Dataset Viewer
Auto-converted to Parquet
robot_type
string
codebase_version
string
total_episodes
int64
total_frames
int64
total_tasks
int64
total_videos
int64
total_chunks
int64
chunks_size
int64
fps
int64
splits
dict
data_path
string
video_path
string
features
dict
so-100
v2.1
0
0
1
0
1
1,000
30
{ "train": "0:0" }
data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet
videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4
{ "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "motor_1", "motor_2", "motor_3", "motor_4", "motor_5", "motor_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "motor_1", "motor_2", "motor_3", "motor_4", "motor_5", "motor_6" ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "observation.images.main": { "dtype": "video", "shape": [ 240, 320, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.fps": 30, "video.codec": "avc1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.secondary_0": { "dtype": "video", "shape": [ 240, 320, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.fps": 30, "video.codec": "avc1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } } }

BallReturn3

This dataset was generated using phosphobot.

This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot.

To get started in robotics, get your own phospho starter pack..

Downloads last month
21