|
--- |
|
license: mit |
|
language: |
|
- fr |
|
size_categories: |
|
- 10K<n<100K |
|
task_categories: |
|
- text-classification |
|
- text-regression |
|
tags: |
|
- medical |
|
- french |
|
- biomedical |
|
- clinical |
|
- annotations |
|
|
|
|
|
- high-quality |
|
pretty_name: Biomed-FR-v3 Top 20% Quality Dataset |
|
--- |
|
|
|
# Biomed-FR-v3 Top 20% Quality Dataset |
|
|
|
This dataset contains French biomedical text annotated with **20 different classification and regression tasks** using the `rntc/biomed-fr-v2-classifier` model. |
|
|
|
## Dataset Summary |
|
|
|
- **Total samples**: 325 |
|
- **Total columns**: 41 |
|
- **Annotation tasks**: 25 |
|
- **Language**: French |
|
- **Domain**: Biomedical/Clinical |
|
- **Filter criteria**: Top 20% quality: educational_score, writing_quality, content_richness, terminology_precision all >= 80th percentile |
|
|
|
## Key Features |
|
|
|
- ✅ **Complete annotation coverage**: All 20 tasks from biomed-fr-v2-classifier |
|
- ✅ **Includes `rewriting_needed`**: Critical regression task for content quality |
|
- ✅ **Quality metrics**: Educational scores, terminology precision, content richness |
|
- ✅ **Clinical focus**: Medical subfield classification, clinical case detection |
|
- ✅ **Proper column order**: Original educational_score preserved (1-5 scale) |
|
|
|
## Annotation Tasks |
|
|
|
### Regression Tasks (15) |
|
- `rewriting_needed`: Content rewriting necessity score |
|
- `contains_bias`: Bias detection score |
|
- `writing_quality`: Text quality assessment |
|
- `terminology_precision`: Medical terminology accuracy |
|
- `content_richness`: Information density score |
|
- Plus others: age_group, assertion_type, certainty_level, etc. |
|
|
|
### Classification Tasks (5) |
|
- `medical_subfield`: 45 medical specialties |
|
- `content_type`: 9 content categories |
|
- `writing_style`: 5 writing styles |
|
- `text_type`: meaningful vs incomplete |
|
- `interactive_elements`: 4 interaction types |
|
|
|
## Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("rntc/bb-tt-3-s4") |
|
|
|
# Access key annotations |
|
texts = dataset["train"]["text"] |
|
rewriting_scores = dataset["train"]["rewriting_needed"] |
|
educational_scores = dataset["train"]["educational_score"] # Original 1-5 scale |
|
medical_fields = dataset["train"]["medical_subfield"] |
|
``` |
|
|
|
## Data Quality |
|
|
|
- All samples processed with consistent batch processing |
|
- Original educational_score preserved (0.58-5.10 scale) |
|
- Regression outputs clearly separated (e.g., educational_score_predicted) |
|
- Dimension mismatches handled for classification tasks |
|
- Complete 20-task coverage including previously missing regression tasks |
|
|
|
## Model Information |
|
|
|
Annotations generated using: |
|
- **Model**: `rntc/biomed-fr-v2-classifier` |
|
- **Base model**: `almanach/camembertv2-base` |
|
- **Tasks**: 20 multi-task classification and regression heads |
|
- **Key fix**: Restored original educational_score column |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@dataset{biomed_fr_v3_annotated, |
|
title={Biomed-FR-v3 Top 20% Quality Dataset}, |
|
author={RNTC Research Team}, |
|
year={2024}, |
|
url={https://huggingface.co/datasets/rntc/bb-tt-3-s4}, |
|
note={French biomedical corpus with complete 20-task annotations} |
|
} |
|
``` |
|
|
|
## License |
|
|
|
MIT License - see LICENSE file for details. |
|
|
|
## Related Datasets |
|
|
|
- **Full dataset**: `rntc/bb-tt-3` |
|
- **Pretraining subset**: `rntc/bb-tt-3-pretrain` |
|
|
|
|