title
stringclasses
1 value
text
stringlengths
30
426k
id
stringlengths
27
30
asv_bench/benchmarks/strings.py/Dummies/time_get_dummies class Dummies: def time_get_dummies(self, dtype): self.s.str.get_dummies("|")
negative_train_query0_00098
asv_bench/benchmarks/strings.py/Encode/setup class Encode: def setup(self): self.ser = Series(Index([f"i-{i}" for i in range(10_000)], dtype=object))
negative_train_query0_00099
asv_bench/benchmarks/strings.py/Encode/time_encode_decode class Encode: def time_encode_decode(self): self.ser.str.encode("utf-8").str.decode("utf-8")
negative_train_query0_00100
asv_bench/benchmarks/strings.py/Slice/setup class Slice: def setup(self): self.s = Series(["abcdefg", np.nan] * 500000)
negative_train_query0_00101
asv_bench/benchmarks/strings.py/Slice/time_vector_slice class Slice: def time_vector_slice(self): # GH 2602 self.s.str[:5]
negative_train_query0_00102
asv_bench/benchmarks/strings.py/Iter/time_iter class Iter: def time_iter(self, dtype): for i in self.s: pass
negative_train_query0_00103
asv_bench/benchmarks/strings.py/StringArrayConstruction/setup class StringArrayConstruction: def setup(self): self.series_arr = np.array([str(i) * 10 for i in range(10**5)], dtype=object) self.series_arr_nan = np.concatenate([self.series_arr, np.array([NA] * 1000)])
negative_train_query0_00104
asv_bench/benchmarks/strings.py/StringArrayConstruction/time_string_array_construction class StringArrayConstruction: def time_string_array_construction(self): StringArray(self.series_arr)
negative_train_query0_00105
asv_bench/benchmarks/strings.py/StringArrayConstruction/time_string_array_with_nan_construction class StringArrayConstruction: def time_string_array_with_nan_construction(self): StringArray(self.series_arr_nan)
negative_train_query0_00106
asv_bench/benchmarks/strings.py/StringArrayConstruction/peakmem_stringarray_construction class StringArrayConstruction: def peakmem_stringarray_construction(self): StringArray(self.series_arr)
negative_train_query0_00107
asv_bench/benchmarks/frame_ctor.py/FromDicts/setup class FromDicts: def setup(self): N, K = 5000, 50 self.index = pd.Index([f"i-{i}" for i in range(N)], dtype=object) self.columns = pd.Index([f"i-{i}" for i in range(K)], dtype=object) frame = DataFrame(np.random.randn(N, K), index=self.index, columns=self.columns) self.data = frame.to_dict() self.dict_list = frame.to_dict(orient="records") self.data2 = {i: {j: float(j) for j in range(100)} for i in range(2000)} # arrays which we won't consolidate self.dict_of_categoricals = {i: Categorical(np.arange(N)) for i in range(K)}
negative_train_query0_00108
asv_bench/benchmarks/frame_ctor.py/FromDicts/time_list_of_dict class FromDicts: def time_list_of_dict(self): DataFrame(self.dict_list)
negative_train_query0_00109
asv_bench/benchmarks/frame_ctor.py/FromDicts/time_nested_dict class FromDicts: def time_nested_dict(self): DataFrame(self.data)
negative_train_query0_00110
asv_bench/benchmarks/frame_ctor.py/FromDicts/time_nested_dict_index class FromDicts: def time_nested_dict_index(self): DataFrame(self.data, index=self.index)
negative_train_query0_00111
asv_bench/benchmarks/frame_ctor.py/FromDicts/time_nested_dict_columns class FromDicts: def time_nested_dict_columns(self): DataFrame(self.data, columns=self.columns)
negative_train_query0_00112
asv_bench/benchmarks/frame_ctor.py/FromDicts/time_nested_dict_index_columns class FromDicts: def time_nested_dict_index_columns(self): DataFrame(self.data, index=self.index, columns=self.columns)
negative_train_query0_00113
asv_bench/benchmarks/frame_ctor.py/FromDicts/time_nested_dict_int64 class FromDicts: def time_nested_dict_int64(self): # nested dict, integer indexes, regression described in #621 DataFrame(self.data2)
negative_train_query0_00114
asv_bench/benchmarks/frame_ctor.py/FromDicts/time_dict_of_categoricals class FromDicts: def time_dict_of_categoricals(self): # dict of arrays that we won't consolidate DataFrame(self.dict_of_categoricals)
negative_train_query0_00115
asv_bench/benchmarks/frame_ctor.py/FromSeries/setup class FromSeries: def setup(self): mi = MultiIndex.from_product([range(100), range(100)]) self.s = Series(np.random.randn(10000), index=mi)
negative_train_query0_00116
asv_bench/benchmarks/frame_ctor.py/FromSeries/time_mi_series class FromSeries: def time_mi_series(self): DataFrame(self.s)
negative_train_query0_00117
asv_bench/benchmarks/frame_ctor.py/FromDictwithTimestamp/setup class FromDictwithTimestamp: def setup(self, offset): N = 10**3 idx = date_range(Timestamp("1/1/1900"), freq=offset, periods=N) df = DataFrame(np.random.randn(N, 10), index=idx) self.d = df.to_dict()
negative_train_query0_00118
asv_bench/benchmarks/frame_ctor.py/FromDictwithTimestamp/time_dict_with_timestamp_offsets class FromDictwithTimestamp: def time_dict_with_timestamp_offsets(self, offset): DataFrame(self.d)
negative_train_query0_00119
asv_bench/benchmarks/frame_ctor.py/FromRecords/setup class FromRecords: def setup(self, nrows): N = 100000 self.gen = ((x, (x * 20), (x * 100)) for x in range(N))
negative_train_query0_00120
asv_bench/benchmarks/frame_ctor.py/FromRecords/time_frame_from_records_generator class FromRecords: def time_frame_from_records_generator(self, nrows): # issue-6700 self.df = DataFrame.from_records(self.gen, nrows=nrows)
negative_train_query0_00121
asv_bench/benchmarks/frame_ctor.py/FromNDArray/setup class FromNDArray: def setup(self): N = 100000 self.data = np.random.randn(N)
negative_train_query0_00122
asv_bench/benchmarks/frame_ctor.py/FromNDArray/time_frame_from_ndarray class FromNDArray: def time_frame_from_ndarray(self): self.df = DataFrame(self.data)
negative_train_query0_00123
asv_bench/benchmarks/frame_ctor.py/FromLists/setup class FromLists: def setup(self): N = 1000 M = 100 self.data = [list(range(M)) for i in range(N)]
negative_train_query0_00124
asv_bench/benchmarks/frame_ctor.py/FromLists/time_frame_from_lists class FromLists: def time_frame_from_lists(self): self.df = DataFrame(self.data)
negative_train_query0_00125
asv_bench/benchmarks/frame_ctor.py/FromRange/setup class FromRange: def setup(self): N = 1_000_000 self.data = range(N)
negative_train_query0_00126
asv_bench/benchmarks/frame_ctor.py/FromRange/time_frame_from_range class FromRange: def time_frame_from_range(self): self.df = DataFrame(self.data)
negative_train_query0_00127
asv_bench/benchmarks/frame_ctor.py/FromScalar/setup class FromScalar: def setup(self): self.nrows = 100_000
negative_train_query0_00128
asv_bench/benchmarks/frame_ctor.py/FromScalar/time_frame_from_scalar_ea_float64 class FromScalar: def time_frame_from_scalar_ea_float64(self): DataFrame( 1.0, index=range(self.nrows), columns=list("abc"), dtype=Float64Dtype(), )
negative_train_query0_00129
asv_bench/benchmarks/frame_ctor.py/FromScalar/time_frame_from_scalar_ea_float64_na class FromScalar: def time_frame_from_scalar_ea_float64_na(self): DataFrame( NA, index=range(self.nrows), columns=list("abc"), dtype=Float64Dtype(), )
negative_train_query0_00130
asv_bench/benchmarks/frame_ctor.py/FromArrays/setup class FromArrays: def setup(self): N_rows = 1000 N_cols = 1000 self.float_arrays = [np.random.randn(N_rows) for _ in range(N_cols)] self.sparse_arrays = [ pd.arrays.SparseArray(np.random.randint(0, 2, N_rows), dtype="float64") for _ in range(N_cols) ] self.int_arrays = [ pd.array(np.random.randint(1000, size=N_rows), dtype="Int64") for _ in range(N_cols) ] self.index = pd.Index(range(N_rows)) self.columns = pd.Index(range(N_cols))
negative_train_query0_00131
asv_bench/benchmarks/frame_ctor.py/FromArrays/time_frame_from_arrays_float class FromArrays: def time_frame_from_arrays_float(self): self.df = DataFrame._from_arrays( self.float_arrays, index=self.index, columns=self.columns, verify_integrity=False, )
negative_train_query0_00132
asv_bench/benchmarks/frame_ctor.py/FromArrays/time_frame_from_arrays_int class FromArrays: def time_frame_from_arrays_int(self): self.df = DataFrame._from_arrays( self.int_arrays, index=self.index, columns=self.columns, verify_integrity=False, )
negative_train_query0_00133
asv_bench/benchmarks/frame_ctor.py/FromArrays/time_frame_from_arrays_sparse class FromArrays: def time_frame_from_arrays_sparse(self): self.df = DataFrame._from_arrays( self.sparse_arrays, index=self.index, columns=self.columns, verify_integrity=False, )
negative_train_query0_00134
asv_bench/benchmarks/join_merge.py/Concat/setup class Concat: def setup(self, axis): N = 1000 s = Series(N, index=Index([f"i-{i}" for i in range(N)], dtype=object)) self.series = [s[i:-i] for i in range(1, 10)] * 50 self.small_frames = [DataFrame(np.random.randn(5, 4))] * 1000 df = DataFrame( {"A": range(N)}, index=date_range("20130101", periods=N, freq="s") ) self.empty_left = [DataFrame(), df] self.empty_right = [df, DataFrame()] self.mixed_ndims = [df, df.head(N // 2)]
negative_train_query0_00135
asv_bench/benchmarks/join_merge.py/Concat/time_concat_series class Concat: def time_concat_series(self, axis): concat(self.series, axis=axis, sort=False)
negative_train_query0_00136
asv_bench/benchmarks/join_merge.py/Concat/time_concat_small_frames class Concat: def time_concat_small_frames(self, axis): concat(self.small_frames, axis=axis)
negative_train_query0_00137
asv_bench/benchmarks/join_merge.py/Concat/time_concat_empty_right class Concat: def time_concat_empty_right(self, axis): concat(self.empty_right, axis=axis)
negative_train_query0_00138
asv_bench/benchmarks/join_merge.py/Concat/time_concat_empty_left class Concat: def time_concat_empty_left(self, axis): concat(self.empty_left, axis=axis)
negative_train_query0_00139
asv_bench/benchmarks/join_merge.py/Concat/time_concat_mixed_ndims class Concat: def time_concat_mixed_ndims(self, axis): concat(self.mixed_ndims, axis=axis)
negative_train_query0_00140
asv_bench/benchmarks/join_merge.py/ConcatDataFrames/setup class ConcatDataFrames: def setup(self, axis, ignore_index): frame_c = DataFrame(np.zeros((10000, 200), dtype=np.float32, order="C")) self.frame_c = [frame_c] * 20 frame_f = DataFrame(np.zeros((10000, 200), dtype=np.float32, order="F")) self.frame_f = [frame_f] * 20
negative_train_query0_00141
asv_bench/benchmarks/join_merge.py/ConcatDataFrames/time_c_ordered class ConcatDataFrames: def time_c_ordered(self, axis, ignore_index): concat(self.frame_c, axis=axis, ignore_index=ignore_index)
negative_train_query0_00142
asv_bench/benchmarks/join_merge.py/ConcatDataFrames/time_f_ordered class ConcatDataFrames: def time_f_ordered(self, axis, ignore_index): concat(self.frame_f, axis=axis, ignore_index=ignore_index)
negative_train_query0_00143
asv_bench/benchmarks/join_merge.py/ConcatIndexDtype/setup class ConcatIndexDtype: def setup(self, dtype, structure, axis, sort): N = 10_000 if dtype == "datetime64[ns]": vals = date_range("1970-01-01", periods=N) elif dtype in ("int64", "Int64", "int64[pyarrow]"): vals = np.arange(N, dtype=np.int64) elif dtype in ("string[python]", "string[pyarrow]"): vals = Index([f"i-{i}" for i in range(N)], dtype=object) else: raise NotImplementedError idx = Index(vals, dtype=dtype) if structure == "monotonic": idx = idx.sort_values() elif structure == "non_monotonic": idx = idx[::-1] elif structure == "has_na": if not idx._can_hold_na: raise NotImplementedError idx = Index([None], dtype=dtype).append(idx) else: raise NotImplementedError self.series = [Series(i, idx[:-i]) for i in range(1, 6)]
negative_train_query0_00144
asv_bench/benchmarks/join_merge.py/ConcatIndexDtype/time_concat_series class ConcatIndexDtype: def time_concat_series(self, dtype, structure, axis, sort): concat(self.series, axis=axis, sort=sort)
negative_train_query0_00145
asv_bench/benchmarks/join_merge.py/Join/setup class Join: def setup(self, sort): level1 = Index([f"i-{i}" for i in range(10)], dtype=object).values level2 = Index([f"i-{i}" for i in range(1000)], dtype=object).values codes1 = np.arange(10).repeat(1000) codes2 = np.tile(np.arange(1000), 10) index2 = MultiIndex(levels=[level1, level2], codes=[codes1, codes2]) self.df_multi = DataFrame( np.random.randn(len(index2), 4), index=index2, columns=["A", "B", "C", "D"] ) self.key1 = np.tile(level1.take(codes1), 10) self.key2 = np.tile(level2.take(codes2), 10) self.df = DataFrame( { "data1": np.random.randn(100000), "data2": np.random.randn(100000), "key1": self.key1, "key2": self.key2, } ) self.df_key1 = DataFrame( np.random.randn(len(level1), 4), index=level1, columns=["A", "B", "C", "D"] ) self.df_key2 = DataFrame( np.random.randn(len(level2), 4), index=level2, columns=["A", "B", "C", "D"] ) shuf = np.arange(100000) np.random.shuffle(shuf) self.df_shuf = self.df.reindex(self.df.index[shuf])
negative_train_query0_00146
asv_bench/benchmarks/join_merge.py/Join/time_join_dataframe_index_multi class Join: def time_join_dataframe_index_multi(self, sort): self.df.join(self.df_multi, on=["key1", "key2"], sort=sort)
negative_train_query0_00147
asv_bench/benchmarks/join_merge.py/Join/time_join_dataframe_index_single_key_bigger class Join: def time_join_dataframe_index_single_key_bigger(self, sort): self.df.join(self.df_key2, on="key2", sort=sort)
negative_train_query0_00148
asv_bench/benchmarks/join_merge.py/Join/time_join_dataframe_index_single_key_small class Join: def time_join_dataframe_index_single_key_small(self, sort): self.df.join(self.df_key1, on="key1", sort=sort)
negative_train_query0_00149
asv_bench/benchmarks/join_merge.py/Join/time_join_dataframe_index_shuffle_key_bigger_sort class Join: def time_join_dataframe_index_shuffle_key_bigger_sort(self, sort): self.df_shuf.join(self.df_key2, on="key2", sort=sort)
negative_train_query0_00150
asv_bench/benchmarks/join_merge.py/Join/time_join_dataframes_cross class Join: def time_join_dataframes_cross(self, sort): self.df.loc[:2000].join(self.df_key1, how="cross", sort=sort)
negative_train_query0_00151
asv_bench/benchmarks/join_merge.py/JoinIndex/setup class JoinIndex: def setup(self): N = 5000 self.left = DataFrame( np.random.randint(1, N / 50, (N, 2)), columns=["jim", "joe"] ) self.right = DataFrame( np.random.randint(1, N / 50, (N, 2)), columns=["jolie", "jolia"] ).set_index("jolie")
negative_train_query0_00152
asv_bench/benchmarks/join_merge.py/JoinIndex/time_left_outer_join_index class JoinIndex: def time_left_outer_join_index(self): self.left.join(self.right, on="jim")
negative_train_query0_00153
asv_bench/benchmarks/join_merge.py/JoinMultiindexSubset/setup class JoinMultiindexSubset: def setup(self): N = 100_000 mi1 = MultiIndex.from_arrays([np.arange(N)] * 4, names=["a", "b", "c", "d"]) mi2 = MultiIndex.from_arrays([np.arange(N)] * 2, names=["a", "b"]) self.left = DataFrame({"col1": 1}, index=mi1) self.right = DataFrame({"col2": 2}, index=mi2)
negative_train_query0_00154
asv_bench/benchmarks/join_merge.py/JoinMultiindexSubset/time_join_multiindex_subset class JoinMultiindexSubset: def time_join_multiindex_subset(self): self.left.join(self.right)
negative_train_query0_00155
asv_bench/benchmarks/join_merge.py/JoinEmpty/setup class JoinEmpty: def setup(self): N = 100_000 self.df = DataFrame({"A": np.arange(N)}) self.df_empty = DataFrame(columns=["B", "C"], dtype="int64")
negative_train_query0_00156
asv_bench/benchmarks/join_merge.py/JoinEmpty/time_inner_join_left_empty class JoinEmpty: def time_inner_join_left_empty(self): self.df_empty.join(self.df, how="inner")
negative_train_query0_00157
asv_bench/benchmarks/join_merge.py/JoinEmpty/time_inner_join_right_empty class JoinEmpty: def time_inner_join_right_empty(self): self.df.join(self.df_empty, how="inner")
negative_train_query0_00158
asv_bench/benchmarks/join_merge.py/JoinNonUnique/setup class JoinNonUnique: def setup(self): date_index = date_range("01-Jan-2013", "23-Jan-2013", freq="min") daily_dates = date_index.to_period("D").to_timestamp("s", "s") self.fracofday = date_index.values - daily_dates.values self.fracofday = self.fracofday.astype("timedelta64[ns]") self.fracofday = self.fracofday.astype(np.float64) / 86_400_000_000_000 self.fracofday = Series(self.fracofday, daily_dates) index = date_range(date_index.min(), date_index.max(), freq="D") self.temp = Series(1.0, index)[self.fracofday.index]
negative_train_query0_00159
asv_bench/benchmarks/join_merge.py/JoinNonUnique/time_join_non_unique_equal class JoinNonUnique: def time_join_non_unique_equal(self): self.fracofday * self.temp
negative_train_query0_00160
asv_bench/benchmarks/join_merge.py/Merge/setup class Merge: def setup(self, sort): N = 10000 indices = Index([f"i-{i}" for i in range(N)], dtype=object).values indices2 = Index([f"i-{i}" for i in range(N)], dtype=object).values key = np.tile(indices[:8000], 10) key2 = np.tile(indices2[:8000], 10) self.left = DataFrame( {"key": key, "key2": key2, "value": np.random.randn(80000)} ) self.right = DataFrame( { "key": indices[2000:], "key2": indices2[2000:], "value2": np.random.randn(8000), } ) self.df = DataFrame( { "key1": np.tile(np.arange(500).repeat(10), 2), "key2": np.tile(np.arange(250).repeat(10), 4), "value": np.random.randn(10000), } ) self.df2 = DataFrame({"key1": np.arange(500), "value2": np.random.randn(500)}) self.df3 = self.df[:5000]
negative_train_query0_00161
asv_bench/benchmarks/join_merge.py/Merge/time_merge_2intkey class Merge: def time_merge_2intkey(self, sort): merge(self.left, self.right, sort=sort)
negative_train_query0_00162
asv_bench/benchmarks/join_merge.py/Merge/time_merge_dataframe_integer_2key class Merge: def time_merge_dataframe_integer_2key(self, sort): merge(self.df, self.df3, sort=sort)
negative_train_query0_00163
asv_bench/benchmarks/join_merge.py/Merge/time_merge_dataframe_integer_key class Merge: def time_merge_dataframe_integer_key(self, sort): merge(self.df, self.df2, on="key1", sort=sort)
negative_train_query0_00164
asv_bench/benchmarks/join_merge.py/Merge/time_merge_dataframe_empty_right class Merge: def time_merge_dataframe_empty_right(self, sort): merge(self.left, self.right.iloc[:0], sort=sort)
negative_train_query0_00165
asv_bench/benchmarks/join_merge.py/Merge/time_merge_dataframe_empty_left class Merge: def time_merge_dataframe_empty_left(self, sort): merge(self.left.iloc[:0], self.right, sort=sort)
negative_train_query0_00166
asv_bench/benchmarks/join_merge.py/Merge/time_merge_dataframes_cross class Merge: def time_merge_dataframes_cross(self, sort): merge(self.left.loc[:2000], self.right.loc[:2000], how="cross", sort=sort)
negative_train_query0_00167
asv_bench/benchmarks/join_merge.py/MergeEA/setup class MergeEA: def setup(self, dtype, monotonic): N = 10_000 indices = np.arange(1, N) key = np.tile(indices[:8000], 10) self.left = DataFrame( {"key": Series(key, dtype=dtype), "value": np.random.randn(80000)} ) self.right = DataFrame( { "key": Series(indices[2000:], dtype=dtype), "value2": np.random.randn(7999), } ) if monotonic: self.left = self.left.sort_values("key") self.right = self.right.sort_values("key")
negative_train_query0_00168
asv_bench/benchmarks/join_merge.py/MergeEA/time_merge class MergeEA: def time_merge(self, dtype, monotonic): merge(self.left, self.right)
negative_train_query0_00169
asv_bench/benchmarks/join_merge.py/I8Merge/setup class I8Merge: def setup(self, how): low, high, n = -1000, 1000, 10**6 self.left = DataFrame( np.random.randint(low, high, (n, 7)), columns=list("ABCDEFG") ) self.left["left"] = self.left.sum(axis=1) self.right = self.left.sample(frac=1).rename({"left": "right"}, axis=1) self.right = self.right.reset_index(drop=True) self.right["right"] *= -1
negative_train_query0_00170
asv_bench/benchmarks/join_merge.py/I8Merge/time_i8merge class I8Merge: def time_i8merge(self, how): merge(self.left, self.right, how=how)
negative_train_query0_00171
asv_bench/benchmarks/join_merge.py/UniqueMerge/setup class UniqueMerge: def setup(self, unique_elements): N = 1_000_000 self.left = DataFrame({"a": np.random.randint(1, unique_elements, (N,))}) self.right = DataFrame({"a": np.random.randint(1, unique_elements, (N,))}) uniques = self.right.a.drop_duplicates() self.right["a"] = concat( [uniques, Series(np.arange(0, -(N - len(uniques)), -1))], ignore_index=True )
negative_train_query0_00172
asv_bench/benchmarks/join_merge.py/UniqueMerge/time_unique_merge class UniqueMerge: def time_unique_merge(self, unique_elements): merge(self.left, self.right, how="inner")
negative_train_query0_00173
asv_bench/benchmarks/join_merge.py/MergeDatetime/setup class MergeDatetime: def setup(self, units, tz, monotonic): unit_left, unit_right = units N = 10_000 keys = Series(date_range("2012-01-01", freq="min", periods=N, tz=tz)) self.left = DataFrame( { "key": keys.sample(N * 10, replace=True).dt.as_unit(unit_left), "value1": np.random.randn(N * 10), } ) self.right = DataFrame( { "key": keys[:8000].dt.as_unit(unit_right), "value2": np.random.randn(8000), } ) if monotonic: self.left = self.left.sort_values("key") self.right = self.right.sort_values("key")
negative_train_query0_00174
asv_bench/benchmarks/join_merge.py/MergeDatetime/time_merge class MergeDatetime: def time_merge(self, units, tz, monotonic): merge(self.left, self.right)
negative_train_query0_00175
asv_bench/benchmarks/join_merge.py/MergeCategoricals/setup class MergeCategoricals: def setup(self): self.left_object = DataFrame( { "X": np.random.choice(range(10), size=(10000,)), "Y": np.random.choice(["one", "two", "three"], size=(10000,)), } ) self.right_object = DataFrame( { "X": np.random.choice(range(10), size=(10000,)), "Z": np.random.choice(["jjj", "kkk", "sss"], size=(10000,)), } ) self.left_cat = self.left_object.assign( Y=self.left_object["Y"].astype("category") ) self.right_cat = self.right_object.assign( Z=self.right_object["Z"].astype("category") ) self.left_cat_col = self.left_object.astype({"X": "category"}) self.right_cat_col = self.right_object.astype({"X": "category"}) self.left_cat_idx = self.left_cat_col.set_index("X") self.right_cat_idx = self.right_cat_col.set_index("X")
negative_train_query0_00176
asv_bench/benchmarks/join_merge.py/MergeCategoricals/time_merge_object class MergeCategoricals: def time_merge_object(self): merge(self.left_object, self.right_object, on="X")
negative_train_query0_00177
asv_bench/benchmarks/join_merge.py/MergeCategoricals/time_merge_cat class MergeCategoricals: def time_merge_cat(self): merge(self.left_cat, self.right_cat, on="X")
negative_train_query0_00178
asv_bench/benchmarks/join_merge.py/MergeCategoricals/time_merge_on_cat_col class MergeCategoricals: def time_merge_on_cat_col(self): merge(self.left_cat_col, self.right_cat_col, on="X")
negative_train_query0_00179
asv_bench/benchmarks/join_merge.py/MergeCategoricals/time_merge_on_cat_idx class MergeCategoricals: def time_merge_on_cat_idx(self): merge(self.left_cat_idx, self.right_cat_idx, on="X")
negative_train_query0_00180
asv_bench/benchmarks/join_merge.py/MergeOrdered/setup class MergeOrdered: def setup(self): groups = Index([f"i-{i}" for i in range(10)], dtype=object).values self.left = DataFrame( { "group": groups.repeat(5000), "key": np.tile(np.arange(0, 10000, 2), 10), "lvalue": np.random.randn(50000), } ) self.right = DataFrame( {"key": np.arange(10000), "rvalue": np.random.randn(10000)} )
negative_train_query0_00181
asv_bench/benchmarks/join_merge.py/MergeOrdered/time_merge_ordered class MergeOrdered: def time_merge_ordered(self): merge_ordered(self.left, self.right, on="key", left_by="group")
negative_train_query0_00182
asv_bench/benchmarks/join_merge.py/MergeAsof/setup class MergeAsof: def setup(self, direction, tolerance): one_count = 200000 two_count = 1000000 df1 = DataFrame( { "time": np.random.randint(0, one_count / 20, one_count), "key": np.random.choice(list(string.ascii_uppercase), one_count), "key2": np.random.randint(0, 25, one_count), "value1": np.random.randn(one_count), } ) df2 = DataFrame( { "time": np.random.randint(0, two_count / 20, two_count), "key": np.random.choice(list(string.ascii_uppercase), two_count), "key2": np.random.randint(0, 25, two_count), "value2": np.random.randn(two_count), } ) df1 = df1.sort_values("time") df2 = df2.sort_values("time") df1["time32"] = np.int32(df1.time) df2["time32"] = np.int32(df2.time) df1["timeu64"] = np.uint64(df1.time) df2["timeu64"] = np.uint64(df2.time) self.df1a = df1[["time", "value1"]] self.df2a = df2[["time", "value2"]] self.df1b = df1[["time", "key", "value1"]] self.df2b = df2[["time", "key", "value2"]] self.df1c = df1[["time", "key2", "value1"]] self.df2c = df2[["time", "key2", "value2"]] self.df1d = df1[["time32", "value1"]] self.df2d = df2[["time32", "value2"]] self.df1e = df1[["time", "key", "key2", "value1"]] self.df2e = df2[["time", "key", "key2", "value2"]] self.df1f = df1[["timeu64", "value1"]] self.df2f = df2[["timeu64", "value2"]]
negative_train_query0_00183
asv_bench/benchmarks/join_merge.py/MergeAsof/time_on_int class MergeAsof: def time_on_int(self, direction, tolerance): merge_asof( self.df1a, self.df2a, on="time", direction=direction, tolerance=tolerance )
negative_train_query0_00184
asv_bench/benchmarks/join_merge.py/MergeAsof/time_on_int32 class MergeAsof: def time_on_int32(self, direction, tolerance): merge_asof( self.df1d, self.df2d, on="time32", direction=direction, tolerance=tolerance )
negative_train_query0_00185
asv_bench/benchmarks/join_merge.py/MergeAsof/time_on_uint64 class MergeAsof: def time_on_uint64(self, direction, tolerance): merge_asof( self.df1f, self.df2f, on="timeu64", direction=direction, tolerance=tolerance )
negative_train_query0_00186
asv_bench/benchmarks/join_merge.py/MergeAsof/time_by_object class MergeAsof: def time_by_object(self, direction, tolerance): merge_asof( self.df1b, self.df2b, on="time", by="key", direction=direction, tolerance=tolerance, )
negative_train_query0_00187
asv_bench/benchmarks/join_merge.py/MergeAsof/time_by_int class MergeAsof: def time_by_int(self, direction, tolerance): merge_asof( self.df1c, self.df2c, on="time", by="key2", direction=direction, tolerance=tolerance, )
negative_train_query0_00188
asv_bench/benchmarks/join_merge.py/MergeAsof/time_multiby class MergeAsof: def time_multiby(self, direction, tolerance): merge_asof( self.df1e, self.df2e, on="time", by=["key", "key2"], direction=direction, tolerance=tolerance, )
negative_train_query0_00189
asv_bench/benchmarks/join_merge.py/MergeMultiIndex/setup class MergeMultiIndex: def setup(self, dtypes, how): n = 100_000 offset = 50_000 mi1 = MultiIndex.from_arrays( [ array(np.arange(n), dtype=dtypes[0]), array(np.arange(n), dtype=dtypes[1]), ] ) mi2 = MultiIndex.from_arrays( [ array(np.arange(offset, n + offset), dtype=dtypes[0]), array(np.arange(offset, n + offset), dtype=dtypes[1]), ] ) self.df1 = DataFrame({"col1": 1}, index=mi1) self.df2 = DataFrame({"col2": 2}, index=mi2)
negative_train_query0_00190
asv_bench/benchmarks/join_merge.py/MergeMultiIndex/time_merge_sorted_multiindex class MergeMultiIndex: def time_merge_sorted_multiindex(self, dtypes, how): # copy to avoid MultiIndex._values caching df1 = self.df1.copy() df2 = self.df2.copy() merge(df1, df2, how=how, left_index=True, right_index=True)
negative_train_query0_00191
asv_bench/benchmarks/join_merge.py/Align/setup class Align: def setup(self): size = 5 * 10**5 rng = np.arange(0, 10**13, 10**7) stamps = np.datetime64("now").view("i8") + rng idx1 = np.sort(np.random.choice(stamps, size, replace=False)) idx2 = np.sort(np.random.choice(stamps, size, replace=False)) self.ts1 = Series(np.random.randn(size), idx1) self.ts2 = Series(np.random.randn(size), idx2)
negative_train_query0_00192
asv_bench/benchmarks/join_merge.py/Align/time_series_align_int64_index class Align: def time_series_align_int64_index(self): self.ts1 + self.ts2
negative_train_query0_00193
asv_bench/benchmarks/join_merge.py/Align/time_series_align_left_monotonic class Align: def time_series_align_left_monotonic(self): self.ts1.align(self.ts2, join="left")
negative_train_query0_00194
asv_bench/benchmarks/boolean.py/TimeLogicalOps/setup class TimeLogicalOps: def setup(self): N = 10_000 left, right, lmask, rmask = np.random.randint(0, 2, size=(4, N)).astype("bool") self.left = pd.arrays.BooleanArray(left, lmask) self.right = pd.arrays.BooleanArray(right, rmask)
negative_train_query0_00195
asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_or_scalar class TimeLogicalOps: def time_or_scalar(self): self.left | True self.left | False
negative_train_query0_00196
asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_or_array class TimeLogicalOps: def time_or_array(self): self.left | self.right
negative_train_query0_00197