title
stringclasses
1 value
text
stringlengths
30
426k
id
stringlengths
27
30
asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_and_scalar class TimeLogicalOps: def time_and_scalar(self): self.left & True self.left & False
negative_train_query0_00198
asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_and_array class TimeLogicalOps: def time_and_array(self): self.left & self.right
negative_train_query0_00199
asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_xor_scalar class TimeLogicalOps: def time_xor_scalar(self): self.left ^ True self.left ^ False
negative_train_query0_00200
asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_xor_array class TimeLogicalOps: def time_xor_array(self): self.left ^ self.right
negative_train_query0_00201
asv_bench/benchmarks/gil.py/test_parallel def test_parallel(num_threads=2, kwargs_list=None): """ Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper
negative_train_query0_00202
asv_bench/benchmarks/gil.py/test_parallel/wrapper class test_parallel: def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner
negative_train_query0_00203
asv_bench/benchmarks/gil.py/test_parallel/wrapper/inner class test_parallel: def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join()
negative_train_query0_00204
asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/setup class ParallelGroupbyMethods: def setup(self, threads, method): N = 10**6 ngroups = 10**3 df = DataFrame( {"key": np.random.randint(0, ngroups, size=N), "data": np.random.randn(N)} ) @test_parallel(num_threads=threads) def parallel(): getattr(df.groupby("key")["data"], method)() self.parallel = parallel def loop(): getattr(df.groupby("key")["data"], method)() self.loop = loop
negative_train_query0_00205
asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/setup/parallel class ParallelGroupbyMethods: def parallel(): getattr(df.groupby("key")["data"], method)()
negative_train_query0_00206
asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/setup/loop class ParallelGroupbyMethods: def loop(): getattr(df.groupby("key")["data"], method)()
negative_train_query0_00207
asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/time_parallel class ParallelGroupbyMethods: def time_parallel(self, threads, method): self.parallel()
negative_train_query0_00208
asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/time_loop class ParallelGroupbyMethods: def time_loop(self, threads, method): for i in range(threads): self.loop()
negative_train_query0_00209
asv_bench/benchmarks/gil.py/ParallelGroups/setup class ParallelGroups: def setup(self, threads): size = 2**22 ngroups = 10**3 data = Series(np.random.randint(0, ngroups, size=size)) @test_parallel(num_threads=threads) def get_groups(): data.groupby(data).groups self.get_groups = get_groups
negative_train_query0_00210
asv_bench/benchmarks/gil.py/ParallelGroups/setup/get_groups class ParallelGroups: def get_groups(): data.groupby(data).groups
negative_train_query0_00211
asv_bench/benchmarks/gil.py/ParallelGroups/time_get_groups class ParallelGroups: def time_get_groups(self, threads): self.get_groups()
negative_train_query0_00212
asv_bench/benchmarks/gil.py/ParallelTake1D/setup class ParallelTake1D: def setup(self, dtype): N = 10**6 df = DataFrame({"col": np.arange(N, dtype=dtype)}) indexer = np.arange(100, len(df) - 100) @test_parallel(num_threads=2) def parallel_take1d(): take_nd(df["col"].values, indexer) self.parallel_take1d = parallel_take1d
negative_train_query0_00213
asv_bench/benchmarks/gil.py/ParallelTake1D/setup/parallel_take1d class ParallelTake1D: def parallel_take1d(): take_nd(df["col"].values, indexer)
negative_train_query0_00214
asv_bench/benchmarks/gil.py/ParallelTake1D/time_take1d class ParallelTake1D: def time_take1d(self, dtype): self.parallel_take1d()
negative_train_query0_00215
asv_bench/benchmarks/gil.py/ParallelKth/setup class ParallelKth: def setup(self): N = 10**7 k = 5 * 10**5 kwargs_list = [{"arr": np.random.randn(N)}, {"arr": np.random.randn(N)}] @test_parallel(num_threads=2, kwargs_list=kwargs_list) def parallel_kth_smallest(arr): algos.kth_smallest(arr, k) self.parallel_kth_smallest = parallel_kth_smallest
negative_train_query0_00216
asv_bench/benchmarks/gil.py/ParallelKth/setup/parallel_kth_smallest class ParallelKth: def parallel_kth_smallest(arr): algos.kth_smallest(arr, k)
negative_train_query0_00217
asv_bench/benchmarks/gil.py/ParallelKth/time_kth_smallest class ParallelKth: def time_kth_smallest(self): self.parallel_kth_smallest()
negative_train_query0_00218
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/setup class ParallelDatetimeFields: def setup(self): N = 10**6 self.dti = date_range("1900-01-01", periods=N, freq="min") self.period = self.dti.to_period("D")
negative_train_query0_00219
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_year class ParallelDatetimeFields: def time_datetime_field_year(self): @test_parallel(num_threads=2) def run(dti): dti.year run(self.dti)
negative_train_query0_00220
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_year/run class ParallelDatetimeFields: def run(dti): dti.year
negative_train_query0_00221
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_day class ParallelDatetimeFields: def time_datetime_field_day(self): @test_parallel(num_threads=2) def run(dti): dti.day run(self.dti)
negative_train_query0_00222
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_day/run class ParallelDatetimeFields: def run(dti): dti.day
negative_train_query0_00223
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_daysinmonth class ParallelDatetimeFields: def time_datetime_field_daysinmonth(self): @test_parallel(num_threads=2) def run(dti): dti.days_in_month run(self.dti)
negative_train_query0_00224
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_daysinmonth/run class ParallelDatetimeFields: def run(dti): dti.days_in_month
negative_train_query0_00225
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_normalize class ParallelDatetimeFields: def time_datetime_field_normalize(self): @test_parallel(num_threads=2) def run(dti): dti.normalize() run(self.dti)
negative_train_query0_00226
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_normalize/run class ParallelDatetimeFields: def run(dti): dti.normalize()
negative_train_query0_00227
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_to_period class ParallelDatetimeFields: def time_datetime_to_period(self): @test_parallel(num_threads=2) def run(dti): dti.to_period("s") run(self.dti)
negative_train_query0_00228
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_to_period/run class ParallelDatetimeFields: def run(dti): dti.to_period("s")
negative_train_query0_00229
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_period_to_datetime class ParallelDatetimeFields: def time_period_to_datetime(self): @test_parallel(num_threads=2) def run(period): period.to_timestamp() run(self.period)
negative_train_query0_00230
asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_period_to_datetime/run class ParallelDatetimeFields: def run(period): period.to_timestamp()
negative_train_query0_00231
asv_bench/benchmarks/gil.py/ParallelRolling/setup class ParallelRolling: def setup(self, method): win = 100 arr = np.random.rand(100000) if hasattr(DataFrame, "rolling"): df = DataFrame(arr).rolling(win) @test_parallel(num_threads=2) def parallel_rolling(): getattr(df, method)() self.parallel_rolling = parallel_rolling elif have_rolling_methods: rolling = { "median": rolling_median, "mean": rolling_mean, "min": rolling_min, "max": rolling_max, "var": rolling_var, "skew": rolling_skew, "kurt": rolling_kurt, "std": rolling_std, } @test_parallel(num_threads=2) def parallel_rolling(): rolling[method](arr, win) self.parallel_rolling = parallel_rolling else: raise NotImplementedError
negative_train_query0_00232
asv_bench/benchmarks/gil.py/ParallelRolling/setup/parallel_rolling class ParallelRolling: def parallel_rolling(): rolling[method](arr, win)
negative_train_query0_00233
asv_bench/benchmarks/gil.py/ParallelRolling/time_rolling class ParallelRolling: def time_rolling(self, method): self.parallel_rolling()
negative_train_query0_00234
asv_bench/benchmarks/gil.py/ParallelReadCSV/setup class ParallelReadCSV: def setup(self, dtype): rows = 10000 cols = 50 if dtype == "float": df = DataFrame(np.random.randn(rows, cols)) elif dtype == "datetime": df = DataFrame( np.random.randn(rows, cols), index=date_range("1/1/2000", periods=rows) ) elif dtype == "object": df = DataFrame( "foo", index=range(rows), columns=["object%03d" for _ in range(5)] ) else: raise NotImplementedError self.fname = f"__test_{dtype}__.csv" df.to_csv(self.fname) @test_parallel(num_threads=2) def parallel_read_csv(): read_csv(self.fname) self.parallel_read_csv = parallel_read_csv
negative_train_query0_00235
asv_bench/benchmarks/gil.py/ParallelReadCSV/setup/parallel_read_csv class ParallelReadCSV: def parallel_read_csv(): read_csv(self.fname)
negative_train_query0_00236
asv_bench/benchmarks/gil.py/ParallelReadCSV/time_read_csv class ParallelReadCSV: def time_read_csv(self, dtype): self.parallel_read_csv()
negative_train_query0_00237
asv_bench/benchmarks/gil.py/ParallelFactorize/setup class ParallelFactorize: def setup(self, threads): strings = Index([f"i-{i}" for i in range(100000)], dtype=object) @test_parallel(num_threads=threads) def parallel(): factorize(strings) self.parallel = parallel def loop(): factorize(strings) self.loop = loop
negative_train_query0_00238
asv_bench/benchmarks/gil.py/ParallelFactorize/setup/parallel class ParallelFactorize: def parallel(): factorize(strings)
negative_train_query0_00239
asv_bench/benchmarks/gil.py/ParallelFactorize/setup/loop class ParallelFactorize: def loop(): factorize(strings)
negative_train_query0_00240
asv_bench/benchmarks/gil.py/ParallelFactorize/time_parallel class ParallelFactorize: def time_parallel(self, threads): self.parallel()
negative_train_query0_00241
asv_bench/benchmarks/gil.py/ParallelFactorize/time_loop class ParallelFactorize: def time_loop(self, threads): for i in range(threads): self.loop()
negative_train_query0_00242
asv_bench/benchmarks/reindex.py/Reindex/setup class Reindex: def setup(self): rng = date_range(start="1/1/1970", periods=10000, freq="1min") self.df = DataFrame(np.random.rand(10000, 10), index=rng, columns=range(10)) self.df["foo"] = "bar" self.rng_subset = Index(rng[::2]) self.df2 = DataFrame( index=range(10000), data=np.random.rand(10000, 30), columns=range(30) ) N = 5000 K = 200 level1 = Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(K) level2 = np.tile(Index([f"i-{i}" for i in range(K)], dtype=object).values, N) index = MultiIndex.from_arrays([level1, level2]) self.s = Series(np.random.randn(N * K), index=index) self.s_subset = self.s[::2] self.s_subset_no_cache = self.s[::2].copy() mi = MultiIndex.from_product([rng, range(100)]) self.s2 = Series(np.random.randn(len(mi)), index=mi) self.s2_subset = self.s2[::2].copy()
negative_train_query0_00243
asv_bench/benchmarks/reindex.py/Reindex/time_reindex_dates class Reindex: def time_reindex_dates(self): self.df.reindex(self.rng_subset)
negative_train_query0_00244
asv_bench/benchmarks/reindex.py/Reindex/time_reindex_columns class Reindex: def time_reindex_columns(self): self.df2.reindex(columns=self.df.columns[1:5])
negative_train_query0_00245
asv_bench/benchmarks/reindex.py/Reindex/time_reindex_multiindex_with_cache class Reindex: def time_reindex_multiindex_with_cache(self): # MultiIndex._values gets cached self.s.reindex(self.s_subset.index)
negative_train_query0_00246
asv_bench/benchmarks/reindex.py/Reindex/time_reindex_multiindex_no_cache class Reindex: def time_reindex_multiindex_no_cache(self): # Copy to avoid MultiIndex._values getting cached self.s.reindex(self.s_subset_no_cache.index.copy())
negative_train_query0_00247
asv_bench/benchmarks/reindex.py/Reindex/time_reindex_multiindex_no_cache_dates class Reindex: def time_reindex_multiindex_no_cache_dates(self): # Copy to avoid MultiIndex._values getting cached self.s2_subset.reindex(self.s2.index.copy())
negative_train_query0_00248
asv_bench/benchmarks/reindex.py/ReindexMethod/setup class ReindexMethod: def setup(self, method, constructor): N = 100000 self.idx = constructor("1/1/2000", periods=N, freq="1min") self.ts = Series(np.random.randn(N), index=self.idx)[::2]
negative_train_query0_00249
asv_bench/benchmarks/reindex.py/ReindexMethod/time_reindex_method class ReindexMethod: def time_reindex_method(self, method, constructor): self.ts.reindex(self.idx, method=method)
negative_train_query0_00250
asv_bench/benchmarks/reindex.py/LevelAlign/setup class LevelAlign: def setup(self): self.index = MultiIndex( levels=[np.arange(10), np.arange(100), np.arange(100)], codes=[ np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10), ], ) self.df = DataFrame(np.random.randn(len(self.index), 4), index=self.index) self.df_level = DataFrame(np.random.randn(100, 4), index=self.index.levels[1])
negative_train_query0_00251
asv_bench/benchmarks/reindex.py/LevelAlign/time_align_level class LevelAlign: def time_align_level(self): self.df.align(self.df_level, level=1, copy=False)
negative_train_query0_00252
asv_bench/benchmarks/reindex.py/LevelAlign/time_reindex_level class LevelAlign: def time_reindex_level(self): self.df_level.reindex(self.index, level=1)
negative_train_query0_00253
asv_bench/benchmarks/reindex.py/DropDuplicates/setup class DropDuplicates: def setup(self, inplace): N = 10000 K = 10 key1 = Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(K) key2 = Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(K) self.df = DataFrame( {"key1": key1, "key2": key2, "value": np.random.randn(N * K)} ) self.df_nan = self.df.copy() self.df_nan.iloc[:10000, :] = np.nan self.s = Series(np.random.randint(0, 1000, size=10000)) self.s_str = Series( np.tile(Index([f"i-{i}" for i in range(1000)], dtype=object).values, 10) ) N = 1000000 K = 10000 key1 = np.random.randint(0, K, size=N) self.df_int = DataFrame({"key1": key1}) self.df_bool = DataFrame(np.random.randint(0, 2, size=(K, 10), dtype=bool))
negative_train_query0_00254
asv_bench/benchmarks/reindex.py/DropDuplicates/time_frame_drop_dups class DropDuplicates: def time_frame_drop_dups(self, inplace): self.df.drop_duplicates(["key1", "key2"], inplace=inplace)
negative_train_query0_00255
asv_bench/benchmarks/reindex.py/DropDuplicates/time_frame_drop_dups_na class DropDuplicates: def time_frame_drop_dups_na(self, inplace): self.df_nan.drop_duplicates(["key1", "key2"], inplace=inplace)
negative_train_query0_00256
asv_bench/benchmarks/reindex.py/DropDuplicates/time_series_drop_dups_int class DropDuplicates: def time_series_drop_dups_int(self, inplace): self.s.drop_duplicates(inplace=inplace)
negative_train_query0_00257
asv_bench/benchmarks/reindex.py/DropDuplicates/time_series_drop_dups_string class DropDuplicates: def time_series_drop_dups_string(self, inplace): self.s_str.drop_duplicates(inplace=inplace)
negative_train_query0_00258
asv_bench/benchmarks/reindex.py/DropDuplicates/time_frame_drop_dups_int class DropDuplicates: def time_frame_drop_dups_int(self, inplace): self.df_int.drop_duplicates(inplace=inplace)
negative_train_query0_00259
asv_bench/benchmarks/reindex.py/DropDuplicates/time_frame_drop_dups_bool class DropDuplicates: def time_frame_drop_dups_bool(self, inplace): self.df_bool.drop_duplicates(inplace=inplace)
negative_train_query0_00260
asv_bench/benchmarks/reindex.py/Align/setup class Align: def setup(self): n = 50000 indices = Index([f"i-{i}" for i in range(n)], dtype=object) subsample_size = 40000 self.x = Series(np.random.randn(n), indices) self.y = Series( np.random.randn(subsample_size), index=np.random.choice(indices, subsample_size, replace=False), )
negative_train_query0_00261
asv_bench/benchmarks/reindex.py/Align/time_align_series_irregular_string class Align: def time_align_series_irregular_string(self): self.x + self.y
negative_train_query0_00262
asv_bench/benchmarks/rolling.py/Methods/setup class Methods: def setup(self, constructor, window_kwargs, dtype, method): N = 10**5 window, kwargs = window_kwargs arr = (100 * np.random.random(N)).astype(dtype) obj = getattr(pd, constructor)(arr) self.window = getattr(obj, window)(**kwargs)
negative_train_query0_00263
asv_bench/benchmarks/rolling.py/Methods/time_method class Methods: def time_method(self, constructor, window_kwargs, dtype, method): getattr(self.window, method)()
negative_train_query0_00264
asv_bench/benchmarks/rolling.py/Methods/peakmem_method class Methods: def peakmem_method(self, constructor, window_kwargs, dtype, method): getattr(self.window, method)()
negative_train_query0_00265
asv_bench/benchmarks/rolling.py/Apply/setup class Apply: def setup(self, constructor, window, dtype, function, raw): N = 10**3 arr = (100 * np.random.random(N)).astype(dtype) self.roll = getattr(pd, constructor)(arr).rolling(window)
negative_train_query0_00266
asv_bench/benchmarks/rolling.py/Apply/time_rolling class Apply: def time_rolling(self, constructor, window, dtype, function, raw): self.roll.apply(function, raw=raw)
negative_train_query0_00267
asv_bench/benchmarks/rolling.py/NumbaEngineMethods/setup class NumbaEngineMethods: def setup(self, constructor, dtype, window_kwargs, method, parallel, cols): N = 10**3 window, kwargs = window_kwargs shape = (N, cols) if cols is not None and constructor != "Series" else N arr = (100 * np.random.random(shape)).astype(dtype) data = getattr(pd, constructor)(arr) # Warm the cache with warnings.catch_warnings(record=True): # Catch parallel=True not being applicable e.g. 1D data self.window = getattr(data, window)(**kwargs) getattr(self.window, method)( engine="numba", engine_kwargs={"parallel": parallel} )
negative_train_query0_00268
asv_bench/benchmarks/rolling.py/NumbaEngineMethods/test_method class NumbaEngineMethods: def test_method(self, constructor, dtype, window_kwargs, method, parallel, cols): with warnings.catch_warnings(record=True): getattr(self.window, method)( engine="numba", engine_kwargs={"parallel": parallel} )
negative_train_query0_00269
asv_bench/benchmarks/rolling.py/NumbaEngineApply/setup class NumbaEngineApply: def setup(self, constructor, dtype, window_kwargs, function, parallel, cols): N = 10**3 window, kwargs = window_kwargs shape = (N, cols) if cols is not None and constructor != "Series" else N arr = (100 * np.random.random(shape)).astype(dtype) data = getattr(pd, constructor)(arr) # Warm the cache with warnings.catch_warnings(record=True): # Catch parallel=True not being applicable e.g. 1D data self.window = getattr(data, window)(**kwargs) self.window.apply( function, raw=True, engine="numba", engine_kwargs={"parallel": parallel} )
negative_train_query0_00270
asv_bench/benchmarks/rolling.py/NumbaEngineApply/test_method class NumbaEngineApply: def test_method(self, constructor, dtype, window_kwargs, function, parallel, cols): with warnings.catch_warnings(record=True): self.window.apply( function, raw=True, engine="numba", engine_kwargs={"parallel": parallel} )
negative_train_query0_00271
asv_bench/benchmarks/rolling.py/EWMMethods/setup class EWMMethods: def setup(self, constructor, kwargs_method, dtype): N = 10**5 kwargs, method = kwargs_method arr = (100 * np.random.random(N)).astype(dtype) self.method = method self.ewm = getattr(pd, constructor)(arr).ewm(**kwargs)
negative_train_query0_00272
asv_bench/benchmarks/rolling.py/EWMMethods/time_ewm class EWMMethods: def time_ewm(self, constructor, kwargs_method, dtype): getattr(self.ewm, self.method)()
negative_train_query0_00273
asv_bench/benchmarks/rolling.py/VariableWindowMethods/setup class VariableWindowMethods: def setup(self, constructor, window, dtype, method): N = 10**5 arr = (100 * np.random.random(N)).astype(dtype) index = pd.date_range("2017-01-01", periods=N, freq="5s") self.window = getattr(pd, constructor)(arr, index=index).rolling(window)
negative_train_query0_00274
asv_bench/benchmarks/rolling.py/Pairwise/setup class Pairwise: def setup(self, kwargs_window, method, pairwise): N = 10**4 n_groups = 20 kwargs, window = kwargs_window groups = [i for _ in range(N // n_groups) for i in range(n_groups)] arr = np.random.random(N) self.df = pd.DataFrame(arr) self.window = getattr(self.df, window)(**kwargs) self.window_group = getattr( pd.DataFrame({"A": groups, "B": arr}).groupby("A"), window )(**kwargs)
negative_train_query0_00275
asv_bench/benchmarks/rolling.py/Pairwise/time_pairwise class Pairwise: def time_pairwise(self, kwargs_window, method, pairwise): getattr(self.window, method)(self.df, pairwise=pairwise)
negative_train_query0_00276
asv_bench/benchmarks/rolling.py/Pairwise/time_groupby class Pairwise: def time_groupby(self, kwargs_window, method, pairwise): getattr(self.window_group, method)(self.df, pairwise=pairwise)
negative_train_query0_00277
asv_bench/benchmarks/rolling.py/Quantile/setup class Quantile: def setup(self, constructor, window, dtype, percentile, interpolation): N = 10**5 arr = np.random.random(N).astype(dtype) self.roll = getattr(pd, constructor)(arr).rolling(window)
negative_train_query0_00278
asv_bench/benchmarks/rolling.py/Quantile/time_quantile class Quantile: def time_quantile(self, constructor, window, dtype, percentile, interpolation): self.roll.quantile(percentile, interpolation=interpolation)
negative_train_query0_00279
asv_bench/benchmarks/rolling.py/Rank/setup class Rank: def setup(self, constructor, window, dtype, percentile, ascending, method): N = 10**5 arr = np.random.random(N).astype(dtype) self.roll = getattr(pd, constructor)(arr).rolling(window)
negative_train_query0_00280
asv_bench/benchmarks/rolling.py/Rank/time_rank class Rank: def time_rank(self, constructor, window, dtype, percentile, ascending, method): self.roll.rank(pct=percentile, ascending=ascending, method=method)
negative_train_query0_00281
asv_bench/benchmarks/rolling.py/PeakMemFixedWindowMinMax/setup class PeakMemFixedWindowMinMax: def setup(self, operation): N = 10**6 arr = np.random.random(N) self.roll = pd.Series(arr).rolling(2)
negative_train_query0_00282
asv_bench/benchmarks/rolling.py/PeakMemFixedWindowMinMax/peakmem_fixed class PeakMemFixedWindowMinMax: def peakmem_fixed(self, operation): for x in range(5): getattr(self.roll, operation)()
negative_train_query0_00283
asv_bench/benchmarks/rolling.py/ForwardWindowMethods/setup class ForwardWindowMethods: def setup(self, constructor, window_size, dtype, method): N = 10**5 arr = np.random.random(N).astype(dtype) indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=window_size) self.roll = getattr(pd, constructor)(arr).rolling(window=indexer)
negative_train_query0_00284
asv_bench/benchmarks/rolling.py/ForwardWindowMethods/time_rolling class ForwardWindowMethods: def time_rolling(self, constructor, window_size, dtype, method): getattr(self.roll, method)()
negative_train_query0_00285
asv_bench/benchmarks/rolling.py/ForwardWindowMethods/peakmem_rolling class ForwardWindowMethods: def peakmem_rolling(self, constructor, window_size, dtype, method): getattr(self.roll, method)()
negative_train_query0_00286
asv_bench/benchmarks/rolling.py/Groupby/setup class Groupby: def setup(self, method, window_kwargs): N = 1000 window, kwargs = window_kwargs df = pd.DataFrame( { "A": [str(i) for i in range(N)] * 10, "B": list(range(N)) * 10, } ) if isinstance(kwargs.get("window", None), str): df.index = pd.date_range(start="1900-01-01", freq="1min", periods=N * 10) self.groupby_window = getattr(df.groupby("A"), window)(**kwargs)
negative_train_query0_00287
asv_bench/benchmarks/rolling.py/Groupby/time_method class Groupby: def time_method(self, method, window_kwargs): getattr(self.groupby_window, method)()
negative_train_query0_00288
asv_bench/benchmarks/rolling.py/GroupbyLargeGroups/setup class GroupbyLargeGroups: def setup(self): N = 100000 self.df = pd.DataFrame({"A": [1, 2] * (N // 2), "B": np.random.randn(N)})
negative_train_query0_00289
asv_bench/benchmarks/rolling.py/GroupbyLargeGroups/time_rolling_multiindex_creation class GroupbyLargeGroups: def time_rolling_multiindex_creation(self): self.df.groupby("A").rolling(3).mean()
negative_train_query0_00290
asv_bench/benchmarks/rolling.py/GroupbyEWM/setup class GroupbyEWM: def setup(self, method): df = pd.DataFrame({"A": range(50), "B": range(50)}) self.gb_ewm = df.groupby("A").ewm(com=1.0)
negative_train_query0_00291
asv_bench/benchmarks/rolling.py/GroupbyEWM/time_groupby_method class GroupbyEWM: def time_groupby_method(self, method): getattr(self.gb_ewm, method)()
negative_train_query0_00292
asv_bench/benchmarks/rolling.py/GroupbyEWMEngine/setup class GroupbyEWMEngine: def setup(self, engine): df = pd.DataFrame({"A": range(50), "B": range(50)}) self.gb_ewm = df.groupby("A").ewm(com=1.0)
negative_train_query0_00293
asv_bench/benchmarks/rolling.py/GroupbyEWMEngine/time_groupby_mean class GroupbyEWMEngine: def time_groupby_mean(self, engine): self.gb_ewm.mean(engine=engine)
negative_train_query0_00294
asv_bench/benchmarks/rolling.py/table_method_func def table_method_func(x): return np.sum(x, axis=0) + 1
negative_train_query0_00295
asv_bench/benchmarks/rolling.py/TableMethod/setup class TableMethod: def setup(self, method): self.df = pd.DataFrame(np.random.randn(10, 1000))
negative_train_query0_00296
asv_bench/benchmarks/rolling.py/TableMethod/time_apply class TableMethod: def time_apply(self, method): self.df.rolling(2, method=method).apply( table_method_func, raw=True, engine="numba" )
negative_train_query0_00297