - container.mark_indent; line->indent = md_line_indentation(ctx, total_indent, off, &off); total_indent += line->indent; line->beg = off; /* Some of the following whitespace actually still belongs to the mark. */ if(off >= ctx->size || ISNEWLINE(off)) { container.contents_indent++; } else if(line->indent <= ctx->code_indent_offset) { container.contents_indent += line->indent; line->indent = 0; } else { container.contents_indent += 1; line->indent--; } ctx->containers[n_parents].mark_indent = container.mark_indent; ctx->containers[n_parents].contents_indent = container.contents_indent; n_brothers++; continue; } } /* Check for indented code. * Note indented code block cannot interrupt a paragraph. */ if(line->indent >= ctx->code_indent_offset && (pivot_line->type == MD_LINE_BLANK || pivot_line->type == MD_LINE_INDENTEDCODE)) { line->type = MD_LINE_INDENTEDCODE; MD_ASSERT(line->indent >= ctx->code_indent_offset); line->indent -= ctx->code_indent_offset; line->data = 0; break; } /* Check for start of a new container block. */ if(line->indent < ctx->code_indent_offset && md_is_container_mark(ctx, line->indent, off, &off, &container)) { if(pivot_line->type == MD_LINE_TEXT && n_parents == ctx->n_containers && (off >= ctx->size || ISNEWLINE(off)) && container.ch != _T('>')) { /* Noop. List mark followed by a blank line cannot interrupt a paragraph. */ } else if(pivot_line->type == MD_LINE_TEXT && n_parents == ctx->n_containers && (container.ch == _T('.') || container.ch == _T(')')) && container.start != 1) { /* Noop. Ordered list cannot interrupt a paragraph unless the start index is 1. */ } else { total_indent += container.contents_indent - container.mark_indent; line->indent = md_line_indentation(ctx, total_indent, off, &off); total_indent += line->indent; line->beg = off; line->data = container.ch; /* Some of the following whitespace actually still belongs to the mark. */ if(off >= ctx->size || ISNEWLINE(off)) { container.contents_indent++; } else if(line->indent <= ctx->code_indent_offset) { container.contents_indent += line->indent; line->indent = 0; } else { container.contents_indent += 1; line->indent--; } if(n_brothers + n_children == 0) pivot_line = &md_dummy_blank_line; if(n_children == 0) MD_CHECK(md_leave_child_containers(ctx, n_parents + n_brothers)); n_children++; MD_CHECK(md_push_container(ctx, &container)); continue; } } /* Check whether we are table continuation. */ if(pivot_line->type == MD_LINE_TABLE && n_parents == ctx->n_containers) { line->type = MD_LINE_TABLE; break; } /* Check for ATX header. */ if(line->indent < ctx->code_indent_offset && CH(off) == _T('#')) { unsigned level; if(md_is_atxheader_line(ctx, off, &line->beg, &off, &level)) { line->type = MD_LINE_ATXHEADER; line->data = level; break; } } /* Check whether we are starting code fence. */ if(CH(off) == _T('`') || CH(off) == _T('~')) { if(md_is_opening_code_fence(ctx, off, &off)) { line->type = MD_LINE_FENCEDCODE; line->data = 1; break; } } /* Check for start of raw HTML block. */ if(CH(off) == _T('<') && !(ctx->parser.flags & MD_FLAG_NOHTMLBLOCKS)) { ctx->html_block_type = md_is_html_block_start_condition(ctx, off); /* HTML block type 7 cannot interrupt paragraph. */ if(ctx->html_block_type == 7 && pivot_line->type == MD_LINE_TEXT) ctx->html_block_type = 0; if(ctx->html_block_type > 0) { /* The line itself also may immediately close the block. */ if(md_is_html_block_end_condition(ctx, off, &off) == ctx->html_block_type) { /* Make sure this is the last line of the block. */ ctx->html_block_type = 0; } line->type = MD_LINE_HTML; break; } } /* Check for table underline. */ if((ctx->parser.flags & MD_FLAG_TABLES) && pivot_line->type == MD_LINE_TEXT && (CH(off) == _T('|') || CH(off) == _T('-') || CH(off) == _T(':')) && n_parents == ctx->n_containers) { unsigned col_count; if(ctx->current_block != NULL && ctx->current_block->n_lines == 1 && md_is_table_underline(ctx, off, &off, &col_count)) { line->data = col_count; line->type = MD_LINE_TABLEUNDERLINE; break; } } /* By default, we are normal text line. */ line->type = MD_LINE_TEXT; if(pivot_line->type == MD_LINE_TEXT && n_brothers + n_children == 0) { /* Lazy continuation. */ n_parents = ctx->n_containers; } /* Check for task mark. */ if((ctx->parser.flags & MD_FLAG_TASKLISTS) && n_brothers + n_children > 0 && ISANYOF_(ctx->containers[ctx->n_containers-1].ch, _T("-+*.)"))) { OFF tmp = off; while(tmp < ctx->size && tmp < off + 3 && ISBLANK(tmp)) tmp++; if(tmp + 2 < ctx->size && CH(tmp) == _T('[') && ISANYOF(tmp+1, _T("xX ")) && CH(tmp+2) == _T(']') && (tmp + 3 == ctx->size || ISBLANK(tmp+3) || ISNEWLINE(tmp+3))) { MD_CONTAINER* task_container = (n_children > 0 ? &ctx->containers[ctx->n_containers-1] : &container); task_container->is_task = TRUE; task_container->task_mark_off = tmp + 1; off = tmp + 3; while(ISWHITESPACE(off)) off++; line->beg = off; } } break; } /* Scan for end of the line. * * Note this is quite a bottleneck of the parsing as we here iterate almost * over compete document. */ #if defined __linux__ && !defined MD4C_USE_UTF16 /* Recent glibc versions have superbly optimized strcspn(), even using * vectorization if available. */ if(ctx->doc_ends_with_newline && off < ctx->size) { while(TRUE) { off += (OFF) strcspn(STR(off), "\r\n"); /* strcspn() can stop on zero terminator; but that can appear * anywhere in the Markfown input... */ if(CH(off) == _T('\0')) off++; else break; } } else #endif { /* Optimization: Use some loop unrolling. */ while(off + 3 < ctx->size && !ISNEWLINE(off+0) && !ISNEWLINE(off+1) && !ISNEWLINE(off+2) && !ISNEWLINE(off+3)) off += 4; while(off < ctx->size && !ISNEWLINE(off)) off++; } /* Set end of the line. */ line->end = off; /* But for ATX header, we should exclude the optional trailing mark. */ if(line->type == MD_LINE_ATXHEADER) { OFF tmp = line->end; while(tmp > line->beg && CH(tmp-1) == _T(' ')) tmp--; while(tmp > line->beg && CH(tmp-1) == _T('#')) tmp--; if(tmp == line->beg || CH(tmp-1) == _T(' ') || (ctx->parser.flags & MD_FLAG_PERMISSIVEATXHEADERS)) line->end = tmp; } /* Trim trailing spaces. */ if(line->type != MD_LINE_INDENTEDCODE && line->type != MD_LINE_FENCEDCODE) { while(line->end > line->beg && CH(line->end-1) == _T(' ')) line->end--; } /* Eat also the new line. */ if(off < ctx->size && CH(off) == _T('\r')) off++; if(off < ctx->size && CH(off) == _T('\n')) off++; *p_end = off; /* If we belong to a list after seeing a blank line, the list is loose. */ if(prev_line_has_list_loosening_effect && line->type != MD_LINE_BLANK && n_parents + n_brothers > 0) { MD_CONTAINER* c = &ctx->containers[n_parents + n_brothers - 1]; if(c->ch != _T('>')) { MD_BLOCK* block = (MD_BLOCK*) (((char*)ctx->block_bytes) + c->block_byte_off); block->flags |= MD_BLOCK_LOOSE_LIST; } } /* Leave any containers we are not part of anymore. */ if(n_children == 0 && n_parents + n_brothers < ctx->n_containers) MD_CHECK(md_leave_child_containers(ctx, n_parents + n_brothers)); /* Enter any container we found a mark for. */ if(n_brothers > 0) { MD_ASSERT(n_brothers == 1); MD_CHECK(md_push_container_bytes(ctx, MD_BLOCK_LI, ctx->containers[n_parents].task_mark_off, (ctx->containers[n_parents].is_task ? CH(ctx->containers[n_parents].task_mark_off) : 0), MD_BLOCK_CONTAINER_CLOSER)); MD_CHECK(md_push_container_bytes(ctx, MD_BLOCK_LI, container.task_mark_off, (container.is_task ? CH(container.task_mark_off) : 0), MD_BLOCK_CONTAINER_OPENER)); ctx->containers[n_parents].is_task = container.is_task; ctx->containers[n_parents].task_mark_off = container.task_mark_off; } if(n_children > 0) MD_CHECK(md_enter_child_containers(ctx, n_children)); abort: return ret; }
1
CVE-2021-30027
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
564
htcondor
8f9b304c4f6c0a98dafa61b2c0e4beb3b70e4c84
SchedulerObject::suspend(std::string key, std::string &/*reason*/, std::string &text) { PROC_ID id = getProcByString(key.c_str()); if (id.cluster < 0 || id.proc < 0) { dprintf(D_FULLDEBUG, "Remove: Failed to parse id: %s\n", key.c_str()); text = "Invalid Id"; return false; } scheduler.enqueueActOnJobMyself(id,JA_SUSPEND_JOBS,true); return true; }
1
CVE-2012-4462
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
569
linux
8141c7f3e7aee618312fa1c15109e1219de784a7
static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) { struct sighand_struct *sigh = current->sighand; if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) return -EINVAL; else return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,444
bpf
4b81ccebaeee885ab1aa1438133f2991e3a2b6ea
static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) { unsigned long rec_pos, cons_pos; struct bpf_ringbuf_hdr *hdr; struct bpf_ringbuf *rb; u32 new_len; hdr = sample - BPF_RINGBUF_HDR_SZ; rb = bpf_ringbuf_restore_from_rec(hdr); new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; if (discard) new_len |= BPF_RINGBUF_DISCARD_BIT; /* update record header with correct final size prefix */ xchg(&hdr->len, new_len); /* if consumer caught up and is waiting for our record, notify about * new data availability */ rec_pos = (void *)hdr - (void *)rb->data; cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; if (flags & BPF_RB_FORCE_WAKEUP) irq_work_queue(&rb->work); else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) irq_work_queue(&rb->work); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,482
linux-stable
8dfbcc4351a0b6d2f2d77f367552f48ffefafe18
static void dump_firm_type_and_int_freq(unsigned int type, u16 int_freq) { if (type & BASE) printk("BASE "); if (type & INIT1) printk("INIT1 "); if (type & F8MHZ) printk("F8MHZ "); if (type & MTS) printk("MTS "); if (type & D2620) printk("D2620 "); if (type & D2633) printk("D2633 "); if (type & DTV6) printk("DTV6 "); if (type & QAM) printk("QAM "); if (type & DTV7) printk("DTV7 "); if (type & DTV78) printk("DTV78 "); if (type & DTV8) printk("DTV8 "); if (type & FM) printk("FM "); if (type & INPUT1) printk("INPUT1 "); if (type & LCD) printk("LCD "); if (type & NOGD) printk("NOGD "); if (type & MONO) printk("MONO "); if (type & ATSC) printk("ATSC "); if (type & IF) printk("IF "); if (type & LG60) printk("LG60 "); if (type & ATI638) printk("ATI638 "); if (type & OREN538) printk("OREN538 "); if (type & OREN36) printk("OREN36 "); if (type & TOYOTA388) printk("TOYOTA388 "); if (type & TOYOTA794) printk("TOYOTA794 "); if (type & DIBCOM52) printk("DIBCOM52 "); if (type & ZARLINK456) printk("ZARLINK456 "); if (type & CHINA) printk("CHINA "); if (type & F6MHZ) printk("F6MHZ "); if (type & INPUT2) printk("INPUT2 "); if (type & SCODE) printk("SCODE "); if (type & HAS_IF) printk("HAS_IF_%d ", int_freq); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,541
libtiff
787c0ee906430b772f33ca50b97b8b5ca070faec
DECLAREreadFunc(readSeparateTilesIntoBuffer) { int status = 1; uint32 imagew = TIFFRasterScanlineSize(in); uint32 tilew = TIFFTileRowSize(in); int iskew = imagew - tilew*spp; tsize_t tilesize = TIFFTileSize(in); tdata_t tilebuf; uint8* bufp = (uint8*) buf; uint32 tw, tl; uint32 row; uint16 bps = 0, bytes_per_sample; tilebuf = _TIFFmalloc(tilesize); if (tilebuf == 0) return 0; _TIFFmemset(tilebuf, 0, tilesize); (void) TIFFGetField(in, TIFFTAG_TILEWIDTH, &tw); (void) TIFFGetField(in, TIFFTAG_TILELENGTH, &tl); (void) TIFFGetField(in, TIFFTAG_BITSPERSAMPLE, &bps); if( bps == 0 ) { TIFFError(TIFFFileName(in), "Error, cannot read BitsPerSample"); status = 0; goto done; } assert( bps % 8 == 0 ); bytes_per_sample = bps/8; for (row = 0; row < imagelength; row += tl) { uint32 nrow = (row+tl > imagelength) ? imagelength-row : tl; uint32 colb = 0; uint32 col; for (col = 0; col < imagewidth; col += tw) { tsample_t s; for (s = 0; s < spp; s++) { if (TIFFReadTile(in, tilebuf, col, row, 0, s) < 0 && !ignore) { TIFFError(TIFFFileName(in), "Error, can't read tile at %lu %lu, " "sample %lu", (unsigned long) col, (unsigned long) row, (unsigned long) s); status = 0; goto done; } /* * Tile is clipped horizontally. Calculate * visible portion and skewing factors. */ if (colb + tilew*spp > imagew) { uint32 width = imagew - colb; int oskew = tilew*spp - width; cpSeparateBufToContigBuf( bufp+colb+s*bytes_per_sample, tilebuf, nrow, width/(spp*bytes_per_sample), oskew + iskew, oskew/spp, spp, bytes_per_sample); } else cpSeparateBufToContigBuf( bufp+colb+s*bytes_per_sample, tilebuf, nrow, tw, iskew, 0, spp, bytes_per_sample); } colb += tilew*spp; } bufp += imagew * nrow; } done: _TIFFfree(tilebuf); return status; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,646
linux
45f6fad84cc305103b28d73482b344d7f5b76f39
int inet6_sk_rebuild_header(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); struct dst_entry *dst; dst = __sk_dst_check(sk, np->dst_cookie); if (!dst) { struct inet_sock *inet = inet_sk(sk); struct in6_addr *final_p, final; struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = sk->sk_protocol; fl6.daddr = sk->sk_v6_daddr; fl6.saddr = np->saddr; fl6.flowlabel = np->flow_label; fl6.flowi6_oif = sk->sk_bound_dev_if; fl6.flowi6_mark = sk->sk_mark; fl6.fl6_dport = inet->inet_dport; fl6.fl6_sport = inet->inet_sport; security_sk_classify_flow(sk, flowi6_to_flowi(&fl6)); final_p = fl6_update_dst(&fl6, np->opt, &final); dst = ip6_dst_lookup_flow(sk, &fl6, final_p); if (IS_ERR(dst)) { sk->sk_route_caps = 0; sk->sk_err_soft = -PTR_ERR(dst); return PTR_ERR(dst); } __ip6_dst_store(sk, dst, NULL, NULL); } return 0; }
1
CVE-2016-3841
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
8,473
mutt
4a2becbdb4422aaffe3ce314991b9d670b7adf17
ADDRESS *rfc822_cpy_adr (ADDRESS *addr, int prune) { ADDRESS *top = NULL, *last = NULL; for (; addr; addr = addr->next) { if (prune && addr->group && (!addr->next || !addr->next->mailbox)) { /* ignore this element of the list */ } else if (last) { last->next = rfc822_cpy_adr_real (addr); last = last->next; } else top = last = rfc822_cpy_adr_real (addr); } return top; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,332
gnupg
4bde12206c5bf199dc6e12a74af8da4558ba41bf
get_user_id (u32 * keyid, size_t * rn) { user_id_db_t r; char *p; int pass = 0; /* Try it two times; second pass reads from key resources. */ do { for (r = user_id_db; r; r = r->next) { keyid_list_t a; for (a = r->keyids; a; a = a->next) { if (a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1]) { p = xmalloc (r->len); memcpy (p, r->name, r->len); *rn = r->len; return p; } } } } while (++pass < 2 && !get_pubkey (NULL, keyid)); p = xstrdup (user_id_not_found_utf8 ()); *rn = strlen (p); return p; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,379
nanopb
e2f0ccf939d9f82931d085acb6df8e9a182a4261
bool pb_decode_double_as_float(pb_istream_t *stream, float *dest) { uint_least8_t sign; int exponent; uint32_t mantissa; uint64_t value; union { float f; uint32_t i; } out; if (!pb_decode_fixed64(stream, &value)) return false; /* Decompose input value */ sign = (uint_least8_t)((value >> 63) & 1); exponent = (int)((value >> 52) & 0x7FF) - 1023; mantissa = (value >> 28) & 0xFFFFFF; /* Highest 24 bits */ /* Figure if value is in range representable by floats. */ if (exponent == 1024) { /* Special value */ exponent = 128; mantissa >>= 1; } else { if (exponent > 127) { /* Too large, convert to infinity */ exponent = 128; mantissa = 0; } else if (exponent < -150) { /* Too small, convert to zero */ exponent = -127; mantissa = 0; } else if (exponent < -126) { /* Denormalized */ mantissa |= 0x1000000; mantissa >>= (-126 - exponent); exponent = -127; } /* Round off mantissa */ mantissa = (mantissa + 1) >> 1; /* Check if mantissa went over 2.0 */ if (mantissa & 0x800000) { exponent += 1; mantissa &= 0x7FFFFF; mantissa >>= 1; } } /* Combine fields */ out.i = mantissa; out.i |= (uint32_t)(exponent + 127) << 23; out.i |= (uint32_t)sign << 31; *dest = out.f; return true; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,909
FreeRDP
445a5a42c500ceb80f8fa7f2c11f3682538033f3
POINTER_POSITION_UPDATE* update_read_pointer_position(rdpUpdate* update, wStream* s) { POINTER_POSITION_UPDATE* pointer_position = calloc(1, sizeof(POINTER_POSITION_UPDATE)); if (!pointer_position) goto fail; if (Stream_GetRemainingLength(s) < 4) goto fail; Stream_Read_UINT16(s, pointer_position->xPos); /* xPos (2 bytes) */ Stream_Read_UINT16(s, pointer_position->yPos); /* yPos (2 bytes) */ return pointer_position; fail: free_pointer_position_update(update->context, pointer_position); return NULL; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,058
tensorflow
6972f9dfe325636b3db4e0bc517ee22a159365c0
explicit FusedBatchNormGradOpV3(OpKernelConstruction* context) : FusedBatchNormGradOpBase<Device, T, U>(context) {}
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,962
linux-2.6
f151cd2c54ddc7714e2f740681350476cda03a28
parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat, unsigned char *data, struct list_head *auth_tok_list, struct ecryptfs_auth_tok **new_auth_tok, size_t *packet_size, size_t max_packet_size) { size_t body_size; struct ecryptfs_auth_tok_list_item *auth_tok_list_item; size_t length_size; int rc = 0; (*packet_size) = 0; (*new_auth_tok) = NULL; /** *This format is inspired by OpenPGP; see RFC 2440 * packet tag 3 * * Tag 3 identifier (1 byte) * Max Tag 3 packet size (max 3 bytes) * Version (1 byte) * Cipher code (1 byte) * S2K specifier (1 byte) * Hash identifier (1 byte) * Salt (ECRYPTFS_SALT_SIZE) * Hash iterations (1 byte) * Encrypted key (arbitrary) * * (ECRYPTFS_SALT_SIZE + 7) minimum packet size */ if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) { printk(KERN_ERR "Max packet size too large\n"); rc = -EINVAL; goto out; } if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) { printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n", ECRYPTFS_TAG_3_PACKET_TYPE); rc = -EINVAL; goto out; } /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or * at end of function upon failure */ auth_tok_list_item = kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL); if (!auth_tok_list_item) { printk(KERN_ERR "Unable to allocate memory\n"); rc = -ENOMEM; goto out; } (*new_auth_tok) = &auth_tok_list_item->auth_tok; rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size, &length_size); if (rc) { printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n", rc); goto out_free; } if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) { printk(KERN_WARNING "Invalid body size ([%td])\n", body_size); rc = -EINVAL; goto out_free; } (*packet_size) += length_size; if (unlikely((*packet_size) + body_size > max_packet_size)) { printk(KERN_ERR "Packet size exceeds max\n"); rc = -EINVAL; goto out_free; } (*new_auth_tok)->session_key.encrypted_key_size = (body_size - (ECRYPTFS_SALT_SIZE + 5)); if (unlikely(data[(*packet_size)++] != 0x04)) { printk(KERN_WARNING "Unknown version number [%d]\n", data[(*packet_size) - 1]); rc = -EINVAL; goto out_free; } ecryptfs_cipher_code_to_string(crypt_stat->cipher, (u16)data[(*packet_size)]); /* A little extra work to differentiate among the AES key * sizes; see RFC2440 */ switch(data[(*packet_size)++]) { case RFC2440_CIPHER_AES_192: crypt_stat->key_size = 24; break; default: crypt_stat->key_size = (*new_auth_tok)->session_key.encrypted_key_size; } ecryptfs_init_crypt_ctx(crypt_stat); if (unlikely(data[(*packet_size)++] != 0x03)) { printk(KERN_WARNING "Only S2K ID 3 is currently supported\n"); rc = -ENOSYS; goto out_free; } /* TODO: finish the hash mapping */ switch (data[(*packet_size)++]) { case 0x01: /* See RFC2440 for these numbers and their mappings */ /* Choose MD5 */ memcpy((*new_auth_tok)->token.password.salt, &data[(*packet_size)], ECRYPTFS_SALT_SIZE); (*packet_size) += ECRYPTFS_SALT_SIZE; /* This conversion was taken straight from RFC2440 */ (*new_auth_tok)->token.password.hash_iterations = ((u32) 16 + (data[(*packet_size)] & 15)) << ((data[(*packet_size)] >> 4) + 6); (*packet_size)++; /* Friendly reminder: * (*new_auth_tok)->session_key.encrypted_key_size = * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */ memcpy((*new_auth_tok)->session_key.encrypted_key, &data[(*packet_size)], (*new_auth_tok)->session_key.encrypted_key_size); (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size; (*new_auth_tok)->session_key.flags &= ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; (*new_auth_tok)->session_key.flags |= ECRYPTFS_CONTAINS_ENCRYPTED_KEY; (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */ break; default: ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: " "[%d]\n", data[(*packet_size) - 1]); rc = -ENOSYS; goto out_free; } (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD; /* TODO: Parametarize; we might actually want userspace to * decrypt the session key. */ (*new_auth_tok)->session_key.flags &= ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); (*new_auth_tok)->session_key.flags &= ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); list_add(&auth_tok_list_item->list, auth_tok_list); goto out; out_free: (*new_auth_tok) = NULL; memset(auth_tok_list_item, 0, sizeof(struct ecryptfs_auth_tok_list_item)); kmem_cache_free(ecryptfs_auth_tok_list_item_cache, auth_tok_list_item); out: if (rc) (*packet_size) = 0; return rc; }
1
CVE-2009-2407
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
540
linux
9060cb719e61b685ec0102574e10337fa5f445ea
int af_alg_release(struct socket *sock) { if (sock->sk) sock_put(sock->sk); return 0; }
1
CVE-2019-8912
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
5,543
pcre2
03654e751e7f0700693526b67dfcadda6b42c9d0
static int get_recurse_data_length(compiler_common *common, PCRE2_SPTR cc, PCRE2_SPTR ccend, BOOL *needs_control_head, BOOL *has_quit, BOOL *has_accept) { int length = 1; int size, offset; PCRE2_SPTR alternative; BOOL quit_found = FALSE; BOOL accept_found = FALSE; BOOL setsom_found = FALSE; BOOL setmark_found = FALSE; BOOL control_head_found = FALSE; memset(common->recurse_bitset, 0, common->recurse_bitset_size); #if defined DEBUG_FORCE_CONTROL_HEAD && DEBUG_FORCE_CONTROL_HEAD SLJIT_ASSERT(common->control_head_ptr != 0); control_head_found = TRUE; #endif /* Calculate the sum of the private machine words. */ while (cc < ccend) { size = 0; switch(*cc) { case OP_SET_SOM: SLJIT_ASSERT(common->has_set_som); setsom_found = TRUE; cc += 1; break; case OP_RECURSE: if (common->has_set_som) setsom_found = TRUE; if (common->mark_ptr != 0) setmark_found = TRUE; if (common->capture_last_ptr != 0 && recurse_check_bit(common, common->capture_last_ptr)) length++; cc += 1 + LINK_SIZE; break; case OP_KET: offset = PRIVATE_DATA(cc); if (offset != 0) { if (recurse_check_bit(common, offset)) length++; SLJIT_ASSERT(PRIVATE_DATA(cc + 1) != 0); cc += PRIVATE_DATA(cc + 1); } cc += 1 + LINK_SIZE; break; case OP_ASSERT: case OP_ASSERT_NOT: case OP_ASSERTBACK: case OP_ASSERTBACK_NOT: case OP_ASSERT_NA: case OP_ASSERTBACK_NA: case OP_ONCE: case OP_SCRIPT_RUN: case OP_BRAPOS: case OP_SBRA: case OP_SBRAPOS: case OP_SCOND: SLJIT_ASSERT(PRIVATE_DATA(cc) != 0); if (recurse_check_bit(common, PRIVATE_DATA(cc))) length++; cc += 1 + LINK_SIZE; break; case OP_CBRA: case OP_SCBRA: offset = GET2(cc, 1 + LINK_SIZE); if (recurse_check_bit(common, OVECTOR(offset << 1))) { SLJIT_ASSERT(recurse_check_bit(common, OVECTOR((offset << 1) + 1))); length += 2; } if (common->optimized_cbracket[offset] == 0 && recurse_check_bit(common, OVECTOR_PRIV(offset))) length++; if (common->capture_last_ptr != 0 && recurse_check_bit(common, common->capture_last_ptr)) length++; cc += 1 + LINK_SIZE + IMM2_SIZE; break; case OP_CBRAPOS: case OP_SCBRAPOS: offset = GET2(cc, 1 + LINK_SIZE); if (recurse_check_bit(common, OVECTOR(offset << 1))) { SLJIT_ASSERT(recurse_check_bit(common, OVECTOR((offset << 1) + 1))); length += 2; } if (recurse_check_bit(common, OVECTOR_PRIV(offset))) length++; if (recurse_check_bit(common, PRIVATE_DATA(cc))) length++; if (common->capture_last_ptr != 0 && recurse_check_bit(common, common->capture_last_ptr)) length++; cc += 1 + LINK_SIZE + IMM2_SIZE; break; case OP_COND: /* Might be a hidden SCOND. */ alternative = cc + GET(cc, 1); if ((*alternative == OP_KETRMAX || *alternative == OP_KETRMIN) && recurse_check_bit(common, PRIVATE_DATA(cc))) length++; cc += 1 + LINK_SIZE; break; CASE_ITERATOR_PRIVATE_DATA_1 offset = PRIVATE_DATA(cc); if (offset != 0 && recurse_check_bit(common, offset)) length++; cc += 2; #ifdef SUPPORT_UNICODE if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); #endif break; CASE_ITERATOR_PRIVATE_DATA_2A offset = PRIVATE_DATA(cc); if (offset != 0 && recurse_check_bit(common, offset)) { SLJIT_ASSERT(recurse_check_bit(common, offset + sizeof(sljit_sw))); length += 2; } cc += 2; #ifdef SUPPORT_UNICODE if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); #endif break; CASE_ITERATOR_PRIVATE_DATA_2B offset = PRIVATE_DATA(cc); if (offset != 0 && recurse_check_bit(common, offset)) { SLJIT_ASSERT(recurse_check_bit(common, offset + sizeof(sljit_sw))); length += 2; } cc += 2 + IMM2_SIZE; #ifdef SUPPORT_UNICODE if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); #endif break; CASE_ITERATOR_TYPE_PRIVATE_DATA_1 offset = PRIVATE_DATA(cc); if (offset != 0 && recurse_check_bit(common, offset)) length++; cc += 1; break; CASE_ITERATOR_TYPE_PRIVATE_DATA_2A offset = PRIVATE_DATA(cc); if (offset != 0 && recurse_check_bit(common, offset)) { SLJIT_ASSERT(recurse_check_bit(common, offset + sizeof(sljit_sw))); length += 2; } cc += 1; break; CASE_ITERATOR_TYPE_PRIVATE_DATA_2B offset = PRIVATE_DATA(cc); if (offset != 0 && recurse_check_bit(common, offset)) { SLJIT_ASSERT(recurse_check_bit(common, offset + sizeof(sljit_sw))); length += 2; } cc += 1 + IMM2_SIZE; break; case OP_CLASS: case OP_NCLASS: #if defined SUPPORT_UNICODE || PCRE2_CODE_UNIT_WIDTH != 8 case OP_XCLASS: size = (*cc == OP_XCLASS) ? GET(cc, 1) : 1 + 32 / (int)sizeof(PCRE2_UCHAR); #else size = 1 + 32 / (int)sizeof(PCRE2_UCHAR); #endif offset = PRIVATE_DATA(cc); if (offset != 0 && recurse_check_bit(common, offset)) length += get_class_iterator_size(cc + size); cc += size; break; case OP_MARK: case OP_COMMIT_ARG: case OP_PRUNE_ARG: case OP_THEN_ARG: SLJIT_ASSERT(common->mark_ptr != 0); if (!setmark_found) setmark_found = TRUE; if (common->control_head_ptr != 0) control_head_found = TRUE; if (*cc != OP_MARK) quit_found = TRUE; cc += 1 + 2 + cc[1]; break; case OP_PRUNE: case OP_SKIP: case OP_COMMIT: quit_found = TRUE; cc++; break; case OP_SKIP_ARG: quit_found = TRUE; cc += 1 + 2 + cc[1]; break; case OP_THEN: SLJIT_ASSERT(common->control_head_ptr != 0); quit_found = TRUE; control_head_found = TRUE; cc++; break; case OP_ACCEPT: case OP_ASSERT_ACCEPT: accept_found = TRUE; cc++; break; default: cc = next_opcode(common, cc); SLJIT_ASSERT(cc != NULL); break; } } SLJIT_ASSERT(cc == ccend); if (control_head_found) length++; if (quit_found) { if (setsom_found) length++; if (setmark_found) length++; } *needs_control_head = control_head_found; *has_quit = quit_found; *has_accept = accept_found; return length; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,710
libjpeg-turbo
82923eb93a2eacf4a593e00e3e672bbb86a8a3a0
read_non_rle_pixel (tga_source_ptr sinfo) /* Read one Targa pixel from the input file; no RLE expansion */ { register FILE *infile = sinfo->pub.input_file; register int i; for (i = 0; i < sinfo->pixel_size; i++) { sinfo->tga_pixel[i] = (U_CHAR) getc(infile); } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,688
linux
a6138db815df5ee542d848318e5dae681590fccd
static int do_remount(struct path *path, int flags, int mnt_flags, void *data) { int err; struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != path->mnt->mnt_root) return -EINVAL; err = security_sb_remount(sb, data); if (err) return err; down_write(&sb->s_umount); if (flags & MS_BIND) err = change_mount_flags(path->mnt, flags); else if (!capable(CAP_SYS_ADMIN)) err = -EPERM; else err = do_remount_sb(sb, flags, data, 0); if (!err) { lock_mount_hash(); mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; mnt->mnt.mnt_flags = mnt_flags; touch_mnt_namespace(mnt->mnt_ns); unlock_mount_hash(); } up_write(&sb->s_umount); return err; }
1
CVE-2014-5206
CWE-264
Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.
Not Found in CWE Page
4,804
linux
ef87dbe7614341c2e7bfe8d32fcb7028cc97442c
static int raw_cmd_copyin(int cmd, void __user *param, struct floppy_raw_cmd **rcmd) { struct floppy_raw_cmd *ptr; int ret; int i; *rcmd = NULL; loop: ptr = kmalloc(sizeof(struct floppy_raw_cmd), GFP_USER); if (!ptr) return -ENOMEM; *rcmd = ptr; ret = copy_from_user(ptr, param, sizeof(*ptr)); if (ret) return -EFAULT; ptr->next = NULL; ptr->buffer_length = 0; param += sizeof(struct floppy_raw_cmd); if (ptr->cmd_count > 33) /* the command may now also take up the space * initially intended for the reply & the * reply count. Needed for long 82078 commands * such as RESTORE, which takes ... 17 command * bytes. Murphy's law #137: When you reserve * 16 bytes for a structure, you'll one day * discover that you really need 17... */ return -EINVAL; for (i = 0; i < 16; i++) ptr->reply[i] = 0; ptr->resultcode = 0; ptr->kernel_data = NULL; if (ptr->flags & (FD_RAW_READ | FD_RAW_WRITE)) { if (ptr->length <= 0) return -EINVAL; ptr->kernel_data = (char *)fd_dma_mem_alloc(ptr->length); fallback_on_nodma_alloc(&ptr->kernel_data, ptr->length); if (!ptr->kernel_data) return -ENOMEM; ptr->buffer_length = ptr->length; } if (ptr->flags & FD_RAW_WRITE) { ret = fd_copyin(ptr->data, ptr->kernel_data, ptr->length); if (ret) return ret; } if (ptr->flags & FD_RAW_MORE) { rcmd = &(ptr->next); ptr->rate &= 0x43; goto loop; } return 0; }
1
CVE-2014-1737
CWE-264
Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.
Not Found in CWE Page
222
acpica
37f2c716f2c6ab14c3ba557a539c3ee3224931b5
AcpiNsEvaluate ( ACPI_EVALUATE_INFO *Info) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsEvaluate); if (!Info) { return_ACPI_STATUS (AE_BAD_PARAMETER); } if (!Info->Node) { /* * Get the actual namespace node for the target object if we * need to. Handles these cases: * * 1) Null node, valid pathname from root (absolute path) * 2) Node and valid pathname (path relative to Node) * 3) Node, Null pathname */ Status = AcpiNsGetNode (Info->PrefixNode, Info->RelativePathname, ACPI_NS_NO_UPSEARCH, &Info->Node); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* * For a method alias, we must grab the actual method node so that * proper scoping context will be established before execution. */ if (AcpiNsGetType (Info->Node) == ACPI_TYPE_LOCAL_METHOD_ALIAS) { Info->Node = ACPI_CAST_PTR ( ACPI_NAMESPACE_NODE, Info->Node->Object); } /* Complete the info block initialization */ Info->ReturnObject = NULL; Info->NodeFlags = Info->Node->Flags; Info->ObjDesc = AcpiNsGetAttachedObject (Info->Node); ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "%s [%p] Value %p\n", Info->RelativePathname, Info->Node, AcpiNsGetAttachedObject (Info->Node))); /* Get info if we have a predefined name (_HID, etc.) */ Info->Predefined = AcpiUtMatchPredefinedMethod (Info->Node->Name.Ascii); /* Get the full pathname to the object, for use in warning messages */ Info->FullPathname = AcpiNsGetNormalizedPathname (Info->Node, TRUE); if (!Info->FullPathname) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Count the number of arguments being passed in */ Info->ParamCount = 0; if (Info->Parameters) { while (Info->Parameters[Info->ParamCount]) { Info->ParamCount++; } /* Warn on impossible argument count */ if (Info->ParamCount > ACPI_METHOD_NUM_ARGS) { ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, ACPI_WARN_ALWAYS, "Excess arguments (%u) - using only %u", Info->ParamCount, ACPI_METHOD_NUM_ARGS)); Info->ParamCount = ACPI_METHOD_NUM_ARGS; } } /* * For predefined names: Check that the declared argument count * matches the ACPI spec -- otherwise this is a BIOS error. */ AcpiNsCheckAcpiCompliance (Info->FullPathname, Info->Node, Info->Predefined); /* * For all names: Check that the incoming argument count for * this method/object matches the actual ASL/AML definition. */ AcpiNsCheckArgumentCount (Info->FullPathname, Info->Node, Info->ParamCount, Info->Predefined); /* For predefined names: Typecheck all incoming arguments */ AcpiNsCheckArgumentTypes (Info); /* * Three major evaluation cases: * * 1) Object types that cannot be evaluated by definition * 2) The object is a control method -- execute it * 3) The object is not a method -- just return it's current value */ switch (AcpiNsGetType (Info->Node)) { case ACPI_TYPE_DEVICE: case ACPI_TYPE_EVENT: case ACPI_TYPE_MUTEX: case ACPI_TYPE_REGION: case ACPI_TYPE_THERMAL: case ACPI_TYPE_LOCAL_SCOPE: /* * 1) Disallow evaluation of certain object types. For these, * object evaluation is undefined and not supported. */ ACPI_ERROR ((AE_INFO, "%s: Evaluation of object type [%s] is not supported", Info->FullPathname, AcpiUtGetTypeName (Info->Node->Type))); Status = AE_TYPE; goto Cleanup; case ACPI_TYPE_METHOD: /* * 2) Object is a control method - execute it */ /* Verify that there is a method object associated with this node */ if (!Info->ObjDesc) { ACPI_ERROR ((AE_INFO, "%s: Method has no attached sub-object", Info->FullPathname)); Status = AE_NULL_OBJECT; goto Cleanup; } ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "**** Execute method [%s] at AML address %p length %X\n", Info->FullPathname, Info->ObjDesc->Method.AmlStart + 1, Info->ObjDesc->Method.AmlLength - 1)); /* * Any namespace deletion must acquire both the namespace and * interpreter locks to ensure that no thread is using the portion of * the namespace that is being deleted. * * Execute the method via the interpreter. The interpreter is locked * here before calling into the AML parser */ AcpiExEnterInterpreter (); Status = AcpiPsExecuteMethod (Info); AcpiExExitInterpreter (); break; default: /* * 3) All other non-method objects -- get the current object value */ /* * Some objects require additional resolution steps (e.g., the Node * may be a field that must be read, etc.) -- we can't just grab * the object out of the node. * * Use ResolveNodeToValue() to get the associated value. * * NOTE: we can get away with passing in NULL for a walk state because * the Node is guaranteed to not be a reference to either a method * local or a method argument (because this interface is never called * from a running method.) * * Even though we do not directly invoke the interpreter for object * resolution, we must lock it because we could access an OpRegion. * The OpRegion access code assumes that the interpreter is locked. */ AcpiExEnterInterpreter (); /* TBD: ResolveNodeToValue has a strange interface, fix */ Info->ReturnObject = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Info->Node); Status = AcpiExResolveNodeToValue (ACPI_CAST_INDIRECT_PTR ( ACPI_NAMESPACE_NODE, &Info->ReturnObject), NULL); AcpiExExitInterpreter (); if (ACPI_FAILURE (Status)) { Info->ReturnObject = NULL; goto Cleanup; } ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Returned object %p [%s]\n", Info->ReturnObject, AcpiUtGetObjectTypeName (Info->ReturnObject))); Status = AE_CTRL_RETURN_VALUE; /* Always has a "return value" */ break; } /* * For predefined names, check the return value against the ACPI * specification. Some incorrect return value types are repaired. */ (void) AcpiNsCheckReturnValue (Info->Node, Info, Info->ParamCount, Status, &Info->ReturnObject); /* Check if there is a return value that must be dealt with */ if (Status == AE_CTRL_RETURN_VALUE) { /* If caller does not want the return value, delete it */ if (Info->Flags & ACPI_IGNORE_RETURN_VALUE) { AcpiUtRemoveReference (Info->ReturnObject); Info->ReturnObject = NULL; } /* Map AE_CTRL_RETURN_VALUE to AE_OK, we are done with it */ Status = AE_OK; } else if (ACPI_FAILURE(Status)) { /* If ReturnObject exists, delete it */ if (Info->ReturnObject) { AcpiUtRemoveReference (Info->ReturnObject); Info->ReturnObject = NULL; } } ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "*** Completed evaluation of object %s ***\n", Info->RelativePathname)); Cleanup: /* * Namespace was unlocked by the handling AcpiNs* function, so we * just free the pathname and return */ ACPI_FREE (Info->FullPathname); Info->FullPathname = NULL; return_ACPI_STATUS (Status); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,229
vino
9c8b9f81205203db6c31068babbfb8a734acacdb
rfbSendServerCutText(rfbScreenInfoPtr rfbScreen,char *str, int len) { rfbClientPtr cl; rfbServerCutTextMsg sct; rfbClientIteratorPtr iterator; iterator = rfbGetClientIterator(rfbScreen); while ((cl = rfbClientIteratorNext(iterator)) != NULL) { sct.type = rfbServerCutText; sct.length = Swap32IfLE(len); if (WriteExact(cl, (char *)&sct, sz_rfbServerCutTextMsg) < 0) { rfbLogPerror("rfbSendServerCutText: write"); rfbCloseClient(cl); continue; } if (WriteExact(cl, str, len) < 0) { rfbLogPerror("rfbSendServerCutText: write"); rfbCloseClient(cl); } } rfbReleaseClientIterator(iterator); }
1
CVE-2012-4429
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
7,753
php-src
b4e4788c4461449b4587e19ef1f474ce938e4980
static void exif_iif_add_value(image_info_type *image_info, int section_index, char *name, int tag, int format, int length, void* value, int motorola_intel TSRMLS_DC) { size_t idex; void *vptr; image_info_value *info_value; image_info_data *info_data; image_info_data *list; if (length < 0) { return; } list = safe_erealloc(image_info->info_list[section_index].list, (image_info->info_list[section_index].count+1), sizeof(image_info_data), 0); image_info->info_list[section_index].list = list; info_data = &image_info->info_list[section_index].list[image_info->info_list[section_index].count]; memset(info_data, 0, sizeof(image_info_data)); info_data->tag = tag; info_data->format = format; info_data->length = length; info_data->name = estrdup(name); info_value = &info_data->value; switch (format) { case TAG_FMT_STRING: if (value) { length = php_strnlen(value, length); info_value->s = estrndup(value, length); info_data->length = length; } else { info_data->length = 0; info_value->s = estrdup(""); } break; default: /* Standard says more types possible but skip them... * but allow users to handle data if they know how to * So not return but use type UNDEFINED * return; */ info_data->tag = TAG_FMT_UNDEFINED;/* otherwise not freed from memory */ case TAG_FMT_SBYTE: case TAG_FMT_BYTE: /* in contrast to strings bytes do not need to allocate buffer for NULL if length==0 */ if (!length) break; case TAG_FMT_UNDEFINED: if (value) { if (tag == TAG_MAKER_NOTE) { length = MIN(length, strlen(value)); } /* do not recompute length here */ info_value->s = estrndup(value, length); info_data->length = length; } else { info_data->length = 0; info_value->s = estrdup(""); } break; case TAG_FMT_USHORT: case TAG_FMT_ULONG: case TAG_FMT_URATIONAL: case TAG_FMT_SSHORT: case TAG_FMT_SLONG: case TAG_FMT_SRATIONAL: case TAG_FMT_SINGLE: case TAG_FMT_DOUBLE: if (length==0) { break; } else if (length>1) { info_value->list = safe_emalloc(length, sizeof(image_info_value), 0); } else { info_value = &info_data->value; } for (idex=0,vptr=value; idex<(size_t)length; idex++,vptr=(char *) vptr + php_tiff_bytes_per_format[format]) { if (length>1) { info_value = &info_data->value.list[idex]; } switch (format) { case TAG_FMT_USHORT: info_value->u = php_ifd_get16u(vptr, motorola_intel); break; case TAG_FMT_ULONG: info_value->u = php_ifd_get32u(vptr, motorola_intel); break; case TAG_FMT_URATIONAL: info_value->ur.num = php_ifd_get32u(vptr, motorola_intel); info_value->ur.den = php_ifd_get32u(4+(char *)vptr, motorola_intel); break; case TAG_FMT_SSHORT: info_value->i = php_ifd_get16s(vptr, motorola_intel); break; case TAG_FMT_SLONG: info_value->i = php_ifd_get32s(vptr, motorola_intel); break; case TAG_FMT_SRATIONAL: info_value->sr.num = php_ifd_get32u(vptr, motorola_intel); info_value->sr.den = php_ifd_get32u(4+(char *)vptr, motorola_intel); break; case TAG_FMT_SINGLE: #ifdef EXIF_DEBUG php_error_docref(NULL TSRMLS_CC, E_WARNING, "Found value of type single"); #endif info_value->f = *(float *)value; case TAG_FMT_DOUBLE: #ifdef EXIF_DEBUG php_error_docref(NULL TSRMLS_CC, E_WARNING, "Found value of type double"); #endif info_value->d = *(double *)value; break; } } } image_info->sections_found |= 1<<section_index; image_info->info_list[section_index].count++; }
1
CVE-2018-10549
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
9,583
linux
c2349758acf1874e4c2b93fe41d072336f1a31d0
void rds_ib_exit(void) { rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); rds_ib_unregister_client(); rds_ib_destroy_nodev_conns(); rds_ib_sysctl_exit(); rds_ib_recv_exit(); rds_trans_unregister(&rds_ib_transport); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,941
linux
b3baa0fbd02a1a9d493d8cb92ae4a4491b9e9d13
void __skb_get_hash(struct sk_buff *skb) { struct flow_keys keys; u32 hash; __flow_hash_secret_init(); hash = ___skb_get_hash(skb, &keys, hashrnd); if (!hash) return; if (keys.ports.ports) skb->l4_hash = 1; skb->sw_hash = 1; skb->hash = hash; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,162
linux
54d83fc74aa9ec72794373cb47432c5f7fb1a309
static inline bool unconditional(const struct ip6t_ip6 *ipv6) { static const struct ip6t_ip6 uncond; return memcmp(ipv6, &uncond, sizeof(uncond)) == 0; }
1
CVE-2016-3134
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
8,075