text
stringlengths 0
4.1M
|
---|
#![deny(warnings)]
use cases::case::*;
/// Converts a `&str` to camelCase `String`
///
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "fooBar".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "fooBar".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "fooBar".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "fooBar".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "fooBar".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "foo-bar";
/// let expected_string: String = "fooBar".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "fooBar".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "FooBar3";
/// let expected_string: String = "fooBar3".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::camelcase::to_camel_case;
/// let mock_string: &str = "Foo-Bar";
/// let expected_string: String = "fooBar".to_string();
/// let asserted_string: String = to_camel_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_camel_case(non_camelized_string: &str) -> String {
let options = CamelOptions {
new_word: false,
last_char: ' ',
first_word: false,
injectable_char: ' ',
has_seperator: false,
inverted: false,
};
to_case_camel_like(&non_camelized_string, options)
}
/// Determines if a `&str` is camelCase bool``
///
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "Foo";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "foo";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == true);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "fooBarIsAReallyReally3LongString";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == true);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == true);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "FOO_BAR_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::camelcase::is_camel_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_camel_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
pub fn is_camel_case(test_string: &str) -> bool {
to_camel_case(&test_string.clone()) == test_string
}
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_camel0(b: &mut Bencher) {
b.iter(|| {
let test_string = "Foo bar";
super::to_camel_case(test_string)
});
}
#[bench]
fn bench_camel1(b: &mut Bencher) {
b.iter(|| {
let test_string = "foo_bar";
super::to_camel_case(test_string)
});
}
#[bench]
fn bench_camel2(b: &mut Bencher) {
b.iter(|| {
let test_string = "fooBar";
super::to_camel_case(test_string)
});
}
#[bench]
fn bench_is_camel(b: &mut Bencher) {
b.iter(|| {
let test_string: &str = "Foo bar";
super::is_camel_case(test_string)
});
}
}
#[cfg(test)]
mod tests {
use ::to_camel_case;
use ::is_camel_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn from_case_with_loads_of_space() {
let convertable_string: String = "foo bar".to_owned();
let expected: String = "fooBar".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn a_name_with_a_dot() {
let convertable_string: String = "Robert C. Martin".to_owned();
let expected: String = "robertCMartin".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn random_text_with_bad_chars() {
let convertable_string: String = "Random text with *(bad) chars".to_owned();
let expected: String = "randomTextWithBadChars".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn trailing_bad_chars() {
let convertable_string: String = "trailing bad_chars*(()())".to_owned();
let expected: String = "trailingBadChars".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn leading_bad_chars() {
let convertable_string: String = "-!#$%leading bad chars".to_owned();
let expected: String = "leadingBadChars".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn wrapped_in_bad_chars() {
let convertable_string: String = "-!#$%wrapped in bad chars&*^*&(&*^&(<><?>><?><>))".to_owned();
let expected: String = "wrappedInBadChars".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn has_a_sign() {
let convertable_string: String = "has a + sign".to_owned();
let expected: String = "hasASign".to_owned();
assert_eq!(to_camel_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_camel_case(&convertable_string), true)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_camel_case(&convertable_string), false)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_camel_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_camel_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_camel_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_camel_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_camel_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_camel_case(&convertable_string), false)
}
}
|
#![deny(warnings)]
#[allow(unknown_lints)]
#[allow(unused_imports)]
use std::ascii::*;
pub struct CamelOptions {
pub new_word: bool,
pub last_char: char,
pub first_word: bool,
pub injectable_char: char,
pub has_seperator: bool,
pub inverted: bool,
}
pub fn to_case_snake_like(convertable_string: &str, replace_with: &str, case: &str) -> String {
let mut first_character: bool = true;
let mut result: String = String::with_capacity(convertable_string.len() * 2);
for char_with_index in trim_right(convertable_string).char_indices() {
if char_is_seperator(&char_with_index.1) {
if !first_character {
first_character = true;
result.push(replace_with.chars().nth(0).unwrap_or('_'));
}
} else if requires_seperator(char_with_index, first_character, &convertable_string) {
first_character = false;
result = snake_like_with_seperator(result, replace_with, &char_with_index.1, case)
} else {
first_character = false;
result = snake_like_no_seperator(result, &char_with_index.1, case)
}
}
result
}
pub fn to_case_camel_like(convertable_string: &str, camel_options: CamelOptions) -> String {
let mut new_word: bool = camel_options.new_word;
let mut first_word: bool = camel_options.first_word;
let mut last_char: char = camel_options.last_char;
let mut found_real_char: bool = false;
let mut result: String = String::with_capacity(convertable_string.len() * 2);
for character in trim_right(convertable_string).chars() {
if char_is_seperator(&character) && found_real_char {
new_word = true;
} else if !found_real_char && is_not_alphanumeric(character) {
continue;
} else if character.is_numeric() {
found_real_char = true;
new_word = true;
result.push(character);
} else if last_char_lower_current_is_upper_or_new_word(new_word, last_char, character) {
found_real_char = true;
new_word = false;
result = append_on_new_word(result, first_word, character, &camel_options);
first_word = false;
} else {
found_real_char = true;
last_char = character;
result.push(character.to_ascii_lowercase());
}
}
result
}
#[inline]
fn append_on_new_word(mut result: String, first_word: bool, character: char, camel_options: &CamelOptions) -> String {
if not_first_word_and_has_seperator(first_word, camel_options.has_seperator) {
result.push(camel_options.injectable_char);
}
if first_word_or_not_inverted(first_word, camel_options.inverted) {
result.push(character.to_ascii_uppercase());
} else {
result.push(character.to_ascii_lowercase());
}
result
}
fn not_first_word_and_has_seperator(first_word: bool, has_seperator: bool) -> bool {
has_seperator && !first_word
}
fn first_word_or_not_inverted(first_word: bool, inverted: bool) -> bool {
!inverted || first_word
}
fn last_char_lower_current_is_upper_or_new_word(new_word: bool, last_char: char, character: char) -> bool{
new_word ||
((last_char.is_lowercase() && character.is_uppercase()) &&
(last_char != ' '))
}
fn char_is_seperator(character: &char) -> bool {
is_not_alphanumeric(*character)
}
fn trim_right(convertable_string: &str) -> &str {
convertable_string.trim_end_matches(is_not_alphanumeric)
}
fn is_not_alphanumeric(character: char) -> bool {
!character.is_alphanumeric()
}
#[inline]
fn requires_seperator(char_with_index: (usize, char), first_character: bool, convertable_string: &str) -> bool {
!first_character &&
char_is_uppercase(char_with_index.1) &&
next_or_previous_char_is_lowercase(convertable_string, char_with_index.0)
}
#[inline]
fn snake_like_no_seperator(mut accumlator: String, current_char: &char, case: &str) -> String {
if case == "lower" {
accumlator.push(current_char.to_ascii_lowercase());
accumlator
} else {
accumlator.push(current_char.to_ascii_uppercase());
accumlator
}
}
#[inline]
fn snake_like_with_seperator(mut accumlator: String, replace_with: &str, current_char: &char, case: &str) -> String {
if case == "lower" {
accumlator.push(replace_with.chars().nth(0).unwrap_or('_'));
accumlator.push(current_char.to_ascii_lowercase());
accumlator
} else {
accumlator.push(replace_with.chars().nth(0).unwrap_or('_'));
accumlator.push(current_char.to_ascii_uppercase());
accumlator
}
}
fn next_or_previous_char_is_lowercase(convertable_string: &str, char_with_index: usize) -> bool {
convertable_string.chars().nth(char_with_index + 1).unwrap_or('A').is_lowercase() ||
convertable_string.chars().nth(char_with_index - 1).unwrap_or('A').is_lowercase()
}
fn char_is_uppercase(test_char: char) -> bool {
test_char == test_char.to_ascii_uppercase()
}
#[test]
fn test_trim_bad_chars() {
assert_eq!("abc", trim_right("abc----^"))
}
#[test]
fn test_trim_bad_chars_when_none_are_bad() {
assert_eq!("abc", trim_right("abc"))
}
#[test]
fn test_is_not_alphanumeric_on_is_alphanumeric() {
assert!(!is_not_alphanumeric('a'))
}
#[test]
fn test_is_not_alphanumeric_on_is_not_alphanumeric() {
assert!(is_not_alphanumeric('_'))
}
#[test]
fn test_char_is_uppercase_when_it_is() {
assert_eq!(char_is_uppercase('A'), true)
}
#[test]
fn test_char_is_uppercase_when_it_is_not() {
assert_eq!(char_is_uppercase('a'), false)
}
#[test]
fn test_next_or_previous_char_is_lowercase_true() {
assert_eq!(next_or_previous_char_is_lowercase("TestWWW", 3), true)
}
#[test]
fn test_next_or_previous_char_is_lowercase_false() {
assert_eq!(next_or_previous_char_is_lowercase("TestWWW", 5), false)
}
#[test]
fn snake_like_with_seperator_lowers() {
assert_eq!(snake_like_with_seperator("".to_owned(), "^", &'c', "lower"), "^c".to_string())
}
#[test]
fn snake_like_with_seperator_upper() {
assert_eq!(snake_like_with_seperator("".to_owned(), "^", &'c', "upper"), "^C".to_string())
}
#[test]
fn snake_like_no_seperator_lower() {
assert_eq!(snake_like_no_seperator("".to_owned(), &'C', "lower"), "c".to_string())
}
#[test]
fn snake_like_no_seperator_upper() {
assert_eq!(snake_like_no_seperator("".to_owned(), &'c', "upper"), "C".to_string())
}
#[test]
fn requires_seperator_upper_not_first_wrap_is_safe_current_upper() {
assert_eq!(requires_seperator((2, 'C'), false, "test"), true)
}
#[test]
fn requires_seperator_upper_not_first_wrap_is_safe_current_lower() {
assert_eq!(requires_seperator((2, 'c'), false, "test"), false)
}
#[test]
fn requires_seperator_upper_first_wrap_is_safe_current_upper() {
assert_eq!(requires_seperator((0, 'T'), true, "Test"), false)
}
#[test]
fn requires_seperator_upper_first_wrap_is_safe_current_lower() {
assert_eq!(requires_seperator((0, 't'), true, "Test"), false)
}
#[test]
fn requires_seperator_upper_first_wrap_is_safe_current_lower_next_is_too() {
assert_eq!(requires_seperator((0, 't'), true, "test"), false)
}
#[test]
fn test_char_is_seperator_dash() {
assert_eq!(char_is_seperator(&'-'), true)
}
#[test]
fn test_char_is_seperator_underscore() {
assert_eq!(char_is_seperator(&'_'), true)
}
#[test]
fn test_char_is_seperator_space() {
assert_eq!(char_is_seperator(&' '), true)
}
#[test]
fn test_char_is_seperator_when_not() {
assert_eq!(char_is_seperator(&'A'), false)
}
#[test]
fn test_last_char_lower_current_is_upper_or_new_word_with_new_word() {
assert_eq!(last_char_lower_current_is_upper_or_new_word(true, ' ', '-'), true)
}
#[test]
fn test_last_char_lower_current_is_upper_or_new_word_last_char_space() {
assert_eq!(last_char_lower_current_is_upper_or_new_word(false, ' ', '-'), false)
}
#[test]
fn test_last_char_lower_current_is_upper_or_new_word_last_char_lower_current_upper() {
assert_eq!(last_char_lower_current_is_upper_or_new_word(false, 'a', 'A'), true)
}
#[test]
fn test_last_char_lower_current_is_upper_or_new_word_last_char_upper_current_upper() {
assert_eq!(last_char_lower_current_is_upper_or_new_word(false, 'A', 'A'), false)
}
#[test]
fn test_last_char_lower_current_is_upper_or_new_word_last_char_upper_current_lower() {
assert_eq!(last_char_lower_current_is_upper_or_new_word(false, 'A', 'a'), false)
}
#[test]
fn test_first_word_or_not_inverted_with_first_word() {
assert_eq!(first_word_or_not_inverted(true, false), true)
}
#[test]
fn test_first_word_or_not_inverted_not_first_word_not_inverted() {
assert_eq!(first_word_or_not_inverted(false, false), true)
}
#[test]
fn test_first_word_or_not_inverted_not_first_word_is_inverted() {
assert_eq!(first_word_or_not_inverted(false, true), false)
}
#[test]
fn test_not_first_word_and_has_seperator_is_first_and_not_seperator() {
assert_eq!(not_first_word_and_has_seperator(true, false), false)
}
#[test]
fn test_not_first_word_and_has_seperator_not_first_and_not_seperator() {
assert_eq!(not_first_word_and_has_seperator(false, false), false)
}
#[test]
fn test_not_first_word_and_has_seperator_not_first_and_has_seperator() {
assert_eq!(not_first_word_and_has_seperator(false, true), true)
}
|
#![deny(warnings)]
use cases::case::*;
#[cfg(feature = "heavyweight")]
use string::singularize::to_singular;
#[cfg(feature = "heavyweight")]
/// Converts a `&str` to `ClassCase` `String`
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "FooBars";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "foo-bar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "foo_bars";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::to_class_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_class_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_class_case(non_class_case_string: &str) -> String {
let options = CamelOptions {
new_word: true,
last_char: ' ',
first_word: false,
injectable_char: ' ',
has_seperator: false,
inverted: false,
};
let class_plural = to_case_camel_like(non_class_case_string, options);
let split: (&str, &str) =
class_plural.split_at(class_plural.rfind(char::is_uppercase).unwrap_or(0));
format!("{}{}", split.0, to_singular(split.1))
}
#[cfg(feature = "heavyweight")]
/// Determines if a `&str` is `ClassCase` `bool`
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "Foo";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "foo";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongStrings";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "foo_bar_is_a_really_really_long_strings";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "FOO_BAR_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::classcase::is_class_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_class_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
pub fn is_class_case(test_string: &str) -> bool {
to_class_case(&test_string.clone()) == test_string
}
#[cfg(all(feature = "unstable", test))]
#[cfg(feature = "heavyweight")]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_class_case(b: &mut Bencher) {
b.iter(|| super::to_class_case("Foo bar"));
}
#[bench]
fn bench_is_class(b: &mut Bencher) {
b.iter(|| super::is_class_case("Foo bar"));
}
#[bench]
fn bench_class_from_snake(b: &mut Bencher) {
b.iter(|| super::to_class_case("foo_bar"));
}
}
#[cfg(test)]
#[cfg(feature = "heavyweight")]
mod tests {
use ::to_class_case;
use ::is_class_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_screaming_class_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_table_case() {
let convertable_string: String = "foo_bars".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn from_case_with_loads_of_space() {
let convertable_string: String = "foo bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn a_name_with_a_dot() {
let convertable_string: String = "Robert C. Martin".to_owned();
let expected: String = "RobertCMartin".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn random_text_with_bad_chars() {
let convertable_string: String = "Random text with *(bad) chars".to_owned();
let expected: String = "RandomTextWithBadChar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn trailing_bad_chars() {
let convertable_string: String = "trailing bad_chars*(()())".to_owned();
let expected: String = "TrailingBadChar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn leading_bad_chars() {
let convertable_string: String = "-!#$%leading bad chars".to_owned();
let expected: String = "LeadingBadChar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn wrapped_in_bad_chars() {
let convertable_string: String = "-!#$%wrapped in bad chars&*^*&(&*^&(<><?>><?><>))".to_owned();
let expected: String = "WrappedInBadChar".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn has_a_sign() {
let convertable_string: String = "has a + sign".to_owned();
let expected: String = "HasASign".to_owned();
assert_eq!(to_class_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_class_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_class_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_class_case(&convertable_string), true)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_class_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_class_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_class_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_class_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_class_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_class_case(&convertable_string), false)
}
#[test]
fn is_correct_from_table_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_class_case(&convertable_string), true)
}
}
|
#![deny(warnings)]
use cases::case::*;
/// Determines if a `&str` is `kebab-case`
///
/// ```
/// use inflector::cases::kebabcase::is_kebab_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_kebab_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::is_kebab_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_kebab_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::is_kebab_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_kebab_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::is_kebab_case;
/// let mock_string: &str = "FOO_BAR_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_kebab_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::is_kebab_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_kebab_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::is_kebab_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_kebab_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::is_kebab_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_kebab_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
pub fn is_kebab_case(test_string: &str) -> bool {
test_string == to_kebab_case(test_string.clone())
}
/// Converts a `&str` to `kebab-case` `String`
///
/// ```
/// use inflector::cases::kebabcase::to_kebab_case;
/// let mock_string: &str = "foo-bar";
/// let expected_string: String = "foo-bar".to_string();
/// let asserted_string: String = to_kebab_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::to_kebab_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "foo-bar".to_string();
/// let asserted_string: String = to_kebab_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::to_kebab_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "foo-bar".to_string();
/// let asserted_string: String = to_kebab_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::to_kebab_case;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "foo-bar".to_string();
/// let asserted_string: String = to_kebab_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::to_kebab_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "foo-bar".to_string();
/// let asserted_string: String = to_kebab_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::to_kebab_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "foo-bar".to_string();
/// let asserted_string: String = to_kebab_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::kebabcase::to_kebab_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "foo-bar".to_string();
/// let asserted_string: String = to_kebab_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_kebab_case(non_kebab_case_string: &str) -> String {
to_case_snake_like(non_kebab_case_string, "-", "lower")
}
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_kebab(b: &mut Bencher) {
b.iter(|| super::to_kebab_case("Foo bar"));
}
#[bench]
fn bench_is_kebab(b: &mut Bencher) {
b.iter(|| super::is_kebab_case("Foo bar"));
}
#[bench]
fn bench_kebab_from_snake(b: &mut Bencher) {
b.iter(|| super::to_kebab_case("test_test_test"));
}
}
#[cfg(test)]
mod tests {
use ::to_kebab_case;
use ::is_kebab_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "foo-bar".to_owned();
assert_eq!(to_kebab_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "foo-bar".to_owned();
assert_eq!(to_kebab_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "foo-bar".to_owned();
assert_eq!(to_kebab_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "foo-bar".to_owned();
assert_eq!(to_kebab_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "foo-bar".to_owned();
assert_eq!(to_kebab_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "foo-bar".to_owned();
assert_eq!(to_kebab_case(&convertable_string), expected)
}
#[test]
fn from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "foo-bar".to_owned();
assert_eq!(to_kebab_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "foo-bar".to_owned();
assert_eq!(to_kebab_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_kebab_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_kebab_case(&convertable_string), false)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_kebab_case(&convertable_string), true)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_kebab_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_kebab_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_kebab_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_kebab_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_kebab_case(&convertable_string), false)
}
}
|
mod case;
/// Provides conversion to and detection of class case strings.
///
/// This version singularizes strings.
///
/// Example string `ClassCase`
pub mod classcase;
/// Provides conversion to and detection of camel case strings.
///
/// Example string `camelCase`
pub mod camelcase;
/// Provides conversion to and detection of snake case strings.
///
/// Example string `snake_case`
pub mod snakecase;
/// Provides conversion to and detection of screaming snake case strings.
///
/// Example string `SCREAMING_SNAKE_CASE`
pub mod screamingsnakecase;
/// Provides conversion to and detection of kebab case strings.
///
/// Example string `kebab-case`
pub mod kebabcase;
/// Provides conversion to and detection of train case strings.
///
/// Example string `Train-Case`
pub mod traincase;
/// Provides conversion to and detection of sentence case strings.
///
/// Example string `Sentence case`
pub mod sentencecase;
/// Provides conversion to and detection of title case strings.
///
/// Example string `Title Case`
pub mod titlecase;
/// Provides conversion to and detection of table case strings.
///
/// Example string `table_cases`
pub mod tablecase;
/// Provides conversion to pascal case strings.
///
/// Example string `PascalCase`
pub mod pascalcase;
|
#![deny(warnings)]
use cases::case::*;
/// Converts a `&str` to pascalCase `String`
///
/// ```
/// use inflector::cases::pascalcase::to_pascal_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_pascal_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::pascalcase::to_pascal_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_pascal_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::pascalcase::to_pascal_case;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_pascal_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::pascalcase::to_pascal_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_pascal_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::pascalcase::to_pascal_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_pascal_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::pascalcase::to_pascal_case;
/// let mock_string: &str = "foo-bar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_pascal_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::pascalcase::to_pascal_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "FooBar".to_string();
/// let asserted_string: String = to_pascal_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::pascalcase::to_pascal_case;
/// let mock_string: &str = "FooBar3";
/// let expected_string: String = "FooBar3".to_string();
/// let asserted_string: String = to_pascal_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_pascal_case(non_pascalized_string: &str) -> String {
let options = CamelOptions {
new_word: true,
last_char: ' ',
first_word: false,
injectable_char: ' ',
has_seperator: false,
inverted: false,
};
to_case_camel_like(non_pascalized_string, options)
}
/// Determines if a `&str` is pascalCase bool``
///
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "Foo";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == true);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "foo";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == true);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "FooBarIsAReallyReally3LongString";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == true);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == true);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "FOO_BAR_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == false);
///
///
/// ```
/// ```
/// use inflector::cases::pascalcase::is_pascal_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_pascal_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
pub fn is_pascal_case(test_string: &str) -> bool {
to_pascal_case(test_string.clone()) == test_string
}
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_pascal0(b: &mut Bencher) {
b.iter(|| {
let test_string = "Foo bar";
super::to_pascal_case(test_string)
});
}
#[bench]
fn bench_pascal1(b: &mut Bencher) {
b.iter(|| {
let test_string = "foo_bar";
super::to_pascal_case(test_string)
});
}
#[bench]
fn bench_pascal2(b: &mut Bencher) {
b.iter(|| {
let test_string = "fooBar";
super::to_pascal_case(test_string)
});
}
#[bench]
fn bench_is_pascal(b: &mut Bencher) {
b.iter(|| {
let test_string: &str = "Foo bar";
super::is_pascal_case(test_string)
});
}
}
#[cfg(test)]
mod tests {
use ::to_pascal_case;
use ::is_pascal_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn from_case_with_loads_of_space() {
let convertable_string: String = "foo bar".to_owned();
let expected: String = "FooBar".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn a_name_with_a_dot() {
let convertable_string: String = "Robert C. Martin".to_owned();
let expected: String = "RobertCMartin".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn random_text_with_bad_chars() {
let convertable_string: String = "Random text with *(bad) chars".to_owned();
let expected: String = "RandomTextWithBadChars".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn trailing_bad_chars() {
let convertable_string: String = "trailing bad_chars*(()())".to_owned();
let expected: String = "TrailingBadChars".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn leading_bad_chars() {
let convertable_string: String = "-!#$%leading bad chars".to_owned();
let expected: String = "LeadingBadChars".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn wrapped_in_bad_chars() {
let convertable_string: String = "-!#$%wrapped in bad chars&*^*&(&*^&(<><?>><?><>))".to_owned();
let expected: String = "WrappedInBadChars".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn has_a_sign() {
let convertable_string: String = "has a + sign".to_owned();
let expected: String = "HasASign".to_owned();
assert_eq!(to_pascal_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_pascal_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_pascal_case(&convertable_string), true)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_pascal_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_pascal_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_pascal_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_pascal_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_pascal_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_pascal_case(&convertable_string), false)
}
}
|
#![deny(warnings)]
use cases::case::*;
/// Converts a `&str` to `SCREAMING_SNAKE_CASE` `String`
///
/// ```
/// use inflector::cases::screamingsnakecase::to_screaming_snake_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "FOO_BAR".to_string();
/// let asserted_string: String = to_screaming_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::to_screaming_snake_case;
/// let mock_string: &str = "HTTP Foo bar";
/// let expected_string: String = "HTTP_FOO_BAR".to_string();
/// let asserted_string: String = to_screaming_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::to_screaming_snake_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "FOO_BAR".to_string();
/// let asserted_string: String = to_screaming_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::to_screaming_snake_case;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "FOO_BAR".to_string();
/// let asserted_string: String = to_screaming_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::to_screaming_snake_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "FOO_BAR".to_string();
/// let asserted_string: String = to_screaming_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::to_screaming_snake_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "FOO_BAR".to_string();
/// let asserted_string: String = to_screaming_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::to_screaming_snake_case;
/// let mock_string: &str = "fooBar3";
/// let expected_string: String = "FOO_BAR_3".to_string();
/// let asserted_string: String = to_screaming_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_screaming_snake_case(non_snake_case_string: &str) -> String {
to_case_snake_like(non_snake_case_string, "_", "upper")
}
/// Determines of a `&str` is `SCREAMING_SNAKE_CASE`
///
/// ```
/// use inflector::cases::screamingsnakecase::is_screaming_snake_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_screaming_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::is_screaming_snake_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_screaming_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::is_screaming_snake_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_screaming_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::is_screaming_snake_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_screaming_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::is_screaming_snake_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_screaming_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::is_screaming_snake_case;
/// let mock_string: &str = "FOO_BAR_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_screaming_snake_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::is_screaming_snake_case;
/// let mock_string: &str = "FOO_BAR1_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_screaming_snake_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
/// ```
/// use inflector::cases::screamingsnakecase::is_screaming_snake_case;
/// let mock_string: &str = "FOO_BAR_1_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_screaming_snake_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
pub fn is_screaming_snake_case(test_string: &str) -> bool {
test_string == to_screaming_snake_case(test_string.clone())
}
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_screaming_snake(b: &mut Bencher) {
b.iter(|| super::to_screaming_snake_case("Foo bar"));
}
#[bench]
fn bench_is_screaming_snake(b: &mut Bencher) {
b.iter(|| super::is_screaming_snake_case("Foo bar"));
}
}
#[cfg(test)]
mod tests {
use ::to_screaming_snake_case;
use ::is_screaming_snake_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "FOO_BAR".to_owned();
assert_eq!(to_screaming_snake_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "FOO_BAR".to_owned();
assert_eq!(to_screaming_snake_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "FOO_BAR".to_owned();
assert_eq!(to_screaming_snake_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "FOO_BAR".to_owned();
assert_eq!(to_screaming_snake_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "FOO_BAR".to_owned();
assert_eq!(to_screaming_snake_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "FOO_BAR".to_owned();
assert_eq!(to_screaming_snake_case(&convertable_string), expected)
}
#[test]
fn from_screaming_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "FOO_BAR".to_owned();
assert_eq!(to_screaming_snake_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "FOO_BAR".to_owned();
assert_eq!(to_screaming_snake_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_screaming_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_screaming_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_screaming_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_screaming_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_screaming_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_screaming_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_screaming_snake_case(&convertable_string), true)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_screaming_snake_case(&convertable_string), false)
}
}
|
#![deny(warnings)]
use cases::case::*;
/// Converts a `&str` to `Sentence case` `String`
///
/// ```
/// use inflector::cases::sentencecase::to_sentence_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "Foo bar".to_string();
/// let asserted_string: String = to_sentence_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::to_sentence_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "Foo bar".to_string();
/// let asserted_string: String = to_sentence_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::to_sentence_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "Foo bar".to_string();
/// let asserted_string: String = to_sentence_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::to_sentence_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "Foo bar".to_string();
/// let asserted_string: String = to_sentence_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::to_sentence_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "Foo bar".to_string();
/// let asserted_string: String = to_sentence_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::to_sentence_case;
/// let mock_string: &str = "foo-bar";
/// let expected_string: String = "Foo bar".to_string();
/// let asserted_string: String = to_sentence_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_sentence_case(non_sentence_case_string: &str) -> String {
let options = CamelOptions {
new_word: true,
last_char: ' ',
first_word: true,
injectable_char: ' ',
has_seperator: true,
inverted: true,
};
to_case_camel_like(non_sentence_case_string, options)
}
/// Determines of a `&str` is `Sentence case`
///
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "FOO_BAR_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "Foo";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "foo";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::sentencecase::is_sentence_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_sentence_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
pub fn is_sentence_case(test_string: &str) -> bool {
test_string == to_sentence_case(test_string.clone())
}
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_sentence(b: &mut Bencher) {
b.iter(|| super::to_sentence_case("Foo BAR"));
}
#[bench]
fn bench_is_sentence(b: &mut Bencher) {
b.iter(|| super::is_sentence_case("Foo bar"));
}
#[bench]
fn bench_sentence_from_snake(b: &mut Bencher) {
b.iter(|| super::to_sentence_case("foo_bar"));
}
}
#[cfg(test)]
mod tests {
use ::to_sentence_case;
use ::is_sentence_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn from_case_with_loads_of_space() {
let convertable_string: String = "foo bar".to_owned();
let expected: String = "Foo bar".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn a_name_with_a_dot() {
let convertable_string: String = "Robert C. Martin".to_owned();
let expected: String = "Robert c martin".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn random_text_with_bad_chars() {
let convertable_string: String = "Random text with *(bad) chars".to_owned();
let expected: String = "Random text with bad chars".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn trailing_bad_chars() {
let convertable_string: String = "trailing bad_chars*(()())".to_owned();
let expected: String = "Trailing bad chars".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn leading_bad_chars() {
let convertable_string: String = "-!#$%leading bad chars".to_owned();
let expected: String = "Leading bad chars".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn wrapped_in_bad_chars() {
let convertable_string: String = "-!#$%wrapped in bad chars&*^*&(&*^&(<><?>><?><>))".to_owned();
let expected: String = "Wrapped in bad chars".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn has_a_sign() {
let convertable_string: String = "has a + sign".to_owned();
let expected: String = "Has a sign".to_owned();
assert_eq!(to_sentence_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_sentence_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_sentence_case(&convertable_string), false)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_sentence_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_sentence_case(&convertable_string), true)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_sentence_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_sentence_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_sentence_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_sentence_case(&convertable_string), false)
}
}
|
#![deny(warnings)]
use cases::case::*;
/// Converts a `&str` to `snake_case` `String`
///
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "foo_bar".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "HTTP Foo bar";
/// let expected_string: String = "http_foo_bar".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "HTTPFooBar";
/// let expected_string: String = "http_foo_bar".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "foo_bar".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "foo_bar".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "foo_bar".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "foo_bar".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "foo_bar".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::snakecase::to_snake_case;
/// let mock_string: &str = "fooBar3";
/// let expected_string: String = "foo_bar_3".to_string();
/// let asserted_string: String = to_snake_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_snake_case(non_snake_case_string: &str) -> String {
to_case_snake_like(non_snake_case_string, "_", "lower")
}
/// Determines of a `&str` is `snake_case`
///
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "FOO_BAR_IS_A_REALLY_REALLY_LONG_STRING";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "foo_bar1_string_that_is_really_really_long";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::snakecase::is_snake_case;
/// let mock_string: &str = "foo_bar_1_string_that_is_really_really_long";
/// let asserted_bool: bool = is_snake_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
pub fn is_snake_case(test_string: &str) -> bool {
test_string == to_snake_case(test_string.clone())
}
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_snake_from_title(b: &mut Bencher) {
b.iter(|| super::to_snake_case("Foo bar"));
}
#[bench]
fn bench_snake_from_camel(b: &mut Bencher) {
b.iter(|| super::to_snake_case("fooBar"));
}
#[bench]
fn bench_snake_from_snake(b: &mut Bencher) {
b.iter(|| super::to_snake_case("foo_bar_bar_bar"));
}
#[bench]
fn bench_is_snake(b: &mut Bencher) {
b.iter(|| super::is_snake_case("Foo bar"));
}
}
#[cfg(test)]
mod tests {
use ::to_snake_case;
use ::is_snake_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn from_case_with_loads_of_space() {
let convertable_string: String = "foo bar".to_owned();
let expected: String = "foo_bar".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn a_name_with_a_dot() {
let convertable_string: String = "Robert C. Martin".to_owned();
let expected: String = "robert_c_martin".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn random_text_with_bad_chars() {
let convertable_string: String = "Random text with *(bad) chars".to_owned();
let expected: String = "random_text_with_bad_chars".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn trailing_bad_chars() {
let convertable_string: String = "trailing bad_chars*(()())".to_owned();
let expected: String = "trailing_bad_chars".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn leading_bad_chars() {
let convertable_string: String = "-!#$%leading bad chars".to_owned();
let expected: String = "leading_bad_chars".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn wrapped_in_bad_chars() {
let convertable_string: String = "-!#$%wrapped in bad chars&*^*&(&*^&(<><?>><?><>))".to_owned();
let expected: String = "wrapped_in_bad_chars".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn has_a_sign() {
let convertable_string: String = "has a + sign".to_owned();
let expected: String = "has_a_sign".to_owned();
assert_eq!(to_snake_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_snake_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_snake_case(&convertable_string), true)
}
}
|
#![deny(warnings)]
#[cfg(feature = "heavyweight")]
use string::pluralize::to_plural;
#[cfg(feature = "heavyweight")]
use cases::case::*;
#[cfg(feature = "heavyweight")]
/// Converts a `&str` to `table-case` `String`
///
/// ```
/// use inflector::cases::tablecase::to_table_case;
/// let mock_string: &str = "foo-bar";
/// let expected_string: String = "foo_bars".to_string();
/// let asserted_string: String = to_table_case(mock_string);
/// assert!(asserted_string == expected_string);
/// ```
///
/// ```
/// use inflector::cases::tablecase::to_table_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "foo_bars".to_string();
/// let asserted_string: String = to_table_case(mock_string);
/// assert!(asserted_string == expected_string);
/// ```
///
/// ```
/// use inflector::cases::tablecase::to_table_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "foo_bars".to_string();
/// let asserted_string: String = to_table_case(mock_string);
/// assert!(asserted_string == expected_string);
/// ```
///
/// ```
/// use inflector::cases::tablecase::to_table_case;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "foo_bars".to_string();
/// let asserted_string: String = to_table_case(mock_string);
/// assert!(asserted_string == expected_string);
/// ```
///
/// ```
/// use inflector::cases::tablecase::to_table_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "foo_bars".to_string();
/// let asserted_string: String = to_table_case(mock_string);
/// assert!(asserted_string == expected_string);
/// ```
///
/// ```
/// use inflector::cases::tablecase::to_table_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "foo_bars".to_string();
/// let asserted_string: String = to_table_case(mock_string);
/// assert!(asserted_string == expected_string);
/// ```
///
/// ```
/// use inflector::cases::tablecase::to_table_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "foo_bars".to_string();
/// let asserted_string: String = to_table_case(mock_string);
/// assert!(asserted_string == expected_string);
/// ```
pub fn to_table_case(non_table_case_string: &str) -> String {
let snaked: String = to_case_snake_like(non_table_case_string, "_", "lower");
let split: (&str, &str) = snaked.split_at(snaked.rfind('_').unwrap_or(0));
format!("{}{}", split.0, to_plural(split.1))
}
#[cfg(feature = "heavyweight")]
/// Determines if a `&str` is `table-case`
///
/// ```
/// use inflector::cases::tablecase::is_table_case;
/// let mock_string: &str = "foo_bar_strings";
/// let asserted_bool: bool = is_table_case(mock_string);
/// assert!(asserted_bool == true);
/// ```
///
/// ```
/// use inflector::cases::tablecase::is_table_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_table_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
///
/// ```
/// use inflector::cases::tablecase::is_table_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_table_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
///
/// ```
/// use inflector::cases::tablecase::is_table_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_table_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
///
/// ```
/// use inflector::cases::tablecase::is_table_case;
/// let mock_string: &str = "FOO_BAR_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_table_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
///
/// ```
/// use inflector::cases::tablecase::is_table_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_table_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
///
/// ```
/// use inflector::cases::tablecase::is_table_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_table_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
///
/// ```
/// use inflector::cases::tablecase::is_table_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_table_case(mock_string);
/// assert!(asserted_bool == false);
/// ```
pub fn is_table_case(test_string: &str) -> bool {
to_table_case(&test_string.clone()) == test_string
}
#[cfg(all(feature = "unstable", test))]
#[cfg(feature = "heavyweight")]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_table_case(b: &mut Bencher) {
b.iter(|| super::to_table_case("Foo bar"));
}
#[bench]
fn bench_is_table_case(b: &mut Bencher) {
b.iter(|| super::is_table_case("Foo bar"));
}
}
#[cfg(test)]
#[cfg(feature = "heavyweight")]
mod tests {
use ::to_table_case;
use ::is_table_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn from_table_case() {
let convertable_string: String = "foo_bars".to_owned();
let expected: String = "foo_bars".to_owned();
assert_eq!(to_table_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_table_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_table_case(&convertable_string), false)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_table_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_table_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_table_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_table_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_table_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_table_case(&convertable_string), false)
}
#[test]
fn is_correct_from_table_case() {
let convertable_string: String = "foo_bars".to_owned();
assert_eq!(is_table_case(&convertable_string), true)
}
}
|
#![deny(warnings)]
use cases::case::*;
/// Converts a `&str` to `Title Case` `String`
///
/// ```
/// use inflector::cases::titlecase::to_title_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "Foo Bar".to_string();
/// let asserted_string: String = to_title_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::titlecase::to_title_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "Foo Bar".to_string();
/// let asserted_string: String = to_title_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::titlecase::to_title_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "Foo Bar".to_string();
/// let asserted_string: String = to_title_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::titlecase::to_title_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "Foo Bar".to_string();
/// let asserted_string: String = to_title_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::titlecase::to_title_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "Foo Bar".to_string();
/// let asserted_string: String = to_title_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::cases::titlecase::to_title_case;
/// let mock_string: &str = "foo-bar";
/// let expected_string: String = "Foo Bar".to_string();
/// let asserted_string: String = to_title_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_title_case(non_title_case_string: &str) -> String {
let options = CamelOptions {
new_word: true,
last_char: ' ',
first_word: true,
injectable_char: ' ',
has_seperator: true,
inverted: false,
};
to_case_camel_like(non_title_case_string, options)
}
/// Determines if a `&str` is `Title Case`
///
/// ```
/// use inflector::cases::titlecase::is_title_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_title_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::titlecase::is_title_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_title_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::titlecase::is_title_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_title_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::titlecase::is_title_case;
/// let mock_string: &str = "FOO_BAR_STRING_THAT_IS_REALLY_REALLY_LONG";
/// let asserted_bool: bool = is_title_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::titlecase::is_title_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_title_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::titlecase::is_title_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_title_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::titlecase::is_title_case;
/// let mock_string: &str = "foo";
/// let asserted_bool: bool = is_title_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::cases::titlecase::is_title_case;
/// let mock_string: &str = "Foo Bar String That Is Really Really Long";
/// let asserted_bool: bool = is_title_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
pub fn is_title_case(test_string: &str) -> bool {
test_string == to_title_case(test_string.clone())
}
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_title(b: &mut Bencher) {
b.iter(|| super::to_title_case("Foo BAR"));
}
#[bench]
fn bench_is_title(b: &mut Bencher) {
b.iter(|| super::is_title_case("Foo bar"));
}
#[bench]
fn bench_title_from_snake(b: &mut Bencher) {
b.iter(|| super::to_title_case("foo_bar"));
}
}
#[cfg(test)]
mod tests {
use ::to_title_case;
use ::is_title_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn from_case_with_loads_of_space() {
let convertable_string: String = "foo bar".to_owned();
let expected: String = "Foo Bar".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn a_name_with_a_dot() {
let convertable_string: String = "Robert C. Martin".to_owned();
let expected: String = "Robert C Martin".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn random_text_with_bad_chars() {
let convertable_string: String = "Random text with *(bad) chars".to_owned();
let expected: String = "Random Text With Bad Chars".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn trailing_bad_chars() {
let convertable_string: String = "trailing bad_chars*(()())".to_owned();
let expected: String = "Trailing Bad Chars".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn leading_bad_chars() {
let convertable_string: String = "-!#$%leading bad chars".to_owned();
let expected: String = "Leading Bad Chars".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn wrapped_in_bad_chars() {
let convertable_string: String = "-!#$%wrapped in bad chars&*^*&(&*^&(<><?>><?><>))".to_owned();
let expected: String = "Wrapped In Bad Chars".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn has_a_sign() {
let convertable_string: String = "has a + sign".to_owned();
let expected: String = "Has A Sign".to_owned();
assert_eq!(to_title_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_title_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_title_case(&convertable_string), false)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_title_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_title_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_title_case(&convertable_string), true)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_title_case(&convertable_string), false)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_title_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_title_case(&convertable_string), false)
}
}
|
#![deny(warnings)]
use cases::case::*;
/// Determines if a `&str` is `Train-Case`
///
/// ```
/// use inflector::cases::traincase::is_train_case;
/// let mock_string: &str = "Foo-Bar-String-That-Is-Really-Really-Long";
/// let asserted_bool: bool = is_train_case(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::is_train_case;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_train_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::is_train_case;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_train_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::is_train_case;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_train_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::is_train_case;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_train_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::is_train_case;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_train_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::is_train_case;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_train_case(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
pub fn is_train_case(test_string: &str) -> bool {
test_string == to_train_case(test_string.clone())
}
/// Converts a `&str` to `Train-Case` `String`
///
/// ```
/// use inflector::cases::traincase::to_train_case;
/// let mock_string: &str = "foo-bar";
/// let expected_string: String = "Foo-Bar".to_string();
/// let asserted_string: String = to_train_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::to_train_case;
/// let mock_string: &str = "FOO_BAR";
/// let expected_string: String = "Foo-Bar".to_string();
/// let asserted_string: String = to_train_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::to_train_case;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "Foo-Bar".to_string();
/// let asserted_string: String = to_train_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::to_train_case;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "Foo-Bar".to_string();
/// let asserted_string: String = to_train_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::to_train_case;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "Foo-Bar".to_string();
/// let asserted_string: String = to_train_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::to_train_case;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "Foo-Bar".to_string();
/// let asserted_string: String = to_train_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
/// ```
/// use inflector::cases::traincase::to_train_case;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "Foo-Bar".to_string();
/// let asserted_string: String = to_train_case(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_train_case(non_train_case_string: &str) -> String {
let options = CamelOptions {
new_word: true,
last_char: ' ',
first_word: true,
injectable_char: '-',
has_seperator: true,
inverted: false,
};
to_case_camel_like(non_train_case_string, options)
}
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
#[bench]
fn bench_train(b: &mut Bencher) {
b.iter(|| super::to_train_case("Foo bar"));
}
#[bench]
fn bench_is_train(b: &mut Bencher) {
b.iter(|| super::is_train_case("Foo bar"));
}
#[bench]
fn bench_train_from_snake(b: &mut Bencher) {
b.iter(|| super::to_train_case("test_test_test"));
}
}
#[cfg(test)]
mod tests {
use ::to_train_case;
use ::is_train_case;
#[test]
fn from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn from_case_with_loads_of_space() {
let convertable_string: String = "foo bar".to_owned();
let expected: String = "Foo-Bar".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn a_name_with_a_dot() {
let convertable_string: String = "Robert C. Martin".to_owned();
let expected: String = "Robert-C-Martin".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn random_text_with_bad_chars() {
let convertable_string: String = "Random text with *(bad) chars".to_owned();
let expected: String = "Random-Text-With-Bad-Chars".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn trailing_bad_chars() {
let convertable_string: String = "trailing bad_chars*(()())".to_owned();
let expected: String = "Trailing-Bad-Chars".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn leading_bad_chars() {
let convertable_string: String = "-!#$%leading bad chars".to_owned();
let expected: String = "Leading-Bad-Chars".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn wrapped_in_bad_chars() {
let convertable_string: String = "-!#$%wrapped in bad chars&*^*&(&*^&(<><?>><?><>))".to_owned();
let expected: String = "Wrapped-In-Bad-Chars".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn has_a_sign() {
let convertable_string: String = "has a + sign".to_owned();
let expected: String = "Has-A-Sign".to_owned();
assert_eq!(to_train_case(&convertable_string), expected)
}
#[test]
fn is_correct_from_camel_case() {
let convertable_string: String = "fooBar".to_owned();
assert_eq!(is_train_case(&convertable_string), false)
}
#[test]
fn is_correct_from_pascal_case() {
let convertable_string: String = "FooBar".to_owned();
assert_eq!(is_train_case(&convertable_string), false)
}
#[test]
fn is_correct_from_kebab_case() {
let convertable_string: String = "foo-bar".to_owned();
assert_eq!(is_train_case(&convertable_string), false)
}
#[test]
fn is_correct_from_sentence_case() {
let convertable_string: String = "Foo bar".to_owned();
assert_eq!(is_train_case(&convertable_string), false)
}
#[test]
fn is_correct_from_title_case() {
let convertable_string: String = "Foo Bar".to_owned();
assert_eq!(is_train_case(&convertable_string), false)
}
#[test]
fn is_correct_from_train_case() {
let convertable_string: String = "Foo-Bar".to_owned();
assert_eq!(is_train_case(&convertable_string), true)
}
#[test]
fn is_correct_from_screaming_snake_case() {
let convertable_string: String = "FOO_BAR".to_owned();
assert_eq!(is_train_case(&convertable_string), false)
}
#[test]
fn is_correct_from_snake_case() {
let convertable_string: String = "foo_bar".to_owned();
assert_eq!(is_train_case(&convertable_string), false)
}
}
|
#![deny(warnings, unused_variables, missing_docs, unsafe_code, unused_extern_crates)]
#![cfg_attr(feature = "unstable", feature(test))]
//! Adds String based inflections for Rust. Snake, kebab, train, camel,
//! sentence, class, and title cases as well as ordinalize,
//! deordinalize, demodulize, deconstantize, and foreign key are supported as
//! both traits and pure functions acting on String types.
//! ```rust
//! use inflector::Inflector;
//! let camel_case_string: String = "some_string".to_camel_case();
//! let is_camel_cased: bool= camel_case_string.is_camel_case();
//! assert!(is_camel_cased == true);
//! ```
#[cfg(feature = "heavyweight")]
extern crate regex;
#[cfg(feature = "heavyweight")]
#[macro_use] extern crate lazy_static;
/// Provides case inflections
/// - Camel case
/// - Class case
/// - Kebab case
/// - Train case
/// - Screaming snake case
/// - Table case
/// - Sentence case
/// - Snake case
/// - Pascal case
pub mod cases;
/// Provides number inflections
/// - Ordinalize
/// - Deordinalize
pub mod numbers;
/// Provides suffix inflections
/// - Foreign key
pub mod suffix;
/// Provides string inflections
/// - Deconstantize
/// - Demodulize
/// - Pluralize
/// - Singularize
#[cfg(feature = "heavyweight")]
pub mod string;
#[cfg(feature = "heavyweight")]
use cases::classcase::to_class_case;
#[cfg(feature = "heavyweight")]
use cases::classcase::is_class_case;
use cases::camelcase::to_camel_case;
use cases::camelcase::is_camel_case;
use cases::pascalcase::to_pascal_case;
use cases::pascalcase::is_pascal_case;
use cases::snakecase::to_snake_case;
use cases::snakecase::is_snake_case;
use cases::screamingsnakecase::to_screaming_snake_case;
use cases::screamingsnakecase::is_screaming_snake_case;
use cases::kebabcase::to_kebab_case;
use cases::kebabcase::is_kebab_case;
use cases::traincase::to_train_case;
use cases::traincase::is_train_case;
use cases::sentencecase::to_sentence_case;
use cases::sentencecase::is_sentence_case;
use cases::titlecase::to_title_case;
use cases::titlecase::is_title_case;
#[cfg(feature = "heavyweight")]
use cases::tablecase::to_table_case;
#[cfg(feature = "heavyweight")]
use cases::tablecase::is_table_case;
use numbers::ordinalize::ordinalize;
use numbers::deordinalize::deordinalize;
use suffix::foreignkey::to_foreign_key;
use suffix::foreignkey::is_foreign_key;
#[cfg(feature = "heavyweight")]
use string::demodulize::demodulize;
#[cfg(feature = "heavyweight")]
use string::deconstantize::deconstantize;
#[cfg(feature = "heavyweight")]
use string::pluralize::to_plural;
#[cfg(feature = "heavyweight")]
use string::singularize::to_singular;
#[allow(missing_docs)]
pub trait Inflector {
fn to_camel_case(&self) -> String;
fn is_camel_case(&self) -> bool;
fn to_pascal_case(&self) -> String;
fn is_pascal_case(&self) -> bool;
fn to_snake_case(&self) -> String;
fn is_snake_case(&self) -> bool;
fn to_screaming_snake_case(&self) -> String;
fn is_screaming_snake_case(&self) -> bool;
fn to_kebab_case(&self) -> String;
fn is_kebab_case(&self) -> bool;
fn to_train_case(&self) -> String;
fn is_train_case(&self) -> bool;
fn to_sentence_case(&self) -> String;
fn is_sentence_case(&self) -> bool;
fn to_title_case(&self) -> String;
fn is_title_case(&self) -> bool;
fn ordinalize(&self) -> String;
fn deordinalize(&self) -> String;
fn to_foreign_key(&self) -> String;
fn is_foreign_key(&self) -> bool;
#[cfg(feature = "heavyweight")]
fn demodulize(&self) -> String;
#[cfg(feature = "heavyweight")]
fn deconstantize(&self) -> String;
#[cfg(feature = "heavyweight")]
fn to_class_case(&self) -> String;
#[cfg(feature = "heavyweight")]
fn is_class_case(&self) -> bool;
#[cfg(feature = "heavyweight")]
fn to_table_case(&self) -> String;
#[cfg(feature = "heavyweight")]
fn is_table_case(&self) -> bool;
#[cfg(feature = "heavyweight")]
fn to_plural(&self) -> String;
#[cfg(feature = "heavyweight")]
fn to_singular(&self) -> String;
}
#[allow(missing_docs)]
pub trait InflectorNumbers {
fn ordinalize(&self) -> String;
}
macro_rules! define_implementations {
( $slf:ident; $($imp_trait:ident => $typ:ident), *) => {
$(
#[inline]
fn $imp_trait(&$slf) -> $typ {
$imp_trait($slf)
}
)*
}
}
macro_rules! define_number_implementations {
( $slf:ident; $($imp_trait:ident => $typ:ident), *) => {
$(
#[inline]
fn $imp_trait(&$slf) -> $typ {
$imp_trait(&$slf.to_string())
}
)*
}
}
macro_rules! define_gated_implementations {
( $slf:ident; $($imp_trait:ident => $typ:ident), *) => {
$(
#[inline]
#[cfg(feature = "heavyweight")]
fn $imp_trait(&$slf) -> $typ {
$imp_trait($slf)
}
)*
}
}
macro_rules! implement_string_for {
( $trt:ident; $($typ:ident), *) => {
$(
impl $trt for $typ {
define_implementations![self;
to_camel_case => String,
is_camel_case => bool,
to_pascal_case => String,
is_pascal_case => bool,
to_screaming_snake_case => String,
is_screaming_snake_case => bool,
to_snake_case => String,
is_snake_case => bool,
to_kebab_case => String,
is_kebab_case => bool,
to_train_case => String,
is_train_case => bool,
to_sentence_case => String,
is_sentence_case => bool,
to_title_case => String,
is_title_case => bool,
to_foreign_key => String,
is_foreign_key => bool,
ordinalize => String,
deordinalize => String
];
define_gated_implementations![self;
to_class_case => String,
is_class_case => bool,
to_table_case => String,
is_table_case => bool,
to_plural => String,
to_singular => String,
demodulize => String,
deconstantize => String
];
}
)*
}
}
macro_rules! implement_number_for {
( $trt:ident; $($typ:ident), *) => {
$(
impl $trt for $typ {
define_number_implementations![self;
ordinalize => String
];
}
)*
}
}
implement_string_for![
Inflector;
String, str
];
implement_number_for![
InflectorNumbers;
i8, i16, i32, i64, u8, u16, u32, u64, isize, usize, f32, f64
];
#[cfg(all(feature = "unstable", test))]
mod benchmarks {
extern crate test;
use self::test::Bencher;
use ::Inflector;
macro_rules! benchmarks {
( $($test_name:ident => $imp_trait:ident => $to_cast:expr), *) => {
$(
#[bench]
fn $test_name(b: &mut Bencher) {
b.iter(|| {
$to_cast.$imp_trait()
});
}
)*
}
}
benchmarks![
benchmark_str_to_camel => to_camel_case => "foo_bar",
benchmark_str_is_camel => is_camel_case => "fooBar",
benchmark_str_to_screaming_snake => to_screaming_snake_case => "fooBar",
benchmark_str_is_screaming_snake => is_screaming_snake_case => "FOO_BAR",
benchmark_str_to_snake => to_snake_case => "fooBar",
benchmark_str_is_snake => is_snake_case => "foo_bar",
benchmark_str_to_kebab => to_kebab_case => "fooBar",
benchmark_str_is_kebab => is_kebab_case => "foo-bar",
benchmark_str_to_train => to_train_case => "fooBar",
benchmark_str_is_train => is_train_case => "Foo-Bar",
benchmark_str_to_sentence => to_sentence_case => "fooBar",
benchmark_str_is_sentence => is_sentence_case => "Foo bar",
benchmark_str_to_title => to_title_case => "fooBar",
benchmark_str_is_title => is_title_case => "Foo Bar",
benchmark_str_ordinalize => ordinalize => "1",
benchmark_str_deordinalize => deordinalize => "1st",
benchmark_str_to_foreign_key => to_foreign_key => "Foo::Bar",
benchmark_str_is_foreign_key => is_foreign_key => "bar_id",
benchmark_string_to_camel => to_camel_case => "foo_bar".to_string(),
benchmark_string_is_camel => is_camel_case => "fooBar".to_string(),
benchmark_string_to_screaming_snake => to_screaming_snake_case => "fooBar".to_string(),
benchmark_string_is_screaming_snake => is_screaming_snake_case => "FOO_BAR".to_string(),
benchmark_string_to_snake => to_snake_case => "fooBar".to_string(),
benchmark_string_is_snake => is_snake_case => "foo_bar".to_string(),
benchmark_string_to_kebab => to_kebab_case => "fooBar".to_string(),
benchmark_string_is_kebab => is_kebab_case => "foo-bar".to_string(),
benchmark_string_to_train => to_train_case => "fooBar".to_string(),
benchmark_string_is_train => is_train_case => "Foo-Bar".to_string(),
benchmark_string_to_sentence => to_sentence_case => "fooBar".to_string(),
benchmark_string_is_sentence => is_sentence_case => "Foo bar".to_string(),
benchmark_string_to_title => to_title_case => "fooBar".to_string(),
benchmark_string_is_title => is_title_case => "Foo Bar".to_string(),
benchmark_string_ordinalize => ordinalize => "1".to_string(),
benchmark_string_deordinalize => deordinalize => "1st".to_string(),
benchmark_string_to_foreign_key => to_foreign_key => "Foo::Bar".to_string(),
benchmark_string_is_foreign_key => is_foreign_key => "bar_id".to_string()
];
#[cfg(feature = "heavyweight")]
benchmarks![
benchmark_str_to_class => to_class_case => "foo",
benchmark_str_is_class => is_class_case => "Foo",
benchmark_str_to_table => to_table_case => "fooBar",
benchmark_str_is_table => is_table_case => "foo_bars",
benchmark_str_pluralize => to_plural => "crate",
benchmark_str_singular => to_singular => "crates",
benchmark_string_to_class => to_class_case => "foo".to_string(),
benchmark_string_is_class => is_class_case => "Foo".to_string(),
benchmark_string_to_table => to_table_case => "fooBar".to_string(),
benchmark_string_is_table => is_table_case => "foo_bars".to_string(),
benchmark_string_pluralize => to_plural => "crate".to_string(),
benchmark_string_singular => to_singular => "crates".to_string(),
benchmark_string_demodulize => demodulize => "Foo::Bar".to_string(),
benchmark_string_deconstantize => deconstantize => "Foo::Bar".to_string(),
benchmark_str_demodulize => demodulize => "Foo::Bar",
benchmark_str_deconstantize => deconstantize => "Foo::Bar"
];
}
|
/// Deorginalizes a `&str`
///
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "0.1";
/// let expected_string: String = "0.1".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "-1st";
/// let expected_string: String = "-1".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "0th";
/// let expected_string: String = "0".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "1st";
/// let expected_string: String = "1".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "2nd";
/// let expected_string: String = "2".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "3rd";
/// let expected_string: String = "3".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "9th";
/// let expected_string: String = "9".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "12th";
/// let expected_string: String = "12".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "12000th";
/// let expected_string: String = "12000".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "12001th";
/// let expected_string: String = "12001".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "12002nd";
/// let expected_string: String = "12002".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "12003rd";
/// let expected_string: String = "12003".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::deordinalize::deordinalize;
/// let mock_string: &str = "12004th";
/// let expected_string: String = "12004".to_owned();
/// let asserted_string: String = deordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn deordinalize(non_ordinalized_string: &str) -> String {
if non_ordinalized_string.contains('.') {
non_ordinalized_string.to_owned()
} else {
non_ordinalized_string.trim_end_matches("st")
.trim_end_matches("nd")
.trim_end_matches("rd")
.trim_end_matches("th")
.to_owned()
}
}
|
#![deny(warnings)]
/// Provides ordinalization of a string.
///
/// Example string "1" becomes "1st"
pub mod ordinalize;
/// Provides deordinalization of a string.
///
/// Example string "1st" becomes "1"
pub mod deordinalize;
|
/// Orginalizes a `&str`
///
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "a";
/// let expected_string: String = "a".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "0.1";
/// let expected_string: String = "0.1".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "-1";
/// let expected_string: String = "-1st".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "0";
/// let expected_string: String = "0th".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "1";
/// let expected_string: String = "1st".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "2";
/// let expected_string: String = "2nd".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "3";
/// let expected_string: String = "3rd".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "9";
/// let expected_string: String = "9th".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "12";
/// let expected_string: String = "12th".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "12000";
/// let expected_string: String = "12000th".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "12001";
/// let expected_string: String = "12001st".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "12002";
/// let expected_string: String = "12002nd".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "12003";
/// let expected_string: String = "12003rd".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::numbers::ordinalize::ordinalize;
/// let mock_string: &str = "12004";
/// let expected_string: String = "12004th".to_owned();
/// let asserted_string: String = ordinalize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn ordinalize(non_ordinalized_string: &str) -> String {
let chars: Vec<char> = non_ordinalized_string.clone().chars().collect();
let last_number: char = chars[chars.len() - 1];
if is_ordinalizable(last_number) {
return non_ordinalized_string.to_owned();
}
if chars.len() > 1 {
if second_last_number_is_one(chars) {
return format!("{}{}", non_ordinalized_string, "th");
} else if string_contains_decimal(non_ordinalized_string.to_owned()) {
return non_ordinalized_string.to_owned();
}
}
match last_number {
'1' => format!("{}{}", non_ordinalized_string, "st"),
'2' => format!("{}{}", non_ordinalized_string, "nd"),
'3' => format!("{}{}", non_ordinalized_string, "rd"),
_ => format!("{}{}", non_ordinalized_string, "th"),
}
}
fn is_ordinalizable(last_number: char) -> bool {
!last_number.is_numeric()
}
fn second_last_number_is_one(chars: Vec<char>) -> bool {
let second_last_number: char = chars[chars.len() - 2];
second_last_number == '1'
}
fn string_contains_decimal(non_ordinalized_string: String) -> bool {
non_ordinalized_string.contains('.')
}
|
pub const UNACCONTABLE_WORDS: [&'static str; 202] = ["accommodation",
"adulthood",
"advertising",
"advice",
"aggression",
"aid",
"air",
"aircraft",
"alcohol",
"anger",
"applause",
"arithmetic",
"assistance",
"athletics",
"bacon",
"baggage",
"beef",
"biology",
"blood",
"botany",
"bread",
"butter",
"carbon",
"cardboard",
"cash",
"chalk",
"chaos",
"chess",
"crossroads",
"countryside",
"dancing",
"deer",
"dignity",
"dirt",
"dust",
"economics",
"education",
"electricity",
"engineering",
"enjoyment",
"envy",
"equipment",
"ethics",
"evidence",
"evolution",
"fame",
"fiction",
"flour",
"flu",
"food",
"fuel",
"fun",
"furniture",
"gallows",
"garbage",
"garlic",
"genetics",
"gold",
"golf",
"gossip",
"grammar",
"gratitude",
"grief",
"guilt",
"gymnastics",
"happiness",
"hardware",
"harm",
"hate",
"hatred",
"health",
"heat",
"help",
"homework",
"honesty",
"honey",
"hospitality",
"housework",
"humour",
"hunger",
"hydrogen",
"ice",
"importance",
"inflation",
"information",
"innocence",
"iron",
"irony",
"jam",
"jewelry",
"judo",
"karate",
"knowledge",
"lack",
"laughter",
"lava",
"leather",
"leisure",
"lightning",
"linguine",
"linguini",
"linguistics",
"literature",
"litter",
"livestock",
"logic",
"loneliness",
"luck",
"luggage",
"macaroni",
"machinery",
"magic",
"management",
"mankind",
"marble",
"mathematics",
"mayonnaise",
"measles",
"methane",
"milk",
"money",
"mud",
"music",
"mumps",
"nature",
"news",
"nitrogen",
"nonsense",
"nurture",
"nutrition",
"obedience",
"obesity",
"oxygen",
"pasta",
"patience",
"physics",
"poetry",
"pollution",
"poverty",
"pride",
"psychology",
"publicity",
"punctuation",
"quartz",
"racism",
"relaxation",
"reliability",
"research",
"respect",
"revenge",
"rice",
"rubbish",
"rum",
"safety",
"scenery",
"seafood",
"seaside",
"series",
"shame",
"sheep",
"shopping",
"sleep",
"smoke",
"smoking",
"snow",
"soap",
"software",
"soil",
"spaghetti",
"species",
"steam",
"stuff",
"stupidity",
"sunshine",
"symmetry",
"tennis",
"thirst",
"thunder",
"timber",
"traffic",
"transportation",
"trust",
"underwear",
"unemployment",
"unity",
"validity",
"veal",
"vegetation",
"vegetarianism",
"vengeance",
"violence",
"vitality",
"warmth",
"wealth",
"weather",
"welfare",
"wheat",
"wildlife",
"wisdom",
"yoga",
"zinc",
"zoology"];
|
#[cfg(feature = "heavyweight")]
use cases::classcase::to_class_case;
#[cfg(feature = "heavyweight")]
/// Deconstantizes a `&str`
///
/// ```
/// use inflector::string::deconstantize::deconstantize;
/// let mock_string: &str = "Bar";
/// let expected_string: String = "".to_owned();
/// let asserted_string: String = deconstantize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::deconstantize::deconstantize;
/// let mock_string: &str = "::Bar";
/// let expected_string: String = "".to_owned();
/// let asserted_string: String = deconstantize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::deconstantize::deconstantize;
/// let mock_string: &str = "Foo::Bar";
/// let expected_string: String = "Foo".to_owned();
/// let asserted_string: String = deconstantize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::deconstantize::deconstantize;
/// let mock_string: &str = "Test::Foo::Bar";
/// let expected_string: String = "Foo".to_owned();
/// let asserted_string: String = deconstantize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn deconstantize(non_deconstantized_string: &str) -> String {
if non_deconstantized_string.contains("::") {
let split_string: Vec<&str> = non_deconstantized_string.split("::").collect();
if split_string.len() > 1 {
to_class_case(split_string[split_string.len() - 2])
} else {
"".to_owned()
}
} else {
"".to_owned()
}
}
|
#[cfg(feature = "heavyweight")]
use cases::classcase::to_class_case;
#[cfg(feature = "heavyweight")]
/// Demodulize a `&str`
///
/// ```
/// use inflector::string::demodulize::demodulize;
/// let mock_string: &str = "Bar";
/// let expected_string: String = "Bar".to_owned();
/// let asserted_string: String = demodulize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::demodulize::demodulize;
/// let mock_string: &str = "::Bar";
/// let expected_string: String = "Bar".to_owned();
/// let asserted_string: String = demodulize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::demodulize::demodulize;
/// let mock_string: &str = "Foo::Bar";
/// let expected_string: String = "Bar".to_owned();
/// let asserted_string: String = demodulize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::demodulize::demodulize;
/// let mock_string: &str = "Test::Foo::Bar";
/// let expected_string: String = "Bar".to_owned();
/// let asserted_string: String = demodulize(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn demodulize(non_demodulize_string: &str) -> String {
if non_demodulize_string.contains("::") {
let split_string: Vec<&str> = non_demodulize_string.split("::").collect();
to_class_case(split_string[split_string.len() - 1])
} else {
non_demodulize_string.to_owned()
}
}
|
#![deny(warnings)]
/// Provides demodulize a string.
///
/// Example string `Foo::Bar` becomes `Bar`
#[cfg(feature = "heavyweight")]
pub mod demodulize;
/// Provides deconstantizea string.
///
/// Example string `Foo::Bar` becomes `Foo`
#[cfg(feature = "heavyweight")]
pub mod deconstantize;
/// Provides conversion to plural strings.
///
/// Example string `FooBar` -> `FooBars`
#[cfg(feature = "heavyweight")]
pub mod pluralize;
/// Provides conversion to singular strings.
///
/// Example string `FooBars` -> `FooBar`
#[cfg(feature = "heavyweight")]
pub mod singularize;
mod constants;
|
#![deny(warnings)]
use regex::Regex;
use string::constants::UNACCONTABLE_WORDS;
macro_rules! add_rule{
($r:ident, $rule:expr => $replace:expr) => {
$r.push((Regex::new($rule).unwrap(), $replace));
}
}
macro_rules! rules{
($r:ident; $($rule:expr => $replace:expr), *) => {
$(
add_rule!{$r, $rule => $replace}
)*
}
}
lazy_static!{
static ref RULES: Vec<(Regex, &'static str)> = {
let mut r = Vec::with_capacity(24);
rules![r;
r"(\w*)s$" => "s",
r"(\w*([^aeiou]ese))$" => "",
r"(\w*(ax|test))is$" => "es",
r"(\w*(alias|[^aou]us|tlas|gas|ris))$" => "es",
r"(\w*(e[mn]u))s?$" => "s",
r"(\w*([^l]ias|[aeiou]las|[emjzr]as|[iu]am))$" => "",
r"(\w*(alumn|syllab|octop|vir|radi|nucle|fung|cact|stimul|termin|bacill|foc|uter|loc|strat))(?:us|i)$" => "i",
r"(\w*(alumn|alg|vertebr))(?:a|ae)$" => "ae",
r"(\w*(seraph|cherub))(?:im)?$" => "im",
r"(\w*(her|at|gr))o$" => "oes",
r"(\w*(agend|addend|millenni|dat|extrem|bacteri|desiderat|strat|candelabr|errat|ov|symposi|curricul|automat|quor))(?:a|um)$" => "a",
r"(\w*(apheli|hyperbat|periheli|asyndet|noumen|phenomen|criteri|organ|prolegomen|hedr|automat))(?:a|on)$" => "a",
r"(\w*)sis$" => "ses",
r"(\w*(kni|wi|li))fe$" => "ves",
r"(\w*(ar|l|ea|eo|oa|hoo))f$" => "ves",
r"(\w*([^aeiouy]|qu))y$" => "ies",
r"(\w*([^ch][ieo][ln]))ey$" => "ies",
r"(\w*(x|ch|ss|sh|zz)es)$" => "",
r"(\w*(x|ch|ss|sh|zz))$" => "es",
r"(\w*(matr|cod|mur|sil|vert|ind|append))(?:ix|ex)$" => "ices",
r"(\w*(m|l)(?:ice|ouse))$" => "ice",
r"(\w*(pe)(?:rson|ople))$" => "ople",
r"(\w*(child))(?:ren)?$" => "ren",
r"(\w*eaux)$" => ""
];
r
};
}
macro_rules! special_cases{
($s:ident, $($singular: expr => $plural:expr), *) => {
match &$s[..] {
$(
$singular => {
return $plural.to_owned();
},
)*
_ => ()
}
}
}
/// Converts a `&str` to pluralized `String`
///
/// ```
/// use inflector::string::pluralize::to_plural;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "foo_bars".to_owned();
/// let asserted_string: String = to_plural(mock_string);
/// assert_eq!(asserted_string, expected_string);
///
/// ```
/// ```
/// use inflector::string::pluralize::to_plural;
/// let mock_string: &str = "ox";
/// let expected_string: String = "oxen".to_owned();
/// let asserted_string: String = to_plural(mock_string);
/// assert_eq!(asserted_string, expected_string);
///
/// ```
/// ```
/// use inflector::string::pluralize::to_plural;
/// let mock_string: &str = "crate";
/// let expected_string: String = "crates".to_owned();
/// let asserted_string: String = to_plural(mock_string);
/// assert_eq!(asserted_string, expected_string);
///
/// ```
/// ```
/// use inflector::string::pluralize::to_plural;
/// let mock_string: &str = "boxes";
/// let expected_string: String = "boxes".to_owned();
/// let asserted_string: String = to_plural(mock_string);
/// assert_eq!(asserted_string, expected_string);
///
/// ```
/// ```
/// use inflector::string::pluralize::to_plural;
/// let mock_string: &str = "vengeance";
/// let expected_string: String = "vengeance".to_owned();
/// let asserted_string: String = to_plural(mock_string);
/// assert_eq!(asserted_string, expected_string);
///
/// ```
/// ```
/// use inflector::string::pluralize::to_plural;
/// let mock_string: &str = "yoga";
/// let expected_string: String = "yoga".to_owned();
/// let asserted_string: String = to_plural(mock_string);
/// assert_eq!(asserted_string, expected_string);
///
/// ```
/// ```
/// use inflector::string::pluralize::to_plural;
/// let mock_string: &str = "geometry";
/// let expected_string: String = "geometries".to_owned();
/// let asserted_string: String = to_plural(mock_string);
/// assert_eq!(asserted_string, expected_string);
///
/// ```
///
pub fn to_plural(non_plural_string: &str) -> String {
if UNACCONTABLE_WORDS.contains(&non_plural_string.as_ref()) {
non_plural_string.to_owned()
} else {
special_cases![non_plural_string,
"ox" => "oxen",
"man" => "men",
"woman" => "women",
"die" => "dice",
"yes" => "yeses",
"foot" => "feet",
"eave" => "eaves",
"goose" => "geese",
"tooth" => "teeth",
"quiz" => "quizzes"
];
for &(ref rule, replace) in RULES.iter().rev() {
if let Some(c) = rule.captures(&non_plural_string) {
if let Some(c) = c.get(1) {
return format!("{}{}", c.as_str(), replace);
}
}
}
format!("{}s", non_plural_string)
}
}
#[cfg(test)]
mod tests {
macro_rules! as_item {
($i:item) => { $i };
}
macro_rules! make_tests{
($($singular:ident => $plural:ident); *) =>{
$(
as_item! {
#[test]
fn $singular(){
assert_eq!(
stringify!($plural),
super::to_plural(stringify!($singular))
);
}
}
)*
}
}
#[test]
fn boxes() {
assert_eq!("boxes", super::to_plural("box"));
}
make_tests!{
geometry => geometries;
ox => oxen;
woman => women;
test => tests;
axis => axes;
knife => knives;
agendum => agenda;
elf => elves;
zoology => zoology
}
}
|
use regex::Regex;
use string::constants::UNACCONTABLE_WORDS;
macro_rules! special_cases{
($s:ident, $($singular: expr => $plural:expr), *) => {
match &$s[..] {
$(
$singular => {
return $plural.to_owned();
},
)*
_ => ()
}
}
}
/// Converts a `&str` to singularized `String`
///
/// ```
/// use inflector::string::singularize::to_singular;
/// let mock_string: &str = "foo_bars";
/// let expected_string: String = "foo_bar".to_owned();
/// let asserted_string: String = to_singular(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::singularize::to_singular;
/// let mock_string: &str = "oxen";
/// let expected_string: String = "ox".to_owned();
/// let asserted_string: String = to_singular(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::singularize::to_singular;
/// let mock_string: &str = "crates";
/// let expected_string: String = "crate".to_owned();
/// let asserted_string: String = to_singular(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::singularize::to_singular;
/// let mock_string: &str = "oxen";
/// let expected_string: String = "ox".to_owned();
/// let asserted_string: String = to_singular(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::singularize::to_singular;
/// let mock_string: &str = "boxes";
/// let expected_string: String = "box".to_owned();
/// let asserted_string: String = to_singular(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::singularize::to_singular;
/// let mock_string: &str = "vengeance";
/// let expected_string: String = "vengeance".to_owned();
/// let asserted_string: String = to_singular(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::string::singularize::to_singular;
/// let mock_string: &str = "yoga";
/// let expected_string: String = "yoga".to_owned();
/// let asserted_string: String = to_singular(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
///
pub fn to_singular(non_singular_string: &str) -> String {
if UNACCONTABLE_WORDS.contains(&non_singular_string.as_ref()) {
non_singular_string.to_owned()
} else {
special_cases![non_singular_string,
"oxen" => "ox",
"boxes" => "box",
"men" => "man",
"women" => "woman",
"dice" => "die",
"yeses" => "yes",
"feet" => "foot",
"eaves" => "eave",
"geese" => "goose",
"teeth" => "tooth",
"quizzes" => "quiz"
];
for &(ref rule, replace) in RULES.iter().rev() {
if let Some(captures) = rule.captures(&non_singular_string) {
if let Some(c) = captures.get(1) {
let mut buf = String::new();
captures.expand(&format!("{}{}", c.as_str(), replace), &mut buf);
return buf;
}
}
}
format!("{}", non_singular_string)
}
}
macro_rules! add_rule{
($r:ident, $rule:expr => $replace:expr) => {
$r.push((Regex::new($rule).unwrap(), $replace));
}
}
macro_rules! rules{
($r:ident; $($rule:expr => $replace:expr), *) => {
$(
add_rule!{$r, $rule => $replace}
)*
}
}
lazy_static!{
static ref RULES: Vec<(Regex, &'static str)> = {
let mut r = Vec::with_capacity(27);
rules![r;
r"(\w*)s$" => "",
r"(\w*)(ss)$" => "$2",
r"(n)ews$" => "ews",
r"(\w*)(o)es$" => "",
r"(\w*)([ti])a$" => "um",
r"((a)naly|(b)a|(d)iagno|(p)arenthe|(p)rogno|(s)ynop|(t)he)(sis|ses)$" => "sis",
r"(^analy)(sis|ses)$" => "sis",
r"(\w*)([^f])ves$" => "fe",
r"(\w*)(hive)s$" => "",
r"(\w*)(tive)s$" => "",
r"(\w*)([lr])ves$" => "f",
r"(\w*([^aeiouy]|qu))ies$" => "y",
r"(s)eries$" => "eries",
r"(m)ovies$" => "ovie",
r"(\w*)(x|ch|ss|sh)es$" => "$2",
r"(m|l)ice$" => "ouse",
r"(bus)(es)?$" => "",
r"(shoe)s$" => "",
r"(cris|test)(is|es)$" => "is",
r"^(a)x[ie]s$" => "xis",
r"(octop|vir)(us|i)$" => "us",
r"(alias|status)(es)?$" => "",
r"^(ox)en" => "",
r"(vert|ind)ices$" => "ex",
r"(matr)ices$" => "ix",
r"(quiz)zes$" => "",
r"(database)s$" => ""
];
r
};
}
#[test]
fn singularize_ies_suffix() {
assert_eq!("reply", to_singular("replies"));
assert_eq!("lady", to_singular("ladies"));
assert_eq!("soliloquy", to_singular("soliloquies"));
}
#[test]
fn singularize_ss_suffix() {
assert_eq!("glass", to_singular("glass"));
assert_eq!("access", to_singular("access"));
assert_eq!("glass", to_singular("glasses"));
assert_eq!("witch", to_singular("witches"));
assert_eq!("dish", to_singular("dishes"));
}
#[test]
fn singularize_string_if_a_regex_will_match() {
let expected_string: String = "ox".to_owned();
let asserted_string: String = to_singular("oxen");
assert!(expected_string == asserted_string);
}
#[test]
fn singularize_string_returns_none_option_if_no_match() {
let expected_string: String = "bacon".to_owned();
let asserted_string: String = to_singular("bacon");
assert!(expected_string == asserted_string);
}
|
use cases::snakecase::to_snake_case;
/// Converts a `&str` to a `foreign_key`
///
/// ```
/// use inflector::suffix::foreignkey::to_foreign_key;
/// let mock_string: &str = "foo_bar";
/// let expected_string: String = "foo_bar_id".to_owned();
/// let asserted_string: String = to_foreign_key(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::to_foreign_key;
/// let mock_string: &str = "Foo bar";
/// let expected_string: String = "foo_bar_id".to_owned();
/// let asserted_string: String = to_foreign_key(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::to_foreign_key;
/// let mock_string: &str = "Foo Bar";
/// let expected_string: String = "foo_bar_id".to_owned();
/// let asserted_string: String = to_foreign_key(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::to_foreign_key;
/// let mock_string: &str = "Foo::Bar";
/// let expected_string: String = "bar_id".to_owned();
/// let asserted_string: String = to_foreign_key(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::to_foreign_key;
/// let mock_string: &str = "Test::Foo::Bar";
/// let expected_string: String = "bar_id".to_owned();
/// let asserted_string: String = to_foreign_key(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::to_foreign_key;
/// let mock_string: &str = "FooBar";
/// let expected_string: String = "foo_bar_id".to_owned();
/// let asserted_string: String = to_foreign_key(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::to_foreign_key;
/// let mock_string: &str = "fooBar";
/// let expected_string: String = "foo_bar_id".to_owned();
/// let asserted_string: String = to_foreign_key(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::to_foreign_key;
/// let mock_string: &str = "fooBar3";
/// let expected_string: String = "foo_bar_3_id".to_owned();
/// let asserted_string: String = to_foreign_key(mock_string);
/// assert!(asserted_string == expected_string);
///
/// ```
pub fn to_foreign_key(non_foreign_key_string: &str) -> String {
if non_foreign_key_string.contains("::") {
let split_string: Vec<&str> = non_foreign_key_string.split("::").collect();
safe_convert(split_string[split_string.len() - 1])
} else {
safe_convert(non_foreign_key_string)
}
}
fn safe_convert(safe_string: &str) -> String {
let snake_cased: String = to_snake_case(safe_string);
if snake_cased.ends_with("_id") {
snake_cased
} else {
format!("{}{}", snake_cased, "_id")
}
}
/// Determines if a `&str` is a `foreign_key`
///
/// ```
/// use inflector::suffix::foreignkey::is_foreign_key;
/// let mock_string: &str = "Foo bar string that is really really long";
/// let asserted_bool: bool = is_foreign_key(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::is_foreign_key;
/// let mock_string: &str = "foo-bar-string-that-is-really-really-long";
/// let asserted_bool: bool = is_foreign_key(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::is_foreign_key;
/// let mock_string: &str = "FooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_foreign_key(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::is_foreign_key;
/// let mock_string: &str = "Foo Bar Is A Really Really Long String";
/// let asserted_bool: bool = is_foreign_key(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::is_foreign_key;
/// let mock_string: &str = "fooBarIsAReallyReallyLongString";
/// let asserted_bool: bool = is_foreign_key(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::is_foreign_key;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long";
/// let asserted_bool: bool = is_foreign_key(mock_string);
/// assert!(asserted_bool == false);
///
/// ```
/// ```
/// use inflector::suffix::foreignkey::is_foreign_key;
/// let mock_string: &str = "foo_bar_string_that_is_really_really_long_id";
/// let asserted_bool: bool = is_foreign_key(mock_string);
/// assert!(asserted_bool == true);
///
/// ```
pub fn is_foreign_key(test_string: &str) -> bool {
to_foreign_key(test_string.clone()) == test_string
}
|
#![deny(warnings)]
/// Provides foreign key conversion for String.
///
/// Example string `foo` becomes `foo_id`
pub mod foreignkey;
|
#![deny(warnings)]
extern crate inflector;
use inflector::Inflector;
use inflector::InflectorNumbers;
macro_rules! str_tests {
( $($test_name:ident => $imp_trait:ident => $to_cast:expr => $casted:expr), *) => {
$(
#[test]
fn $test_name() {
assert_eq!($to_cast.$imp_trait(), $casted)
}
)*
}
}
macro_rules! string_tests {
( $($test_name:ident => $imp_trait:ident => $to_cast:expr => $casted:expr), *) => {
$(
#[test]
fn $test_name() {
assert_eq!($to_cast.to_string().$imp_trait(), $casted)
}
)*
}
}
macro_rules! number_tests {
( $($test_name:ident => $imp_trait:ident => $typ:ident => $to_cast:expr => $casted:expr), *) => {
$(
#[test]
fn $test_name() {
let to_cast: $typ = $to_cast;
assert_eq!(to_cast.$imp_trait(), $casted)
}
)*
}
}
macro_rules! gated_str_tests {
( $($test_name:ident => $imp_trait:ident => $to_cast:expr => $casted:expr), *) => {
$(
#[test]
#[cfg(feature = "heavyweight")]
fn $test_name() {
assert_eq!($to_cast.$imp_trait(), $casted)
}
)*
}
}
macro_rules! gated_string_tests {
( $($test_name:ident => $imp_trait:ident => $to_cast:expr => $casted:expr), *) => {
$(
#[test]
#[cfg(feature = "heavyweight")]
fn $test_name() {
assert_eq!($to_cast.to_string().$imp_trait(), $casted)
}
)*
}
}
str_tests![
str_to_camel => to_camel_case => "foo_bar" => "fooBar".to_string(),
str_is_camel => is_camel_case => "fooBar" => true,
str_is_not_camel => is_camel_case => "foo_bar" => false,
str_to_screaming_snake => to_screaming_snake_case => "fooBar" => "FOO_BAR".to_string(),
str_is_screaming_snake => is_screaming_snake_case => "FOO_BAR" => true,
str_is_not_screaming_snake => is_screaming_snake_case => "foo_bar" => false,
str_to_snake => to_snake_case => "fooBar" => "foo_bar".to_string(),
str_is_snake => is_snake_case => "foo_bar" => true,
str_is_not_snake => is_snake_case => "fooBar" => false,
str_to_kebab => to_kebab_case => "fooBar" => "foo-bar".to_string(),
str_is_kebab => is_kebab_case => "foo-bar" => true,
str_is_not_kebab => is_kebab_case => "fooBar" => false,
str_to_train => to_train_case => "fooBar" => "Foo-Bar".to_string(),
str_is_train => is_train_case => "Foo-Bar" => true,
str_is_not_train => is_train_case => "FOO-Bar" => false,
str_to_sentence => to_sentence_case => "fooBar" => "Foo bar".to_string(),
str_is_sentence => is_sentence_case => "Foo bar" => true,
str_is_not_sentence => is_sentence_case => "foo_bar" => false,
str_to_title => to_title_case => "fooBar" => "Foo Bar".to_string(),
str_is_title => is_title_case => "Foo Bar" => true,
str_is_not_title => is_title_case => "Foo_Bar" => false,
str_ordinalize => ordinalize => "1" => "1st".to_string(),
str_deordinalize => deordinalize => "1st" => "1".to_string(),
str_to_foreign_key => to_foreign_key => "Foo::Bar" => "bar_id".to_string(),
str_is_foreign_key => is_foreign_key => "bar_id" => true,
str_is_not_foreign_key => is_foreign_key => "bar" => false
];
gated_str_tests![
str_to_class_case => to_class_case => "foo" => "Foo".to_string(),
str_is_class_case => is_class_case => "Foo" => true,
str_is_not_class_case => is_class_case => "foo" => false,
str_to_table => to_table_case => "fooBar" => "foo_bars".to_string(),
str_is_table => is_table_case => "foo_bars" => true,
str_is_not_table => is_table_case => "fooBars" => false,
str_pluralize => to_plural => "crate" => "crates".to_string(),
str_singular => to_singular => "crates" => "crate".to_string(),
str_demodulize => demodulize => "Foo::Bar" => "Bar".to_string(),
str_deconstantize => deconstantize => "Foo::Bar" => "Foo".to_string()
];
string_tests![
string_to_camel => to_camel_case => "foo_bar".to_string() => "fooBar".to_string(),
string_is_camel => is_camel_case => "fooBar".to_string() => true,
string_is_not_camel => is_camel_case => "foo_bar".to_string() => false,
string_to_screaming_snake => to_screaming_snake_case => "fooBar".to_string() => "FOO_BAR".to_string(),
string_is_screaming_snake => is_screaming_snake_case => "FOO_BAR".to_string() => true,
string_is_not_screaming_snake => is_screaming_snake_case => "foo_bar".to_string() => false,
string_to_snake => to_snake_case => "fooBar".to_string() => "foo_bar".to_string(),
string_is_snake => is_snake_case => "foo_bar".to_string() => true,
string_is_not_snake => is_snake_case => "fooBar".to_string() => false,
string_to_kebab => to_kebab_case => "fooBar".to_string() => "foo-bar".to_string(),
string_is_kebab => is_kebab_case => "foo-bar".to_string() => true,
string_is_not_kebab => is_kebab_case => "fooBar".to_string() => false,
string_to_train => to_train_case => "fooBar".to_string() => "Foo-Bar".to_string(),
string_is_train => is_train_case => "Foo-Bar".to_string() => true,
string_is_not_train => is_train_case => "foo-Bar".to_string() => false,
string_to_sentence => to_sentence_case => "fooBar".to_string() => "Foo bar".to_string(),
string_is_sentence => is_sentence_case => "Foo bar".to_string() => true,
string_is_not_sentence => is_sentence_case => "fooBar".to_string() => false,
string_to_title => to_title_case => "fooBar".to_string() => "Foo Bar".to_string(),
string_is_title => is_title_case => "Foo Bar".to_string() => true,
string_is_not_title => is_title_case => "fooBar".to_string() => false,
string_ordinalize => ordinalize => "1".to_string() => "1st".to_string(),
string_deordinalize => deordinalize => "1st".to_string() => "1".to_string(),
string_to_foreign_key => to_foreign_key => "Foo::Bar".to_string() => "bar_id".to_string(),
string_is_foreign_key => is_foreign_key => "bar_id".to_string() => true,
string_is_not_foreign_key => is_foreign_key => "bar".to_string() => false
];
gated_string_tests![
string_to_class_case => to_class_case => "foo".to_string() => "Foo".to_string(),
string_is_class_case => is_class_case => "Foo".to_string() => true,
string_is_not_class_case => is_class_case => "ooBar".to_string() => false,
string_to_table => to_table_case => "fooBar".to_string() => "foo_bars".to_string(),
string_is_table => is_table_case => "foo_bars".to_string() => true,
string_is_not_table => is_table_case => "fooBar".to_string() => false,
string_pluralize => to_plural => "crate".to_string() => "crates".to_string(),
string_singular => to_singular => "crates".to_string() => "crate".to_string(),
string_demodulize => demodulize => "Foo::Bar".to_string() => "Bar".to_string(),
string_deconstantize => deconstantize => "Foo::Bar".to_string() => "Foo".to_string()
];
number_tests![
i8_ordinalize => ordinalize => i8 => 1 => "1st".to_string(),
i16_ordinalize => ordinalize => i16 => 1 => "1st".to_string(),
i32_ordinalize => ordinalize => i32 => 1 => "1st".to_string(),
i64_ordinalize => ordinalize => i64 => 1 => "1st".to_string(),
u8_ordinalize => ordinalize => u8 => 1 => "1st".to_string(),
u16_ordinalize => ordinalize => u16 => 1 => "1st".to_string(),
u32_ordinalize => ordinalize => u32 => 1 => "1st".to_string(),
u64_ordinalize => ordinalize => u64 => 1 => "1st".to_string(),
isize_ordinalize => ordinalize => isize => 1 => "1st".to_string(),
usize_ordinalize => ordinalize => usize => 1 => "1st".to_string(),
f32_ordinalize => ordinalize => f32 => 1.0 => "1st".to_string(),
f64_ordinalize => ordinalize => f64 => 1.0 => "1st".to_string()
];
|
use bytes::BytesMut;
use criterion::{criterion_group, criterion_main, Criterion};
const INPUT: &[u8] = include_bytes!("./lorem.txt");
fn bench_lines_codec(c: &mut Criterion) {
let mut decode_group = c.benchmark_group("lines decode");
decode_group.bench_function("actix", |b| {
b.iter(|| {
use actix_codec::Decoder as _;
let mut codec = actix_codec::LinesCodec::default();
let mut buf = BytesMut::from(INPUT);
while let Ok(Some(_bytes)) = codec.decode_eof(&mut buf) {}
});
});
decode_group.bench_function("tokio", |b| {
b.iter(|| {
use tokio_util::codec::Decoder as _;
let mut codec = tokio_util::codec::LinesCodec::new();
let mut buf = BytesMut::from(INPUT);
while let Ok(Some(_bytes)) = codec.decode_eof(&mut buf) {}
});
});
decode_group.finish();
let mut encode_group = c.benchmark_group("lines encode");
encode_group.bench_function("actix", |b| {
b.iter(|| {
use actix_codec::Encoder as _;
let mut codec = actix_codec::LinesCodec::default();
let mut buf = BytesMut::new();
codec.encode("123", &mut buf).unwrap();
});
});
encode_group.bench_function("tokio", |b| {
b.iter(|| {
use tokio_util::codec::Encoder as _;
let mut codec = tokio_util::codec::LinesCodec::new();
let mut buf = BytesMut::new();
codec.encode("123", &mut buf).unwrap();
});
});
encode_group.finish();
}
criterion_group!(benches, bench_lines_codec);
criterion_main!(benches);
|
use std::io;
use bytes::{Buf, Bytes, BytesMut};
use super::{Decoder, Encoder};
/// Bytes codec. Reads/writes chunks of bytes from a stream.
#[derive(Debug, Copy, Clone)]
pub struct BytesCodec;
impl Encoder<Bytes> for BytesCodec {
type Error = io::Error;
#[inline]
fn encode(&mut self, item: Bytes, dst: &mut BytesMut) -> Result<(), Self::Error> {
dst.extend_from_slice(item.chunk());
Ok(())
}
}
impl Decoder for BytesCodec {
type Item = BytesMut;
type Error = io::Error;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
if src.is_empty() {
Ok(None)
} else {
Ok(Some(src.split()))
}
}
}
|
use std::{
fmt, io,
pin::Pin,
task::{Context, Poll},
};
use bitflags::bitflags;
use bytes::{Buf, BytesMut};
use futures_core::{ready, Stream};
use futures_sink::Sink;
use pin_project_lite::pin_project;
use crate::{AsyncRead, AsyncWrite, Decoder, Encoder};
/// Low-water mark
const LW: usize = 1024;
/// High-water mark
const HW: usize = 8 * 1024;
bitflags! {
#[derive(Debug, Clone, Copy)]
struct Flags: u8 {
const EOF = 0b0001;
const READABLE = 0b0010;
}
}
pin_project! {
/// A unified `Stream` and `Sink` interface to an underlying I/O object, using the `Encoder` and
/// `Decoder` traits to encode and decode frames.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually wants to batch these
/// into meaningful chunks, called "frames". This method layers framing on top of an I/O object,
/// by using the `Encoder`/`Decoder` traits to handle encoding and decoding of message frames.
/// Note that the incoming and outgoing frame types may be distinct.
pub struct Framed<T, U> {
#[pin]
io: T,
codec: U,
flags: Flags,
read_buf: BytesMut,
write_buf: BytesMut,
}
}
impl<T, U> Framed<T, U>
where
T: AsyncRead + AsyncWrite,
U: Decoder,
{
/// This function returns a *single* object that is both `Stream` and `Sink`; grouping this into
/// a single object is often useful for layering things like gzip or TLS, which require both
/// read and write access to the underlying object.
pub fn new(io: T, codec: U) -> Framed<T, U> {
Framed {
io,
codec,
flags: Flags::empty(),
read_buf: BytesMut::with_capacity(HW),
write_buf: BytesMut::with_capacity(HW),
}
}
}
impl<T, U> Framed<T, U> {
/// Returns a reference to the underlying codec.
pub fn codec_ref(&self) -> &U {
&self.codec
}
/// Returns a mutable reference to the underlying codec.
pub fn codec_mut(&mut self) -> &mut U {
&mut self.codec
}
/// Returns a reference to the underlying I/O stream wrapped by `Frame`.
///
/// Note that care should be taken to not tamper with the underlying stream of data coming in as
/// it may corrupt the stream of frames otherwise being worked with.
pub fn io_ref(&self) -> &T {
&self.io
}
/// Returns a mutable reference to the underlying I/O stream.
///
/// Note that care should be taken to not tamper with the underlying stream of data coming in as
/// it may corrupt the stream of frames otherwise being worked with.
pub fn io_mut(&mut self) -> &mut T {
&mut self.io
}
/// Returns a `Pin` of a mutable reference to the underlying I/O stream.
pub fn io_pin(self: Pin<&mut Self>) -> Pin<&mut T> {
self.project().io
}
/// Check if read buffer is empty.
pub fn is_read_buf_empty(&self) -> bool {
self.read_buf.is_empty()
}
/// Check if write buffer is empty.
pub fn is_write_buf_empty(&self) -> bool {
self.write_buf.is_empty()
}
/// Check if write buffer is full.
pub fn is_write_buf_full(&self) -> bool {
self.write_buf.len() >= HW
}
/// Check if framed is able to write more data.
///
/// `Framed` object considers ready if there is free space in write buffer.
pub fn is_write_ready(&self) -> bool {
self.write_buf.len() < HW
}
/// Consume the `Frame`, returning `Frame` with different codec.
pub fn replace_codec<U2>(self, codec: U2) -> Framed<T, U2> {
Framed {
codec,
io: self.io,
flags: self.flags,
read_buf: self.read_buf,
write_buf: self.write_buf,
}
}
/// Consume the `Frame`, returning `Frame` with different io.
pub fn into_map_io<F, T2>(self, f: F) -> Framed<T2, U>
where
F: Fn(T) -> T2,
{
Framed {
io: f(self.io),
codec: self.codec,
flags: self.flags,
read_buf: self.read_buf,
write_buf: self.write_buf,
}
}
/// Consume the `Frame`, returning `Frame` with different codec.
pub fn into_map_codec<F, U2>(self, f: F) -> Framed<T, U2>
where
F: Fn(U) -> U2,
{
Framed {
io: self.io,
codec: f(self.codec),
flags: self.flags,
read_buf: self.read_buf,
write_buf: self.write_buf,
}
}
}
impl<T, U> Framed<T, U> {
/// Serialize item and write to the inner buffer
pub fn write<I>(mut self: Pin<&mut Self>, item: I) -> Result<(), <U as Encoder<I>>::Error>
where
T: AsyncWrite,
U: Encoder<I>,
{
let this = self.as_mut().project();
let remaining = this.write_buf.capacity() - this.write_buf.len();
if remaining < LW {
this.write_buf.reserve(HW - remaining);
}
this.codec.encode(item, this.write_buf)?;
Ok(())
}
/// Try to read underlying I/O stream and decode item.
pub fn next_item(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<<U as Decoder>::Item, U::Error>>>
where
T: AsyncRead,
U: Decoder,
{
loop {
let this = self.as_mut().project();
// Repeatedly call `decode` or `decode_eof` as long as it is "readable". Readable is
// defined as not having returned `None`. If the upstream has returned EOF, and the
// decoder is no longer readable, it can be assumed that the decoder will never become
// readable again, at which point the stream is terminated.
if this.flags.contains(Flags::READABLE) {
if this.flags.contains(Flags::EOF) {
match this.codec.decode_eof(this.read_buf) {
Ok(Some(frame)) => return Poll::Ready(Some(Ok(frame))),
Ok(None) => return Poll::Ready(None),
Err(err) => return Poll::Ready(Some(Err(err))),
}
}
tracing::trace!("attempting to decode a frame");
match this.codec.decode(this.read_buf) {
Ok(Some(frame)) => {
tracing::trace!("frame decoded from buffer");
return Poll::Ready(Some(Ok(frame)));
}
Err(err) => return Poll::Ready(Some(Err(err))),
_ => (), // Need more data
}
this.flags.remove(Flags::READABLE);
}
debug_assert!(!this.flags.contains(Flags::EOF));
// Otherwise, try to read more data and try again. Make sure we've got room.
let remaining = this.read_buf.capacity() - this.read_buf.len();
if remaining < LW {
this.read_buf.reserve(HW - remaining)
}
let cnt = match tokio_util::io::poll_read_buf(this.io, cx, this.read_buf) {
Poll::Pending => return Poll::Pending,
Poll::Ready(Err(err)) => return Poll::Ready(Some(Err(err.into()))),
Poll::Ready(Ok(cnt)) => cnt,
};
if cnt == 0 {
this.flags.insert(Flags::EOF);
}
this.flags.insert(Flags::READABLE);
}
}
/// Flush write buffer to underlying I/O stream.
pub fn flush<I>(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), U::Error>>
where
T: AsyncWrite,
U: Encoder<I>,
{
let mut this = self.as_mut().project();
tracing::trace!("flushing framed transport");
while !this.write_buf.is_empty() {
tracing::trace!("writing; remaining={}", this.write_buf.len());
let n = ready!(this.io.as_mut().poll_write(cx, this.write_buf))?;
if n == 0 {
return Poll::Ready(Err(io::Error::new(
io::ErrorKind::WriteZero,
"failed to write frame to transport",
)
.into()));
}
// remove written data
this.write_buf.advance(n);
}
// Try flushing the underlying IO
ready!(this.io.poll_flush(cx))?;
tracing::trace!("framed transport flushed");
Poll::Ready(Ok(()))
}
/// Flush write buffer and shutdown underlying I/O stream.
pub fn close<I>(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), U::Error>>
where
T: AsyncWrite,
U: Encoder<I>,
{
let mut this = self.as_mut().project();
ready!(this.io.as_mut().poll_flush(cx))?;
ready!(this.io.as_mut().poll_shutdown(cx))?;
Poll::Ready(Ok(()))
}
}
impl<T, U> Stream for Framed<T, U>
where
T: AsyncRead,
U: Decoder,
{
type Item = Result<U::Item, U::Error>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.next_item(cx)
}
}
impl<T, U, I> Sink<I> for Framed<T, U>
where
T: AsyncWrite,
U: Encoder<I>,
U::Error: From<io::Error>,
{
type Error = U::Error;
fn poll_ready(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
if self.is_write_ready() {
Poll::Ready(Ok(()))
} else {
self.flush(cx)
}
}
fn start_send(self: Pin<&mut Self>, item: I) -> Result<(), Self::Error> {
self.write(item)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.close(cx)
}
}
impl<T, U> fmt::Debug for Framed<T, U>
where
T: fmt::Debug,
U: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Framed")
.field("io", &self.io)
.field("codec", &self.codec)
.finish()
}
}
impl<T, U> Framed<T, U> {
/// This function returns a *single* object that is both `Stream` and `Sink`; grouping this into
/// a single object is often useful for layering things like gzip or TLS, which require both
/// read and write access to the underlying object.
///
/// These objects take a stream, a read buffer and a write buffer. These fields can be obtained
/// from an existing `Framed` with the `into_parts` method.
pub fn from_parts(parts: FramedParts<T, U>) -> Framed<T, U> {
Framed {
io: parts.io,
codec: parts.codec,
flags: parts.flags,
write_buf: parts.write_buf,
read_buf: parts.read_buf,
}
}
/// Consumes the `Frame`, returning its underlying I/O stream, the buffer with unprocessed data,
/// and the codec.
///
/// Note that care should be taken to not tamper with the underlying stream of data coming in as
/// it may corrupt the stream of frames otherwise being worked with.
pub fn into_parts(self) -> FramedParts<T, U> {
FramedParts {
io: self.io,
codec: self.codec,
flags: self.flags,
read_buf: self.read_buf,
write_buf: self.write_buf,
}
}
}
/// `FramedParts` contains an export of the data of a Framed transport.
///
/// It can be used to construct a new `Framed` with a different codec. It contains all current
/// buffers and the inner transport.
#[derive(Debug)]
pub struct FramedParts<T, U> {
/// The inner transport used to read bytes to and write bytes to.
pub io: T,
/// The codec object.
pub codec: U,
/// The buffer with read but unprocessed data.
pub read_buf: BytesMut,
/// A buffer with unprocessed data which are not written yet.
pub write_buf: BytesMut,
flags: Flags,
}
impl<T, U> FramedParts<T, U> {
/// Creates a new default `FramedParts`.
pub fn new(io: T, codec: U) -> FramedParts<T, U> {
FramedParts {
io,
codec,
flags: Flags::empty(),
read_buf: BytesMut::new(),
write_buf: BytesMut::new(),
}
}
/// Creates a new `FramedParts` with read buffer.
pub fn with_read_buf(io: T, codec: U, read_buf: BytesMut) -> FramedParts<T, U> {
FramedParts {
io,
codec,
read_buf,
flags: Flags::empty(),
write_buf: BytesMut::new(),
}
}
}
|
//! Codec utilities for working with framed protocols.
//!
//! Contains adapters to go from streams of bytes, [`AsyncRead`] and [`AsyncWrite`], to framed
//! streams implementing [`Sink`] and [`Stream`]. Framed streams are also known as `transports`.
//!
//! [`Sink`]: futures_sink::Sink
//! [`Stream`]: futures_core::Stream
#![deny(rust_2018_idioms, nonstandard_style)]
#![warn(future_incompatible, missing_docs)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
pub use tokio::io::{AsyncRead, AsyncWrite, ReadBuf};
pub use tokio_util::{
codec::{Decoder, Encoder},
io::poll_read_buf,
};
mod bcodec;
mod framed;
mod lines;
pub use self::{
bcodec::BytesCodec,
framed::{Framed, FramedParts},
lines::LinesCodec,
};
|
use std::io;
use bytes::{Buf, BufMut, Bytes, BytesMut};
use memchr::memchr;
use super::{Decoder, Encoder};
/// Lines codec. Reads/writes line delimited strings.
///
/// Will split input up by LF or CRLF delimiters. Carriage return characters at the end of lines are
/// not preserved.
#[derive(Debug, Copy, Clone, Default)]
#[non_exhaustive]
pub struct LinesCodec;
impl<T: AsRef<str>> Encoder<T> for LinesCodec {
type Error = io::Error;
#[inline]
fn encode(&mut self, item: T, dst: &mut BytesMut) -> Result<(), Self::Error> {
let item = item.as_ref();
dst.reserve(item.len() + 1);
dst.put_slice(item.as_bytes());
dst.put_u8(b'\n');
Ok(())
}
}
impl Decoder for LinesCodec {
type Item = String;
type Error = io::Error;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
if src.is_empty() {
return Ok(None);
}
let len = match memchr(b'\n', src) {
Some(n) => n,
None => {
return Ok(None);
}
};
// split up to new line char
let mut buf = src.split_to(len);
debug_assert_eq!(len, buf.len());
// remove new line char from source
src.advance(1);
match buf.last() {
// remove carriage returns at the end of buf
Some(b'\r') => buf.truncate(len - 1),
// line is empty
None => return Ok(Some(String::new())),
_ => {}
}
try_into_utf8(buf.freeze())
}
fn decode_eof(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
match self.decode(src)? {
Some(frame) => Ok(Some(frame)),
None if src.is_empty() => Ok(None),
None => {
let buf = match src.last() {
// if last line ends in a CR then take everything up to it
Some(b'\r') => src.split_to(src.len() - 1),
// take all bytes from source
_ => src.split(),
};
if buf.is_empty() {
return Ok(None);
}
try_into_utf8(buf.freeze())
}
}
}
}
// Attempts to convert bytes into a `String`.
fn try_into_utf8(buf: Bytes) -> io::Result<Option<String>> {
String::from_utf8(buf.to_vec())
.map_err(|err| io::Error::new(io::ErrorKind::InvalidData, err))
.map(Some)
}
#[cfg(test)]
mod tests {
use bytes::BufMut as _;
use super::*;
#[test]
fn lines_decoder() {
let mut codec = LinesCodec::default();
let mut buf = BytesMut::from("\nline 1\nline 2\r\nline 3\n\r\n\r");
assert_eq!("", codec.decode(&mut buf).unwrap().unwrap());
assert_eq!("line 1", codec.decode(&mut buf).unwrap().unwrap());
assert_eq!("line 2", codec.decode(&mut buf).unwrap().unwrap());
assert_eq!("line 3", codec.decode(&mut buf).unwrap().unwrap());
assert_eq!("", codec.decode(&mut buf).unwrap().unwrap());
assert!(codec.decode(&mut buf).unwrap().is_none());
assert!(codec.decode_eof(&mut buf).unwrap().is_none());
buf.put_slice(b"k");
assert!(codec.decode(&mut buf).unwrap().is_none());
assert_eq!("\rk", codec.decode_eof(&mut buf).unwrap().unwrap());
assert!(codec.decode(&mut buf).unwrap().is_none());
assert!(codec.decode_eof(&mut buf).unwrap().is_none());
}
#[test]
fn lines_encoder() {
let mut codec = LinesCodec::default();
let mut buf = BytesMut::new();
codec.encode("", &mut buf).unwrap();
assert_eq!(&buf[..], b"\n");
codec.encode("test", &mut buf).unwrap();
assert_eq!(&buf[..], b"\ntest\n");
codec.encode("a\nb", &mut buf).unwrap();
assert_eq!(&buf[..], b"\ntest\na\nb\n");
}
#[test]
fn lines_encoder_no_overflow() {
let mut codec = LinesCodec::default();
let mut buf = BytesMut::new();
codec.encode("1234567", &mut buf).unwrap();
assert_eq!(&buf[..], b"1234567\n");
let mut buf = BytesMut::new();
codec.encode("12345678", &mut buf).unwrap();
assert_eq!(&buf[..], b"12345678\n");
let mut buf = BytesMut::new();
codec.encode("123456789111213", &mut buf).unwrap();
assert_eq!(&buf[..], b"123456789111213\n");
let mut buf = BytesMut::new();
codec.encode("1234567891112131", &mut buf).unwrap();
assert_eq!(&buf[..], b"1234567891112131\n");
}
}
|
use std::{
collections::VecDeque,
io::{self, Write},
pin::Pin,
task::{
Context,
Poll::{self, Pending, Ready},
},
};
use actix_codec::*;
use bytes::{Buf as _, BufMut as _, BytesMut};
use futures_sink::Sink;
use tokio_test::{assert_ready, task};
macro_rules! bilateral {
($($x:expr,)*) => {{
let mut v = VecDeque::new();
v.extend(vec![$($x),*]);
Bilateral { calls: v }
}};
}
macro_rules! assert_ready {
($e:expr) => {{
use core::task::Poll::*;
match $e {
Ready(v) => v,
Pending => panic!("pending"),
}
}};
($e:expr, $($msg:tt),+) => {{
use core::task::Poll::*;
match $e {
Ready(v) => v,
Pending => {
let msg = format_args!($($msg),+);
panic!("pending; {}", msg)
}
}
}};
}
#[derive(Debug)]
pub struct Bilateral {
pub calls: VecDeque<io::Result<Vec<u8>>>,
}
impl Write for Bilateral {
fn write(&mut self, src: &[u8]) -> io::Result<usize> {
match self.calls.pop_front() {
Some(Ok(data)) => {
assert!(src.len() >= data.len());
assert_eq!(&data[..], &src[..data.len()]);
Ok(data.len())
}
Some(Err(err)) => Err(err),
None => panic!("unexpected write; {:?}", src),
}
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl AsyncWrite for Bilateral {
fn poll_write(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, io::Error>> {
match Pin::get_mut(self).write(buf) {
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => Pending,
other => Ready(other),
}
}
fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
match Pin::get_mut(self).flush() {
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => Pending,
other => Ready(other),
}
}
fn poll_shutdown(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
unimplemented!()
}
}
impl AsyncRead for Bilateral {
fn poll_read(
mut self: Pin<&mut Self>,
_: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<Result<(), std::io::Error>> {
use io::ErrorKind::WouldBlock;
match self.calls.pop_front() {
Some(Ok(data)) => {
debug_assert!(buf.remaining() >= data.len());
buf.put_slice(&data);
Ready(Ok(()))
}
Some(Err(ref err)) if err.kind() == WouldBlock => Pending,
Some(Err(err)) => Ready(Err(err)),
None => Ready(Ok(())),
}
}
}
pub struct U32;
impl Encoder<u32> for U32 {
type Error = io::Error;
fn encode(&mut self, item: u32, dst: &mut BytesMut) -> io::Result<()> {
// Reserve space
dst.reserve(4);
dst.put_u32(item);
Ok(())
}
}
impl Decoder for U32 {
type Item = u32;
type Error = io::Error;
fn decode(&mut self, buf: &mut BytesMut) -> io::Result<Option<u32>> {
if buf.len() < 4 {
return Ok(None);
}
let n = buf.split_to(4).get_u32();
Ok(Some(n))
}
}
#[test]
fn test_write_hits_highwater_mark() {
// see here for what this test is based on:
// https://github.com/tokio-rs/tokio/blob/75c07770bfbfea4e5fd914af819c741ed9c3fc36/tokio-util/tests/framed_write.rs#L69
const ITER: usize = 2 * 1024;
let mut bi = bilateral! {
Err(io::Error::new(io::ErrorKind::WouldBlock, "not ready")),
Ok(b"".to_vec()),
};
for i in 0..=ITER {
let mut b = BytesMut::with_capacity(4);
b.put_u32(i as u32);
// Append to the end
match bi.calls.back_mut().unwrap() {
Ok(ref mut data) => {
// Write in 2kb chunks
if data.len() < ITER {
data.extend_from_slice(&b[..]);
continue;
} // else fall through and create a new buffer
}
_ => unreachable!(),
}
// Push a new new chunk
bi.calls.push_back(Ok(b[..].to_vec()));
}
assert_eq!(bi.calls.len(), 6);
let mut framed = Framed::new(bi, U32);
// Send 8KB. This fills up FramedWrite2 buffer
let mut task = task::spawn(());
task.enter(|cx, _| {
// Send 8KB. This fills up Framed buffer
for i in 0..ITER {
{
#[allow(unused_mut)]
let mut framed = Pin::new(&mut framed);
assert!(assert_ready!(framed.poll_ready(cx)).is_ok());
}
#[allow(unused_mut)]
let mut framed = Pin::new(&mut framed);
// write the buffer
assert!(framed.start_send(i as u32).is_ok());
}
{
#[allow(unused_mut)]
let mut framed = Pin::new(&mut framed);
// Now we poll_ready which forces a flush. The bilateral pops the front message
// and decides to block.
assert!(framed.poll_ready(cx).is_pending());
}
{
#[allow(unused_mut)]
let mut framed = Pin::new(&mut framed);
// We poll again, forcing another flush, which this time succeeds
// The whole 8KB buffer is flushed
assert!(assert_ready!(framed.poll_ready(cx)).is_ok());
}
{
#[allow(unused_mut)]
let mut framed = Pin::new(&mut framed);
// Send more data. This matches the final message expected by the bilateral
assert!(framed.start_send(ITER as u32).is_ok());
}
{
#[allow(unused_mut)]
let mut framed = Pin::new(&mut framed);
// Flush the rest of the buffer
assert!(assert_ready!(framed.poll_flush(cx)).is_ok());
}
// Ensure the mock is empty
assert_eq!(0, Pin::new(&framed).get_ref().io_ref().calls.len());
});
}
|
use std::time::SystemTime;
use actix_http::header::HttpDate;
use divan::{black_box, AllocProfiler, Bencher};
#[global_allocator]
static ALLOC: AllocProfiler = AllocProfiler::system();
#[divan::bench]
fn date_formatting(b: Bencher<'_, '_>) {
let now = SystemTime::now();
b.bench(|| {
black_box(HttpDate::from(black_box(now)).to_string());
})
}
fn main() {
divan::main();
}
|
use std::convert::Infallible;
use actix_http::{encoding::Encoder, ContentEncoding, Request, Response, StatusCode};
use actix_service::{fn_service, Service as _};
use criterion::{black_box, criterion_group, criterion_main, Criterion};
static BODY: &[u8] = include_bytes!("../Cargo.toml");
fn compression_responses(c: &mut Criterion) {
let mut group = c.benchmark_group("compression responses");
group.bench_function("identity", |b| {
let rt = actix_rt::Runtime::new().unwrap();
let identity_svc = fn_service(|_: Request| async move {
let mut res = Response::with_body(StatusCode::OK, ());
let body = black_box(Encoder::response(
ContentEncoding::Identity,
res.head_mut(),
BODY,
));
Ok::<_, Infallible>(black_box(res.set_body(black_box(body))))
});
b.iter(|| {
rt.block_on(identity_svc.call(Request::new())).unwrap();
});
});
group.bench_function("gzip", |b| {
let rt = actix_rt::Runtime::new().unwrap();
let identity_svc = fn_service(|_: Request| async move {
let mut res = Response::with_body(StatusCode::OK, ());
let body = black_box(Encoder::response(
ContentEncoding::Gzip,
res.head_mut(),
BODY,
));
Ok::<_, Infallible>(black_box(res.set_body(black_box(body))))
});
b.iter(|| {
rt.block_on(identity_svc.call(Request::new())).unwrap();
});
});
group.bench_function("br", |b| {
let rt = actix_rt::Runtime::new().unwrap();
let identity_svc = fn_service(|_: Request| async move {
let mut res = Response::with_body(StatusCode::OK, ());
let body = black_box(Encoder::response(
ContentEncoding::Brotli,
res.head_mut(),
BODY,
));
Ok::<_, Infallible>(black_box(res.set_body(black_box(body))))
});
b.iter(|| {
rt.block_on(identity_svc.call(Request::new())).unwrap();
});
});
group.bench_function("zstd", |b| {
let rt = actix_rt::Runtime::new().unwrap();
let identity_svc = fn_service(|_: Request| async move {
let mut res = Response::with_body(StatusCode::OK, ());
let body = black_box(Encoder::response(
ContentEncoding::Zstd,
res.head_mut(),
BODY,
));
Ok::<_, Infallible>(black_box(res.set_body(black_box(body))))
});
b.iter(|| {
rt.block_on(identity_svc.call(Request::new())).unwrap();
});
});
group.finish();
}
criterion_group!(benches, compression_responses);
criterion_main!(benches);
|
use actix_http::HttpService;
use actix_server::Server;
use actix_service::map_config;
use actix_web::{dev::AppConfig, get, App, Responder};
#[get("/")]
async fn index() -> impl Responder {
"Hello, world. From Actix Web!"
}
#[tokio::main(flavor = "current_thread")]
async fn main() -> std::io::Result<()> {
Server::build()
.bind("hello-world", "127.0.0.1:8080", || {
// construct actix-web app
let app = App::new().service(index);
HttpService::build()
// pass the app to service builder
// map_config is used to map App's configuration to ServiceBuilder
// h1 will configure server to only use HTTP/1.1
.h1(map_config(app, |_| AppConfig::default()))
.tcp()
})?
.run()
.await
}
|
use std::{convert::Infallible, io, time::Duration};
use actix_http::{HttpService, Request, Response, StatusCode};
use actix_server::Server;
use once_cell::sync::Lazy;
static STR: Lazy<String> = Lazy::new(|| "HELLO WORLD ".repeat(20));
#[actix_rt::main]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
Server::build()
.bind("dispatcher-benchmark", ("127.0.0.1", 8080), || {
HttpService::build()
.client_request_timeout(Duration::from_secs(1))
.finish(|_: Request| async move {
let mut res = Response::build(StatusCode::OK);
Ok::<_, Infallible>(res.body(&**STR))
})
.tcp()
})?
// limiting number of workers so that bench client is not sharing as many resources
.workers(4)
.run()
.await
}
|
use std::{io, time::Duration};
use actix_http::{Error, HttpService, Request, Response, StatusCode};
use actix_server::Server;
use bytes::BytesMut;
use futures_util::StreamExt as _;
use http::header::HeaderValue;
use tracing::info;
#[actix_rt::main]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
Server::build()
.bind("echo", ("127.0.0.1", 8080), || {
HttpService::build()
.client_request_timeout(Duration::from_secs(1))
.client_disconnect_timeout(Duration::from_secs(1))
// handles HTTP/1.1 and HTTP/2
.finish(|mut req: Request| async move {
let mut body = BytesMut::new();
while let Some(item) = req.payload().next().await {
body.extend_from_slice(&item?);
}
info!("request body: {body:?}");
let res = Response::build(StatusCode::OK)
.insert_header(("x-head", HeaderValue::from_static("dummy value!")))
.body(body);
Ok::<_, Error>(res)
})
.tcp() // No TLS
})?
.run()
.await
}
|
use std::io;
use actix_http::{
body::{BodyStream, MessageBody},
header, Error, HttpMessage, HttpService, Request, Response, StatusCode,
};
async fn handle_request(mut req: Request) -> Result<Response<impl MessageBody>, Error> {
let mut res = Response::build(StatusCode::OK);
if let Some(ct) = req.headers().get(header::CONTENT_TYPE) {
res.insert_header((header::CONTENT_TYPE, ct));
}
// echo request payload stream as (chunked) response body
let res = res.message_body(BodyStream::new(req.payload().take()))?;
Ok(res)
}
#[actix_rt::main]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
actix_server::Server::build()
.bind("echo", ("127.0.0.1", 8080), || {
HttpService::build()
// handles HTTP/1.1 only
.h1(handle_request)
// No TLS
.tcp()
})?
.run()
.await
}
|
//! An example that supports automatic selection of plaintext h1/h2c connections.
//!
//! Notably, both the following commands will work.
//! ```console
//! $ curl --http1.1 'http://localhost:8080/'
//! $ curl --http2-prior-knowledge 'http://localhost:8080/'
//! ```
use std::{convert::Infallible, io};
use actix_http::{body::BodyStream, HttpService, Request, Response, StatusCode};
use actix_server::Server;
#[tokio::main(flavor = "current_thread")]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
Server::build()
.bind("h2c-detect", ("127.0.0.1", 8080), || {
HttpService::build()
.finish(|_req: Request| async move {
Ok::<_, Infallible>(Response::build(StatusCode::OK).body(BodyStream::new(
futures_util::stream::iter([
Ok::<_, String>("123".into()),
Err("wertyuikmnbvcxdfty6t".to_owned()),
]),
)))
})
.tcp_auto_h2c()
})?
.workers(2)
.run()
.await
}
|
use std::{convert::Infallible, io};
use actix_http::{HttpService, Request, Response, StatusCode};
use actix_server::Server;
use once_cell::sync::Lazy;
static STR: Lazy<String> = Lazy::new(|| "HELLO WORLD ".repeat(100));
#[actix_rt::main]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
Server::build()
.bind("h2spec", ("127.0.0.1", 8080), || {
HttpService::build()
.h2(|_: Request| async move {
let mut res = Response::build(StatusCode::OK);
Ok::<_, Infallible>(res.body(&**STR))
})
.tcp()
})?
.workers(4)
.run()
.await
}
|
use std::{convert::Infallible, io, time::Duration};
use actix_http::{header::HeaderValue, HttpService, Request, Response, StatusCode};
use actix_server::Server;
use tracing::info;
#[actix_rt::main]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
Server::build()
.bind("hello-world", ("127.0.0.1", 8080), || {
HttpService::build()
.client_request_timeout(Duration::from_secs(1))
.client_disconnect_timeout(Duration::from_secs(1))
.on_connect_ext(|_, ext| {
ext.insert(42u32);
})
.finish(|req: Request| async move {
info!("{req:?}");
let mut res = Response::build(StatusCode::OK);
res.insert_header(("x-head", HeaderValue::from_static("dummy value!")));
let forty_two = req.conn_data::<u32>().unwrap().to_string();
res.insert_header(("x-forty-two", HeaderValue::from_str(&forty_two).unwrap()));
Ok::<_, Infallible>(res.body("Hello world!"))
})
.tcp()
})?
.run()
.await
}
|
//! Example showing response body (chunked) stream erroring.
//!
//! Test using `nc` or `curl`.
//! ```sh
//! $ curl -vN 127.0.0.1:8080
//! $ echo 'GET / HTTP/1.1\n\n' | nc 127.0.0.1 8080
//! ```
use std::{convert::Infallible, io, time::Duration};
use actix_http::{body::BodyStream, HttpService, Response};
use actix_server::Server;
use async_stream::stream;
use bytes::Bytes;
use tracing::info;
#[actix_rt::main]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
Server::build()
.bind("streaming-error", ("127.0.0.1", 8080), || {
HttpService::build()
.finish(|req| async move {
info!("{req:?}");
let res = Response::ok();
Ok::<_, Infallible>(res.set_body(BodyStream::new(stream! {
yield Ok(Bytes::from("123"));
yield Ok(Bytes::from("456"));
actix_rt::time::sleep(Duration::from_secs(1)).await;
yield Err(io::Error::new(io::ErrorKind::Other, "abc"));
})))
})
.tcp()
})?
.run()
.await
}
|
//! Demonstrates TLS configuration (via Rustls) for HTTP/1.1 and HTTP/2 connections.
//!
//! Test using cURL:
//!
//! ```console
//! $ curl --insecure https://127.0.0.1:8443
//! Hello World!
//! Protocol: HTTP/2.0
//!
//! $ curl --insecure --http1.1 https://127.0.0.1:8443
//! Hello World!
//! Protocol: HTTP/1.1
//! ```
extern crate tls_rustls_023 as rustls;
use std::io;
use actix_http::{Error, HttpService, Request, Response};
use actix_utils::future::ok;
#[actix_rt::main]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
tracing::info!("starting HTTP server at https://127.0.0.1:8443");
actix_server::Server::build()
.bind("echo", ("127.0.0.1", 8443), || {
HttpService::build()
.finish(|req: Request| {
let body = format!(
"Hello World!\n\
Protocol: {:?}",
req.head().version
);
ok::<_, Error>(Response::ok().set_body(body))
})
.rustls_0_23(rustls_config())
})?
.run()
.await
}
fn rustls_config() -> rustls::ServerConfig {
let rcgen::CertifiedKey { cert, key_pair } =
rcgen::generate_simple_self_signed(["localhost".to_owned()]).unwrap();
let cert_file = cert.pem();
let key_file = key_pair.serialize_pem();
let cert_file = &mut io::BufReader::new(cert_file.as_bytes());
let key_file = &mut io::BufReader::new(key_file.as_bytes());
let cert_chain = rustls_pemfile::certs(cert_file)
.collect::<Result<Vec<_>, _>>()
.unwrap();
let mut keys = rustls_pemfile::pkcs8_private_keys(key_file)
.collect::<Result<Vec<_>, _>>()
.unwrap();
let mut config = rustls::ServerConfig::builder()
.with_no_client_auth()
.with_single_cert(
cert_chain,
rustls::pki_types::PrivateKeyDer::Pkcs8(keys.remove(0)),
)
.unwrap();
const H1_ALPN: &[u8] = b"http/1.1";
const H2_ALPN: &[u8] = b"h2";
config.alpn_protocols.push(H2_ALPN.to_vec());
config.alpn_protocols.push(H1_ALPN.to_vec());
config
}
|
//! Sets up a WebSocket server over TCP and TLS.
//! Sends a heartbeat message every 4 seconds but does not respond to any incoming frames.
extern crate tls_rustls_023 as rustls;
use std::{
io,
pin::Pin,
task::{Context, Poll},
time::Duration,
};
use actix_http::{body::BodyStream, error::Error, ws, HttpService, Request, Response};
use actix_rt::time::{interval, Interval};
use actix_server::Server;
use bytes::{Bytes, BytesMut};
use bytestring::ByteString;
use futures_core::{ready, Stream};
use tokio_util::codec::Encoder;
#[actix_rt::main]
async fn main() -> io::Result<()> {
env_logger::init_from_env(env_logger::Env::new().default_filter_or("info"));
Server::build()
.bind("tcp", ("127.0.0.1", 8080), || {
HttpService::build().h1(handler).tcp()
})?
.bind("tls", ("127.0.0.1", 8443), || {
HttpService::build()
.finish(handler)
.rustls_0_23(tls_config())
})?
.run()
.await
}
async fn handler(req: Request) -> Result<Response<BodyStream<Heartbeat>>, Error> {
tracing::info!("handshaking");
let mut res = ws::handshake(req.head())?;
// handshake will always fail under HTTP/2
tracing::info!("responding");
res.message_body(BodyStream::new(Heartbeat::new(ws::Codec::new())))
}
struct Heartbeat {
codec: ws::Codec,
interval: Interval,
}
impl Heartbeat {
fn new(codec: ws::Codec) -> Self {
Self {
codec,
interval: interval(Duration::from_secs(4)),
}
}
}
impl Stream for Heartbeat {
type Item = Result<Bytes, Error>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
tracing::trace!("poll");
ready!(self.as_mut().interval.poll_tick(cx));
let mut buffer = BytesMut::new();
self.as_mut()
.codec
.encode(
ws::Message::Text(ByteString::from_static("hello world")),
&mut buffer,
)
.unwrap();
Poll::Ready(Some(Ok(buffer.freeze())))
}
}
fn tls_config() -> rustls::ServerConfig {
use std::io::BufReader;
use rustls_pemfile::{certs, pkcs8_private_keys};
let rcgen::CertifiedKey { cert, key_pair } =
rcgen::generate_simple_self_signed(["localhost".to_owned()]).unwrap();
let cert_file = cert.pem();
let key_file = key_pair.serialize_pem();
let cert_file = &mut BufReader::new(cert_file.as_bytes());
let key_file = &mut BufReader::new(key_file.as_bytes());
let cert_chain = certs(cert_file).collect::<Result<Vec<_>, _>>().unwrap();
let mut keys = pkcs8_private_keys(key_file)
.collect::<Result<Vec<_>, _>>()
.unwrap();
let mut config = rustls::ServerConfig::builder()
.with_no_client_auth()
.with_single_cert(
cert_chain,
rustls::pki_types::PrivateKeyDer::Pkcs8(keys.remove(0)),
)
.unwrap();
config.alpn_protocols.push(b"http/1.1".to_vec());
config.alpn_protocols.push(b"h2".to_vec());
config
}
|
use std::{
error::Error as StdError,
pin::Pin,
task::{Context, Poll},
};
use bytes::Bytes;
use futures_core::{ready, Stream};
use pin_project_lite::pin_project;
use super::{BodySize, MessageBody};
pin_project! {
/// Streaming response wrapper.
///
/// Response does not contain `Content-Length` header and appropriate transfer encoding is used.
pub struct BodyStream<S> {
#[pin]
stream: S,
}
}
// TODO: from_infallible method
impl<S, E> BodyStream<S>
where
S: Stream<Item = Result<Bytes, E>>,
E: Into<Box<dyn StdError>> + 'static,
{
#[inline]
pub fn new(stream: S) -> Self {
BodyStream { stream }
}
}
impl<S, E> MessageBody for BodyStream<S>
where
S: Stream<Item = Result<Bytes, E>>,
E: Into<Box<dyn StdError>> + 'static,
{
type Error = E;
#[inline]
fn size(&self) -> BodySize {
BodySize::Stream
}
/// Attempts to pull out the next value of the underlying [`Stream`].
///
/// Empty values are skipped to prevent [`BodyStream`]'s transmission being ended on a
/// zero-length chunk, but rather proceed until the underlying [`Stream`] ends.
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
loop {
let stream = self.as_mut().project().stream;
let chunk = match ready!(stream.poll_next(cx)) {
Some(Ok(ref bytes)) if bytes.is_empty() => continue,
opt => opt,
};
return Poll::Ready(chunk);
}
}
}
#[cfg(test)]
mod tests {
use std::{convert::Infallible, time::Duration};
use actix_rt::{
pin,
time::{sleep, Sleep},
};
use actix_utils::future::poll_fn;
use derive_more::{Display, Error};
use futures_core::ready;
use futures_util::{stream, FutureExt as _};
use pin_project_lite::pin_project;
use static_assertions::{assert_impl_all, assert_not_impl_any};
use super::*;
use crate::body::to_bytes;
assert_impl_all!(BodyStream<stream::Empty<Result<Bytes, crate::Error>>>: MessageBody);
assert_impl_all!(BodyStream<stream::Empty<Result<Bytes, &'static str>>>: MessageBody);
assert_impl_all!(BodyStream<stream::Repeat<Result<Bytes, &'static str>>>: MessageBody);
assert_impl_all!(BodyStream<stream::Empty<Result<Bytes, Infallible>>>: MessageBody);
assert_impl_all!(BodyStream<stream::Repeat<Result<Bytes, Infallible>>>: MessageBody);
assert_not_impl_any!(BodyStream<stream::Empty<Bytes>>: MessageBody);
assert_not_impl_any!(BodyStream<stream::Repeat<Bytes>>: MessageBody);
// crate::Error is not Clone
assert_not_impl_any!(BodyStream<stream::Repeat<Result<Bytes, crate::Error>>>: MessageBody);
#[actix_rt::test]
async fn skips_empty_chunks() {
let body = BodyStream::new(stream::iter(
["1", "", "2"]
.iter()
.map(|&v| Ok::<_, Infallible>(Bytes::from(v))),
));
pin!(body);
assert_eq!(
poll_fn(|cx| body.as_mut().poll_next(cx))
.await
.unwrap()
.ok(),
Some(Bytes::from("1")),
);
assert_eq!(
poll_fn(|cx| body.as_mut().poll_next(cx))
.await
.unwrap()
.ok(),
Some(Bytes::from("2")),
);
}
#[actix_rt::test]
async fn read_to_bytes() {
let body = BodyStream::new(stream::iter(
["1", "", "2"]
.iter()
.map(|&v| Ok::<_, Infallible>(Bytes::from(v))),
));
assert_eq!(to_bytes(body).await.ok(), Some(Bytes::from("12")));
}
#[derive(Debug, Display, Error)]
#[display("stream error")]
struct StreamErr;
#[actix_rt::test]
async fn stream_immediate_error() {
let body = BodyStream::new(stream::once(async { Err(StreamErr) }));
assert!(matches!(to_bytes(body).await, Err(StreamErr)));
}
#[actix_rt::test]
async fn stream_string_error() {
// `&'static str` does not impl `Error`
// but it does impl `Into<Box<dyn Error>>`
let body = BodyStream::new(stream::once(async { Err("stringy error") }));
assert!(matches!(to_bytes(body).await, Err("stringy error")));
}
#[actix_rt::test]
async fn stream_boxed_error() {
// `Box<dyn Error>` does not impl `Error`
// but it does impl `Into<Box<dyn Error>>`
let body = BodyStream::new(stream::once(async {
Err(Box::<dyn StdError>::from("stringy error"))
}));
assert_eq!(
to_bytes(body).await.unwrap_err().to_string(),
"stringy error"
);
}
#[actix_rt::test]
async fn stream_delayed_error() {
let body = BodyStream::new(stream::iter(vec![Ok(Bytes::from("1")), Err(StreamErr)]));
assert!(matches!(to_bytes(body).await, Err(StreamErr)));
pin_project! {
#[derive(Debug)]
#[project = TimeDelayStreamProj]
enum TimeDelayStream {
Start,
Sleep { delay: Pin<Box<Sleep>> },
Done,
}
}
impl Stream for TimeDelayStream {
type Item = Result<Bytes, StreamErr>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
match self.as_mut().get_mut() {
TimeDelayStream::Start => {
let sleep = sleep(Duration::from_millis(1));
self.as_mut().set(TimeDelayStream::Sleep {
delay: Box::pin(sleep),
});
cx.waker().wake_by_ref();
Poll::Pending
}
TimeDelayStream::Sleep { ref mut delay } => {
ready!(delay.poll_unpin(cx));
self.set(TimeDelayStream::Done);
cx.waker().wake_by_ref();
Poll::Pending
}
TimeDelayStream::Done => Poll::Ready(Some(Err(StreamErr))),
}
}
}
let body = BodyStream::new(TimeDelayStream::Start);
assert!(matches!(to_bytes(body).await, Err(StreamErr)));
}
}
|
use std::{
error::Error as StdError,
fmt,
pin::Pin,
task::{Context, Poll},
};
use bytes::Bytes;
use super::{BodySize, MessageBody, MessageBodyMapErr};
use crate::body;
/// A boxed message body with boxed errors.
#[derive(Debug)]
pub struct BoxBody(BoxBodyInner);
enum BoxBodyInner {
None(body::None),
Bytes(Bytes),
Stream(Pin<Box<dyn MessageBody<Error = Box<dyn StdError>>>>),
}
impl fmt::Debug for BoxBodyInner {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::None(arg0) => f.debug_tuple("None").field(arg0).finish(),
Self::Bytes(arg0) => f.debug_tuple("Bytes").field(arg0).finish(),
Self::Stream(_) => f.debug_tuple("Stream").field(&"dyn MessageBody").finish(),
}
}
}
impl BoxBody {
/// Boxes body type, erasing type information.
///
/// If the body type to wrap is unknown or generic it is better to use [`MessageBody::boxed`] to
/// avoid double boxing.
#[inline]
pub fn new<B>(body: B) -> Self
where
B: MessageBody + 'static,
{
match body.size() {
BodySize::None => Self(BoxBodyInner::None(body::None)),
_ => match body.try_into_bytes() {
Ok(bytes) => Self(BoxBodyInner::Bytes(bytes)),
Err(body) => {
let body = MessageBodyMapErr::new(body, Into::into);
Self(BoxBodyInner::Stream(Box::pin(body)))
}
},
}
}
/// Returns a mutable pinned reference to the inner message body type.
#[inline]
pub fn as_pin_mut(&mut self) -> Pin<&mut Self> {
Pin::new(self)
}
}
impl MessageBody for BoxBody {
type Error = Box<dyn StdError>;
#[inline]
fn size(&self) -> BodySize {
match &self.0 {
BoxBodyInner::None(none) => none.size(),
BoxBodyInner::Bytes(bytes) => bytes.size(),
BoxBodyInner::Stream(stream) => stream.size(),
}
}
#[inline]
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
match &mut self.0 {
BoxBodyInner::None(body) => Pin::new(body).poll_next(cx).map_err(|err| match err {}),
BoxBodyInner::Bytes(body) => Pin::new(body).poll_next(cx).map_err(|err| match err {}),
BoxBodyInner::Stream(body) => Pin::new(body).poll_next(cx),
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
match self.0 {
BoxBodyInner::None(body) => Ok(body.try_into_bytes().unwrap()),
BoxBodyInner::Bytes(body) => Ok(body.try_into_bytes().unwrap()),
_ => Err(self),
}
}
#[inline]
fn boxed(self) -> BoxBody {
self
}
}
#[cfg(test)]
mod tests {
use static_assertions::{assert_impl_all, assert_not_impl_any};
use super::*;
use crate::body::to_bytes;
assert_impl_all!(BoxBody: fmt::Debug, MessageBody, Unpin);
assert_not_impl_any!(BoxBody: Send, Sync);
#[actix_rt::test]
async fn nested_boxed_body() {
let body = Bytes::from_static(&[1, 2, 3]);
let boxed_body = BoxBody::new(BoxBody::new(body));
assert_eq!(
to_bytes(boxed_body).await.unwrap(),
Bytes::from(vec![1, 2, 3]),
);
}
}
|
use std::{
pin::Pin,
task::{Context, Poll},
};
use bytes::Bytes;
use pin_project_lite::pin_project;
use super::{BodySize, BoxBody, MessageBody};
use crate::Error;
pin_project! {
/// An "either" type specialized for body types.
///
/// It is common, in middleware especially, to conditionally return an inner service's unknown/
/// generic body `B` type or return early with a new response. This type's "right" variant
/// defaults to `BoxBody` since error responses are the common case.
///
/// For example, middleware will often have `type Response = ServiceResponse<EitherBody<B>>`.
/// This means that the inner service's response body type maps to the `Left` variant and the
/// middleware's own error responses use the default `Right` variant of `BoxBody`. Of course,
/// there's no reason it couldn't use `EitherBody<B, String>` instead if its alternative
/// responses have a known type.
#[project = EitherBodyProj]
#[derive(Debug, Clone)]
pub enum EitherBody<L, R = BoxBody> {
/// A body of type `L`.
Left { #[pin] body: L },
/// A body of type `R`.
Right { #[pin] body: R },
}
}
impl<L> EitherBody<L, BoxBody> {
/// Creates new `EitherBody` left variant with a boxed right variant.
///
/// If the expected `R` type will be inferred and is not `BoxBody` then use the
/// [`left`](Self::left) constructor instead.
#[inline]
pub fn new(body: L) -> Self {
Self::Left { body }
}
}
impl<L, R> EitherBody<L, R> {
/// Creates new `EitherBody` using left variant.
#[inline]
pub fn left(body: L) -> Self {
Self::Left { body }
}
/// Creates new `EitherBody` using right variant.
#[inline]
pub fn right(body: R) -> Self {
Self::Right { body }
}
}
impl<L, R> MessageBody for EitherBody<L, R>
where
L: MessageBody + 'static,
R: MessageBody + 'static,
{
type Error = Error;
#[inline]
fn size(&self) -> BodySize {
match self {
EitherBody::Left { body } => body.size(),
EitherBody::Right { body } => body.size(),
}
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
match self.project() {
EitherBodyProj::Left { body } => body
.poll_next(cx)
.map_err(|err| Error::new_body().with_cause(err)),
EitherBodyProj::Right { body } => body
.poll_next(cx)
.map_err(|err| Error::new_body().with_cause(err)),
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
match self {
EitherBody::Left { body } => body
.try_into_bytes()
.map_err(|body| EitherBody::Left { body }),
EitherBody::Right { body } => body
.try_into_bytes()
.map_err(|body| EitherBody::Right { body }),
}
}
#[inline]
fn boxed(self) -> BoxBody {
match self {
EitherBody::Left { body } => body.boxed(),
EitherBody::Right { body } => body.boxed(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn type_parameter_inference() {
let _body: EitherBody<(), _> = EitherBody::new(());
let _body: EitherBody<_, ()> = EitherBody::left(());
let _body: EitherBody<(), _> = EitherBody::right(());
}
}
|
//! [`MessageBody`] trait and foreign implementations.
use std::{
convert::Infallible,
error::Error as StdError,
mem,
pin::Pin,
task::{Context, Poll},
};
use bytes::{Bytes, BytesMut};
use futures_core::ready;
use pin_project_lite::pin_project;
use super::{BodySize, BoxBody};
/// An interface for types that can be used as a response body.
///
/// It is not usually necessary to create custom body types, this trait is already [implemented for
/// a large number of sensible body types](#foreign-impls) including:
/// - Empty body: `()`
/// - Text-based: `String`, `&'static str`, [`ByteString`](https://docs.rs/bytestring/1).
/// - Byte-based: `Bytes`, `BytesMut`, `Vec<u8>`, `&'static [u8]`;
/// - Streams: [`BodyStream`](super::BodyStream), [`SizedStream`](super::SizedStream)
///
/// # Examples
/// ```
/// # use std::convert::Infallible;
/// # use std::task::{Poll, Context};
/// # use std::pin::Pin;
/// # use bytes::Bytes;
/// # use actix_http::body::{BodySize, MessageBody};
/// struct Repeat {
/// chunk: String,
/// n_times: usize,
/// }
///
/// impl MessageBody for Repeat {
/// type Error = Infallible;
///
/// fn size(&self) -> BodySize {
/// BodySize::Sized((self.chunk.len() * self.n_times) as u64)
/// }
///
/// fn poll_next(
/// self: Pin<&mut Self>,
/// _cx: &mut Context<'_>,
/// ) -> Poll<Option<Result<Bytes, Self::Error>>> {
/// let payload_string = self.chunk.repeat(self.n_times);
/// let payload_bytes = Bytes::from(payload_string);
/// Poll::Ready(Some(Ok(payload_bytes)))
/// }
/// }
/// ```
pub trait MessageBody {
/// The type of error that will be returned if streaming body fails.
///
/// Since it is not appropriate to generate a response mid-stream, it only requires `Error` for
/// internal use and logging.
type Error: Into<Box<dyn StdError>>;
/// Body size hint.
///
/// If [`BodySize::None`] is returned, optimizations that skip reading the body are allowed.
fn size(&self) -> BodySize;
/// Attempt to pull out the next chunk of body bytes.
///
/// # Return Value
/// Similar to the `Stream` interface, there are several possible return values, each indicating
/// a distinct state:
/// - `Poll::Pending` means that this body's next chunk is not ready yet. Implementations must
/// ensure that the current task will be notified when the next chunk may be ready.
/// - `Poll::Ready(Some(val))` means that the body has successfully produced a chunk, `val`,
/// and may produce further values on subsequent `poll_next` calls.
/// - `Poll::Ready(None)` means that the body is complete, and `poll_next` should not be
/// invoked again.
///
/// # Panics
/// Once a body is complete (i.e., `poll_next` returned `Ready(None)`), calling its `poll_next`
/// method again may panic, block forever, or cause other kinds of problems; this trait places
/// no requirements on the effects of such a call. However, as the `poll_next` method is not
/// marked unsafe, Rust’s usual rules apply: calls must never cause UB, regardless of its state.
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>>;
/// Try to convert into the complete chunk of body bytes.
///
/// Override this method if the complete body can be trivially extracted. This is useful for
/// optimizations where `poll_next` calls can be avoided.
///
/// Body types with [`BodySize::None`] are allowed to return empty `Bytes`. Although, if calling
/// this method, it is recommended to check `size` first and return early.
///
/// # Errors
/// The default implementation will error and return the original type back to the caller for
/// further use.
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self>
where
Self: Sized,
{
Err(self)
}
/// Wraps this body into a `BoxBody`.
///
/// No-op when called on a `BoxBody`, meaning there is no risk of double boxing when calling
/// this on a generic `MessageBody`. Prefer this over [`BoxBody::new`] when a boxed body
/// is required.
#[inline]
fn boxed(self) -> BoxBody
where
Self: Sized + 'static,
{
BoxBody::new(self)
}
}
mod foreign_impls {
use std::{borrow::Cow, ops::DerefMut};
use super::*;
impl<B> MessageBody for &mut B
where
B: MessageBody + Unpin + ?Sized,
{
type Error = B::Error;
fn size(&self) -> BodySize {
(**self).size()
}
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
Pin::new(&mut **self).poll_next(cx)
}
}
impl MessageBody for Infallible {
type Error = Infallible;
fn size(&self) -> BodySize {
match *self {}
}
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
match *self {}
}
}
impl MessageBody for () {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(0)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
Poll::Ready(None)
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(Bytes::new())
}
}
impl<B> MessageBody for Box<B>
where
B: MessageBody + Unpin + ?Sized,
{
type Error = B::Error;
#[inline]
fn size(&self) -> BodySize {
self.as_ref().size()
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
Pin::new(self.get_mut().as_mut()).poll_next(cx)
}
}
impl<T, B> MessageBody for Pin<T>
where
T: DerefMut<Target = B> + Unpin,
B: MessageBody + ?Sized,
{
type Error = B::Error;
#[inline]
fn size(&self) -> BodySize {
self.as_ref().size()
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
self.get_mut().as_mut().poll_next(cx)
}
}
impl MessageBody for &'static [u8] {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
if self.is_empty() {
Poll::Ready(None)
} else {
Poll::Ready(Some(Ok(Bytes::from_static(mem::take(self.get_mut())))))
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(Bytes::from_static(self))
}
}
impl MessageBody for Bytes {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
if self.is_empty() {
Poll::Ready(None)
} else {
Poll::Ready(Some(Ok(mem::take(self.get_mut()))))
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(self)
}
}
impl MessageBody for BytesMut {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
if self.is_empty() {
Poll::Ready(None)
} else {
Poll::Ready(Some(Ok(mem::take(self.get_mut()).freeze())))
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(self.freeze())
}
}
impl MessageBody for Vec<u8> {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
if self.is_empty() {
Poll::Ready(None)
} else {
Poll::Ready(Some(Ok(mem::take(self.get_mut()).into())))
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(Bytes::from(self))
}
}
impl MessageBody for Cow<'static, [u8]> {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
if self.is_empty() {
Poll::Ready(None)
} else {
let bytes = match mem::take(self.get_mut()) {
Cow::Borrowed(b) => Bytes::from_static(b),
Cow::Owned(b) => Bytes::from(b),
};
Poll::Ready(Some(Ok(bytes)))
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
match self {
Cow::Borrowed(b) => Ok(Bytes::from_static(b)),
Cow::Owned(b) => Ok(Bytes::from(b)),
}
}
}
impl MessageBody for &'static str {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
if self.is_empty() {
Poll::Ready(None)
} else {
let string = mem::take(self.get_mut());
let bytes = Bytes::from_static(string.as_bytes());
Poll::Ready(Some(Ok(bytes)))
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(Bytes::from_static(self.as_bytes()))
}
}
impl MessageBody for String {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
if self.is_empty() {
Poll::Ready(None)
} else {
let string = mem::take(self.get_mut());
Poll::Ready(Some(Ok(Bytes::from(string))))
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(Bytes::from(self))
}
}
impl MessageBody for Cow<'static, str> {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
if self.is_empty() {
Poll::Ready(None)
} else {
let bytes = match mem::take(self.get_mut()) {
Cow::Borrowed(s) => Bytes::from_static(s.as_bytes()),
Cow::Owned(s) => Bytes::from(s.into_bytes()),
};
Poll::Ready(Some(Ok(bytes)))
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
match self {
Cow::Borrowed(s) => Ok(Bytes::from_static(s.as_bytes())),
Cow::Owned(s) => Ok(Bytes::from(s.into_bytes())),
}
}
}
impl MessageBody for bytestring::ByteString {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.len() as u64)
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
let string = mem::take(self.get_mut());
Poll::Ready(Some(Ok(string.into_bytes())))
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(self.into_bytes())
}
}
}
pin_project! {
pub(crate) struct MessageBodyMapErr<B, F> {
#[pin]
body: B,
mapper: Option<F>,
}
}
impl<B, F, E> MessageBodyMapErr<B, F>
where
B: MessageBody,
F: FnOnce(B::Error) -> E,
{
pub(crate) fn new(body: B, mapper: F) -> Self {
Self {
body,
mapper: Some(mapper),
}
}
}
impl<B, F, E> MessageBody for MessageBodyMapErr<B, F>
where
B: MessageBody,
F: FnOnce(B::Error) -> E,
E: Into<Box<dyn StdError>>,
{
type Error = E;
#[inline]
fn size(&self) -> BodySize {
self.body.size()
}
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
let this = self.as_mut().project();
match ready!(this.body.poll_next(cx)) {
Some(Err(err)) => {
let f = self.as_mut().project().mapper.take().unwrap();
let mapped_err = (f)(err);
Poll::Ready(Some(Err(mapped_err)))
}
Some(Ok(val)) => Poll::Ready(Some(Ok(val))),
None => Poll::Ready(None),
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
let Self { body, mapper } = self;
body.try_into_bytes().map_err(|body| Self { body, mapper })
}
}
#[cfg(test)]
mod tests {
use actix_rt::pin;
use actix_utils::future::poll_fn;
use futures_util::stream;
use super::*;
use crate::body::{self, EitherBody};
macro_rules! assert_poll_next {
($pin:expr, $exp:expr) => {
assert_eq!(
poll_fn(|cx| $pin.as_mut().poll_next(cx))
.await
.unwrap() // unwrap option
.unwrap(), // unwrap result
$exp
);
};
}
macro_rules! assert_poll_next_none {
($pin:expr) => {
assert!(poll_fn(|cx| $pin.as_mut().poll_next(cx)).await.is_none());
};
}
#[allow(unused_allocation)] // triggered by `Box::new(()).size()`
#[actix_rt::test]
async fn boxing_equivalence() {
assert_eq!(().size(), BodySize::Sized(0));
assert_eq!(().size(), Box::new(()).size());
assert_eq!(().size(), Box::pin(()).size());
let pl = Box::new(());
pin!(pl);
assert_poll_next_none!(pl);
let mut pl = Box::pin(());
assert_poll_next_none!(pl);
}
#[actix_rt::test]
async fn mut_equivalence() {
assert_eq!(().size(), BodySize::Sized(0));
assert_eq!(().size(), (&(&mut ())).size());
let pl = &mut ();
pin!(pl);
assert_poll_next_none!(pl);
let pl = &mut Box::new(());
pin!(pl);
assert_poll_next_none!(pl);
let mut body = body::SizedStream::new(
8,
stream::iter([
Ok::<_, std::io::Error>(Bytes::from("1234")),
Ok(Bytes::from("5678")),
]),
);
let body = &mut body;
assert_eq!(body.size(), BodySize::Sized(8));
pin!(body);
assert_poll_next!(body, Bytes::from_static(b"1234"));
assert_poll_next!(body, Bytes::from_static(b"5678"));
assert_poll_next_none!(body);
}
#[allow(clippy::let_unit_value)]
#[actix_rt::test]
async fn test_unit() {
let pl = ();
assert_eq!(pl.size(), BodySize::Sized(0));
pin!(pl);
assert_poll_next_none!(pl);
}
#[actix_rt::test]
async fn test_static_str() {
assert_eq!("".size(), BodySize::Sized(0));
assert_eq!("test".size(), BodySize::Sized(4));
let pl = "test";
pin!(pl);
assert_poll_next!(pl, Bytes::from("test"));
}
#[actix_rt::test]
async fn test_static_bytes() {
assert_eq!(b"".as_ref().size(), BodySize::Sized(0));
assert_eq!(b"test".as_ref().size(), BodySize::Sized(4));
let pl = b"test".as_ref();
pin!(pl);
assert_poll_next!(pl, Bytes::from("test"));
}
#[actix_rt::test]
async fn test_vec() {
assert_eq!(vec![0; 0].size(), BodySize::Sized(0));
assert_eq!(Vec::from("test").size(), BodySize::Sized(4));
let pl = Vec::from("test");
pin!(pl);
assert_poll_next!(pl, Bytes::from("test"));
}
#[actix_rt::test]
async fn test_bytes() {
assert_eq!(Bytes::new().size(), BodySize::Sized(0));
assert_eq!(Bytes::from_static(b"test").size(), BodySize::Sized(4));
let pl = Bytes::from_static(b"test");
pin!(pl);
assert_poll_next!(pl, Bytes::from("test"));
}
#[actix_rt::test]
async fn test_bytes_mut() {
assert_eq!(BytesMut::new().size(), BodySize::Sized(0));
assert_eq!(BytesMut::from(b"test".as_ref()).size(), BodySize::Sized(4));
let pl = BytesMut::from("test");
pin!(pl);
assert_poll_next!(pl, Bytes::from("test"));
}
#[actix_rt::test]
async fn test_string() {
assert_eq!(String::new().size(), BodySize::Sized(0));
assert_eq!("test".to_owned().size(), BodySize::Sized(4));
let pl = "test".to_owned();
pin!(pl);
assert_poll_next!(pl, Bytes::from("test"));
}
#[actix_rt::test]
async fn complete_body_combinators() {
let body = Bytes::from_static(b"test");
let body = BoxBody::new(body);
let body = EitherBody::<_, ()>::left(body);
let body = EitherBody::<(), _>::right(body);
// Do not support try_into_bytes:
// let body = Box::new(body);
// let body = Box::pin(body);
assert_eq!(body.try_into_bytes().unwrap(), Bytes::from("test"));
}
#[actix_rt::test]
async fn complete_body_combinators_poll() {
let body = Bytes::from_static(b"test");
let body = BoxBody::new(body);
let body = EitherBody::<_, ()>::left(body);
let body = EitherBody::<(), _>::right(body);
let mut body = body;
assert_eq!(body.size(), BodySize::Sized(4));
assert_poll_next!(Pin::new(&mut body), Bytes::from("test"));
assert_poll_next_none!(Pin::new(&mut body));
}
#[actix_rt::test]
async fn none_body_combinators() {
fn none_body() -> BoxBody {
let body = body::None;
let body = BoxBody::new(body);
let body = EitherBody::<_, ()>::left(body);
let body = EitherBody::<(), _>::right(body);
body.boxed()
}
assert_eq!(none_body().size(), BodySize::None);
assert_eq!(none_body().try_into_bytes().unwrap(), Bytes::new());
assert_poll_next_none!(Pin::new(&mut none_body()));
}
// down-casting used to be done with a method on MessageBody trait
// test is kept to demonstrate equivalence of Any trait
#[actix_rt::test]
async fn test_body_casting() {
let mut body = String::from("hello cast");
// let mut resp_body: &mut dyn MessageBody<Error = Error> = &mut body;
let resp_body: &mut dyn std::any::Any = &mut body;
let body = resp_body.downcast_ref::<String>().unwrap();
assert_eq!(body, "hello cast");
let body = &mut resp_body.downcast_mut::<String>().unwrap();
body.push('!');
let body = resp_body.downcast_ref::<String>().unwrap();
assert_eq!(body, "hello cast!");
let not_body = resp_body.downcast_ref::<()>();
assert!(not_body.is_none());
}
#[actix_rt::test]
async fn non_owning_to_bytes() {
let mut body = BoxBody::new(());
let bytes = body::to_bytes(&mut body).await.unwrap();
assert_eq!(bytes, Bytes::new());
let mut body = body::BodyStream::new(stream::iter([
Ok::<_, std::io::Error>(Bytes::from("1234")),
Ok(Bytes::from("5678")),
]));
let bytes = body::to_bytes(&mut body).await.unwrap();
assert_eq!(bytes, Bytes::from_static(b"12345678"));
}
}
|
//! Traits and structures to aid consuming and writing HTTP payloads.
//!
//! "Body" and "payload" are used somewhat interchangeably in this documentation.
// Though the spec kinda reads like "payload" is the possibly-transfer-encoded part of the message
// and the "body" is the intended possibly-decoded version of that.
mod body_stream;
mod boxed;
mod either;
mod message_body;
mod none;
mod size;
mod sized_stream;
mod utils;
pub(crate) use self::message_body::MessageBodyMapErr;
pub use self::{
body_stream::BodyStream,
boxed::BoxBody,
either::EitherBody,
message_body::MessageBody,
none::None,
size::BodySize,
sized_stream::SizedStream,
utils::{to_bytes, to_bytes_limited, BodyLimitExceeded},
};
|
use std::{
convert::Infallible,
pin::Pin,
task::{Context, Poll},
};
use bytes::Bytes;
use super::{BodySize, MessageBody};
/// Body type for responses that forbid payloads.
///
/// This is distinct from an "empty" response which _would_ contain a `Content-Length` header.
/// For an "empty" body, use `()` or `Bytes::new()`.
///
/// For example, the HTTP spec forbids a payload to be sent with a `204 No Content` response.
/// In this case, the payload (or lack thereof) is implicit from the status code, so a
/// `Content-Length` header is not required.
#[derive(Debug, Clone, Copy, Default)]
#[non_exhaustive]
pub struct None;
impl None {
/// Constructs new "none" body.
#[inline]
pub fn new() -> Self {
None
}
}
impl MessageBody for None {
type Error = Infallible;
#[inline]
fn size(&self) -> BodySize {
BodySize::None
}
#[inline]
fn poll_next(
self: Pin<&mut Self>,
_cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
Poll::Ready(Option::None)
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self> {
Ok(Bytes::new())
}
}
|
/// Body size hint.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BodySize {
/// Implicitly empty body.
///
/// Will omit the Content-Length header. Used for responses to certain methods (e.g., `HEAD`) or
/// with particular status codes (e.g., 204 No Content). Consumers that read this as a body size
/// hint are allowed to make optimizations that skip reading or writing the payload.
None,
/// Known size body.
///
/// Will write `Content-Length: N` header.
Sized(u64),
/// Unknown size body.
///
/// Will not write Content-Length header. Can be used with chunked Transfer-Encoding.
Stream,
}
impl BodySize {
/// Equivalent to `BodySize::Sized(0)`;
pub const ZERO: Self = Self::Sized(0);
/// Returns true if size hint indicates omitted or empty body.
///
/// Streams will return false because it cannot be known without reading the stream.
///
/// ```
/// # use actix_http::body::BodySize;
/// assert!(BodySize::None.is_eof());
/// assert!(BodySize::Sized(0).is_eof());
///
/// assert!(!BodySize::Sized(64).is_eof());
/// assert!(!BodySize::Stream.is_eof());
/// ```
pub fn is_eof(&self) -> bool {
matches!(self, BodySize::None | BodySize::Sized(0))
}
}
|
use std::{
error::Error as StdError,
pin::Pin,
task::{Context, Poll},
};
use bytes::Bytes;
use futures_core::{ready, Stream};
use pin_project_lite::pin_project;
use super::{BodySize, MessageBody};
pin_project! {
/// Known sized streaming response wrapper.
///
/// This body implementation should be used if total size of stream is known. Data is sent as-is
/// without using chunked transfer encoding.
pub struct SizedStream<S> {
size: u64,
#[pin]
stream: S,
}
}
impl<S, E> SizedStream<S>
where
S: Stream<Item = Result<Bytes, E>>,
E: Into<Box<dyn StdError>> + 'static,
{
#[inline]
pub fn new(size: u64, stream: S) -> Self {
SizedStream { size, stream }
}
}
// TODO: from_infallible method
impl<S, E> MessageBody for SizedStream<S>
where
S: Stream<Item = Result<Bytes, E>>,
E: Into<Box<dyn StdError>> + 'static,
{
type Error = E;
#[inline]
fn size(&self) -> BodySize {
BodySize::Sized(self.size)
}
/// Attempts to pull out the next value of the underlying [`Stream`].
///
/// Empty values are skipped to prevent [`SizedStream`]'s transmission being
/// ended on a zero-length chunk, but rather proceed until the underlying
/// [`Stream`] ends.
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
loop {
let stream = self.as_mut().project().stream;
let chunk = match ready!(stream.poll_next(cx)) {
Some(Ok(ref bytes)) if bytes.is_empty() => continue,
val => val,
};
return Poll::Ready(chunk);
}
}
}
#[cfg(test)]
mod tests {
use std::convert::Infallible;
use actix_rt::pin;
use actix_utils::future::poll_fn;
use futures_util::stream;
use static_assertions::{assert_impl_all, assert_not_impl_any};
use super::*;
use crate::body::to_bytes;
assert_impl_all!(SizedStream<stream::Empty<Result<Bytes, crate::Error>>>: MessageBody);
assert_impl_all!(SizedStream<stream::Empty<Result<Bytes, &'static str>>>: MessageBody);
assert_impl_all!(SizedStream<stream::Repeat<Result<Bytes, &'static str>>>: MessageBody);
assert_impl_all!(SizedStream<stream::Empty<Result<Bytes, Infallible>>>: MessageBody);
assert_impl_all!(SizedStream<stream::Repeat<Result<Bytes, Infallible>>>: MessageBody);
assert_not_impl_any!(SizedStream<stream::Empty<Bytes>>: MessageBody);
assert_not_impl_any!(SizedStream<stream::Repeat<Bytes>>: MessageBody);
// crate::Error is not Clone
assert_not_impl_any!(SizedStream<stream::Repeat<Result<Bytes, crate::Error>>>: MessageBody);
#[actix_rt::test]
async fn skips_empty_chunks() {
let body = SizedStream::new(
2,
stream::iter(
["1", "", "2"]
.iter()
.map(|&v| Ok::<_, Infallible>(Bytes::from(v))),
),
);
pin!(body);
assert_eq!(
poll_fn(|cx| body.as_mut().poll_next(cx))
.await
.unwrap()
.ok(),
Some(Bytes::from("1")),
);
assert_eq!(
poll_fn(|cx| body.as_mut().poll_next(cx))
.await
.unwrap()
.ok(),
Some(Bytes::from("2")),
);
}
#[actix_rt::test]
async fn read_to_bytes() {
let body = SizedStream::new(
2,
stream::iter(
["1", "", "2"]
.iter()
.map(|&v| Ok::<_, Infallible>(Bytes::from(v))),
),
);
assert_eq!(to_bytes(body).await.ok(), Some(Bytes::from("12")));
}
#[actix_rt::test]
async fn stream_string_error() {
// `&'static str` does not impl `Error`
// but it does impl `Into<Box<dyn Error>>`
let body = SizedStream::new(0, stream::once(async { Err("stringy error") }));
assert_eq!(to_bytes(body).await, Ok(Bytes::new()));
let body = SizedStream::new(1, stream::once(async { Err("stringy error") }));
assert!(matches!(to_bytes(body).await, Err("stringy error")));
}
#[actix_rt::test]
async fn stream_boxed_error() {
// `Box<dyn Error>` does not impl `Error`
// but it does impl `Into<Box<dyn Error>>`
let body = SizedStream::new(
0,
stream::once(async { Err(Box::<dyn StdError>::from("stringy error")) }),
);
assert_eq!(to_bytes(body).await.unwrap(), Bytes::new());
let body = SizedStream::new(
1,
stream::once(async { Err(Box::<dyn StdError>::from("stringy error")) }),
);
assert_eq!(
to_bytes(body).await.unwrap_err().to_string(),
"stringy error"
);
}
}
|
use std::task::Poll;
use actix_rt::pin;
use actix_utils::future::poll_fn;
use bytes::{Bytes, BytesMut};
use derive_more::{Display, Error};
use futures_core::ready;
use super::{BodySize, MessageBody};
/// Collects all the bytes produced by `body`.
///
/// Any errors produced by the body stream are returned immediately.
///
/// Consider using [`to_bytes_limited`] instead to protect against memory exhaustion.
///
/// # Examples
///
/// ```
/// use actix_http::body::{self, to_bytes};
/// use bytes::Bytes;
///
/// # actix_rt::System::new().block_on(async {
/// let body = body::None::new();
/// let bytes = to_bytes(body).await.unwrap();
/// assert!(bytes.is_empty());
///
/// let body = Bytes::from_static(b"123");
/// let bytes = to_bytes(body).await.unwrap();
/// assert_eq!(bytes, "123");
/// # });
/// ```
pub async fn to_bytes<B: MessageBody>(body: B) -> Result<Bytes, B::Error> {
to_bytes_limited(body, usize::MAX)
.await
.expect("body should never yield more than usize::MAX bytes")
}
/// Error type returned from [`to_bytes_limited`] when body produced exceeds limit.
#[derive(Debug, Display, Error)]
#[display("limit exceeded while collecting body bytes")]
#[non_exhaustive]
pub struct BodyLimitExceeded;
/// Collects the bytes produced by `body`, up to `limit` bytes.
///
/// If a chunk read from `poll_next` causes the total number of bytes read to exceed `limit`, an
/// `Err(BodyLimitExceeded)` is returned.
///
/// Any errors produced by the body stream are returned immediately as `Ok(Err(B::Error))`.
///
/// # Examples
///
/// ```
/// use actix_http::body::{self, to_bytes_limited};
/// use bytes::Bytes;
///
/// # actix_rt::System::new().block_on(async {
/// let body = body::None::new();
/// let bytes = to_bytes_limited(body, 10).await.unwrap().unwrap();
/// assert!(bytes.is_empty());
///
/// let body = Bytes::from_static(b"123");
/// let bytes = to_bytes_limited(body, 10).await.unwrap().unwrap();
/// assert_eq!(bytes, "123");
///
/// let body = Bytes::from_static(b"123");
/// assert!(to_bytes_limited(body, 2).await.is_err());
/// # });
/// ```
pub async fn to_bytes_limited<B: MessageBody>(
body: B,
limit: usize,
) -> Result<Result<Bytes, B::Error>, BodyLimitExceeded> {
/// Sensible default (32kB) for initial, bounded allocation when collecting body bytes.
const INITIAL_ALLOC_BYTES: usize = 32 * 1024;
let cap = match body.size() {
BodySize::None | BodySize::Sized(0) => return Ok(Ok(Bytes::new())),
BodySize::Sized(size) if size as usize > limit => return Err(BodyLimitExceeded),
BodySize::Sized(size) => (size as usize).min(INITIAL_ALLOC_BYTES),
BodySize::Stream => INITIAL_ALLOC_BYTES,
};
let mut exceeded_limit = false;
let mut buf = BytesMut::with_capacity(cap);
pin!(body);
match poll_fn(|cx| loop {
let body = body.as_mut();
match ready!(body.poll_next(cx)) {
Some(Ok(bytes)) => {
// if limit is exceeded...
if buf.len() + bytes.len() > limit {
// ...set flag to true and break out of poll_fn
exceeded_limit = true;
return Poll::Ready(Ok(()));
}
buf.extend_from_slice(&bytes)
}
None => return Poll::Ready(Ok(())),
Some(Err(err)) => return Poll::Ready(Err(err)),
}
})
.await
{
// propagate error returned from body poll
Err(err) => Ok(Err(err)),
// limit was exceeded while reading body
Ok(()) if exceeded_limit => Err(BodyLimitExceeded),
// otherwise return body buffer
Ok(()) => Ok(Ok(buf.freeze())),
}
}
#[cfg(test)]
mod tests {
use std::io;
use futures_util::{stream, StreamExt as _};
use super::*;
use crate::{
body::{BodyStream, SizedStream},
Error,
};
#[actix_rt::test]
async fn to_bytes_complete() {
let bytes = to_bytes(()).await.unwrap();
assert!(bytes.is_empty());
let body = Bytes::from_static(b"123");
let bytes = to_bytes(body).await.unwrap();
assert_eq!(bytes, b"123"[..]);
}
#[actix_rt::test]
async fn to_bytes_streams() {
let stream = stream::iter(vec![Bytes::from_static(b"123"), Bytes::from_static(b"abc")])
.map(Ok::<_, Error>);
let body = BodyStream::new(stream);
let bytes = to_bytes(body).await.unwrap();
assert_eq!(bytes, b"123abc"[..]);
}
#[actix_rt::test]
async fn to_bytes_limited_complete() {
let bytes = to_bytes_limited((), 0).await.unwrap().unwrap();
assert!(bytes.is_empty());
let bytes = to_bytes_limited((), 1).await.unwrap().unwrap();
assert!(bytes.is_empty());
assert!(to_bytes_limited(Bytes::from_static(b"12"), 0)
.await
.is_err());
assert!(to_bytes_limited(Bytes::from_static(b"12"), 1)
.await
.is_err());
assert!(to_bytes_limited(Bytes::from_static(b"12"), 2).await.is_ok());
assert!(to_bytes_limited(Bytes::from_static(b"12"), 3).await.is_ok());
}
#[actix_rt::test]
async fn to_bytes_limited_streams() {
// hinting a larger body fails
let body = SizedStream::new(8, stream::empty().map(Ok::<_, Error>));
assert!(to_bytes_limited(body, 3).await.is_err());
// hinting a smaller body is okay
let body = SizedStream::new(3, stream::empty().map(Ok::<_, Error>));
assert!(to_bytes_limited(body, 3).await.unwrap().unwrap().is_empty());
// hinting a smaller body then returning a larger one fails
let stream = stream::iter(vec![Bytes::from_static(b"1234")]).map(Ok::<_, Error>);
let body = SizedStream::new(3, stream);
assert!(to_bytes_limited(body, 3).await.is_err());
let stream = stream::iter(vec![Bytes::from_static(b"123"), Bytes::from_static(b"abc")])
.map(Ok::<_, Error>);
let body = BodyStream::new(stream);
assert!(to_bytes_limited(body, 3).await.is_err());
}
#[actix_rt::test]
async fn to_body_limit_error() {
let err_stream = stream::once(async { Err(io::Error::new(io::ErrorKind::Other, "")) });
let body = SizedStream::new(8, err_stream);
// not too big, but propagates error from body stream
assert!(to_bytes_limited(body, 10).await.unwrap().is_err());
}
}
|
use std::{fmt, marker::PhantomData, net, rc::Rc, time::Duration};
use actix_codec::Framed;
use actix_service::{IntoServiceFactory, Service, ServiceFactory};
use crate::{
body::{BoxBody, MessageBody},
h1::{self, ExpectHandler, H1Service, UpgradeHandler},
service::HttpService,
ConnectCallback, Extensions, KeepAlive, Request, Response, ServiceConfig,
};
/// An HTTP service builder.
///
/// This type can construct an instance of [`HttpService`] through a builder-like pattern.
pub struct HttpServiceBuilder<T, S, X = ExpectHandler, U = UpgradeHandler> {
keep_alive: KeepAlive,
client_request_timeout: Duration,
client_disconnect_timeout: Duration,
secure: bool,
local_addr: Option<net::SocketAddr>,
expect: X,
upgrade: Option<U>,
on_connect_ext: Option<Rc<ConnectCallback<T>>>,
_phantom: PhantomData<S>,
}
impl<T, S> Default for HttpServiceBuilder<T, S, ExpectHandler, UpgradeHandler>
where
S: ServiceFactory<Request, Config = ()>,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
<S::Service as Service<Request>>::Future: 'static,
{
fn default() -> Self {
HttpServiceBuilder {
// ServiceConfig parts (make sure defaults match)
keep_alive: KeepAlive::default(),
client_request_timeout: Duration::from_secs(5),
client_disconnect_timeout: Duration::ZERO,
secure: false,
local_addr: None,
// dispatcher parts
expect: ExpectHandler,
upgrade: None,
on_connect_ext: None,
_phantom: PhantomData,
}
}
}
impl<T, S, X, U> HttpServiceBuilder<T, S, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
<S::Service as Service<Request>>::Future: 'static,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<(Request, Framed<T, h1::Codec>), Config = (), Response = ()>,
U::Error: fmt::Display,
U::InitError: fmt::Debug,
{
/// Set connection keep-alive setting.
///
/// Applies to HTTP/1.1 keep-alive and HTTP/2 ping-pong.
///
/// By default keep-alive is 5 seconds.
pub fn keep_alive<W: Into<KeepAlive>>(mut self, val: W) -> Self {
self.keep_alive = val.into();
self
}
/// Set connection secure state
pub fn secure(mut self) -> Self {
self.secure = true;
self
}
/// Set the local address that this service is bound to.
pub fn local_addr(mut self, addr: net::SocketAddr) -> Self {
self.local_addr = Some(addr);
self
}
/// Set client request timeout (for first request).
///
/// Defines a timeout for reading client request header. If the client does not transmit the
/// request head within this duration, the connection is terminated with a `408 Request Timeout`
/// response error.
///
/// A duration of zero disables the timeout.
///
/// By default, the client timeout is 5 seconds.
pub fn client_request_timeout(mut self, dur: Duration) -> Self {
self.client_request_timeout = dur;
self
}
#[doc(hidden)]
#[deprecated(since = "3.0.0", note = "Renamed to `client_request_timeout`.")]
pub fn client_timeout(self, dur: Duration) -> Self {
self.client_request_timeout(dur)
}
/// Set client connection disconnect timeout.
///
/// Defines a timeout for disconnect connection. If a disconnect procedure does not complete
/// within this time, the request get dropped. This timeout affects secure connections.
///
/// A duration of zero disables the timeout.
///
/// By default, the disconnect timeout is disabled.
pub fn client_disconnect_timeout(mut self, dur: Duration) -> Self {
self.client_disconnect_timeout = dur;
self
}
#[doc(hidden)]
#[deprecated(since = "3.0.0", note = "Renamed to `client_disconnect_timeout`.")]
pub fn client_disconnect(self, dur: Duration) -> Self {
self.client_disconnect_timeout(dur)
}
/// Provide service for `EXPECT: 100-Continue` support.
///
/// Service get called with request that contains `EXPECT` header.
/// Service must return request in case of success, in that case
/// request will be forwarded to main service.
pub fn expect<F, X1>(self, expect: F) -> HttpServiceBuilder<T, S, X1, U>
where
F: IntoServiceFactory<X1, Request>,
X1: ServiceFactory<Request, Config = (), Response = Request>,
X1::Error: Into<Response<BoxBody>>,
X1::InitError: fmt::Debug,
{
HttpServiceBuilder {
keep_alive: self.keep_alive,
client_request_timeout: self.client_request_timeout,
client_disconnect_timeout: self.client_disconnect_timeout,
secure: self.secure,
local_addr: self.local_addr,
expect: expect.into_factory(),
upgrade: self.upgrade,
on_connect_ext: self.on_connect_ext,
_phantom: PhantomData,
}
}
/// Provide service for custom `Connection: UPGRADE` support.
///
/// If service is provided then normal requests handling get halted
/// and this service get called with original request and framed object.
pub fn upgrade<F, U1>(self, upgrade: F) -> HttpServiceBuilder<T, S, X, U1>
where
F: IntoServiceFactory<U1, (Request, Framed<T, h1::Codec>)>,
U1: ServiceFactory<(Request, Framed<T, h1::Codec>), Config = (), Response = ()>,
U1::Error: fmt::Display,
U1::InitError: fmt::Debug,
{
HttpServiceBuilder {
keep_alive: self.keep_alive,
client_request_timeout: self.client_request_timeout,
client_disconnect_timeout: self.client_disconnect_timeout,
secure: self.secure,
local_addr: self.local_addr,
expect: self.expect,
upgrade: Some(upgrade.into_factory()),
on_connect_ext: self.on_connect_ext,
_phantom: PhantomData,
}
}
/// Sets the callback to be run on connection establishment.
///
/// Has mutable access to a data container that will be merged into request extensions.
/// This enables transport layer data (like client certificates) to be accessed in middleware
/// and handlers.
pub fn on_connect_ext<F>(mut self, f: F) -> Self
where
F: Fn(&T, &mut Extensions) + 'static,
{
self.on_connect_ext = Some(Rc::new(f));
self
}
/// Finish service configuration and create a service for the HTTP/1 protocol.
pub fn h1<F, B>(self, service: F) -> H1Service<T, S, B, X, U>
where
B: MessageBody,
F: IntoServiceFactory<S, Request>,
S::Error: Into<Response<BoxBody>>,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>>,
{
let cfg = ServiceConfig::new(
self.keep_alive,
self.client_request_timeout,
self.client_disconnect_timeout,
self.secure,
self.local_addr,
);
H1Service::with_config(cfg, service.into_factory())
.expect(self.expect)
.upgrade(self.upgrade)
.on_connect_ext(self.on_connect_ext)
}
/// Finish service configuration and create a service for the HTTP/2 protocol.
#[cfg(feature = "http2")]
pub fn h2<F, B>(self, service: F) -> crate::h2::H2Service<T, S, B>
where
F: IntoServiceFactory<S, Request>,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
B: MessageBody + 'static,
{
let cfg = ServiceConfig::new(
self.keep_alive,
self.client_request_timeout,
self.client_disconnect_timeout,
self.secure,
self.local_addr,
);
crate::h2::H2Service::with_config(cfg, service.into_factory())
.on_connect_ext(self.on_connect_ext)
}
/// Finish service configuration and create `HttpService` instance.
pub fn finish<F, B>(self, service: F) -> HttpService<T, S, B, X, U>
where
F: IntoServiceFactory<S, Request>,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
B: MessageBody + 'static,
{
let cfg = ServiceConfig::new(
self.keep_alive,
self.client_request_timeout,
self.client_disconnect_timeout,
self.secure,
self.local_addr,
);
HttpService::with_config(cfg, service.into_factory())
.expect(self.expect)
.upgrade(self.upgrade)
.on_connect_ext(self.on_connect_ext)
}
}
|
use std::{
net,
rc::Rc,
time::{Duration, Instant},
};
use bytes::BytesMut;
use crate::{date::DateService, KeepAlive};
/// HTTP service configuration.
#[derive(Debug, Clone)]
pub struct ServiceConfig(Rc<Inner>);
#[derive(Debug)]
struct Inner {
keep_alive: KeepAlive,
client_request_timeout: Duration,
client_disconnect_timeout: Duration,
secure: bool,
local_addr: Option<std::net::SocketAddr>,
date_service: DateService,
}
impl Default for ServiceConfig {
fn default() -> Self {
Self::new(
KeepAlive::default(),
Duration::from_secs(5),
Duration::ZERO,
false,
None,
)
}
}
impl ServiceConfig {
/// Create instance of `ServiceConfig`.
pub fn new(
keep_alive: KeepAlive,
client_request_timeout: Duration,
client_disconnect_timeout: Duration,
secure: bool,
local_addr: Option<net::SocketAddr>,
) -> ServiceConfig {
ServiceConfig(Rc::new(Inner {
keep_alive: keep_alive.normalize(),
client_request_timeout,
client_disconnect_timeout,
secure,
local_addr,
date_service: DateService::new(),
}))
}
/// Returns `true` if connection is secure (i.e., using TLS / HTTPS).
#[inline]
pub fn secure(&self) -> bool {
self.0.secure
}
/// Returns the local address that this server is bound to.
///
/// Returns `None` for connections via UDS (Unix Domain Socket).
#[inline]
pub fn local_addr(&self) -> Option<net::SocketAddr> {
self.0.local_addr
}
/// Connection keep-alive setting.
#[inline]
pub fn keep_alive(&self) -> KeepAlive {
self.0.keep_alive
}
/// Creates a time object representing the deadline for this connection's keep-alive period, if
/// enabled.
///
/// When [`KeepAlive::Os`] or [`KeepAlive::Disabled`] is set, this will return `None`.
pub fn keep_alive_deadline(&self) -> Option<Instant> {
match self.keep_alive() {
KeepAlive::Timeout(dur) => Some(self.now() + dur),
KeepAlive::Os => None,
KeepAlive::Disabled => None,
}
}
/// Creates a time object representing the deadline for the client to finish sending the head of
/// its first request.
///
/// Returns `None` if this `ServiceConfig was` constructed with `client_request_timeout: 0`.
pub fn client_request_deadline(&self) -> Option<Instant> {
let timeout = self.0.client_request_timeout;
(timeout != Duration::ZERO).then(|| self.now() + timeout)
}
/// Creates a time object representing the deadline for the client to disconnect.
pub fn client_disconnect_deadline(&self) -> Option<Instant> {
let timeout = self.0.client_disconnect_timeout;
(timeout != Duration::ZERO).then(|| self.now() + timeout)
}
pub(crate) fn now(&self) -> Instant {
self.0.date_service.now()
}
/// Writes date header to `dst` buffer.
///
/// Low-level method that utilizes the built-in efficient date service, requiring fewer syscalls
/// than normal. Note that a CRLF (`\r\n`) is included in what is written.
#[doc(hidden)]
pub fn write_date_header(&self, dst: &mut BytesMut, camel_case: bool) {
let mut buf: [u8; 37] = [0; 37];
buf[..6].copy_from_slice(if camel_case { b"Date: " } else { b"date: " });
self.0
.date_service
.with_date(|date| buf[6..35].copy_from_slice(&date.bytes));
buf[35..].copy_from_slice(b"\r\n");
dst.extend_from_slice(&buf);
}
#[allow(unused)] // used with `http2` feature flag
pub(crate) fn write_date_header_value(&self, dst: &mut BytesMut) {
self.0
.date_service
.with_date(|date| dst.extend_from_slice(&date.bytes));
}
}
#[cfg(test)]
mod tests {
use actix_rt::{
task::yield_now,
time::{sleep, sleep_until},
};
use memchr::memmem;
use super::*;
use crate::{date::DATE_VALUE_LENGTH, notify_on_drop};
#[actix_rt::test]
async fn test_date_service_update() {
let settings =
ServiceConfig::new(KeepAlive::Os, Duration::ZERO, Duration::ZERO, false, None);
yield_now().await;
let mut buf1 = BytesMut::with_capacity(DATE_VALUE_LENGTH + 10);
settings.write_date_header(&mut buf1, false);
let now1 = settings.now();
sleep_until((Instant::now() + Duration::from_secs(2)).into()).await;
yield_now().await;
let now2 = settings.now();
let mut buf2 = BytesMut::with_capacity(DATE_VALUE_LENGTH + 10);
settings.write_date_header(&mut buf2, false);
assert_ne!(now1, now2);
assert_ne!(buf1, buf2);
drop(settings);
// Ensure the task will drop eventually
let mut times = 0;
while !notify_on_drop::is_dropped() {
sleep(Duration::from_millis(100)).await;
times += 1;
assert!(times < 10, "Timeout waiting for task drop");
}
}
#[actix_rt::test]
async fn test_date_service_drop() {
let service = Rc::new(DateService::new());
// yield so date service have a chance to register the spawned timer update task.
yield_now().await;
let clone1 = service.clone();
let clone2 = service.clone();
let clone3 = service.clone();
drop(clone1);
assert!(!notify_on_drop::is_dropped());
drop(clone2);
assert!(!notify_on_drop::is_dropped());
drop(clone3);
assert!(!notify_on_drop::is_dropped());
drop(service);
// Ensure the task will drop eventually
let mut times = 0;
while !notify_on_drop::is_dropped() {
sleep(Duration::from_millis(100)).await;
times += 1;
assert!(times < 10, "Timeout waiting for task drop");
}
}
#[test]
fn test_date_len() {
assert_eq!(DATE_VALUE_LENGTH, "Sun, 06 Nov 1994 08:49:37 GMT".len());
}
#[actix_rt::test]
async fn test_date() {
let settings = ServiceConfig::default();
let mut buf1 = BytesMut::with_capacity(DATE_VALUE_LENGTH + 10);
settings.write_date_header(&mut buf1, false);
let mut buf2 = BytesMut::with_capacity(DATE_VALUE_LENGTH + 10);
settings.write_date_header(&mut buf2, false);
assert_eq!(buf1, buf2);
}
#[actix_rt::test]
async fn test_date_camel_case() {
let settings = ServiceConfig::default();
let mut buf = BytesMut::with_capacity(DATE_VALUE_LENGTH + 10);
settings.write_date_header(&mut buf, false);
assert!(memmem::find(&buf, b"date:").is_some());
let mut buf = BytesMut::with_capacity(DATE_VALUE_LENGTH + 10);
settings.write_date_header(&mut buf, true);
assert!(memmem::find(&buf, b"Date:").is_some());
}
}
|
use std::{
cell::Cell,
fmt::{self, Write},
rc::Rc,
time::{Duration, Instant, SystemTime},
};
use actix_rt::{task::JoinHandle, time::interval};
/// "Thu, 01 Jan 1970 00:00:00 GMT".len()
pub(crate) const DATE_VALUE_LENGTH: usize = 29;
#[derive(Clone, Copy)]
pub(crate) struct Date {
pub(crate) bytes: [u8; DATE_VALUE_LENGTH],
pos: usize,
}
impl Date {
fn new() -> Date {
let mut date = Date {
bytes: [0; DATE_VALUE_LENGTH],
pos: 0,
};
date.update();
date
}
fn update(&mut self) {
self.pos = 0;
write!(self, "{}", httpdate::HttpDate::from(SystemTime::now())).unwrap();
}
}
impl fmt::Write for Date {
fn write_str(&mut self, s: &str) -> fmt::Result {
let len = s.len();
self.bytes[self.pos..self.pos + len].copy_from_slice(s.as_bytes());
self.pos += len;
Ok(())
}
}
/// Service for update Date and Instant periodically at 500 millis interval.
pub(crate) struct DateService {
current: Rc<Cell<(Date, Instant)>>,
handle: JoinHandle<()>,
}
impl DateService {
pub(crate) fn new() -> Self {
// shared date and timer for DateService and update async task.
let current = Rc::new(Cell::new((Date::new(), Instant::now())));
let current_clone = Rc::clone(¤t);
// spawn an async task sleep for 500 millis and update current date/timer in a loop.
// handle is used to stop the task on DateService drop.
let handle = actix_rt::spawn(async move {
#[cfg(test)]
let _notify = crate::notify_on_drop::NotifyOnDrop::new();
let mut interval = interval(Duration::from_millis(500));
loop {
let now = interval.tick().await;
let date = Date::new();
current_clone.set((date, now.into_std()));
}
});
DateService { current, handle }
}
pub(crate) fn now(&self) -> Instant {
self.current.get().1
}
pub(crate) fn with_date<F: FnMut(&Date)>(&self, mut f: F) {
f(&self.current.get().0);
}
}
impl fmt::Debug for DateService {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("DateService").finish_non_exhaustive()
}
}
impl Drop for DateService {
fn drop(&mut self) {
// stop the timer update async task on drop.
self.handle.abort();
}
}
|
//! Stream decoders.
use std::{
future::Future,
io::{self, Write as _},
pin::Pin,
task::{Context, Poll},
};
use actix_rt::task::{spawn_blocking, JoinHandle};
use bytes::Bytes;
#[cfg(feature = "compress-gzip")]
use flate2::write::{GzDecoder, ZlibDecoder};
use futures_core::{ready, Stream};
#[cfg(feature = "compress-zstd")]
use zstd::stream::write::Decoder as ZstdDecoder;
use crate::{
encoding::Writer,
error::PayloadError,
header::{ContentEncoding, HeaderMap, CONTENT_ENCODING},
};
const MAX_CHUNK_SIZE_DECODE_IN_PLACE: usize = 2049;
pin_project_lite::pin_project! {
pub struct Decoder<S> {
decoder: Option<ContentDecoder>,
#[pin]
stream: S,
eof: bool,
fut: Option<JoinHandle<Result<(Option<Bytes>, ContentDecoder), io::Error>>>,
}
}
impl<S> Decoder<S>
where
S: Stream<Item = Result<Bytes, PayloadError>>,
{
/// Construct a decoder.
#[inline]
pub fn new(stream: S, encoding: ContentEncoding) -> Decoder<S> {
let decoder = match encoding {
#[cfg(feature = "compress-brotli")]
ContentEncoding::Brotli => Some(ContentDecoder::Brotli(Box::new(
brotli::DecompressorWriter::new(Writer::new(), 8_096),
))),
#[cfg(feature = "compress-gzip")]
ContentEncoding::Deflate => Some(ContentDecoder::Deflate(Box::new(ZlibDecoder::new(
Writer::new(),
)))),
#[cfg(feature = "compress-gzip")]
ContentEncoding::Gzip => Some(ContentDecoder::Gzip(Box::new(GzDecoder::new(
Writer::new(),
)))),
#[cfg(feature = "compress-zstd")]
ContentEncoding::Zstd => Some(ContentDecoder::Zstd(Box::new(
ZstdDecoder::new(Writer::new()).expect(
"Failed to create zstd decoder. This is a bug. \
Please report it to the actix-web repository.",
),
))),
_ => None,
};
Decoder {
decoder,
stream,
fut: None,
eof: false,
}
}
/// Construct decoder based on headers.
#[inline]
pub fn from_headers(stream: S, headers: &HeaderMap) -> Decoder<S> {
// check content-encoding
let encoding = headers
.get(&CONTENT_ENCODING)
.and_then(|val| val.to_str().ok())
.and_then(|x| x.parse().ok())
.unwrap_or(ContentEncoding::Identity);
Self::new(stream, encoding)
}
}
impl<S> Stream for Decoder<S>
where
S: Stream<Item = Result<Bytes, PayloadError>>,
{
type Item = Result<Bytes, PayloadError>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let mut this = self.project();
loop {
if let Some(ref mut fut) = this.fut {
let (chunk, decoder) = ready!(Pin::new(fut).poll(cx)).map_err(|_| {
PayloadError::Io(io::Error::new(
io::ErrorKind::Other,
"Blocking task was cancelled unexpectedly",
))
})??;
*this.decoder = Some(decoder);
this.fut.take();
if let Some(chunk) = chunk {
return Poll::Ready(Some(Ok(chunk)));
}
}
if *this.eof {
return Poll::Ready(None);
}
match ready!(this.stream.as_mut().poll_next(cx)) {
Some(Err(err)) => return Poll::Ready(Some(Err(err))),
Some(Ok(chunk)) => {
if let Some(mut decoder) = this.decoder.take() {
if chunk.len() < MAX_CHUNK_SIZE_DECODE_IN_PLACE {
let chunk = decoder.feed_data(chunk)?;
*this.decoder = Some(decoder);
if let Some(chunk) = chunk {
return Poll::Ready(Some(Ok(chunk)));
}
} else {
*this.fut = Some(spawn_blocking(move || {
let chunk = decoder.feed_data(chunk)?;
Ok((chunk, decoder))
}));
}
continue;
} else {
return Poll::Ready(Some(Ok(chunk)));
}
}
None => {
*this.eof = true;
return if let Some(mut decoder) = this.decoder.take() {
match decoder.feed_eof() {
Ok(Some(res)) => Poll::Ready(Some(Ok(res))),
Ok(None) => Poll::Ready(None),
Err(err) => Poll::Ready(Some(Err(err.into()))),
}
} else {
Poll::Ready(None)
};
}
}
}
}
}
enum ContentDecoder {
#[cfg(feature = "compress-gzip")]
Deflate(Box<ZlibDecoder<Writer>>),
#[cfg(feature = "compress-gzip")]
Gzip(Box<GzDecoder<Writer>>),
#[cfg(feature = "compress-brotli")]
Brotli(Box<brotli::DecompressorWriter<Writer>>),
// We need explicit 'static lifetime here because ZstdDecoder need lifetime
// argument, and we use `spawn_blocking` in `Decoder::poll_next` that require `FnOnce() -> R + Send + 'static`
#[cfg(feature = "compress-zstd")]
Zstd(Box<ZstdDecoder<'static, Writer>>),
}
impl ContentDecoder {
fn feed_eof(&mut self) -> io::Result<Option<Bytes>> {
match self {
#[cfg(feature = "compress-brotli")]
ContentDecoder::Brotli(ref mut decoder) => match decoder.flush() {
Ok(()) => {
let b = decoder.get_mut().take();
if !b.is_empty() {
Ok(Some(b))
} else {
Ok(None)
}
}
Err(err) => Err(err),
},
#[cfg(feature = "compress-gzip")]
ContentDecoder::Gzip(ref mut decoder) => match decoder.try_finish() {
Ok(_) => {
let b = decoder.get_mut().take();
if !b.is_empty() {
Ok(Some(b))
} else {
Ok(None)
}
}
Err(err) => Err(err),
},
#[cfg(feature = "compress-gzip")]
ContentDecoder::Deflate(ref mut decoder) => match decoder.try_finish() {
Ok(_) => {
let b = decoder.get_mut().take();
if !b.is_empty() {
Ok(Some(b))
} else {
Ok(None)
}
}
Err(err) => Err(err),
},
#[cfg(feature = "compress-zstd")]
ContentDecoder::Zstd(ref mut decoder) => match decoder.flush() {
Ok(_) => {
let b = decoder.get_mut().take();
if !b.is_empty() {
Ok(Some(b))
} else {
Ok(None)
}
}
Err(err) => Err(err),
},
}
}
fn feed_data(&mut self, data: Bytes) -> io::Result<Option<Bytes>> {
match self {
#[cfg(feature = "compress-brotli")]
ContentDecoder::Brotli(ref mut decoder) => match decoder.write_all(&data) {
Ok(_) => {
decoder.flush()?;
let b = decoder.get_mut().take();
if !b.is_empty() {
Ok(Some(b))
} else {
Ok(None)
}
}
Err(err) => Err(err),
},
#[cfg(feature = "compress-gzip")]
ContentDecoder::Gzip(ref mut decoder) => match decoder.write_all(&data) {
Ok(_) => {
decoder.flush()?;
let b = decoder.get_mut().take();
if !b.is_empty() {
Ok(Some(b))
} else {
Ok(None)
}
}
Err(err) => Err(err),
},
#[cfg(feature = "compress-gzip")]
ContentDecoder::Deflate(ref mut decoder) => match decoder.write_all(&data) {
Ok(_) => {
decoder.flush()?;
let b = decoder.get_mut().take();
if !b.is_empty() {
Ok(Some(b))
} else {
Ok(None)
}
}
Err(err) => Err(err),
},
#[cfg(feature = "compress-zstd")]
ContentDecoder::Zstd(ref mut decoder) => match decoder.write_all(&data) {
Ok(_) => {
decoder.flush()?;
let b = decoder.get_mut().take();
if !b.is_empty() {
Ok(Some(b))
} else {
Ok(None)
}
}
Err(err) => Err(err),
},
}
}
}
|
//! Stream encoders.
use std::{
error::Error as StdError,
future::Future,
io::{self, Write as _},
pin::Pin,
task::{Context, Poll},
};
use actix_rt::task::{spawn_blocking, JoinHandle};
use bytes::Bytes;
use derive_more::Display;
#[cfg(feature = "compress-gzip")]
use flate2::write::{GzEncoder, ZlibEncoder};
use futures_core::ready;
use pin_project_lite::pin_project;
use tracing::trace;
#[cfg(feature = "compress-zstd")]
use zstd::stream::write::Encoder as ZstdEncoder;
use super::Writer;
use crate::{
body::{self, BodySize, MessageBody},
header::{self, ContentEncoding, HeaderValue, CONTENT_ENCODING},
ResponseHead, StatusCode,
};
const MAX_CHUNK_SIZE_ENCODE_IN_PLACE: usize = 1024;
pin_project! {
pub struct Encoder<B> {
#[pin]
body: EncoderBody<B>,
encoder: Option<ContentEncoder>,
fut: Option<JoinHandle<Result<ContentEncoder, io::Error>>>,
eof: bool,
}
}
impl<B: MessageBody> Encoder<B> {
fn none() -> Self {
Encoder {
body: EncoderBody::None {
body: body::None::new(),
},
encoder: None,
fut: None,
eof: true,
}
}
fn empty() -> Self {
Encoder {
body: EncoderBody::Full { body: Bytes::new() },
encoder: None,
fut: None,
eof: true,
}
}
pub fn response(encoding: ContentEncoding, head: &mut ResponseHead, body: B) -> Self {
// no need to compress empty bodies
match body.size() {
BodySize::None => return Self::none(),
BodySize::Sized(0) => return Self::empty(),
_ => {}
}
let should_encode = !(head.headers().contains_key(&CONTENT_ENCODING)
|| head.status == StatusCode::SWITCHING_PROTOCOLS
|| head.status == StatusCode::NO_CONTENT
|| encoding == ContentEncoding::Identity);
let body = match body.try_into_bytes() {
Ok(body) => EncoderBody::Full { body },
Err(body) => EncoderBody::Stream { body },
};
if should_encode {
// wrap body only if encoder is feature-enabled
if let Some(enc) = ContentEncoder::select(encoding) {
update_head(encoding, head);
return Encoder {
body,
encoder: Some(enc),
fut: None,
eof: false,
};
}
}
Encoder {
body,
encoder: None,
fut: None,
eof: false,
}
}
}
pin_project! {
#[project = EncoderBodyProj]
enum EncoderBody<B> {
None { body: body::None },
Full { body: Bytes },
Stream { #[pin] body: B },
}
}
impl<B> MessageBody for EncoderBody<B>
where
B: MessageBody,
{
type Error = EncoderError;
#[inline]
fn size(&self) -> BodySize {
match self {
EncoderBody::None { body } => body.size(),
EncoderBody::Full { body } => body.size(),
EncoderBody::Stream { body } => body.size(),
}
}
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
match self.project() {
EncoderBodyProj::None { body } => {
Pin::new(body).poll_next(cx).map_err(|err| match err {})
}
EncoderBodyProj::Full { body } => {
Pin::new(body).poll_next(cx).map_err(|err| match err {})
}
EncoderBodyProj::Stream { body } => body
.poll_next(cx)
.map_err(|err| EncoderError::Body(err.into())),
}
}
#[inline]
fn try_into_bytes(self) -> Result<Bytes, Self>
where
Self: Sized,
{
match self {
EncoderBody::None { body } => Ok(body.try_into_bytes().unwrap()),
EncoderBody::Full { body } => Ok(body.try_into_bytes().unwrap()),
_ => Err(self),
}
}
}
impl<B> MessageBody for Encoder<B>
where
B: MessageBody,
{
type Error = EncoderError;
#[inline]
fn size(&self) -> BodySize {
if self.encoder.is_some() {
BodySize::Stream
} else {
self.body.size()
}
}
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, Self::Error>>> {
let mut this = self.project();
loop {
if *this.eof {
return Poll::Ready(None);
}
if let Some(ref mut fut) = this.fut {
let mut encoder = ready!(Pin::new(fut).poll(cx))
.map_err(|_| {
EncoderError::Io(io::Error::new(
io::ErrorKind::Other,
"Blocking task was cancelled unexpectedly",
))
})?
.map_err(EncoderError::Io)?;
let chunk = encoder.take();
*this.encoder = Some(encoder);
this.fut.take();
if !chunk.is_empty() {
return Poll::Ready(Some(Ok(chunk)));
}
}
let result = ready!(this.body.as_mut().poll_next(cx));
match result {
Some(Err(err)) => return Poll::Ready(Some(Err(err))),
Some(Ok(chunk)) => {
if let Some(mut encoder) = this.encoder.take() {
if chunk.len() < MAX_CHUNK_SIZE_ENCODE_IN_PLACE {
encoder.write(&chunk).map_err(EncoderError::Io)?;
let chunk = encoder.take();
*this.encoder = Some(encoder);
if !chunk.is_empty() {
return Poll::Ready(Some(Ok(chunk)));
}
} else {
*this.fut = Some(spawn_blocking(move || {
encoder.write(&chunk)?;
Ok(encoder)
}));
}
} else {
return Poll::Ready(Some(Ok(chunk)));
}
}
None => {
if let Some(encoder) = this.encoder.take() {
let chunk = encoder.finish().map_err(EncoderError::Io)?;
if chunk.is_empty() {
return Poll::Ready(None);
} else {
*this.eof = true;
return Poll::Ready(Some(Ok(chunk)));
}
} else {
return Poll::Ready(None);
}
}
}
}
}
#[inline]
fn try_into_bytes(mut self) -> Result<Bytes, Self>
where
Self: Sized,
{
if self.encoder.is_some() {
Err(self)
} else {
match self.body.try_into_bytes() {
Ok(body) => Ok(body),
Err(body) => {
self.body = body;
Err(self)
}
}
}
}
}
fn update_head(encoding: ContentEncoding, head: &mut ResponseHead) {
head.headers_mut()
.insert(header::CONTENT_ENCODING, encoding.to_header_value());
head.headers_mut()
.append(header::VARY, HeaderValue::from_static("accept-encoding"));
head.no_chunking(false);
}
enum ContentEncoder {
#[cfg(feature = "compress-gzip")]
Deflate(ZlibEncoder<Writer>),
#[cfg(feature = "compress-gzip")]
Gzip(GzEncoder<Writer>),
#[cfg(feature = "compress-brotli")]
Brotli(Box<brotli::CompressorWriter<Writer>>),
// Wwe need explicit 'static lifetime here because ZstdEncoder needs a lifetime argument and we
// use `spawn_blocking` in `Encoder::poll_next` that requires `FnOnce() -> R + Send + 'static`.
#[cfg(feature = "compress-zstd")]
Zstd(ZstdEncoder<'static, Writer>),
}
impl ContentEncoder {
fn select(encoding: ContentEncoding) -> Option<Self> {
match encoding {
#[cfg(feature = "compress-gzip")]
ContentEncoding::Deflate => Some(ContentEncoder::Deflate(ZlibEncoder::new(
Writer::new(),
flate2::Compression::fast(),
))),
#[cfg(feature = "compress-gzip")]
ContentEncoding::Gzip => Some(ContentEncoder::Gzip(GzEncoder::new(
Writer::new(),
flate2::Compression::fast(),
))),
#[cfg(feature = "compress-brotli")]
ContentEncoding::Brotli => Some(ContentEncoder::Brotli(new_brotli_compressor())),
#[cfg(feature = "compress-zstd")]
ContentEncoding::Zstd => {
let encoder = ZstdEncoder::new(Writer::new(), 3).ok()?;
Some(ContentEncoder::Zstd(encoder))
}
_ => None,
}
}
#[inline]
pub(crate) fn take(&mut self) -> Bytes {
match *self {
#[cfg(feature = "compress-brotli")]
ContentEncoder::Brotli(ref mut encoder) => encoder.get_mut().take(),
#[cfg(feature = "compress-gzip")]
ContentEncoder::Deflate(ref mut encoder) => encoder.get_mut().take(),
#[cfg(feature = "compress-gzip")]
ContentEncoder::Gzip(ref mut encoder) => encoder.get_mut().take(),
#[cfg(feature = "compress-zstd")]
ContentEncoder::Zstd(ref mut encoder) => encoder.get_mut().take(),
}
}
fn finish(self) -> Result<Bytes, io::Error> {
match self {
#[cfg(feature = "compress-brotli")]
ContentEncoder::Brotli(mut encoder) => match encoder.flush() {
Ok(()) => Ok(encoder.into_inner().buf.freeze()),
Err(err) => Err(err),
},
#[cfg(feature = "compress-gzip")]
ContentEncoder::Gzip(encoder) => match encoder.finish() {
Ok(writer) => Ok(writer.buf.freeze()),
Err(err) => Err(err),
},
#[cfg(feature = "compress-gzip")]
ContentEncoder::Deflate(encoder) => match encoder.finish() {
Ok(writer) => Ok(writer.buf.freeze()),
Err(err) => Err(err),
},
#[cfg(feature = "compress-zstd")]
ContentEncoder::Zstd(encoder) => match encoder.finish() {
Ok(writer) => Ok(writer.buf.freeze()),
Err(err) => Err(err),
},
}
}
fn write(&mut self, data: &[u8]) -> Result<(), io::Error> {
match *self {
#[cfg(feature = "compress-brotli")]
ContentEncoder::Brotli(ref mut encoder) => match encoder.write_all(data) {
Ok(_) => Ok(()),
Err(err) => {
trace!("Error decoding br encoding: {}", err);
Err(err)
}
},
#[cfg(feature = "compress-gzip")]
ContentEncoder::Gzip(ref mut encoder) => match encoder.write_all(data) {
Ok(_) => Ok(()),
Err(err) => {
trace!("Error decoding gzip encoding: {}", err);
Err(err)
}
},
#[cfg(feature = "compress-gzip")]
ContentEncoder::Deflate(ref mut encoder) => match encoder.write_all(data) {
Ok(_) => Ok(()),
Err(err) => {
trace!("Error decoding deflate encoding: {}", err);
Err(err)
}
},
#[cfg(feature = "compress-zstd")]
ContentEncoder::Zstd(ref mut encoder) => match encoder.write_all(data) {
Ok(_) => Ok(()),
Err(err) => {
trace!("Error decoding ztsd encoding: {}", err);
Err(err)
}
},
}
}
}
#[cfg(feature = "compress-brotli")]
fn new_brotli_compressor() -> Box<brotli::CompressorWriter<Writer>> {
Box::new(brotli::CompressorWriter::new(
Writer::new(),
32 * 1024, // 32 KiB buffer
3, // BROTLI_PARAM_QUALITY
22, // BROTLI_PARAM_LGWIN
))
}
#[derive(Debug, Display)]
#[non_exhaustive]
pub enum EncoderError {
/// Wrapped body stream error.
#[display("body")]
Body(Box<dyn StdError>),
/// Generic I/O error.
#[display("io")]
Io(io::Error),
}
impl StdError for EncoderError {
fn source(&self) -> Option<&(dyn StdError + 'static)> {
match self {
EncoderError::Body(err) => Some(&**err),
EncoderError::Io(err) => Some(err),
}
}
}
impl From<EncoderError> for crate::Error {
fn from(err: EncoderError) -> Self {
crate::Error::new_encoder().with_cause(err)
}
}
|
//! Content-Encoding support.
use std::io;
use bytes::{Bytes, BytesMut};
mod decoder;
mod encoder;
pub use self::{decoder::Decoder, encoder::Encoder};
/// Special-purpose writer for streaming (de-)compression.
///
/// Pre-allocates 8KiB of capacity.
struct Writer {
buf: BytesMut,
}
impl Writer {
fn new() -> Writer {
Writer {
buf: BytesMut::with_capacity(8192),
}
}
fn take(&mut self) -> Bytes {
self.buf.split().freeze()
}
}
impl io::Write for Writer {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.buf.extend_from_slice(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
|
//! Error and Result module
use std::{error::Error as StdError, fmt, io, str::Utf8Error, string::FromUtf8Error};
use derive_more::{Display, Error, From};
pub use http::{status::InvalidStatusCode, Error as HttpError};
use http::{uri::InvalidUri, StatusCode};
use crate::{body::BoxBody, Response};
pub struct Error {
inner: Box<ErrorInner>,
}
pub(crate) struct ErrorInner {
#[allow(dead_code)]
kind: Kind,
cause: Option<Box<dyn StdError>>,
}
impl Error {
fn new(kind: Kind) -> Self {
Self {
inner: Box::new(ErrorInner { kind, cause: None }),
}
}
pub(crate) fn with_cause(mut self, cause: impl Into<Box<dyn StdError>>) -> Self {
self.inner.cause = Some(cause.into());
self
}
pub(crate) fn new_http() -> Self {
Self::new(Kind::Http)
}
pub(crate) fn new_parse() -> Self {
Self::new(Kind::Parse)
}
pub(crate) fn new_payload() -> Self {
Self::new(Kind::Payload)
}
pub(crate) fn new_body() -> Self {
Self::new(Kind::Body)
}
pub(crate) fn new_send_response() -> Self {
Self::new(Kind::SendResponse)
}
#[allow(unused)] // available for future use
pub(crate) fn new_io() -> Self {
Self::new(Kind::Io)
}
#[allow(unused)] // used in encoder behind feature flag so ignore unused warning
pub(crate) fn new_encoder() -> Self {
Self::new(Kind::Encoder)
}
#[allow(unused)] // used with `ws` feature flag
pub(crate) fn new_ws() -> Self {
Self::new(Kind::Ws)
}
}
impl From<Error> for Response<BoxBody> {
fn from(err: Error) -> Self {
// TODO: more appropriate error status codes, usage assessment needed
let status_code = match err.inner.kind {
Kind::Parse => StatusCode::BAD_REQUEST,
_ => StatusCode::INTERNAL_SERVER_ERROR,
};
Response::new(status_code).set_body(BoxBody::new(err.to_string()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Display)]
pub(crate) enum Kind {
#[display("error processing HTTP")]
Http,
#[display("error parsing HTTP message")]
Parse,
#[display("request payload read error")]
Payload,
#[display("response body write error")]
Body,
#[display("send response error")]
SendResponse,
#[display("error in WebSocket process")]
Ws,
#[display("connection error")]
Io,
#[display("encoder error")]
Encoder,
}
impl fmt::Debug for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("actix_http::Error")
.field("kind", &self.inner.kind)
.field("cause", &self.inner.cause)
.finish()
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.inner.cause.as_ref() {
Some(err) => write!(f, "{}: {}", &self.inner.kind, err),
None => write!(f, "{}", &self.inner.kind),
}
}
}
impl StdError for Error {
fn source(&self) -> Option<&(dyn StdError + 'static)> {
self.inner.cause.as_ref().map(Box::as_ref)
}
}
impl From<std::convert::Infallible> for Error {
fn from(err: std::convert::Infallible) -> Self {
match err {}
}
}
impl From<HttpError> for Error {
fn from(err: HttpError) -> Self {
Self::new_http().with_cause(err)
}
}
#[cfg(feature = "ws")]
impl From<crate::ws::HandshakeError> for Error {
fn from(err: crate::ws::HandshakeError) -> Self {
Self::new_ws().with_cause(err)
}
}
#[cfg(feature = "ws")]
impl From<crate::ws::ProtocolError> for Error {
fn from(err: crate::ws::ProtocolError) -> Self {
Self::new_ws().with_cause(err)
}
}
/// A set of errors that can occur during parsing HTTP streams.
#[derive(Debug, Display, Error)]
#[non_exhaustive]
pub enum ParseError {
/// An invalid `Method`, such as `GE.T`.
#[display("invalid method specified")]
Method,
/// An invalid `Uri`, such as `exam ple.domain`.
#[display("URI error: {}", _0)]
Uri(InvalidUri),
/// An invalid `HttpVersion`, such as `HTP/1.1`
#[display("invalid HTTP version specified")]
Version,
/// An invalid `Header`.
#[display("invalid Header provided")]
Header,
/// A message head is too large to be reasonable.
#[display("message head is too large")]
TooLarge,
/// A message reached EOF, but is not complete.
#[display("message is incomplete")]
Incomplete,
/// An invalid `Status`, such as `1337 ELITE`.
#[display("invalid status provided")]
Status,
/// A timeout occurred waiting for an IO event.
#[allow(dead_code)]
#[display("timeout")]
Timeout,
/// An I/O error that occurred while trying to read or write to a network stream.
#[display("I/O error: {}", _0)]
Io(io::Error),
/// Parsing a field as string failed.
#[display("UTF-8 error: {}", _0)]
Utf8(Utf8Error),
}
impl From<io::Error> for ParseError {
fn from(err: io::Error) -> ParseError {
ParseError::Io(err)
}
}
impl From<InvalidUri> for ParseError {
fn from(err: InvalidUri) -> ParseError {
ParseError::Uri(err)
}
}
impl From<Utf8Error> for ParseError {
fn from(err: Utf8Error) -> ParseError {
ParseError::Utf8(err)
}
}
impl From<FromUtf8Error> for ParseError {
fn from(err: FromUtf8Error) -> ParseError {
ParseError::Utf8(err.utf8_error())
}
}
impl From<httparse::Error> for ParseError {
fn from(err: httparse::Error) -> ParseError {
match err {
httparse::Error::HeaderName
| httparse::Error::HeaderValue
| httparse::Error::NewLine
| httparse::Error::Token => ParseError::Header,
httparse::Error::Status => ParseError::Status,
httparse::Error::TooManyHeaders => ParseError::TooLarge,
httparse::Error::Version => ParseError::Version,
}
}
}
impl From<ParseError> for Error {
fn from(err: ParseError) -> Self {
Self::new_parse().with_cause(err)
}
}
impl From<ParseError> for Response<BoxBody> {
fn from(err: ParseError) -> Self {
Error::from(err).into()
}
}
/// A set of errors that can occur during payload parsing.
#[derive(Debug, Display)]
#[non_exhaustive]
pub enum PayloadError {
/// A payload reached EOF, but is not complete.
#[display("payload reached EOF before completing: {:?}", _0)]
Incomplete(Option<io::Error>),
/// Content encoding stream corruption.
#[display("can not decode content-encoding")]
EncodingCorrupted,
/// Payload reached size limit.
#[display("payload reached size limit")]
Overflow,
/// Payload length is unknown.
#[display("payload length is unknown")]
UnknownLength,
/// HTTP/2 payload error.
#[cfg(feature = "http2")]
#[display("{}", _0)]
Http2Payload(::h2::Error),
/// Generic I/O error.
#[display("{}", _0)]
Io(io::Error),
}
impl std::error::Error for PayloadError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
PayloadError::Incomplete(None) => None,
PayloadError::Incomplete(Some(err)) => Some(err),
PayloadError::EncodingCorrupted => None,
PayloadError::Overflow => None,
PayloadError::UnknownLength => None,
#[cfg(feature = "http2")]
PayloadError::Http2Payload(err) => Some(err),
PayloadError::Io(err) => Some(err),
}
}
}
#[cfg(feature = "http2")]
impl From<::h2::Error> for PayloadError {
fn from(err: ::h2::Error) -> Self {
PayloadError::Http2Payload(err)
}
}
impl From<Option<io::Error>> for PayloadError {
fn from(err: Option<io::Error>) -> Self {
PayloadError::Incomplete(err)
}
}
impl From<io::Error> for PayloadError {
fn from(err: io::Error) -> Self {
PayloadError::Incomplete(Some(err))
}
}
impl From<PayloadError> for Error {
fn from(err: PayloadError) -> Self {
Self::new_payload().with_cause(err)
}
}
/// A set of errors that can occur during dispatching HTTP requests.
#[derive(Debug, Display, From)]
#[non_exhaustive]
pub enum DispatchError {
/// Service error.
#[display("service error")]
Service(Response<BoxBody>),
/// Body streaming error.
#[display("body error: {}", _0)]
Body(Box<dyn StdError>),
/// Upgrade service error.
#[display("upgrade error")]
Upgrade,
/// An `io::Error` that occurred while trying to read or write to a network stream.
#[display("I/O error: {}", _0)]
Io(io::Error),
/// Request parse error.
#[display("request parse error: {}", _0)]
Parse(ParseError),
/// HTTP/2 error.
#[display("{}", _0)]
#[cfg(feature = "http2")]
H2(h2::Error),
/// The first request did not complete within the specified timeout.
#[display("request did not complete within the specified timeout")]
SlowRequestTimeout,
/// Disconnect timeout. Makes sense for TLS streams.
#[display("connection shutdown timeout")]
DisconnectTimeout,
/// Handler dropped payload before reading EOF.
#[display("handler dropped payload before reading EOF")]
HandlerDroppedPayload,
/// Internal error.
#[display("internal error")]
InternalError,
}
impl StdError for DispatchError {
fn source(&self) -> Option<&(dyn StdError + 'static)> {
match self {
DispatchError::Service(_res) => None,
DispatchError::Body(err) => Some(&**err),
DispatchError::Io(err) => Some(err),
DispatchError::Parse(err) => Some(err),
#[cfg(feature = "http2")]
DispatchError::H2(err) => Some(err),
_ => None,
}
}
}
/// A set of error that can occur during parsing content type.
#[derive(Debug, Display, Error)]
#[cfg_attr(test, derive(PartialEq, Eq))]
#[non_exhaustive]
pub enum ContentTypeError {
/// Can not parse content type.
#[display("could not parse content type")]
ParseError,
/// Unknown content encoding.
#[display("unknown content encoding")]
UnknownEncoding,
}
#[cfg(test)]
mod tests {
use http::Error as HttpError;
use super::*;
#[test]
fn test_into_response() {
let resp: Response<BoxBody> = ParseError::Incomplete.into();
assert_eq!(resp.status(), StatusCode::BAD_REQUEST);
let err: HttpError = StatusCode::from_u16(10000).err().unwrap().into();
let resp: Response<BoxBody> = Error::new_http().with_cause(err).into();
assert_eq!(resp.status(), StatusCode::INTERNAL_SERVER_ERROR);
}
#[test]
fn test_as_response() {
let orig = io::Error::new(io::ErrorKind::Other, "other");
let err: Error = ParseError::Io(orig).into();
assert_eq!(
format!("{}", err),
"error parsing HTTP message: I/O error: other"
);
}
#[test]
fn test_error_display() {
let orig = io::Error::new(io::ErrorKind::Other, "other");
let err = Error::new_io().with_cause(orig);
assert_eq!("connection error: other", err.to_string());
}
#[test]
fn test_error_http_response() {
let orig = io::Error::new(io::ErrorKind::Other, "other");
let err = Error::new_io().with_cause(orig);
let resp: Response<BoxBody> = err.into();
assert_eq!(resp.status(), StatusCode::INTERNAL_SERVER_ERROR);
}
#[test]
fn test_payload_error() {
let err: PayloadError = io::Error::new(io::ErrorKind::Other, "ParseError").into();
assert!(err.to_string().contains("ParseError"));
let err = PayloadError::Incomplete(None);
assert_eq!(
err.to_string(),
"payload reached EOF before completing: None"
);
}
macro_rules! from {
($from:expr => $error:pat) => {
match ParseError::from($from) {
err @ $error => {
assert!(err.to_string().len() >= 5);
}
err => unreachable!("{:?}", err),
}
};
}
macro_rules! from_and_cause {
($from:expr => $error:pat) => {
match ParseError::from($from) {
e @ $error => {
let desc = format!("{}", e);
assert_eq!(desc, format!("I/O error: {}", $from));
}
_ => unreachable!("{:?}", $from),
}
};
}
#[test]
fn test_from() {
from_and_cause!(io::Error::new(io::ErrorKind::Other, "other") => ParseError::Io(..));
from!(httparse::Error::HeaderName => ParseError::Header);
from!(httparse::Error::HeaderName => ParseError::Header);
from!(httparse::Error::HeaderValue => ParseError::Header);
from!(httparse::Error::NewLine => ParseError::Header);
from!(httparse::Error::Status => ParseError::Status);
from!(httparse::Error::Token => ParseError::Header);
from!(httparse::Error::TooManyHeaders => ParseError::TooLarge);
from!(httparse::Error::Version => ParseError::Version);
}
}
|
use std::{
any::{Any, TypeId},
collections::HashMap,
fmt,
hash::{BuildHasherDefault, Hasher},
};
/// A hasher for `TypeId`s that takes advantage of its known characteristics.
///
/// Author of `anymap` crate has done research on the topic:
/// https://github.com/chris-morgan/anymap/blob/2e9a5704/src/lib.rs#L599
#[derive(Debug, Default)]
struct NoOpHasher(u64);
impl Hasher for NoOpHasher {
fn write(&mut self, _bytes: &[u8]) {
unimplemented!("This NoOpHasher can only handle u64s")
}
fn write_u64(&mut self, i: u64) {
self.0 = i;
}
fn finish(&self) -> u64 {
self.0
}
}
/// A type map for request extensions.
///
/// All entries into this map must be owned types (or static references).
#[derive(Default)]
pub struct Extensions {
// use no-op hasher with a std HashMap with for faster lookups on the small `TypeId` keys
map: HashMap<TypeId, Box<dyn Any>, BuildHasherDefault<NoOpHasher>>,
}
impl Extensions {
/// Creates an empty `Extensions`.
#[inline]
pub fn new() -> Extensions {
Extensions {
map: HashMap::default(),
}
}
/// Insert an item into the map.
///
/// If an item of this type was already stored, it will be replaced and returned.
///
/// ```
/// # use actix_http::Extensions;
/// let mut map = Extensions::new();
/// assert_eq!(map.insert(""), None);
/// assert_eq!(map.insert(1u32), None);
/// assert_eq!(map.insert(2u32), Some(1u32));
/// assert_eq!(*map.get::<u32>().unwrap(), 2u32);
/// ```
pub fn insert<T: 'static>(&mut self, val: T) -> Option<T> {
self.map
.insert(TypeId::of::<T>(), Box::new(val))
.and_then(downcast_owned)
}
/// Check if map contains an item of a given type.
///
/// ```
/// # use actix_http::Extensions;
/// let mut map = Extensions::new();
/// assert!(!map.contains::<u32>());
///
/// assert_eq!(map.insert(1u32), None);
/// assert!(map.contains::<u32>());
/// ```
pub fn contains<T: 'static>(&self) -> bool {
self.map.contains_key(&TypeId::of::<T>())
}
/// Get a reference to an item of a given type.
///
/// ```
/// # use actix_http::Extensions;
/// let mut map = Extensions::new();
/// map.insert(1u32);
/// assert_eq!(map.get::<u32>(), Some(&1u32));
/// ```
pub fn get<T: 'static>(&self) -> Option<&T> {
self.map
.get(&TypeId::of::<T>())
.and_then(|boxed| boxed.downcast_ref())
}
/// Get a mutable reference to an item of a given type.
///
/// ```
/// # use actix_http::Extensions;
/// let mut map = Extensions::new();
/// map.insert(1u32);
/// assert_eq!(map.get_mut::<u32>(), Some(&mut 1u32));
/// ```
pub fn get_mut<T: 'static>(&mut self) -> Option<&mut T> {
self.map
.get_mut(&TypeId::of::<T>())
.and_then(|boxed| boxed.downcast_mut())
}
/// Inserts the given `value` into the extensions if it is not present, then returns a reference
/// to the value in the extensions.
///
/// ```
/// # use actix_http::Extensions;
/// let mut map = Extensions::new();
/// assert_eq!(map.get::<Vec<u32>>(), None);
///
/// map.get_or_insert(Vec::<u32>::new()).push(1);
/// assert_eq!(map.get::<Vec<u32>>(), Some(&vec![1]));
///
/// map.get_or_insert(Vec::<u32>::new()).push(2);
/// assert_eq!(map.get::<Vec<u32>>(), Some(&vec![1,2]));
/// ```
pub fn get_or_insert<T: 'static>(&mut self, value: T) -> &mut T {
self.get_or_insert_with(|| value)
}
/// Inserts a value computed from `f` into the extensions if the given `value` is not present,
/// then returns a reference to the value in the extensions.
///
/// ```
/// # use actix_http::Extensions;
/// let mut map = Extensions::new();
/// assert_eq!(map.get::<Vec<u32>>(), None);
///
/// map.get_or_insert_with(Vec::<u32>::new).push(1);
/// assert_eq!(map.get::<Vec<u32>>(), Some(&vec![1]));
///
/// map.get_or_insert_with(Vec::<u32>::new).push(2);
/// assert_eq!(map.get::<Vec<u32>>(), Some(&vec![1,2]));
/// ```
pub fn get_or_insert_with<T: 'static, F: FnOnce() -> T>(&mut self, default: F) -> &mut T {
self.map
.entry(TypeId::of::<T>())
.or_insert_with(|| Box::new(default()))
.downcast_mut()
.expect("extensions map should now contain a T value")
}
/// Remove an item from the map of a given type.
///
/// If an item of this type was already stored, it will be returned.
///
/// ```
/// # use actix_http::Extensions;
/// let mut map = Extensions::new();
///
/// map.insert(1u32);
/// assert_eq!(map.get::<u32>(), Some(&1u32));
///
/// assert_eq!(map.remove::<u32>(), Some(1u32));
/// assert!(!map.contains::<u32>());
/// ```
pub fn remove<T: 'static>(&mut self) -> Option<T> {
self.map.remove(&TypeId::of::<T>()).and_then(downcast_owned)
}
/// Clear the `Extensions` of all inserted extensions.
///
/// ```
/// # use actix_http::Extensions;
/// let mut map = Extensions::new();
///
/// map.insert(1u32);
/// assert!(map.contains::<u32>());
///
/// map.clear();
/// assert!(!map.contains::<u32>());
/// ```
#[inline]
pub fn clear(&mut self) {
self.map.clear();
}
/// Extends self with the items from another `Extensions`.
pub fn extend(&mut self, other: Extensions) {
self.map.extend(other.map);
}
}
impl fmt::Debug for Extensions {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Extensions").finish()
}
}
fn downcast_owned<T: 'static>(boxed: Box<dyn Any>) -> Option<T> {
boxed.downcast().ok().map(|boxed| *boxed)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_remove() {
let mut map = Extensions::new();
map.insert::<i8>(123);
assert!(map.get::<i8>().is_some());
map.remove::<i8>();
assert!(map.get::<i8>().is_none());
}
#[test]
fn test_clear() {
let mut map = Extensions::new();
map.insert::<i8>(8);
map.insert::<i16>(16);
map.insert::<i32>(32);
assert!(map.contains::<i8>());
assert!(map.contains::<i16>());
assert!(map.contains::<i32>());
map.clear();
assert!(!map.contains::<i8>());
assert!(!map.contains::<i16>());
assert!(!map.contains::<i32>());
map.insert::<i8>(10);
assert_eq!(*map.get::<i8>().unwrap(), 10);
}
#[test]
fn test_integers() {
static A: u32 = 8;
let mut map = Extensions::new();
map.insert::<i8>(8);
map.insert::<i16>(16);
map.insert::<i32>(32);
map.insert::<i64>(64);
map.insert::<i128>(128);
map.insert::<u8>(8);
map.insert::<u16>(16);
map.insert::<u32>(32);
map.insert::<u64>(64);
map.insert::<u128>(128);
map.insert::<&'static u32>(&A);
assert!(map.get::<i8>().is_some());
assert!(map.get::<i16>().is_some());
assert!(map.get::<i32>().is_some());
assert!(map.get::<i64>().is_some());
assert!(map.get::<i128>().is_some());
assert!(map.get::<u8>().is_some());
assert!(map.get::<u16>().is_some());
assert!(map.get::<u32>().is_some());
assert!(map.get::<u64>().is_some());
assert!(map.get::<u128>().is_some());
assert!(map.get::<&'static u32>().is_some());
}
#[test]
fn test_composition() {
struct Magi<T>(pub T);
struct Madoka {
pub god: bool,
}
struct Homura {
pub attempts: usize,
}
struct Mami {
pub guns: usize,
}
let mut map = Extensions::new();
map.insert(Magi(Madoka { god: false }));
map.insert(Magi(Homura { attempts: 0 }));
map.insert(Magi(Mami { guns: 999 }));
assert!(!map.get::<Magi<Madoka>>().unwrap().0.god);
assert_eq!(0, map.get::<Magi<Homura>>().unwrap().0.attempts);
assert_eq!(999, map.get::<Magi<Mami>>().unwrap().0.guns);
}
#[test]
fn test_extensions() {
#[derive(Debug, PartialEq)]
struct MyType(i32);
let mut extensions = Extensions::new();
extensions.insert(5i32);
extensions.insert(MyType(10));
assert_eq!(extensions.get(), Some(&5i32));
assert_eq!(extensions.get_mut(), Some(&mut 5i32));
assert_eq!(extensions.remove::<i32>(), Some(5i32));
assert!(extensions.get::<i32>().is_none());
assert_eq!(extensions.get::<bool>(), None);
assert_eq!(extensions.get(), Some(&MyType(10)));
}
#[test]
fn test_extend() {
#[derive(Debug, PartialEq)]
struct MyType(i32);
let mut extensions = Extensions::new();
extensions.insert(5i32);
extensions.insert(MyType(10));
let mut other = Extensions::new();
other.insert(15i32);
other.insert(20u8);
extensions.extend(other);
assert_eq!(extensions.get(), Some(&15i32));
assert_eq!(extensions.get_mut(), Some(&mut 15i32));
assert_eq!(extensions.remove::<i32>(), Some(15i32));
assert!(extensions.get::<i32>().is_none());
assert_eq!(extensions.get::<bool>(), None);
assert_eq!(extensions.get(), Some(&MyType(10)));
assert_eq!(extensions.get(), Some(&20u8));
assert_eq!(extensions.get_mut(), Some(&mut 20u8));
}
}
|
use std::{io, task::Poll};
use bytes::{Buf as _, Bytes, BytesMut};
use tracing::{debug, trace};
macro_rules! byte (
($rdr:ident) => ({
if $rdr.len() > 0 {
let b = $rdr[0];
$rdr.advance(1);
b
} else {
return Poll::Pending
}
})
);
#[derive(Debug, Clone, PartialEq, Eq)]
pub(super) enum ChunkedState {
Size,
SizeLws,
Extension,
SizeLf,
Body,
BodyCr,
BodyLf,
EndCr,
EndLf,
End,
}
impl ChunkedState {
pub(super) fn step(
&self,
body: &mut BytesMut,
size: &mut u64,
buf: &mut Option<Bytes>,
) -> Poll<Result<ChunkedState, io::Error>> {
use self::ChunkedState::*;
match *self {
Size => ChunkedState::read_size(body, size),
SizeLws => ChunkedState::read_size_lws(body),
Extension => ChunkedState::read_extension(body),
SizeLf => ChunkedState::read_size_lf(body, *size),
Body => ChunkedState::read_body(body, size, buf),
BodyCr => ChunkedState::read_body_cr(body),
BodyLf => ChunkedState::read_body_lf(body),
EndCr => ChunkedState::read_end_cr(body),
EndLf => ChunkedState::read_end_lf(body),
End => Poll::Ready(Ok(ChunkedState::End)),
}
}
fn read_size(rdr: &mut BytesMut, size: &mut u64) -> Poll<Result<ChunkedState, io::Error>> {
let radix = 16;
let rem = match byte!(rdr) {
b @ b'0'..=b'9' => b - b'0',
b @ b'a'..=b'f' => b + 10 - b'a',
b @ b'A'..=b'F' => b + 10 - b'A',
b'\t' | b' ' => return Poll::Ready(Ok(ChunkedState::SizeLws)),
b';' => return Poll::Ready(Ok(ChunkedState::Extension)),
b'\r' => return Poll::Ready(Ok(ChunkedState::SizeLf)),
_ => {
return Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk size line: Invalid Size",
)));
}
};
match size.checked_mul(radix) {
Some(n) => {
*size = n;
*size += rem as u64;
Poll::Ready(Ok(ChunkedState::Size))
}
None => {
debug!("chunk size would overflow u64");
Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk size line: Size is too big",
)))
}
}
}
fn read_size_lws(rdr: &mut BytesMut) -> Poll<Result<ChunkedState, io::Error>> {
match byte!(rdr) {
// LWS can follow the chunk size, but no more digits can come
b'\t' | b' ' => Poll::Ready(Ok(ChunkedState::SizeLws)),
b';' => Poll::Ready(Ok(ChunkedState::Extension)),
b'\r' => Poll::Ready(Ok(ChunkedState::SizeLf)),
_ => Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk size linear white space",
))),
}
}
fn read_extension(rdr: &mut BytesMut) -> Poll<Result<ChunkedState, io::Error>> {
match byte!(rdr) {
b'\r' => Poll::Ready(Ok(ChunkedState::SizeLf)),
// strictly 0x20 (space) should be disallowed but we don't parse quoted strings here
0x00..=0x08 | 0x0a..=0x1f | 0x7f => Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid character in chunk extension",
))),
_ => Poll::Ready(Ok(ChunkedState::Extension)), // no supported extensions
}
}
fn read_size_lf(rdr: &mut BytesMut, size: u64) -> Poll<Result<ChunkedState, io::Error>> {
match byte!(rdr) {
b'\n' if size > 0 => Poll::Ready(Ok(ChunkedState::Body)),
b'\n' if size == 0 => Poll::Ready(Ok(ChunkedState::EndCr)),
_ => Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk size LF",
))),
}
}
fn read_body(
rdr: &mut BytesMut,
rem: &mut u64,
buf: &mut Option<Bytes>,
) -> Poll<Result<ChunkedState, io::Error>> {
trace!("Chunked read, remaining={:?}", rem);
let len = rdr.len() as u64;
if len == 0 {
Poll::Ready(Ok(ChunkedState::Body))
} else {
let slice;
if *rem > len {
slice = rdr.split().freeze();
*rem -= len;
} else {
slice = rdr.split_to(*rem as usize).freeze();
*rem = 0;
}
*buf = Some(slice);
if *rem > 0 {
Poll::Ready(Ok(ChunkedState::Body))
} else {
Poll::Ready(Ok(ChunkedState::BodyCr))
}
}
}
fn read_body_cr(rdr: &mut BytesMut) -> Poll<Result<ChunkedState, io::Error>> {
match byte!(rdr) {
b'\r' => Poll::Ready(Ok(ChunkedState::BodyLf)),
_ => Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk body CR",
))),
}
}
fn read_body_lf(rdr: &mut BytesMut) -> Poll<Result<ChunkedState, io::Error>> {
match byte!(rdr) {
b'\n' => Poll::Ready(Ok(ChunkedState::Size)),
_ => Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk body LF",
))),
}
}
fn read_end_cr(rdr: &mut BytesMut) -> Poll<Result<ChunkedState, io::Error>> {
match byte!(rdr) {
b'\r' => Poll::Ready(Ok(ChunkedState::EndLf)),
_ => Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk end CR",
))),
}
}
fn read_end_lf(rdr: &mut BytesMut) -> Poll<Result<ChunkedState, io::Error>> {
match byte!(rdr) {
b'\n' => Poll::Ready(Ok(ChunkedState::End)),
_ => Poll::Ready(Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk end LF",
))),
}
}
}
#[cfg(test)]
mod tests {
use actix_codec::Decoder as _;
use bytes::{Bytes, BytesMut};
use http::Method;
use crate::{
error::ParseError,
h1::decoder::{MessageDecoder, PayloadItem},
HttpMessage as _, Request,
};
macro_rules! parse_ready {
($e:expr) => {{
match MessageDecoder::<Request>::default().decode($e) {
Ok(Some((msg, _))) => msg,
Ok(_) => unreachable!("Eof during parsing http request"),
Err(err) => unreachable!("Error during parsing http request: {:?}", err),
}
}};
}
macro_rules! expect_parse_err {
($e:expr) => {{
match MessageDecoder::<Request>::default().decode($e) {
Err(err) => match err {
ParseError::Io(_) => unreachable!("Parse error expected"),
_ => {}
},
_ => unreachable!("Error expected"),
}
}};
}
#[test]
fn test_parse_chunked_payload_chunk_extension() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
transfer-encoding: chunked\r\n\
\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (msg, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
assert!(msg.chunked().unwrap());
buf.extend(b"4;test\r\ndata\r\n4\r\nline\r\n0\r\n\r\n"); // test: test\r\n\r\n")
let chunk = pl.decode(&mut buf).unwrap().unwrap().chunk();
assert_eq!(chunk, Bytes::from_static(b"data"));
let chunk = pl.decode(&mut buf).unwrap().unwrap().chunk();
assert_eq!(chunk, Bytes::from_static(b"line"));
let msg = pl.decode(&mut buf).unwrap().unwrap();
assert!(msg.eof());
}
#[test]
fn test_request_chunked() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
transfer-encoding: chunked\r\n\r\n",
);
let req = parse_ready!(&mut buf);
if let Ok(val) = req.chunked() {
assert!(val);
} else {
unreachable!("Error");
}
// intentional typo in "chunked"
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
transfer-encoding: chnked\r\n\r\n",
);
expect_parse_err!(&mut buf);
}
#[test]
fn test_http_request_chunked_payload() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
transfer-encoding: chunked\r\n\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
assert!(req.chunked().unwrap());
buf.extend(b"4\r\ndata\r\n4\r\nline\r\n0\r\n\r\n");
assert_eq!(
pl.decode(&mut buf).unwrap().unwrap().chunk().as_ref(),
b"data"
);
assert_eq!(
pl.decode(&mut buf).unwrap().unwrap().chunk().as_ref(),
b"line"
);
assert!(pl.decode(&mut buf).unwrap().unwrap().eof());
}
#[test]
fn test_http_request_chunked_payload_and_next_message() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
transfer-encoding: chunked\r\n\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
assert!(req.chunked().unwrap());
buf.extend(
b"4\r\ndata\r\n4\r\nline\r\n0\r\n\r\n\
POST /test2 HTTP/1.1\r\n\
transfer-encoding: chunked\r\n\r\n"
.iter(),
);
let msg = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(msg.chunk().as_ref(), b"data");
let msg = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(msg.chunk().as_ref(), b"line");
let msg = pl.decode(&mut buf).unwrap().unwrap();
assert!(msg.eof());
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert!(req.chunked().unwrap());
assert_eq!(*req.method(), Method::POST);
assert!(req.chunked().unwrap());
}
#[test]
fn test_http_request_chunked_payload_chunks() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
transfer-encoding: chunked\r\n\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
assert!(req.chunked().unwrap());
buf.extend(b"4\r\n1111\r\n");
let msg = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(msg.chunk().as_ref(), b"1111");
buf.extend(b"4\r\ndata\r");
let msg = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(msg.chunk().as_ref(), b"data");
buf.extend(b"\n4");
assert!(pl.decode(&mut buf).unwrap().is_none());
buf.extend(b"\r");
assert!(pl.decode(&mut buf).unwrap().is_none());
buf.extend(b"\n");
assert!(pl.decode(&mut buf).unwrap().is_none());
buf.extend(b"li");
let msg = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(msg.chunk().as_ref(), b"li");
//trailers
//buf.feed_data("test: test\r\n");
//not_ready!(reader.parse(&mut buf, &mut readbuf));
buf.extend(b"ne\r\n0\r\n");
let msg = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(msg.chunk().as_ref(), b"ne");
assert!(pl.decode(&mut buf).unwrap().is_none());
buf.extend(b"\r\n");
assert!(pl.decode(&mut buf).unwrap().unwrap().eof());
}
#[test]
fn chunk_extension_quoted() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
Host: localhost:8080\r\n\
Transfer-Encoding: chunked\r\n\
\r\n\
2;hello=b;one=\"1 2 3\"\r\n\
xx",
);
let mut reader = MessageDecoder::<Request>::default();
let (_msg, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
let chunk = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(chunk, PayloadItem::Chunk(Bytes::from_static(b"xx")));
}
#[test]
fn hrs_chunk_extension_invalid() {
let mut buf = BytesMut::from(
"GET / HTTP/1.1\r\n\
Host: localhost:8080\r\n\
Transfer-Encoding: chunked\r\n\
\r\n\
2;x\nx\r\n\
4c\r\n\
0\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (_msg, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
let err = pl.decode(&mut buf).unwrap_err();
assert!(err
.to_string()
.contains("Invalid character in chunk extension"));
}
#[test]
fn hrs_chunk_size_overflow() {
let mut buf = BytesMut::from(
"GET / HTTP/1.1\r\n\
Host: example.com\r\n\
Transfer-Encoding: chunked\r\n\
\r\n\
f0000000000000003\r\n\
abc\r\n\
0\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (_msg, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
let err = pl.decode(&mut buf).unwrap_err();
assert!(err
.to_string()
.contains("Invalid chunk size line: Size is too big"));
}
}
|
use std::{fmt, io};
use bitflags::bitflags;
use bytes::{Bytes, BytesMut};
use http::{Method, Version};
use tokio_util::codec::{Decoder, Encoder};
use super::{
decoder::{self, PayloadDecoder, PayloadItem, PayloadType},
encoder, reserve_readbuf, Message, MessageType,
};
use crate::{
body::BodySize,
error::{ParseError, PayloadError},
ConnectionType, RequestHeadType, ResponseHead, ServiceConfig,
};
bitflags! {
#[derive(Debug, Clone, Copy)]
struct Flags: u8 {
const HEAD = 0b0000_0001;
const KEEP_ALIVE_ENABLED = 0b0000_1000;
const STREAM = 0b0001_0000;
}
}
/// HTTP/1 Codec
pub struct ClientCodec {
inner: ClientCodecInner,
}
/// HTTP/1 Payload Codec
pub struct ClientPayloadCodec {
inner: ClientCodecInner,
}
struct ClientCodecInner {
config: ServiceConfig,
decoder: decoder::MessageDecoder<ResponseHead>,
payload: Option<PayloadDecoder>,
version: Version,
conn_type: ConnectionType,
// encoder part
flags: Flags,
encoder: encoder::MessageEncoder<RequestHeadType>,
}
impl Default for ClientCodec {
fn default() -> Self {
ClientCodec::new(ServiceConfig::default())
}
}
impl fmt::Debug for ClientCodec {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("h1::ClientCodec")
.field("flags", &self.inner.flags)
.finish_non_exhaustive()
}
}
impl ClientCodec {
/// Create HTTP/1 codec.
///
/// `keepalive_enabled` how response `connection` header get generated.
pub fn new(config: ServiceConfig) -> Self {
let flags = if config.keep_alive().enabled() {
Flags::KEEP_ALIVE_ENABLED
} else {
Flags::empty()
};
ClientCodec {
inner: ClientCodecInner {
config,
decoder: decoder::MessageDecoder::default(),
payload: None,
version: Version::HTTP_11,
conn_type: ConnectionType::Close,
flags,
encoder: encoder::MessageEncoder::default(),
},
}
}
/// Check if request is upgrade
pub fn upgrade(&self) -> bool {
self.inner.conn_type == ConnectionType::Upgrade
}
/// Check if last response is keep-alive
pub fn keep_alive(&self) -> bool {
self.inner.conn_type == ConnectionType::KeepAlive
}
/// Check last request's message type
pub fn message_type(&self) -> MessageType {
if self.inner.flags.contains(Flags::STREAM) {
MessageType::Stream
} else if self.inner.payload.is_none() {
MessageType::None
} else {
MessageType::Payload
}
}
/// Convert message codec to a payload codec
pub fn into_payload_codec(self) -> ClientPayloadCodec {
ClientPayloadCodec { inner: self.inner }
}
}
impl ClientPayloadCodec {
/// Check if last response is keep-alive
pub fn keep_alive(&self) -> bool {
self.inner.conn_type == ConnectionType::KeepAlive
}
/// Transform payload codec to a message codec
pub fn into_message_codec(self) -> ClientCodec {
ClientCodec { inner: self.inner }
}
}
impl Decoder for ClientCodec {
type Item = ResponseHead;
type Error = ParseError;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
debug_assert!(
self.inner.payload.is_none(),
"Payload decoder should not be set"
);
if let Some((req, payload)) = self.inner.decoder.decode(src)? {
if let Some(conn_type) = req.conn_type() {
// do not use peer's keep-alive
self.inner.conn_type = if conn_type == ConnectionType::KeepAlive {
self.inner.conn_type
} else {
conn_type
};
}
if !self.inner.flags.contains(Flags::HEAD) {
match payload {
PayloadType::None => self.inner.payload = None,
PayloadType::Payload(pl) => self.inner.payload = Some(pl),
PayloadType::Stream(pl) => {
self.inner.payload = Some(pl);
self.inner.flags.insert(Flags::STREAM);
}
}
} else {
self.inner.payload = None;
}
reserve_readbuf(src);
Ok(Some(req))
} else {
Ok(None)
}
}
}
impl Decoder for ClientPayloadCodec {
type Item = Option<Bytes>;
type Error = PayloadError;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
debug_assert!(
self.inner.payload.is_some(),
"Payload decoder is not specified"
);
Ok(match self.inner.payload.as_mut().unwrap().decode(src)? {
Some(PayloadItem::Chunk(chunk)) => {
reserve_readbuf(src);
Some(Some(chunk))
}
Some(PayloadItem::Eof) => {
self.inner.payload.take();
Some(None)
}
None => None,
})
}
}
impl Encoder<Message<(RequestHeadType, BodySize)>> for ClientCodec {
type Error = io::Error;
fn encode(
&mut self,
item: Message<(RequestHeadType, BodySize)>,
dst: &mut BytesMut,
) -> Result<(), Self::Error> {
match item {
Message::Item((mut head, length)) => {
let inner = &mut self.inner;
inner.version = head.as_ref().version;
inner
.flags
.set(Flags::HEAD, head.as_ref().method == Method::HEAD);
// connection status
inner.conn_type = match head.as_ref().connection_type() {
ConnectionType::KeepAlive => {
if inner.flags.contains(Flags::KEEP_ALIVE_ENABLED) {
ConnectionType::KeepAlive
} else {
ConnectionType::Close
}
}
ConnectionType::Upgrade => ConnectionType::Upgrade,
ConnectionType::Close => ConnectionType::Close,
};
inner.encoder.encode(
dst,
&mut head,
false,
false,
inner.version,
length,
inner.conn_type,
&inner.config,
)?;
}
Message::Chunk(Some(bytes)) => {
self.inner.encoder.encode_chunk(bytes.as_ref(), dst)?;
}
Message::Chunk(None) => {
self.inner.encoder.encode_eof(dst)?;
}
}
Ok(())
}
}
|
use std::{fmt, io};
use bitflags::bitflags;
use bytes::BytesMut;
use http::{Method, Version};
use tokio_util::codec::{Decoder, Encoder};
use super::{
decoder::{self, PayloadDecoder, PayloadItem, PayloadType},
encoder, Message, MessageType,
};
use crate::{body::BodySize, error::ParseError, ConnectionType, Request, Response, ServiceConfig};
bitflags! {
#[derive(Debug, Clone, Copy)]
struct Flags: u8 {
const HEAD = 0b0000_0001;
const KEEP_ALIVE_ENABLED = 0b0000_0010;
const STREAM = 0b0000_0100;
}
}
/// HTTP/1 Codec
pub struct Codec {
config: ServiceConfig,
decoder: decoder::MessageDecoder<Request>,
payload: Option<PayloadDecoder>,
version: Version,
conn_type: ConnectionType,
// encoder part
flags: Flags,
encoder: encoder::MessageEncoder<Response<()>>,
}
impl Default for Codec {
fn default() -> Self {
Codec::new(ServiceConfig::default())
}
}
impl fmt::Debug for Codec {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("h1::Codec")
.field("flags", &self.flags)
.finish_non_exhaustive()
}
}
impl Codec {
/// Create HTTP/1 codec.
///
/// `keepalive_enabled` how response `connection` header get generated.
pub fn new(config: ServiceConfig) -> Self {
let flags = if config.keep_alive().enabled() {
Flags::KEEP_ALIVE_ENABLED
} else {
Flags::empty()
};
Codec {
config,
flags,
decoder: decoder::MessageDecoder::default(),
payload: None,
version: Version::HTTP_11,
conn_type: ConnectionType::Close,
encoder: encoder::MessageEncoder::default(),
}
}
/// Check if request is upgrade.
#[inline]
pub fn upgrade(&self) -> bool {
self.conn_type == ConnectionType::Upgrade
}
/// Check if last response is keep-alive.
#[inline]
pub fn keep_alive(&self) -> bool {
self.conn_type == ConnectionType::KeepAlive
}
/// Check if keep-alive enabled on server level.
#[inline]
pub fn keep_alive_enabled(&self) -> bool {
self.flags.contains(Flags::KEEP_ALIVE_ENABLED)
}
/// Check last request's message type.
#[inline]
pub fn message_type(&self) -> MessageType {
if self.flags.contains(Flags::STREAM) {
MessageType::Stream
} else if self.payload.is_none() {
MessageType::None
} else {
MessageType::Payload
}
}
#[inline]
pub fn config(&self) -> &ServiceConfig {
&self.config
}
}
impl Decoder for Codec {
type Item = Message<Request>;
type Error = ParseError;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
if let Some(ref mut payload) = self.payload {
Ok(match payload.decode(src)? {
Some(PayloadItem::Chunk(chunk)) => Some(Message::Chunk(Some(chunk))),
Some(PayloadItem::Eof) => {
self.payload.take();
Some(Message::Chunk(None))
}
None => None,
})
} else if let Some((req, payload)) = self.decoder.decode(src)? {
let head = req.head();
self.flags.set(Flags::HEAD, head.method == Method::HEAD);
self.version = head.version;
self.conn_type = head.connection_type();
if self.conn_type == ConnectionType::KeepAlive
&& !self.flags.contains(Flags::KEEP_ALIVE_ENABLED)
{
self.conn_type = ConnectionType::Close
}
match payload {
PayloadType::None => self.payload = None,
PayloadType::Payload(pl) => self.payload = Some(pl),
PayloadType::Stream(pl) => {
self.payload = Some(pl);
self.flags.insert(Flags::STREAM);
}
}
Ok(Some(Message::Item(req)))
} else {
Ok(None)
}
}
}
impl Encoder<Message<(Response<()>, BodySize)>> for Codec {
type Error = io::Error;
fn encode(
&mut self,
item: Message<(Response<()>, BodySize)>,
dst: &mut BytesMut,
) -> Result<(), Self::Error> {
match item {
Message::Item((mut res, length)) => {
// set response version
res.head_mut().version = self.version;
// connection status
self.conn_type = if let Some(ct) = res.head().conn_type() {
if ct == ConnectionType::KeepAlive {
self.conn_type
} else {
ct
}
} else {
self.conn_type
};
// encode message
self.encoder.encode(
dst,
&mut res,
self.flags.contains(Flags::HEAD),
self.flags.contains(Flags::STREAM),
self.version,
length,
self.conn_type,
&self.config,
)?;
}
Message::Chunk(Some(bytes)) => {
self.encoder.encode_chunk(bytes.as_ref(), dst)?;
}
Message::Chunk(None) => {
self.encoder.encode_eof(dst)?;
}
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::HttpMessage as _;
#[actix_rt::test]
async fn test_http_request_chunked_payload_and_next_message() {
let mut codec = Codec::default();
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
transfer-encoding: chunked\r\n\r\n",
);
let item = codec.decode(&mut buf).unwrap().unwrap();
let req = item.message();
assert_eq!(req.method(), Method::GET);
assert!(req.chunked().unwrap());
buf.extend(
b"4\r\ndata\r\n4\r\nline\r\n0\r\n\r\n\
POST /test2 HTTP/1.1\r\n\
transfer-encoding: chunked\r\n\r\n"
.iter(),
);
let msg = codec.decode(&mut buf).unwrap().unwrap();
assert_eq!(msg.chunk().as_ref(), b"data");
let msg = codec.decode(&mut buf).unwrap().unwrap();
assert_eq!(msg.chunk().as_ref(), b"line");
let msg = codec.decode(&mut buf).unwrap().unwrap();
assert!(msg.eof());
// decode next message
let item = codec.decode(&mut buf).unwrap().unwrap();
let req = item.message();
assert_eq!(*req.method(), Method::POST);
assert!(req.chunked().unwrap());
}
}
|
use std::{io, marker::PhantomData, mem::MaybeUninit, task::Poll};
use actix_codec::Decoder;
use bytes::{Bytes, BytesMut};
use http::{
header::{self, HeaderName, HeaderValue},
Method, StatusCode, Uri, Version,
};
use tracing::{debug, error, trace};
use super::chunked::ChunkedState;
use crate::{error::ParseError, header::HeaderMap, ConnectionType, Request, ResponseHead};
pub(crate) const MAX_BUFFER_SIZE: usize = 131_072;
const MAX_HEADERS: usize = 96;
/// Incoming message decoder
pub(crate) struct MessageDecoder<T: MessageType>(PhantomData<T>);
#[derive(Debug)]
/// Incoming request type
pub(crate) enum PayloadType {
None,
Payload(PayloadDecoder),
Stream(PayloadDecoder),
}
impl<T: MessageType> Default for MessageDecoder<T> {
fn default() -> Self {
MessageDecoder(PhantomData)
}
}
impl<T: MessageType> Decoder for MessageDecoder<T> {
type Item = (T, PayloadType);
type Error = ParseError;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
T::decode(src)
}
}
pub(crate) enum PayloadLength {
Payload(PayloadType),
UpgradeWebSocket,
None,
}
impl PayloadLength {
/// Returns true if variant is `None`.
fn is_none(&self) -> bool {
matches!(self, Self::None)
}
/// Returns true if variant is represents zero-length (not none) payload.
fn is_zero(&self) -> bool {
matches!(
self,
PayloadLength::Payload(PayloadType::Payload(PayloadDecoder {
kind: Kind::Length(0)
}))
)
}
}
pub(crate) trait MessageType: Sized {
fn set_connection_type(&mut self, conn_type: Option<ConnectionType>);
fn set_expect(&mut self);
fn headers_mut(&mut self) -> &mut HeaderMap;
fn decode(src: &mut BytesMut) -> Result<Option<(Self, PayloadType)>, ParseError>;
fn set_headers(
&mut self,
slice: &Bytes,
raw_headers: &[HeaderIndex],
version: Version,
) -> Result<PayloadLength, ParseError> {
let mut ka = None;
let mut has_upgrade_websocket = false;
let mut expect = false;
let mut chunked = false;
let mut seen_te = false;
let mut content_length = None;
{
let headers = self.headers_mut();
for idx in raw_headers.iter() {
let name = HeaderName::from_bytes(&slice[idx.name.0..idx.name.1]).unwrap();
// SAFETY: httparse already checks header value is only visible ASCII bytes
// from_maybe_shared_unchecked contains debug assertions so they are omitted here
let value = unsafe {
HeaderValue::from_maybe_shared_unchecked(slice.slice(idx.value.0..idx.value.1))
};
match name {
header::CONTENT_LENGTH if content_length.is_some() => {
debug!("multiple Content-Length");
return Err(ParseError::Header);
}
header::CONTENT_LENGTH => match value.to_str().map(str::trim) {
Ok(val) if val.starts_with('+') => {
debug!("illegal Content-Length: {:?}", val);
return Err(ParseError::Header);
}
Ok(val) => {
if let Ok(len) = val.parse::<u64>() {
// accept 0 lengths here and remove them in `decode` after all
// headers have been processed to prevent request smuggling issues
content_length = Some(len);
} else {
debug!("illegal Content-Length: {:?}", val);
return Err(ParseError::Header);
}
}
Err(_) => {
debug!("illegal Content-Length: {:?}", value);
return Err(ParseError::Header);
}
},
// transfer-encoding
header::TRANSFER_ENCODING if seen_te => {
debug!("multiple Transfer-Encoding not allowed");
return Err(ParseError::Header);
}
header::TRANSFER_ENCODING if version == Version::HTTP_11 => {
seen_te = true;
if let Ok(val) = value.to_str().map(str::trim) {
if val.eq_ignore_ascii_case("chunked") {
chunked = true;
} else if val.eq_ignore_ascii_case("identity") {
// allow silently since multiple TE headers are already checked
} else {
debug!("illegal Transfer-Encoding: {:?}", val);
return Err(ParseError::Header);
}
} else {
return Err(ParseError::Header);
}
}
// connection keep-alive state
header::CONNECTION => {
ka = if let Ok(conn) = value.to_str().map(str::trim) {
if conn.eq_ignore_ascii_case("keep-alive") {
Some(ConnectionType::KeepAlive)
} else if conn.eq_ignore_ascii_case("close") {
Some(ConnectionType::Close)
} else if conn.eq_ignore_ascii_case("upgrade") {
Some(ConnectionType::Upgrade)
} else {
None
}
} else {
None
};
}
header::UPGRADE => {
if let Ok(val) = value.to_str().map(str::trim) {
if val.eq_ignore_ascii_case("websocket") {
has_upgrade_websocket = true;
}
}
}
header::EXPECT => {
let bytes = value.as_bytes();
if bytes.len() >= 4 && &bytes[0..4] == b"100-" {
expect = true;
}
}
_ => {}
}
headers.append(name, value);
}
}
self.set_connection_type(ka);
if expect {
self.set_expect()
}
// https://datatracker.ietf.org/doc/html/rfc7230#section-3.3.3
if chunked {
// Chunked encoding
Ok(PayloadLength::Payload(PayloadType::Payload(
PayloadDecoder::chunked(),
)))
} else if has_upgrade_websocket {
Ok(PayloadLength::UpgradeWebSocket)
} else if let Some(len) = content_length {
// Content-Length
Ok(PayloadLength::Payload(PayloadType::Payload(
PayloadDecoder::length(len),
)))
} else {
Ok(PayloadLength::None)
}
}
}
impl MessageType for Request {
fn set_connection_type(&mut self, conn_type: Option<ConnectionType>) {
if let Some(ctype) = conn_type {
self.head_mut().set_connection_type(ctype);
}
}
fn set_expect(&mut self) {
self.head_mut().set_expect();
}
fn headers_mut(&mut self) -> &mut HeaderMap {
&mut self.head_mut().headers
}
fn decode(src: &mut BytesMut) -> Result<Option<(Self, PayloadType)>, ParseError> {
let mut headers: [HeaderIndex; MAX_HEADERS] = EMPTY_HEADER_INDEX_ARRAY;
let (len, method, uri, ver, h_len) = {
// SAFETY:
// Create an uninitialized array of `MaybeUninit`. The `assume_init` is safe because the
// type we are claiming to have initialized here is a bunch of `MaybeUninit`s, which
// do not require initialization.
let mut parsed = unsafe {
MaybeUninit::<[MaybeUninit<httparse::Header<'_>>; MAX_HEADERS]>::uninit()
.assume_init()
};
let mut req = httparse::Request::new(&mut []);
match req.parse_with_uninit_headers(src, &mut parsed)? {
httparse::Status::Complete(len) => {
let method = Method::from_bytes(req.method.unwrap().as_bytes())
.map_err(|_| ParseError::Method)?;
let uri = Uri::try_from(req.path.unwrap())?;
let version = if req.version.unwrap() == 1 {
Version::HTTP_11
} else {
Version::HTTP_10
};
HeaderIndex::record(src, req.headers, &mut headers);
(len, method, uri, version, req.headers.len())
}
httparse::Status::Partial => {
return if src.len() >= MAX_BUFFER_SIZE {
trace!("MAX_BUFFER_SIZE unprocessed data reached, closing");
Err(ParseError::TooLarge)
} else {
// Return None to notify more read are needed for parsing request
Ok(None)
};
}
}
};
let mut msg = Request::new();
// convert headers
let mut length = msg.set_headers(&src.split_to(len).freeze(), &headers[..h_len], ver)?;
// disallow HTTP/1.0 POST requests that do not contain a Content-Length headers
// see https://datatracker.ietf.org/doc/html/rfc1945#section-7.2.2
if ver == Version::HTTP_10 && method == Method::POST && length.is_none() {
debug!("no Content-Length specified for HTTP/1.0 POST request");
return Err(ParseError::Header);
}
// Remove CL value if 0 now that all headers and HTTP/1.0 special cases are processed.
// Protects against some request smuggling attacks.
// See https://github.com/actix/actix-web/issues/2767.
if length.is_zero() {
length = PayloadLength::None;
}
// payload decoder
let decoder = match length {
PayloadLength::Payload(pl) => pl,
PayloadLength::UpgradeWebSocket => {
// upgrade (WebSocket)
PayloadType::Stream(PayloadDecoder::eof())
}
PayloadLength::None => {
if method == Method::CONNECT {
PayloadType::Stream(PayloadDecoder::eof())
} else {
PayloadType::None
}
}
};
let head = msg.head_mut();
head.uri = uri;
head.method = method;
head.version = ver;
Ok(Some((msg, decoder)))
}
}
impl MessageType for ResponseHead {
fn set_connection_type(&mut self, conn_type: Option<ConnectionType>) {
if let Some(ctype) = conn_type {
ResponseHead::set_connection_type(self, ctype);
}
}
fn set_expect(&mut self) {}
fn headers_mut(&mut self) -> &mut HeaderMap {
&mut self.headers
}
fn decode(src: &mut BytesMut) -> Result<Option<(Self, PayloadType)>, ParseError> {
let mut headers: [HeaderIndex; MAX_HEADERS] = EMPTY_HEADER_INDEX_ARRAY;
let (len, ver, status, h_len) = {
// SAFETY:
// Create an uninitialized array of `MaybeUninit`. The `assume_init` is safe because the
// type we are claiming to have initialized here is a bunch of `MaybeUninit`s, which
// do not require initialization.
let mut parsed = unsafe {
MaybeUninit::<[MaybeUninit<httparse::Header<'_>>; MAX_HEADERS]>::uninit()
.assume_init()
};
let mut res = httparse::Response::new(&mut []);
let mut config = httparse::ParserConfig::default();
config.allow_spaces_after_header_name_in_responses(true);
match config.parse_response_with_uninit_headers(&mut res, src, &mut parsed)? {
httparse::Status::Complete(len) => {
let version = if res.version.unwrap() == 1 {
Version::HTTP_11
} else {
Version::HTTP_10
};
let status =
StatusCode::from_u16(res.code.unwrap()).map_err(|_| ParseError::Status)?;
HeaderIndex::record(src, res.headers, &mut headers);
(len, version, status, res.headers.len())
}
httparse::Status::Partial => {
return if src.len() >= MAX_BUFFER_SIZE {
error!("MAX_BUFFER_SIZE unprocessed data reached, closing");
Err(ParseError::TooLarge)
} else {
Ok(None)
}
}
}
};
let mut msg = ResponseHead::new(status);
msg.version = ver;
// convert headers
let mut length = msg.set_headers(&src.split_to(len).freeze(), &headers[..h_len], ver)?;
// Remove CL value if 0 now that all headers and HTTP/1.0 special cases are processed.
// Protects against some request smuggling attacks.
// See https://github.com/actix/actix-web/issues/2767.
if length.is_zero() {
length = PayloadLength::None;
}
// message payload
let decoder = if let PayloadLength::Payload(pl) = length {
pl
} else if status == StatusCode::SWITCHING_PROTOCOLS {
// switching protocol or connect
PayloadType::Stream(PayloadDecoder::eof())
} else {
// for HTTP/1.0 read to eof and close connection
if msg.version == Version::HTTP_10 {
msg.set_connection_type(ConnectionType::Close);
PayloadType::Payload(PayloadDecoder::eof())
} else {
PayloadType::None
}
};
Ok(Some((msg, decoder)))
}
}
#[derive(Clone, Copy)]
pub(crate) struct HeaderIndex {
pub(crate) name: (usize, usize),
pub(crate) value: (usize, usize),
}
pub(crate) const EMPTY_HEADER_INDEX: HeaderIndex = HeaderIndex {
name: (0, 0),
value: (0, 0),
};
pub(crate) const EMPTY_HEADER_INDEX_ARRAY: [HeaderIndex; MAX_HEADERS] =
[EMPTY_HEADER_INDEX; MAX_HEADERS];
impl HeaderIndex {
pub(crate) fn record(
bytes: &[u8],
headers: &[httparse::Header<'_>],
indices: &mut [HeaderIndex],
) {
let bytes_ptr = bytes.as_ptr() as usize;
for (header, indices) in headers.iter().zip(indices.iter_mut()) {
let name_start = header.name.as_ptr() as usize - bytes_ptr;
let name_end = name_start + header.name.len();
indices.name = (name_start, name_end);
let value_start = header.value.as_ptr() as usize - bytes_ptr;
let value_end = value_start + header.value.len();
indices.value = (value_start, value_end);
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
/// Chunk type yielded while decoding a payload.
pub enum PayloadItem {
Chunk(Bytes),
Eof,
}
/// Decoder that can handle different payload types.
///
/// If a message body does not use `Transfer-Encoding`, it should include a `Content-Length`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PayloadDecoder {
kind: Kind,
}
impl PayloadDecoder {
/// Constructs a fixed-length payload decoder.
pub fn length(x: u64) -> PayloadDecoder {
PayloadDecoder {
kind: Kind::Length(x),
}
}
/// Constructs a chunked encoding decoder.
pub fn chunked() -> PayloadDecoder {
PayloadDecoder {
kind: Kind::Chunked(ChunkedState::Size, 0),
}
}
/// Creates an decoder that yields chunks until the stream returns EOF.
pub fn eof() -> PayloadDecoder {
PayloadDecoder { kind: Kind::Eof }
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum Kind {
/// A reader used when a `Content-Length` header is passed with a positive integer.
Length(u64),
/// A reader used when `Transfer-Encoding` is `chunked`.
Chunked(ChunkedState, u64),
/// A reader used for responses that don't indicate a length or chunked.
///
/// Note: This should only used for `Response`s. It is illegal for a `Request` to be made
/// without either of `Content-Length` and `Transfer-Encoding: chunked` missing, as explained
/// in [RFC 7230 §3.3.3]:
///
/// > If a Transfer-Encoding header field is present in a response and the chunked transfer
/// > coding is not the final encoding, the message body length is determined by reading the
/// > connection until it is closed by the server. If a Transfer-Encoding header field is
/// > present in a request and the chunked transfer coding is not the final encoding, the
/// > message body length cannot be determined reliably; the server MUST respond with the 400
/// > (Bad Request) status code and then close the connection.
///
/// [RFC 7230 §3.3.3]: https://datatracker.ietf.org/doc/html/rfc7230#section-3.3.3
Eof,
}
impl Decoder for PayloadDecoder {
type Item = PayloadItem;
type Error = io::Error;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
match self.kind {
Kind::Length(ref mut remaining) => {
if *remaining == 0 {
Ok(Some(PayloadItem::Eof))
} else {
if src.is_empty() {
return Ok(None);
}
let len = src.len() as u64;
let buf;
if *remaining > len {
buf = src.split().freeze();
*remaining -= len;
} else {
buf = src.split_to(*remaining as usize).freeze();
*remaining = 0;
};
trace!("Length read: {}", buf.len());
Ok(Some(PayloadItem::Chunk(buf)))
}
}
Kind::Chunked(ref mut state, ref mut size) => {
loop {
let mut buf = None;
// advances the chunked state
*state = match state.step(src, size, &mut buf) {
Poll::Pending => return Ok(None),
Poll::Ready(Ok(state)) => state,
Poll::Ready(Err(err)) => return Err(err),
};
if *state == ChunkedState::End {
trace!("End of chunked stream");
return Ok(Some(PayloadItem::Eof));
}
if let Some(buf) = buf {
return Ok(Some(PayloadItem::Chunk(buf)));
}
if src.is_empty() {
return Ok(None);
}
}
}
Kind::Eof => {
if src.is_empty() {
Ok(None)
} else {
Ok(Some(PayloadItem::Chunk(src.split().freeze())))
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{header::SET_COOKIE, HttpMessage as _};
impl PayloadType {
pub(crate) fn unwrap(self) -> PayloadDecoder {
match self {
PayloadType::Payload(pl) => pl,
_ => panic!(),
}
}
pub(crate) fn is_unhandled(&self) -> bool {
matches!(self, PayloadType::Stream(_))
}
}
impl PayloadItem {
pub(crate) fn chunk(self) -> Bytes {
match self {
PayloadItem::Chunk(chunk) => chunk,
_ => panic!("error"),
}
}
pub(crate) fn eof(&self) -> bool {
matches!(*self, PayloadItem::Eof)
}
}
macro_rules! parse_ready {
($e:expr) => {{
match MessageDecoder::<Request>::default().decode($e) {
Ok(Some((msg, _))) => msg,
Ok(_) => unreachable!("Eof during parsing http request"),
Err(err) => unreachable!("Error during parsing http request: {:?}", err),
}
}};
}
macro_rules! expect_parse_err {
($e:expr) => {{
match MessageDecoder::<Request>::default().decode($e) {
Err(err) => match err {
ParseError::Io(_) => unreachable!("Parse error expected"),
_ => {}
},
_ => unreachable!("Error expected"),
}
}};
}
#[test]
fn test_parse() {
let mut buf = BytesMut::from("GET /test HTTP/1.1\r\n\r\n");
let mut reader = MessageDecoder::<Request>::default();
match reader.decode(&mut buf) {
Ok(Some((req, _))) => {
assert_eq!(req.version(), Version::HTTP_11);
assert_eq!(*req.method(), Method::GET);
assert_eq!(req.path(), "/test");
}
Ok(_) | Err(_) => unreachable!("Error during parsing http request"),
}
}
#[test]
fn test_parse_partial() {
let mut buf = BytesMut::from("PUT /test HTTP/1");
let mut reader = MessageDecoder::<Request>::default();
assert!(reader.decode(&mut buf).unwrap().is_none());
buf.extend(b".1\r\n\r\n");
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.version(), Version::HTTP_11);
assert_eq!(*req.method(), Method::PUT);
assert_eq!(req.path(), "/test");
}
#[test]
fn parse_h09_reject() {
let mut buf = BytesMut::from(
"GET /test1 HTTP/0.9\r\n\
\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
reader.decode(&mut buf).unwrap_err();
let mut buf = BytesMut::from(
"POST /test2 HTTP/0.9\r\n\
Content-Length: 3\r\n\
\r\n
abc",
);
let mut reader = MessageDecoder::<Request>::default();
reader.decode(&mut buf).unwrap_err();
}
#[test]
fn parse_h10_get() {
let mut buf = BytesMut::from(
"GET /test1 HTTP/1.0\r\n\
\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.version(), Version::HTTP_10);
assert_eq!(*req.method(), Method::GET);
assert_eq!(req.path(), "/test1");
let mut buf = BytesMut::from(
"GET /test2 HTTP/1.0\r\n\
Content-Length: 0\r\n\
\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.version(), Version::HTTP_10);
assert_eq!(*req.method(), Method::GET);
assert_eq!(req.path(), "/test2");
let mut buf = BytesMut::from(
"GET /test3 HTTP/1.0\r\n\
Content-Length: 3\r\n\
\r\n
abc",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.version(), Version::HTTP_10);
assert_eq!(*req.method(), Method::GET);
assert_eq!(req.path(), "/test3");
}
#[test]
fn parse_h10_post() {
let mut buf = BytesMut::from(
"POST /test1 HTTP/1.0\r\n\
Content-Length: 3\r\n\
\r\n\
abc",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.version(), Version::HTTP_10);
assert_eq!(*req.method(), Method::POST);
assert_eq!(req.path(), "/test1");
let mut buf = BytesMut::from(
"POST /test2 HTTP/1.0\r\n\
Content-Length: 0\r\n\
\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.version(), Version::HTTP_10);
assert_eq!(*req.method(), Method::POST);
assert_eq!(req.path(), "/test2");
let mut buf = BytesMut::from(
"POST /test3 HTTP/1.0\r\n\
\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let err = reader.decode(&mut buf).unwrap_err();
assert!(err.to_string().contains("Header"))
}
#[test]
fn test_parse_body() {
let mut buf = BytesMut::from("GET /test HTTP/1.1\r\nContent-Length: 4\r\n\r\nbody");
let mut reader = MessageDecoder::<Request>::default();
let (req, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
assert_eq!(req.version(), Version::HTTP_11);
assert_eq!(*req.method(), Method::GET);
assert_eq!(req.path(), "/test");
assert_eq!(
pl.decode(&mut buf).unwrap().unwrap().chunk().as_ref(),
b"body"
);
}
#[test]
fn test_parse_body_crlf() {
let mut buf = BytesMut::from("\r\nGET /test HTTP/1.1\r\nContent-Length: 4\r\n\r\nbody");
let mut reader = MessageDecoder::<Request>::default();
let (req, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
assert_eq!(req.version(), Version::HTTP_11);
assert_eq!(*req.method(), Method::GET);
assert_eq!(req.path(), "/test");
assert_eq!(
pl.decode(&mut buf).unwrap().unwrap().chunk().as_ref(),
b"body"
);
}
#[test]
fn test_parse_partial_eof() {
let mut buf = BytesMut::from("GET /test HTTP/1.1\r\n");
let mut reader = MessageDecoder::<Request>::default();
assert!(reader.decode(&mut buf).unwrap().is_none());
buf.extend(b"\r\n");
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.version(), Version::HTTP_11);
assert_eq!(*req.method(), Method::GET);
assert_eq!(req.path(), "/test");
}
#[test]
fn test_headers_split_field() {
let mut buf = BytesMut::from("GET /test HTTP/1.1\r\n");
let mut reader = MessageDecoder::<Request>::default();
assert! { reader.decode(&mut buf).unwrap().is_none() }
buf.extend(b"t");
assert! { reader.decode(&mut buf).unwrap().is_none() }
buf.extend(b"es");
assert! { reader.decode(&mut buf).unwrap().is_none() }
buf.extend(b"t: value\r\n\r\n");
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.version(), Version::HTTP_11);
assert_eq!(*req.method(), Method::GET);
assert_eq!(req.path(), "/test");
assert_eq!(
req.headers()
.get(HeaderName::try_from("test").unwrap())
.unwrap()
.as_bytes(),
b"value"
);
}
#[test]
fn test_headers_multi_value() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
Set-Cookie: c1=cookie1\r\n\
Set-Cookie: c2=cookie2\r\n\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, _) = reader.decode(&mut buf).unwrap().unwrap();
let val: Vec<_> = req
.headers()
.get_all(SET_COOKIE)
.map(|v| v.to_str().unwrap().to_owned())
.collect();
assert_eq!(val[0], "c1=cookie1");
assert_eq!(val[1], "c2=cookie2");
}
#[test]
fn test_conn_default_1_0() {
let req = parse_ready!(&mut BytesMut::from("GET /test HTTP/1.0\r\n\r\n"));
assert_eq!(req.head().connection_type(), ConnectionType::Close);
}
#[test]
fn test_conn_default_1_1() {
let req = parse_ready!(&mut BytesMut::from("GET /test HTTP/1.1\r\n\r\n"));
assert_eq!(req.head().connection_type(), ConnectionType::KeepAlive);
}
#[test]
fn test_conn_close() {
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
connection: close\r\n\r\n",
));
assert_eq!(req.head().connection_type(), ConnectionType::Close);
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
connection: Close\r\n\r\n",
));
assert_eq!(req.head().connection_type(), ConnectionType::Close);
}
#[test]
fn test_conn_close_1_0() {
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.0\r\n\
connection: close\r\n\r\n",
));
assert_eq!(req.head().connection_type(), ConnectionType::Close);
}
#[test]
fn test_conn_keep_alive_1_0() {
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.0\r\n\
connection: keep-alive\r\n\r\n",
));
assert_eq!(req.head().connection_type(), ConnectionType::KeepAlive);
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.0\r\n\
connection: Keep-Alive\r\n\r\n",
));
assert_eq!(req.head().connection_type(), ConnectionType::KeepAlive);
}
#[test]
fn test_conn_keep_alive_1_1() {
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
connection: keep-alive\r\n\r\n",
));
assert_eq!(req.head().connection_type(), ConnectionType::KeepAlive);
}
#[test]
fn test_conn_other_1_0() {
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.0\r\n\
connection: other\r\n\r\n",
));
assert_eq!(req.head().connection_type(), ConnectionType::Close);
}
#[test]
fn test_conn_other_1_1() {
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
connection: other\r\n\r\n",
));
assert_eq!(req.head().connection_type(), ConnectionType::KeepAlive);
}
#[test]
fn test_conn_upgrade() {
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
upgrade: websockets\r\n\
connection: upgrade\r\n\r\n",
));
assert!(req.upgrade());
assert_eq!(req.head().connection_type(), ConnectionType::Upgrade);
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
upgrade: Websockets\r\n\
connection: Upgrade\r\n\r\n",
));
assert!(req.upgrade());
assert_eq!(req.head().connection_type(), ConnectionType::Upgrade);
}
#[test]
fn test_conn_upgrade_connect_method() {
let req = parse_ready!(&mut BytesMut::from(
"CONNECT /test HTTP/1.1\r\n\
content-type: text/plain\r\n\r\n",
));
assert!(req.upgrade());
}
#[test]
fn test_headers_bad_content_length() {
// string CL
expect_parse_err!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
content-length: line\r\n\r\n",
));
// negative CL
expect_parse_err!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
content-length: -1\r\n\r\n",
));
}
#[test]
fn octal_ish_cl_parsed_as_decimal() {
let mut buf = BytesMut::from(
"POST /test HTTP/1.1\r\n\
content-length: 011\r\n\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (_req, pl) = reader.decode(&mut buf).unwrap().unwrap();
assert!(matches!(
pl,
PayloadType::Payload(pl) if pl == PayloadDecoder::length(11)
));
}
#[test]
fn test_invalid_header() {
expect_parse_err!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
test line\r\n\r\n",
));
}
#[test]
fn test_invalid_name() {
expect_parse_err!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
test[]: line\r\n\r\n",
));
}
#[test]
fn test_http_request_bad_status_line() {
expect_parse_err!(&mut BytesMut::from("getpath \r\n\r\n"));
}
#[test]
fn test_http_request_upgrade_websocket() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
connection: upgrade\r\n\
upgrade: websocket\r\n\r\n\
some raw data",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, pl) = reader.decode(&mut buf).unwrap().unwrap();
assert_eq!(req.head().connection_type(), ConnectionType::Upgrade);
assert!(req.upgrade());
assert!(pl.is_unhandled());
}
#[test]
fn test_http_request_upgrade_h2c() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
connection: upgrade, http2-settings\r\n\
upgrade: h2c\r\n\
http2-settings: dummy\r\n\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (req, pl) = reader.decode(&mut buf).unwrap().unwrap();
// `connection: upgrade, http2-settings` doesn't work properly..
// see MessageType::set_headers().
//
// The line below should be:
// assert_eq!(req.head().connection_type(), ConnectionType::Upgrade);
assert_eq!(req.head().connection_type(), ConnectionType::KeepAlive);
assert!(req.upgrade());
assert!(!pl.is_unhandled());
}
#[test]
fn test_http_request_parser_utf8() {
let req = parse_ready!(&mut BytesMut::from(
"GET /test HTTP/1.1\r\n\
x-test: тест\r\n\r\n",
));
assert_eq!(
req.headers().get("x-test").unwrap().as_bytes(),
"тест".as_bytes()
);
}
#[test]
fn test_http_request_parser_two_slashes() {
let req = parse_ready!(&mut BytesMut::from("GET //path HTTP/1.1\r\n\r\n"));
assert_eq!(req.path(), "//path");
}
#[test]
fn test_http_request_parser_bad_method() {
expect_parse_err!(&mut BytesMut::from("!12%()+=~$ /get HTTP/1.1\r\n\r\n"));
}
#[test]
fn test_http_request_parser_bad_version() {
expect_parse_err!(&mut BytesMut::from("GET //get HT/11\r\n\r\n"));
}
#[test]
fn test_response_http10_read_until_eof() {
let mut buf = BytesMut::from("HTTP/1.0 200 Ok\r\n\r\ntest data");
let mut reader = MessageDecoder::<ResponseHead>::default();
let (_msg, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
let chunk = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(chunk, PayloadItem::Chunk(Bytes::from_static(b"test data")));
}
#[test]
fn hrs_multiple_content_length() {
expect_parse_err!(&mut BytesMut::from(
"GET / HTTP/1.1\r\n\
Host: example.com\r\n\
Content-Length: 4\r\n\
Content-Length: 2\r\n\
\r\n\
abcd",
));
expect_parse_err!(&mut BytesMut::from(
"GET / HTTP/1.1\r\n\
Host: example.com\r\n\
Content-Length: 0\r\n\
Content-Length: 2\r\n\
\r\n\
ab",
));
}
#[test]
fn hrs_content_length_plus() {
expect_parse_err!(&mut BytesMut::from(
"GET / HTTP/1.1\r\n\
Host: example.com\r\n\
Content-Length: +3\r\n\
\r\n\
000",
));
}
#[test]
fn hrs_te_http10() {
// in HTTP/1.0 transfer encoding is ignored and must therefore contain a CL header
expect_parse_err!(&mut BytesMut::from(
"POST / HTTP/1.0\r\n\
Host: example.com\r\n\
Transfer-Encoding: chunked\r\n\
\r\n\
3\r\n\
aaa\r\n\
0\r\n\
",
));
}
#[test]
fn hrs_cl_and_te_http10() {
// in HTTP/1.0 transfer encoding is simply ignored so it's fine to have both
let mut buf = BytesMut::from(
"GET / HTTP/1.0\r\n\
Host: example.com\r\n\
Content-Length: 3\r\n\
Transfer-Encoding: chunked\r\n\
\r\n\
000",
);
parse_ready!(&mut buf);
}
#[test]
fn hrs_unknown_transfer_encoding() {
let mut buf = BytesMut::from(
"GET / HTTP/1.1\r\n\
Host: example.com\r\n\
Transfer-Encoding: JUNK\r\n\
Transfer-Encoding: chunked\r\n\
\r\n\
5\r\n\
hello\r\n\
0",
);
expect_parse_err!(&mut buf);
}
#[test]
fn hrs_multiple_transfer_encoding() {
let mut buf = BytesMut::from(
"GET / HTTP/1.1\r\n\
Host: example.com\r\n\
Content-Length: 51\r\n\
Transfer-Encoding: identity\r\n\
Transfer-Encoding: chunked\r\n\
\r\n\
0\r\n\
\r\n\
GET /forbidden HTTP/1.1\r\n\
Host: example.com\r\n\r\n",
);
expect_parse_err!(&mut buf);
}
#[test]
fn transfer_encoding_agrees() {
let mut buf = BytesMut::from(
"GET /test HTTP/1.1\r\n\
Host: example.com\r\n\
Content-Length: 3\r\n\
Transfer-Encoding: identity\r\n\
\r\n\
0\r\n",
);
let mut reader = MessageDecoder::<Request>::default();
let (_msg, pl) = reader.decode(&mut buf).unwrap().unwrap();
let mut pl = pl.unwrap();
let chunk = pl.decode(&mut buf).unwrap().unwrap();
assert_eq!(chunk, PayloadItem::Chunk(Bytes::from_static(b"0\r\n")));
}
}
|
use std::{
collections::VecDeque,
fmt,
future::Future,
io, mem, net,
pin::Pin,
rc::Rc,
task::{Context, Poll},
};
use actix_codec::{Framed, FramedParts};
use actix_rt::time::sleep_until;
use actix_service::Service;
use bitflags::bitflags;
use bytes::{Buf, BytesMut};
use futures_core::ready;
use pin_project_lite::pin_project;
use tokio::io::{AsyncRead, AsyncWrite};
use tokio_util::codec::{Decoder as _, Encoder as _};
use tracing::{error, trace};
use super::{
codec::Codec,
decoder::MAX_BUFFER_SIZE,
payload::{Payload, PayloadSender, PayloadStatus},
timer::TimerState,
Message, MessageType,
};
use crate::{
body::{BodySize, BoxBody, MessageBody},
config::ServiceConfig,
error::{DispatchError, ParseError, PayloadError},
service::HttpFlow,
Error, Extensions, OnConnectData, Request, Response, StatusCode,
};
const LW_BUFFER_SIZE: usize = 1024;
const HW_BUFFER_SIZE: usize = 1024 * 8;
const MAX_PIPELINED_MESSAGES: usize = 16;
bitflags! {
#[derive(Debug, Clone, Copy)]
pub struct Flags: u8 {
/// Set when stream is read for first time.
const STARTED = 0b0000_0001;
/// Set when full request-response cycle has occurred.
const FINISHED = 0b0000_0010;
/// Set if connection is in keep-alive (inactive) state.
const KEEP_ALIVE = 0b0000_0100;
/// Set if in shutdown procedure.
const SHUTDOWN = 0b0000_1000;
/// Set if read-half is disconnected.
const READ_DISCONNECT = 0b0001_0000;
/// Set if write-half is disconnected.
const WRITE_DISCONNECT = 0b0010_0000;
}
}
// there's 2 versions of Dispatcher state because of:
// https://github.com/taiki-e/pin-project-lite/issues/3
//
// tl;dr: pin-project-lite doesn't play well with other attribute macros
#[cfg(not(test))]
pin_project! {
/// Dispatcher for HTTP/1.1 protocol
pub struct Dispatcher<T, S, B, X, U>
where
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, Codec>), Response = ()>,
U::Error: fmt::Display,
{
#[pin]
inner: DispatcherState<T, S, B, X, U>,
}
}
#[cfg(test)]
pin_project! {
/// Dispatcher for HTTP/1.1 protocol
pub struct Dispatcher<T, S, B, X, U>
where
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, Codec>), Response = ()>,
U::Error: fmt::Display,
{
#[pin]
pub(super) inner: DispatcherState<T, S, B, X, U>,
// used in tests
pub(super) poll_count: u64,
}
}
pin_project! {
#[project = DispatcherStateProj]
pub(super) enum DispatcherState<T, S, B, X, U>
where
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, Codec>), Response = ()>,
U::Error: fmt::Display,
{
Normal { #[pin] inner: InnerDispatcher<T, S, B, X, U> },
Upgrade { #[pin] fut: U::Future },
}
}
pin_project! {
#[project = InnerDispatcherProj]
pub(super) struct InnerDispatcher<T, S, B, X, U>
where
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, Codec>), Response = ()>,
U::Error: fmt::Display,
{
flow: Rc<HttpFlow<S, X, U>>,
pub(super) flags: Flags,
peer_addr: Option<net::SocketAddr>,
conn_data: Option<Rc<Extensions>>,
config: ServiceConfig,
error: Option<DispatchError>,
#[pin]
pub(super) state: State<S, B, X>,
// when Some(_) dispatcher is in state of receiving request payload
payload: Option<PayloadSender>,
messages: VecDeque<DispatcherMessage>,
head_timer: TimerState,
ka_timer: TimerState,
shutdown_timer: TimerState,
pub(super) io: Option<T>,
read_buf: BytesMut,
write_buf: BytesMut,
codec: Codec,
}
}
enum DispatcherMessage {
Item(Request),
Upgrade(Request),
Error(Response<()>),
}
pin_project! {
#[project = StateProj]
pub(super) enum State<S, B, X>
where
S: Service<Request>,
X: Service<Request, Response = Request>,
B: MessageBody,
{
None,
ExpectCall { #[pin] fut: X::Future },
ServiceCall { #[pin] fut: S::Future },
SendPayload { #[pin] body: B },
SendErrorPayload { #[pin] body: BoxBody },
}
}
impl<S, B, X> State<S, B, X>
where
S: Service<Request>,
X: Service<Request, Response = Request>,
B: MessageBody,
{
pub(super) fn is_none(&self) -> bool {
matches!(self, State::None)
}
}
impl<S, B, X> fmt::Debug for State<S, B, X>
where
S: Service<Request>,
X: Service<Request, Response = Request>,
B: MessageBody,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::None => write!(f, "State::None"),
Self::ExpectCall { .. } => f.debug_struct("State::ExpectCall").finish_non_exhaustive(),
Self::ServiceCall { .. } => {
f.debug_struct("State::ServiceCall").finish_non_exhaustive()
}
Self::SendPayload { .. } => {
f.debug_struct("State::SendPayload").finish_non_exhaustive()
}
Self::SendErrorPayload { .. } => f
.debug_struct("State::SendErrorPayload")
.finish_non_exhaustive(),
}
}
}
#[derive(Debug)]
enum PollResponse {
Upgrade(Request),
DoNothing,
DrainWriteBuf,
}
impl<T, S, B, X, U> Dispatcher<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
S::Response: Into<Response<B>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, Codec>), Response = ()>,
U::Error: fmt::Display,
{
/// Create HTTP/1 dispatcher.
pub(crate) fn new(
io: T,
flow: Rc<HttpFlow<S, X, U>>,
config: ServiceConfig,
peer_addr: Option<net::SocketAddr>,
conn_data: OnConnectData,
) -> Self {
Dispatcher {
inner: DispatcherState::Normal {
inner: InnerDispatcher {
flow,
flags: Flags::empty(),
peer_addr,
conn_data: conn_data.0.map(Rc::new),
config: config.clone(),
error: None,
state: State::None,
payload: None,
messages: VecDeque::new(),
head_timer: TimerState::new(config.client_request_deadline().is_some()),
ka_timer: TimerState::new(config.keep_alive().enabled()),
shutdown_timer: TimerState::new(config.client_disconnect_deadline().is_some()),
io: Some(io),
read_buf: BytesMut::with_capacity(HW_BUFFER_SIZE),
write_buf: BytesMut::with_capacity(HW_BUFFER_SIZE),
codec: Codec::new(config),
},
},
#[cfg(test)]
poll_count: 0,
}
}
}
impl<T, S, B, X, U> InnerDispatcher<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
S::Response: Into<Response<B>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, Codec>), Response = ()>,
U::Error: fmt::Display,
{
fn can_read(&self, cx: &mut Context<'_>) -> bool {
if self.flags.contains(Flags::READ_DISCONNECT) {
false
} else if let Some(ref info) = self.payload {
info.need_read(cx) == PayloadStatus::Read
} else {
true
}
}
fn client_disconnected(self: Pin<&mut Self>) {
let this = self.project();
this.flags
.insert(Flags::READ_DISCONNECT | Flags::WRITE_DISCONNECT);
if let Some(mut payload) = this.payload.take() {
payload.set_error(PayloadError::Incomplete(None));
}
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
let InnerDispatcherProj { io, write_buf, .. } = self.project();
let mut io = Pin::new(io.as_mut().unwrap());
let len = write_buf.len();
let mut written = 0;
while written < len {
match io.as_mut().poll_write(cx, &write_buf[written..])? {
Poll::Ready(0) => {
error!("write zero; closing");
return Poll::Ready(Err(io::Error::new(io::ErrorKind::WriteZero, "")));
}
Poll::Ready(n) => written += n,
Poll::Pending => {
write_buf.advance(written);
return Poll::Pending;
}
}
}
// everything has written to I/O; clear buffer
write_buf.clear();
// flush the I/O and check if get blocked
io.poll_flush(cx)
}
fn send_response_inner(
self: Pin<&mut Self>,
res: Response<()>,
body: &impl MessageBody,
) -> Result<BodySize, DispatchError> {
let this = self.project();
let size = body.size();
this.codec
.encode(Message::Item((res, size)), this.write_buf)
.map_err(|err| {
if let Some(mut payload) = this.payload.take() {
payload.set_error(PayloadError::Incomplete(None));
}
DispatchError::Io(err)
})?;
Ok(size)
}
fn send_response(
mut self: Pin<&mut Self>,
res: Response<()>,
body: B,
) -> Result<(), DispatchError> {
let size = self.as_mut().send_response_inner(res, &body)?;
let mut this = self.project();
this.state.set(match size {
BodySize::None | BodySize::Sized(0) => {
this.flags.insert(Flags::FINISHED);
State::None
}
_ => State::SendPayload { body },
});
Ok(())
}
fn send_error_response(
mut self: Pin<&mut Self>,
res: Response<()>,
body: BoxBody,
) -> Result<(), DispatchError> {
let size = self.as_mut().send_response_inner(res, &body)?;
let mut this = self.project();
this.state.set(match size {
BodySize::None | BodySize::Sized(0) => {
this.flags.insert(Flags::FINISHED);
State::None
}
_ => State::SendErrorPayload { body },
});
Ok(())
}
fn send_continue(self: Pin<&mut Self>) {
self.project()
.write_buf
.extend_from_slice(b"HTTP/1.1 100 Continue\r\n\r\n");
}
fn poll_response(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Result<PollResponse, DispatchError> {
'res: loop {
let mut this = self.as_mut().project();
match this.state.as_mut().project() {
// no future is in InnerDispatcher state; pop next message
StateProj::None => match this.messages.pop_front() {
// handle request message
Some(DispatcherMessage::Item(req)) => {
// Handle `EXPECT: 100-Continue` header
if req.head().expect() {
// set InnerDispatcher state and continue loop to poll it
let fut = this.flow.expect.call(req);
this.state.set(State::ExpectCall { fut });
} else {
// set InnerDispatcher state and continue loop to poll it
let fut = this.flow.service.call(req);
this.state.set(State::ServiceCall { fut });
};
}
// handle error message
Some(DispatcherMessage::Error(res)) => {
// send_response would update InnerDispatcher state to SendPayload or None
// (If response body is empty)
// continue loop to poll it
self.as_mut().send_error_response(res, BoxBody::new(()))?;
}
// return with upgrade request and poll it exclusively
Some(DispatcherMessage::Upgrade(req)) => return Ok(PollResponse::Upgrade(req)),
// all messages are dealt with
None => {
// start keep-alive if last request allowed it
this.flags.set(Flags::KEEP_ALIVE, this.codec.keep_alive());
return Ok(PollResponse::DoNothing);
}
},
StateProj::ServiceCall { fut } => {
match fut.poll(cx) {
// service call resolved. send response.
Poll::Ready(Ok(res)) => {
let (res, body) = res.into().replace_body(());
self.as_mut().send_response(res, body)?;
}
// send service call error as response
Poll::Ready(Err(err)) => {
let res: Response<BoxBody> = err.into();
let (res, body) = res.replace_body(());
self.as_mut().send_error_response(res, body)?;
}
// service call pending and could be waiting for more chunk messages
// (pipeline message limit and/or payload can_read limit)
Poll::Pending => {
// no new message is decoded and no new payload is fed
// nothing to do except waiting for new incoming data from client
if !self.as_mut().poll_request(cx)? {
return Ok(PollResponse::DoNothing);
}
// else loop
}
}
}
StateProj::SendPayload { mut body } => {
// keep populate writer buffer until buffer size limit hit,
// get blocked or finished.
while this.write_buf.len() < super::payload::MAX_BUFFER_SIZE {
match body.as_mut().poll_next(cx) {
Poll::Ready(Some(Ok(item))) => {
this.codec
.encode(Message::Chunk(Some(item)), this.write_buf)?;
}
Poll::Ready(None) => {
this.codec.encode(Message::Chunk(None), this.write_buf)?;
// payload stream finished.
// set state to None and handle next message
this.state.set(State::None);
this.flags.insert(Flags::FINISHED);
continue 'res;
}
Poll::Ready(Some(Err(err))) => {
let err = err.into();
tracing::error!("Response payload stream error: {err:?}");
this.flags.insert(Flags::FINISHED);
return Err(DispatchError::Body(err));
}
Poll::Pending => return Ok(PollResponse::DoNothing),
}
}
// buffer is beyond max size
// return and try to write the whole buffer to I/O stream.
return Ok(PollResponse::DrainWriteBuf);
}
StateProj::SendErrorPayload { mut body } => {
// TODO: de-dupe impl with SendPayload
// keep populate writer buffer until buffer size limit hit,
// get blocked or finished.
while this.write_buf.len() < super::payload::MAX_BUFFER_SIZE {
match body.as_mut().poll_next(cx) {
Poll::Ready(Some(Ok(item))) => {
this.codec
.encode(Message::Chunk(Some(item)), this.write_buf)?;
}
Poll::Ready(None) => {
this.codec.encode(Message::Chunk(None), this.write_buf)?;
// payload stream finished
// set state to None and handle next message
this.state.set(State::None);
this.flags.insert(Flags::FINISHED);
continue 'res;
}
Poll::Ready(Some(Err(err))) => {
tracing::error!("Response payload stream error: {err:?}");
this.flags.insert(Flags::FINISHED);
return Err(DispatchError::Body(
Error::new_body().with_cause(err).into(),
));
}
Poll::Pending => return Ok(PollResponse::DoNothing),
}
}
// buffer is beyond max size
// return and try to write the whole buffer to stream
return Ok(PollResponse::DrainWriteBuf);
}
StateProj::ExpectCall { fut } => {
trace!(" calling expect service");
match fut.poll(cx) {
// expect resolved. write continue to buffer and set InnerDispatcher state
// to service call.
Poll::Ready(Ok(req)) => {
this.write_buf
.extend_from_slice(b"HTTP/1.1 100 Continue\r\n\r\n");
let fut = this.flow.service.call(req);
this.state.set(State::ServiceCall { fut });
}
// send expect error as response
Poll::Ready(Err(err)) => {
let res: Response<BoxBody> = err.into();
let (res, body) = res.replace_body(());
self.as_mut().send_error_response(res, body)?;
}
// expect must be solved before progress can be made.
Poll::Pending => return Ok(PollResponse::DoNothing),
}
}
}
}
}
fn handle_request(
mut self: Pin<&mut Self>,
req: Request,
cx: &mut Context<'_>,
) -> Result<(), DispatchError> {
// initialize dispatcher state
{
let mut this = self.as_mut().project();
// Handle `EXPECT: 100-Continue` header
if req.head().expect() {
// set dispatcher state to call expect handler
let fut = this.flow.expect.call(req);
this.state.set(State::ExpectCall { fut });
} else {
// set dispatcher state to call service handler
let fut = this.flow.service.call(req);
this.state.set(State::ServiceCall { fut });
};
};
// eagerly poll the future once (or twice if expect is resolved immediately).
loop {
match self.as_mut().project().state.project() {
StateProj::ExpectCall { fut } => {
match fut.poll(cx) {
// expect is resolved; continue loop and poll the service call branch.
Poll::Ready(Ok(req)) => {
self.as_mut().send_continue();
let mut this = self.as_mut().project();
let fut = this.flow.service.call(req);
this.state.set(State::ServiceCall { fut });
continue;
}
// future is error; send response and return a result
// on success to notify the dispatcher a new state is set and the outer loop
// should be continued
Poll::Ready(Err(err)) => {
let res: Response<BoxBody> = err.into();
let (res, body) = res.replace_body(());
return self.send_error_response(res, body);
}
// future is pending; return Ok(()) to notify that a new state is
// set and the outer loop should be continue.
Poll::Pending => return Ok(()),
}
}
StateProj::ServiceCall { fut } => {
// return no matter the service call future's result.
return match fut.poll(cx) {
// Future is resolved. Send response and return a result. On success
// to notify the dispatcher a new state is set and the outer loop
// should be continue.
Poll::Ready(Ok(res)) => {
let (res, body) = res.into().replace_body(());
self.as_mut().send_response(res, body)
}
// see the comment on ExpectCall state branch's Pending
Poll::Pending => Ok(()),
// see the comment on ExpectCall state branch's Ready(Err(_))
Poll::Ready(Err(err)) => {
let res: Response<BoxBody> = err.into();
let (res, body) = res.replace_body(());
self.as_mut().send_error_response(res, body)
}
};
}
_ => {
unreachable!("State must be set to ServiceCall or ExceptCall in handle_request")
}
}
}
}
/// Process one incoming request.
///
/// Returns true if any meaningful work was done.
fn poll_request(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Result<bool, DispatchError> {
let pipeline_queue_full = self.messages.len() >= MAX_PIPELINED_MESSAGES;
let can_not_read = !self.can_read(cx);
// limit amount of non-processed requests
if pipeline_queue_full || can_not_read {
return Ok(false);
}
let mut this = self.as_mut().project();
let mut updated = false;
// decode from read buf as many full requests as possible
loop {
match this.codec.decode(this.read_buf) {
Ok(Some(msg)) => {
updated = true;
match msg {
Message::Item(mut req) => {
// head timer only applies to first request on connection
this.head_timer.clear(line!());
req.head_mut().peer_addr = *this.peer_addr;
req.conn_data.clone_from(this.conn_data);
match this.codec.message_type() {
// request has no payload
MessageType::None => {}
// Request is upgradable. Add upgrade message and break.
// Everything remaining in read buffer will be handed to
// upgraded Request.
MessageType::Stream if this.flow.upgrade.is_some() => {
this.messages.push_back(DispatcherMessage::Upgrade(req));
break;
}
// request is not upgradable
MessageType::Payload | MessageType::Stream => {
// PayloadSender and Payload are smart pointers share the
// same state. PayloadSender is attached to dispatcher and used
// to sink new chunked request data to state. Payload is
// attached to Request and passed to Service::call where the
// state can be collected and consumed.
let (sender, payload) = Payload::create(false);
*req.payload() = crate::Payload::H1 { payload };
*this.payload = Some(sender);
}
}
// handle request early when no future in InnerDispatcher state.
if this.state.is_none() {
self.as_mut().handle_request(req, cx)?;
this = self.as_mut().project();
} else {
this.messages.push_back(DispatcherMessage::Item(req));
}
}
Message::Chunk(Some(chunk)) => {
if let Some(ref mut payload) = this.payload {
payload.feed_data(chunk);
} else {
error!("Internal server error: unexpected payload chunk");
this.flags.insert(Flags::READ_DISCONNECT);
this.messages.push_back(DispatcherMessage::Error(
Response::internal_server_error().drop_body(),
));
*this.error = Some(DispatchError::InternalError);
break;
}
}
Message::Chunk(None) => {
if let Some(mut payload) = this.payload.take() {
payload.feed_eof();
} else {
error!("Internal server error: unexpected eof");
this.flags.insert(Flags::READ_DISCONNECT);
this.messages.push_back(DispatcherMessage::Error(
Response::internal_server_error().drop_body(),
));
*this.error = Some(DispatchError::InternalError);
break;
}
}
}
}
// decode is partial and buffer is not full yet
// break and wait for more read
Ok(None) => break,
Err(ParseError::Io(err)) => {
trace!("I/O error: {}", &err);
self.as_mut().client_disconnected();
this = self.as_mut().project();
*this.error = Some(DispatchError::Io(err));
break;
}
Err(ParseError::TooLarge) => {
trace!("request head was too big; returning 431 response");
if let Some(mut payload) = this.payload.take() {
payload.set_error(PayloadError::Overflow);
}
// request heads that overflow buffer size return a 431 error
this.messages
.push_back(DispatcherMessage::Error(Response::with_body(
StatusCode::REQUEST_HEADER_FIELDS_TOO_LARGE,
(),
)));
this.flags.insert(Flags::READ_DISCONNECT);
*this.error = Some(ParseError::TooLarge.into());
break;
}
Err(err) => {
trace!("parse error {}", &err);
if let Some(mut payload) = this.payload.take() {
payload.set_error(PayloadError::EncodingCorrupted);
}
// malformed requests should be responded with 400
this.messages.push_back(DispatcherMessage::Error(
Response::bad_request().drop_body(),
));
this.flags.insert(Flags::READ_DISCONNECT);
*this.error = Some(err.into());
break;
}
}
}
Ok(updated)
}
fn poll_head_timer(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Result<(), DispatchError> {
let this = self.as_mut().project();
if let TimerState::Active { timer } = this.head_timer {
if timer.as_mut().poll(cx).is_ready() {
// timeout on first request (slow request) return 408
trace!("timed out on slow request; replying with 408 and closing connection");
let _ = self.as_mut().send_error_response(
Response::with_body(StatusCode::REQUEST_TIMEOUT, ()),
BoxBody::new(()),
);
self.project().flags.insert(Flags::SHUTDOWN);
}
};
Ok(())
}
fn poll_ka_timer(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Result<(), DispatchError> {
let this = self.as_mut().project();
if let TimerState::Active { timer } = this.ka_timer {
debug_assert!(
this.flags.contains(Flags::KEEP_ALIVE),
"keep-alive flag should be set when timer is active",
);
debug_assert!(
this.state.is_none(),
"dispatcher should not be in keep-alive phase if state is not none: {:?}",
this.state,
);
// Assert removed by @robjtede on account of issue #2655. There are cases where an I/O
// flush can be pending after entering the keep-alive state causing the subsequent flush
// wake up to panic here. This appears to be a Linux-only problem. Leaving original code
// below for posterity because a simple and reliable test could not be found to trigger
// the behavior.
// debug_assert!(
// this.write_buf.is_empty(),
// "dispatcher should not be in keep-alive phase if write_buf is not empty",
// );
// keep-alive timer has timed out
if timer.as_mut().poll(cx).is_ready() {
// no tasks at hand
trace!("timer timed out; closing connection");
this.flags.insert(Flags::SHUTDOWN);
if let Some(deadline) = this.config.client_disconnect_deadline() {
// start shutdown timeout if enabled
this.shutdown_timer
.set_and_init(cx, sleep_until(deadline.into()), line!());
} else {
// no shutdown timeout, drop socket
this.flags.insert(Flags::WRITE_DISCONNECT);
}
}
}
Ok(())
}
fn poll_shutdown_timer(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Result<(), DispatchError> {
let this = self.as_mut().project();
if let TimerState::Active { timer } = this.shutdown_timer {
debug_assert!(
this.flags.contains(Flags::SHUTDOWN),
"shutdown flag should be set when timer is active",
);
// timed-out during shutdown; drop connection
if timer.as_mut().poll(cx).is_ready() {
trace!("timed-out during shutdown");
return Err(DispatchError::DisconnectTimeout);
}
}
Ok(())
}
/// Poll head, keep-alive, and disconnect timer.
fn poll_timers(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Result<(), DispatchError> {
self.as_mut().poll_head_timer(cx)?;
self.as_mut().poll_ka_timer(cx)?;
self.as_mut().poll_shutdown_timer(cx)?;
Ok(())
}
/// Returns true when I/O stream can be disconnected after write to it.
///
/// It covers these conditions:
/// - `std::io::ErrorKind::ConnectionReset` after partial read;
/// - all data read done.
#[inline(always)] // TODO: bench this inline
fn read_available(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Result<bool, DispatchError> {
let this = self.project();
if this.flags.contains(Flags::READ_DISCONNECT) {
return Ok(false);
};
let mut io = Pin::new(this.io.as_mut().unwrap());
let mut read_some = false;
loop {
// Return early when read buf exceed decoder's max buffer size.
if this.read_buf.len() >= MAX_BUFFER_SIZE {
// At this point it's not known IO stream is still scheduled to be waked up so
// force wake up dispatcher just in case.
//
// Reason:
// AsyncRead mostly would only have guarantee wake up when the poll_read
// return Poll::Pending.
//
// Case:
// When read_buf is beyond max buffer size the early return could be successfully
// be parsed as a new Request. This case would not generate ParseError::TooLarge and
// at this point IO stream is not fully read to Pending and would result in
// dispatcher stuck until timeout (keep-alive).
//
// Note:
// This is a perf choice to reduce branch on <Request as MessageType>::decode.
//
// A Request head too large to parse is only checked on `httparse::Status::Partial`.
match this.payload {
// When dispatcher has a payload the responsibility of wake ups is shifted to
// `h1::payload::Payload` unless the payload is needing a read, in which case it
// might not have access to the waker and could result in the dispatcher
// getting stuck until timeout.
//
// Reason:
// Self wake up when there is payload would waste poll and/or result in
// over read.
//
// Case:
// When payload is (partial) dropped by user there is no need to do
// read anymore. At this case read_buf could always remain beyond
// MAX_BUFFER_SIZE and self wake up would be busy poll dispatcher and
// waste resources.
Some(ref p) if p.need_read(cx) != PayloadStatus::Read => {}
_ => cx.waker().wake_by_ref(),
}
return Ok(false);
}
// grow buffer if necessary.
let remaining = this.read_buf.capacity() - this.read_buf.len();
if remaining < LW_BUFFER_SIZE {
this.read_buf.reserve(HW_BUFFER_SIZE - remaining);
}
match tokio_util::io::poll_read_buf(io.as_mut(), cx, this.read_buf) {
Poll::Ready(Ok(n)) => {
this.flags.remove(Flags::FINISHED);
if n == 0 {
return Ok(true);
}
read_some = true;
}
Poll::Pending => {
return Ok(false);
}
Poll::Ready(Err(err)) => {
return match err.kind() {
// convert WouldBlock error to the same as Pending return
io::ErrorKind::WouldBlock => Ok(false),
// connection reset after partial read
io::ErrorKind::ConnectionReset if read_some => Ok(true),
_ => Err(DispatchError::Io(err)),
};
}
}
}
}
/// call upgrade service with request.
fn upgrade(self: Pin<&mut Self>, req: Request) -> U::Future {
let this = self.project();
let mut parts = FramedParts::with_read_buf(
this.io.take().unwrap(),
mem::take(this.codec),
mem::take(this.read_buf),
);
parts.write_buf = mem::take(this.write_buf);
let framed = Framed::from_parts(parts);
this.flow.upgrade.as_ref().unwrap().call((req, framed))
}
}
impl<T, S, B, X, U> Future for Dispatcher<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
S::Response: Into<Response<B>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, Codec>), Response = ()>,
U::Error: fmt::Display,
{
type Output = Result<(), DispatchError>;
#[inline]
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.as_mut().project();
#[cfg(test)]
{
*this.poll_count += 1;
}
match this.inner.project() {
DispatcherStateProj::Upgrade { fut: upgrade } => upgrade.poll(cx).map_err(|err| {
error!("Upgrade handler error: {}", err);
DispatchError::Upgrade
}),
DispatcherStateProj::Normal { mut inner } => {
trace!("start flags: {:?}", &inner.flags);
trace_timer_states(
"start",
&inner.head_timer,
&inner.ka_timer,
&inner.shutdown_timer,
);
inner.as_mut().poll_timers(cx)?;
let poll = if inner.flags.contains(Flags::SHUTDOWN) {
if inner.flags.contains(Flags::WRITE_DISCONNECT) {
Poll::Ready(Ok(()))
} else {
// flush buffer and wait on blocked
ready!(inner.as_mut().poll_flush(cx))?;
Pin::new(inner.as_mut().project().io.as_mut().unwrap())
.poll_shutdown(cx)
.map_err(DispatchError::from)
}
} else {
// read from I/O stream and fill read buffer
let should_disconnect = inner.as_mut().read_available(cx)?;
// after reading something from stream, clear keep-alive timer
if !inner.read_buf.is_empty() && inner.flags.contains(Flags::KEEP_ALIVE) {
let inner = inner.as_mut().project();
inner.flags.remove(Flags::KEEP_ALIVE);
inner.ka_timer.clear(line!());
}
if !inner.flags.contains(Flags::STARTED) {
inner.as_mut().project().flags.insert(Flags::STARTED);
if let Some(deadline) = inner.config.client_request_deadline() {
inner.as_mut().project().head_timer.set_and_init(
cx,
sleep_until(deadline.into()),
line!(),
);
}
}
inner.as_mut().poll_request(cx)?;
if should_disconnect {
// I/O stream should to be closed
let inner = inner.as_mut().project();
inner.flags.insert(Flags::READ_DISCONNECT);
if let Some(mut payload) = inner.payload.take() {
payload.feed_eof();
}
};
loop {
// poll response to populate write buffer
// drain indicates whether write buffer should be emptied before next run
let drain = match inner.as_mut().poll_response(cx)? {
PollResponse::DrainWriteBuf => true,
PollResponse::DoNothing => {
// KEEP_ALIVE is set in send_response_inner if client allows it
// FINISHED is set after writing last chunk of response
if inner.flags.contains(Flags::KEEP_ALIVE | Flags::FINISHED) {
if let Some(timer) = inner.config.keep_alive_deadline() {
inner.as_mut().project().ka_timer.set_and_init(
cx,
sleep_until(timer.into()),
line!(),
);
}
}
false
}
// upgrade request and goes Upgrade variant of DispatcherState.
PollResponse::Upgrade(req) => {
let upgrade = inner.upgrade(req);
self.as_mut()
.project()
.inner
.set(DispatcherState::Upgrade { fut: upgrade });
return self.poll(cx);
}
};
// we didn't get WouldBlock from write operation, so data get written to
// kernel completely (macOS) and we have to write again otherwise response
// can get stuck
//
// TODO: want to find a reference for this behavior
// see introduced commit: 3872d3ba
let flush_was_ready = inner.as_mut().poll_flush(cx)?.is_ready();
// this assert seems to always be true but not willing to commit to it until
// we understand what Nikolay meant when writing the above comment
// debug_assert!(flush_was_ready);
if !flush_was_ready || !drain {
break;
}
}
// client is gone
if inner.flags.contains(Flags::WRITE_DISCONNECT) {
trace!("client is gone; disconnecting");
return Poll::Ready(Ok(()));
}
let inner_p = inner.as_mut().project();
let state_is_none = inner_p.state.is_none();
// read half is closed; we do not process any responses
if inner_p.flags.contains(Flags::READ_DISCONNECT) && state_is_none {
trace!("read half closed; start shutdown");
inner_p.flags.insert(Flags::SHUTDOWN);
}
// keep-alive and stream errors
if state_is_none && inner_p.write_buf.is_empty() {
if let Some(err) = inner_p.error.take() {
error!("stream error: {}", &err);
return Poll::Ready(Err(err));
}
// disconnect if keep-alive is not enabled
if inner_p.flags.contains(Flags::FINISHED)
&& !inner_p.flags.contains(Flags::KEEP_ALIVE)
{
inner_p.flags.remove(Flags::FINISHED);
inner_p.flags.insert(Flags::SHUTDOWN);
return self.poll(cx);
}
// disconnect if shutdown
if inner_p.flags.contains(Flags::SHUTDOWN) {
return self.poll(cx);
}
}
trace_timer_states(
"end",
inner_p.head_timer,
inner_p.ka_timer,
inner_p.shutdown_timer,
);
Poll::Pending
};
trace!("end flags: {:?}", &inner.flags);
poll
}
}
}
}
#[allow(dead_code)]
fn trace_timer_states(
label: &str,
head_timer: &TimerState,
ka_timer: &TimerState,
shutdown_timer: &TimerState,
) {
trace!("{} timers:", label);
if head_timer.is_enabled() {
trace!(" head {}", &head_timer);
}
if ka_timer.is_enabled() {
trace!(" keep-alive {}", &ka_timer);
}
if shutdown_timer.is_enabled() {
trace!(" shutdown {}", &shutdown_timer);
}
}
|
use std::{future::Future, str, task::Poll, time::Duration};
use actix_codec::Framed;
use actix_rt::{pin, time::sleep};
use actix_service::{fn_service, Service};
use actix_utils::future::{ready, Ready};
use bytes::{Buf, Bytes, BytesMut};
use futures_util::future::lazy;
use super::dispatcher::{Dispatcher, DispatcherState, DispatcherStateProj, Flags};
use crate::{
body::MessageBody,
config::ServiceConfig,
h1::{Codec, ExpectHandler, UpgradeHandler},
service::HttpFlow,
test::{TestBuffer, TestSeqBuffer},
Error, HttpMessage, KeepAlive, Method, OnConnectData, Request, Response, StatusCode,
};
fn find_slice(haystack: &[u8], needle: &[u8], from: usize) -> Option<usize> {
memchr::memmem::find(&haystack[from..], needle)
}
fn stabilize_date_header(payload: &mut [u8]) {
let mut from = 0;
while let Some(pos) = find_slice(payload, b"date", from) {
payload[(from + pos)..(from + pos + 35)]
.copy_from_slice(b"date: Thu, 01 Jan 1970 12:34:56 UTC");
from += 35;
}
}
fn ok_service() -> impl Service<Request, Response = Response<impl MessageBody>, Error = Error> {
status_service(StatusCode::OK)
}
fn status_service(
status: StatusCode,
) -> impl Service<Request, Response = Response<impl MessageBody>, Error = Error> {
fn_service(move |_req: Request| ready(Ok::<_, Error>(Response::new(status))))
}
fn echo_path_service() -> impl Service<Request, Response = Response<impl MessageBody>, Error = Error>
{
fn_service(|req: Request| {
let path = req.path().as_bytes();
ready(Ok::<_, Error>(
Response::ok().set_body(Bytes::copy_from_slice(path)),
))
})
}
fn drop_payload_service() -> impl Service<Request, Response = Response<&'static str>, Error = Error>
{
fn_service(|mut req: Request| async move {
let _ = req.take_payload();
Ok::<_, Error>(Response::with_body(StatusCode::OK, "payload dropped"))
})
}
fn echo_payload_service() -> impl Service<Request, Response = Response<Bytes>, Error = Error> {
fn_service(|mut req: Request| {
Box::pin(async move {
use futures_util::StreamExt as _;
let mut pl = req.take_payload();
let mut body = BytesMut::new();
while let Some(chunk) = pl.next().await {
body.extend_from_slice(chunk.unwrap().chunk())
}
Ok::<_, Error>(Response::ok().set_body(body.freeze()))
})
})
}
#[actix_rt::test]
async fn late_request() {
let mut buf = TestBuffer::empty();
let cfg = ServiceConfig::new(
KeepAlive::Disabled,
Duration::from_millis(100),
Duration::ZERO,
false,
None,
);
let services = HttpFlow::new(ok_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
pin!(h1);
lazy(|cx| {
assert!(matches!(&h1.inner, DispatcherState::Normal { .. }));
match h1.as_mut().poll(cx) {
Poll::Ready(_) => panic!("first poll should not be ready"),
Poll::Pending => {}
}
// polls: initial
assert_eq!(h1.poll_count, 1);
buf.extend_read_buf("GET /abcd HTTP/1.1\r\nConnection: close\r\n\r\n");
match h1.as_mut().poll(cx) {
Poll::Pending => panic!("second poll should not be pending"),
Poll::Ready(res) => assert!(res.is_ok()),
}
// polls: initial pending => handle req => shutdown
assert_eq!(h1.poll_count, 3);
let mut res = buf.take_write_buf().to_vec();
stabilize_date_header(&mut res);
let res = &res[..];
let exp = b"\
HTTP/1.1 200 OK\r\n\
content-length: 0\r\n\
connection: close\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\r\n\
";
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(exp)
);
})
.await;
}
#[actix_rt::test]
async fn oneshot_connection() {
let buf = TestBuffer::new("GET /abcd HTTP/1.1\r\n\r\n");
let cfg = ServiceConfig::new(
KeepAlive::Disabled,
Duration::from_millis(100),
Duration::ZERO,
false,
None,
);
let services = HttpFlow::new(echo_path_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
pin!(h1);
lazy(|cx| {
assert!(matches!(&h1.inner, DispatcherState::Normal { .. }));
match h1.as_mut().poll(cx) {
Poll::Pending => panic!("first poll should not be pending"),
Poll::Ready(res) => assert!(res.is_ok()),
}
// polls: initial => shutdown
assert_eq!(h1.poll_count, 2);
let mut res = buf.take_write_buf().to_vec();
stabilize_date_header(&mut res);
let res = &res[..];
let exp = http_msg(
r"
HTTP/1.1 200 OK
content-length: 5
connection: close
date: Thu, 01 Jan 1970 12:34:56 UTC
/abcd
",
);
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(&exp)
);
})
.await;
}
#[actix_rt::test]
async fn keep_alive_timeout() {
let buf = TestBuffer::new("GET /abcd HTTP/1.1\r\n\r\n");
let cfg = ServiceConfig::new(
KeepAlive::Timeout(Duration::from_millis(200)),
Duration::from_millis(100),
Duration::ZERO,
false,
None,
);
let services = HttpFlow::new(echo_path_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
pin!(h1);
lazy(|cx| {
assert!(matches!(&h1.inner, DispatcherState::Normal { .. }));
assert!(
h1.as_mut().poll(cx).is_pending(),
"keep-alive should prevent poll from resolving"
);
// polls: initial
assert_eq!(h1.poll_count, 1);
let mut res = buf.take_write_buf().to_vec();
stabilize_date_header(&mut res);
let res = &res[..];
let exp = b"\
HTTP/1.1 200 OK\r\n\
content-length: 5\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\r\n\
/abcd\
";
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(exp)
);
})
.await;
// sleep slightly longer than keep-alive timeout
sleep(Duration::from_millis(250)).await;
lazy(|cx| {
assert!(
h1.as_mut().poll(cx).is_ready(),
"keep-alive should have resolved",
);
// polls: initial => keep-alive wake-up shutdown
assert_eq!(h1.poll_count, 2);
if let DispatcherStateProj::Normal { inner } = h1.project().inner.project() {
// connection closed
assert!(inner.flags.contains(Flags::SHUTDOWN));
assert!(inner.flags.contains(Flags::WRITE_DISCONNECT));
// and nothing added to write buffer
assert!(buf.write_buf_slice().is_empty());
}
})
.await;
}
#[actix_rt::test]
async fn keep_alive_follow_up_req() {
let mut buf = TestBuffer::new("GET /abcd HTTP/1.1\r\n\r\n");
let cfg = ServiceConfig::new(
KeepAlive::Timeout(Duration::from_millis(500)),
Duration::from_millis(100),
Duration::ZERO,
false,
None,
);
let services = HttpFlow::new(echo_path_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
pin!(h1);
lazy(|cx| {
assert!(matches!(&h1.inner, DispatcherState::Normal { .. }));
assert!(
h1.as_mut().poll(cx).is_pending(),
"keep-alive should prevent poll from resolving"
);
// polls: initial
assert_eq!(h1.poll_count, 1);
let mut res = buf.take_write_buf().to_vec();
stabilize_date_header(&mut res);
let res = &res[..];
let exp = b"\
HTTP/1.1 200 OK\r\n\
content-length: 5\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\r\n\
/abcd\
";
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(exp)
);
})
.await;
// sleep for less than KA timeout
sleep(Duration::from_millis(100)).await;
lazy(|cx| {
assert!(
h1.as_mut().poll(cx).is_pending(),
"keep-alive should not have resolved dispatcher yet",
);
// polls: initial => manual
assert_eq!(h1.poll_count, 2);
if let DispatcherStateProj::Normal { inner } = h1.as_mut().project().inner.project() {
// connection not closed
assert!(!inner.flags.contains(Flags::SHUTDOWN));
assert!(!inner.flags.contains(Flags::WRITE_DISCONNECT));
// and nothing added to write buffer
assert!(buf.write_buf_slice().is_empty());
}
})
.await;
lazy(|cx| {
buf.extend_read_buf(
"\
GET /efg HTTP/1.1\r\n\
Connection: close\r\n\
\r\n\r\n",
);
assert!(
h1.as_mut().poll(cx).is_ready(),
"connection close header should override keep-alive setting",
);
// polls: initial => manual => follow-up req => shutdown
assert_eq!(h1.poll_count, 4);
if let DispatcherStateProj::Normal { inner } = h1.as_mut().project().inner.project() {
// connection closed
assert!(inner.flags.contains(Flags::SHUTDOWN));
assert!(!inner.flags.contains(Flags::WRITE_DISCONNECT));
}
let mut res = buf.take_write_buf().to_vec();
stabilize_date_header(&mut res);
let res = &res[..];
let exp = b"\
HTTP/1.1 200 OK\r\n\
content-length: 4\r\n\
connection: close\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\r\n\
/efg\
";
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(exp)
);
})
.await;
}
#[actix_rt::test]
async fn req_parse_err() {
lazy(|cx| {
let buf = TestBuffer::new("GET /test HTTP/1\r\n\r\n");
let services = HttpFlow::new(ok_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
ServiceConfig::default(),
None,
OnConnectData::default(),
);
pin!(h1);
match h1.as_mut().poll(cx) {
Poll::Pending => panic!(),
Poll::Ready(res) => assert!(res.is_err()),
}
if let DispatcherStateProj::Normal { inner } = h1.project().inner.project() {
assert!(inner.flags.contains(Flags::READ_DISCONNECT));
assert_eq!(
&buf.write_buf_slice()[..26],
b"HTTP/1.1 400 Bad Request\r\n"
);
}
})
.await;
}
#[actix_rt::test]
async fn pipelining_ok_then_ok() {
lazy(|cx| {
let buf = TestBuffer::new(
"\
GET /abcd HTTP/1.1\r\n\r\n\
GET /def HTTP/1.1\r\n\r\n\
",
);
let cfg = ServiceConfig::new(
KeepAlive::Disabled,
Duration::from_millis(1),
Duration::from_millis(1),
false,
None,
);
let services = HttpFlow::new(echo_path_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
pin!(h1);
assert!(matches!(&h1.inner, DispatcherState::Normal { .. }));
match h1.as_mut().poll(cx) {
Poll::Pending => panic!("first poll should not be pending"),
Poll::Ready(res) => assert!(res.is_ok()),
}
// polls: initial => shutdown
assert_eq!(h1.poll_count, 2);
let mut res = buf.write_buf_slice_mut();
stabilize_date_header(&mut res);
let res = &res[..];
let exp = b"\
HTTP/1.1 200 OK\r\n\
content-length: 5\r\n\
connection: close\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\r\n\
/abcd\
HTTP/1.1 200 OK\r\n\
content-length: 4\r\n\
connection: close\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\r\n\
/def\
";
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(exp)
);
})
.await;
}
#[actix_rt::test]
async fn pipelining_ok_then_bad() {
lazy(|cx| {
let buf = TestBuffer::new(
"\
GET /abcd HTTP/1.1\r\n\r\n\
GET /def HTTP/1\r\n\r\n\
",
);
let cfg = ServiceConfig::new(
KeepAlive::Disabled,
Duration::from_millis(1),
Duration::from_millis(1),
false,
None,
);
let services = HttpFlow::new(echo_path_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
pin!(h1);
assert!(matches!(&h1.inner, DispatcherState::Normal { .. }));
match h1.as_mut().poll(cx) {
Poll::Pending => panic!("first poll should not be pending"),
Poll::Ready(res) => assert!(res.is_err()),
}
// polls: initial => shutdown
assert_eq!(h1.poll_count, 1);
let mut res = buf.write_buf_slice_mut();
stabilize_date_header(&mut res);
let res = &res[..];
let exp = b"\
HTTP/1.1 200 OK\r\n\
content-length: 5\r\n\
connection: close\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\r\n\
/abcd\
HTTP/1.1 400 Bad Request\r\n\
content-length: 0\r\n\
connection: close\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\r\n\
";
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(exp)
);
})
.await;
}
#[actix_rt::test]
async fn expect_handling() {
lazy(|cx| {
let mut buf = TestSeqBuffer::empty();
let cfg = ServiceConfig::new(
KeepAlive::Disabled,
Duration::ZERO,
Duration::ZERO,
false,
None,
);
let services = HttpFlow::new(echo_payload_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
buf.extend_read_buf(
"\
POST /upload HTTP/1.1\r\n\
Content-Length: 5\r\n\
Expect: 100-continue\r\n\
\r\n\
",
);
pin!(h1);
assert!(h1.as_mut().poll(cx).is_pending());
assert!(matches!(&h1.inner, DispatcherState::Normal { .. }));
// polls: manual
assert_eq!(h1.poll_count, 1);
if let DispatcherState::Normal { ref inner } = h1.inner {
let io = inner.io.as_ref().unwrap();
let res = &io.write_buf()[..];
assert_eq!(
str::from_utf8(res).unwrap(),
"HTTP/1.1 100 Continue\r\n\r\n"
);
}
buf.extend_read_buf("12345");
assert!(h1.as_mut().poll(cx).is_ready());
// polls: manual manual shutdown
assert_eq!(h1.poll_count, 3);
if let DispatcherState::Normal { ref inner } = h1.inner {
let io = inner.io.as_ref().unwrap();
let mut res = io.write_buf()[..].to_owned();
stabilize_date_header(&mut res);
assert_eq!(
str::from_utf8(&res).unwrap(),
"\
HTTP/1.1 100 Continue\r\n\
\r\n\
HTTP/1.1 200 OK\r\n\
content-length: 5\r\n\
connection: close\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\
\r\n\
12345\
"
);
}
})
.await;
}
#[actix_rt::test]
async fn expect_eager() {
lazy(|cx| {
let mut buf = TestSeqBuffer::empty();
let cfg = ServiceConfig::new(
KeepAlive::Disabled,
Duration::ZERO,
Duration::ZERO,
false,
None,
);
let services = HttpFlow::new(echo_path_service(), ExpectHandler, None);
let h1 = Dispatcher::<_, _, _, _, UpgradeHandler>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
buf.extend_read_buf(
"\
POST /upload HTTP/1.1\r\n\
Content-Length: 5\r\n\
Expect: 100-continue\r\n\
\r\n\
",
);
pin!(h1);
assert!(h1.as_mut().poll(cx).is_ready());
assert!(matches!(&h1.inner, DispatcherState::Normal { .. }));
// polls: manual shutdown
assert_eq!(h1.poll_count, 2);
if let DispatcherState::Normal { ref inner } = h1.inner {
let io = inner.io.as_ref().unwrap();
let mut res = io.write_buf()[..].to_owned();
stabilize_date_header(&mut res);
// Despite the content-length header and even though the request payload has not
// been sent, this test expects a complete service response since the payload
// is not used at all. The service passed to dispatcher is path echo and doesn't
// consume payload bytes.
assert_eq!(
str::from_utf8(&res).unwrap(),
"\
HTTP/1.1 100 Continue\r\n\
\r\n\
HTTP/1.1 200 OK\r\n\
content-length: 7\r\n\
connection: close\r\n\
date: Thu, 01 Jan 1970 12:34:56 UTC\r\n\
\r\n\
/upload\
"
);
}
})
.await;
}
#[actix_rt::test]
async fn upgrade_handling() {
struct TestUpgrade;
impl<T> Service<(Request, Framed<T, Codec>)> for TestUpgrade {
type Response = ();
type Error = Error;
type Future = Ready<Result<Self::Response, Self::Error>>;
actix_service::always_ready!();
fn call(&self, (req, _framed): (Request, Framed<T, Codec>)) -> Self::Future {
assert_eq!(req.method(), Method::GET);
assert!(req.upgrade());
assert_eq!(req.headers().get("upgrade").unwrap(), "websocket");
ready(Ok(()))
}
}
lazy(|cx| {
let mut buf = TestSeqBuffer::empty();
let cfg = ServiceConfig::new(
KeepAlive::Disabled,
Duration::ZERO,
Duration::ZERO,
false,
None,
);
let services = HttpFlow::new(ok_service(), ExpectHandler, Some(TestUpgrade));
let h1 = Dispatcher::<_, _, _, _, TestUpgrade>::new(
buf.clone(),
services,
cfg,
None,
OnConnectData::default(),
);
buf.extend_read_buf(
"\
GET /ws HTTP/1.1\r\n\
Connection: Upgrade\r\n\
Upgrade: websocket\r\n\
\r\n\
",
);
pin!(h1);
assert!(h1.as_mut().poll(cx).is_ready());
assert!(matches!(&h1.inner, DispatcherState::Upgrade { .. }));
// polls: manual shutdown
assert_eq!(h1.poll_count, 2);
})
.await;
}
// fix in #2624 reverted temporarily
// complete fix tracked in #2745
#[ignore]
#[actix_rt::test]
async fn handler_drop_payload() {
let _ = env_logger::try_init();
let mut buf = TestBuffer::new(http_msg(
r"
POST /drop-payload HTTP/1.1
Content-Length: 3
abc
",
));
let services = HttpFlow::new(
drop_payload_service(),
ExpectHandler,
None::<UpgradeHandler>,
);
let h1 = Dispatcher::new(
buf.clone(),
services,
ServiceConfig::default(),
None,
OnConnectData::default(),
);
pin!(h1);
lazy(|cx| {
assert!(h1.as_mut().poll(cx).is_pending());
// polls: manual
assert_eq!(h1.poll_count, 1);
let mut res = BytesMut::from(buf.take_write_buf().as_ref());
stabilize_date_header(&mut res);
let res = &res[..];
let exp = http_msg(
r"
HTTP/1.1 200 OK
content-length: 15
date: Thu, 01 Jan 1970 12:34:56 UTC
payload dropped
",
);
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(&exp)
);
if let DispatcherStateProj::Normal { inner } = h1.as_mut().project().inner.project() {
assert!(inner.state.is_none());
}
})
.await;
lazy(|cx| {
// add message that claims to have payload longer than provided
buf.extend_read_buf(http_msg(
r"
POST /drop-payload HTTP/1.1
Content-Length: 200
abc
",
));
assert!(h1.as_mut().poll(cx).is_pending());
// polls: manual => manual
assert_eq!(h1.poll_count, 2);
let mut res = BytesMut::from(buf.take_write_buf().as_ref());
stabilize_date_header(&mut res);
let res = &res[..];
// expect response immediately even though request side has not finished reading payload
let exp = http_msg(
r"
HTTP/1.1 200 OK
content-length: 15
date: Thu, 01 Jan 1970 12:34:56 UTC
payload dropped
",
);
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(&exp)
);
})
.await;
lazy(|cx| {
assert!(h1.as_mut().poll(cx).is_ready());
// polls: manual => manual => manual
assert_eq!(h1.poll_count, 3);
let mut res = BytesMut::from(buf.take_write_buf().as_ref());
stabilize_date_header(&mut res);
let res = &res[..];
// expect that unrequested error response is sent back since connection could not be cleaned
let exp = http_msg(
r"
HTTP/1.1 500 Internal Server Error
content-length: 0
connection: close
date: Thu, 01 Jan 1970 12:34:56 UTC
",
);
assert_eq!(
res,
exp,
"\nexpected response not in write buffer:\n\
response: {:?}\n\
expected: {:?}",
String::from_utf8_lossy(res),
String::from_utf8_lossy(&exp)
);
})
.await;
}
fn http_msg(msg: impl AsRef<str>) -> BytesMut {
let mut msg = msg
.as_ref()
.trim()
.split('\n')
.map(|line| [line.trim_start(), "\r"].concat())
.collect::<Vec<_>>()
.join("\n");
// remove trailing \r
msg.pop();
if !msg.is_empty() && !msg.contains("\r\n\r\n") {
msg.push_str("\r\n\r\n");
}
BytesMut::from(msg.as_bytes())
}
#[test]
fn http_msg_creates_msg() {
assert_eq!(http_msg(r""), "");
assert_eq!(
http_msg(
r"
POST / HTTP/1.1
Content-Length: 3
abc
"
),
"POST / HTTP/1.1\r\nContent-Length: 3\r\n\r\nabc"
);
assert_eq!(
http_msg(
r"
GET / HTTP/1.1
Content-Length: 3
"
),
"GET / HTTP/1.1\r\nContent-Length: 3\r\n\r\n"
);
}
|
use std::{
cmp,
io::{self, Write as _},
marker::PhantomData,
ptr::copy_nonoverlapping,
slice::from_raw_parts_mut,
};
use bytes::{BufMut, BytesMut};
use crate::{
body::BodySize,
header::{
map::Value, HeaderMap, HeaderName, CONNECTION, CONTENT_LENGTH, DATE, TRANSFER_ENCODING,
},
helpers, ConnectionType, RequestHeadType, Response, ServiceConfig, StatusCode, Version,
};
const AVERAGE_HEADER_SIZE: usize = 30;
#[derive(Debug)]
pub(crate) struct MessageEncoder<T: MessageType> {
#[allow(dead_code)]
pub length: BodySize,
pub te: TransferEncoding,
_phantom: PhantomData<T>,
}
impl<T: MessageType> Default for MessageEncoder<T> {
fn default() -> Self {
MessageEncoder {
length: BodySize::None,
te: TransferEncoding::empty(),
_phantom: PhantomData,
}
}
}
pub(crate) trait MessageType: Sized {
fn status(&self) -> Option<StatusCode>;
fn headers(&self) -> &HeaderMap;
fn extra_headers(&self) -> Option<&HeaderMap>;
fn camel_case(&self) -> bool {
false
}
fn chunked(&self) -> bool;
fn encode_status(&mut self, dst: &mut BytesMut) -> io::Result<()>;
fn encode_headers(
&mut self,
dst: &mut BytesMut,
version: Version,
mut length: BodySize,
conn_type: ConnectionType,
config: &ServiceConfig,
) -> io::Result<()> {
let chunked = self.chunked();
let mut skip_len = length != BodySize::Stream;
let camel_case = self.camel_case();
// Content length
if let Some(status) = self.status() {
match status {
StatusCode::CONTINUE
| StatusCode::SWITCHING_PROTOCOLS
| StatusCode::PROCESSING
| StatusCode::NO_CONTENT => {
// skip content-length and transfer-encoding headers
// see https://datatracker.ietf.org/doc/html/rfc7230#section-3.3.1
// and https://datatracker.ietf.org/doc/html/rfc7230#section-3.3.2
skip_len = true;
length = BodySize::None
}
StatusCode::NOT_MODIFIED => {
// 304 responses should never have a body but should retain a manually set
// content-length header
// see https://datatracker.ietf.org/doc/html/rfc7232#section-4.1
skip_len = false;
length = BodySize::None;
}
_ => {}
}
}
match length {
BodySize::Stream => {
if chunked {
skip_len = true;
if camel_case {
dst.put_slice(b"\r\nTransfer-Encoding: chunked\r\n")
} else {
dst.put_slice(b"\r\ntransfer-encoding: chunked\r\n")
}
} else {
skip_len = false;
dst.put_slice(b"\r\n");
}
}
BodySize::Sized(0) if camel_case => dst.put_slice(b"\r\nContent-Length: 0\r\n"),
BodySize::Sized(0) => dst.put_slice(b"\r\ncontent-length: 0\r\n"),
BodySize::Sized(len) => helpers::write_content_length(len, dst, camel_case),
BodySize::None => dst.put_slice(b"\r\n"),
}
// Connection
match conn_type {
ConnectionType::Upgrade => dst.put_slice(b"connection: upgrade\r\n"),
ConnectionType::KeepAlive if version < Version::HTTP_11 => {
if camel_case {
dst.put_slice(b"Connection: keep-alive\r\n")
} else {
dst.put_slice(b"connection: keep-alive\r\n")
}
}
ConnectionType::Close if version >= Version::HTTP_11 => {
if camel_case {
dst.put_slice(b"Connection: close\r\n")
} else {
dst.put_slice(b"connection: close\r\n")
}
}
_ => {}
}
// write headers
let mut has_date = false;
let mut buf = dst.chunk_mut().as_mut_ptr();
let mut remaining = dst.capacity() - dst.len();
// tracks bytes written since last buffer resize
// since buf is a raw pointer to a bytes container storage but is written to without the
// container's knowledge, this is used to sync the containers cursor after data is written
let mut pos = 0;
self.write_headers(|key, value| {
match *key {
CONNECTION => return,
TRANSFER_ENCODING | CONTENT_LENGTH if skip_len => return,
DATE => has_date = true,
_ => {}
}
let k = key.as_str().as_bytes();
let k_len = k.len();
for val in value.iter() {
let v = val.as_ref();
let v_len = v.len();
// key length + value length + colon + space + \r\n
let len = k_len + v_len + 4;
if len > remaining {
// SAFETY: all the bytes written up to position "pos" are initialized
// the written byte count and pointer advancement are kept in sync
unsafe {
dst.advance_mut(pos);
}
pos = 0;
dst.reserve(len * 2);
remaining = dst.capacity() - dst.len();
// re-assign buf raw pointer since it's possible that the buffer was
// reallocated and/or resized
buf = dst.chunk_mut().as_mut_ptr();
}
// SAFETY: on each write, it is enough to ensure that the advancement of
// the cursor matches the number of bytes written
unsafe {
if camel_case {
// use Camel-Case headers
write_camel_case(k, buf, k_len);
} else {
write_data(k, buf, k_len);
}
buf = buf.add(k_len);
write_data(b": ", buf, 2);
buf = buf.add(2);
write_data(v, buf, v_len);
buf = buf.add(v_len);
write_data(b"\r\n", buf, 2);
buf = buf.add(2);
};
pos += len;
remaining -= len;
}
});
// final cursor synchronization with the bytes container
//
// SAFETY: all the bytes written up to position "pos" are initialized
// the written byte count and pointer advancement are kept in sync
unsafe {
dst.advance_mut(pos);
}
if !has_date {
// optimized date header, write_date_header writes its own \r\n
config.write_date_header(dst, camel_case);
}
// end-of-headers marker
dst.extend_from_slice(b"\r\n");
Ok(())
}
fn write_headers<F>(&mut self, mut f: F)
where
F: FnMut(&HeaderName, &Value),
{
match self.extra_headers() {
Some(headers) => {
// merging headers from head and extra headers.
self.headers()
.inner
.iter()
.filter(|(name, _)| !headers.contains_key(*name))
.chain(headers.inner.iter())
.for_each(|(k, v)| f(k, v))
}
None => self.headers().inner.iter().for_each(|(k, v)| f(k, v)),
}
}
}
impl MessageType for Response<()> {
fn status(&self) -> Option<StatusCode> {
Some(self.head().status)
}
fn chunked(&self) -> bool {
self.head().chunked()
}
fn headers(&self) -> &HeaderMap {
&self.head().headers
}
fn extra_headers(&self) -> Option<&HeaderMap> {
None
}
fn camel_case(&self) -> bool {
self.head()
.flags
.contains(crate::message::Flags::CAMEL_CASE)
}
fn encode_status(&mut self, dst: &mut BytesMut) -> io::Result<()> {
let head = self.head();
let reason = head.reason().as_bytes();
dst.reserve(256 + head.headers.len() * AVERAGE_HEADER_SIZE + reason.len());
// status line
helpers::write_status_line(head.version, head.status.as_u16(), dst);
dst.put_slice(reason);
Ok(())
}
}
impl MessageType for RequestHeadType {
fn status(&self) -> Option<StatusCode> {
None
}
fn chunked(&self) -> bool {
self.as_ref().chunked()
}
fn camel_case(&self) -> bool {
self.as_ref().camel_case_headers()
}
fn headers(&self) -> &HeaderMap {
self.as_ref().headers()
}
fn extra_headers(&self) -> Option<&HeaderMap> {
self.extra_headers()
}
fn encode_status(&mut self, dst: &mut BytesMut) -> io::Result<()> {
let head = self.as_ref();
dst.reserve(256 + head.headers.len() * AVERAGE_HEADER_SIZE);
write!(
helpers::MutWriter(dst),
"{} {} {}",
head.method,
head.uri.path_and_query().map(|u| u.as_str()).unwrap_or("/"),
match head.version {
Version::HTTP_09 => "HTTP/0.9",
Version::HTTP_10 => "HTTP/1.0",
Version::HTTP_11 => "HTTP/1.1",
Version::HTTP_2 => "HTTP/2.0",
Version::HTTP_3 => "HTTP/3.0",
_ => return Err(io::Error::new(io::ErrorKind::Other, "unsupported version")),
}
)
.map_err(|err| io::Error::new(io::ErrorKind::Other, err))
}
}
impl<T: MessageType> MessageEncoder<T> {
/// Encode chunk.
pub fn encode_chunk(&mut self, msg: &[u8], buf: &mut BytesMut) -> io::Result<bool> {
self.te.encode(msg, buf)
}
/// Encode EOF.
pub fn encode_eof(&mut self, buf: &mut BytesMut) -> io::Result<()> {
self.te.encode_eof(buf)
}
/// Encode message.
pub fn encode(
&mut self,
dst: &mut BytesMut,
message: &mut T,
head: bool,
stream: bool,
version: Version,
length: BodySize,
conn_type: ConnectionType,
config: &ServiceConfig,
) -> io::Result<()> {
// transfer encoding
if !head {
self.te = match length {
BodySize::Sized(0) => TransferEncoding::empty(),
BodySize::Sized(len) => TransferEncoding::length(len),
BodySize::Stream => {
if message.chunked() && !stream {
TransferEncoding::chunked()
} else {
TransferEncoding::eof()
}
}
BodySize::None => TransferEncoding::empty(),
};
} else {
self.te = TransferEncoding::empty();
}
message.encode_status(dst)?;
message.encode_headers(dst, version, length, conn_type, config)
}
}
/// Encoders to handle different Transfer-Encodings.
#[derive(Debug)]
pub(crate) struct TransferEncoding {
kind: TransferEncodingKind,
}
#[derive(Debug, PartialEq, Clone)]
enum TransferEncodingKind {
/// An Encoder for when Transfer-Encoding includes `chunked`.
Chunked(bool),
/// An Encoder for when Content-Length is set.
///
/// Enforces that the body is not longer than the Content-Length header.
Length(u64),
/// An Encoder for when Content-Length is not known.
///
/// Application decides when to stop writing.
Eof,
}
impl TransferEncoding {
#[inline]
pub fn empty() -> TransferEncoding {
TransferEncoding {
kind: TransferEncodingKind::Length(0),
}
}
#[inline]
pub fn eof() -> TransferEncoding {
TransferEncoding {
kind: TransferEncodingKind::Eof,
}
}
#[inline]
pub fn chunked() -> TransferEncoding {
TransferEncoding {
kind: TransferEncodingKind::Chunked(false),
}
}
#[inline]
pub fn length(len: u64) -> TransferEncoding {
TransferEncoding {
kind: TransferEncodingKind::Length(len),
}
}
/// Encode message. Return `EOF` state of encoder
#[inline]
pub fn encode(&mut self, msg: &[u8], buf: &mut BytesMut) -> io::Result<bool> {
match self.kind {
TransferEncodingKind::Eof => {
let eof = msg.is_empty();
buf.extend_from_slice(msg);
Ok(eof)
}
TransferEncodingKind::Chunked(ref mut eof) => {
if *eof {
return Ok(true);
}
if msg.is_empty() {
*eof = true;
buf.extend_from_slice(b"0\r\n\r\n");
} else {
writeln!(helpers::MutWriter(buf), "{:X}\r", msg.len())
.map_err(|err| io::Error::new(io::ErrorKind::Other, err))?;
buf.reserve(msg.len() + 2);
buf.extend_from_slice(msg);
buf.extend_from_slice(b"\r\n");
}
Ok(*eof)
}
TransferEncodingKind::Length(ref mut remaining) => {
if *remaining > 0 {
if msg.is_empty() {
return Ok(*remaining == 0);
}
let len = cmp::min(*remaining, msg.len() as u64);
buf.extend_from_slice(&msg[..len as usize]);
*remaining -= len;
Ok(*remaining == 0)
} else {
Ok(true)
}
}
}
}
/// Encode eof. Return `EOF` state of encoder
#[inline]
pub fn encode_eof(&mut self, buf: &mut BytesMut) -> io::Result<()> {
match self.kind {
TransferEncodingKind::Eof => Ok(()),
TransferEncodingKind::Length(rem) => {
if rem != 0 {
Err(io::Error::new(io::ErrorKind::UnexpectedEof, ""))
} else {
Ok(())
}
}
TransferEncodingKind::Chunked(ref mut eof) => {
if !*eof {
*eof = true;
buf.extend_from_slice(b"0\r\n\r\n");
}
Ok(())
}
}
}
}
/// # Safety
/// Callers must ensure that the given `len` matches the given `value` length and that `buf` is
/// valid for writes of at least `len` bytes.
unsafe fn write_data(value: &[u8], buf: *mut u8, len: usize) {
debug_assert_eq!(value.len(), len);
copy_nonoverlapping(value.as_ptr(), buf, len);
}
/// # Safety
/// Callers must ensure that the given `len` matches the given `value` length and that `buf` is
/// valid for writes of at least `len` bytes.
unsafe fn write_camel_case(value: &[u8], buf: *mut u8, len: usize) {
// first copy entire (potentially wrong) slice to output
write_data(value, buf, len);
// SAFETY: We just initialized the buffer with `value`
let buffer = from_raw_parts_mut(buf, len);
let mut iter = value.iter();
// first character should be uppercase
if let Some(c @ b'a'..=b'z') = iter.next() {
buffer[0] = c & 0b1101_1111;
}
// track 1 ahead of the current position since that's the location being assigned to
let mut index = 2;
// remaining characters after hyphens should also be uppercase
while let Some(&c) = iter.next() {
if c == b'-' {
// advance iter by one and uppercase if needed
if let Some(c @ b'a'..=b'z') = iter.next() {
buffer[index] = c & 0b1101_1111;
}
index += 1;
}
index += 1;
}
}
#[cfg(test)]
mod tests {
use std::rc::Rc;
use bytes::Bytes;
use http::header::{AUTHORIZATION, UPGRADE_INSECURE_REQUESTS};
use super::*;
use crate::{
header::{HeaderValue, CONTENT_TYPE},
RequestHead,
};
#[test]
fn test_chunked_te() {
let mut bytes = BytesMut::new();
let mut enc = TransferEncoding::chunked();
{
assert!(!enc.encode(b"test", &mut bytes).ok().unwrap());
assert!(enc.encode(b"", &mut bytes).ok().unwrap());
}
assert_eq!(
bytes.split().freeze(),
Bytes::from_static(b"4\r\ntest\r\n0\r\n\r\n")
);
}
#[actix_rt::test]
async fn test_camel_case() {
let mut bytes = BytesMut::with_capacity(2048);
let mut head = RequestHead::default();
head.set_camel_case_headers(true);
head.headers.insert(DATE, HeaderValue::from_static("date"));
head.headers
.insert(CONTENT_TYPE, HeaderValue::from_static("plain/text"));
head.headers
.insert(UPGRADE_INSECURE_REQUESTS, HeaderValue::from_static("1"));
let mut head = RequestHeadType::Owned(head);
let _ = head.encode_headers(
&mut bytes,
Version::HTTP_11,
BodySize::Sized(0),
ConnectionType::Close,
&ServiceConfig::default(),
);
let data = String::from_utf8(Vec::from(bytes.split().freeze().as_ref())).unwrap();
assert!(data.contains("Content-Length: 0\r\n"));
assert!(data.contains("Connection: close\r\n"));
assert!(data.contains("Content-Type: plain/text\r\n"));
assert!(data.contains("Date: date\r\n"));
assert!(data.contains("Upgrade-Insecure-Requests: 1\r\n"));
let _ = head.encode_headers(
&mut bytes,
Version::HTTP_11,
BodySize::Stream,
ConnectionType::KeepAlive,
&ServiceConfig::default(),
);
let data = String::from_utf8(Vec::from(bytes.split().freeze().as_ref())).unwrap();
assert!(data.contains("Transfer-Encoding: chunked\r\n"));
assert!(data.contains("Content-Type: plain/text\r\n"));
assert!(data.contains("Date: date\r\n"));
let mut head = RequestHead::default();
head.set_camel_case_headers(false);
head.headers.insert(DATE, HeaderValue::from_static("date"));
head.headers
.insert(CONTENT_TYPE, HeaderValue::from_static("plain/text"));
head.headers
.append(CONTENT_TYPE, HeaderValue::from_static("xml"));
let mut head = RequestHeadType::Owned(head);
let _ = head.encode_headers(
&mut bytes,
Version::HTTP_11,
BodySize::Stream,
ConnectionType::KeepAlive,
&ServiceConfig::default(),
);
let data = String::from_utf8(Vec::from(bytes.split().freeze().as_ref())).unwrap();
assert!(data.contains("transfer-encoding: chunked\r\n"));
assert!(data.contains("content-type: xml\r\n"));
assert!(data.contains("content-type: plain/text\r\n"));
assert!(data.contains("date: date\r\n"));
}
#[actix_rt::test]
async fn test_extra_headers() {
let mut bytes = BytesMut::with_capacity(2048);
let mut head = RequestHead::default();
head.headers.insert(
AUTHORIZATION,
HeaderValue::from_static("some authorization"),
);
let mut extra_headers = HeaderMap::new();
extra_headers.insert(
AUTHORIZATION,
HeaderValue::from_static("another authorization"),
);
extra_headers.insert(DATE, HeaderValue::from_static("date"));
let mut head = RequestHeadType::Rc(Rc::new(head), Some(extra_headers));
let _ = head.encode_headers(
&mut bytes,
Version::HTTP_11,
BodySize::Sized(0),
ConnectionType::Close,
&ServiceConfig::default(),
);
let data = String::from_utf8(Vec::from(bytes.split().freeze().as_ref())).unwrap();
assert!(data.contains("content-length: 0\r\n"));
assert!(data.contains("connection: close\r\n"));
assert!(data.contains("authorization: another authorization\r\n"));
assert!(data.contains("date: date\r\n"));
}
#[actix_rt::test]
async fn test_no_content_length() {
let mut bytes = BytesMut::with_capacity(2048);
let mut res = Response::with_body(StatusCode::SWITCHING_PROTOCOLS, ());
res.headers_mut().insert(DATE, HeaderValue::from_static(""));
res.headers_mut()
.insert(CONTENT_LENGTH, HeaderValue::from_static("0"));
let _ = res.encode_headers(
&mut bytes,
Version::HTTP_11,
BodySize::Stream,
ConnectionType::Upgrade,
&ServiceConfig::default(),
);
let data = String::from_utf8(Vec::from(bytes.split().freeze().as_ref())).unwrap();
assert!(!data.contains("content-length: 0\r\n"));
assert!(!data.contains("transfer-encoding: chunked\r\n"));
}
}
|
use actix_service::{Service, ServiceFactory};
use actix_utils::future::{ready, Ready};
use crate::{Error, Request};
pub struct ExpectHandler;
impl ServiceFactory<Request> for ExpectHandler {
type Response = Request;
type Error = Error;
type Config = ();
type Service = ExpectHandler;
type InitError = Error;
type Future = Ready<Result<Self::Service, Self::InitError>>;
fn new_service(&self, _: Self::Config) -> Self::Future {
ready(Ok(ExpectHandler))
}
}
impl Service<Request> for ExpectHandler {
type Response = Request;
type Error = Error;
type Future = Ready<Result<Self::Response, Self::Error>>;
actix_service::always_ready!();
fn call(&self, req: Request) -> Self::Future {
ready(Ok(req))
// TODO: add some way to trigger error
// Err(error::ErrorExpectationFailed("test"))
}
}
|
//! HTTP/1 protocol implementation.
use bytes::{Bytes, BytesMut};
mod chunked;
mod client;
mod codec;
mod decoder;
mod dispatcher;
#[cfg(test)]
mod dispatcher_tests;
mod encoder;
mod expect;
mod payload;
mod service;
mod timer;
mod upgrade;
mod utils;
pub use self::{
client::{ClientCodec, ClientPayloadCodec},
codec::Codec,
dispatcher::Dispatcher,
expect::ExpectHandler,
payload::Payload,
service::{H1Service, H1ServiceHandler},
upgrade::UpgradeHandler,
utils::SendResponse,
};
#[derive(Debug)]
/// Codec message
pub enum Message<T> {
/// HTTP message.
Item(T),
/// Payload chunk.
Chunk(Option<Bytes>),
}
impl<T> From<T> for Message<T> {
fn from(item: T) -> Self {
Message::Item(item)
}
}
/// Incoming request type
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum MessageType {
None,
Payload,
Stream,
}
const LW: usize = 2 * 1024;
const HW: usize = 32 * 1024;
pub(crate) fn reserve_readbuf(src: &mut BytesMut) {
let cap = src.capacity();
if cap < LW {
src.reserve(HW - cap);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Request;
impl Message<Request> {
pub fn message(self) -> Request {
match self {
Message::Item(req) => req,
_ => panic!("error"),
}
}
pub fn chunk(self) -> Bytes {
match self {
Message::Chunk(Some(data)) => data,
_ => panic!("error"),
}
}
pub fn eof(self) -> bool {
match self {
Message::Chunk(None) => true,
Message::Chunk(Some(_)) => false,
_ => panic!("error"),
}
}
}
}
|
//! Payload stream
use std::{
cell::RefCell,
collections::VecDeque,
pin::Pin,
rc::{Rc, Weak},
task::{Context, Poll, Waker},
};
use bytes::Bytes;
use futures_core::Stream;
use crate::error::PayloadError;
/// max buffer size 32k
pub(crate) const MAX_BUFFER_SIZE: usize = 32_768;
#[derive(Debug, PartialEq, Eq)]
pub enum PayloadStatus {
Read,
Pause,
Dropped,
}
/// Buffered stream of bytes chunks
///
/// Payload stores chunks in a vector. First chunk can be received with `poll_next`. Payload does
/// not notify current task when new data is available.
///
/// Payload can be used as `Response` body stream.
#[derive(Debug)]
pub struct Payload {
inner: Rc<RefCell<Inner>>,
}
impl Payload {
/// Creates a payload stream.
///
/// This method construct two objects responsible for bytes stream generation:
/// - `PayloadSender` - *Sender* side of the stream
/// - `Payload` - *Receiver* side of the stream
pub fn create(eof: bool) -> (PayloadSender, Payload) {
let shared = Rc::new(RefCell::new(Inner::new(eof)));
(
PayloadSender::new(Rc::downgrade(&shared)),
Payload { inner: shared },
)
}
/// Creates an empty payload.
pub(crate) fn empty() -> Payload {
Payload {
inner: Rc::new(RefCell::new(Inner::new(true))),
}
}
/// Length of the data in this payload
#[cfg(test)]
pub fn len(&self) -> usize {
self.inner.borrow().len()
}
/// Is payload empty
#[cfg(test)]
pub fn is_empty(&self) -> bool {
self.inner.borrow().len() == 0
}
/// Put unused data back to payload
#[inline]
pub fn unread_data(&mut self, data: Bytes) {
self.inner.borrow_mut().unread_data(data);
}
}
impl Stream for Payload {
type Item = Result<Bytes, PayloadError>;
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, PayloadError>>> {
Pin::new(&mut *self.inner.borrow_mut()).poll_next(cx)
}
}
/// Sender part of the payload stream
pub struct PayloadSender {
inner: Weak<RefCell<Inner>>,
}
impl PayloadSender {
fn new(inner: Weak<RefCell<Inner>>) -> Self {
Self { inner }
}
#[inline]
pub fn set_error(&mut self, err: PayloadError) {
if let Some(shared) = self.inner.upgrade() {
shared.borrow_mut().set_error(err)
}
}
#[inline]
pub fn feed_eof(&mut self) {
if let Some(shared) = self.inner.upgrade() {
shared.borrow_mut().feed_eof()
}
}
#[inline]
pub fn feed_data(&mut self, data: Bytes) {
if let Some(shared) = self.inner.upgrade() {
shared.borrow_mut().feed_data(data)
}
}
#[allow(clippy::needless_pass_by_ref_mut)]
#[inline]
pub fn need_read(&self, cx: &mut Context<'_>) -> PayloadStatus {
// we check need_read only if Payload (other side) is alive,
// otherwise always return true (consume payload)
if let Some(shared) = self.inner.upgrade() {
if shared.borrow().need_read {
PayloadStatus::Read
} else {
shared.borrow_mut().register_io(cx);
PayloadStatus::Pause
}
} else {
PayloadStatus::Dropped
}
}
}
#[derive(Debug)]
struct Inner {
len: usize,
eof: bool,
err: Option<PayloadError>,
need_read: bool,
items: VecDeque<Bytes>,
task: Option<Waker>,
io_task: Option<Waker>,
}
impl Inner {
fn new(eof: bool) -> Self {
Inner {
eof,
len: 0,
err: None,
items: VecDeque::new(),
need_read: true,
task: None,
io_task: None,
}
}
/// Wake up future waiting for payload data to be available.
fn wake(&mut self) {
if let Some(waker) = self.task.take() {
waker.wake();
}
}
/// Wake up future feeding data to Payload.
fn wake_io(&mut self) {
if let Some(waker) = self.io_task.take() {
waker.wake();
}
}
/// Register future waiting data from payload.
/// Waker would be used in `Inner::wake`
fn register(&mut self, cx: &Context<'_>) {
if self
.task
.as_ref()
.map_or(true, |w| !cx.waker().will_wake(w))
{
self.task = Some(cx.waker().clone());
}
}
// Register future feeding data to payload.
/// Waker would be used in `Inner::wake_io`
fn register_io(&mut self, cx: &Context<'_>) {
if self
.io_task
.as_ref()
.map_or(true, |w| !cx.waker().will_wake(w))
{
self.io_task = Some(cx.waker().clone());
}
}
#[inline]
fn set_error(&mut self, err: PayloadError) {
self.err = Some(err);
}
#[inline]
fn feed_eof(&mut self) {
self.eof = true;
}
#[inline]
fn feed_data(&mut self, data: Bytes) {
self.len += data.len();
self.items.push_back(data);
self.need_read = self.len < MAX_BUFFER_SIZE;
self.wake();
}
#[cfg(test)]
fn len(&self) -> usize {
self.len
}
fn poll_next(
mut self: Pin<&mut Self>,
cx: &Context<'_>,
) -> Poll<Option<Result<Bytes, PayloadError>>> {
if let Some(data) = self.items.pop_front() {
self.len -= data.len();
self.need_read = self.len < MAX_BUFFER_SIZE;
if self.need_read && !self.eof {
self.register(cx);
}
self.wake_io();
Poll::Ready(Some(Ok(data)))
} else if let Some(err) = self.err.take() {
Poll::Ready(Some(Err(err)))
} else if self.eof {
Poll::Ready(None)
} else {
self.need_read = true;
self.register(cx);
self.wake_io();
Poll::Pending
}
}
fn unread_data(&mut self, data: Bytes) {
self.len += data.len();
self.items.push_front(data);
}
}
#[cfg(test)]
mod tests {
use actix_utils::future::poll_fn;
use static_assertions::{assert_impl_all, assert_not_impl_any};
use super::*;
assert_impl_all!(Payload: Unpin);
assert_not_impl_any!(Payload: Send, Sync);
assert_impl_all!(Inner: Unpin, Send, Sync);
#[actix_rt::test]
async fn test_unread_data() {
let (_, mut payload) = Payload::create(false);
payload.unread_data(Bytes::from("data"));
assert!(!payload.is_empty());
assert_eq!(payload.len(), 4);
assert_eq!(
Bytes::from("data"),
poll_fn(|cx| Pin::new(&mut payload).poll_next(cx))
.await
.unwrap()
.unwrap()
);
}
}
|
use std::{
fmt,
marker::PhantomData,
net,
rc::Rc,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite, Framed};
use actix_rt::net::TcpStream;
use actix_service::{
fn_service, IntoServiceFactory, Service, ServiceFactory, ServiceFactoryExt as _,
};
use actix_utils::future::ready;
use futures_core::future::LocalBoxFuture;
use tracing::error;
use super::{codec::Codec, dispatcher::Dispatcher, ExpectHandler, UpgradeHandler};
use crate::{
body::{BoxBody, MessageBody},
config::ServiceConfig,
error::DispatchError,
service::HttpServiceHandler,
ConnectCallback, OnConnectData, Request, Response,
};
/// `ServiceFactory` implementation for HTTP1 transport
pub struct H1Service<T, S, B, X = ExpectHandler, U = UpgradeHandler> {
srv: S,
cfg: ServiceConfig,
expect: X,
upgrade: Option<U>,
on_connect_ext: Option<Rc<ConnectCallback<T>>>,
_phantom: PhantomData<B>,
}
impl<T, S, B> H1Service<T, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Error: Into<Response<BoxBody>>,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>>,
B: MessageBody,
{
/// Create new `HttpService` instance with config.
pub(crate) fn with_config<F: IntoServiceFactory<S, Request>>(
cfg: ServiceConfig,
service: F,
) -> Self {
H1Service {
cfg,
srv: service.into_factory(),
expect: ExpectHandler,
upgrade: None,
on_connect_ext: None,
_phantom: PhantomData,
}
}
}
impl<S, B, X, U> H1Service<TcpStream, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>>,
B: MessageBody,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<(Request, Framed<TcpStream, Codec>), Config = (), Response = ()>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create simple tcp stream service
pub fn tcp(
self,
) -> impl ServiceFactory<TcpStream, Config = (), Response = (), Error = DispatchError, InitError = ()>
{
fn_service(|io: TcpStream| {
let peer_addr = io.peer_addr().ok();
ready(Ok((io, peer_addr)))
})
.and_then(self)
}
}
#[cfg(feature = "openssl")]
mod openssl {
use actix_tls::accept::{
openssl::{
reexports::{Error as SslError, SslAcceptor},
Acceptor, TlsStream,
},
TlsError,
};
use super::*;
impl<S, B, X, U> H1Service<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>>,
B: MessageBody,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create OpenSSL based service.
pub fn openssl(
self,
acceptor: SslAcceptor,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<SslError, DispatchError>,
InitError = (),
> {
Acceptor::new(acceptor)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_20")]
mod rustls_0_20 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_20::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B, X, U> H1Service<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>>,
B: MessageBody,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create Rustls v0.20 based service.
pub fn rustls(
self,
config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
Acceptor::new(config)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().0.peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_21")]
mod rustls_0_21 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_21::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B, X, U> H1Service<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>>,
B: MessageBody,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create Rustls v0.21 based service.
pub fn rustls_021(
self,
config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
Acceptor::new(config)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().0.peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_22")]
mod rustls_0_22 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_22::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B, X, U> H1Service<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>>,
B: MessageBody,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create Rustls v0.22 based service.
pub fn rustls_0_22(
self,
config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
Acceptor::new(config)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().0.peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_23")]
mod rustls_0_23 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_23::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B, X, U> H1Service<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>>,
B: MessageBody,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create Rustls v0.23 based service.
pub fn rustls_0_23(
self,
config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
Acceptor::new(config)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().0.peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
impl<T, S, B, X, U> H1Service<T, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Error: Into<Response<BoxBody>>,
S::Response: Into<Response<B>>,
S::InitError: fmt::Debug,
B: MessageBody,
{
pub fn expect<X1>(self, expect: X1) -> H1Service<T, S, B, X1, U>
where
X1: ServiceFactory<Request, Response = Request>,
X1::Error: Into<Response<BoxBody>>,
X1::InitError: fmt::Debug,
{
H1Service {
expect,
cfg: self.cfg,
srv: self.srv,
upgrade: self.upgrade,
on_connect_ext: self.on_connect_ext,
_phantom: PhantomData,
}
}
pub fn upgrade<U1>(self, upgrade: Option<U1>) -> H1Service<T, S, B, X, U1>
where
U1: ServiceFactory<(Request, Framed<T, Codec>), Response = ()>,
U1::Error: fmt::Display,
U1::InitError: fmt::Debug,
{
H1Service {
upgrade,
cfg: self.cfg,
srv: self.srv,
expect: self.expect,
on_connect_ext: self.on_connect_ext,
_phantom: PhantomData,
}
}
/// Set on connect callback.
pub(crate) fn on_connect_ext(mut self, f: Option<Rc<ConnectCallback<T>>>) -> Self {
self.on_connect_ext = f;
self
}
}
impl<T, S, B, X, U> ServiceFactory<(T, Option<net::SocketAddr>)> for H1Service<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin + 'static,
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
S::Response: Into<Response<B>>,
S::InitError: fmt::Debug,
B: MessageBody,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<(Request, Framed<T, Codec>), Config = (), Response = ()>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
type Response = ();
type Error = DispatchError;
type Config = ();
type Service = H1ServiceHandler<T, S::Service, B, X::Service, U::Service>;
type InitError = ();
type Future = LocalBoxFuture<'static, Result<Self::Service, Self::InitError>>;
fn new_service(&self, _: ()) -> Self::Future {
let service = self.srv.new_service(());
let expect = self.expect.new_service(());
let upgrade = self.upgrade.as_ref().map(|s| s.new_service(()));
let on_connect_ext = self.on_connect_ext.clone();
let cfg = self.cfg.clone();
Box::pin(async move {
let expect = expect.await.map_err(|err| {
tracing::error!("Initialization of HTTP expect service error: {err:?}");
})?;
let upgrade = match upgrade {
Some(upgrade) => {
let upgrade = upgrade.await.map_err(|err| {
tracing::error!("Initialization of HTTP upgrade service error: {err:?}");
})?;
Some(upgrade)
}
None => None,
};
let service = service
.await
.map_err(|err| error!("Initialization of HTTP service error: {err:?}"))?;
Ok(H1ServiceHandler::new(
cfg,
service,
expect,
upgrade,
on_connect_ext,
))
})
}
}
/// `Service` implementation for HTTP/1 transport
pub type H1ServiceHandler<T, S, B, X, U> = HttpServiceHandler<T, S, B, X, U>;
impl<T, S, B, X, U> Service<(T, Option<net::SocketAddr>)> for HttpServiceHandler<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
S::Response: Into<Response<B>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, Codec>), Response = ()>,
U::Error: fmt::Display + Into<Response<BoxBody>>,
{
type Response = ();
type Error = DispatchError;
type Future = Dispatcher<T, S, B, X, U>;
fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self._poll_ready(cx).map_err(|err| {
error!("HTTP/1 service readiness error: {:?}", err);
DispatchError::Service(err)
})
}
fn call(&self, (io, addr): (T, Option<net::SocketAddr>)) -> Self::Future {
let conn_data = OnConnectData::from_io(&io, self.on_connect_ext.as_deref());
Dispatcher::new(io, Rc::clone(&self.flow), self.cfg.clone(), addr, conn_data)
}
}
|
use std::{fmt, future::Future, pin::Pin, task::Context};
use actix_rt::time::{Instant, Sleep};
use tracing::trace;
#[derive(Debug)]
pub(super) enum TimerState {
Disabled,
Inactive,
Active { timer: Pin<Box<Sleep>> },
}
impl TimerState {
pub(super) fn new(enabled: bool) -> Self {
if enabled {
Self::Inactive
} else {
Self::Disabled
}
}
pub(super) fn is_enabled(&self) -> bool {
matches!(self, Self::Active { .. } | Self::Inactive)
}
pub(super) fn set(&mut self, timer: Sleep, line: u32) {
if matches!(self, Self::Disabled) {
trace!("setting disabled timer from line {}", line);
}
*self = Self::Active {
timer: Box::pin(timer),
};
}
pub(super) fn set_and_init(&mut self, cx: &mut Context<'_>, timer: Sleep, line: u32) {
self.set(timer, line);
self.init(cx);
}
pub(super) fn clear(&mut self, line: u32) {
if matches!(self, Self::Disabled) {
trace!("trying to clear a disabled timer from line {}", line);
}
if matches!(self, Self::Inactive) {
trace!("trying to clear an inactive timer from line {}", line);
}
*self = Self::Inactive;
}
pub(super) fn init(&mut self, cx: &mut Context<'_>) {
if let TimerState::Active { timer } = self {
let _ = timer.as_mut().poll(cx);
}
}
}
impl fmt::Display for TimerState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
TimerState::Disabled => f.write_str("timer is disabled"),
TimerState::Inactive => f.write_str("timer is inactive"),
TimerState::Active { timer } => {
let deadline = timer.deadline();
let now = Instant::now();
if deadline < now {
f.write_str("timer is active and has reached deadline")
} else {
write!(
f,
"timer is active and due to expire in {} milliseconds",
((deadline - now).as_secs_f32() * 1000.0)
)
}
}
}
}
}
|
use actix_codec::Framed;
use actix_service::{Service, ServiceFactory};
use futures_core::future::LocalBoxFuture;
use crate::{h1::Codec, Error, Request};
pub struct UpgradeHandler;
impl<T> ServiceFactory<(Request, Framed<T, Codec>)> for UpgradeHandler {
type Response = ();
type Error = Error;
type Config = ();
type Service = UpgradeHandler;
type InitError = Error;
type Future = LocalBoxFuture<'static, Result<Self::Service, Self::InitError>>;
fn new_service(&self, _: ()) -> Self::Future {
unimplemented!()
}
}
impl<T> Service<(Request, Framed<T, Codec>)> for UpgradeHandler {
type Response = ();
type Error = Error;
type Future = LocalBoxFuture<'static, Result<Self::Response, Self::Error>>;
actix_service::always_ready!();
fn call(&self, _: (Request, Framed<T, Codec>)) -> Self::Future {
unimplemented!()
}
}
|
use std::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite, Framed};
use pin_project_lite::pin_project;
use crate::{
body::{BodySize, MessageBody},
h1::{Codec, Message},
Error, Response,
};
pin_project! {
/// Send HTTP/1 response
pub struct SendResponse<T, B> {
res: Option<Message<(Response<()>, BodySize)>>,
#[pin]
body: Option<B>,
#[pin]
framed: Option<Framed<T, Codec>>,
}
}
impl<T, B> SendResponse<T, B>
where
B: MessageBody,
B::Error: Into<Error>,
{
pub fn new(framed: Framed<T, Codec>, response: Response<B>) -> Self {
let (res, body) = response.into_parts();
SendResponse {
res: Some((res, body.size()).into()),
body: Some(body),
framed: Some(framed),
}
}
}
impl<T, B> Future for SendResponse<T, B>
where
T: AsyncRead + AsyncWrite + Unpin,
B: MessageBody,
B::Error: Into<Error>,
{
type Output = Result<Framed<T, Codec>, Error>;
// TODO: rethink if we need loops in polls
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.as_mut().project();
let mut body_done = this.body.is_none();
loop {
let mut body_ready = !body_done;
// send body
if this.res.is_none() && body_ready {
while body_ready
&& !body_done
&& !this
.framed
.as_ref()
.as_pin_ref()
.unwrap()
.is_write_buf_full()
{
let next = match this.body.as_mut().as_pin_mut().unwrap().poll_next(cx) {
Poll::Ready(Some(Ok(item))) => Poll::Ready(Some(item)),
Poll::Ready(Some(Err(err))) => return Poll::Ready(Err(err.into())),
Poll::Ready(None) => Poll::Ready(None),
Poll::Pending => Poll::Pending,
};
match next {
Poll::Ready(item) => {
// body is done when item is None
body_done = item.is_none();
if body_done {
this.body.set(None);
}
let framed = this.framed.as_mut().as_pin_mut().unwrap();
framed
.write(Message::Chunk(item))
.map_err(|err| Error::new_send_response().with_cause(err))?;
}
Poll::Pending => body_ready = false,
}
}
}
let framed = this.framed.as_mut().as_pin_mut().unwrap();
// flush write buffer
if !framed.is_write_buf_empty() {
match framed
.flush(cx)
.map_err(|err| Error::new_send_response().with_cause(err))?
{
Poll::Ready(_) => {
if body_ready {
continue;
} else {
return Poll::Pending;
}
}
Poll::Pending => return Poll::Pending,
}
}
// send response
if let Some(res) = this.res.take() {
framed
.write(res)
.map_err(|err| Error::new_send_response().with_cause(err))?;
continue;
}
if !body_done {
if body_ready {
continue;
} else {
return Poll::Pending;
}
} else {
break;
}
}
let framed = this.framed.take().unwrap();
Poll::Ready(Ok(framed))
}
}
|
use std::{
cmp,
error::Error as StdError,
future::Future,
marker::PhantomData,
net,
pin::{pin, Pin},
rc::Rc,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite};
use actix_rt::time::{sleep, Sleep};
use actix_service::Service;
use actix_utils::future::poll_fn;
use bytes::{Bytes, BytesMut};
use futures_core::ready;
use h2::{
server::{Connection, SendResponse},
Ping, PingPong,
};
use pin_project_lite::pin_project;
use crate::{
body::{BodySize, BoxBody, MessageBody},
config::ServiceConfig,
header::{
HeaderName, HeaderValue, CONNECTION, CONTENT_LENGTH, DATE, TRANSFER_ENCODING, UPGRADE,
},
service::HttpFlow,
Extensions, Method, OnConnectData, Payload, Request, Response, ResponseHead,
};
const CHUNK_SIZE: usize = 16_384;
pin_project! {
/// Dispatcher for HTTP/2 protocol.
pub struct Dispatcher<T, S, B, X, U> {
flow: Rc<HttpFlow<S, X, U>>,
connection: Connection<T, Bytes>,
conn_data: Option<Rc<Extensions>>,
config: ServiceConfig,
peer_addr: Option<net::SocketAddr>,
ping_pong: Option<H2PingPong>,
_phantom: PhantomData<B>
}
}
impl<T, S, B, X, U> Dispatcher<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin,
{
pub(crate) fn new(
mut conn: Connection<T, Bytes>,
flow: Rc<HttpFlow<S, X, U>>,
config: ServiceConfig,
peer_addr: Option<net::SocketAddr>,
conn_data: OnConnectData,
timer: Option<Pin<Box<Sleep>>>,
) -> Self {
let ping_pong = config.keep_alive().duration().map(|dur| H2PingPong {
timer: timer
.map(|mut timer| {
// reuse timer slot if it was initialized for handshake
timer.as_mut().reset((config.now() + dur).into());
timer
})
.unwrap_or_else(|| Box::pin(sleep(dur))),
in_flight: false,
ping_pong: conn.ping_pong().unwrap(),
});
Self {
flow,
config,
peer_addr,
connection: conn,
conn_data: conn_data.0.map(Rc::new),
ping_pong,
_phantom: PhantomData,
}
}
}
struct H2PingPong {
/// Handle to send ping frames from the peer.
ping_pong: PingPong,
/// True when a ping has been sent and is waiting for a reply.
in_flight: bool,
/// Timeout for pong response.
timer: Pin<Box<Sleep>>,
}
impl<T, S, B, X, U> Future for Dispatcher<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
S::Future: 'static,
S::Response: Into<Response<B>>,
B: MessageBody,
{
type Output = Result<(), crate::error::DispatchError>;
#[inline]
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.get_mut();
loop {
match Pin::new(&mut this.connection).poll_accept(cx)? {
Poll::Ready(Some((req, tx))) => {
let (parts, body) = req.into_parts();
let payload = crate::h2::Payload::new(body);
let pl = Payload::H2 { payload };
let mut req = Request::with_payload(pl);
let head_req = parts.method == Method::HEAD;
let head = req.head_mut();
head.uri = parts.uri;
head.method = parts.method;
head.version = parts.version;
head.headers = parts.headers.into();
head.peer_addr = this.peer_addr;
req.conn_data.clone_from(&this.conn_data);
let fut = this.flow.service.call(req);
let config = this.config.clone();
// multiplex request handling with spawn task
actix_rt::spawn(async move {
// resolve service call and send response.
let res = match fut.await {
Ok(res) => handle_response(res.into(), tx, config, head_req).await,
Err(err) => {
let res: Response<BoxBody> = err.into();
handle_response(res, tx, config, head_req).await
}
};
// log error.
if let Err(err) = res {
match err {
DispatchError::SendResponse(err) => {
tracing::trace!("Error sending response: {err:?}");
}
DispatchError::SendData(err) => {
tracing::warn!("Send data error: {err:?}");
}
DispatchError::ResponseBody(err) => {
tracing::error!("Response payload stream error: {err:?}");
}
}
}
});
}
Poll::Ready(None) => return Poll::Ready(Ok(())),
Poll::Pending => match this.ping_pong.as_mut() {
Some(ping_pong) => loop {
if ping_pong.in_flight {
// When there is an in-flight ping-pong, poll pong and and keep-alive
// timer. On successful pong received, update keep-alive timer to
// determine the next timing of ping pong.
match ping_pong.ping_pong.poll_pong(cx)? {
Poll::Ready(_) => {
ping_pong.in_flight = false;
let dead_line = this.config.keep_alive_deadline().unwrap();
ping_pong.timer.as_mut().reset(dead_line.into());
}
Poll::Pending => {
return ping_pong.timer.as_mut().poll(cx).map(|_| Ok(()));
}
}
} else {
// When there is no in-flight ping-pong, keep-alive timer is used to
// wait for next timing of ping-pong. Therefore, at this point it serves
// as an interval instead.
ready!(ping_pong.timer.as_mut().poll(cx));
ping_pong.ping_pong.send_ping(Ping::opaque())?;
let dead_line = this.config.keep_alive_deadline().unwrap();
ping_pong.timer.as_mut().reset(dead_line.into());
ping_pong.in_flight = true;
}
},
None => return Poll::Pending,
},
}
}
}
}
enum DispatchError {
SendResponse(h2::Error),
SendData(h2::Error),
ResponseBody(Box<dyn StdError>),
}
async fn handle_response<B>(
res: Response<B>,
mut tx: SendResponse<Bytes>,
config: ServiceConfig,
head_req: bool,
) -> Result<(), DispatchError>
where
B: MessageBody,
{
let (res, body) = res.replace_body(());
// prepare response.
let mut size = body.size();
let res = prepare_response(config, res.head(), &mut size);
let eof_or_head = size.is_eof() || head_req;
// send response head and return on eof.
let mut stream = tx
.send_response(res, eof_or_head)
.map_err(DispatchError::SendResponse)?;
if eof_or_head {
return Ok(());
}
let mut body = pin!(body);
// poll response body and send chunks to client
while let Some(res) = poll_fn(|cx| body.as_mut().poll_next(cx)).await {
let mut chunk = res.map_err(|err| DispatchError::ResponseBody(err.into()))?;
'send: loop {
let chunk_size = cmp::min(chunk.len(), CHUNK_SIZE);
// reserve enough space and wait for stream ready.
stream.reserve_capacity(chunk_size);
match poll_fn(|cx| stream.poll_capacity(cx)).await {
// No capacity left. drop body and return.
None => return Ok(()),
Some(Err(err)) => return Err(DispatchError::SendData(err)),
Some(Ok(cap)) => {
// split chunk to writeable size and send to client
let len = chunk.len();
let bytes = chunk.split_to(cmp::min(len, cap));
stream
.send_data(bytes, false)
.map_err(DispatchError::SendData)?;
// Current chuck completely sent. break send loop and poll next one.
if chunk.is_empty() {
break 'send;
}
}
}
}
}
// response body streaming finished. send end of stream and return.
stream
.send_data(Bytes::new(), true)
.map_err(DispatchError::SendData)?;
Ok(())
}
fn prepare_response(
config: ServiceConfig,
head: &ResponseHead,
size: &mut BodySize,
) -> http::Response<()> {
let mut has_date = false;
let mut skip_len = size != &BodySize::Stream;
let mut res = http::Response::new(());
*res.status_mut() = head.status;
*res.version_mut() = http::Version::HTTP_2;
// Content length
match head.status {
http::StatusCode::NO_CONTENT
| http::StatusCode::CONTINUE
| http::StatusCode::PROCESSING => *size = BodySize::None,
http::StatusCode::SWITCHING_PROTOCOLS => {
skip_len = true;
*size = BodySize::Stream;
}
_ => {}
}
match size {
BodySize::None | BodySize::Stream => {}
BodySize::Sized(0) => {
#[allow(clippy::declare_interior_mutable_const)]
const HV_ZERO: HeaderValue = HeaderValue::from_static("0");
res.headers_mut().insert(CONTENT_LENGTH, HV_ZERO);
}
BodySize::Sized(len) => {
let mut buf = itoa::Buffer::new();
res.headers_mut().insert(
CONTENT_LENGTH,
HeaderValue::from_str(buf.format(*len)).unwrap(),
);
}
};
// copy headers
for (key, value) in head.headers.iter() {
match key {
// omit HTTP/1.x only headers according to:
// https://datatracker.ietf.org/doc/html/rfc7540#section-8.1.2.2
&CONNECTION | &TRANSFER_ENCODING | &UPGRADE => continue,
&CONTENT_LENGTH if skip_len => continue,
&DATE => has_date = true,
// omit HTTP/1.x only headers according to:
// https://datatracker.ietf.org/doc/html/rfc7540#section-8.1.2.2
hdr if hdr == HeaderName::from_static("keep-alive")
|| hdr == HeaderName::from_static("proxy-connection") =>
{
continue
}
_ => {}
}
res.headers_mut().append(key, value.clone());
}
// set date header
if !has_date {
let mut bytes = BytesMut::with_capacity(29);
config.write_date_header_value(&mut bytes);
res.headers_mut().insert(
DATE,
// SAFETY: serialized date-times are known ASCII strings
unsafe { HeaderValue::from_maybe_shared_unchecked(bytes.freeze()) },
);
}
res
}
|
//! HTTP/2 protocol.
use std::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite};
use actix_rt::time::{sleep_until, Sleep};
use bytes::Bytes;
use futures_core::{ready, Stream};
use h2::{
server::{handshake, Connection, Handshake},
RecvStream,
};
use crate::{
config::ServiceConfig,
error::{DispatchError, PayloadError},
};
mod dispatcher;
mod service;
pub use self::{dispatcher::Dispatcher, service::H2Service};
/// HTTP/2 peer stream.
pub struct Payload {
stream: RecvStream,
}
impl Payload {
pub(crate) fn new(stream: RecvStream) -> Self {
Self { stream }
}
}
impl Stream for Payload {
type Item = Result<Bytes, PayloadError>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let this = self.get_mut();
match ready!(Pin::new(&mut this.stream).poll_data(cx)) {
Some(Ok(chunk)) => {
let len = chunk.len();
match this.stream.flow_control().release_capacity(len) {
Ok(()) => Poll::Ready(Some(Ok(chunk))),
Err(err) => Poll::Ready(Some(Err(err.into()))),
}
}
Some(Err(err)) => Poll::Ready(Some(Err(err.into()))),
None => Poll::Ready(None),
}
}
}
pub(crate) fn handshake_with_timeout<T>(io: T, config: &ServiceConfig) -> HandshakeWithTimeout<T>
where
T: AsyncRead + AsyncWrite + Unpin,
{
HandshakeWithTimeout {
handshake: handshake(io),
timer: config
.client_request_deadline()
.map(|deadline| Box::pin(sleep_until(deadline.into()))),
}
}
pub(crate) struct HandshakeWithTimeout<T: AsyncRead + AsyncWrite + Unpin> {
handshake: Handshake<T>,
timer: Option<Pin<Box<Sleep>>>,
}
impl<T> Future for HandshakeWithTimeout<T>
where
T: AsyncRead + AsyncWrite + Unpin,
{
type Output = Result<(Connection<T, Bytes>, Option<Pin<Box<Sleep>>>), DispatchError>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.get_mut();
match Pin::new(&mut this.handshake).poll(cx)? {
// return the timer on success handshake; its slot can be re-used for h2 ping-pong
Poll::Ready(conn) => Poll::Ready(Ok((conn, this.timer.take()))),
Poll::Pending => match this.timer.as_mut() {
Some(timer) => {
ready!(timer.as_mut().poll(cx));
Poll::Ready(Err(DispatchError::SlowRequestTimeout))
}
None => Poll::Pending,
},
}
}
}
#[cfg(test)]
mod tests {
use static_assertions::assert_impl_all;
use super::*;
assert_impl_all!(Payload: Unpin, Send, Sync);
}
|
use std::{
future::Future,
marker::PhantomData,
mem, net,
pin::Pin,
rc::Rc,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite};
use actix_rt::net::TcpStream;
use actix_service::{
fn_factory, fn_service, IntoServiceFactory, Service, ServiceFactory, ServiceFactoryExt as _,
};
use actix_utils::future::ready;
use futures_core::{future::LocalBoxFuture, ready};
use tracing::{error, trace};
use super::{dispatcher::Dispatcher, handshake_with_timeout, HandshakeWithTimeout};
use crate::{
body::{BoxBody, MessageBody},
config::ServiceConfig,
error::DispatchError,
service::HttpFlow,
ConnectCallback, OnConnectData, Request, Response,
};
/// `ServiceFactory` implementation for HTTP/2 transport
pub struct H2Service<T, S, B> {
srv: S,
cfg: ServiceConfig,
on_connect_ext: Option<Rc<ConnectCallback<T>>>,
_phantom: PhantomData<(T, B)>,
}
impl<T, S, B> H2Service<T, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Error: Into<Response<BoxBody>> + 'static,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Create new `H2Service` instance with config.
pub(crate) fn with_config<F: IntoServiceFactory<S, Request>>(
cfg: ServiceConfig,
service: F,
) -> Self {
H2Service {
cfg,
on_connect_ext: None,
srv: service.into_factory(),
_phantom: PhantomData,
}
}
/// Set on connect callback.
pub(crate) fn on_connect_ext(mut self, f: Option<Rc<ConnectCallback<T>>>) -> Self {
self.on_connect_ext = f;
self
}
}
impl<S, B> H2Service<TcpStream, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Create plain TCP based service
pub fn tcp(
self,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = DispatchError,
InitError = S::InitError,
> {
fn_factory(|| {
ready(Ok::<_, S::InitError>(fn_service(|io: TcpStream| {
let peer_addr = io.peer_addr().ok();
ready(Ok::<_, DispatchError>((io, peer_addr)))
})))
})
.and_then(self)
}
}
#[cfg(feature = "openssl")]
mod openssl {
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
openssl::{
reexports::{Error as SslError, SslAcceptor},
Acceptor, TlsStream,
},
TlsError,
};
use super::*;
impl<S, B> H2Service<TlsStream<TcpStream>, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Create OpenSSL based service.
pub fn openssl(
self,
acceptor: SslAcceptor,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<SslError, DispatchError>,
InitError = S::InitError,
> {
Acceptor::new(acceptor)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_20")]
mod rustls_0_20 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B> H2Service<TlsStream<TcpStream>, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Create Rustls v0.20 based service.
pub fn rustls(
self,
mut config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = S::InitError,
> {
let mut protos = vec![b"h2".to_vec()];
protos.extend_from_slice(&config.alpn_protocols);
config.alpn_protocols = protos;
Acceptor::new(config)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().0.peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_21")]
mod rustls_0_21 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_21::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B> H2Service<TlsStream<TcpStream>, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Create Rustls v0.21 based service.
pub fn rustls_021(
self,
mut config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = S::InitError,
> {
let mut protos = vec![b"h2".to_vec()];
protos.extend_from_slice(&config.alpn_protocols);
config.alpn_protocols = protos;
Acceptor::new(config)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().0.peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_22")]
mod rustls_0_22 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_22::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B> H2Service<TlsStream<TcpStream>, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Create Rustls v0.22 based service.
pub fn rustls_0_22(
self,
mut config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = S::InitError,
> {
let mut protos = vec![b"h2".to_vec()];
protos.extend_from_slice(&config.alpn_protocols);
config.alpn_protocols = protos;
Acceptor::new(config)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().0.peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_23")]
mod rustls_0_23 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_23::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B> H2Service<TlsStream<TcpStream>, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Create Rustls v0.23 based service.
pub fn rustls_0_23(
self,
mut config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = S::InitError,
> {
let mut protos = vec![b"h2".to_vec()];
protos.extend_from_slice(&config.alpn_protocols);
config.alpn_protocols = protos;
Acceptor::new(config)
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let peer_addr = io.get_ref().0.peer_addr().ok();
(io, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
impl<T, S, B> ServiceFactory<(T, Option<net::SocketAddr>)> for H2Service<T, S, B>
where
T: AsyncRead + AsyncWrite + Unpin + 'static,
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
type Response = ();
type Error = DispatchError;
type Config = ();
type Service = H2ServiceHandler<T, S::Service, B>;
type InitError = S::InitError;
type Future = LocalBoxFuture<'static, Result<Self::Service, Self::InitError>>;
fn new_service(&self, _: ()) -> Self::Future {
let service = self.srv.new_service(());
let cfg = self.cfg.clone();
let on_connect_ext = self.on_connect_ext.clone();
Box::pin(async move {
let service = service.await?;
Ok(H2ServiceHandler::new(cfg, on_connect_ext, service))
})
}
}
/// `Service` implementation for HTTP/2 transport
pub struct H2ServiceHandler<T, S, B>
where
S: Service<Request>,
{
flow: Rc<HttpFlow<S, (), ()>>,
cfg: ServiceConfig,
on_connect_ext: Option<Rc<ConnectCallback<T>>>,
_phantom: PhantomData<B>,
}
impl<T, S, B> H2ServiceHandler<T, S, B>
where
S: Service<Request>,
S::Error: Into<Response<BoxBody>> + 'static,
S::Future: 'static,
S::Response: Into<Response<B>> + 'static,
B: MessageBody + 'static,
{
fn new(
cfg: ServiceConfig,
on_connect_ext: Option<Rc<ConnectCallback<T>>>,
service: S,
) -> H2ServiceHandler<T, S, B> {
H2ServiceHandler {
flow: HttpFlow::new(service, (), None),
cfg,
on_connect_ext,
_phantom: PhantomData,
}
}
}
impl<T, S, B> Service<(T, Option<net::SocketAddr>)> for H2ServiceHandler<T, S, B>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>> + 'static,
S::Future: 'static,
S::Response: Into<Response<B>> + 'static,
B: MessageBody + 'static,
{
type Response = ();
type Error = DispatchError;
type Future = H2ServiceHandlerResponse<T, S, B>;
fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.flow.service.poll_ready(cx).map_err(|err| {
let err = err.into();
error!("Service readiness error: {:?}", err);
DispatchError::Service(err)
})
}
fn call(&self, (io, addr): (T, Option<net::SocketAddr>)) -> Self::Future {
let on_connect_data = OnConnectData::from_io(&io, self.on_connect_ext.as_deref());
H2ServiceHandlerResponse {
state: State::Handshake(
Some(Rc::clone(&self.flow)),
Some(self.cfg.clone()),
addr,
on_connect_data,
handshake_with_timeout(io, &self.cfg),
),
}
}
}
enum State<T, S: Service<Request>, B: MessageBody>
where
T: AsyncRead + AsyncWrite + Unpin,
S::Future: 'static,
{
Handshake(
Option<Rc<HttpFlow<S, (), ()>>>,
Option<ServiceConfig>,
Option<net::SocketAddr>,
OnConnectData,
HandshakeWithTimeout<T>,
),
Established(Dispatcher<T, S, B, (), ()>),
}
pub struct H2ServiceHandlerResponse<T, S, B>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>> + 'static,
S::Future: 'static,
S::Response: Into<Response<B>> + 'static,
B: MessageBody + 'static,
{
state: State<T, S, B>,
}
impl<T, S, B> Future for H2ServiceHandlerResponse<T, S, B>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>> + 'static,
S::Future: 'static,
S::Response: Into<Response<B>> + 'static,
B: MessageBody,
{
type Output = Result<(), DispatchError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.state {
State::Handshake(
ref mut srv,
ref mut config,
ref peer_addr,
ref mut conn_data,
ref mut handshake,
) => match ready!(Pin::new(handshake).poll(cx)) {
Ok((conn, timer)) => {
let on_connect_data = mem::take(conn_data);
self.state = State::Established(Dispatcher::new(
conn,
srv.take().unwrap(),
config.take().unwrap(),
*peer_addr,
on_connect_data,
timer,
));
self.poll(cx)
}
Err(err) => {
trace!("H2 handshake error: {}", err);
Poll::Ready(Err(err))
}
},
State::Established(ref mut disp) => Pin::new(disp).poll(cx),
}
}
}
|
//! Sealed [`AsHeaderName`] trait and implementations.
use std::{borrow::Cow, str::FromStr as _};
use http::header::{HeaderName, InvalidHeaderName};
/// Sealed trait implemented for types that can be effectively borrowed as a [`HeaderValue`].
///
/// [`HeaderValue`]: super::HeaderValue
pub trait AsHeaderName: Sealed {}
pub struct Seal;
pub trait Sealed {
fn try_as_name(&self, seal: Seal) -> Result<Cow<'_, HeaderName>, InvalidHeaderName>;
}
impl Sealed for HeaderName {
#[inline]
fn try_as_name(&self, _: Seal) -> Result<Cow<'_, HeaderName>, InvalidHeaderName> {
Ok(Cow::Borrowed(self))
}
}
impl AsHeaderName for HeaderName {}
impl Sealed for &HeaderName {
#[inline]
fn try_as_name(&self, _: Seal) -> Result<Cow<'_, HeaderName>, InvalidHeaderName> {
Ok(Cow::Borrowed(*self))
}
}
impl AsHeaderName for &HeaderName {}
impl Sealed for &str {
#[inline]
fn try_as_name(&self, _: Seal) -> Result<Cow<'_, HeaderName>, InvalidHeaderName> {
HeaderName::from_str(self).map(Cow::Owned)
}
}
impl AsHeaderName for &str {}
impl Sealed for String {
#[inline]
fn try_as_name(&self, _: Seal) -> Result<Cow<'_, HeaderName>, InvalidHeaderName> {
HeaderName::from_str(self).map(Cow::Owned)
}
}
impl AsHeaderName for String {}
impl Sealed for &String {
#[inline]
fn try_as_name(&self, _: Seal) -> Result<Cow<'_, HeaderName>, InvalidHeaderName> {
HeaderName::from_str(self).map(Cow::Owned)
}
}
impl AsHeaderName for &String {}
|
//! Common header names not defined in [`http`].
//!
//! Any headers added to this file will need to be re-exported from the list at `crate::headers`.
use http::header::HeaderName;
/// Response header field that indicates how caches have handled that response and its corresponding
/// request.
///
/// See [RFC 9211](https://www.rfc-editor.org/rfc/rfc9211) for full semantics.
// TODO(breaking): replace with http's version
pub const CACHE_STATUS: HeaderName = HeaderName::from_static("cache-status");
/// Response header field that allows origin servers to control the behavior of CDN caches
/// interposed between them and clients separately from other caches that might handle the response.
///
/// See [RFC 9213](https://www.rfc-editor.org/rfc/rfc9213) for full semantics.
// TODO(breaking): replace with http's version
pub const CDN_CACHE_CONTROL: HeaderName = HeaderName::from_static("cdn-cache-control");
/// Response header field that sends a signal to the user agent that it ought to remove all data of
/// a certain set of types.
///
/// See the [W3C Clear-Site-Data spec] for full semantics.
///
/// [W3C Clear-Site-Data spec]: https://www.w3.org/TR/clear-site-data/#header
pub const CLEAR_SITE_DATA: HeaderName = HeaderName::from_static("clear-site-data");
/// Response header that prevents a document from loading any cross-origin resources that don't
/// explicitly grant the document permission (using [CORP] or [CORS]).
///
/// [CORP]: https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
/// [CORS]: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
pub const CROSS_ORIGIN_EMBEDDER_POLICY: HeaderName =
HeaderName::from_static("cross-origin-embedder-policy");
/// Response header that allows you to ensure a top-level document does not share a browsing context
/// group with cross-origin documents.
pub const CROSS_ORIGIN_OPENER_POLICY: HeaderName =
HeaderName::from_static("cross-origin-opener-policy");
/// Response header that conveys a desire that the browser blocks no-cors cross-origin/cross-site
/// requests to the given resource.
pub const CROSS_ORIGIN_RESOURCE_POLICY: HeaderName =
HeaderName::from_static("cross-origin-resource-policy");
/// Response header that provides a mechanism to allow and deny the use of browser features in a
/// document or within any `<iframe>` elements in the document.
pub const PERMISSIONS_POLICY: HeaderName = HeaderName::from_static("permissions-policy");
/// Request header (de-facto standard) for identifying the originating IP address of a client
/// connecting to a web server through a proxy server.
pub const X_FORWARDED_FOR: HeaderName = HeaderName::from_static("x-forwarded-for");
/// Request header (de-facto standard) for identifying the original host requested by the client in
/// the `Host` HTTP request header.
pub const X_FORWARDED_HOST: HeaderName = HeaderName::from_static("x-forwarded-host");
/// Request header (de-facto standard) for identifying the protocol that a client used to connect to
/// your proxy or load balancer.
pub const X_FORWARDED_PROTO: HeaderName = HeaderName::from_static("x-forwarded-proto");
|
//! [`TryIntoHeaderPair`] trait and implementations.
use super::{
Header, HeaderName, HeaderValue, InvalidHeaderName, InvalidHeaderValue, TryIntoHeaderValue,
};
use crate::error::HttpError;
/// An interface for types that can be converted into a [`HeaderName`] + [`HeaderValue`] pair for
/// insertion into a [`HeaderMap`].
///
/// [`HeaderMap`]: super::HeaderMap
pub trait TryIntoHeaderPair: Sized {
type Error: Into<HttpError>;
fn try_into_pair(self) -> Result<(HeaderName, HeaderValue), Self::Error>;
}
#[derive(Debug)]
pub enum InvalidHeaderPart {
Name(InvalidHeaderName),
Value(InvalidHeaderValue),
}
impl From<InvalidHeaderPart> for HttpError {
fn from(part_err: InvalidHeaderPart) -> Self {
match part_err {
InvalidHeaderPart::Name(err) => err.into(),
InvalidHeaderPart::Value(err) => err.into(),
}
}
}
impl<V> TryIntoHeaderPair for (HeaderName, V)
where
V: TryIntoHeaderValue,
V::Error: Into<InvalidHeaderValue>,
{
type Error = InvalidHeaderPart;
fn try_into_pair(self) -> Result<(HeaderName, HeaderValue), Self::Error> {
let (name, value) = self;
let value = value
.try_into_value()
.map_err(|err| InvalidHeaderPart::Value(err.into()))?;
Ok((name, value))
}
}
impl<V> TryIntoHeaderPair for (&HeaderName, V)
where
V: TryIntoHeaderValue,
V::Error: Into<InvalidHeaderValue>,
{
type Error = InvalidHeaderPart;
fn try_into_pair(self) -> Result<(HeaderName, HeaderValue), Self::Error> {
let (name, value) = self;
let value = value
.try_into_value()
.map_err(|err| InvalidHeaderPart::Value(err.into()))?;
Ok((name.clone(), value))
}
}
impl<V> TryIntoHeaderPair for (&[u8], V)
where
V: TryIntoHeaderValue,
V::Error: Into<InvalidHeaderValue>,
{
type Error = InvalidHeaderPart;
fn try_into_pair(self) -> Result<(HeaderName, HeaderValue), Self::Error> {
let (name, value) = self;
let name = HeaderName::try_from(name).map_err(InvalidHeaderPart::Name)?;
let value = value
.try_into_value()
.map_err(|err| InvalidHeaderPart::Value(err.into()))?;
Ok((name, value))
}
}
impl<V> TryIntoHeaderPair for (&str, V)
where
V: TryIntoHeaderValue,
V::Error: Into<InvalidHeaderValue>,
{
type Error = InvalidHeaderPart;
fn try_into_pair(self) -> Result<(HeaderName, HeaderValue), Self::Error> {
let (name, value) = self;
let name = HeaderName::try_from(name).map_err(InvalidHeaderPart::Name)?;
let value = value
.try_into_value()
.map_err(|err| InvalidHeaderPart::Value(err.into()))?;
Ok((name, value))
}
}
impl<V> TryIntoHeaderPair for (String, V)
where
V: TryIntoHeaderValue,
V::Error: Into<InvalidHeaderValue>,
{
type Error = InvalidHeaderPart;
#[inline]
fn try_into_pair(self) -> Result<(HeaderName, HeaderValue), Self::Error> {
let (name, value) = self;
(name.as_str(), value).try_into_pair()
}
}
impl<T: Header> TryIntoHeaderPair for T {
type Error = <T as TryIntoHeaderValue>::Error;
#[inline]
fn try_into_pair(self) -> Result<(HeaderName, HeaderValue), Self::Error> {
Ok((T::name(), self.try_into_value()?))
}
}
|
//! [`TryIntoHeaderValue`] trait and implementations.
use bytes::Bytes;
use http::{header::InvalidHeaderValue, Error as HttpError, HeaderValue};
use mime::Mime;
/// An interface for types that can be converted into a [`HeaderValue`].
pub trait TryIntoHeaderValue: Sized {
/// The type returned in the event of a conversion error.
type Error: Into<HttpError>;
/// Try to convert value to a HeaderValue.
fn try_into_value(self) -> Result<HeaderValue, Self::Error>;
}
impl TryIntoHeaderValue for HeaderValue {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
Ok(self)
}
}
impl TryIntoHeaderValue for &HeaderValue {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
Ok(self.clone())
}
}
impl TryIntoHeaderValue for &str {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
self.parse()
}
}
impl TryIntoHeaderValue for &[u8] {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::from_bytes(self)
}
}
impl TryIntoHeaderValue for Bytes {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::from_maybe_shared(self)
}
}
impl TryIntoHeaderValue for Vec<u8> {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::try_from(self)
}
}
impl TryIntoHeaderValue for String {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::try_from(self)
}
}
impl TryIntoHeaderValue for usize {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::try_from(self.to_string())
}
}
impl TryIntoHeaderValue for i64 {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::try_from(self.to_string())
}
}
impl TryIntoHeaderValue for u64 {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::try_from(self.to_string())
}
}
impl TryIntoHeaderValue for i32 {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::try_from(self.to_string())
}
}
impl TryIntoHeaderValue for u32 {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::try_from(self.to_string())
}
}
impl TryIntoHeaderValue for Mime {
type Error = InvalidHeaderValue;
#[inline]
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
HeaderValue::from_str(self.as_ref())
}
}
|
//! A multi-value [`HeaderMap`] and its iterators.
use std::{borrow::Cow, collections::hash_map, iter, ops};
use foldhash::{HashMap as FoldHashMap, HashMapExt as _};
use http::header::{HeaderName, HeaderValue};
use smallvec::{smallvec, SmallVec};
use super::AsHeaderName;
/// A multi-map of HTTP headers.
///
/// `HeaderMap` is a "multi-map" of [`HeaderName`] to one or more [`HeaderValue`]s.
///
/// # Examples
///
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
///
/// let mut map = HeaderMap::new();
///
/// map.insert(header::CONTENT_TYPE, HeaderValue::from_static("text/plain"));
/// map.insert(header::ORIGIN, HeaderValue::from_static("example.com"));
///
/// assert!(map.contains_key(header::CONTENT_TYPE));
/// assert!(map.contains_key(header::ORIGIN));
///
/// let mut removed = map.remove(header::ORIGIN);
/// assert_eq!(removed.next().unwrap(), "example.com");
///
/// assert!(!map.contains_key(header::ORIGIN));
/// ```
///
/// Construct a header map using the [`FromIterator`] implementation. Note that it uses the append
/// strategy, so duplicate header names are preserved.
///
/// ```
/// use actix_http::header::{self, HeaderMap, HeaderValue};
///
/// let headers = HeaderMap::from_iter([
/// (header::CONTENT_TYPE, HeaderValue::from_static("text/plain")),
/// (header::COOKIE, HeaderValue::from_static("foo=1")),
/// (header::COOKIE, HeaderValue::from_static("bar=1")),
/// ]);
///
/// assert_eq!(headers.len(), 3);
/// ```
#[derive(Debug, Clone, Default)]
pub struct HeaderMap {
pub(crate) inner: FoldHashMap<HeaderName, Value>,
}
/// A bespoke non-empty list for HeaderMap values.
#[derive(Debug, Clone)]
pub(crate) struct Value {
inner: SmallVec<[HeaderValue; 4]>,
}
impl Value {
fn one(val: HeaderValue) -> Self {
Self {
inner: smallvec![val],
}
}
fn first(&self) -> &HeaderValue {
&self.inner[0]
}
fn first_mut(&mut self) -> &mut HeaderValue {
&mut self.inner[0]
}
fn append(&mut self, new_val: HeaderValue) {
self.inner.push(new_val)
}
}
impl ops::Deref for Value {
type Target = SmallVec<[HeaderValue; 4]>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl HeaderMap {
/// Create an empty `HeaderMap`.
///
/// The map will be created without any capacity; this function will not allocate.
///
/// # Examples
/// ```
/// # use actix_http::header::HeaderMap;
/// let map = HeaderMap::new();
///
/// assert!(map.is_empty());
/// assert_eq!(0, map.capacity());
/// ```
pub fn new() -> Self {
HeaderMap::default()
}
/// Create an empty `HeaderMap` with the specified capacity.
///
/// The map will be able to hold at least `capacity` elements without needing to reallocate.
/// If `capacity` is 0, the map will be created without allocating.
///
/// # Examples
/// ```
/// # use actix_http::header::HeaderMap;
/// let map = HeaderMap::with_capacity(16);
///
/// assert!(map.is_empty());
/// assert!(map.capacity() >= 16);
/// ```
pub fn with_capacity(capacity: usize) -> Self {
HeaderMap {
inner: FoldHashMap::with_capacity(capacity),
}
}
/// Create new `HeaderMap` from a `http::HeaderMap`-like drain.
pub(crate) fn from_drain<I>(mut drain: I) -> Self
where
I: Iterator<Item = (Option<HeaderName>, HeaderValue)>,
{
let (first_name, first_value) = match drain.next() {
None => return HeaderMap::new(),
Some((name, val)) => {
let name = name.expect("drained first item had no name");
(name, val)
}
};
let (lb, ub) = drain.size_hint();
let capacity = ub.unwrap_or(lb);
let mut map = HeaderMap::with_capacity(capacity);
map.append(first_name.clone(), first_value);
let (map, _) = drain.fold((map, first_name), |(mut map, prev_name), (name, value)| {
let name = name.unwrap_or(prev_name);
map.append(name.clone(), value);
(map, name)
});
map
}
/// Returns the number of values stored in the map.
///
/// See also: [`len_keys`](Self::len_keys).
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
/// assert_eq!(map.len(), 0);
///
/// map.insert(header::ACCEPT, HeaderValue::from_static("text/plain"));
/// map.insert(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// assert_eq!(map.len(), 2);
///
/// map.append(header::SET_COOKIE, HeaderValue::from_static("two=2"));
/// assert_eq!(map.len(), 3);
/// ```
pub fn len(&self) -> usize {
self.inner.values().map(|vals| vals.len()).sum()
}
/// Returns the number of _keys_ stored in the map.
///
/// The number of values stored will be at least this number. See also: [`Self::len`].
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
/// assert_eq!(map.len_keys(), 0);
///
/// map.insert(header::ACCEPT, HeaderValue::from_static("text/plain"));
/// map.insert(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// assert_eq!(map.len_keys(), 2);
///
/// map.append(header::SET_COOKIE, HeaderValue::from_static("two=2"));
/// assert_eq!(map.len_keys(), 2);
/// ```
pub fn len_keys(&self) -> usize {
self.inner.len()
}
/// Returns true if the map contains no elements.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
/// assert!(map.is_empty());
///
/// map.insert(header::ACCEPT, HeaderValue::from_static("text/plain"));
/// assert!(!map.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.inner.len() == 0
}
/// Clears the map, removing all name-value pairs.
///
/// Keeps the allocated memory for reuse.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// map.insert(header::ACCEPT, HeaderValue::from_static("text/plain"));
/// map.insert(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// assert_eq!(map.len(), 2);
///
/// map.clear();
/// assert!(map.is_empty());
/// ```
pub fn clear(&mut self) {
self.inner.clear();
}
fn get_value(&self, key: impl AsHeaderName) -> Option<&Value> {
match key.try_as_name(super::as_name::Seal).ok()? {
Cow::Borrowed(name) => self.inner.get(name),
Cow::Owned(name) => self.inner.get(&name),
}
}
/// Returns a reference to the _first_ value associated with a header name.
///
/// Returns `None` if there is no value associated with the key.
///
/// Even when multiple values are associated with the key, the "first" one is returned but is
/// not guaranteed to be chosen with any particular order; though, the returned item will be
/// consistent for each call to `get` if the map has not changed.
///
/// See also: [`get_all`](Self::get_all).
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// map.insert(header::SET_COOKIE, HeaderValue::from_static("one=1"));
///
/// let cookie = map.get(header::SET_COOKIE).unwrap();
/// assert_eq!(cookie, "one=1");
///
/// map.append(header::SET_COOKIE, HeaderValue::from_static("two=2"));
/// assert_eq!(map.get(header::SET_COOKIE).unwrap(), "one=1");
///
/// assert_eq!(map.get(header::SET_COOKIE), map.get("set-cookie"));
/// assert_eq!(map.get(header::SET_COOKIE), map.get("Set-Cookie"));
///
/// assert!(map.get(header::HOST).is_none());
/// assert!(map.get("INVALID HEADER NAME").is_none());
/// ```
pub fn get(&self, key: impl AsHeaderName) -> Option<&HeaderValue> {
self.get_value(key).map(Value::first)
}
/// Returns a mutable reference to the _first_ value associated a header name.
///
/// Returns `None` if there is no value associated with the key.
///
/// Even when multiple values are associated with the key, the "first" one is returned but is
/// not guaranteed to be chosen with any particular order; though, the returned item will be
/// consistent for each call to `get_mut` if the map has not changed.
///
/// See also: [`get_all`](Self::get_all).
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// map.insert(header::SET_COOKIE, HeaderValue::from_static("one=1"));
///
/// let mut cookie = map.get_mut(header::SET_COOKIE).unwrap();
/// assert_eq!(cookie, "one=1");
///
/// *cookie = HeaderValue::from_static("three=3");
/// assert_eq!(map.get(header::SET_COOKIE).unwrap(), "three=3");
///
/// assert!(map.get(header::HOST).is_none());
/// assert!(map.get("INVALID HEADER NAME").is_none());
/// ```
pub fn get_mut(&mut self, key: impl AsHeaderName) -> Option<&mut HeaderValue> {
match key.try_as_name(super::as_name::Seal).ok()? {
Cow::Borrowed(name) => self.inner.get_mut(name).map(Value::first_mut),
Cow::Owned(name) => self.inner.get_mut(&name).map(Value::first_mut),
}
}
/// Returns an iterator over all values associated with a header name.
///
/// The returned iterator does not incur any allocations and will yield no items if there are no
/// values associated with the key. Iteration order is guaranteed to be the same as
/// insertion order.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// let mut none_iter = map.get_all(header::ORIGIN);
/// assert!(none_iter.next().is_none());
///
/// map.insert(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("two=2"));
///
/// let mut set_cookies_iter = map.get_all(header::SET_COOKIE);
/// assert_eq!(set_cookies_iter.next().unwrap(), "one=1");
/// assert_eq!(set_cookies_iter.next().unwrap(), "two=2");
/// assert!(set_cookies_iter.next().is_none());
/// ```
pub fn get_all(&self, key: impl AsHeaderName) -> std::slice::Iter<'_, HeaderValue> {
match self.get_value(key) {
Some(value) => value.iter(),
None => [].iter(),
}
}
// TODO: get_all_mut ?
/// Returns `true` if the map contains a value for the specified key.
///
/// Invalid header names will simply return false.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
/// assert!(!map.contains_key(header::ACCEPT));
///
/// map.insert(header::ACCEPT, HeaderValue::from_static("text/plain"));
/// assert!(map.contains_key(header::ACCEPT));
/// ```
pub fn contains_key(&self, key: impl AsHeaderName) -> bool {
match key.try_as_name(super::as_name::Seal) {
Ok(Cow::Borrowed(name)) => self.inner.contains_key(name),
Ok(Cow::Owned(name)) => self.inner.contains_key(&name),
Err(_) => false,
}
}
/// Inserts (overrides) a name-value pair in the map.
///
/// If the map already contained this key, the new value is associated with the key and all
/// previous values are removed and returned as a `Removed` iterator. The key is not updated;
/// this matters for types that can be `==` without being identical.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// map.insert(header::ACCEPT, HeaderValue::from_static("text/plain"));
/// assert!(map.contains_key(header::ACCEPT));
/// assert_eq!(map.len(), 1);
///
/// let mut removed = map.insert(header::ACCEPT, HeaderValue::from_static("text/csv"));
/// assert_eq!(removed.next().unwrap(), "text/plain");
/// assert!(removed.next().is_none());
///
/// assert_eq!(map.len(), 1);
/// ```
///
/// A convenience method is provided on the returned iterator to check if the insertion replaced
/// any values.
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// let removed = map.insert(header::ACCEPT, HeaderValue::from_static("text/plain"));
/// assert!(removed.is_empty());
///
/// let removed = map.insert(header::ACCEPT, HeaderValue::from_static("text/html"));
/// assert!(!removed.is_empty());
/// ```
pub fn insert(&mut self, name: HeaderName, val: HeaderValue) -> Removed {
let value = self.inner.insert(name, Value::one(val));
Removed::new(value)
}
/// Appends a name-value pair to the map.
///
/// If the map already contained this key, the new value is added to the list of values
/// currently associated with the key. The key is not updated; this matters for types that can
/// be `==` without being identical.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// map.append(header::HOST, HeaderValue::from_static("example.com"));
/// assert_eq!(map.len(), 1);
///
/// map.append(header::ACCEPT, HeaderValue::from_static("text/csv"));
/// assert_eq!(map.len(), 2);
///
/// map.append(header::ACCEPT, HeaderValue::from_static("text/html"));
/// assert_eq!(map.len(), 3);
/// ```
pub fn append(&mut self, key: HeaderName, value: HeaderValue) {
match self.inner.entry(key) {
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().append(value);
}
hash_map::Entry::Vacant(entry) => {
entry.insert(Value::one(value));
}
};
}
/// Removes all headers for a particular header name from the map.
///
/// Providing an invalid header names (as a string argument) will have no effect and return
/// without error.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// map.append(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("one=2"));
///
/// assert_eq!(map.len(), 2);
///
/// let mut removed = map.remove(header::SET_COOKIE);
/// assert_eq!(removed.next().unwrap(), "one=1");
/// assert_eq!(removed.next().unwrap(), "one=2");
/// assert!(removed.next().is_none());
///
/// assert!(map.is_empty());
/// ```
///
/// A convenience method is provided on the returned iterator to check if the `remove` call
/// actually removed any values.
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// let removed = map.remove("accept");
/// assert!(removed.is_empty());
///
/// map.insert(header::ACCEPT, HeaderValue::from_static("text/html"));
/// let removed = map.remove("accept");
/// assert!(!removed.is_empty());
/// ```
pub fn remove(&mut self, key: impl AsHeaderName) -> Removed {
let value = match key.try_as_name(super::as_name::Seal) {
Ok(Cow::Borrowed(name)) => self.inner.remove(name),
Ok(Cow::Owned(name)) => self.inner.remove(&name),
Err(_) => None,
};
Removed::new(value)
}
/// Returns the number of single-value headers the map can hold without needing to reallocate.
///
/// Since this is a multi-value map, the actual capacity is much larger when considering
/// each header name can be associated with an arbitrary number of values. The effect is that
/// the size of `len` may be greater than `capacity` since it counts all the values.
/// Conversely, [`len_keys`](Self::len_keys) will never be larger than capacity.
///
/// # Examples
/// ```
/// # use actix_http::header::HeaderMap;
/// let map = HeaderMap::with_capacity(16);
///
/// assert!(map.is_empty());
/// assert!(map.capacity() >= 16);
/// ```
pub fn capacity(&self) -> usize {
self.inner.capacity()
}
/// Reserves capacity for at least `additional` more headers to be inserted in the map.
///
/// The header map may reserve more space to avoid frequent reallocations. Additional capacity
/// only considers single-value headers.
///
/// # Panics
/// Panics if the new allocation size overflows usize.
///
/// # Examples
/// ```
/// # use actix_http::header::HeaderMap;
/// let mut map = HeaderMap::with_capacity(2);
/// assert!(map.capacity() >= 2);
///
/// map.reserve(100);
/// assert!(map.capacity() >= 102);
///
/// assert!(map.is_empty());
/// ```
pub fn reserve(&mut self, additional: usize) {
self.inner.reserve(additional)
}
/// An iterator over all name-value pairs.
///
/// Names will be yielded for each associated value. So, if a key has 3 associated values, it
/// will be yielded 3 times. The iteration order should be considered arbitrary.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// let mut iter = map.iter();
/// assert!(iter.next().is_none());
///
/// map.append(header::HOST, HeaderValue::from_static("duck.com"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("two=2"));
///
/// let mut iter = map.iter();
/// assert!(iter.next().is_some());
/// assert!(iter.next().is_some());
/// assert!(iter.next().is_some());
/// assert!(iter.next().is_none());
///
/// let pairs = map.iter().collect::<Vec<_>>();
/// assert!(pairs.contains(&(&header::HOST, &HeaderValue::from_static("duck.com"))));
/// assert!(pairs.contains(&(&header::SET_COOKIE, &HeaderValue::from_static("one=1"))));
/// assert!(pairs.contains(&(&header::SET_COOKIE, &HeaderValue::from_static("two=2"))));
/// ```
pub fn iter(&self) -> Iter<'_> {
Iter::new(self.inner.iter())
}
/// An iterator over all contained header names.
///
/// Each name will only be yielded once even if it has multiple associated values. The iteration
/// order should be considered arbitrary.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// let mut iter = map.keys();
/// assert!(iter.next().is_none());
///
/// map.append(header::HOST, HeaderValue::from_static("duck.com"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("two=2"));
///
/// let keys = map.keys().cloned().collect::<Vec<_>>();
/// assert_eq!(keys.len(), 2);
/// assert!(keys.contains(&header::HOST));
/// assert!(keys.contains(&header::SET_COOKIE));
/// ```
pub fn keys(&self) -> Keys<'_> {
Keys(self.inner.keys())
}
/// Retains only the headers specified by the predicate.
///
/// In other words, removes all headers `(name, val)` for which `retain_fn(&name, &mut val)`
/// returns false.
///
/// The order in which headers are visited should be considered arbitrary.
///
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// map.append(header::HOST, HeaderValue::from_static("duck.com"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("two=2"));
///
/// map.retain(|name, val| val.as_bytes().starts_with(b"one"));
///
/// assert_eq!(map.len(), 1);
/// assert!(map.contains_key(&header::SET_COOKIE));
/// ```
pub fn retain<F>(&mut self, mut retain_fn: F)
where
F: FnMut(&HeaderName, &mut HeaderValue) -> bool,
{
self.inner.retain(|name, vals| {
vals.inner.retain(|val| retain_fn(name, val));
// invariant: make sure newly empty value lists are removed
!vals.is_empty()
})
}
/// Clears the map, returning all name-value sets as an iterator.
///
/// Header names will only be yielded for the first value in each set. All items that are
/// yielded without a name and after an item with a name are associated with that same name.
/// The first item will always contain a name.
///
/// Keeps the allocated memory for reuse.
/// # Examples
/// ```
/// # use actix_http::header::{self, HeaderMap, HeaderValue};
/// let mut map = HeaderMap::new();
///
/// let mut iter = map.drain();
/// assert!(iter.next().is_none());
/// drop(iter);
///
/// map.append(header::SET_COOKIE, HeaderValue::from_static("one=1"));
/// map.append(header::SET_COOKIE, HeaderValue::from_static("two=2"));
///
/// let mut iter = map.drain();
/// assert_eq!(iter.next().unwrap(), (Some(header::SET_COOKIE), HeaderValue::from_static("one=1")));
/// assert_eq!(iter.next().unwrap(), (None, HeaderValue::from_static("two=2")));
/// drop(iter);
///
/// assert!(map.is_empty());
/// ```
pub fn drain(&mut self) -> Drain<'_> {
Drain::new(self.inner.drain())
}
}
/// Note that this implementation will clone a [HeaderName] for each value. Consider using
/// [`drain`](Self::drain) to control header name cloning.
impl IntoIterator for HeaderMap {
type Item = (HeaderName, HeaderValue);
type IntoIter = IntoIter;
#[inline]
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self.inner.into_iter())
}
}
impl<'a> IntoIterator for &'a HeaderMap {
type Item = (&'a HeaderName, &'a HeaderValue);
type IntoIter = Iter<'a>;
#[inline]
fn into_iter(self) -> Self::IntoIter {
Iter::new(self.inner.iter())
}
}
impl FromIterator<(HeaderName, HeaderValue)> for HeaderMap {
fn from_iter<T: IntoIterator<Item = (HeaderName, HeaderValue)>>(iter: T) -> Self {
iter.into_iter()
.fold(Self::new(), |mut map, (name, value)| {
map.append(name, value);
map
})
}
}
/// Convert a `http::HeaderMap` to our `HeaderMap`.
impl From<http::HeaderMap> for HeaderMap {
fn from(mut map: http::HeaderMap) -> Self {
Self::from_drain(map.drain())
}
}
/// Convert our `HeaderMap` to a `http::HeaderMap`.
impl From<HeaderMap> for http::HeaderMap {
fn from(map: HeaderMap) -> Self {
Self::from_iter(map)
}
}
/// Convert our `&HeaderMap` to a `http::HeaderMap`.
impl From<&HeaderMap> for http::HeaderMap {
fn from(map: &HeaderMap) -> Self {
map.to_owned().into()
}
}
/// Iterator over removed, owned values with the same associated name.
///
/// Returned from methods that remove or replace items. See [`HeaderMap::insert`]
/// and [`HeaderMap::remove`].
#[derive(Debug)]
pub struct Removed {
inner: Option<smallvec::IntoIter<[HeaderValue; 4]>>,
}
impl Removed {
fn new(value: Option<Value>) -> Self {
let inner = value.map(|value| value.inner.into_iter());
Self { inner }
}
/// Returns true if iterator contains no elements, without consuming it.
///
/// If called immediately after [`HeaderMap::insert`] or [`HeaderMap::remove`], it will indicate
/// whether any items were actually replaced or removed, respectively.
pub fn is_empty(&self) -> bool {
match self.inner {
// size hint lower bound of smallvec is the correct length
Some(ref iter) => iter.size_hint().0 == 0,
None => true,
}
}
}
impl Iterator for Removed {
type Item = HeaderValue;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.inner.as_mut()?.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match self.inner {
Some(ref iter) => iter.size_hint(),
None => (0, None),
}
}
}
impl ExactSizeIterator for Removed {}
impl iter::FusedIterator for Removed {}
/// Iterator over all names in the map.
#[derive(Debug)]
pub struct Keys<'a>(hash_map::Keys<'a, HeaderName, Value>);
impl<'a> Iterator for Keys<'a> {
type Item = &'a HeaderName;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
}
impl ExactSizeIterator for Keys<'_> {}
impl iter::FusedIterator for Keys<'_> {}
/// Iterator over borrowed name-value pairs.
#[derive(Debug)]
pub struct Iter<'a> {
inner: hash_map::Iter<'a, HeaderName, Value>,
multi_inner: Option<(&'a HeaderName, &'a SmallVec<[HeaderValue; 4]>)>,
multi_idx: usize,
}
impl<'a> Iter<'a> {
fn new(iter: hash_map::Iter<'a, HeaderName, Value>) -> Self {
Self {
inner: iter,
multi_idx: 0,
multi_inner: None,
}
}
}
impl<'a> Iterator for Iter<'a> {
type Item = (&'a HeaderName, &'a HeaderValue);
fn next(&mut self) -> Option<Self::Item> {
// handle in-progress multi value lists first
if let Some((name, ref mut vals)) = self.multi_inner {
match vals.get(self.multi_idx) {
Some(val) => {
self.multi_idx += 1;
return Some((name, val));
}
None => {
// no more items in value list; reset state
self.multi_idx = 0;
self.multi_inner = None;
}
}
}
let (name, value) = self.inner.next()?;
// set up new inner iter and recurse into it
self.multi_inner = Some((name, &value.inner));
self.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
// take inner lower bound
// make no attempt at an upper bound
(self.inner.size_hint().0, None)
}
}
impl ExactSizeIterator for Iter<'_> {}
impl iter::FusedIterator for Iter<'_> {}
/// Iterator over drained name-value pairs.
///
/// Iterator items are `(Option<HeaderName>, HeaderValue)` to avoid cloning.
#[derive(Debug)]
pub struct Drain<'a> {
inner: hash_map::Drain<'a, HeaderName, Value>,
multi_inner: Option<(Option<HeaderName>, SmallVec<[HeaderValue; 4]>)>,
multi_idx: usize,
}
impl<'a> Drain<'a> {
fn new(iter: hash_map::Drain<'a, HeaderName, Value>) -> Self {
Self {
inner: iter,
multi_inner: None,
multi_idx: 0,
}
}
}
impl Iterator for Drain<'_> {
type Item = (Option<HeaderName>, HeaderValue);
fn next(&mut self) -> Option<Self::Item> {
// handle in-progress multi value iterators first
if let Some((ref mut name, ref mut vals)) = self.multi_inner {
if !vals.is_empty() {
// OPTIMIZE: array removals
return Some((name.take(), vals.remove(0)));
} else {
// no more items in value iterator; reset state
self.multi_inner = None;
self.multi_idx = 0;
}
}
let (name, value) = self.inner.next()?;
// set up new inner iter and recurse into it
self.multi_inner = Some((Some(name), value.inner));
self.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
// take inner lower bound
// make no attempt at an upper bound
(self.inner.size_hint().0, None)
}
}
impl ExactSizeIterator for Drain<'_> {}
impl iter::FusedIterator for Drain<'_> {}
/// Iterator over owned name-value pairs.
///
/// Implementation necessarily clones header names for each value.
#[derive(Debug)]
pub struct IntoIter {
inner: hash_map::IntoIter<HeaderName, Value>,
multi_inner: Option<(HeaderName, smallvec::IntoIter<[HeaderValue; 4]>)>,
}
impl IntoIter {
fn new(inner: hash_map::IntoIter<HeaderName, Value>) -> Self {
Self {
inner,
multi_inner: None,
}
}
}
impl Iterator for IntoIter {
type Item = (HeaderName, HeaderValue);
fn next(&mut self) -> Option<Self::Item> {
// handle in-progress multi value iterators first
if let Some((ref name, ref mut vals)) = self.multi_inner {
match vals.next() {
Some(val) => {
return Some((name.clone(), val));
}
None => {
// no more items in value iterator; reset state
self.multi_inner = None;
}
}
}
let (name, value) = self.inner.next()?;
// set up new inner iter and recurse into it
self.multi_inner = Some((name, value.inner.into_iter()));
self.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
// take inner lower bound
// make no attempt at an upper bound
(self.inner.size_hint().0, None)
}
}
impl ExactSizeIterator for IntoIter {}
impl iter::FusedIterator for IntoIter {}
#[cfg(test)]
mod tests {
use std::iter::FusedIterator;
use http::header;
use static_assertions::assert_impl_all;
use super::*;
assert_impl_all!(HeaderMap: IntoIterator);
assert_impl_all!(Keys<'_>: Iterator, ExactSizeIterator, FusedIterator);
assert_impl_all!(std::slice::Iter<'_, HeaderValue>: Iterator, ExactSizeIterator, FusedIterator);
assert_impl_all!(Removed: Iterator, ExactSizeIterator, FusedIterator);
assert_impl_all!(Iter<'_>: Iterator, ExactSizeIterator, FusedIterator);
assert_impl_all!(IntoIter: Iterator, ExactSizeIterator, FusedIterator);
assert_impl_all!(Drain<'_>: Iterator, ExactSizeIterator, FusedIterator);
#[test]
fn create() {
let map = HeaderMap::new();
assert_eq!(map.len(), 0);
assert_eq!(map.capacity(), 0);
let map = HeaderMap::with_capacity(16);
assert_eq!(map.len(), 0);
assert!(map.capacity() >= 16);
}
#[test]
fn insert() {
let mut map = HeaderMap::new();
map.insert(header::LOCATION, HeaderValue::from_static("/test"));
assert_eq!(map.len(), 1);
}
#[test]
fn contains() {
let mut map = HeaderMap::new();
assert!(!map.contains_key(header::LOCATION));
map.insert(header::LOCATION, HeaderValue::from_static("/test"));
assert!(map.contains_key(header::LOCATION));
assert!(map.contains_key("Location"));
assert!(map.contains_key("Location".to_owned()));
assert!(map.contains_key("location"));
}
#[test]
fn entries_iter() {
let mut map = HeaderMap::new();
map.append(header::HOST, HeaderValue::from_static("duck.com"));
map.append(header::COOKIE, HeaderValue::from_static("one=1"));
map.append(header::COOKIE, HeaderValue::from_static("two=2"));
let mut iter = map.iter();
assert!(iter.next().is_some());
assert!(iter.next().is_some());
assert!(iter.next().is_some());
assert!(iter.next().is_none());
let pairs = map.iter().collect::<Vec<_>>();
assert!(pairs.contains(&(&header::HOST, &HeaderValue::from_static("duck.com"))));
assert!(pairs.contains(&(&header::COOKIE, &HeaderValue::from_static("one=1"))));
assert!(pairs.contains(&(&header::COOKIE, &HeaderValue::from_static("two=2"))));
}
#[test]
fn drain_iter() {
let mut map = HeaderMap::new();
map.append(header::COOKIE, HeaderValue::from_static("one=1"));
map.append(header::COOKIE, HeaderValue::from_static("two=2"));
let mut vals = vec![];
let mut iter = map.drain();
let (name, val) = iter.next().unwrap();
assert_eq!(name, Some(header::COOKIE));
vals.push(val);
let (name, val) = iter.next().unwrap();
assert!(name.is_none());
vals.push(val);
assert!(vals.contains(&HeaderValue::from_static("one=1")));
assert!(vals.contains(&HeaderValue::from_static("two=2")));
assert!(iter.next().is_none());
drop(iter);
assert!(map.is_empty());
}
#[test]
fn retain() {
let mut map = HeaderMap::new();
map.append(header::LOCATION, HeaderValue::from_static("/test"));
map.append(header::HOST, HeaderValue::from_static("duck.com"));
map.append(header::COOKIE, HeaderValue::from_static("one=1"));
map.append(header::COOKIE, HeaderValue::from_static("two=2"));
assert_eq!(map.len(), 4);
// by value
map.retain(|_, val| !val.as_bytes().contains(&b'/'));
assert_eq!(map.len(), 3);
// by name
map.retain(|name, _| name.as_str() != "cookie");
assert_eq!(map.len(), 1);
// keep but mutate value
map.retain(|_, val| {
*val = HeaderValue::from_static("replaced");
true
});
assert_eq!(map.len(), 1);
assert_eq!(map.get("host").unwrap(), "replaced");
}
#[test]
fn retain_removes_empty_value_lists() {
let mut map = HeaderMap::with_capacity(3);
map.append(header::HOST, HeaderValue::from_static("duck.com"));
map.append(header::HOST, HeaderValue::from_static("duck.com"));
assert_eq!(map.len(), 2);
assert_eq!(map.len_keys(), 1);
assert_eq!(map.inner.len(), 1);
assert_eq!(map.capacity(), 3);
// remove everything
map.retain(|_n, _v| false);
assert_eq!(map.len(), 0);
assert_eq!(map.len_keys(), 0);
assert_eq!(map.inner.len(), 0);
assert_eq!(map.capacity(), 3);
}
#[test]
fn entries_into_iter() {
let mut map = HeaderMap::new();
map.append(header::HOST, HeaderValue::from_static("duck.com"));
map.append(header::COOKIE, HeaderValue::from_static("one=1"));
map.append(header::COOKIE, HeaderValue::from_static("two=2"));
let mut iter = map.into_iter();
assert!(iter.next().is_some());
assert!(iter.next().is_some());
assert!(iter.next().is_some());
assert!(iter.next().is_none());
}
#[test]
fn iter_and_into_iter_same_order() {
let mut map = HeaderMap::new();
map.append(header::HOST, HeaderValue::from_static("duck.com"));
map.append(header::COOKIE, HeaderValue::from_static("one=1"));
map.append(header::COOKIE, HeaderValue::from_static("two=2"));
let mut iter = map.iter();
let mut into_iter = map.clone().into_iter();
assert_eq!(iter.next().map(owned_pair), into_iter.next());
assert_eq!(iter.next().map(owned_pair), into_iter.next());
assert_eq!(iter.next().map(owned_pair), into_iter.next());
assert_eq!(iter.next().map(owned_pair), into_iter.next());
}
#[test]
fn get_all_and_remove_same_order() {
let mut map = HeaderMap::new();
map.append(header::COOKIE, HeaderValue::from_static("one=1"));
map.append(header::COOKIE, HeaderValue::from_static("two=2"));
let mut vals = map.get_all(header::COOKIE);
let mut removed = map.clone().remove(header::COOKIE);
assert_eq!(vals.next(), removed.next().as_ref());
assert_eq!(vals.next(), removed.next().as_ref());
assert_eq!(vals.next(), removed.next().as_ref());
}
#[test]
fn get_all_iteration_order_matches_insertion_order() {
let mut map = HeaderMap::new();
let mut vals = map.get_all(header::COOKIE);
assert!(vals.next().is_none());
map.append(header::COOKIE, HeaderValue::from_static("1"));
let mut vals = map.get_all(header::COOKIE);
assert_eq!(vals.next().unwrap().as_bytes(), b"1");
assert!(vals.next().is_none());
map.append(header::COOKIE, HeaderValue::from_static("2"));
let mut vals = map.get_all(header::COOKIE);
assert_eq!(vals.next().unwrap().as_bytes(), b"1");
assert_eq!(vals.next().unwrap().as_bytes(), b"2");
assert!(vals.next().is_none());
map.append(header::COOKIE, HeaderValue::from_static("3"));
map.append(header::COOKIE, HeaderValue::from_static("4"));
map.append(header::COOKIE, HeaderValue::from_static("5"));
let mut vals = map.get_all(header::COOKIE);
assert_eq!(vals.next().unwrap().as_bytes(), b"1");
assert_eq!(vals.next().unwrap().as_bytes(), b"2");
assert_eq!(vals.next().unwrap().as_bytes(), b"3");
assert_eq!(vals.next().unwrap().as_bytes(), b"4");
assert_eq!(vals.next().unwrap().as_bytes(), b"5");
assert!(vals.next().is_none());
let _ = map.insert(header::COOKIE, HeaderValue::from_static("6"));
let mut vals = map.get_all(header::COOKIE);
assert_eq!(vals.next().unwrap().as_bytes(), b"6");
assert!(vals.next().is_none());
let _ = map.insert(header::COOKIE, HeaderValue::from_static("7"));
let _ = map.insert(header::COOKIE, HeaderValue::from_static("8"));
let mut vals = map.get_all(header::COOKIE);
assert_eq!(vals.next().unwrap().as_bytes(), b"8");
assert!(vals.next().is_none());
map.append(header::COOKIE, HeaderValue::from_static("9"));
let mut vals = map.get_all(header::COOKIE);
assert_eq!(vals.next().unwrap().as_bytes(), b"8");
assert_eq!(vals.next().unwrap().as_bytes(), b"9");
assert!(vals.next().is_none());
// check for fused-ness
assert!(vals.next().is_none());
}
fn owned_pair<'a>((name, val): (&'a HeaderName, &'a HeaderValue)) -> (HeaderName, HeaderValue) {
(name.clone(), val.clone())
}
}
|
//! Pre-defined `HeaderName`s, traits for parsing and conversion, and other header utility methods.
// declaring new header consts will yield this error
#![allow(clippy::declare_interior_mutable_const)]
// re-export from http except header map related items
pub use ::http::header::{
HeaderName, HeaderValue, InvalidHeaderName, InvalidHeaderValue, ToStrError,
};
// re-export const header names, list is explicit so that any updates to `common` module do not
// conflict with this set
pub use ::http::header::{
ACCEPT, ACCEPT_CHARSET, ACCEPT_ENCODING, ACCEPT_LANGUAGE, ACCEPT_RANGES,
ACCESS_CONTROL_ALLOW_CREDENTIALS, ACCESS_CONTROL_ALLOW_HEADERS, ACCESS_CONTROL_ALLOW_METHODS,
ACCESS_CONTROL_ALLOW_ORIGIN, ACCESS_CONTROL_EXPOSE_HEADERS, ACCESS_CONTROL_MAX_AGE,
ACCESS_CONTROL_REQUEST_HEADERS, ACCESS_CONTROL_REQUEST_METHOD, AGE, ALLOW, ALT_SVC,
AUTHORIZATION, CACHE_CONTROL, CONNECTION, CONTENT_DISPOSITION, CONTENT_ENCODING,
CONTENT_LANGUAGE, CONTENT_LENGTH, CONTENT_LOCATION, CONTENT_RANGE, CONTENT_SECURITY_POLICY,
CONTENT_SECURITY_POLICY_REPORT_ONLY, CONTENT_TYPE, COOKIE, DATE, DNT, ETAG, EXPECT, EXPIRES,
FORWARDED, FROM, HOST, IF_MATCH, IF_MODIFIED_SINCE, IF_NONE_MATCH, IF_RANGE,
IF_UNMODIFIED_SINCE, LAST_MODIFIED, LINK, LOCATION, MAX_FORWARDS, ORIGIN, PRAGMA,
PROXY_AUTHENTICATE, PROXY_AUTHORIZATION, PUBLIC_KEY_PINS, PUBLIC_KEY_PINS_REPORT_ONLY, RANGE,
REFERER, REFERRER_POLICY, REFRESH, RETRY_AFTER, SEC_WEBSOCKET_ACCEPT, SEC_WEBSOCKET_EXTENSIONS,
SEC_WEBSOCKET_KEY, SEC_WEBSOCKET_PROTOCOL, SEC_WEBSOCKET_VERSION, SERVER, SET_COOKIE,
STRICT_TRANSPORT_SECURITY, TE, TRAILER, TRANSFER_ENCODING, UPGRADE, UPGRADE_INSECURE_REQUESTS,
USER_AGENT, VARY, VIA, WARNING, WWW_AUTHENTICATE, X_CONTENT_TYPE_OPTIONS,
X_DNS_PREFETCH_CONTROL, X_FRAME_OPTIONS, X_XSS_PROTECTION,
};
use percent_encoding::{AsciiSet, CONTROLS};
use crate::{error::ParseError, HttpMessage};
mod as_name;
mod common;
mod into_pair;
mod into_value;
pub mod map;
mod shared;
mod utils;
pub use self::{
as_name::AsHeaderName,
// re-export list is explicit so that any updates to `http` do not conflict with this set
common::{
CACHE_STATUS, CDN_CACHE_CONTROL, CLEAR_SITE_DATA, CROSS_ORIGIN_EMBEDDER_POLICY,
CROSS_ORIGIN_OPENER_POLICY, CROSS_ORIGIN_RESOURCE_POLICY, PERMISSIONS_POLICY,
X_FORWARDED_FOR, X_FORWARDED_HOST, X_FORWARDED_PROTO,
},
into_pair::TryIntoHeaderPair,
into_value::TryIntoHeaderValue,
map::HeaderMap,
shared::{
parse_extended_value, q, Charset, ContentEncoding, ExtendedValue, HttpDate, LanguageTag,
Quality, QualityItem,
},
utils::{fmt_comma_delimited, from_comma_delimited, from_one_raw_str, http_percent_encode},
};
/// An interface for types that already represent a valid header.
pub trait Header: TryIntoHeaderValue {
/// Returns the name of the header field.
fn name() -> HeaderName;
/// Parse the header from a HTTP message.
fn parse<M: HttpMessage>(msg: &M) -> Result<Self, ParseError>;
}
/// This encode set is used for HTTP header values and is defined at
/// <https://datatracker.ietf.org/doc/html/rfc5987#section-3.2>.
pub(crate) const HTTP_VALUE: &AsciiSet = &CONTROLS
.add(b' ')
.add(b'"')
.add(b'%')
.add(b'\'')
.add(b'(')
.add(b')')
.add(b'*')
.add(b',')
.add(b'/')
.add(b':')
.add(b';')
.add(b'<')
.add(b'-')
.add(b'>')
.add(b'?')
.add(b'[')
.add(b'\\')
.add(b']')
.add(b'{')
.add(b'}');
|
use std::{fmt, str};
use self::Charset::*;
/// A MIME character set.
///
/// The string representation is normalized to upper case.
///
/// See <http://www.iana.org/assignments/character-sets/character-sets.xhtml>.
#[derive(Debug, Clone, PartialEq, Eq)]
#[allow(non_camel_case_types)]
pub enum Charset {
/// US ASCII
Us_Ascii,
/// ISO-8859-1
Iso_8859_1,
/// ISO-8859-2
Iso_8859_2,
/// ISO-8859-3
Iso_8859_3,
/// ISO-8859-4
Iso_8859_4,
/// ISO-8859-5
Iso_8859_5,
/// ISO-8859-6
Iso_8859_6,
/// ISO-8859-7
Iso_8859_7,
/// ISO-8859-8
Iso_8859_8,
/// ISO-8859-9
Iso_8859_9,
/// ISO-8859-10
Iso_8859_10,
/// Shift_JIS
Shift_Jis,
/// EUC-JP
Euc_Jp,
/// ISO-2022-KR
Iso_2022_Kr,
/// EUC-KR
Euc_Kr,
/// ISO-2022-JP
Iso_2022_Jp,
/// ISO-2022-JP-2
Iso_2022_Jp_2,
/// ISO-8859-6-E
Iso_8859_6_E,
/// ISO-8859-6-I
Iso_8859_6_I,
/// ISO-8859-8-E
Iso_8859_8_E,
/// ISO-8859-8-I
Iso_8859_8_I,
/// GB2312
Gb2312,
/// Big5
Big5,
/// KOI8-R
Koi8_R,
/// An arbitrary charset specified as a string
Ext(String),
}
impl Charset {
fn label(&self) -> &str {
match *self {
Us_Ascii => "US-ASCII",
Iso_8859_1 => "ISO-8859-1",
Iso_8859_2 => "ISO-8859-2",
Iso_8859_3 => "ISO-8859-3",
Iso_8859_4 => "ISO-8859-4",
Iso_8859_5 => "ISO-8859-5",
Iso_8859_6 => "ISO-8859-6",
Iso_8859_7 => "ISO-8859-7",
Iso_8859_8 => "ISO-8859-8",
Iso_8859_9 => "ISO-8859-9",
Iso_8859_10 => "ISO-8859-10",
Shift_Jis => "Shift-JIS",
Euc_Jp => "EUC-JP",
Iso_2022_Kr => "ISO-2022-KR",
Euc_Kr => "EUC-KR",
Iso_2022_Jp => "ISO-2022-JP",
Iso_2022_Jp_2 => "ISO-2022-JP-2",
Iso_8859_6_E => "ISO-8859-6-E",
Iso_8859_6_I => "ISO-8859-6-I",
Iso_8859_8_E => "ISO-8859-8-E",
Iso_8859_8_I => "ISO-8859-8-I",
Gb2312 => "GB2312",
Big5 => "Big5",
Koi8_R => "KOI8-R",
Ext(ref s) => s,
}
}
}
impl fmt::Display for Charset {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(self.label())
}
}
impl str::FromStr for Charset {
type Err = crate::Error;
fn from_str(s: &str) -> Result<Charset, crate::Error> {
Ok(match s.to_ascii_uppercase().as_ref() {
"US-ASCII" => Us_Ascii,
"ISO-8859-1" => Iso_8859_1,
"ISO-8859-2" => Iso_8859_2,
"ISO-8859-3" => Iso_8859_3,
"ISO-8859-4" => Iso_8859_4,
"ISO-8859-5" => Iso_8859_5,
"ISO-8859-6" => Iso_8859_6,
"ISO-8859-7" => Iso_8859_7,
"ISO-8859-8" => Iso_8859_8,
"ISO-8859-9" => Iso_8859_9,
"ISO-8859-10" => Iso_8859_10,
"SHIFT-JIS" => Shift_Jis,
"EUC-JP" => Euc_Jp,
"ISO-2022-KR" => Iso_2022_Kr,
"EUC-KR" => Euc_Kr,
"ISO-2022-JP" => Iso_2022_Jp,
"ISO-2022-JP-2" => Iso_2022_Jp_2,
"ISO-8859-6-E" => Iso_8859_6_E,
"ISO-8859-6-I" => Iso_8859_6_I,
"ISO-8859-8-E" => Iso_8859_8_E,
"ISO-8859-8-I" => Iso_8859_8_I,
"GB2312" => Gb2312,
"BIG5" => Big5,
"KOI8-R" => Koi8_R,
s => Ext(s.to_owned()),
})
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_parse() {
assert_eq!(Us_Ascii, "us-ascii".parse().unwrap());
assert_eq!(Us_Ascii, "US-Ascii".parse().unwrap());
assert_eq!(Us_Ascii, "US-ASCII".parse().unwrap());
assert_eq!(Shift_Jis, "Shift-JIS".parse().unwrap());
assert_eq!(Ext("ABCD".to_owned()), "abcd".parse().unwrap());
}
#[test]
fn test_display() {
assert_eq!("US-ASCII", format!("{}", Us_Ascii));
assert_eq!("ABCD", format!("{}", Ext("ABCD".to_owned())));
}
}
|
use std::str::FromStr;
use derive_more::{Display, Error};
use http::header::InvalidHeaderValue;
use crate::{
error::ParseError,
header::{self, from_one_raw_str, Header, HeaderName, HeaderValue, TryIntoHeaderValue},
HttpMessage,
};
/// Error returned when a content encoding is unknown.
#[derive(Debug, Display, Error)]
#[display("unsupported content encoding")]
pub struct ContentEncodingParseError;
/// Represents a supported content encoding.
///
/// Includes a commonly-used subset of media types appropriate for use as HTTP content encodings.
/// See [IANA HTTP Content Coding Registry].
///
/// [IANA HTTP Content Coding Registry]: https://www.iana.org/assignments/http-parameters/http-parameters.xhtml
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum ContentEncoding {
/// Indicates the no-op identity encoding.
///
/// I.e., no compression or modification.
Identity,
/// A format using the Brotli algorithm.
Brotli,
/// A format using the zlib structure with deflate algorithm.
Deflate,
/// Gzip algorithm.
Gzip,
/// Zstd algorithm.
Zstd,
}
impl ContentEncoding {
/// Convert content encoding to string.
#[inline]
pub const fn as_str(self) -> &'static str {
match self {
ContentEncoding::Brotli => "br",
ContentEncoding::Gzip => "gzip",
ContentEncoding::Deflate => "deflate",
ContentEncoding::Zstd => "zstd",
ContentEncoding::Identity => "identity",
}
}
/// Convert content encoding to header value.
#[inline]
pub const fn to_header_value(self) -> HeaderValue {
match self {
ContentEncoding::Brotli => HeaderValue::from_static("br"),
ContentEncoding::Gzip => HeaderValue::from_static("gzip"),
ContentEncoding::Deflate => HeaderValue::from_static("deflate"),
ContentEncoding::Zstd => HeaderValue::from_static("zstd"),
ContentEncoding::Identity => HeaderValue::from_static("identity"),
}
}
}
impl Default for ContentEncoding {
#[inline]
fn default() -> Self {
Self::Identity
}
}
impl FromStr for ContentEncoding {
type Err = ContentEncodingParseError;
fn from_str(enc: &str) -> Result<Self, Self::Err> {
let enc = enc.trim();
if enc.eq_ignore_ascii_case("br") {
Ok(ContentEncoding::Brotli)
} else if enc.eq_ignore_ascii_case("gzip") {
Ok(ContentEncoding::Gzip)
} else if enc.eq_ignore_ascii_case("deflate") {
Ok(ContentEncoding::Deflate)
} else if enc.eq_ignore_ascii_case("identity") {
Ok(ContentEncoding::Identity)
} else if enc.eq_ignore_ascii_case("zstd") {
Ok(ContentEncoding::Zstd)
} else {
Err(ContentEncodingParseError)
}
}
}
impl TryFrom<&str> for ContentEncoding {
type Error = ContentEncodingParseError;
fn try_from(val: &str) -> Result<Self, Self::Error> {
val.parse()
}
}
impl TryIntoHeaderValue for ContentEncoding {
type Error = InvalidHeaderValue;
fn try_into_value(self) -> Result<http::HeaderValue, Self::Error> {
Ok(HeaderValue::from_static(self.as_str()))
}
}
impl Header for ContentEncoding {
fn name() -> HeaderName {
header::CONTENT_ENCODING
}
fn parse<T: HttpMessage>(msg: &T) -> Result<Self, ParseError> {
from_one_raw_str(msg.headers().get(Self::name()))
}
}
|
//! Originally taken from `hyper::header::parsing`.
use std::{fmt, str::FromStr};
use language_tags::LanguageTag;
use crate::header::{Charset, HTTP_VALUE};
/// The value part of an extended parameter consisting of three parts:
/// - The REQUIRED character set name (`charset`).
/// - The OPTIONAL language information (`language_tag`).
/// - A character sequence representing the actual value (`value`), separated by single quotes.
///
/// It is defined in [RFC 5987 §3.2](https://datatracker.ietf.org/doc/html/rfc5987#section-3.2).
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ExtendedValue {
/// The character set that is used to encode the `value` to a string.
pub charset: Charset,
/// The human language details of the `value`, if available.
pub language_tag: Option<LanguageTag>,
/// The parameter value, as expressed in octets.
pub value: Vec<u8>,
}
/// Parses extended header parameter values (`ext-value`), as defined
/// in [RFC 5987 §3.2](https://datatracker.ietf.org/doc/html/rfc5987#section-3.2).
///
/// Extended values are denoted by parameter names that end with `*`.
///
/// ## ABNF
///
/// ```plain
/// ext-value = charset "'" [ language ] "'" value-chars
/// ; like RFC 2231's <extended-initial-value>
/// ; (see [RFC 2231 §7])
///
/// charset = "UTF-8" / "ISO-8859-1" / mime-charset
///
/// mime-charset = 1*mime-charsetc
/// mime-charsetc = ALPHA / DIGIT
/// / "!" / "#" / "$" / "%" / "&"
/// / "+" / "-" / "^" / "_" / "`"
/// / "{" / "}" / "~"
/// ; as <mime-charset> in [RFC 2978 §2.3]
/// ; except that the single quote is not included
/// ; SHOULD be registered in the IANA charset registry
///
/// language = <Language-Tag, defined in [RFC 5646 §2.1]>
///
/// value-chars = *( pct-encoded / attr-char )
///
/// pct-encoded = "%" HEXDIG HEXDIG
/// ; see [RFC 3986 §2.1]
///
/// attr-char = ALPHA / DIGIT
/// / "!" / "#" / "$" / "&" / "+" / "-" / "."
/// / "^" / "_" / "`" / "|" / "~"
/// ; token except ( "*" / "'" / "%" )
/// ```
///
/// [RFC 2231 §7]: https://datatracker.ietf.org/doc/html/rfc2231#section-7
/// [RFC 2978 §2.3]: https://datatracker.ietf.org/doc/html/rfc2978#section-2.3
/// [RFC 3986 §2.1]: https://datatracker.ietf.org/doc/html/rfc5646#section-2.1
pub fn parse_extended_value(val: &str) -> Result<ExtendedValue, crate::error::ParseError> {
// Break into three pieces separated by the single-quote character
let mut parts = val.splitn(3, '\'');
// Interpret the first piece as a Charset
let charset: Charset = match parts.next() {
None => return Err(crate::error::ParseError::Header),
Some(n) => FromStr::from_str(n).map_err(|_| crate::error::ParseError::Header)?,
};
// Interpret the second piece as a language tag
let language_tag: Option<LanguageTag> = match parts.next() {
None => return Err(crate::error::ParseError::Header),
Some("") => None,
Some(s) => match s.parse() {
Ok(lt) => Some(lt),
Err(_) => return Err(crate::error::ParseError::Header),
},
};
// Interpret the third piece as a sequence of value characters
let value: Vec<u8> = match parts.next() {
None => return Err(crate::error::ParseError::Header),
Some(v) => percent_encoding::percent_decode(v.as_bytes()).collect(),
};
Ok(ExtendedValue {
charset,
language_tag,
value,
})
}
impl fmt::Display for ExtendedValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let encoded_value = percent_encoding::percent_encode(&self.value[..], HTTP_VALUE);
if let Some(ref lang) = self.language_tag {
write!(f, "{}'{}'{}", self.charset, lang, encoded_value)
} else {
write!(f, "{}''{}", self.charset, encoded_value)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_parse_extended_value_with_encoding_and_language_tag() {
let expected_language_tag = "en".parse::<LanguageTag>().unwrap();
// RFC 5987, Section 3.2.2
// Extended notation, using the Unicode character U+00A3 (POUND SIGN)
let result = parse_extended_value("iso-8859-1'en'%A3%20rates");
assert!(result.is_ok());
let extended_value = result.unwrap();
assert_eq!(Charset::Iso_8859_1, extended_value.charset);
assert!(extended_value.language_tag.is_some());
assert_eq!(expected_language_tag, extended_value.language_tag.unwrap());
assert_eq!(
vec![163, b' ', b'r', b'a', b't', b'e', b's'],
extended_value.value
);
}
#[test]
fn test_parse_extended_value_with_encoding() {
// RFC 5987, Section 3.2.2
// Extended notation, using the Unicode characters U+00A3 (POUND SIGN)
// and U+20AC (EURO SIGN)
let result = parse_extended_value("UTF-8''%c2%a3%20and%20%e2%82%ac%20rates");
assert!(result.is_ok());
let extended_value = result.unwrap();
assert_eq!(Charset::Ext("UTF-8".to_string()), extended_value.charset);
assert!(extended_value.language_tag.is_none());
assert_eq!(
vec![
194, 163, b' ', b'a', b'n', b'd', b' ', 226, 130, 172, b' ', b'r', b'a', b't',
b'e', b's',
],
extended_value.value
);
}
#[test]
fn test_parse_extended_value_missing_language_tag_and_encoding() {
// From: https://greenbytes.de/tech/tc2231/#attwithfn2231quot2
let result = parse_extended_value("foo%20bar.html");
assert!(result.is_err());
}
#[test]
fn test_parse_extended_value_partially_formatted() {
let result = parse_extended_value("UTF-8'missing third part");
assert!(result.is_err());
}
#[test]
fn test_parse_extended_value_partially_formatted_blank() {
let result = parse_extended_value("blank second part'");
assert!(result.is_err());
}
#[test]
fn test_fmt_extended_value_with_encoding_and_language_tag() {
let extended_value = ExtendedValue {
charset: Charset::Iso_8859_1,
language_tag: Some("en".parse().expect("Could not parse language tag")),
value: vec![163, b' ', b'r', b'a', b't', b'e', b's'],
};
assert_eq!("ISO-8859-1'en'%A3%20rates", format!("{}", extended_value));
}
#[test]
fn test_fmt_extended_value_with_encoding() {
let extended_value = ExtendedValue {
charset: Charset::Ext("UTF-8".to_string()),
language_tag: None,
value: vec![
194, 163, b' ', b'a', b'n', b'd', b' ', 226, 130, 172, b' ', b'r', b'a', b't',
b'e', b's',
],
};
assert_eq!(
"UTF-8''%C2%A3%20and%20%E2%82%AC%20rates",
format!("{}", extended_value)
);
}
}
|
use std::{fmt, io::Write, str::FromStr, time::SystemTime};
use bytes::BytesMut;
use http::header::{HeaderValue, InvalidHeaderValue};
use crate::{
date::DATE_VALUE_LENGTH, error::ParseError, header::TryIntoHeaderValue, helpers::MutWriter,
};
/// A timestamp with HTTP-style formatting and parsing.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct HttpDate(SystemTime);
impl FromStr for HttpDate {
type Err = ParseError;
fn from_str(s: &str) -> Result<HttpDate, ParseError> {
match httpdate::parse_http_date(s) {
Ok(sys_time) => Ok(HttpDate(sys_time)),
Err(_) => Err(ParseError::Header),
}
}
}
impl fmt::Display for HttpDate {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
httpdate::HttpDate::from(self.0).fmt(f)
}
}
impl TryIntoHeaderValue for HttpDate {
type Error = InvalidHeaderValue;
fn try_into_value(self) -> Result<HeaderValue, Self::Error> {
let mut buf = BytesMut::with_capacity(DATE_VALUE_LENGTH);
let mut wrt = MutWriter(&mut buf);
// unwrap: date output is known to be well formed and of known length
write!(wrt, "{}", self).unwrap();
HeaderValue::from_maybe_shared(buf.split().freeze())
}
}
impl From<SystemTime> for HttpDate {
fn from(sys_time: SystemTime) -> HttpDate {
HttpDate(sys_time)
}
}
impl From<HttpDate> for SystemTime {
fn from(HttpDate(sys_time): HttpDate) -> SystemTime {
sys_time
}
}
#[cfg(test)]
mod tests {
use std::time::Duration;
use super::*;
#[test]
fn date_header() {
macro_rules! assert_parsed_date {
($case:expr, $exp:expr) => {
assert_eq!($case.parse::<HttpDate>().unwrap(), $exp);
};
}
// 784198117 = SystemTime::from(datetime!(1994-11-07 08:48:37).assume_utc()).duration_since(SystemTime::UNIX_EPOCH));
let nov_07 = HttpDate(SystemTime::UNIX_EPOCH + Duration::from_secs(784198117));
assert_parsed_date!("Mon, 07 Nov 1994 08:48:37 GMT", nov_07);
assert_parsed_date!("Monday, 07-Nov-94 08:48:37 GMT", nov_07);
assert_parsed_date!("Mon Nov 7 08:48:37 1994", nov_07);
assert!("this-is-no-date".parse::<HttpDate>().is_err());
}
}
|
//! Originally taken from `hyper::header::shared`.
pub use language_tags::LanguageTag;
mod charset;
mod content_encoding;
mod extended;
mod http_date;
mod quality;
mod quality_item;
pub use self::{
charset::Charset,
content_encoding::ContentEncoding,
extended::{parse_extended_value, ExtendedValue},
http_date::HttpDate,
quality::{q, Quality},
quality_item::QualityItem,
};
|
use std::fmt;
use derive_more::{Display, Error};
const MAX_QUALITY_INT: u16 = 1000;
const MAX_QUALITY_FLOAT: f32 = 1.0;
/// Represents a quality used in q-factor values.
///
/// The default value is equivalent to `q=1.0` (the [max](Self::MAX) value).
///
/// # Implementation notes
/// The quality value is defined as a number between 0.0 and 1.0 with three decimal places.
/// This means there are 1001 possible values. Since floating point numbers are not exact and the
/// smallest floating point data type (`f32`) consumes four bytes, we use an `u16` value to store
/// the quality internally.
///
/// [RFC 7231 §5.3.1] gives more information on quality values in HTTP header fields.
///
/// # Examples
/// ```
/// use actix_http::header::{Quality, q};
/// assert_eq!(q(1.0), Quality::MAX);
///
/// assert_eq!(q(0.42).to_string(), "0.42");
/// assert_eq!(q(1.0).to_string(), "1");
/// assert_eq!(Quality::MIN.to_string(), "0.001");
/// assert_eq!(Quality::ZERO.to_string(), "0");
/// ```
///
/// [RFC 7231 §5.3.1]: https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.1
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Quality(pub(super) u16);
impl Quality {
/// The maximum quality value, equivalent to `q=1.0`.
pub const MAX: Quality = Quality(MAX_QUALITY_INT);
/// The minimum, non-zero quality value, equivalent to `q=0.001`.
pub const MIN: Quality = Quality(1);
/// The zero quality value, equivalent to `q=0.0`.
pub const ZERO: Quality = Quality(0);
/// Converts a float in the range 0.0–1.0 to a `Quality`.
///
/// Intentionally private. External uses should rely on the `TryFrom` impl.
///
/// # Panics
/// Panics in debug mode when value is not in the range 0.0 <= n <= 1.0.
fn from_f32(value: f32) -> Self {
// Check that `value` is within range should be done before calling this method.
// Just in case, this debug_assert should catch if we were forgetful.
debug_assert!(
(0.0..=MAX_QUALITY_FLOAT).contains(&value),
"q value must be between 0.0 and 1.0"
);
Quality((value * MAX_QUALITY_INT as f32) as u16)
}
}
/// The default value is [`Quality::MAX`].
impl Default for Quality {
fn default() -> Quality {
Quality::MAX
}
}
impl fmt::Display for Quality {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.0 {
0 => f.write_str("0"),
MAX_QUALITY_INT => f.write_str("1"),
// some number in the range 1–999
x => {
f.write_str("0.")?;
// This implementation avoids string allocation for removing trailing zeroes.
// In benchmarks it is twice as fast as approach using something like
// `format!("{}").trim_end_matches('0')` for non-fast-path quality values.
if x < 10 {
// x in is range 1–9
f.write_str("00")?;
// 0 is already handled so it's not possible to have a trailing 0 in this range
// we can just write the integer
itoa_fmt(f, x)
} else if x < 100 {
// x in is range 10–99
f.write_str("0")?;
if x % 10 == 0 {
// trailing 0, divide by 10 and write
itoa_fmt(f, x / 10)
} else {
itoa_fmt(f, x)
}
} else {
// x is in range 100–999
if x % 100 == 0 {
// two trailing 0s, divide by 100 and write
itoa_fmt(f, x / 100)
} else if x % 10 == 0 {
// one trailing 0, divide by 10 and write
itoa_fmt(f, x / 10)
} else {
itoa_fmt(f, x)
}
}
}
}
}
}
/// Write integer to a `fmt::Write`.
pub fn itoa_fmt<W: fmt::Write, V: itoa::Integer>(mut wr: W, value: V) -> fmt::Result {
let mut buf = itoa::Buffer::new();
wr.write_str(buf.format(value))
}
#[derive(Debug, Clone, Display, Error)]
#[display("quality out of bounds")]
#[non_exhaustive]
pub struct QualityOutOfBounds;
impl TryFrom<f32> for Quality {
type Error = QualityOutOfBounds;
#[inline]
fn try_from(value: f32) -> Result<Self, Self::Error> {
if (0.0..=MAX_QUALITY_FLOAT).contains(&value) {
Ok(Quality::from_f32(value))
} else {
Err(QualityOutOfBounds)
}
}
}
/// Convenience function to create a [`Quality`] from an `f32` (0.0–1.0).
///
/// Not recommended for use with user input. Rely on the `TryFrom` impls where possible.
///
/// # Panics
/// Panics if value is out of range.
///
/// # Examples
/// ```
/// # use actix_http::header::{q, Quality};
/// let q1 = q(1.0);
/// assert_eq!(q1, Quality::MAX);
///
/// let q2 = q(0.001);
/// assert_eq!(q2, Quality::MIN);
///
/// let q3 = q(0.0);
/// assert_eq!(q3, Quality::ZERO);
///
/// let q4 = q(0.42);
/// ```
///
/// An out-of-range `f32` quality will panic.
/// ```should_panic
/// # use actix_http::header::q;
/// let _q2 = q(1.42);
/// ```
#[inline]
pub fn q<T>(quality: T) -> Quality
where
T: TryInto<Quality>,
T::Error: fmt::Debug,
{
quality.try_into().expect("quality value was out of bounds")
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn q_helper() {
assert_eq!(q(0.5), Quality(500));
}
#[test]
fn display_output() {
assert_eq!(Quality::ZERO.to_string(), "0");
assert_eq!(Quality::MIN.to_string(), "0.001");
assert_eq!(Quality::MAX.to_string(), "1");
assert_eq!(q(0.0).to_string(), "0");
assert_eq!(q(1.0).to_string(), "1");
assert_eq!(q(0.001).to_string(), "0.001");
assert_eq!(q(0.5).to_string(), "0.5");
assert_eq!(q(0.22).to_string(), "0.22");
assert_eq!(q(0.123).to_string(), "0.123");
assert_eq!(q(0.999).to_string(), "0.999");
for x in 0..=1000 {
// if trailing zeroes are handled correctly, we would not expect the serialized length
// to ever exceed "0." + 3 decimal places = 5 in length
assert!(q(x as f32 / 1000.0).to_string().len() <= 5);
}
}
#[test]
#[should_panic]
fn negative_quality() {
q(-1.0);
}
#[test]
#[should_panic]
fn quality_out_of_bounds() {
q(2.0);
}
}
|
use std::{cmp, fmt, str};
use super::Quality;
use crate::error::ParseError;
/// Represents an item with a quality value as defined
/// in [RFC 7231 §5.3.1](https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.1).
///
/// # Parsing and Formatting
/// This wrapper be used to parse header value items that have a q-factor annotation as well as
/// serialize items with a their q-factor.
///
/// # Ordering
/// Since this context of use for this type is header value items, ordering is defined for
/// `QualityItem`s but _only_ considers the item's quality. Order of appearance should be used as
/// the secondary sorting parameter; i.e., a stable sort over the quality values will produce a
/// correctly sorted sequence.
///
/// # Examples
/// ```
/// # use actix_http::header::{QualityItem, q};
/// let q_item: QualityItem<String> = "hello;q=0.3".parse().unwrap();
/// assert_eq!(&q_item.item, "hello");
/// assert_eq!(q_item.quality, q(0.3));
///
/// // note that format is normalized compared to parsed item
/// assert_eq!(q_item.to_string(), "hello; q=0.3");
///
/// // item with q=0.3 is greater than item with q=0.1
/// let q_item_fallback: QualityItem<String> = "abc;q=0.1".parse().unwrap();
/// assert!(q_item > q_item_fallback);
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct QualityItem<T> {
/// The wrapped contents of the field.
pub item: T,
/// The quality (client or server preference) for the value.
pub quality: Quality,
}
impl<T> QualityItem<T> {
/// Constructs a new `QualityItem` from an item and a quality value.
///
/// The item can be of any type. The quality should be a value in the range [0, 1].
pub fn new(item: T, quality: Quality) -> Self {
QualityItem { item, quality }
}
/// Constructs a new `QualityItem` from an item, using the maximum q-value.
pub fn max(item: T) -> Self {
Self::new(item, Quality::MAX)
}
/// Constructs a new `QualityItem` from an item, using the minimum, non-zero q-value.
pub fn min(item: T) -> Self {
Self::new(item, Quality::MIN)
}
/// Constructs a new `QualityItem` from an item, using zero q-value of zero.
pub fn zero(item: T) -> Self {
Self::new(item, Quality::ZERO)
}
}
impl<T: PartialEq> PartialOrd for QualityItem<T> {
fn partial_cmp(&self, other: &QualityItem<T>) -> Option<cmp::Ordering> {
self.quality.partial_cmp(&other.quality)
}
}
impl<T: fmt::Display> fmt::Display for QualityItem<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.item, f)?;
match self.quality {
// q-factor value is implied for max value
Quality::MAX => Ok(()),
// fast path for zero
Quality::ZERO => f.write_str("; q=0"),
// quality formatting is already using itoa
q => write!(f, "; q={}", q),
}
}
}
impl<T: str::FromStr> str::FromStr for QualityItem<T> {
type Err = ParseError;
fn from_str(q_item_str: &str) -> Result<Self, Self::Err> {
if !q_item_str.is_ascii() {
return Err(ParseError::Header);
}
// set defaults used if quality-item parsing fails, i.e., item has no q attribute
let mut raw_item = q_item_str;
let mut quality = Quality::MAX;
let parts = q_item_str
.rsplit_once(';')
.map(|(item, q_attr)| (item.trim(), q_attr.trim()));
if let Some((val, q_attr)) = parts {
// example for item with q-factor:
//
// gzip;q=0.65
// ^^^^ val
// ^^^^^^ q_attr
// ^^ q
// ^^^^ q_val
if q_attr.len() < 2 {
// Can't possibly be an attribute since an attribute needs at least a name followed
// by an equals sign. And bare identifiers are forbidden.
return Err(ParseError::Header);
}
let q = &q_attr[0..2];
if q == "q=" || q == "Q=" {
let q_val = &q_attr[2..];
if q_val.len() > 5 {
// longer than 5 indicates an over-precise q-factor
return Err(ParseError::Header);
}
let q_value = q_val.parse::<f32>().map_err(|_| ParseError::Header)?;
let q_value = Quality::try_from(q_value).map_err(|_| ParseError::Header)?;
quality = q_value;
raw_item = val;
}
}
let item = raw_item.parse::<T>().map_err(|_| ParseError::Header)?;
Ok(QualityItem::new(item, quality))
}
}
#[cfg(test)]
mod tests {
use super::*;
// copy of encoding from actix-web headers
#[allow(clippy::enum_variant_names)] // allow Encoding prefix on EncodingExt
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Encoding {
Chunked,
Brotli,
Gzip,
Deflate,
Compress,
Identity,
Trailers,
EncodingExt(String),
}
impl fmt::Display for Encoding {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use Encoding::*;
f.write_str(match *self {
Chunked => "chunked",
Brotli => "br",
Gzip => "gzip",
Deflate => "deflate",
Compress => "compress",
Identity => "identity",
Trailers => "trailers",
EncodingExt(ref s) => s.as_ref(),
})
}
}
impl str::FromStr for Encoding {
type Err = crate::error::ParseError;
fn from_str(s: &str) -> Result<Encoding, crate::error::ParseError> {
use Encoding::*;
match s {
"chunked" => Ok(Chunked),
"br" => Ok(Brotli),
"deflate" => Ok(Deflate),
"gzip" => Ok(Gzip),
"compress" => Ok(Compress),
"identity" => Ok(Identity),
"trailers" => Ok(Trailers),
_ => Ok(EncodingExt(s.to_owned())),
}
}
}
#[test]
fn test_quality_item_fmt_q_1() {
use Encoding::*;
let x = QualityItem::max(Chunked);
assert_eq!(format!("{}", x), "chunked");
}
#[test]
fn test_quality_item_fmt_q_0001() {
use Encoding::*;
let x = QualityItem::new(Chunked, Quality(1));
assert_eq!(format!("{}", x), "chunked; q=0.001");
}
#[test]
fn test_quality_item_fmt_q_05() {
use Encoding::*;
// Custom value
let x = QualityItem {
item: EncodingExt("identity".to_owned()),
quality: Quality(500),
};
assert_eq!(format!("{}", x), "identity; q=0.5");
}
#[test]
fn test_quality_item_fmt_q_0() {
use Encoding::*;
// Custom value
let x = QualityItem {
item: EncodingExt("identity".to_owned()),
quality: Quality(0),
};
assert_eq!(x.to_string(), "identity; q=0");
}
#[test]
fn test_quality_item_from_str1() {
use Encoding::*;
let x: Result<QualityItem<Encoding>, _> = "chunked".parse();
assert_eq!(
x.unwrap(),
QualityItem {
item: Chunked,
quality: Quality(1000),
}
);
}
#[test]
fn test_quality_item_from_str2() {
use Encoding::*;
let x: Result<QualityItem<Encoding>, _> = "chunked; q=1".parse();
assert_eq!(
x.unwrap(),
QualityItem {
item: Chunked,
quality: Quality(1000),
}
);
}
#[test]
fn test_quality_item_from_str3() {
use Encoding::*;
let x: Result<QualityItem<Encoding>, _> = "gzip; q=0.5".parse();
assert_eq!(
x.unwrap(),
QualityItem {
item: Gzip,
quality: Quality(500),
}
);
}
#[test]
fn test_quality_item_from_str4() {
use Encoding::*;
let x: Result<QualityItem<Encoding>, _> = "gzip; q=0.273".parse();
assert_eq!(
x.unwrap(),
QualityItem {
item: Gzip,
quality: Quality(273),
}
);
}
#[test]
fn test_quality_item_from_str5() {
let x: Result<QualityItem<Encoding>, _> = "gzip; q=0.2739999".parse();
assert!(x.is_err());
}
#[test]
fn test_quality_item_from_str6() {
let x: Result<QualityItem<Encoding>, _> = "gzip; q=2".parse();
assert!(x.is_err());
}
#[test]
fn test_quality_item_ordering() {
let x: QualityItem<Encoding> = "gzip; q=0.5".parse().ok().unwrap();
let y: QualityItem<Encoding> = "gzip; q=0.273".parse().ok().unwrap();
let comparison_result: bool = x.gt(&y);
assert!(comparison_result)
}
#[test]
fn test_fuzzing_bugs() {
assert!("99999;".parse::<QualityItem<String>>().is_err());
assert!("\x0d;;;=\u{d6aa}==".parse::<QualityItem<String>>().is_err())
}
}
|
//! Header parsing utilities.
use std::{fmt, str::FromStr};
use super::HeaderValue;
use crate::{error::ParseError, header::HTTP_VALUE};
/// Reads a comma-delimited raw header into a Vec.
#[inline]
pub fn from_comma_delimited<'a, I, T>(all: I) -> Result<Vec<T>, ParseError>
where
I: Iterator<Item = &'a HeaderValue> + 'a,
T: FromStr,
{
let size_guess = all.size_hint().1.unwrap_or(2);
let mut result = Vec::with_capacity(size_guess);
for h in all {
let s = h.to_str().map_err(|_| ParseError::Header)?;
result.extend(
s.split(',')
.filter_map(|x| match x.trim() {
"" => None,
y => Some(y),
})
.filter_map(|x| x.trim().parse().ok()),
)
}
Ok(result)
}
/// Reads a single string when parsing a header.
#[inline]
pub fn from_one_raw_str<T: FromStr>(val: Option<&HeaderValue>) -> Result<T, ParseError> {
if let Some(line) = val {
let line = line.to_str().map_err(|_| ParseError::Header)?;
if !line.is_empty() {
return T::from_str(line).or(Err(ParseError::Header));
}
}
Err(ParseError::Header)
}
/// Format an array into a comma-delimited string.
#[inline]
pub fn fmt_comma_delimited<T>(f: &mut fmt::Formatter<'_>, parts: &[T]) -> fmt::Result
where
T: fmt::Display,
{
let mut iter = parts.iter();
if let Some(part) = iter.next() {
fmt::Display::fmt(part, f)?;
}
for part in iter {
f.write_str(", ")?;
fmt::Display::fmt(part, f)?;
}
Ok(())
}
/// Percent encode a sequence of bytes with a character set defined in [RFC 5987 §3.2].
///
/// [RFC 5987 §3.2]: https://datatracker.ietf.org/doc/html/rfc5987#section-3.2
#[inline]
pub fn http_percent_encode(f: &mut fmt::Formatter<'_>, bytes: &[u8]) -> fmt::Result {
let encoded = percent_encoding::percent_encode(bytes, HTTP_VALUE);
fmt::Display::fmt(&encoded, f)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn comma_delimited_parsing() {
let headers = [];
let res: Vec<usize> = from_comma_delimited(headers.iter()).unwrap();
assert_eq!(res, vec![0; 0]);
let headers = [
HeaderValue::from_static("1, 2"),
HeaderValue::from_static("3,4"),
];
let res: Vec<usize> = from_comma_delimited(headers.iter()).unwrap();
assert_eq!(res, vec![1, 2, 3, 4]);
let headers = [
HeaderValue::from_static(""),
HeaderValue::from_static(","),
HeaderValue::from_static(" "),
HeaderValue::from_static("1 ,"),
HeaderValue::from_static(""),
];
let res: Vec<usize> = from_comma_delimited(headers.iter()).unwrap();
assert_eq!(res, vec![1]);
}
}
|
use std::io;
use bytes::BufMut;
use http::Version;
const DIGITS_START: u8 = b'0';
pub(crate) fn write_status_line<B: BufMut>(version: Version, n: u16, buf: &mut B) {
match version {
Version::HTTP_11 => buf.put_slice(b"HTTP/1.1 "),
Version::HTTP_10 => buf.put_slice(b"HTTP/1.0 "),
Version::HTTP_09 => buf.put_slice(b"HTTP/0.9 "),
_ => {
// other HTTP version handlers do not use this method
}
}
let d100 = (n / 100) as u8;
let d10 = ((n / 10) % 10) as u8;
let d1 = (n % 10) as u8;
buf.put_u8(DIGITS_START + d100);
buf.put_u8(DIGITS_START + d10);
buf.put_u8(DIGITS_START + d1);
// trailing space before reason
buf.put_u8(b' ');
}
/// Write out content length header.
///
/// Buffer must to contain enough space or be implicitly extendable.
pub fn write_content_length<B: BufMut>(n: u64, buf: &mut B, camel_case: bool) {
if n == 0 {
if camel_case {
buf.put_slice(b"\r\nContent-Length: 0\r\n");
} else {
buf.put_slice(b"\r\ncontent-length: 0\r\n");
}
return;
}
let mut buffer = itoa::Buffer::new();
if camel_case {
buf.put_slice(b"\r\nContent-Length: ");
} else {
buf.put_slice(b"\r\ncontent-length: ");
}
buf.put_slice(buffer.format(n).as_bytes());
buf.put_slice(b"\r\n");
}
/// An `io::Write`r that only requires mutable reference and assumes that there is space available
/// in the buffer for every write operation or that it can be extended implicitly (like
/// `bytes::BytesMut`, for example).
///
/// This is slightly faster (~10%) than `bytes::buf::Writer` in such cases because it does not
/// perform a remaining length check before writing.
pub(crate) struct MutWriter<'a, B>(pub(crate) &'a mut B);
impl<B> io::Write for MutWriter<'_, B>
where
B: BufMut,
{
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.0.put_slice(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::str::from_utf8;
use bytes::BytesMut;
use super::*;
#[test]
fn test_status_line() {
let mut bytes = BytesMut::new();
bytes.reserve(50);
write_status_line(Version::HTTP_11, 200, &mut bytes);
assert_eq!(from_utf8(&bytes.split().freeze()).unwrap(), "HTTP/1.1 200 ");
let mut bytes = BytesMut::new();
bytes.reserve(50);
write_status_line(Version::HTTP_09, 404, &mut bytes);
assert_eq!(from_utf8(&bytes.split().freeze()).unwrap(), "HTTP/0.9 404 ");
let mut bytes = BytesMut::new();
bytes.reserve(50);
write_status_line(Version::HTTP_09, 515, &mut bytes);
assert_eq!(from_utf8(&bytes.split().freeze()).unwrap(), "HTTP/0.9 515 ");
}
#[test]
fn test_write_content_length() {
let mut bytes = BytesMut::new();
bytes.reserve(50);
write_content_length(0, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 0\r\n"[..]);
bytes.reserve(50);
write_content_length(9, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 9\r\n"[..]);
bytes.reserve(50);
write_content_length(10, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 10\r\n"[..]);
bytes.reserve(50);
write_content_length(99, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 99\r\n"[..]);
bytes.reserve(50);
write_content_length(100, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 100\r\n"[..]);
bytes.reserve(50);
write_content_length(101, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 101\r\n"[..]);
bytes.reserve(50);
write_content_length(998, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 998\r\n"[..]);
bytes.reserve(50);
write_content_length(1000, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 1000\r\n"[..]);
bytes.reserve(50);
write_content_length(1001, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 1001\r\n"[..]);
bytes.reserve(50);
write_content_length(5909, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 5909\r\n"[..]);
bytes.reserve(50);
write_content_length(9999, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 9999\r\n"[..]);
bytes.reserve(50);
write_content_length(10001, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 10001\r\n"[..]);
bytes.reserve(50);
write_content_length(59094, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 59094\r\n"[..]);
bytes.reserve(50);
write_content_length(99999, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 99999\r\n"[..]);
bytes.reserve(50);
write_content_length(590947, &mut bytes, false);
assert_eq!(
bytes.split().freeze(),
b"\r\ncontent-length: 590947\r\n"[..]
);
bytes.reserve(50);
write_content_length(999999, &mut bytes, false);
assert_eq!(
bytes.split().freeze(),
b"\r\ncontent-length: 999999\r\n"[..]
);
bytes.reserve(50);
write_content_length(5909471, &mut bytes, false);
assert_eq!(
bytes.split().freeze(),
b"\r\ncontent-length: 5909471\r\n"[..]
);
bytes.reserve(50);
write_content_length(59094718, &mut bytes, false);
assert_eq!(
bytes.split().freeze(),
b"\r\ncontent-length: 59094718\r\n"[..]
);
bytes.reserve(50);
write_content_length(4294973728, &mut bytes, false);
assert_eq!(
bytes.split().freeze(),
b"\r\ncontent-length: 4294973728\r\n"[..]
);
}
#[test]
fn write_content_length_camel_case() {
let mut bytes = BytesMut::new();
write_content_length(0, &mut bytes, false);
assert_eq!(bytes.split().freeze(), b"\r\ncontent-length: 0\r\n"[..]);
let mut bytes = BytesMut::new();
write_content_length(0, &mut bytes, true);
assert_eq!(bytes.split().freeze(), b"\r\nContent-Length: 0\r\n"[..]);
}
}
|
use std::{
cell::{Ref, RefMut},
str,
};
use encoding_rs::{Encoding, UTF_8};
use http::header;
use mime::Mime;
use crate::{
error::{ContentTypeError, ParseError},
header::{Header, HeaderMap},
payload::Payload,
Extensions,
};
/// Trait that implements general purpose operations on HTTP messages.
pub trait HttpMessage: Sized {
/// Type of message payload stream
type Stream;
/// Read the message headers.
fn headers(&self) -> &HeaderMap;
/// Message payload stream
fn take_payload(&mut self) -> Payload<Self::Stream>;
/// Returns a reference to the request-local data/extensions container.
fn extensions(&self) -> Ref<'_, Extensions>;
/// Returns a mutable reference to the request-local data/extensions container.
fn extensions_mut(&self) -> RefMut<'_, Extensions>;
/// Get a header.
#[doc(hidden)]
fn get_header<H: Header>(&self) -> Option<H>
where
Self: Sized,
{
if self.headers().contains_key(H::name()) {
H::parse(self).ok()
} else {
None
}
}
/// Read the request content type. If request did not contain a *Content-Type* header, an empty
/// string is returned.
fn content_type(&self) -> &str {
if let Some(content_type) = self.headers().get(header::CONTENT_TYPE) {
if let Ok(content_type) = content_type.to_str() {
return content_type.split(';').next().unwrap().trim();
}
}
""
}
/// Get content type encoding.
///
/// UTF-8 is used by default, If request charset is not set.
fn encoding(&self) -> Result<&'static Encoding, ContentTypeError> {
if let Some(mime_type) = self.mime_type()? {
if let Some(charset) = mime_type.get_param("charset") {
if let Some(enc) = Encoding::for_label_no_replacement(charset.as_str().as_bytes()) {
Ok(enc)
} else {
Err(ContentTypeError::UnknownEncoding)
}
} else {
Ok(UTF_8)
}
} else {
Ok(UTF_8)
}
}
/// Convert the request content type to a known mime type.
fn mime_type(&self) -> Result<Option<Mime>, ContentTypeError> {
if let Some(content_type) = self.headers().get(header::CONTENT_TYPE) {
if let Ok(content_type) = content_type.to_str() {
return match content_type.parse() {
Ok(mt) => Ok(Some(mt)),
Err(_) => Err(ContentTypeError::ParseError),
};
} else {
return Err(ContentTypeError::ParseError);
}
}
Ok(None)
}
/// Check if request has chunked transfer encoding.
fn chunked(&self) -> Result<bool, ParseError> {
if let Some(encodings) = self.headers().get(header::TRANSFER_ENCODING) {
if let Ok(s) = encodings.to_str() {
Ok(s.to_lowercase().contains("chunked"))
} else {
Err(ParseError::Header)
}
} else {
Ok(false)
}
}
}
impl<T> HttpMessage for &mut T
where
T: HttpMessage,
{
type Stream = T::Stream;
fn headers(&self) -> &HeaderMap {
(**self).headers()
}
/// Message payload stream
fn take_payload(&mut self) -> Payload<Self::Stream> {
(**self).take_payload()
}
/// Request's extensions container
fn extensions(&self) -> Ref<'_, Extensions> {
(**self).extensions()
}
/// Mutable reference to a the request's extensions container
fn extensions_mut(&self) -> RefMut<'_, Extensions> {
(**self).extensions_mut()
}
}
#[cfg(test)]
mod tests {
use bytes::Bytes;
use encoding_rs::ISO_8859_2;
use super::*;
use crate::test::TestRequest;
#[test]
fn test_content_type() {
let req = TestRequest::default()
.insert_header(("content-type", "text/plain"))
.finish();
assert_eq!(req.content_type(), "text/plain");
let req = TestRequest::default()
.insert_header(("content-type", "application/json; charset=utf-8"))
.finish();
assert_eq!(req.content_type(), "application/json");
let req = TestRequest::default().finish();
assert_eq!(req.content_type(), "");
}
#[test]
fn test_mime_type() {
let req = TestRequest::default()
.insert_header(("content-type", "application/json"))
.finish();
assert_eq!(req.mime_type().unwrap(), Some(mime::APPLICATION_JSON));
let req = TestRequest::default().finish();
assert_eq!(req.mime_type().unwrap(), None);
let req = TestRequest::default()
.insert_header(("content-type", "application/json; charset=utf-8"))
.finish();
let mt = req.mime_type().unwrap().unwrap();
assert_eq!(mt.get_param(mime::CHARSET), Some(mime::UTF_8));
assert_eq!(mt.type_(), mime::APPLICATION);
assert_eq!(mt.subtype(), mime::JSON);
}
#[test]
fn test_mime_type_error() {
let req = TestRequest::default()
.insert_header(("content-type", "applicationadfadsfasdflknadsfklnadsfjson"))
.finish();
assert_eq!(Err(ContentTypeError::ParseError), req.mime_type());
}
#[test]
fn test_encoding() {
let req = TestRequest::default().finish();
assert_eq!(UTF_8.name(), req.encoding().unwrap().name());
let req = TestRequest::default()
.insert_header(("content-type", "application/json"))
.finish();
assert_eq!(UTF_8.name(), req.encoding().unwrap().name());
let req = TestRequest::default()
.insert_header(("content-type", "application/json; charset=ISO-8859-2"))
.finish();
assert_eq!(ISO_8859_2, req.encoding().unwrap());
}
#[test]
fn test_encoding_error() {
let req = TestRequest::default()
.insert_header(("content-type", "applicatjson"))
.finish();
assert_eq!(Some(ContentTypeError::ParseError), req.encoding().err());
let req = TestRequest::default()
.insert_header(("content-type", "application/json; charset=kkkttktk"))
.finish();
assert_eq!(
Some(ContentTypeError::UnknownEncoding),
req.encoding().err()
);
}
#[test]
fn test_chunked() {
let req = TestRequest::default().finish();
assert!(!req.chunked().unwrap());
let req = TestRequest::default()
.insert_header((header::TRANSFER_ENCODING, "chunked"))
.finish();
assert!(req.chunked().unwrap());
let req = TestRequest::default()
.insert_header((
header::TRANSFER_ENCODING,
Bytes::from_static(b"some va\xadscc\xacas0xsdasdlue"),
))
.finish();
assert!(req.chunked().is_err());
}
}
|
use std::time::Duration;
/// Connection keep-alive config.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum KeepAlive {
/// Keep-alive duration.
///
/// `KeepAlive::Timeout(Duration::ZERO)` is mapped to `KeepAlive::Disabled`.
Timeout(Duration),
/// Rely on OS to shutdown TCP connection.
///
/// Some defaults can be very long, check your OS documentation.
Os,
/// Keep-alive is disabled.
///
/// Connections will be closed immediately.
Disabled,
}
impl KeepAlive {
pub(crate) fn enabled(&self) -> bool {
!matches!(self, Self::Disabled)
}
#[allow(unused)] // used with `http2` feature flag
pub(crate) fn duration(&self) -> Option<Duration> {
match self {
KeepAlive::Timeout(dur) => Some(*dur),
_ => None,
}
}
/// Map zero duration to disabled.
pub(crate) fn normalize(self) -> KeepAlive {
match self {
KeepAlive::Timeout(Duration::ZERO) => KeepAlive::Disabled,
ka => ka,
}
}
}
impl Default for KeepAlive {
fn default() -> Self {
Self::Timeout(Duration::from_secs(5))
}
}
impl From<Duration> for KeepAlive {
fn from(dur: Duration) -> Self {
KeepAlive::Timeout(dur).normalize()
}
}
impl From<Option<Duration>> for KeepAlive {
fn from(ka_dur: Option<Duration>) -> Self {
match ka_dur {
Some(dur) => KeepAlive::from(dur),
None => KeepAlive::Disabled,
}
.normalize()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn from_impls() {
let test: KeepAlive = Duration::from_secs(1).into();
assert_eq!(test, KeepAlive::Timeout(Duration::from_secs(1)));
let test: KeepAlive = Duration::from_secs(0).into();
assert_eq!(test, KeepAlive::Disabled);
let test: KeepAlive = Some(Duration::from_secs(0)).into();
assert_eq!(test, KeepAlive::Disabled);
let test: KeepAlive = None.into();
assert_eq!(test, KeepAlive::Disabled);
}
}
|
//! HTTP types and services for the Actix ecosystem.
//!
//! ## Crate Features
//!
//! | Feature | Functionality |
//! | ------------------- | ------------------------------------------- |
//! | `http2` | HTTP/2 support via [h2]. |
//! | `openssl` | TLS support via [OpenSSL]. |
//! | `rustls-0_20` | TLS support via rustls 0.20. |
//! | `rustls-0_21` | TLS support via rustls 0.21. |
//! | `rustls-0_22` | TLS support via rustls 0.22. |
//! | `rustls-0_23` | TLS support via [rustls] 0.23. |
//! | `compress-brotli` | Payload compression support: Brotli. |
//! | `compress-gzip` | Payload compression support: Deflate, Gzip. |
//! | `compress-zstd` | Payload compression support: Zstd. |
//! | `trust-dns` | Use [trust-dns] as the client DNS resolver. |
//!
//! [h2]: https://crates.io/crates/h2
//! [OpenSSL]: https://crates.io/crates/openssl
//! [rustls]: https://crates.io/crates/rustls
//! [trust-dns]: https://crates.io/crates/trust-dns
#![allow(
clippy::type_complexity,
clippy::too_many_arguments,
clippy::borrow_interior_mutable_const
)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
pub use http::{uri, uri::Uri, Method, StatusCode, Version};
pub mod body;
mod builder;
mod config;
mod date;
#[cfg(feature = "__compress")]
pub mod encoding;
pub mod error;
mod extensions;
pub mod h1;
#[cfg(feature = "http2")]
pub mod h2;
pub mod header;
mod helpers;
mod http_message;
mod keep_alive;
mod message;
#[cfg(test)]
mod notify_on_drop;
mod payload;
mod requests;
mod responses;
mod service;
pub mod test;
#[cfg(feature = "ws")]
pub mod ws;
#[allow(deprecated)]
pub use self::payload::PayloadStream;
#[cfg(feature = "__tls")]
pub use self::service::TlsAcceptorConfig;
pub use self::{
builder::HttpServiceBuilder,
config::ServiceConfig,
error::Error,
extensions::Extensions,
header::ContentEncoding,
http_message::HttpMessage,
keep_alive::KeepAlive,
message::{ConnectionType, Message},
payload::{BoxedPayloadStream, Payload},
requests::{Request, RequestHead, RequestHeadType},
responses::{Response, ResponseBuilder, ResponseHead},
service::HttpService,
};
/// A major HTTP protocol version.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum Protocol {
Http1,
Http2,
Http3,
}
type ConnectCallback<IO> = dyn Fn(&IO, &mut Extensions);
/// Container for data that extract with ConnectCallback.
///
/// # Implementation Details
/// Uses Option to reduce necessary allocations when merging with request extensions.
#[derive(Default)]
pub(crate) struct OnConnectData(Option<Extensions>);
impl OnConnectData {
/// Construct by calling the on-connect callback with the underlying transport I/O.
pub(crate) fn from_io<T>(io: &T, on_connect_ext: Option<&ConnectCallback<T>>) -> Self {
let ext = on_connect_ext.map(|handler| {
let mut extensions = Extensions::default();
handler(io, &mut extensions);
extensions
});
Self(ext)
}
}
|
use std::{cell::RefCell, ops, rc::Rc};
use bitflags::bitflags;
/// Represents various types of connection
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ConnectionType {
/// Close connection after response.
Close,
/// Keep connection alive after response.
KeepAlive,
/// Connection is upgraded to different type.
Upgrade,
}
bitflags! {
#[derive(Debug, Clone, Copy)]
pub(crate) struct Flags: u8 {
const CLOSE = 0b0000_0001;
const KEEP_ALIVE = 0b0000_0010;
const UPGRADE = 0b0000_0100;
const EXPECT = 0b0000_1000;
const NO_CHUNKING = 0b0001_0000;
const CAMEL_CASE = 0b0010_0000;
}
}
#[doc(hidden)]
pub trait Head: Default + 'static {
fn clear(&mut self);
fn with_pool<F, R>(f: F) -> R
where
F: FnOnce(&MessagePool<Self>) -> R;
}
pub struct Message<T: Head> {
/// Rc here should not be cloned by anyone.
/// It's used to reuse allocation of T and no shared ownership is allowed.
head: Rc<T>,
}
impl<T: Head> Message<T> {
/// Get new message from the pool of objects
#[allow(clippy::new_without_default)]
pub fn new() -> Self {
T::with_pool(MessagePool::get_message)
}
}
impl<T: Head> ops::Deref for Message<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.head.as_ref()
}
}
impl<T: Head> ops::DerefMut for Message<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
Rc::get_mut(&mut self.head).expect("Multiple copies exist")
}
}
impl<T: Head> Drop for Message<T> {
fn drop(&mut self) {
T::with_pool(|p| p.release(Rc::clone(&self.head)))
}
}
/// Generic `Head` object pool.
#[doc(hidden)]
pub struct MessagePool<T: Head>(RefCell<Vec<Rc<T>>>);
impl<T: Head> MessagePool<T> {
pub(crate) fn create() -> MessagePool<T> {
MessagePool(RefCell::new(Vec::with_capacity(128)))
}
/// Get message from the pool
#[inline]
fn get_message(&self) -> Message<T> {
if let Some(mut msg) = self.0.borrow_mut().pop() {
// Message is put in pool only when it's the last copy.
// which means it's guaranteed to be unique when popped out.
Rc::get_mut(&mut msg)
.expect("Multiple copies exist")
.clear();
Message { head: msg }
} else {
Message {
head: Rc::new(T::default()),
}
}
}
#[inline]
/// Release message instance
fn release(&self, msg: Rc<T>) {
let pool = &mut self.0.borrow_mut();
if pool.len() < 128 {
pool.push(msg);
}
}
}
|
/// Test Module for checking the drop state of certain async tasks that are spawned
/// with `actix_rt::spawn`
///
/// The target task must explicitly generate `NotifyOnDrop` when spawn the task
use std::cell::RefCell;
thread_local! {
static NOTIFY_DROPPED: RefCell<Option<bool>> = const { RefCell::new(None) };
}
/// Check if the spawned task is dropped.
///
/// # Panics
/// Panics when there was no `NotifyOnDrop` instance on current thread.
pub(crate) fn is_dropped() -> bool {
NOTIFY_DROPPED.with(|bool| {
bool.borrow()
.expect("No NotifyOnDrop existed on current thread")
})
}
pub(crate) struct NotifyOnDrop;
impl NotifyOnDrop {
/// # Panics
/// Panics hen construct multiple instances on any given thread.
pub(crate) fn new() -> Self {
NOTIFY_DROPPED.with(|bool| {
let mut bool = bool.borrow_mut();
if bool.is_some() {
panic!("NotifyOnDrop existed on current thread");
} else {
*bool = Some(false);
}
});
NotifyOnDrop
}
}
impl Drop for NotifyOnDrop {
fn drop(&mut self) {
NOTIFY_DROPPED.with(|bool| {
if let Some(b) = bool.borrow_mut().as_mut() {
*b = true;
}
});
}
}
|
use std::{
mem,
pin::Pin,
task::{Context, Poll},
};
use bytes::Bytes;
use futures_core::Stream;
use pin_project_lite::pin_project;
use crate::error::PayloadError;
/// A boxed payload stream.
pub type BoxedPayloadStream = Pin<Box<dyn Stream<Item = Result<Bytes, PayloadError>>>>;
#[doc(hidden)]
#[deprecated(since = "3.0.0", note = "Renamed to `BoxedPayloadStream`.")]
pub type PayloadStream = BoxedPayloadStream;
#[cfg(not(feature = "http2"))]
pin_project! {
/// A streaming payload.
#[project = PayloadProj]
pub enum Payload<S = BoxedPayloadStream> {
None,
H1 { payload: crate::h1::Payload },
Stream { #[pin] payload: S },
}
}
#[cfg(feature = "http2")]
pin_project! {
/// A streaming payload.
#[project = PayloadProj]
pub enum Payload<S = BoxedPayloadStream> {
None,
H1 { payload: crate::h1::Payload },
H2 { payload: crate::h2::Payload },
Stream { #[pin] payload: S },
}
}
impl<S> From<crate::h1::Payload> for Payload<S> {
#[inline]
fn from(payload: crate::h1::Payload) -> Self {
Payload::H1 { payload }
}
}
impl<S> From<Bytes> for Payload<S> {
#[inline]
fn from(bytes: Bytes) -> Self {
let (_, mut pl) = crate::h1::Payload::create(true);
pl.unread_data(bytes);
self::Payload::from(pl)
}
}
impl<S> From<Vec<u8>> for Payload<S> {
#[inline]
fn from(vec: Vec<u8>) -> Self {
Payload::from(Bytes::from(vec))
}
}
#[cfg(feature = "http2")]
impl<S> From<crate::h2::Payload> for Payload<S> {
#[inline]
fn from(payload: crate::h2::Payload) -> Self {
Payload::H2 { payload }
}
}
#[cfg(feature = "http2")]
impl<S> From<::h2::RecvStream> for Payload<S> {
#[inline]
fn from(stream: ::h2::RecvStream) -> Self {
Payload::H2 {
payload: crate::h2::Payload::new(stream),
}
}
}
impl From<BoxedPayloadStream> for Payload {
#[inline]
fn from(payload: BoxedPayloadStream) -> Self {
Payload::Stream { payload }
}
}
impl<S> Payload<S> {
/// Takes current payload and replaces it with `None` value.
#[must_use]
pub fn take(&mut self) -> Payload<S> {
mem::replace(self, Payload::None)
}
}
impl<S> Stream for Payload<S>
where
S: Stream<Item = Result<Bytes, PayloadError>>,
{
type Item = Result<Bytes, PayloadError>;
#[inline]
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
match self.project() {
PayloadProj::None => Poll::Ready(None),
PayloadProj::H1 { payload } => Pin::new(payload).poll_next(cx),
#[cfg(feature = "http2")]
PayloadProj::H2 { payload } => Pin::new(payload).poll_next(cx),
PayloadProj::Stream { payload } => payload.poll_next(cx),
}
}
}
#[cfg(test)]
mod tests {
use static_assertions::{assert_impl_all, assert_not_impl_any};
use super::*;
assert_impl_all!(Payload: Unpin);
assert_not_impl_any!(Payload: Send, Sync);
}
|
use std::{net, rc::Rc};
use crate::{
header::{self, HeaderMap},
message::{Flags, Head, MessagePool},
ConnectionType, Method, Uri, Version,
};
thread_local! {
static REQUEST_POOL: MessagePool<RequestHead> = MessagePool::<RequestHead>::create()
}
#[derive(Debug, Clone)]
pub struct RequestHead {
pub method: Method,
pub uri: Uri,
pub version: Version,
pub headers: HeaderMap,
/// Will only be None when called in unit tests unless set manually.
pub peer_addr: Option<net::SocketAddr>,
flags: Flags,
}
impl Default for RequestHead {
fn default() -> RequestHead {
RequestHead {
method: Method::default(),
uri: Uri::default(),
version: Version::HTTP_11,
headers: HeaderMap::with_capacity(16),
peer_addr: None,
flags: Flags::empty(),
}
}
}
impl Head for RequestHead {
fn clear(&mut self) {
self.flags = Flags::empty();
self.headers.clear();
}
fn with_pool<F, R>(f: F) -> R
where
F: FnOnce(&MessagePool<Self>) -> R,
{
REQUEST_POOL.with(|p| f(p))
}
}
impl RequestHead {
/// Read the message headers.
pub fn headers(&self) -> &HeaderMap {
&self.headers
}
/// Mutable reference to the message headers.
pub fn headers_mut(&mut self) -> &mut HeaderMap {
&mut self.headers
}
/// Is to uppercase headers with Camel-Case.
/// Default is `false`
#[inline]
pub fn camel_case_headers(&self) -> bool {
self.flags.contains(Flags::CAMEL_CASE)
}
/// Set `true` to send headers which are formatted as Camel-Case.
#[inline]
pub fn set_camel_case_headers(&mut self, val: bool) {
if val {
self.flags.insert(Flags::CAMEL_CASE);
} else {
self.flags.remove(Flags::CAMEL_CASE);
}
}
#[inline]
/// Set connection type of the message
pub fn set_connection_type(&mut self, ctype: ConnectionType) {
match ctype {
ConnectionType::Close => self.flags.insert(Flags::CLOSE),
ConnectionType::KeepAlive => self.flags.insert(Flags::KEEP_ALIVE),
ConnectionType::Upgrade => self.flags.insert(Flags::UPGRADE),
}
}
#[inline]
/// Connection type
pub fn connection_type(&self) -> ConnectionType {
if self.flags.contains(Flags::CLOSE) {
ConnectionType::Close
} else if self.flags.contains(Flags::KEEP_ALIVE) {
ConnectionType::KeepAlive
} else if self.flags.contains(Flags::UPGRADE) {
ConnectionType::Upgrade
} else if self.version < Version::HTTP_11 {
ConnectionType::Close
} else {
ConnectionType::KeepAlive
}
}
/// Connection upgrade status
pub fn upgrade(&self) -> bool {
self.headers()
.get(header::CONNECTION)
.map(|hdr| {
if let Ok(s) = hdr.to_str() {
s.to_ascii_lowercase().contains("upgrade")
} else {
false
}
})
.unwrap_or(false)
}
#[inline]
/// Get response body chunking state
pub fn chunked(&self) -> bool {
!self.flags.contains(Flags::NO_CHUNKING)
}
#[inline]
pub fn no_chunking(&mut self, val: bool) {
if val {
self.flags.insert(Flags::NO_CHUNKING);
} else {
self.flags.remove(Flags::NO_CHUNKING);
}
}
/// Request contains `EXPECT` header.
#[inline]
pub fn expect(&self) -> bool {
self.flags.contains(Flags::EXPECT)
}
#[inline]
pub(crate) fn set_expect(&mut self) {
self.flags.insert(Flags::EXPECT);
}
}
#[allow(clippy::large_enum_variant)]
#[derive(Debug)]
pub enum RequestHeadType {
Owned(RequestHead),
Rc(Rc<RequestHead>, Option<HeaderMap>),
}
impl RequestHeadType {
pub fn extra_headers(&self) -> Option<&HeaderMap> {
match self {
RequestHeadType::Owned(_) => None,
RequestHeadType::Rc(_, headers) => headers.as_ref(),
}
}
}
impl AsRef<RequestHead> for RequestHeadType {
fn as_ref(&self) -> &RequestHead {
match self {
RequestHeadType::Owned(head) => head,
RequestHeadType::Rc(head, _) => head.as_ref(),
}
}
}
impl From<RequestHead> for RequestHeadType {
fn from(head: RequestHead) -> Self {
RequestHeadType::Owned(head)
}
}
|
//! HTTP requests.
mod head;
mod request;
pub use self::{
head::{RequestHead, RequestHeadType},
request::Request,
};
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.