|
--- |
|
license: mit |
|
language: en |
|
tags: |
|
- pathological-speech |
|
- speech-synthesis |
|
- tts |
|
- voice-conversion |
|
- healthy-control |
|
- torgo |
|
--- |
|
|
|
# Torgo Healthy Female Dataset (Updated) |
|
|
|
## Overview |
|
|
|
This dataset contains healthy control speech samples from a female speaker (FC02) in the TORGO corpus, prepared for pathological speech synthesis research. |
|
|
|
**Speaker Information:** |
|
- **Speaker ID:** FC02 |
|
- **Corpus:** TORGO |
|
- **Gender:** Female |
|
- **Speech Status:** Healthy Control |
|
|
|
## Dataset Statistics |
|
|
|
- **Total Samples:** 800 |
|
- **Total Duration:** 0.63 hours |
|
- **Sampling Rate:** 24,000 Hz |
|
- **Format:** Audio arrays with transcriptions |
|
|
|
### Training Split |
|
- **Samples:** 700 |
|
- **Duration:** 0.55 hours |
|
- **Avg Duration:** 2.9s |
|
- **Duration Range:** 1.6s - 7.5s |
|
- **Avg Text Length:** 13 characters |
|
|
|
### Test Split |
|
- **Samples:** 100 |
|
- **Duration:** 0.08 hours |
|
- **Avg Duration:** 2.9s |
|
- **Duration Range:** 1.9s - 6.3s |
|
- **Avg Text Length:** 14 characters |
|
|
|
|
|
### Loading the Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("your-username/torgo_healthy_female") |
|
|
|
# Access train and test splits |
|
train_data = dataset['train'] |
|
test_data = dataset['test'] |
|
|
|
# Each sample contains: |
|
# - 'audio': {'array': numpy_array, 'sampling_rate': 24000} |
|
# - 'text': str (normalized transcription) |
|
|
|
# Example usage |
|
sample = train_data[0] |
|
audio_array = sample['audio']['array'] |
|
transcription = sample['text'] |
|
sampling_rate = sample['audio']['sampling_rate'] |
|
``` |
|
|
|
### Direct Training with Transformers |
|
|
|
```python |
|
from transformers import Trainer |
|
from datasets import load_dataset |
|
|
|
# Load and use directly with Trainer (no preprocessing needed) |
|
dataset = load_dataset("your-username/torgo_healthy_female") |
|
trainer = Trainer( |
|
train_dataset=dataset['train'], |
|
eval_dataset=dataset['test'], |
|
# ... other trainer arguments |
|
) |
|
``` |
|
|