|
--- |
|
license: mit |
|
task_categories: |
|
- robotics |
|
language: |
|
- en |
|
tags: |
|
- code |
|
pretty_name: GEMBench dataset |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
# Dataset Card for GEMBench dataset |
|
|
|
π **GE**neralizable vision-language robotic **M**anipulation **Bench**mark Dataset |
|
|
|
A benchmark to systematically evaluate generalization capabilities of vision-and-language robotic manipulation policies. Built upon the RLBench simulator. |
|
|
|
 |
|
|
|
π» **GEMBench Project Webpage:** https://www.di.ens.fr/willow/research/gembench/ |
|
|
|
π **Leaderboard:** https://paperswithcode.com/sota/robot-manipulation-generalization-on-gembench |
|
|
|
## Dataset Structure |
|
Dataset structure is as follows: |
|
``` |
|
- gembench |
|
- train_dataset |
|
- microsteps: 567M, initial configurations for each episode |
|
- keysteps_bbox: 160G, extracted keysteps data |
|
- keysteps_bbox_pcd: (used to train 3D-LOTUS) |
|
- voxel1cm: 10G, processed point clouds |
|
- instr_embeds_clip.npy: instructions encoded by CLIP text encoder |
|
- motion_keysteps_bbox_pcd: (used to train 3D-LOTUS++ motion planner) |
|
- voxel1cm: 2.8G, processed point clouds |
|
- action_embeds_clip.npy: action names encoded by CLIP text encoder |
|
- val_dataset |
|
- microsteps: 110M, initial configurations for each episode |
|
- keysteps_bbox_pcd: |
|
- voxel1cm: 941M, processed point clouds |
|
- test_dataset |
|
- microsteps: 2.2G, initial configurations for each episode |
|
``` |
|
|
|
## π οΈ Benchmark Installation |
|
|
|
1. Create and activate your conda environment: |
|
```bash |
|
conda create -n gembench python==3.10 |
|
|
|
conda activate gembench |
|
``` |
|
2. Install RLBench |
|
Download CoppeliaSim (see instructions [here](https://github.com/stepjam/PyRep?tab=readme-ov-file#install)) |
|
```bash |
|
# change the version if necessary |
|
wget https://www.coppeliarobotics.com/files/V4_1_0/CoppeliaSim_Edu_V4_1_0_Ubuntu20_04.tar.xz |
|
tar -xvf CoppeliaSim_Edu_V4_1_0_Ubuntu20_04.tar.xz |
|
``` |
|
|
|
Add the following to your ~/.bashrc file: |
|
```bash |
|
export COPPELIASIM_ROOT=$(pwd)/CoppeliaSim_Edu_V4_1_0_Ubuntu20_04 |
|
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$COPPELIASIM_ROOT |
|
export QT_QPA_PLATFORM_PLUGIN_PATH=$COPPELIASIM_ROOT |
|
``` |
|
|
|
Install Pyrep and RLBench |
|
```bash |
|
git clone https://github.com/cshizhe/PyRep.git |
|
cd PyRep |
|
pip install -r requirements.txt |
|
pip install . |
|
cd .. |
|
|
|
# Our modified version of RLBench to support new tasks in GemBench |
|
git clone https://github.com/rjgpinel/RLBench |
|
cd RLBench |
|
pip install -r requirements.txt |
|
pip install . |
|
cd .. |
|
``` |
|
|
|
## Evaluation |
|
|
|
Please, check 3D-LOTUS++ official code repository for evaluation: |
|
|
|
https://github.com/vlc-robot/robot-3dlotus?tab=readme-ov-file#evaluation |
|
|
|
|
|
## Citation |
|
|
|
If you use our GemBench benchmark or find our code helpful, please kindly cite our [work](https://arxiv.org/abs/2410.01345): |
|
|
|
**BibTeX:** |
|
|
|
```bibtex |
|
@inproceedings{garcia25gembench, |
|
author = {Ricardo Garcia and Shizhe Chen and Cordelia Schmid}, |
|
title = {Towards Generalizable Vision-Language Robotic Manipulation: A Benchmark and LLM-guided 3D Policy}, |
|
booktitle = {IEEE International Conference on Robotics and Automation (ICRA)}, |
|
year = {2025} |
|
} |
|
``` |
|
|
|
## Contact |
|
|
|
[Ricardo Garcia-Pinel](mailto:[email protected]) |