Dataset Viewer
Auto-converted to Parquet
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
6
214
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
87
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
15 values
visit_date
timestamp[us]date
2016-08-04 09:00:04
2023-09-05 17:18:33
revision_date
timestamp[us]date
1998-12-11 00:15:10
2023-09-02 05:42:40
committer_date
timestamp[us]date
2005-04-26 09:58:02
2023-09-02 05:42:40
github_id
int64
436k
586M
โŒ€
star_events_count
int64
0
12.3k
fork_events_count
int64
0
6.3k
gha_license_id
stringclasses
7 values
gha_event_created_at
timestamp[us]date
2012-11-16 11:45:07
2023-09-14 20:45:37
โŒ€
gha_created_at
timestamp[us]date
2010-03-22 23:34:58
2023-01-07 03:47:44
โŒ€
gha_language
stringclasses
36 values
src_encoding
stringclasses
17 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
15 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
147120be5dee7265cfdb0f4301f014c9e724d2f1
449d555969bfd7befe906877abab098c6e63a0e8
/3311/CH12/EX12.2/Ex12_2.sce
bd7a36d5d8100dc240b4f31ea1be85e7edcac6e0
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,115
sce
Ex12_2.sce
// chapter 12 // example 12.2 // fig. 12.8 // Determine resonant frequency, maximum operating frequency,Peak thyristor current, average thyristor current, rms thyristor current, rms load current and average supply current // page-760-762 clear; clc; // given C1=4; // in uF C2=4; // in uF Lr=40; // in uH R=2; // in ohm Edc=120; // in V (input voltage) t_q=20; // in us (SCR turn-off time) // calculate Lr=Lr*1E-6; // changing unit from uH to H t_q=t_q*1E-6; // changing unit from us to s Ceq=C1+C2; Ceq=Ceq*1E-6; // changing unit from uF to F wr=sqrt((1/(Lr*Ceq))-R^2/(4*Lr^2)); // calculation of resonant angular frequency fr=wr/(2*%pi); // calculation of resonant frequency tr=1/fr; // calculation of resonant time-period fr_max=1/(2*t_q); // calculation of maximum frequency f0=0.4*fr; // calculation of output frequency T0=1/f0; // calculation of output period td=T0/2-tr; // calculation of delay time tp=(1/wr)*atan(2*wr*Lr/R); // calculation of time at which peak current is obtained Ec1=Edc/(exp(R*2*%pi/(2*Lr*wr))+1); // calculation of initial capacitor voltage Ip=(Edc+Ec1)/(wr*Lr)*sin(wr*tp)*exp(-R*tp/(2*Lr)); // calculation of peak current I_av_SCR=(Edc+Ec1)/(wr*Lr)*(1/T0)*integrate('sin(wr*t)*exp(-R*t/(2*Lr))','t',0,tr/2); // calculation of average thyristor current I_rms_SCR=(Edc+Ec1)/(wr*Lr)*sqrt((1/T0)*(integrate('(sin(wr*t))^2*exp(-R*t/Lr)','t',0,tr/2))); // calculation of rms thyristor current I0=2*I_rms_SCR; // calculation of rms load current P0=I0^2*R; // calculation of output power Is=P0/Edc; // calculation of average supply current printf("\nThe resonant frequency is \t\t\t fr=%.3f KHz",fr*1E-3); printf("\nThe maximum possible operating frequency is \t fr_max=%.f KHz",fr_max*1E-3); printf("\nThe Peak thyristor current is \t\t\t Ip=%.2f A",Ip); printf("\nThe average thyristor current is \t\t I_av_SCR=%.3f A",I_av_SCR); printf("\nThe rms thyristor current is \t\t\t I_rms_SCR=%.2f A",I_rms_SCR); printf("\nThe rms load current is \t\t\t I0=%.1f A",I0); printf("\nThe average supply current is \t\t\t Is=%.2f A",Is); // Note : The answers vary slightly due to precise calculation
4553ddfff9ca13c06f12cda03c1826b45928b941
449d555969bfd7befe906877abab098c6e63a0e8
/3204/CH12/EX12.7/Ex12_7.sce
13059d1b93aa03cc9fb0b8b2ffd54c661e07be4a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
538
sce
Ex12_7.sce
// Initilization of variables A= 50 // cm^2 // area of the shaded portion J_A=22.5*10^2 // cm^4 // polar moment of inertia of the shaded portion d=6 // cm // Calculations J_c=J_A-(A*d^2) // substuting the value of I_x from eq'n 2 in eq'n 1 we get, I_y=J_c/3 // cm^4 // M.O.I about Y-axis // Now from eq'n 2, I_x=2*I_y // cm^4 // M.O.I about X-axis // Results clc printf('The centroidal moment of inertia about X-axis (I_x) is %f cm^4 \n',I_x) printf('The centroidal moment of inertia about Y-axis (I_y) is %f cm^4 \n',I_y)
06f589eed30d215ab2ba8188c5ddcc0d446f6546
e1bc17aae137922b1ee990f17aae4a6cb15b7d87
/Completed Simulations/K.Ogata/Scilab/Ex6_1.sci
fc4bbb6e887121029ed945b77486b113c7a89cd4
[]
no_license
muskanmahajan37/Xcos_block_examples
650dceb0afdbfc100f3e9c5a6508443eca030fa2
8ac15bc5efafa2afc053c293152605b0e6ae60ff
refs/heads/master
2022-02-26T04:20:26.365000
2019-09-03T12:57:40
2019-09-03T12:57:40
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
90
sci
Ex6_1.sci
function y1=locus2(z) s=%s D=s*(s+1)*(s+2) H=syslin('c',1,D) evans(H,z) y1=0; endfunction
09b4a937a2b22535f0fc46f9d056ea1877a99ed4
e86f908be00c4a3a017e81d12588d76562c56b75
/macros/bitrevorder.sci
a4b6da8dfa95fa476e27c2631628a7999e575648
[]
no_license
ShashikiranYadalam/FOSSEE_SP_task
8869a14f664329625b76e15e771058b90b69b1e1
601ca7b7c91587a430c69c9ceb1f87b196c8e566
refs/heads/master
2020-03-20T06:38:26.598000
2019-03-01T12:31:10
2019-03-01T12:31:10
137,255,176
0
0
null
2018-06-14T05:16:17
2018-06-13T18:27:32
HTML
UTF-8
Scilab
false
false
665
sci
bitrevorder.sci
function [y,i]=bitrevorder(x) // Returns input data in bit-reversed order // Calling Sequence // [y,i]=bitrevorder(x) // Parameters // x: Vector of real or complex values // Description // This is an Octave function. // This function returns the input data after reversing the bits of the indices and reordering the elements of the input array. // Examples // 1. [y]=bitrevorder ([i,1,3,6i]) // y = [0 + 1i 3 + 0i 1 + 0i 0 + 6i] // 2. [y,i]=bitrevorder (['a','b','c','d']) // y = acbd // i = [1 3 2 4] funcprot(0); [lhs,rhs]=argn(0); if (rhs<1) then error ("Wrong number of input arguments.") end [y,i]=callOctave("bitrevorder",x) endfunction
1e9421783371cc042680ea6e0549d85ff77b7192
b2675f983fedb79e5e6f1940962373bda0570ec4
/D1/Tests/mar.tst
ceb4fff1725d50684c8bcc6be3e637663adaf63f
[]
no_license
Meena92/Projects
b854c40b91515bb429c9e13fb0cbc95c03e0a9d6
06361e24bf51883ff4140db5c37c3f40836a5752
refs/heads/master
2020-03-29T01:45:03.726000
2019-06-11T05:26:08
2019-06-11T05:26:08
149,404,524
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,094
tst
mar.tst
<?xml version="1.0" ?> <TestCase name="mar" version="5"> <meta> <create version="10.0.0" buildNumber="10.0.0.431" author="admin" date="10/09/2017" host="inbasdpc10722" /> <lastEdited version="10.0.0" buildNumber="10.0.0.431" author="admin" date="10/10/2017" host="inbasdpc10722" /> </meta> <id>F21914E0ACD911E7BC8BD8CB8A8AB1DA</id> <Documentation>Put documentation of the Test Case here.</Documentation> <IsInProject>true</IsInProject> <sig>ZWQ9NSZ0Y3Y9NSZsaXNhdj0xMC4wLjAgKDEwLjAuMC40MzEpJm5vZGVzPS0yMDg0NTUxNjU3</sig> <subprocess>false</subprocess> <initState> </initState> <resultState> </resultState> <deletedProps> </deletedProps> <Node name="Java Script Step" log="" type="com.itko.lisa.test.ScriptNode" version="1" uid="97A0B59EAD7511E7BC8BD8CB8A8AB1DA" think="500-1S" useFilters="true" quiet="false" next="end" > <!-- Assertions --> <CheckResult assertTrue="true" name="Any Exception Then Fail" type="com.itko.lisa.dynexec.CheckInvocationEx"> <log>Assertion name: Any Exception Then Fail checks for: true is of type: Assert on Invocation Exception.</log> <then>fail</then> <valueToAssertKey></valueToAssertKey> <param>.*</param> </CheckResult> <onerror>abort</onerror> <script>import com.itko.lisa.model.mar.*;&#13;&#10;import com.itko.lisa.model.mar.ModelArchiveInfo;&#13;&#10;import com.itko.lisa.test.Configuration;&#13;&#10; String path = &quot;D:\\DevTest\\Projects\\D1&quot;;&#13;&#10; String vsModelFileName = &quot;D:\\DevTest\\Projects\\D1\\VirtualServices\\RR9.vsm&quot;; // include path&#13;&#10; String configurationFileName = &quot;D:\\DevTest\\Projects\\D1\\Configs\\project.config&quot;; // include path&#13;&#10; int capacity = 1;&#13;&#10; int thinkScale = 0;&#13;&#10; boolean autoRestart = true;&#13;&#10; ModelArchiveInfo mari = ModelArchiveInfo.createVSMARInfo(path + &quot;/Configs/&quot; + configurationFileName,&#13;&#10; capacity, thinkScale, autoRestart);&#13;&#10; mari.save(new File(path + &quot;/MARInfos/RR9.mari&quot;));&#13;&#10;return vsModelFileName;&#13;&#10;&#13;&#10;//code end&#13;&#10;</script> </Node> <Node name="abort" log="" type="com.itko.lisa.test.AbortStep" version="1" uid="F21AC292ACD911E7BC8BD8CB8A8AB1DA" think="0h" useFilters="true" quiet="true" next="" > </Node> <Node name="fail" log="" type="com.itko.lisa.test.Abend" version="1" uid="F21AC294ACD911E7BC8BD8CB8A8AB1DA" think="0h" useFilters="true" quiet="true" next="abort" > </Node> <Node name="end" log="" type="com.itko.lisa.test.NormalEnd" version="1" uid="F21AC296ACD911E7BC8BD8CB8A8AB1DA" think="0h" useFilters="true" quiet="true" next="fail" > </Node> </TestCase>
ff2b2f0212d404e54b094ecb52814db0c88ef06b
449d555969bfd7befe906877abab098c6e63a0e8
/3710/CH4/EX4.3/Ex4_3.sce
3f143509db81db406f426aa1d9ff7dc51bfa77d9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,246
sce
Ex4_3.sce
//Example 4.3, Page Number 158 //The Function fpround(dependency) is used to round a floating point number x to n decimal places clc; d=0.2*(10**-3) //Chip Diameter in meter d1=1 //Distance in Meter l=550*(10**-9 ) //Wavelength in Meter q=0.001 //External Quantum Efficiency i=50*(10**-3) //Operational Current h=6.6*(10**-34)//Plancks Constant c=3*(10**8)//Speed of Light e=1.6*(10**-19)//Charge of an electron theta=(d/2) mprintf("Angle Theta of Emitting Area :%f\n",theta) mprintf(" Since theta is less than one, the LED acts as a Point Source\n") W=((h*c)/l)*q*(i/e) //W is the Total Radiant Power W=fpround(W,6) mprintf(" The Total Radiant Power is :%.2e W\n",W) //From the graph(Fig 1.24 Page No.33) l1=600 //Average Luminosity lf=W*l1 //lf is the luminous flux from the source lf=fpround(lf,3) mprintf(" The Luminous Flux from the source is:%.2e lm\n",lf) li=lf/(2*3.14)//li is the luminous intensity at normal incidence since flux is distributed over angle 2PI li=fpround(li,4) mprintf(" The Luminous Intensity at normal incidence is: %.2e candela\n",li) X = [400,500,555,600,650,700] V = [0.0,0.3,1.0,0.7,0.3,0.0] plot(X,V); xlabel("Wavelength in nm") ylabel("V") title("Fig 1.24")
bba581d482483adf1aac3470846152ac65a73005
449d555969bfd7befe906877abab098c6e63a0e8
/401/CH3/EX3.7/Example3_7.sce
081047e80d4e0cdfff01e7d7c1ea2f7520995f32
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
731
sce
Example3_7.sce
//Example 3.7 //Program to estimate rms pulse broadening per kilometer for the fiber clear; clc ; close ; //Given data lambda=0.85*10^(-6); //metre - WAVELENGTH L=1; //km - DISTANCE MD=0.025;//MATERIAL DISPERSION = mod(lamda^2*[del^2(n1)/del(lamda)^2) c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM sigma_lambda_by_lambda=0.0012;// sigma_lambda/lambda //Material Dispersion Parameter M=MD/(lambda*c); //R.M.S. Spectral Width sigma_lambda=sigma_lambda_by_lambda*lambda; //R.M.S. pulse broadening per kilometer sigma_m=sigma_lambda*L*M; //Displaying the Result in Command Window printf("\n\n\t R.M.S. pulse broadening per kilometer is %0.2f ns/km.",sigma_m/10^(-12));
d7cd385a2ace5b07e56046ddd7b1c526047a180b
449d555969bfd7befe906877abab098c6e63a0e8
/2513/CH14/EX14.5/14_5.sce
ee69c21d49d40a139f1ef83d1bf54904adcaed4d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
499
sce
14_5.sce
clc //initialisation of variables d1=0.67//ft h1=2.00//ft h2=4.04//ft hv1=0.062//ft hv2=0.254//ft d=0.19//ft h=0.2//ft h1=0.04//ft q=0.644//ft q1=0.65//ft v=0.92//ft d2=6.5//ft v1=3.69//ft d3=0.542//ft hv3=0.21//ft delv=0.15//ft d4=0.02//ft //CALCULATIONS H=d1+hv1//ft H1=d1+hv2//ft he=h*d//ft hi=d+h1//ft H2=d3+hv3//ft he1=h*delv//ft S=d4+h1//ft //RESULTS printf('the required slope=% f ft',hi) printf('the lower sewer and the invert drop in the transition=% f ft',S)
6861bacb671cfa6dfe6db8039f1b19103726b8a8
449d555969bfd7befe906877abab098c6e63a0e8
/24/CH42/EX42.3/Example42_3.sce
963a9d4a9bcb69eb4d5d371aec65c235c702df84
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
395
sce
Example42_3.sce
//Given that E = 7 //in ev V = 2*10^-9 //in m^3 density = 2*10^28 //in m^3/ev deltaE = 3*10^-3 //in ev //Sample Problem 42-3a printf("**Sample Problem 42-3a**\n") n = density*V printf("The number of states are equal to %1.2e per ev\n", n) //Sample Problem 42-3b printf("\n**Sample Problem 42-3b**\n") n = n*deltaE printf("The number of states are equal to %1.2e per ev\n", n)
1b7a48afe6f0657c305f7c8eb4db799c9fbc0b87
449d555969bfd7befe906877abab098c6e63a0e8
/2561/CH10/EX10.6/Ex10_6.sce
b1b9776b89e3f9b69f7262fb9c2db29dd7551e62
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
155
sce
Ex10_6.sce
//Ex10_6 clc x='110'; disp("Octal number="+string(x))// octal value str=oct2dec(x)//octal to decimal disp("Eqivalent Decimal number="+string(str))
780ab8fa1e903eedf5b8ceaedf5dc96c5ef1cff4
449d555969bfd7befe906877abab098c6e63a0e8
/866/CH6/EX6.2/6_2.sce
e956e8573ad4bab294636e8d1ac639b2a1e29679
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
653
sce
6_2.sce
clc //initialisation of variables W= -10 //KN/m Yac= 7 //m xad= -7.5 //m xac= -15 //m xcb= 10 //m //CALCULATIONS k= Yac/((xac)^2) yb= k*(xcb)^2 hb= Yac-yb yd= k*(xad)^2 hd= Yac-yd A=[(xcb-xac),(hb);(xcb),(-yb)] b=[-W*(-xac)*(-xad);0] c= A\b Rbv= c(1,1) Rbh= c(2,1) Rah= Rbh Rav= -Rbv-W*(-xac) dybydx= 2*k*xad alpha= atand(-2*k*xad) Nd= -Rav*sind(alpha)-Rah*cosd(alpha)+((-W)*(-xad)*sind(alpha)) Sd= -Rav*cosd(alpha)+Rah*sind(alpha)+((-W)*(-xad)*cosd(alpha)) Md= Rav*(-xad)-Rah*hd+W*(-xad)*(-xad/2) //RESULTS printf ('Normal force= %.2f kN',Nd) printf ('\n Shear force=%.2f KN',Sd) printf (' \n Bending moment=%.1f KNm',Md)
23b79b4e7c237c7d5cba33a025a23088e924c985
ac4e0c7ecf872bf33401feeb94567319345f1d91
/Culvert_design.sce
75eb59470e8de6eec9941be54295d13d9424bd2f
[]
no_license
namanmaheshwari97/Circular-Culvert-Design-Analysis
91a47220ca8ff7c3c3dc04b598aa1b2532b07304
260c00fa43a36915c3de352da2bf30929a6cb81e
refs/heads/master
2021-01-20T20:56:56.559000
2016-07-08T17:53:43
2016-07-08T17:53:43
62,906,453
0
1
null
2020-10-05T08:15:54
2016-07-08T17:43:39
Scilab
UTF-8
Scilab
false
false
7,417
sce
Culvert_design.sce
disp("15CS101L"); disp("Programming Laboratory"); disp("Internet Programming lab"); disp("Culvert Design and Analysis"); disp("Mr. M. Mohamed Rabik"); disp("Aryaman Dhanda , RA1511003010481"); disp("Naman Maheshwari , RA1511003010471"); disp("Sidharth Suresh , RA1511003010477"); disp("Select Pipe material and inlet type"); disp("1. Concrete. Square edge inlet with headwall."); disp("2. Concrete. Groove end inlet with headwall."); disp("3. Concrete. Groove end projecting at inlet."); disp("4. Corrugated metal (CMP). Headwall at inlet."); disp("5. Corrugated metal (CMP). Mitered to slope at inlet."); disp("6. Corrugated metal (CMP). Projecting at inlet"); pipeMaterial = input("Enter the number corresponding to the pipe Material. (0 to 6) :"); //np = Pipe manning n coefficient. //C1,C2,C3,C4,C5 = constants for inlet control equations //Ke = Minor loss coefficient for pipe inlet select(pipeMaterial) case 1 then np = 0.013; C1 = 0.0098; C2 = 2.0; C3 = -0.5; C4 = 0.0398; C5 = 0.67; Ke = 0.5; case 2 then np = 0.013; C1 = 0.0078; C2 = 2.0; C3 = -0.5; C4 = 0.0292; C5 = 0.74; Ke = 0.2; case 3 then np = 0.013; C1 = 0.0045; C2 = 2.0; C3 = -0.5; C4 = 0.0317; C5 = 0.69; Ke = 0.2; case 4 then np = 0.022; C1 = 0.0078; C2 = 2.0; C3 = -0.5; C4 = 0.0379; C5 = 0.69; Ke = 0.5; case 5 then np = 0.022; C1 = 0.0210; C2 = 1.33; C3 = 0.7; C4 = 0.0463; C5 = 0.75; Ke = 0.7; case 6 then np = 0.022; C1 = 0.0340; C2 = 1.50; C3 = -0.5; C4 = 0.0553; C5 = 0.54; Ke = 0.9; else disp("Entered value is incorrect. Please recheck !"); end disp("Choose the channel material : "); disp("1. Clean and Straight"); disp("2. Major Rivers"); disp("3. Sluggish with Deep pools."); disp("4. Clean"); disp("5. Gravelly"); disp("6. Weedy"); disp("7. Stony, Cobbles"); disp("8. Pasture, Farmland"); disp("9. Light Brush"); disp("10. Heavy Brush"); disp("11. Trees"); channelMaterial = input("Enter the values from 1-11 :"); select(channelMaterial) case 1 then nc = 0.030; case 2 then nc = 0.035; case 3 then nc = 0.040; case 4 then nc = 0.022; case 5 then nc = 0.025; case 6 then nc = 0.030; case 7 then nc = 0.035; case 8 then nc = 0.035; case 9 then nc = 0.050; case 10 then nc = 0.075; case 11 then nc = 0.15; else disp("Entered value is incorrect. Please recheck ! "); end A=input("Flow area :"); Ac=input("Flow area in one pipe based on critical depth : "); Av=input("Flow area in one pipe used for computing outlet velocity : "); b=input("Width of channel bottom :"); D=input("Diameter of each pipe : "); Ei1=input("Elevation of road crest relative to pipe outlet invert : "); Er=input("Elevation of road (or dam) crest relative to pipe outlet invert :"); g=input("Acceleration due to gravity : "); H=input("Head loss computed from outlet control equation : "); Lp=input("Pipe length : "); Lw=input("Weir length : "); N=input("Number of pipes next to each other : "); P=input("Wetted perimeter : "); Qp=input("Flowrate through each pipe : "); Qr=input("Flowrate over the road : "); Sc=input("Slope of existing channel : "); Sp=input("Pipe slope : "); Tc=input("Top width of flow in one pipe based on critical depth : "); theta = 0; Vc=input("Pipe velocity based on critical depth : "); Yavg=input("Average water depth : "); Yc=input("Critical water depth : "); Yf=input("Fall : "); Yh=input("Headwater depth : "); Yo=input("Water outlet depth : "); Yt=input("Tailwater depth : "); Yv=input("Depth used for computing outlet velocity : "); Z1=input("Left side slope of existing natural channel : "); Z2=input("Right side slope of existing natural channel : "); //General Equations Qt=Qr+N*Qp; Sp=Sc-Yf/Lp; Ei=Lp*Sp; Eh=Ei+Yh; V=Qp/Av; //Tailwater Depth //Manning's Equation is used for computing Yt Qt=((1.49*A*sqrt(Sc))/(nc))*(A/P)^(0.67); A=Yt*b+(Yt^2/2)*(Z1+Z2); P=b+Yt*(sqrt(1+Z1^2)+sqrt(1+Z2^2)); //Headwater depth //Yh is computed Independently based on inlet and outlet control equations //Inlet control-Outlet velocity(v) is computer based on what we call the velocity depth,Yv) if Yh<D then Yh=Yc+Vc^2/(2*g)+D*(C1*((4*Qp/(3.14*D^(2.5))))^C2+C3*Sp); Yc=0.42195*sqrt(Qp)/(D*0.26); Tc=2*sqrt(Yc*(D-Yc)); theta=2*asind(Tc/D); elseif Yc>D/2 then theta=2*3.14-theta; Ac=((D^2)/8)*(theta-sin(theta)); Vc=Qp/Ac; elseif Yh>=D then Yh=D((4*((4*Qp/(3.14*D^2.5)))^2+C5+C3*Sp)); //outlet control elseif Yt<=Y then Yv=Yc; elseif Yt>Yc & Yt<D then Yv=Yt; elseif Yt>=D then Yv=D; elseif Yh<0.93*D then T=2*sqrt(Yh*(D-Yh)); theta=2*asind(T/D); elseif Yh>D/2 then theta=2*3.14-theta; A=((D^2)/8)*(theta-sin(theta)); P=(theta*D)/2; Qp=((1.49*A*sqrt(Sp))/np)*((A/P)^0.67); elseif Yh>=0.93D then H=[1+Ke+29*n^2*Lp*(4/D)^1.33]*(8*Qp^2)/(g*3.14*3.14*D^4); elseif Yc<D then Yavg=(Yc+D)/2; elseif Yc>=D then Yavg=D; Yo=Max(Yt,Yavg); Yh=Yo+H-Ei; end //flow rate Qr=3*Lw*((Eh-Er)^1.5); //Error Messages and Validity //Input checks in top half of calculation. // If one of these messages appears, the calculation is halted. if Qt>=0 & Qt<10000 then disp("Total flow canot be negative or must be less than 10,000 m^3/s"); elseif N>0 & N<1001 then disp("Must have at least one pipe,but no more than 1000 pipes"); elseif D>0 & D<100 disp("Pipe diameter must be positive and less than 100"); elseif Lp>0 & Lp<10000 disp("Pipe length must be positive and less than 10,000"); elseif np>0 & np<0.05 disp("Pipe Manning n must be positive and less than 0.05"); elseif Yt<Er disp("Tailwater depth cannot be higher than the road crest"); elseif (Ei+D)<Er disp("Upstream pipe invert plus culvert diameter cannot exceed road crest elevation"); elseif (Ei+D)>Er disp("Not acceptable as the top of the culvert is pushing through the road"); elseif Lw>0 & Lw<10000 disp(" Weir length of road must be positive and less than 10,000m"); elseif Yt<10000 disp("Tailwater depth must be less than 10,000.Negative values are acceptable.Negatives simulate culverts discharging to a lower channel"); elseif Sc<0.5 disp("Channel bottom slope cannot exceed 0.5m/m.This is the longitdinal slope,not the sides slopes"); elseif Sc>0 disp("Channel cannot be horizontal"); elseif b>0 & b<10000 disp("Channel bottom width must be positive and less than 10,000"); elseif (Z1>0 & Z1<10000)|(Z2>0 & Z2>10000) disp("Channel side slopes can be neither exactly vertical(z=0)nor nearly flat (z>10000) z is defined as horizontal to vertical ratio"); elseif Sp>10^-7 & Sp<0.5 disp("Pipe slope must be between these limits"); end
eea1ab22592932b9f7e53374732d900a3f1b84c6
449d555969bfd7befe906877abab098c6e63a0e8
/1073/CH3/EX3.37/3_37.sce
23d8550868b67d75999bd4309559c4be1693fe44
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,247
sce
3_37.sce
clc; clear; //Example 3.37 k=0.03 //W/(m.K) Npr=0.697 //Prandtl number v=2.076*10^-6 //m^2/s Beta=0.002915 //K^-1 D=25 ; //[Diameter in cm] D=D/100 //[m] Tf=343 //Film temperature in [K] A=%pi*(D/2)^2 //Area in [m^2] P=%pi*D //Perimeter [m] T1=293 //[K] T2=393 //[K] g=9.81 //[m/s^2] //Case (i) HOT SURFACE FACING UPWARD L=A/P //Characteristic length in [m] Beta=1/Tf; //[K^-1] dT=T2-T1 //[K] Ngr=(g*Beta*dT*(L^3))/(v^2) //Grashoff number Nra=Ngr*Npr Nnu=0.15*(Nra^(1.0/3.0)) //Nusselt number h=Nnu*k/L //[W/m^2.K] Q=h*A*dT //[W] printf("\nHeat transferred when disc is horizontal with hot surface facing upward is %f W\n",Q); //Case-(ii) HOT FACE FACING DOWNWARD Nnu=0.27*(Nra^(1/4)) //Nusselt number h=Nnu*k/L //W/(m^2.K) Q=h*A*dT //[W] printf("\nHeat transferred when disc is horizontal with hot surface facing downward is %f W\n",Q); //Case-(iii)-For disc vertical L=0.25 //Characteristic length[m] D=L //dia[m] A=%pi*((D/2)^2) //[sq m] Ngr=(g*Beta*dT*(L^3))/(v^2) //Grashoff number Npr=0.697 Nra=Ngr*Npr Nnu=0.10*(Nra^(1/3)) //Nusselt number h=Nnu*k/D //[W/(m^2.K)] Q=h*A*dT //[W] printf("For vertical disc,heat transferred is %f W",Q);
073122559c1d3581b7fd7ae1227eb3825648d64f
449d555969bfd7befe906877abab098c6e63a0e8
/2441/CH2/EX2.20/Ex2_20.sce
bbcac8e1564a44052e36c711970f15631a3d95f0
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
406
sce
Ex2_20.sce
//exa 2.20 clc;clear;close; format('v',6); //F1=0.004*P1^2+2*P1+80;//Rs./hr //F2=0.006*P2^2+1.5*P2+100;//Rs./hr P=250;//MW P1=poly(0,'P1');P2=poly(0,'P2'); dF1bydP1=2*0.004*P1+2; dF2bydP2=2*0.006*P2+1.5; //Let loads are P1 & P-P1 //Economical loading lambda1=lambda2 eqn=2*0.004*P1+2-2*0.006*(P-P1)-1.5; P1=roots(eqn);//MW P2=P-P1;//MW disp(P1,"Load P1(MW) : "); disp(P2,"Load P2(MW) : ");
291700e7b1e6453af5951fc921c2306d16374f06
e0124ace5e8cdd9581e74c4e29f58b56f7f97611
/3913/CH9/EX9.3/Ex9_3.sce
abec6d1f4d24d8043eddbae9d54cd2deaef85fa7
[]
no_license
psinalkar1988/Scilab-TBC-Uploads-1
159b750ddf97aad1119598b124c8ea6508966e40
ae4c2ff8cbc3acc5033a9904425bc362472e09a3
refs/heads/master
2021-09-25T22:44:08.781000
2018-10-26T06:57:45
2018-10-26T06:57:45
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
775
sce
Ex9_3.sce
//Chapter 9 : Eigenvalues and Eigenvectors //Example 9.3 //Scilab 6.0.1 //Windows 10 clear; clc; A=[-3 1 -1;-7 5 -1;-6 6 -2]; disp(A,'A=') eig=spec(A) disp(eig,'eigen values are:') e4=A-4*eye(3,3) mprintf('\n(A-4I3)x=') disp('*',e4) mprintf(' [x\n y\n z]=') z=zeros(3,1) disp(z) mprintf('\nthis reduces to x=0,y-z=0') mprintf('\nE4 is spanned by ') mprintf('\n x=\n [0\n y\n y]') mprintf('eigenspace E4 is of dimension 1 with basis') mprintf('\n [0\n 1\n 1]') e2=A+2*eye(3,3) mprintf('\n(A+2I3)x=') disp('*',e2) mprintf(' [x\n y\n z]=') z=zeros(3,1) disp(z) mprintf('\nthis reduces to x=y,z=0') mprintf('\nE2 is spanned by ') mprintf('\n x=\n [x\n x\n 0]') mprintf('\neigenspace E2 is of dimension 1 with basis') mprintf('\n [1\n 1\n 0]')
4e0371c2896fea9567f1607729a523d93993acac
449d555969bfd7befe906877abab098c6e63a0e8
/32/CH17/EX17.02/17_02.sce
16759b06db83566a6b2e67de9b28ceee06a50d8d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
453
sce
17_02.sce
//pathname=get_absolute_file_path('17.02.sce') //filename=pathname+filesep()+'17.02-data.sci' //exec(filename) //Indicator diagram area & length(in m^2 & m): A=40*10^(-4) l=0.08 //Bore(in m): D=0.15 //Stroke(in m): L=0.20 //Rpm of motor: N=100 //Spring constant(in Pa/m): k=1.5*10^8 //Mep(in Pa): mep=A*k/l //Indicated power(in kW): IP=(%pi*D^2/4*L*mep*N/60*2)/10^3 printf("\n RESULT \n") printf("\nPower required to drive =%f kW",IP)
0fded5ba01cadcba38a6419a7427c9cf12a67c52
449d555969bfd7befe906877abab098c6e63a0e8
/1970/CH6/EX6.12/Ch06Exa12.sce
c5d2891ff977176c01ac829277d84480b3330718
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
810
sce
Ch06Exa12.sce
// Scilab code Exa6.12: : Page-244(2011) clc; clear; h_kt = 1.05457e-34; // Reduced planck's constant, joule sec c = 3e+08; // velocity of light, metre per sec m_e = 9.1e-31; // Mass of the electron, Kg ft_O = 3162.28; // Comparative half life for oxygen ft_n = 1174.90; // Comparative half life for neutron M_f_sqr = 2 // Matrix element g_f = sqrt(2*%pi^3*h_kt^7*log(2)/(m_e^5*c^4*ft_O*M_f_sqr)); // Coupling constant, joule cubic metre C_ratio = (2*ft_O/(ft_n)-1)/3; // Ratio of coupling strength printf("\nThe value of coupling constant = %6.4e joule cubic metre\nThe ratio of coupling constant = %5.3f", g_f, C_ratio); // Result // The value of coupling constant = 1.3965e-062 joule cubic metre // The ratio of coupling constant = 1.461
ceb1ee947f561cb5b4db392a8418709f5f8af3bf
449d555969bfd7befe906877abab098c6e63a0e8
/1979/CH9/EX9.9/Ex9_9.sce
13b06996a69a0bcad720b77a959e622d74ea638e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
675
sce
Ex9_9.sce
//chapter-9 page 412 example 9.9 //============================================================================== clc; clear; //For an IMPATT diode Lp=0.5*10^(-9);//Inductance in Henry Cj=0.5*10^(-12);//Capacitance in Farad Ip=0.8;//RF peak current in A Rl=2;//Load Resistance in ohms Vbd=100;//Breakdown Voltage in V Ib=0.1;//dc Bias current in A //CALCULATION f=(1/(2*(%pi)*sqrt(Lp*Cj)))/10^9;//Resonant Frequency in GHz n=((Rl*Ip^2)/(2*Vbd*Ib))*100;//Efficiency in Percentage //OUTPUT mprintf('\nResonant Frequency is f=%2.0f GHz \nEfficiency is n=%1.1f percentage',f,n); //=========================END OF PROGRAM===============================
dd95a6cb281dfe990dee8c1a63d04d50fb7310bd
449d555969bfd7befe906877abab098c6e63a0e8
/3872/CH14/EX14.2/EX14_2.sce
df7fb91ddc54f9b4759beb52958ddc286c56723c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,446
sce
EX14_2.sce
//Book - Power System: Analysis & Design 5th Edition //Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye //Chapter - 14 ; Example 14.2 //Scilab Version - 6.0.0 ; OS - Windows clc; clear; MVAtr1=40; //MVA FOA rating of transformer 1 MVAtr2=40; //MVA FOA rating of transformer 2 normal=1.28; //Factor for normal summer operation emergency2hr=1.70; //Factor for two hour emergency operation emergency30day=1.55; //Factor for thirty days emergency operation unequalloadingfactor=0.95; //Factor to account for unequal transformer loading MVAstation=normal*(MVAtr1+MVAtr2)*unequalloadingfactor; //MVA rating of thr station MVAstationemergency2hr=emergency2hr*MVAtr1; //MVA rating of a single transformer for two hour emergency MVAstationemergency30day=emergency30day*MVAtr1; //MVA rating of a single transformer for thirty days emergency printf('\nThe summer normal rating of the station is %f MVA',MVAstation); printf('\nThe emergency rating of the single transformer for two hours is %f MVA',MVAstationemergency2hr); printf('\nThe emergency rating of the single transformer for thirty days is %f MVA',MVAstationemergency30day)
d134852d495e34f3223ec0024f8bffd9e90d9dac
449d555969bfd7befe906877abab098c6e63a0e8
/2438/CH6/EX6.3/Ex6_3.sce
34a47fcc2e091ed37aff3adced9a59e4c8583f48
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
621
sce
Ex6_3.sce
//========================================================================== // chapter 6 example 3 clc; clear; //input data t1 = 20; // temperature in ยฐC alpha = 5*10^-3; //average temperature coefficient at 20ยฐC R1 = 8; //resistance in ohm R2 = 140; //resistaance in ohm //calculation t2 = t1+((R2-R1)/(R1*alpha)); //temperature in C //result mprintf('Hence temperature under normal condition is %3.2fยฐC\n',t2); //============================================================================
4c540a56b5838b4297f4c47758c471aeba3dbbc2
ac1f8441b0319b4a391cd5a959bd3bb7988edfa7
/data/news2015/news2015/SplitsNEWS15/EnHe/enhe.8.tst
0b80c537f6e596f546d81f46b001301d07fa76e2
[ "MIT" ]
permissive
SaeedNajafi/transliterator
4d58b8604fa31f52ee2dce7845e002a18214fd5e
523a087b777a5d6eec041165dabb43848f6222e6
refs/heads/master
2021-09-18T17:02:59.083000
2018-07-17T06:01:21
2018-07-17T06:01:21
129,796,130
0
0
null
null
null
null
UTF-8
Scilab
false
false
28,488
tst
enhe.8.tst
a a t e f ืข ื ื˜ ืฃ a b a n e ืข ื‘ ื ืŸ a c o n c a g u a ื ืง ื• ื  ืง ื ื’ ื• ื a d a i r ื ื“ ื™ ื™ ืจ a d o l p h ื ื“ ื• ืœ ืฃ a d o n i s ื ื“ ื• ื  ื™ ืก a g a t h a ื ื’ ื ืช ื a g r i p p a ื ื’ ืจ ื™ ืค ื a h m e d ื ื— ืž ื“ a k r o u r ืข ืง ืจ ื• ืจ a l a i d y ื ืœ ืข ื ื™ ื“ ื™ a l a l i ื ืœ ืข ืœ ื™ a l d o ื ืœ ื“ ื• a l e k s a n d r ื ืœ ืง ืก ื  ื“ ืจ a l j a l d a k i ื ืœ ื’ ' ืœ ื“ ื ืง ื™ a l l o u n i ืข ืœ ื• ื  ื™ a l o y s i u s ื ืœ ื ื• ื™ ืฉ ืก a m i c h a i ืข ืž ื™ ื— ื™ a m i t a v ื ืž ื™ ื˜ ื‘ a m r ืข ืž ืจ a n ื ืŸ a n a t o l ื ื  ื ื˜ ื• ืœ a n d e r s ื ื  ื“ ืจ ื– a n d r e a ื ื  ื“ ืจ ื™ ื a n g e l a ื ื  ื’ ื™ ืœ ื a n k a ื ื  ืง ื a n n e ืข ืŸ a n n u n z i a t a ื ื  ื• ื  ืก ื™ ื ื˜ ื a n t i g u a ื ื  ื˜ ื™ ื’ ื• ื a p h r o d i t e ื ืค ืจ ื• ื“ ื ื™ ื˜ ื™ a p i c h e t ื ืค ื™ ืฆ ' ื˜ a p o s t o l ื ืค ื• ืก ื˜ ื• ืœ a p u l i a ื ืค ื• ืœ ื™ ื a r a n h a ื ืจ ื ื  ื a r i e f ืข ืจ ื™ ืฃ a r l e n ื ืจ ืœ ื™ ืŸ a r t u r ื ืจ ื˜ ื• ืจ a s a f ืข ืก ื ืฃ a s a t i a n i ื ืก ื ื˜ ื™ ื ื  ื™ a s h k e l o n ื ืฉ ืง ืœ ื• ืŸ a s h r a f ื ืฉ ืจ ืฃ a t e f ืข ื ื˜ ืฃ a t h o s ื ืช ื• ืก a u g u s t a ื ื• ื’ ื• ืก ื˜ ื a u s t r a l o p i t h e c u s ื ื• ืก ื˜ ืจ ื ืœ ื• ืค ื™ ืช ืง ืก a x u m ื ืง ืก ื• ื a y a n ืข ื™ ื ืŸ a y o u n ืข ื™ ื• ืŸ a z o u z ืข ื– ื• ื– b a b a c a r ื‘ ื ื‘ ื ืง ืจ b a b a n g i d a ื‘ ื ื‘ ื  ื’ ื™ ื“ ื b a c h e l e t ื‘ ื ืฉ ื™ ืœ ื” b a d a r ื‘ ื“ ืจ b a h r a m ื‘ ื” ืจ ื ื b a i ื‘ ื ื™ b a k a l a ื‘ ื ืง ื ืœ ื b a k s h i ื‘ ื ืง ืฉ ื™ b a m l e t t ื‘ ื ืž ืœ ื˜ b a m m e r ื‘ ื ืž ืจ b a n j o ื‘ ื ื  ื’ ' ื• b a r a j a ื‘ ื ืจ ื ื› ื b a r a m i d z e ื‘ ื ืจ ื ืž ื™ ื“ ื– ื” b a r b a r o s s a ื‘ ื ืจ ื‘ ื ืจ ื• ืก ื b a r b e r a ื‘ ื ืจ ื‘ ื™ ืจ ื b a r b r a ื‘ ื ืจ ื‘ ืจ ื b a r c e l a t a ื‘ ื ืจ ืก ื™ ืœ ื ื˜ ื b a r i s o n ื‘ ื ืจ ื™ ืก ื• ืŸ b a r m o s ื‘ ื ืจ ืž ื• ืก b a s i n a s ื‘ ื ืก ื™ ื  ื ืก b a s s i l a ื‘ ื ืก ื™ ืœ ื b a t u ื‘ ื ื˜ ื• b a y d a ื‘ ื™ ื™ ื“ ื b e b e t o ื‘ ื™ ื‘ ื™ ื˜ ื• b e e n h a k k e r ื‘ ื™ ื  ื” ื ืง ืจ b e i l i n ื‘ ื™ ืœ ื™ ืŸ b e i t e i n u ื‘ ื™ ืช ื  ื• b e l h a d j ื‘ ืœ ื— ื ื’ ' b e l l a ื‘ ื™ ืœ ื b e l l a m y ื‘ ื™ ืœ ื ืž ื™ b e l l u g i ื‘ ืœ ื• ื’ ื™ b e l q a s ื‘ ืœ ืง ื ืก b e n i t e z ื‘ ื™ ื  ื™ ื˜ ื™ ื– b e n n ื‘ ืŸ b e n n e t t ื‘ ื  ื˜ b e r i s h a ื‘ ื ืจ ื™ ืฉ ื b e r l ื‘ ื™ ืจ ืœ b e r n a r d o ื‘ ืจ ื  ื ืจ ื“ ื• b e r t o l i ื‘ ื™ ืจ ื˜ ื• ืœ ื™ b e r t o l t ื‘ ืจ ื˜ ื• ืœ ื˜ b e s h e e r ื‘ ืฉ ื™ ืจ b e t t a ื‘ ื™ ื˜ ื b e t t i n i ื‘ ื™ ื˜ ื™ ื  ื™ b i e l l a ื‘ ื™ ื™ ืœ ื b i g ื‘ ื™ ื’ b i h a r ื‘ ื™ ื— ื ืจ b i l l y ื‘ ื™ ืœ ื™ b o b a n ื‘ ื• ื‘ ื ืŸ b o d a r t ื‘ ื• ื“ ื ืจ ื˜ b o n n ื‘ ื• ืŸ b o r n s t e i n ื‘ ื• ืจ ื  ืก ื˜ ื ื™ ืŸ b o r u s s i a ื‘ ื• ืจ ื• ืก ื™ ื b o s k o ื‘ ื• ืก ืง ื• b o s m a n ื‘ ื• ืก ืž ื ืŸ b o s s i s ื‘ ื• ืก ื™ ืก b r a i z a t ื‘ ืจ ื ื™ ื– ื ื˜ b r a n d t s ื‘ ืจ ื ื  ืฅ b r a u n ื‘ ืจ ื ื• ืŸ b r e s s e ื‘ ืจ ื™ ืก b r e t o n ื‘ ืจ ื™ ื˜ ื• ืŸ b r i g i t t e ื‘ ืจ ื™ ื’ ื™ ื˜ b r o d i e ื‘ ืจ ื• ื“ ื™ b r u ื‘ ืจ ื• b s h a r r i ื‘ ืฉ ื ืจ ื™ b u b e r ื‘ ื• ื‘ ืจ b u b k a ื‘ ื• ื‘ ืง ื b u c h a r e s t ื‘ ื• ื› ื ืจ ืก ื˜ b u c h h o l z ื‘ ื• ื› ื” ื• ืœ ืฅ b u h a r i ื‘ ื• ื” ื ืจ ื™ b u k h a r i n ื‘ ื• ื› ื ืจ ื™ ืŸ b u n c h e ื‘ ื ื  ืฉ b u r e t s u ื‘ ื• ืจ ื™ ื˜ ืก ื• b u r g m e i e r ื‘ ืจ ื’ ืž ื ื™ ืจ b u r n l e y ื‘ ื• ืจ ื  ืœ ื™ b u t e l l e ื‘ ื• ื˜ ื™ ืœ ื™ b u t l e r ื‘ ื ื˜ ืœ ืจ b u y ื‘ ื ื™ c a b o t ืง ื ื‘ ื• ื˜ c a b r e r a ืง ื ื‘ ืจ ื™ ืจ ื c a m i l o ืง ื ืž ื™ ืœ ื• c a n d i d e ืง ื ื  ื“ ื™ ื“ c a n i g g i a ืง ื ื  ื™ ื’ ื™ ื c a n n o n ืง ื ื  ื• ืŸ c a n t o n a ืง ื ื  ื˜ ื• ื  ื c a p a ืง ื ืค ื c a p p a r o n i ืง ื ืค ื ืจ ื• ื  ื™ c a p u a ืง ื ืค ื• ื c a r m a g n o l a ืง ื ืจ ืž ื ื  ื• ืœ ื c a r o ืง ื ืจ ื• c a r o l i n e ืง ื ืจ ื• ืœ ื ื™ ืŸ c a r t i e r ืง ื ืจ ื˜ ื™ ื™ ื” c a s e l l i ืง ื ืก ื™ ืœ ื™ c a s t i l l a ืง ื ืก ื˜ ื™ ืœ ื c a t h c a r t ืง ื ืช ืง ื ืจ ื˜ c a v e l l ืง ื ื‘ ื™ ืœ c a v e n a g h i ืง ื ื• ื• ื  ื ื’ ื™ c e l e s t i n e ืก ื™ ืœ ืก ื˜ ื™ ืŸ c h a i m a n ืฆ ' ื ื™ ืž ื ืŸ c h a l m e ืฆ ' ื ืœ ืž ื™ c h a n d r i k a ืฆ ' ื ื  ื“ ืจ ื™ ืง ื c h a o ืฆ ' ื ื• c h a p p u z e a u ืฉ ื ืค ื• ื– ื™ ื• c h a r l t o n ืฆ ' ื ืจ ืœ ื˜ ื• ืŸ c h a s s e r i a u ืง ื ืก ื™ ืจ ื™ ื• c h a v e z ืฆ ' ื ื‘ ื™ ื– c h e y r o u ืฆ ' ื™ ื™ ืจ ื• c h i a c c h i o ืฆ ' ื™ ื ืง ื™ ื• c h i r a c ืฉ ื™ ืจ ื ืง c h o u t o s ืฆ ' ื• ื˜ ื• ืก c h r i s t i a n ืง ืจ ื™ ืก ื˜ ื™ ื ืŸ c i n d y ืก ื™ ื  ื“ ื™ c i s s e ืก ื™ ืก ื™ c l a i r ืง ืœ ื™ ื™ ืจ c l a r k ืง ืœ ื ืจ ืง c l i j s t e r s ืง ืœ ื ื™ ืก ื˜ ืจ ื– c o d r e a ืง ื• ื“ ืจ ื™ ื c o l a k ืง ื• ืœ ื ืง c o l e m a n ืง ื• ืœ ืž ื ืŸ c o n f u c i u s ืง ื• ื  ืค ื™ ื• ืฉ ื• ืก c o n n i e ืง ื• ื  ื™ c o n t a d o r ืง ื• ื  ื˜ ื ื“ ื• ืจ c o n t r a ืง ื• ื  ื˜ ืจ ื c o p e r n i c u s ืง ื• ืค ืจ ื  ื™ ืง ื• ืก c o r i ืง ื• ืจ ื™ c o r n e l i u s ืง ื• ืจ ื  ื™ ืœ ื™ ื• ืก c o v e n t r y ืง ื• ื‘ ื  ื˜ ืจ ื™ c o x ืง ื• ืง ืก c r i c k ืง ืจ ื™ ืง c r i s ืง ืจ ื™ ืก c r u y f f ืง ืจ ื• ื™ ืฃ c r y p t o z o o l o g y ืง ืจ ื™ ืค ื˜ ื• ื– ื• ื ื• ืœ ื• ื’ ' ื™ c v e t k o v i c ืก ื‘ ื™ ื˜ ืง ื• ื‘ ื™ ื˜ ืฉ d a a r ื“ ื ืจ d a c o u r t ื“ ื ืง ื• ืจ ื˜ d a e w o o ื“ ื ื™ ื• ื• d a f o e ื“ ื ืค ื• d a m a r c u s ื“ ื ืž ื ืจ ืง ื• ืก d a n i ื“ ื ื  ื™ d a r d e n n e ื“ ื ืจ ื“ ื™ ืŸ d a r w i s h ื“ ืจ ื• ื™ ืฉ d a t i ื“ ื ื˜ ื™ d a u d ื“ ื ื• ื“ d a w s o n ื“ ื• ืก ืŸ d a y ื“ ื™ ื™ d e b b a s ื“ ื‘ ื ืก d e g a n i a ื“ ื’ ื  ื™ ื” d e l l a ื“ ื™ ืœ ื d e p l a c e ื“ ื™ ืค ืœ ื ืก d e r ื“ ืจ d e r b y ื“ ืจ ื‘ ื™ d e r e k ื“ ืจ ืง d e v e n d r a ื“ ื™ ื‘ ื™ ื  ื“ ืจ ื d h o r a s o o ื“ ื• ืจ ื ืก ื• d i a o ื“ ื™ ื ื• d i c a ื“ ื™ ืง ื d i e n ื“ ื™ ืŸ d i l i ื“ ื™ ืœ ื™ d i m i t r i s ื“ ื™ ืž ื™ ื˜ ืจ ื™ ืก d i n a ื“ ื™ ื  ื d i n i y a r ื“ ื™ ื  ื™ ื™ ื ืจ d i o m a n s y ื“ ื™ ื• ืž ื ื  ืก ื™ d i o n y s u s ื“ ื™ ื• ื  ื™ ืก ื• ืก d i o r ื“ ื™ ื• ืจ d i r a n i ื“ ื™ ืจ ื ื  ื™ d i r e ื“ ื ื™ ืจ d m i t r i y ื“ ืž ื™ ื˜ ืจ ื™ d o e s b u r g ื“ ื• ืก ื‘ ื• ืจ ื’ d o l m a n s ื“ ื• ืœ ืž ื ื  ื– d o n a l d ื“ ื• ื  ื ืœ ื“ d o n i t z ื“ ื• ื  ื™ ืฅ d o r f n e r ื“ ื• ืจ ืค ื  ืจ d o r i n ื“ ื• ืจ ื™ ืŸ d u n k i r k ื“ ื ื  ืง ื™ ืจ ืง d u r a n t ื“ ื• ืจ ื ื  ื˜ d w i g h t ื“ ื• ื ื™ ื˜ d w o m o h ื“ ื• ื• ืž ื• ื” e b a d i ืข ื‘ ื ื“ ื™ e c u a d o r ื ืง ื• ื ื“ ื• ืจ e d d i e ื ื“ ื™ e d e n ืข ื“ ืŸ e i f f e l ื ื™ ืค ืœ e l l e n ื ืœ ืŸ e l m ื ื™ ืœ ื e l m o r e ื ืœ ืž ื• ืจ e p s t e i n ื ืค ืก ื˜ ื™ ืŸ e r a t o ื ืจ ื ื˜ ื• e r e z ื ืจ ื– e r n e s t ื ืจ ื  ืก ื˜ e r n i e ื ืจ ื  ื™ e s p o o ื ืก ืค ื• e t n a ื ื˜ ื  ื e v o ื ื™ ื‘ ื• f a c u n d o ืค ื ืง ื• ื  ื“ ื• f a h r u d i n ืค ื ื” ืจ ื• ื“ ืŸ f a i t h ืค ื™ ื™ ืช f a l c a o ืค ื ืœ ืง ื ื• f a n n y ืค ื ื  ื™ f a n t e n i ืค ื ื  ื˜ ื™ ื  ื™ f a r h i ืค ืจ ื— ื™ f a r r e l l ืค ื ืจ ื™ ืœ f a t t o n ืค ื ื˜ ื• ืŸ f e h n ืค ื™ ื” ืŸ f e l i c i a n o ืค ื™ ืœ ื™ ืก ื™ ื ื  ื• f e r e n c ืค ื™ ืจ ื™ ื  ืง f e r n a n d e z ืค ืจ ื  ื ื  ื“ ื™ ื– f e r r u c c i o ืค ื™ ืจ ื• ืฆ ' ื™ ื• f e y e n o o r d ืค ื™ ื™ ื  ื• ืจ ื“ f i c h m a n ืค ื™ ืฉ ืž ื ืŸ f i f i ืค ื™ ืค ื™ f i g a r o ืค ื™ ื’ ื ืจ ื• f i n k i e l k r a u t ืค ื™ ื  ืง ื™ ืœ ืง ืจ ื• ื˜ f i o r i ืค ื™ ื• ืจ ื™ f i s c h l e r ืค ื™ ืฉ ืœ ืจ f l e i h a n ืค ืœ ื™ ื— ื ืŸ f l o r e n t i n ืค ืœ ื• ืจ ื  ื˜ ื™ ืŸ f l o r i a n ืค ืœ ื• ืจ ื™ ื ืŸ f l o r i a n o ืค ืœ ื• ืจ ื™ ื ื  ื• f l o r i n ืค ืœ ื• ืจ ื™ ืŸ f o n s e c a ืค ื• ื  ืก ื™ ืง ื f o o t e ืค ื• ื˜ f o r d ืค ื• ืจ ื“ f o r t a l e z a ืค ื• ืจ ื˜ ื ืœ ื™ ื– ื f o r t u n e ืค ื• ืจ ื˜ ืฉ ืŸ f o r t u n y ืค ื• ืจ ื˜ ื• ื  ื™ f r a d i q u e ืค ืจ ื ื“ ื™ ืง f r a n ืค ืจ ื ืŸ f r a n c e s c o l i ืค ืจ ื ื  ืก ื™ ืก ืง ื• ืœ ื™ f r e d d i e ืค ืจ ื™ ื“ ื™ f r e d e r i c k ืค ืจ ื™ ื“ ื™ ืจ ื™ ืง f r i d t j o f ืค ืจ ื™ ื“ ื’ ' ื• ืฃ f r i s c h ืค ืจ ื™ ืฉ g a l e a z z o ื’ ื ืœ ื™ ื ืฆ ื• g a l i l e o ื’ ื ืœ ื™ ืœ ื ื• g a l l a r d o ื’ ื ืœ ื ืจ ื“ ื• g a l l o i s ื’ ื ืœ ื• ื g a r a y ื’ ื ืจ ื ื™ g a r b u t t ื’ ื ืจ ื‘ ื• ื˜ g a r g u l a ื’ ื ืจ ื’ ื• ืœ ื g a r i c s ื’ ื ืจ ื™ ืง ืก g a r z o n ื’ ื ืจ ื– ื• ืŸ g e d i m i n a s ื’ ื™ ื“ ื™ ืž ื™ ื  ื ืก g e n n a r o ื’ ื  ื ืจ ื• g e o l o g y ื’ ื™ ' ื• ืœ ื• ื’ ' ื™ g e o r g i o s ื’ ื™ ื• ืจ ื’ ื™ ื• ืก g e r r y ื’ ื™ ืจ ื™ g e t u l i o ื’ ื™ ื˜ ื• ืœ ื™ ื• g h e o r g h e ื’ ื™ ื• ืจ ื’ ื™ g h i g g i a ื’ ื™ ื’ ื™ ื g i r e s s e ื’ ื™ ืจ ื™ ืก ื™ g l e n ื’ ืœ ืŸ g o b b i ื’ ื• ื‘ ื™ g o g o l ื’ ื• ื’ ื• ืœ g o k h a n ื’ ื• ื› ื ืŸ g o l b o u r n e ื’ ื• ืœ ื‘ ื• ืจ ืŸ g o l d s t e i n ื’ ื• ืœ ื“ ืก ื˜ ื™ ืŸ g o m a ื’ ื• ืž ืข g o n z a l o ื’ ื• ื  ื– ื ืœ ื• g o r n i a k ื’ ื• ืจ ื  ื™ ื ืง g o t t h e l f ื’ ื• ื˜ ื” ื™ ืœ ืฃ g r a s s ื’ ืจ ื ืก g r e c o ื’ ืจ ื™ ืง ื• g r e e n g r a s s ื’ ืจ ื™ ื  ื’ ืจ ื ืก g r e e n s p a n ื’ ืจ ื™ ื  ืก ืค ื ืŸ g r i c h t i n g ื’ ืจ ื™ ืง ื˜ ื™ ื  ื’ g r i m s s o n ื’ ืจ ื™ ืž ืก ื• ืŸ g r i n t ื’ ืจ ื™ ื  ื˜ g r i s h a m ื’ ืจ ื™ ืฉ ื ื g r o s s m a n ื’ ืจ ื• ืก ืž ื ืŸ g r y z l o v ื’ ืจ ื™ ื– ืœ ื• ื‘ g u a d i a n a ื’ ื• ื ื“ ื™ ื ื  ื g u e b u z a ื’ ื• ื™ ื‘ ื• ื– ื g u i d o ื’ ื• ื™ ื“ ื• g u i n n e s s ื’ ื™ ื  ื™ ืก g u n t e r ื’ ื• ื  ื˜ ืจ g u s t a v o ื’ ื• ืก ื˜ ื ื‘ ื• h a b e r ื” ื ื‘ ืจ h a d a r ื” ื“ ืจ h a d j i ื— ื ื’ ' ื™ h a g a i ื— ื’ ื™ h a i m ื— ื™ ื™ ื h a i t i ื” ื ื™ ื˜ ื™ h a m d i ื— ืž ื“ ื™ h a m r o u c h e ื— ืž ืจ ื• ืฉ h a n o u n e ื— ื  ื• ืŸ h a n s s e n ื” ื ื  ืก ืŸ h a r a d a ื” ื ืจ ื ื“ ื h a r p o ื” ื ืจ ืค ื• h a r r y ื” ื ืจ ื™ h a s h o m r o n ื” ืฉ ื• ืž ืจ ื• ืŸ h a s s e ื” ื ืก h a t t h a p o r n ื” ื ื˜ ื ืค ื• ืจ ืŸ h a t z o r ื— ืฆ ื• ืจ h a u e r ื” ื ื• ื™ ืจ h e a v i s i d e ื” ื™ ื‘ ื™ ืก ื ื™ ื“ h e g e l ื” ื™ ื’ ืœ h e l e n a ื” ืœ ื  ื h e l g a ื” ื™ ืœ ื’ ื h e l l m u t ื” ื™ ืœ ืž ื• ื˜ h e n d e l ื” ื  ื“ ืœ h e s s e l i n k ื” ื™ ืก ื™ ืœ ื™ ื  ืง h e y l i g e n ื” ื™ ืœ ื™ ื’ ื™ ืŸ h i r a k a w a ื” ื™ ืจ ื ืง ื ื• ื h i r o h i t o ื” ื™ ืจ ื• ื” ื™ ื˜ ื• h o b a r t ื” ื• ื‘ ื ืจ ื˜ h o d d l e ื” ื• ื“ ืœ h o g a n ื” ื• ื’ ื ืŸ h o l l e i n ื” ื• ืœ ื™ ื™ ืŸ h o l t ื” ื• ืœ ื˜ h o r n a ื” ื• ืจ ื  ื h o s h y a r ื” ื• ืฉ ื™ ื ืจ h u a y n a ื” ื• ื ื™ ื  ื h u c h e l ื” ื• ื› ืœ h u s s a m ื— ื• ืก ื ื h u s s e i n i ื— ื• ืก ื™ ื™ ื  ื™ i f e a n y i ื ื™ ืค ื ื  ื™ ื™ i l a n ื ื™ ืœ ืŸ i l y a ื ื™ ืœ ื™ ื i m l a y ื ื™ ืž ืœ ื™ ื™ i m p e r i a ื ืž ืค ื™ ืจ ื™ ื i n d u r a i n ื ื™ ื  ื“ ื• ืจ ื™ ื™ ืŸ i n g m a r ื ื™ ื  ื’ ืž ื ืจ i n o n u ื ื™ ื  ื• ื  ื• i r a ื ื™ ืจ ื i r a d ื ื™ ืจ ื ื“ i r a n ื ื™ ืจ ื ืŸ i r w i n ื ื™ ืจ ื• ื™ ืŸ i s l a m ื ื™ ืก ืœ ื ื i s s e r ื ื™ ืก ืจ i s t v a n ื ื™ ืก ื˜ ื‘ ื ืŸ j a b l e h ื’ ื‘ ืœ ื” j a c k ื’ ' ืง j a c k m a n ื’ ' ื ืง ืž ื ืŸ j a c k y ื’ ' ืง ื™ j a m a l z a d e h ื’ ' ืž ื ืœ ื– ื ื“ ื” j a m e s ื’ ' ื™ ื™ ืž ื– j a n a ื™ ื ื  ื j a n o v i c ื™ ื ื  ื• ื‘ ื™ ื˜ ืฉ j a n s s e n s ื™ ื ื  ืก ื™ ื  ืก j a s e m ื’ ' ื ืก ื j a s h a r i ื™ ืฉ ื ืจ ื™ j a z i r i ื’ ' ื– ื™ ืจ ื™ j e n e i ื’ ' ื™ ื  ื™ ื™ j e n n i n g s ื’ ' ื  ื™ ื  ื’ ื– j e r e m y ื’ ' ืจ ืž ื™ j e r u s a l e m ื’ ' ืจ ื• ืก ื ืœ ื j e s u s ื— ื™ ืก ื• ืก j i m ื’ ' ื™ ื j o c e l y n ื’ ื• ืก ืœ ื™ ืŸ j o h a n n ื™ ื• ื” ื ืŸ j o r i s ื™ ื• ืจ ื™ ืก j o r v a n ื’ ' ื• ืจ ื‘ ื ืŸ j o s e f ื’ ' ื• ืก ืฃ j o s h ื’ ' ื• ืฉ j o s i p ื’ ' ื• ืก ื™ ืค j u d t ื’ ' ื• ื“ ื˜ j u r i c a ื™ ื• ืจ ื™ ืง ื k a d e e r ืง ื“ ื™ ืจ k a f k a ืง ื ืค ืง ื k a h a n e ืง ื ื” ื ื  ื k a h n e m a n ืง ื ื” ื  ืž ื ืŸ k a h r a m a n m a r a s ืง ื” ืจ ืž ื ื  ืž ื ืจ ื ืก k a i s e r s l a u t e r n ืง ื ื™ ื– ืจ ืก ืœ ื ื• ื˜ ืจ ืŸ k a l l s t r o m ืง ื ืœ ืก ื˜ ืจ ื• ื k a l t z ืง ื ืœ ืฅ k a m i l ืง ื ืž ืœ k a n d i n s k y ืง ื ื  ื“ ื™ ื  ืก ืง ื™ k a n t ืง ื ื  ื˜ k a o r u ืง ื ืจ ื• k a p l y c h n y i ืง ื ืค ืœ ื™ ืฆ ' ื  ื™ k a r e e m ืง ืจ ื™ ื k a r l ืง ื ืจ ืœ k a s s i r ืง ืก ื™ ืจ k a t a ืง ื˜ ืข k a t a l i n s k i ืง ื ื˜ ื ืœ ื™ ื  ืก ืง ื™ k a t e r i n a ืง ื ื˜ ืจ ื™ ื  ื k a t h m a n d u ืง ื ืช ืž ื  ื“ ื• k a t z e r ืง ื ื˜ ื– ืจ k a v ืง ื ื‘ k a y s o n e ืง ื ื™ ืก ื• ืŸ k a z i m i r ืง ื ื– ื™ ืž ื™ ืจ k a z u k i ืง ื ื– ื• ืง ื™ k e m o k o ืง ื™ ืž ื• ืง ื• k e m p e s ืง ื™ ืž ืค ืก k e n ืง ืŸ k e n s i n g t o n ืง ื  ืก ื™ ื  ื’ ื˜ ื• ืŸ k h a y a c h i ื› ื ื™ ื ืฉ ื™ k h o r e n ื— ื• ืจ ื™ ืŸ k i e n a s t ืง ื™ ื  ื ืก ื˜ k i e r o n ืง ื™ ืจ ื• ืŸ k i m b e r l y ืง ื™ ืž ื‘ ืจ ืœ ื™ k i n g s l e y ืง ื™ ื  ื’ ืก ืœ ื™ k i r i b a t i ืง ื™ ืจ ื™ ื‘ ื ื˜ ื™ k i r i c h e n k o ืง ื™ ืจ ื™ ืฆ ' ื  ืง ื• k i r k ืง ื™ ืจ ืง k i s e l y o v ืง ื™ ืก ื™ ืœ ื™ ื• ื‘ k i s n o r b o ืง ื™ ืก ื  ื• ืจ ื‘ ื• k i t a n o ืง ื™ ื˜ ื ื  ื• k i w u s ืง ื™ ื• ื• ืก k l a i p e d a ืง ืœ ื ื™ ืค ื™ ื“ ื k l e i n e r t ืง ืœ ื ื™ ื  ื™ ืจ ื˜ k o g y o k u ืง ื• ื’ ื™ ื• ืง ื• k o j i ืง ื• ื’ ' ื™ k o l o d i n ืง ื• ืœ ื• ื“ ื™ ืŸ k o l o m a n ืง ื• ืœ ื• ืž ื ืŸ k o r n e l ืง ื• ืจ ื  ืœ k o s h i ืง ื• ืฉ ื™ k o s u k e ืง ื• ืก ื• ืง ื™ k o v a c e v i c ืง ื• ื‘ ื ื˜ ืฉ ื™ ื‘ ื™ ื˜ ืฉ k r a u s s ืง ืจ ื ื• ืก k r e m e r ืง ืจ ื™ ืž ืจ k r i s t e n s e n ืง ืจ ื™ ืก ื˜ ื  ืก ืŸ k r y c h o w i a k ืง ืจ ื™ ืฆ ' ื• ื‘ ื™ ื ืง k u f u o r ืง ื• ืค ื• ืจ k u h n ืง ื• ืŸ k u m i ืง ื• ืž ื™ k u r a k i ืง ื• ืจ ื ืง ื™ k w a n z a a ืง ื• ื ื  ื– ื k y r o s ืง ื™ ืจ ื• ืก k y u m a ืง ื™ ื• ืž ื l a b a k i ืœ ื ื‘ ื ืง ื™ l a m y ืœ ื ืž ื™ l a m y a g h r i ืœ ืž ื™ ื ื’ ืจ ื™ l a n t o s ืœ ื ื  ื˜ ื• ืก l a s k a r i n a ืœ ื ืก ืง ื ืจ ื™ ื  ื l a s l a n d e s ืœ ื ืก ืœ ื ื  ื“ l a s s a l l e ืœ ื ืก ื ืœ l a u r e n s ืœ ื• ืจ ื  ืก l a u r s e n ืœ ื ื• ืจ ืก ืŸ l a v e r ืœ ื ื‘ ืจ l a v i l l e ืœ ื ื‘ ื™ ืœ l a v o n ืœ ื ื‘ ื• ืŸ l a z a r e ืœ ื ื– ื ืจ l e a n ืœ ื™ ืŸ l e c h ืœ ืš l e g r o t t a g l i e ืœ ื™ ื’ ืจ ื• ื˜ ื ืœ ื™ l e n n o n ืœ ื  ื• ืŸ l e o n o r ืœ ื™ ื• ื  ื• ืจ l e r m o n t o v ืœ ืจ ืž ื  ื˜ ื• ื‘ l e s n i a k ืœ ืก ื  ื™ ื ืง l e v c h e n k o ืœ ื™ ื‘ ืฆ ' ื  ืง ื• l e v i ืœ ื™ ื• ื ื™ l e w i n s k y ืœ ื• ื™ ื  ืก ืง ื™ l i b o r ืœ ื™ ื‘ ื• ืจ l i l i e n t h a l ืœ ื™ ืœ ื™ ื  ื˜ ื ืœ l i l l y ืœ ื™ ืœ ื™ l i p p i ืœ ื™ ืค ื™ l i s t ืœ ื™ ืก ื˜ l i v o r n o ืœ ื™ ื‘ ื• ืจ ื  ื• l o c k h a r t ืœ ื• ืง ื” ื ืจ ื˜ l o f t h o u s e ืœ ื ืค ื˜ ื” ื ื• ืก l o g i e ืœ ื• ื’ ื™ l o i c ืœ ื• ื ืง l o t a ืœ ื• ื˜ ื l o u i s e ืœ ื• ื ื™ ื– l o v e t t ืœ ื• ื‘ ื™ ื˜ l u c i a n o ืœ ื• ืก ื™ ื ื  ื• l u g o ืœ ื• ื’ ื• l u k a ืœ ื• ืง ื l u k a c s ืœ ื• ืง ื ืฉ l u l e a ืœ ื• ืœ ื™ ื l u n d i n ืœ ื• ื  ื“ ื™ ืŸ l u p e ืœ ื• ืค l u p e s c u ืœ ื• ืค ื™ ืก ืง ื• l u p o l i a n s k i ืœ ื• ืค ื• ืœ ื™ ื ื  ืก ืง ื™ l u t z ืœ ื ืฅ l u y c k x ืœ ื• ืง ืก l v i v ืœ ื‘ ื™ ื‘ m a a m a r ืž ื• ืข ืž ืจ m a c i a s ืž ื ืก ื™ ื ืก m a d r i d ืž ื“ ืจ ื™ ื“ m a d s e n ืž ื ื“ ืก ืŸ m a h a m a d o u ืž ื— ืž ื“ ื• m a h m o u d ืž ื— ืž ื• ื“ m a i d i n ืž ื ื™ ื“ ืŸ m a i r e a d ืž ื™ ืจ ื™ ื“ m a k a a y ืž ืง ื ื™ m a l i c k ืž ื ืœ ื™ ืง m a l k i n ืž ื ืœ ืง ื™ ืŸ m a l o n e y ืž ื ืœ ื• ื  ื™ m a l t e s e ืž ื ืœ ื˜ ื™ ื– m a m l u k ืž ืž ืœ ื• ืง m a m m e d a l y ืž ื ืž ื™ ื“ ื ืœ ื™ m a m o r u ืž ื ืž ื• ืจ ื• m a n d y ืž ื ื  ื“ ื™ m a n n i n g ืž ื ื  ื™ ื  ื’ m a r i o n ืž ื ืจ ื™ ื• ืŸ m a r i u s z ืž ื ืจ ื™ ื• ืก m a r k s ืž ื ืจ ืง ืก m a s a c c i o ืž ื ืก ื ืฆ ' ื• m a s h a l ืž ืฉ ืข ืœ m a s s i m o ืž ื ืก ื™ ืž ื• m a s s o u d ืž ืก ืข ื• ื“ m a t e ืž ื ื˜ ื™ m a t u s ืž ื ื˜ ื• ืก m a z h a r ืž ื– ื” ืจ m b e k i ืž ื‘ ื™ ืง ื™ m c c o i s t ืž ืง ื• ื™ ืก ื˜ m c c o r m i c k ืž ื ืง ื• ืจ ืž ื™ ืง m c h u g h ืž ื™ ืง ื” ื™ ื• m c l a c h l a n ืž ืง ืœ ื ืง ืœ ื ืŸ m c n e i l l ืž ืง ื  ื™ ืœ m e c i a r ืž ื™ ืฆ ' ื™ ื ืจ m e e n o ืž ื™ ื  ื• m e g a l i t h ืž ื™ ื’ ืœ ื™ ืช m e g h n i ืž ื’ ื  ื™ m e h m e d ืž ื— ืž ื“ m e i s s e n ืž ื™ ืก ืŸ m e l c h i o t ืž ื™ ืœ ืฉ ื™ ื• ื˜ m e n a s h e ืž ื  ืฉ ื” m e n c h u ืž ื  ืฆ ' ื• m e n d e l e e v ืž ื  ื“ ืœ ื™ ื™ ื‘ m e r y l ืž ื™ ืจ ื™ ืœ m e s a ืž ืก ื m e s r o b ืž ืก ืจ ื• ื‘ m e u t s t e g e ืž ื• ื˜ ืก ื˜ ื™ ื’ m e v o ืž ื™ ื‘ ื• m i a m i ืž ื ื™ ื ืž ื™ m i c h e l ืž ื™ ืฉ ืœ m i c r o m e t r e ืž ื™ ืง ืจ ื• ืž ื˜ ืจ m i d l e r ืž ื™ ื“ ืœ ืจ m i k a e l ืž ื™ ืง ื ื™ ืœ m i k a r i ืž ื™ ืง ื ืจ ื™ m i k i o ืž ื™ ืง ื™ ื• m i k k o ืž ื™ ืง ื• m i l e ืž ื™ ืœ m i l e y ืž ื ื™ ืœ ื™ m i l l a r d ืž ื™ ืœ ื ืจ ื“ m i l l e r ืž ื™ ืœ ืจ m i l t o n ืž ื™ ืœ ื˜ ื• ืŸ m i n a g a w a ืž ื™ ื  ื ื’ ื ื• ื m i n a m o t o ืž ื™ ื  ื ืž ื• ื˜ ื• m i n o r u ืž ื™ ื  ื• ืจ ื• m i n s k ืž ื™ ื  ืก ืง m i r a n d a ืž ื™ ืจ ื ื  ื“ ื m i t r o p o u l o s ืž ื™ ื˜ ืจ ื• ืค ื• ืœ ื• ืก m i t z p e ืž ืฆ ืค ื” m i u r a ืž ื™ ื• ืจ ื m i z r a h i ืž ื– ืจ ื— ื™ m n g o m e n i ืž ื  ื’ ื• ืž ื™ ื  ื™ m o d e r ืž ื• ื“ ืจ m o d i b o ืž ื• ื“ ื™ ื‘ ื• m o i z a n ืž ื• ื™ ื– ื ืŸ m o l b y ืž ื• ืœ ื‘ ื™ m o l i e r e ืž ื• ืœ ื™ ื™ ืจ m o m m u ืž ื• ืž ื• m o n r o e ืž ื• ื  ืจ ื• m o n s e f ืž ื• ื  ืก ืฃ m o n t e r o ืž ื• ื  ื˜ ื™ ืจ ื• m o n t e v i d e o ืž ื• ื  ื˜ ื™ ื‘ ื™ ื“ ื™ ื• m o r a t t i ืž ื• ืจ ื ื˜ ื™ m o r g a n ืž ื• ืจ ื’ ืŸ m o r i t z ืž ื• ืจ ื™ ืฅ m o r t e n ืž ื• ืจ ื˜ ืŸ m o r t o n ืž ื• ืจ ื˜ ืŸ m o t o r o l a ืž ื• ื˜ ื• ืจ ื• ืœ ื m o t t a ืž ื• ื˜ ื m p u m a l a n g a ืž ืค ื• ืž ื ืœ ื ื  ื’ ื m u d a r ืž ื• ื“ ื ืจ m u l l e r y ืž ื• ืœ ืจ ื™ m u r a n o ืž ื• ืจ ื ื  ื• m u r r a y ืž ืจ ื™ m u r t a z ืž ื• ืจ ื˜ ื ื– m u s s o ืž ื• ืก ื• n a b i h ื  ื ื‘ ื™ n a e l s o n ื  ื™ ื™ ืœ ืก ื• ืŸ n a f a ื  ืค ื ืข n a f t a l i ื  ืค ืช ืœ ื™ n a n c y ื  ื ื  ืก ื™ n a n s e n ื  ื ื  ืก ืŸ n a n t e s ื  ื ื  ื˜ ืก n a o k o ื  ื ื• ืง ื• n a s h ื  ื ืฉ n a t a s c h a ื  ื ื˜ ื ืฉ ื n a t h a n ื  ื™ ื™ ืช ืŸ n d a o ื  ื“ ื ื• n e b r a s k a ื  ื‘ ืจ ื ืก ืง ื n e d v e d ื  ื“ ื‘ ื™ ื“ n e v a d a ื  ื™ ื‘ ื ื“ ื n i a n g ื  ื™ ื ื  ื’ n i c e ื  ื™ ืก n i c o l a i ื  ื™ ืง ื• ืœ ื ื™ n i e l s e n ื  ื™ ืœ ืก ืŸ n i k k i ื  ื™ ืง ื™ n i k o l o u d i s ื  ื™ ืง ื• ืœ ื• ื“ ื™ ืก n i l t o n ื  ื™ ืœ ื˜ ื• ืŸ n i s h i k a w a ื  ื™ ืฉ ื™ ืง ื ื• ื n i s r ื  ื™ ืก ืจ n i t r a ื  ื™ ื˜ ืจ ื n o b u s u k e ื  ื• ื‘ ื• ืก ื• ืง ื” n o e ื  ื• ื™ n o h a i r ื  ื• ื” ื™ ื™ ืจ n o m v e t h e ื  ื• ืž ื‘ ื™ ื˜ ื™ n o r d a h l ื  ื• ืจ ื“ ื ืœ n o r m a n ื  ื• ืจ ืž ื ืŸ n o r t h a m ื  ื• ืจ ืช ื ื n u d e l m a n ื  ื• ื“ ืœ ืž ื ืŸ n u n a v u t ื  ื• ื  ื ื‘ ื• ื˜ n y e r e r e ื  ื™ ืจ ื™ ืจ ื™ o d e n s e ื ื• ื“ ื  ืก ื™ o i l ื ื• ื™ ืœ o k a f o r ื ื• ืง ื ืค ื• ืจ o l i m p i a ื ื• ืœ ื™ ืž ืค ื™ ื o r l e a n s ื ื• ืจ ืœ ื™ ื  ื– o z i l ื ื• ื– ื™ ืœ p a c i f i c o ืค ื ืก ื™ ืค ื™ ืง ื• p a i r e t t o ืค ื ื™ ืจ ื™ ื˜ ื• p a k r a d o u n i ืค ืง ืจ ื ื“ ื• ื  ื™ p a l i n ืค ื ืœ ื™ ืŸ p a l l i s t e r ืค ื ืœ ื™ ืก ื˜ ืจ p a l m a ืค ื ืœ ืž ื p a o l a ืค ื ื• ืœ ื p a r k s ืค ื ืจ ืง ืก p a s t r a n a ืค ื ืก ื˜ ืจ ื ื  ื p a u s i n i ืค ื ื• ื– ื™ ื  ื™ p e d r e t t i ืค ื™ ื“ ืจ ื™ ื˜ ื™ p e k e r m a n ืค ืง ืจ ืž ื ืŸ p e l e ืค ืœ ื” p e r e i r a ืค ื™ ืจ ื™ ื™ ืจ ื p e r o ืค ื™ ืจ ื• p e t e ืค ื™ ื˜ p e t r i ืค ื™ ื˜ ืจ ื™ p e t t i s ืค ื˜ ื™ ืก p e y t o n ืค ื™ ื™ ื˜ ื• ืŸ p h i l l i m o n ืค ื™ ืœ ื™ ืž ื• ืŸ p h i l l i p ืค ื™ ืœ ื™ ืค p i a n o ืค ื™ ื ื  ื• p i e r r e ืค ื™ ื ืจ p i o u s ืค ื ื™ ื• ืก p i q u i o n n e ืค ื™ ืง ื™ ื• ืŸ p i t u r c a ืค ื™ ื˜ ื• ืจ ืง ื p l a m e n ืค ืœ ื™ ื™ ืž ืŸ p l a u t z ืค ืœ ื ื• ืฅ p o l a n d ืค ื• ืœ ื  ื“ p o m p i d o u ืค ื• ืž ืค ื™ ื“ ื• p r i o n ืค ืจ ื™ ื• ืŸ p r o p a n e ืค ืจ ื• ืค ื™ ื™ ืŸ p r o s t ืค ืจ ื• ืก ื˜ p u l c i ืค ื• ืœ ืฉ ื™ p u y o l ืค ื• ื™ ื• ืœ q a t a r ืง ื˜ ืจ q u a g l i a r e l l a ืง ื• ื ืœ ื™ ื ืจ ื™ ืœ ื q u a i d ืง ื• ื™ ื™ ื“ q u a s i m o d o ืง ื• ื ื– ื™ ืž ื• ื“ ื• q u m r a n ืง ื• ืž ืจ ื ืŸ r a d u c i o i u ืจ ื ื“ ื• ืก ื™ ื• r a f f a e l e ืจ ืค ื ืœ ื™ r a h m a n ืจ ื— ืž ืŸ r a j a ืจ ื’ ' ื r a l p h ืจ ื ืœ ืฃ r a m e a u ืจ ื ืž ื• r a m i r e z ืจ ื ืž ื™ ืจ ื™ ื– r a m y ืจ ื ืž ื™ r a p a i c ืจ ื ืค ื ื™ ื™ ื˜ ืฉ r a s u l ืจ ืก ื• ืœ r a t e b ืจ ื ื˜ ื‘ r a t o m i r ืจ ื ื˜ ื• ืž ื™ ืจ r e d a ืจ ื“ ื r e g e n s b u r g ืจ ื™ ื’ ื  ืก ื‘ ืจ ื’ r e i n h a r t ืจ ื™ ื™ ื  ื” ื ืจ ื˜ r e n a ืจ ื™ ื  ื r e n a u d ืจ ื™ ื  ื• r e y m o n t ืจ ื™ ื™ ืž ื• ื  ื˜ r e y n a u d ืจ ื™ ื  ื• r i b e r y ืจ ื™ ื‘ ืจ ื™ r i c a ืจ ื™ ืง ื r i c h e r t ืจ ื™ ืฆ ' ืจ ื˜ r i f a a t ืจ ื™ ืค ืข ื˜ r i g o b e r t ืจ ื™ ื’ ื• ื‘ ืจ ื˜ r i s s e r ืจ ื™ ืก ืจ r i s t o ืจ ื™ ืก ื˜ ื• r i z w a n ืจ ื™ ื– ื• ื ืŸ r o d r i g o ืจ ื• ื“ ืจ ื™ ื’ ื• r o g e r ืจ ื• ื’ ' ืจ r o o s e v e l t ืจ ื• ื– ื• ื• ืœ ื˜ r o r a i m a ืจ ื• ืจ ื ื™ ืž ื r o s e t t i ืจ ื• ื– ื™ ื˜ ื™ r o s t o v ืจ ื• ืก ื˜ ื• ื‘ r o v a n i e m i ืจ ื• ื‘ ื ื  ื™ ื ืž ื™ r u b i o ืจ ื• ื‘ ื™ ื• r u d d y ืจ ื• ื“ ื™ r u i t e r ืจ ื• ื™ ื˜ ืจ r u s k ืจ ื ืก ืง r u s u d a n ืจ ื• ืก ื• ื“ ื ืŸ s a a r t j i e ืก ื ืจ ื˜ ื’ ' ื™ s a h a r ืก ื— ืจ s a h e l ืก ื ื— ืœ s a h n o u n ืก ื— ื  ื• ืŸ s a i d ืก ืข ื™ ื“ s a i n t ืก ื™ ื™ ื  ื˜ s a l a m a ืก ืœ ื ืž ื” s a l a m e h ืก ืœ ื ืž ื” s a m i ืก ื ืž ื™ s a n c h e z ืก ื ื  ืฉ ื™ ื– s a n t i ืก ื ื  ื˜ ื™ s a p u n a r u ืก ื ืค ื• ื  ื ืจ ื• s a q r ืก ื ืง ืจ s a r i n a n a ืก ื ืจ ื™ ื  ื ื  ื s a r k ืก ื ืจ ืง s a s s i ืก ื ืก ื™ s a s s o o n ืก ื ืก ื• ืŸ s a w a ืก ื ื• ื• ื s a w a s h i r o ืก ื ื• ื ืฉ ื™ ืจ ื• s a w i r i s ืก ื ื• ื™ ืจ ื™ ืก s c a l o n i ืก ืง ื ืœ ื• ื  ื™ s c h a a f ืฉ ื ืฃ s c h a m i ืฉ ื ืž ื™ s c h e r z i n g e r ืฉ ื™ ืจ ื– ื™ ื  ื’ ืจ s c h i n d l e r ืฉ ื™ ื  ื“ ืœ ืจ s c h o l e s ืก ืง ื• ืœ ื– s c h w i m m e r ืฉ ื• ื™ ืž ืจ s c o t l a n d ืก ืง ื• ื˜ ืœ ื ื  ื“ s e a m a n ืก ื™ ืž ื ืŸ s e b a s t i a o ืก ื‘ ื ืก ื˜ ื™ ื ื• s e f e r i s ืก ืค ืจ ื™ ืก s e j d i u ืก ื™ ื“ ื™ ื• s e k i ืก ืง ื™ s e n t u r k ืก ื  ื˜ ื• ืจ ืง s e r g i n h o ืก ื™ ืจ ื’ ื™ ื  ื” ื• s e r i ืก ืจ ื™ s e r r a ืก ื™ ืจ ื s e t s u b u n ืก ื™ ื˜ ืก ื• ื‘ ื• ืŸ s h a g a r i ืฉ ื ื’ ื ืจ ื™ s h a w k a t ืฉ ื ื• ืง ื ื˜ s h a w k i ืฉ ื ื• ืง ื™ s h a y ืฉ ื™ s h e f e r ืฉ ืค ืจ s h e h u ืฉ ื” ื• s h e h z a d ืฉ ื” ื– ื ื“ s h e r i d a n ืฉ ื™ ืจ ื™ ื“ ื ืŸ s h i n i n g a y a m w e ืฉ ื™ ื  ื™ ื  ื’ ื ื™ ื ืž ื• ื™ s h i n k a n s e n ืฉ ื™ ื  ืง ื ื  ืก ืŸ s h i r a i ืฉ ื™ ืจ ื ื™ s h w i k a r ืฉ ื• ื™ ืง ื ืจ s i d o n ืก ื™ ื“ ื• ืŸ s i m f e r o p o l ืก ื™ ืž ืค ื™ ืจ ื• ืค ื• ืœ s i m u n i c ืก ื™ ืž ื• ื  ื™ ื˜ ืฉ s i p o s ืก ื™ ืค ื• ืก s i t t i n g ืก ื™ ื˜ ื™ ื  ื’ s k a h ืก ืง ื ื— s l a v k o v ืก ืœ ื ื‘ ืง ื• ื‘ s l a v o n i a ืก ืœ ื ื• ื• ื  ื™ ื s l o b o d a n ืก ืœ ื• ื‘ ื• ื“ ื ืŸ s m e t a n a ืก ืž ื™ ื˜ ื  ื s m i t h i e s ืก ืž ื™ ืช ื™ ื– s n e i j d e r ืฉ ื  ื ื™ ื“ ืจ s o d i u m ืก ื• ื“ ื™ ื• ื s p a c e y ืก ืค ื™ ื™ ืก ื™ s p e n ืก ืค ื™ ืŸ s p i n o z a ืก ืค ื™ ื  ื• ื– ื s q u i l l a c i ืก ืง ื• ื™ ืœ ื ืฆ ' ื™ s t a d e ืก ื˜ ื ื“ s t a m i l e ืก ื˜ ื ืž ื ื™ ืœ s t a r i ืก ื˜ ื ืจ ื™ s t e e l ืก ื˜ ื™ ืœ s t e f a n s o n ืก ื˜ ืค ื ื  ืก ื• ืŸ s t e f f e n ืก ื˜ ื™ ืค ืŸ s t e p a n ืก ื˜ ื™ ืค ื ืŸ s t e p h e n ืก ื˜ ื™ ืค ืŸ s t e p h e n s ืก ื˜ ื™ ืค ื  ืก s t o j k o v i c ืก ื˜ ื• ื™ ืง ื• ื‘ ื™ ื˜ ืฉ s t o l t e n b e r g ืก ื˜ ื• ืœ ื˜ ื  ื‘ ืจ ื’ s t r a d i v a r i u s ืก ื˜ ืจ ื ื“ ื™ ื‘ ื ืจ ื™ ื• ืก s u c h o p a r e k ืก ื• ืฆ ' ื• ืค ื ืจ ื™ ืง s u d a n ืก ื• ื“ ื ืŸ s u d b u r y ืก ื• ื“ ื‘ ืจ ื™ s u g i y a m a ืก ื• ื’ ื™ ื™ ื ืž ื s u l a i m a n ืก ื• ืœ ื™ ื™ ืž ืŸ s u m a t r a ืก ื• ืž ื˜ ืจ ื” s u m e r ืก ื• ืž ืจ s u r e e ืก ื• ืจ ื™ s u s s m u t h ืก ื• ืก ืž ื• ืช s u t t n e r ืก ื• ื˜ ื  ืจ s u v o r o v ืก ื• ื‘ ื• ืจ ื• ื‘ s v e n s s o n ืก ื• ื™ ื  ืก ื• ืŸ s w a i l e ืก ื• ื™ ื™ ืœ s y e d ืก ื™ ื™ ื“ t a f t ื˜ ื ืค ื˜ t a g o e ื˜ ื ื’ ื• t a i p e i ื˜ ื ื™ ืค ื™ ื™ t a j a l l i ื˜ ื’ ' ืœ ื™ t a k a m o r i ื˜ ื ืง ื ืž ื• ืจ ื™ t a l e b l o o ื˜ ื ืœ ื‘ ืœ ื• t a l p i o t ืช ืœ ืค ื™ ื• ืช t a m i m ืช ืž ื™ ื t a s s o t t i ื˜ ื ืก ื• ื˜ ื™ t a u t ื˜ ื ื• ื˜ t e n o r i o ื˜ ื™ ื  ื• ืจ ื™ ื• t e u g e l s ื˜ ื™ ื’ ื™ ืœ ืก t h e o d o r o s ืช ื™ ื• ื“ ื• ืจ ื• ืก t h o r s t ืช ื• ืจ ืก ื˜ t h u r a m ื˜ ื• ืจ ื ื t h w a i t e ืช ื• ื ื™ ื˜ t i b e t ื˜ ื™ ื‘ ื˜ t i e ื˜ ื ื™ t i o m k i n ื˜ ื™ ื• ืž ืง ื™ ืŸ t o c a n t i n s ื˜ ื• ืง ื ื  ื˜ ื™ ื  ื– t o m a s ื˜ ื• ืž ื ืก t o m i s l a v ื˜ ื• ืž ืก ืœ ื ื‘ t o n i ื˜ ื• ื  ื™ t o r i u m i ื˜ ื• ืจ ื™ ื• ืž ื™ t o s h i o ื˜ ื• ืฉ ื™ ื• t o s h i r o ื˜ ื• ืฉ ื™ ืจ ื• t r i m u r t i ื˜ ืจ ื™ ืž ื• ืจ ื˜ ื™ t r i p o l i ื˜ ืจ ื™ ืค ื• ืœ ื™ t r i s t a n ื˜ ืจ ื™ ืก ื˜ ื ืŸ t r n a v a ื˜ ืจ ื  ื ื‘ ื t r u l l i ื˜ ืจ ื• ืœ ื™ t r u t h ื˜ ืจ ื• ืช t s c h u m i ืฆ ' ื• ืž ื™ t s u n a y o s h i ื˜ ืก ื• ื  ื ื™ ื• ืฉ ื™ t s y m b a l a r ืฆ ื™ ืž ื‘ ื ืœ ื ืจ t u m e l o ื˜ ื• ืž ื™ ืœ ื• t u r n e r ื˜ ื™ ืจ ื  ืจ t u s c a n y ื˜ ื• ืก ืง ื ื  ื™ u g a n d a ื ื• ื’ ื ื  ื“ ื u t h m a n ืข ื• ืช ืž ื ืŸ v a g n e r ื• ื ื’ ื  ืจ v a h i d ื• ื— ื™ ื“ v a l e n c i a ื• ื ืœ ื  ืก ื™ ื v a n c o u v e r ื• ื ื  ืง ื• ื‘ ืจ v a n d e n d a e l e ื• ื ื  ื“ ื  ื“ ื™ ื™ ืœ v a s a r e l y ื• ื ืก ื ืจ ืœ ื™ v a s c o ื• ื ืก ืง ื• v a s i l y ื• ื ืก ื™ ืœ ื™ v a v a ื• ื ื• ื v e l a z q u e z ื• ื™ ืœ ื ื– ืง ื™ ื– v e l h a ื• ืœ ื” ื v e r a ื• ื™ ืจ ื v i a n i ื• ื™ ื ื  ื™ v i c i n i ื• ื™ ืฆ ' ื™ ื  ื™ v i l i a m ื• ื™ ืœ ื™ ื ื v i r g i n i e ื• ื™ ืจ ื’ ' ื™ ื  ื™ v i s w a n a t h a n ื• ื™ ืก ื• ื ื  ื ืช ื ืŸ v i t r u v i u s ื• ื™ ื˜ ืจ ื• ื‘ ื™ ื• ืก v l a s t i m i l ื• ืœ ื ืก ื˜ ื™ ืž ื™ ืœ v o g e l ื‘ ื• ื’ ืœ v o l k a n ื• ืœ ืง ื ืŸ v o l v o ื• ื• ืœ ื‘ ื• v o r o n i n ื‘ ื• ืจ ื• ื  ื™ ืŸ v u k o j e v i c ื‘ ื• ืง ื• ื‘ ื™ ื˜ ืฉ w a d i h ื• ื ื“ ื™ ื— w a l d h e i m ื• ื ืœ ื“ ื” ื ื™ ื w a l l a c e ื• ื ืœ ื ืก w a n g a r i ื• ื ื  ื’ ื ืจ ื™ w a n i s ื• ื ื  ื™ ืก w a t a r u ื• ื ื˜ ื ืจ ื• w a t t s ื• ื ื˜ ืก w a w r i n k a ื• ื ื• ืจ ื™ ื  ืง ื w e h r ื• ืจ w e i ื• ื™ ื™ w e i s s ื• ื ื™ ืก w e l t e r ื• ืœ ื˜ ืจ w e n d e l l ื• ื™ ื  ื“ ืœ w e n g e r ื• ื™ ื  ื’ ืจ w h e a t e r ื• ื™ ื˜ ื™ ืจ w h i t a k e r ื• ื™ ื˜ ื ืง ืจ w i k i ื• ื™ ืง ื™ w i s n i e s k i ื• ื™ ืก ื  ื™ ืก ืง ื™ w o j c i k ื• ื• ื™ ืฆ ืง w o n g ื• ื• ื  ื’ w o o d c o c k ื• ื• ื“ ืง ื• ืง w o o d l e y ื• ื• ื“ ืœ ื™ w o u t e r s ื• ื• ื˜ ืจ ืก w o z n i a k ื• ื– ื  ื™ ื ืง y a f a ื™ ื ืค ื y a g u r ื™ ื ื’ ื• ืจ y a m a d a y e v ื™ ื ืž ื ื“ ื ื™ ื™ ื‘ y a n a i ื™ ื  ื ื™ y a n n ื™ ื ืŸ y a o k u n ื™ ื ื• ืง ื• ืŸ y a q u b ื™ ืข ืง ื• ื‘ y a s u o ื™ ื ืก ื• y a t o m ื™ ืช ื• ื y o l a n d e ื™ ื• ืœ ื ื  ื“ y o r i t o m o ื™ ื• ืจ ื™ ื˜ ื• ืž ื• y o r k s h i r e ื™ ื• ืจ ืง ืฉ ื™ ืจ y o u s s e f ื™ ื• ืก ืฃ y u k i n o ื™ ื• ืง ื™ ื  ื• z a c h a r y ื– ื ืง ื ืจ ื™ z a h o r s k i ื– ื ื” ื• ืจ ืก ืง ื™ z a k a r i a ื– ืง ืจ ื™ ื z a l a y e t a ื– ื ืœ ื ื™ ื™ ื˜ ื z a t ื– ื ื˜ z a u r i ื– ื ื• ืจ ื™ z e b e c ื– ื™ ื‘ ื™ ื˜ ืฉ z e i n ื– ื™ ื™ ืŸ z e l a y a ื– ื™ ืœ ื ื™ ื z e n o ื– ื™ ื  ื• z e v i ืฆ ื‘ ื™ z e v u l u n ื– ื‘ ื• ืœ ื• ืŸ z e w a i l ื– ื• ื™ ื™ ืœ z i m m e r m a n ื– ื™ ืž ืจ ืž ื ืŸ z i o n ื– ื ื™ ื• ืŸ z o f f ื– ื• ืฃ z o h a r ื– ื• ื” ืจ z u b i z a r r e t a ื– ื• ื‘ ื™ ื– ื ืจ ื™ ื˜ ื z v o n i m i r ื– ื‘ ื• ื  ื™ ืž ื™ ืจ z w e i g ืฆ ื‘ ื ื™ ื’ ฤ‘ u r i c ื“ ื• ืจ ื™ ื˜ ืฉ ฤพ u b o m i r ืœ ื• ื‘ ื• ืž ื™ ืจ ฤพ u b o s ืœ ื• ื‘ ื• ืก
cc33f671cc87fec1a12d3a2ec959bbaefed414ac
449d555969bfd7befe906877abab098c6e63a0e8
/2339/CH7/EX7.5.1/Ex7_5.sce
ff9d8119b034a3b0668d3e15ad06a724bbef4e43
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
294
sce
Ex7_5.sce
clc clear Vc=5*(10^-4); D=0.15; L=0.2; Vs=(22/7)*D*D*L*(1/4); r=(Vc+Vs)/Vc; G=1.4; Ea=[1-(1/(r^(G-1)))]; Eith=0.3; Erel=Eith/Ea; printf('Erel= %3.2f Percent',Erel*100); printf('\n'); Pm=500; //in kPa n=1000/2; IP=(Pm*Vs*n)/60; printf('IP= %3.2f kW',IP); printf('\n');
c36897c296fed0095d35f74bf5e6b96feb5fb9f7
449d555969bfd7befe906877abab098c6e63a0e8
/1484/CH6/EX6.17/6_17.sce
d9bf1bd0f6ef06ed6d7c7555cd8200707edc8d49
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499000
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
415
sce
6_17.sce
clc //initialisation of variables f= 0.008 l= 2000 //ft p1= 34 //ft p2= 8 //ft p3= 4 //ft g= 32.2 //ft/sec^2 d= 18 //in P= 140 //ft l1= 9500 //ft //CALCULATIONS v= sqrt((p1-p2-p3)*2*g/((d/12)+(4*f*l/(d/12)))) Q= %pi*(d/12)^2*v/4 v1= sqrt(P*2*g/((d/12)+(4*f*l1/(d/12)))) Q1= %pi*(d/12)^2*v1/4 //RESULTS printf ('Quantity discharge= %.f cuses',Q) printf ('\n Quantity discharge= %.2f cuses',Q1)
2daa1151930502f538f9634627d42e5be0b57db9
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set14/s_Linear_Algebra_And_Its_Applications_G._Strang_70.zip/Linear_Algebra_And_Its_Applications_G._Strang_70/CH2/EX2.3.3/2_3_3.sci
d98468fc4cc20be29f3022ccae0367618c1aea1e
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200000
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
193
sci
2_3_3.sci
errcatch(-1,"stop");mode(2);; ; A=[3 4 2;0 1 5;0 0 2]; disp(A,'A='); disp('The columns of the triangular matrix are linearly independent,it has no zeros on the diagonal'); //end exit();
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
12