resproj007's picture
Update README.md
07ed881 verified
---
license: mit
language: en
tags:
- pathological-speech
- speech-synthesis
- tts
- voice-conversion
- healthy-control
- torgo
---
# Torgo Healthy Female Dataset (Updated)
## Overview
This dataset contains healthy control speech samples from a female speaker (FC02) in the TORGO corpus, prepared for pathological speech synthesis research.
**Speaker Information:**
- **Speaker ID:** FC02
- **Corpus:** TORGO
- **Gender:** Female
- **Speech Status:** Healthy Control
## Dataset Statistics
- **Total Samples:** 800
- **Total Duration:** 0.63 hours
- **Sampling Rate:** 24,000 Hz
- **Format:** Audio arrays with transcriptions
### Training Split
- **Samples:** 700
- **Duration:** 0.55 hours
- **Avg Duration:** 2.9s
- **Duration Range:** 1.6s - 7.5s
- **Avg Text Length:** 13 characters
### Test Split
- **Samples:** 100
- **Duration:** 0.08 hours
- **Avg Duration:** 2.9s
- **Duration Range:** 1.9s - 6.3s
- **Avg Text Length:** 14 characters
### Loading the Dataset
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-username/torgo_healthy_female")
# Access train and test splits
train_data = dataset['train']
test_data = dataset['test']
# Each sample contains:
# - 'audio': {'array': numpy_array, 'sampling_rate': 24000}
# - 'text': str (normalized transcription)
# Example usage
sample = train_data[0]
audio_array = sample['audio']['array']
transcription = sample['text']
sampling_rate = sample['audio']['sampling_rate']
```
### Direct Training with Transformers
```python
from transformers import Trainer
from datasets import load_dataset
# Load and use directly with Trainer (no preprocessing needed)
dataset = load_dataset("your-username/torgo_healthy_female")
trainer = Trainer(
train_dataset=dataset['train'],
eval_dataset=dataset['test'],
# ... other trainer arguments
)
```