text
stringlengths 0
4.1M
|
---|
//! HTTP requests.
use std::{
cell::{Ref, RefCell, RefMut},
fmt, mem, net,
rc::Rc,
str,
};
use http::{header, Method, Uri, Version};
use crate::{
header::HeaderMap, BoxedPayloadStream, Extensions, HttpMessage, Message, Payload, RequestHead,
};
/// An HTTP request.
pub struct Request<P = BoxedPayloadStream> {
pub(crate) payload: Payload<P>,
pub(crate) head: Message<RequestHead>,
pub(crate) conn_data: Option<Rc<Extensions>>,
pub(crate) extensions: RefCell<Extensions>,
}
impl<P> HttpMessage for Request<P> {
type Stream = P;
#[inline]
fn headers(&self) -> &HeaderMap {
&self.head().headers
}
fn take_payload(&mut self) -> Payload<P> {
mem::replace(&mut self.payload, Payload::None)
}
#[inline]
fn extensions(&self) -> Ref<'_, Extensions> {
self.extensions.borrow()
}
#[inline]
fn extensions_mut(&self) -> RefMut<'_, Extensions> {
self.extensions.borrow_mut()
}
}
impl From<Message<RequestHead>> for Request<BoxedPayloadStream> {
fn from(head: Message<RequestHead>) -> Self {
Request {
head,
payload: Payload::None,
extensions: RefCell::new(Extensions::default()),
conn_data: None,
}
}
}
impl Request<BoxedPayloadStream> {
/// Create new Request instance
#[allow(clippy::new_without_default)]
pub fn new() -> Request<BoxedPayloadStream> {
Request {
head: Message::new(),
payload: Payload::None,
extensions: RefCell::new(Extensions::default()),
conn_data: None,
}
}
}
impl<P> Request<P> {
/// Create new Request instance
pub fn with_payload(payload: Payload<P>) -> Request<P> {
Request {
payload,
head: Message::new(),
extensions: RefCell::new(Extensions::default()),
conn_data: None,
}
}
/// Create new Request instance
pub fn replace_payload<P1>(self, payload: Payload<P1>) -> (Request<P1>, Payload<P>) {
let pl = self.payload;
(
Request {
payload,
head: self.head,
extensions: self.extensions,
conn_data: self.conn_data,
},
pl,
)
}
/// Get request's payload
pub fn payload(&mut self) -> &mut Payload<P> {
&mut self.payload
}
/// Get request's payload
pub fn take_payload(&mut self) -> Payload<P> {
mem::replace(&mut self.payload, Payload::None)
}
/// Split request into request head and payload
pub fn into_parts(self) -> (Message<RequestHead>, Payload<P>) {
(self.head, self.payload)
}
#[inline]
/// Http message part of the request
pub fn head(&self) -> &RequestHead {
&self.head
}
#[inline]
#[doc(hidden)]
/// Mutable reference to a HTTP message part of the request
pub fn head_mut(&mut self) -> &mut RequestHead {
&mut self.head
}
/// Mutable reference to the message's headers.
pub fn headers_mut(&mut self) -> &mut HeaderMap {
&mut self.head.headers
}
/// Request's uri.
#[inline]
pub fn uri(&self) -> &Uri {
&self.head().uri
}
/// Mutable reference to the request's uri.
#[inline]
pub fn uri_mut(&mut self) -> &mut Uri {
&mut self.head.uri
}
/// Read the Request method.
#[inline]
pub fn method(&self) -> &Method {
&self.head().method
}
/// Read the Request Version.
#[inline]
pub fn version(&self) -> Version {
self.head().version
}
/// The target path of this Request.
#[inline]
pub fn path(&self) -> &str {
self.head().uri.path()
}
/// Check if request requires connection upgrade
#[inline]
pub fn upgrade(&self) -> bool {
if let Some(conn) = self.head().headers.get(header::CONNECTION) {
if let Ok(s) = conn.to_str() {
return s.to_lowercase().contains("upgrade");
}
}
self.head().method == Method::CONNECT
}
/// Peer socket address.
///
/// Peer address is the directly connected peer's socket address. If a proxy is used in front of
/// the Actix Web server, then it would be address of this proxy.
///
/// Will only return None when called in unit tests unless set manually.
#[inline]
pub fn peer_addr(&self) -> Option<net::SocketAddr> {
self.head().peer_addr
}
/// Returns a reference a piece of connection data set in an [on-connect] callback.
///
/// ```ignore
/// let opt_t = req.conn_data::<PeerCertificate>();
/// ```
///
/// [on-connect]: crate::HttpServiceBuilder::on_connect_ext
pub fn conn_data<T: 'static>(&self) -> Option<&T> {
self.conn_data
.as_deref()
.and_then(|container| container.get::<T>())
}
/// Returns the connection-level data/extensions container if an [on-connect] callback was
/// registered, leaving an empty one in its place.
///
/// [on-connect]: crate::HttpServiceBuilder::on_connect_ext
pub fn take_conn_data(&mut self) -> Option<Rc<Extensions>> {
self.conn_data.take()
}
/// Returns the request-local data/extensions container, leaving an empty one in its place.
pub fn take_req_data(&mut self) -> Extensions {
mem::take(self.extensions.get_mut())
}
}
impl<P> fmt::Debug for Request<P> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(
f,
"\nRequest {:?} {}:{}",
self.version(),
self.method(),
self.path()
)?;
if let Some(q) = self.uri().query().as_ref() {
writeln!(f, " query: ?{:?}", q)?;
}
writeln!(f, " headers:")?;
for (key, val) in self.headers().iter() {
writeln!(f, " {:?}: {:?}", key, val)?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basics() {
let msg = Message::new();
let mut req = Request::from(msg);
req.headers_mut().insert(
header::CONTENT_TYPE,
header::HeaderValue::from_static("text/plain"),
);
assert!(req.headers().contains_key(header::CONTENT_TYPE));
*req.uri_mut() = Uri::try_from("/index.html?q=1").unwrap();
assert_eq!(req.uri().path(), "/index.html");
assert_eq!(req.uri().query(), Some("q=1"));
let s = format!("{:?}", req);
assert!(s.contains("Request HTTP/1.1 GET:/index.html"));
}
}
|
//! HTTP response builder.
use std::{cell::RefCell, fmt, str};
use crate::{
body::{EitherBody, MessageBody},
error::{Error, HttpError},
header::{self, TryIntoHeaderPair, TryIntoHeaderValue},
responses::{BoxedResponseHead, ResponseHead},
ConnectionType, Extensions, Response, StatusCode,
};
/// An HTTP response builder.
///
/// Used to construct an instance of `Response` using a builder pattern. Response builders are often
/// created using [`Response::build`].
///
/// # Examples
/// ```
/// use actix_http::{Response, ResponseBuilder, StatusCode, body, header};
///
/// # actix_rt::System::new().block_on(async {
/// let mut res: Response<_> = Response::build(StatusCode::OK)
/// .content_type(mime::APPLICATION_JSON)
/// .insert_header((header::SERVER, "my-app/1.0"))
/// .append_header((header::SET_COOKIE, "a=1"))
/// .append_header((header::SET_COOKIE, "b=2"))
/// .body("1234");
///
/// assert_eq!(res.status(), StatusCode::OK);
///
/// assert!(res.headers().contains_key("server"));
/// assert_eq!(res.headers().get_all("set-cookie").count(), 2);
///
/// assert_eq!(body::to_bytes(res.into_body()).await.unwrap(), &b"1234"[..]);
/// # })
/// ```
pub struct ResponseBuilder {
head: Option<BoxedResponseHead>,
err: Option<HttpError>,
}
impl ResponseBuilder {
/// Create response builder
///
/// # Examples
/// ```
/// use actix_http::{Response, ResponseBuilder, StatusCode};
/// let res: Response<_> = ResponseBuilder::default().finish();
/// assert_eq!(res.status(), StatusCode::OK);
/// ```
#[inline]
pub fn new(status: StatusCode) -> Self {
ResponseBuilder {
head: Some(BoxedResponseHead::new(status)),
err: None,
}
}
/// Set HTTP status code of this response.
///
/// # Examples
/// ```
/// use actix_http::{ResponseBuilder, StatusCode};
/// let res = ResponseBuilder::default().status(StatusCode::NOT_FOUND).finish();
/// assert_eq!(res.status(), StatusCode::NOT_FOUND);
/// ```
#[inline]
pub fn status(&mut self, status: StatusCode) -> &mut Self {
if let Some(parts) = self.inner() {
parts.status = status;
}
self
}
/// Insert a header, replacing any that were set with an equivalent field name.
///
/// # Examples
/// ```
/// use actix_http::{ResponseBuilder, header};
///
/// let res = ResponseBuilder::default()
/// .insert_header((header::CONTENT_TYPE, mime::APPLICATION_JSON))
/// .insert_header(("X-TEST", "value"))
/// .finish();
///
/// assert!(res.headers().contains_key("content-type"));
/// assert!(res.headers().contains_key("x-test"));
/// ```
pub fn insert_header(&mut self, header: impl TryIntoHeaderPair) -> &mut Self {
if let Some(parts) = self.inner() {
match header.try_into_pair() {
Ok((key, value)) => {
parts.headers.insert(key, value);
}
Err(err) => self.err = Some(err.into()),
};
}
self
}
/// Append a header, keeping any that were set with an equivalent field name.
///
/// # Examples
/// ```
/// use actix_http::{ResponseBuilder, header};
///
/// let res = ResponseBuilder::default()
/// .append_header((header::CONTENT_TYPE, mime::APPLICATION_JSON))
/// .append_header(("X-TEST", "value1"))
/// .append_header(("X-TEST", "value2"))
/// .finish();
///
/// assert_eq!(res.headers().get_all("content-type").count(), 1);
/// assert_eq!(res.headers().get_all("x-test").count(), 2);
/// ```
pub fn append_header(&mut self, header: impl TryIntoHeaderPair) -> &mut Self {
if let Some(parts) = self.inner() {
match header.try_into_pair() {
Ok((key, value)) => parts.headers.append(key, value),
Err(err) => self.err = Some(err.into()),
};
}
self
}
/// Set the custom reason for the response.
#[inline]
pub fn reason(&mut self, reason: &'static str) -> &mut Self {
if let Some(parts) = self.inner() {
parts.reason = Some(reason);
}
self
}
/// Set connection type to KeepAlive
#[inline]
pub fn keep_alive(&mut self) -> &mut Self {
if let Some(parts) = self.inner() {
parts.set_connection_type(ConnectionType::KeepAlive);
}
self
}
/// Set connection type to `Upgrade`.
#[inline]
pub fn upgrade<V>(&mut self, value: V) -> &mut Self
where
V: TryIntoHeaderValue,
{
if let Some(parts) = self.inner() {
parts.set_connection_type(ConnectionType::Upgrade);
}
if let Ok(value) = value.try_into_value() {
self.insert_header((header::UPGRADE, value));
}
self
}
/// Force-close connection, even if it is marked as keep-alive.
#[inline]
pub fn force_close(&mut self) -> &mut Self {
if let Some(parts) = self.inner() {
parts.set_connection_type(ConnectionType::Close);
}
self
}
/// Disable chunked transfer encoding for HTTP/1.1 streaming responses.
#[inline]
pub fn no_chunking(&mut self, len: u64) -> &mut Self {
let mut buf = itoa::Buffer::new();
self.insert_header((header::CONTENT_LENGTH, buf.format(len)));
if let Some(parts) = self.inner() {
parts.no_chunking(true);
}
self
}
/// Set response content type.
#[inline]
pub fn content_type<V>(&mut self, value: V) -> &mut Self
where
V: TryIntoHeaderValue,
{
if let Some(parts) = self.inner() {
match value.try_into_value() {
Ok(value) => {
parts.headers.insert(header::CONTENT_TYPE, value);
}
Err(err) => self.err = Some(err.into()),
};
}
self
}
/// Generate response with a wrapped body.
///
/// This `ResponseBuilder` will be left in a useless state.
pub fn body<B>(&mut self, body: B) -> Response<EitherBody<B>>
where
B: MessageBody + 'static,
{
match self.message_body(body) {
Ok(res) => res.map_body(|_, body| EitherBody::left(body)),
Err(err) => Response::from(err).map_body(|_, body| EitherBody::right(body)),
}
}
/// Generate response with a body.
///
/// This `ResponseBuilder` will be left in a useless state.
pub fn message_body<B>(&mut self, body: B) -> Result<Response<B>, Error> {
if let Some(err) = self.err.take() {
return Err(Error::new_http().with_cause(err));
}
let head = self.head.take().expect("cannot reuse response builder");
Ok(Response {
head,
body,
extensions: RefCell::new(Extensions::new()),
})
}
/// Generate response with an empty body.
///
/// This `ResponseBuilder` will be left in a useless state.
#[inline]
pub fn finish(&mut self) -> Response<EitherBody<()>> {
self.body(())
}
/// Create an owned `ResponseBuilder`, leaving the original in a useless state.
pub fn take(&mut self) -> ResponseBuilder {
ResponseBuilder {
head: self.head.take(),
err: self.err.take(),
}
}
/// Get access to the inner response head if there has been no error.
fn inner(&mut self) -> Option<&mut ResponseHead> {
if self.err.is_some() {
return None;
}
self.head.as_deref_mut()
}
}
impl Default for ResponseBuilder {
fn default() -> Self {
Self::new(StatusCode::OK)
}
}
/// Convert `Response` to a `ResponseBuilder`. Body get dropped.
impl<B> From<Response<B>> for ResponseBuilder {
fn from(res: Response<B>) -> ResponseBuilder {
ResponseBuilder {
head: Some(res.head),
err: None,
}
}
}
/// Convert `ResponseHead` to a `ResponseBuilder`
impl<'a> From<&'a ResponseHead> for ResponseBuilder {
fn from(head: &'a ResponseHead) -> ResponseBuilder {
let mut msg = BoxedResponseHead::new(head.status);
msg.version = head.version;
msg.reason = head.reason;
for (k, v) in head.headers.iter() {
msg.headers.append(k.clone(), v.clone());
}
msg.no_chunking(!head.chunked());
ResponseBuilder {
head: Some(msg),
err: None,
}
}
}
impl fmt::Debug for ResponseBuilder {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let head = self.head.as_ref().unwrap();
let res = writeln!(
f,
"\nResponseBuilder {:?} {}{}",
head.version,
head.status,
head.reason.unwrap_or(""),
);
let _ = writeln!(f, " headers:");
for (key, val) in head.headers.iter() {
let _ = writeln!(f, " {:?}: {:?}", key, val);
}
res
}
}
#[cfg(test)]
mod tests {
use bytes::Bytes;
use super::*;
use crate::header::{HeaderName, HeaderValue, CONTENT_TYPE};
#[test]
fn test_basic_builder() {
let resp = Response::build(StatusCode::OK)
.insert_header(("X-TEST", "value"))
.finish();
assert_eq!(resp.status(), StatusCode::OK);
}
#[test]
fn test_upgrade() {
let resp = Response::build(StatusCode::OK)
.upgrade("websocket")
.finish();
assert!(resp.upgrade());
assert_eq!(
resp.headers().get(header::UPGRADE).unwrap(),
HeaderValue::from_static("websocket")
);
}
#[test]
fn test_force_close() {
let resp = Response::build(StatusCode::OK).force_close().finish();
assert!(!resp.keep_alive());
}
#[test]
fn test_content_type() {
let resp = Response::build(StatusCode::OK)
.content_type("text/plain")
.body(Bytes::new());
assert_eq!(resp.headers().get(CONTENT_TYPE).unwrap(), "text/plain");
let resp = Response::build(StatusCode::OK)
.content_type(mime::TEXT_JAVASCRIPT)
.body(Bytes::new());
assert_eq!(resp.headers().get(CONTENT_TYPE).unwrap(), "text/javascript");
}
#[test]
fn test_into_builder() {
let mut resp: Response<_> = "test".into();
assert_eq!(resp.status(), StatusCode::OK);
resp.headers_mut().insert(
HeaderName::from_static("cookie"),
HeaderValue::from_static("cookie1=val100"),
);
let mut builder: ResponseBuilder = resp.into();
let resp = builder.status(StatusCode::BAD_REQUEST).finish();
assert_eq!(resp.status(), StatusCode::BAD_REQUEST);
let cookie = resp.headers().get_all("Cookie").next().unwrap();
assert_eq!(cookie.to_str().unwrap(), "cookie1=val100");
}
#[test]
fn response_builder_header_insert_kv() {
let mut res = Response::build(StatusCode::OK);
res.insert_header(("Content-Type", "application/octet-stream"));
let res = res.finish();
assert_eq!(
res.headers().get("Content-Type"),
Some(&HeaderValue::from_static("application/octet-stream"))
);
}
#[test]
fn response_builder_header_insert_typed() {
let mut res = Response::build(StatusCode::OK);
res.insert_header((header::CONTENT_TYPE, mime::APPLICATION_OCTET_STREAM));
let res = res.finish();
assert_eq!(
res.headers().get("Content-Type"),
Some(&HeaderValue::from_static("application/octet-stream"))
);
}
#[test]
fn response_builder_header_append_kv() {
let mut res = Response::build(StatusCode::OK);
res.append_header(("Content-Type", "application/octet-stream"));
res.append_header(("Content-Type", "application/json"));
let res = res.finish();
let headers: Vec<_> = res.headers().get_all("Content-Type").cloned().collect();
assert_eq!(headers.len(), 2);
assert!(headers.contains(&HeaderValue::from_static("application/octet-stream")));
assert!(headers.contains(&HeaderValue::from_static("application/json")));
}
#[test]
fn response_builder_header_append_typed() {
let mut res = Response::build(StatusCode::OK);
res.append_header((header::CONTENT_TYPE, mime::APPLICATION_OCTET_STREAM));
res.append_header((header::CONTENT_TYPE, mime::APPLICATION_JSON));
let res = res.finish();
let headers: Vec<_> = res.headers().get_all("Content-Type").cloned().collect();
assert_eq!(headers.len(), 2);
assert!(headers.contains(&HeaderValue::from_static("application/octet-stream")));
assert!(headers.contains(&HeaderValue::from_static("application/json")));
}
}
|
//! Response head type and caching pool.
use std::{cell::RefCell, ops};
use crate::{header::HeaderMap, message::Flags, ConnectionType, StatusCode, Version};
thread_local! {
static RESPONSE_POOL: BoxedResponsePool = BoxedResponsePool::create();
}
#[derive(Debug, Clone)]
pub struct ResponseHead {
pub version: Version,
pub status: StatusCode,
pub headers: HeaderMap,
pub reason: Option<&'static str>,
pub(crate) flags: Flags,
}
impl ResponseHead {
/// Create new instance of `ResponseHead` type
#[inline]
pub fn new(status: StatusCode) -> ResponseHead {
ResponseHead {
status,
version: Version::HTTP_11,
headers: HeaderMap::with_capacity(12),
reason: None,
flags: Flags::empty(),
}
}
/// Read the message headers.
#[inline]
pub fn headers(&self) -> &HeaderMap {
&self.headers
}
/// Mutable reference to the message headers.
#[inline]
pub fn headers_mut(&mut self) -> &mut HeaderMap {
&mut self.headers
}
/// Sets the flag that controls whether to send headers formatted as Camel-Case.
///
/// Only applicable to HTTP/1.x responses; HTTP/2 header names are always lowercase.
#[inline]
pub fn set_camel_case_headers(&mut self, camel_case: bool) {
if camel_case {
self.flags.insert(Flags::CAMEL_CASE);
} else {
self.flags.remove(Flags::CAMEL_CASE);
}
}
/// Set connection type of the message
#[inline]
pub fn set_connection_type(&mut self, ctype: ConnectionType) {
match ctype {
ConnectionType::Close => self.flags.insert(Flags::CLOSE),
ConnectionType::KeepAlive => self.flags.insert(Flags::KEEP_ALIVE),
ConnectionType::Upgrade => self.flags.insert(Flags::UPGRADE),
}
}
#[inline]
pub fn connection_type(&self) -> ConnectionType {
if self.flags.contains(Flags::CLOSE) {
ConnectionType::Close
} else if self.flags.contains(Flags::KEEP_ALIVE) {
ConnectionType::KeepAlive
} else if self.flags.contains(Flags::UPGRADE) {
ConnectionType::Upgrade
} else if self.version < Version::HTTP_11 {
ConnectionType::Close
} else {
ConnectionType::KeepAlive
}
}
/// Check if keep-alive is enabled
#[inline]
pub fn keep_alive(&self) -> bool {
self.connection_type() == ConnectionType::KeepAlive
}
/// Check upgrade status of this message
#[inline]
pub fn upgrade(&self) -> bool {
self.connection_type() == ConnectionType::Upgrade
}
/// Get custom reason for the response
#[inline]
pub fn reason(&self) -> &str {
self.reason.unwrap_or_else(|| {
self.status
.canonical_reason()
.unwrap_or("<unknown status code>")
})
}
#[inline]
pub(crate) fn conn_type(&self) -> Option<ConnectionType> {
if self.flags.contains(Flags::CLOSE) {
Some(ConnectionType::Close)
} else if self.flags.contains(Flags::KEEP_ALIVE) {
Some(ConnectionType::KeepAlive)
} else if self.flags.contains(Flags::UPGRADE) {
Some(ConnectionType::Upgrade)
} else {
None
}
}
/// Get response body chunking state
#[inline]
pub fn chunked(&self) -> bool {
!self.flags.contains(Flags::NO_CHUNKING)
}
/// Set no chunking for payload
#[inline]
pub fn no_chunking(&mut self, val: bool) {
if val {
self.flags.insert(Flags::NO_CHUNKING);
} else {
self.flags.remove(Flags::NO_CHUNKING);
}
}
}
pub(crate) struct BoxedResponseHead {
head: Option<Box<ResponseHead>>,
}
impl BoxedResponseHead {
/// Get new message from the pool of objects
pub fn new(status: StatusCode) -> Self {
RESPONSE_POOL.with(|p| p.get_message(status))
}
}
impl ops::Deref for BoxedResponseHead {
type Target = ResponseHead;
fn deref(&self) -> &Self::Target {
self.head.as_ref().unwrap()
}
}
impl ops::DerefMut for BoxedResponseHead {
fn deref_mut(&mut self) -> &mut Self::Target {
self.head.as_mut().unwrap()
}
}
impl Drop for BoxedResponseHead {
fn drop(&mut self) {
if let Some(head) = self.head.take() {
RESPONSE_POOL.with(move |p| p.release(head))
}
}
}
/// Response head object pool.
#[doc(hidden)]
pub struct BoxedResponsePool(#[allow(clippy::vec_box)] RefCell<Vec<Box<ResponseHead>>>);
impl BoxedResponsePool {
fn create() -> BoxedResponsePool {
BoxedResponsePool(RefCell::new(Vec::with_capacity(128)))
}
/// Get message from the pool.
#[inline]
fn get_message(&self, status: StatusCode) -> BoxedResponseHead {
if let Some(mut head) = self.0.borrow_mut().pop() {
head.reason = None;
head.status = status;
head.headers.clear();
head.flags = Flags::empty();
BoxedResponseHead { head: Some(head) }
} else {
BoxedResponseHead {
head: Some(Box::new(ResponseHead::new(status))),
}
}
}
/// Release request instance.
#[inline]
fn release(&self, msg: Box<ResponseHead>) {
let pool = &mut self.0.borrow_mut();
if pool.len() < 128 {
pool.push(msg);
}
}
}
#[cfg(test)]
mod tests {
use std::{
io::{Read as _, Write as _},
net,
};
use memchr::memmem;
use crate::{
h1::H1Service,
header::{HeaderName, HeaderValue},
Error, Request, Response, ServiceConfig,
};
#[actix_rt::test]
async fn camel_case_headers() {
let mut srv = actix_http_test::test_server(|| {
H1Service::with_config(ServiceConfig::default(), |req: Request| async move {
let mut res = Response::ok();
if req.path().contains("camel") {
res.head_mut().set_camel_case_headers(true);
}
res.headers_mut().insert(
HeaderName::from_static("foo-bar"),
HeaderValue::from_static("baz"),
);
Ok::<_, Error>(res)
})
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
stream
.write_all(b"GET /camel HTTP/1.1\r\nConnection: Close\r\n\r\n")
.unwrap();
let mut data = vec![];
let _ = stream.read_to_end(&mut data).unwrap();
assert_eq!(&data[..17], b"HTTP/1.1 200 OK\r\n");
assert!(memmem::find(&data, b"Foo-Bar").is_some());
assert!(memmem::find(&data, b"foo-bar").is_none());
assert!(memmem::find(&data, b"Date").is_some());
assert!(memmem::find(&data, b"date").is_none());
assert!(memmem::find(&data, b"Content-Length").is_some());
assert!(memmem::find(&data, b"content-length").is_none());
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
stream
.write_all(b"GET /lower HTTP/1.1\r\nConnection: Close\r\n\r\n")
.unwrap();
let mut data = vec![];
let _ = stream.read_to_end(&mut data).unwrap();
assert_eq!(&data[..17], b"HTTP/1.1 200 OK\r\n");
assert!(memmem::find(&data, b"Foo-Bar").is_none());
assert!(memmem::find(&data, b"foo-bar").is_some());
assert!(memmem::find(&data, b"Date").is_none());
assert!(memmem::find(&data, b"date").is_some());
assert!(memmem::find(&data, b"Content-Length").is_none());
assert!(memmem::find(&data, b"content-length").is_some());
srv.stop().await;
}
}
|
//! HTTP response.
mod builder;
mod head;
#[allow(clippy::module_inception)]
mod response;
pub(crate) use self::head::BoxedResponseHead;
pub use self::{builder::ResponseBuilder, head::ResponseHead, response::Response};
|
//! HTTP response.
use std::{
cell::{Ref, RefCell, RefMut},
fmt, str,
};
use bytes::{Bytes, BytesMut};
use bytestring::ByteString;
use crate::{
body::{BoxBody, EitherBody, MessageBody},
header::{self, HeaderMap, TryIntoHeaderValue},
responses::BoxedResponseHead,
Error, Extensions, ResponseBuilder, ResponseHead, StatusCode,
};
/// An HTTP response.
pub struct Response<B> {
pub(crate) head: BoxedResponseHead,
pub(crate) body: B,
pub(crate) extensions: RefCell<Extensions>,
}
impl Response<BoxBody> {
/// Constructs a new response with default body.
#[inline]
pub fn new(status: StatusCode) -> Self {
Response {
head: BoxedResponseHead::new(status),
body: BoxBody::new(()),
extensions: RefCell::new(Extensions::new()),
}
}
/// Constructs a new response builder.
#[inline]
pub fn build(status: StatusCode) -> ResponseBuilder {
ResponseBuilder::new(status)
}
// just a couple frequently used shortcuts
// this list should not grow larger than a few
/// Constructs a new response with status 200 OK.
#[inline]
pub fn ok() -> Self {
Response::new(StatusCode::OK)
}
/// Constructs a new response with status 400 Bad Request.
#[inline]
pub fn bad_request() -> Self {
Response::new(StatusCode::BAD_REQUEST)
}
/// Constructs a new response with status 404 Not Found.
#[inline]
pub fn not_found() -> Self {
Response::new(StatusCode::NOT_FOUND)
}
/// Constructs a new response with status 500 Internal Server Error.
#[inline]
pub fn internal_server_error() -> Self {
Response::new(StatusCode::INTERNAL_SERVER_ERROR)
}
// end shortcuts
}
impl<B> Response<B> {
/// Constructs a new response with given body.
#[inline]
pub fn with_body(status: StatusCode, body: B) -> Response<B> {
Response {
head: BoxedResponseHead::new(status),
body,
extensions: RefCell::new(Extensions::new()),
}
}
/// Returns a reference to the head of this response.
#[inline]
pub fn head(&self) -> &ResponseHead {
&self.head
}
/// Returns a mutable reference to the head of this response.
#[inline]
pub fn head_mut(&mut self) -> &mut ResponseHead {
&mut self.head
}
/// Returns the status code of this response.
#[inline]
pub fn status(&self) -> StatusCode {
self.head.status
}
/// Returns a mutable reference the status code of this response.
#[inline]
pub fn status_mut(&mut self) -> &mut StatusCode {
&mut self.head.status
}
/// Returns a reference to response headers.
#[inline]
pub fn headers(&self) -> &HeaderMap {
&self.head.headers
}
/// Returns a mutable reference to response headers.
#[inline]
pub fn headers_mut(&mut self) -> &mut HeaderMap {
&mut self.head.headers
}
/// Returns true if connection upgrade is enabled.
#[inline]
pub fn upgrade(&self) -> bool {
self.head.upgrade()
}
/// Returns true if keep-alive is enabled.
#[inline]
pub fn keep_alive(&self) -> bool {
self.head.keep_alive()
}
/// Returns a reference to the request-local data/extensions container.
#[inline]
pub fn extensions(&self) -> Ref<'_, Extensions> {
self.extensions.borrow()
}
/// Returns a mutable reference to the request-local data/extensions container.
#[inline]
pub fn extensions_mut(&mut self) -> RefMut<'_, Extensions> {
self.extensions.borrow_mut()
}
/// Returns a reference to the body of this response.
#[inline]
pub fn body(&self) -> &B {
&self.body
}
/// Sets new body.
#[inline]
pub fn set_body<B2>(self, body: B2) -> Response<B2> {
Response {
head: self.head,
body,
extensions: self.extensions,
}
}
/// Drops body and returns new response.
#[inline]
pub fn drop_body(self) -> Response<()> {
self.set_body(())
}
/// Sets new body, returning new response and previous body value.
#[inline]
pub(crate) fn replace_body<B2>(self, body: B2) -> (Response<B2>, B) {
(
Response {
head: self.head,
body,
extensions: self.extensions,
},
self.body,
)
}
/// Returns split head and body.
///
/// # Implementation Notes
/// Due to internal performance optimizations, the first element of the returned tuple is a
/// `Response` as well but only contains the head of the response this was called on.
#[inline]
pub fn into_parts(self) -> (Response<()>, B) {
self.replace_body(())
}
/// Map the current body type to another using a closure, returning a new response.
///
/// Closure receives the response head and the current body type.
#[inline]
pub fn map_body<F, B2>(mut self, f: F) -> Response<B2>
where
F: FnOnce(&mut ResponseHead, B) -> B2,
{
let body = f(&mut self.head, self.body);
Response {
head: self.head,
body,
extensions: self.extensions,
}
}
/// Map the current body to a type-erased `BoxBody`.
#[inline]
pub fn map_into_boxed_body(self) -> Response<BoxBody>
where
B: MessageBody + 'static,
{
self.map_body(|_, body| body.boxed())
}
/// Returns the response body, dropping all other parts.
#[inline]
pub fn into_body(self) -> B {
self.body
}
}
impl<B> fmt::Debug for Response<B>
where
B: MessageBody,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let res = writeln!(
f,
"\nResponse {:?} {}{}",
self.head.version,
self.head.status,
self.head.reason.unwrap_or(""),
);
let _ = writeln!(f, " headers:");
for (key, val) in self.head.headers.iter() {
let _ = writeln!(f, " {:?}: {:?}", key, val);
}
let _ = writeln!(f, " body: {:?}", self.body.size());
res
}
}
impl<B: Default> Default for Response<B> {
#[inline]
fn default() -> Response<B> {
Response::with_body(StatusCode::default(), B::default())
}
}
impl<I: Into<Response<BoxBody>>, E: Into<Error>> From<Result<I, E>> for Response<BoxBody> {
fn from(res: Result<I, E>) -> Self {
match res {
Ok(val) => val.into(),
Err(err) => Response::from(err.into()),
}
}
}
impl From<ResponseBuilder> for Response<EitherBody<()>> {
fn from(mut builder: ResponseBuilder) -> Self {
builder.finish()
}
}
impl From<std::convert::Infallible> for Response<BoxBody> {
fn from(val: std::convert::Infallible) -> Self {
match val {}
}
}
impl From<&'static str> for Response<&'static str> {
fn from(val: &'static str) -> Self {
let mut res = Response::with_body(StatusCode::OK, val);
let mime = mime::TEXT_PLAIN_UTF_8.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
impl From<&'static [u8]> for Response<&'static [u8]> {
fn from(val: &'static [u8]) -> Self {
let mut res = Response::with_body(StatusCode::OK, val);
let mime = mime::APPLICATION_OCTET_STREAM.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
impl From<Vec<u8>> for Response<Vec<u8>> {
fn from(val: Vec<u8>) -> Self {
let mut res = Response::with_body(StatusCode::OK, val);
let mime = mime::APPLICATION_OCTET_STREAM.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
impl From<&Vec<u8>> for Response<Vec<u8>> {
fn from(val: &Vec<u8>) -> Self {
let mut res = Response::with_body(StatusCode::OK, val.clone());
let mime = mime::APPLICATION_OCTET_STREAM.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
impl From<String> for Response<String> {
fn from(val: String) -> Self {
let mut res = Response::with_body(StatusCode::OK, val);
let mime = mime::TEXT_PLAIN_UTF_8.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
impl From<&String> for Response<String> {
fn from(val: &String) -> Self {
let mut res = Response::with_body(StatusCode::OK, val.clone());
let mime = mime::TEXT_PLAIN_UTF_8.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
impl From<Bytes> for Response<Bytes> {
fn from(val: Bytes) -> Self {
let mut res = Response::with_body(StatusCode::OK, val);
let mime = mime::APPLICATION_OCTET_STREAM.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
impl From<BytesMut> for Response<BytesMut> {
fn from(val: BytesMut) -> Self {
let mut res = Response::with_body(StatusCode::OK, val);
let mime = mime::APPLICATION_OCTET_STREAM.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
impl From<ByteString> for Response<ByteString> {
fn from(val: ByteString) -> Self {
let mut res = Response::with_body(StatusCode::OK, val);
let mime = mime::TEXT_PLAIN_UTF_8.try_into_value().unwrap();
res.headers_mut().insert(header::CONTENT_TYPE, mime);
res
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
body::to_bytes,
header::{HeaderValue, CONTENT_TYPE, COOKIE},
};
#[test]
fn test_debug() {
let resp = Response::build(StatusCode::OK)
.append_header((COOKIE, HeaderValue::from_static("cookie1=value1; ")))
.append_header((COOKIE, HeaderValue::from_static("cookie2=value2; ")))
.finish();
let dbg = format!("{:?}", resp);
assert!(dbg.contains("Response"));
}
#[actix_rt::test]
async fn test_into_response() {
let res = Response::from("test");
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(
res.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("text/plain; charset=utf-8")
);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(to_bytes(res.into_body()).await.unwrap(), &b"test"[..]);
let res = Response::from(b"test".as_ref());
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(
res.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("application/octet-stream")
);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(to_bytes(res.into_body()).await.unwrap(), &b"test"[..]);
let res = Response::from("test".to_owned());
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(
res.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("text/plain; charset=utf-8")
);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(to_bytes(res.into_body()).await.unwrap(), &b"test"[..]);
let res = Response::from("test".to_owned());
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(
res.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("text/plain; charset=utf-8")
);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(to_bytes(res.into_body()).await.unwrap(), &b"test"[..]);
let b = Bytes::from_static(b"test");
let res = Response::from(b);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(
res.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("application/octet-stream")
);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(to_bytes(res.into_body()).await.unwrap(), &b"test"[..]);
let b = Bytes::from_static(b"test");
let res = Response::from(b);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(
res.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("application/octet-stream")
);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(to_bytes(res.into_body()).await.unwrap(), &b"test"[..]);
let b = BytesMut::from("test");
let res = Response::from(b);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(
res.headers().get(CONTENT_TYPE).unwrap(),
HeaderValue::from_static("application/octet-stream")
);
assert_eq!(res.status(), StatusCode::OK);
assert_eq!(to_bytes(res.into_body()).await.unwrap(), &b"test"[..]);
}
}
|
use std::{
fmt,
future::Future,
marker::PhantomData,
net,
pin::Pin,
rc::Rc,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite, Framed};
use actix_rt::net::TcpStream;
use actix_service::{
fn_service, IntoServiceFactory, Service, ServiceFactory, ServiceFactoryExt as _,
};
use futures_core::{future::LocalBoxFuture, ready};
use pin_project_lite::pin_project;
use tracing::error;
use crate::{
body::{BoxBody, MessageBody},
builder::HttpServiceBuilder,
error::DispatchError,
h1, ConnectCallback, OnConnectData, Protocol, Request, Response, ServiceConfig,
};
/// A [`ServiceFactory`] for HTTP/1.1 and HTTP/2 connections.
///
/// Use [`build`](Self::build) to begin constructing service. Also see [`HttpServiceBuilder`].
///
/// # Automatic HTTP Version Selection
/// There are two ways to select the HTTP version of an incoming connection:
/// - One is to rely on the ALPN information that is provided when using TLS (HTTPS); both versions
/// are supported automatically when using either of the `.rustls()` or `.openssl()` finalizing
/// methods.
/// - The other is to read the first few bytes of the TCP stream. This is the only viable approach
/// for supporting H2C, which allows the HTTP/2 protocol to work over plaintext connections. Use
/// the `.tcp_auto_h2c()` finalizing method to enable this behavior.
///
/// # Examples
/// ```
/// # use std::convert::Infallible;
/// use actix_http::{HttpService, Request, Response, StatusCode};
///
/// // this service would constructed in an actix_server::Server
///
/// # actix_rt::System::new().block_on(async {
/// HttpService::build()
/// // the builder finalizing method, other finalizers would not return an `HttpService`
/// .finish(|_req: Request| async move {
/// Ok::<_, Infallible>(
/// Response::build(StatusCode::OK).body("Hello!")
/// )
/// })
/// // the service finalizing method method
/// // you can use `.tcp_auto_h2c()`, `.rustls()`, or `.openssl()` instead of `.tcp()`
/// .tcp();
/// # })
/// ```
pub struct HttpService<T, S, B, X = h1::ExpectHandler, U = h1::UpgradeHandler> {
srv: S,
cfg: ServiceConfig,
expect: X,
upgrade: Option<U>,
on_connect_ext: Option<Rc<ConnectCallback<T>>>,
_phantom: PhantomData<B>,
}
impl<T, S, B> HttpService<T, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Constructs builder for `HttpService` instance.
pub fn build() -> HttpServiceBuilder<T, S> {
HttpServiceBuilder::default()
}
}
impl<T, S, B> HttpService<T, S, B>
where
S: ServiceFactory<Request, Config = ()>,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
{
/// Constructs new `HttpService` instance from service with default config.
pub fn new<F: IntoServiceFactory<S, Request>>(service: F) -> Self {
HttpService {
cfg: ServiceConfig::default(),
srv: service.into_factory(),
expect: h1::ExpectHandler,
upgrade: None,
on_connect_ext: None,
_phantom: PhantomData,
}
}
/// Constructs new `HttpService` instance from config and service.
pub(crate) fn with_config<F: IntoServiceFactory<S, Request>>(
cfg: ServiceConfig,
service: F,
) -> Self {
HttpService {
cfg,
srv: service.into_factory(),
expect: h1::ExpectHandler,
upgrade: None,
on_connect_ext: None,
_phantom: PhantomData,
}
}
}
impl<T, S, B, X, U> HttpService<T, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody,
{
/// Sets service for `Expect: 100-Continue` handling.
///
/// An expect service is called with requests that contain an `Expect` header. A successful
/// response type is also a request which will be forwarded to the main service.
pub fn expect<X1>(self, expect: X1) -> HttpService<T, S, B, X1, U>
where
X1: ServiceFactory<Request, Config = (), Response = Request>,
X1::Error: Into<Response<BoxBody>>,
X1::InitError: fmt::Debug,
{
HttpService {
expect,
cfg: self.cfg,
srv: self.srv,
upgrade: self.upgrade,
on_connect_ext: self.on_connect_ext,
_phantom: PhantomData,
}
}
/// Sets service for custom `Connection: Upgrade` handling.
///
/// If service is provided then normal requests handling get halted and this service get called
/// with original request and framed object.
pub fn upgrade<U1>(self, upgrade: Option<U1>) -> HttpService<T, S, B, X, U1>
where
U1: ServiceFactory<(Request, Framed<T, h1::Codec>), Config = (), Response = ()>,
U1::Error: fmt::Display,
U1::InitError: fmt::Debug,
{
HttpService {
upgrade,
cfg: self.cfg,
srv: self.srv,
expect: self.expect,
on_connect_ext: self.on_connect_ext,
_phantom: PhantomData,
}
}
/// Set connect callback with mutable access to request data container.
pub(crate) fn on_connect_ext(mut self, f: Option<Rc<ConnectCallback<T>>>) -> Self {
self.on_connect_ext = f;
self
}
}
impl<S, B, X, U> HttpService<TcpStream, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<(Request, Framed<TcpStream, h1::Codec>), Config = (), Response = ()>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Creates TCP stream service from HTTP service.
///
/// The resulting service only supports HTTP/1.x.
pub fn tcp(
self,
) -> impl ServiceFactory<TcpStream, Config = (), Response = (), Error = DispatchError, InitError = ()>
{
fn_service(|io: TcpStream| async {
let peer_addr = io.peer_addr().ok();
Ok((io, Protocol::Http1, peer_addr))
})
.and_then(self)
}
/// Creates TCP stream service from HTTP service that automatically selects HTTP/1.x or HTTP/2
/// on plaintext connections.
#[cfg(feature = "http2")]
pub fn tcp_auto_h2c(
self,
) -> impl ServiceFactory<TcpStream, Config = (), Response = (), Error = DispatchError, InitError = ()>
{
fn_service(move |io: TcpStream| async move {
// subset of HTTP/2 preface defined by RFC 9113 §3.4
// this subset was chosen to maximize likelihood that peeking only once will allow us to
// reliably determine version or else it should fallback to h1 and fail quickly if data
// on the wire is junk
const H2_PREFACE: &[u8] = b"PRI * HTTP/2";
let mut buf = [0; 12];
io.peek(&mut buf).await?;
let proto = if buf == H2_PREFACE {
Protocol::Http2
} else {
Protocol::Http1
};
let peer_addr = io.peer_addr().ok();
Ok((io, proto, peer_addr))
})
.and_then(self)
}
}
/// Configuration options used when accepting TLS connection.
#[cfg(feature = "__tls")]
#[derive(Debug, Default)]
pub struct TlsAcceptorConfig {
pub(crate) handshake_timeout: Option<std::time::Duration>,
}
#[cfg(feature = "__tls")]
impl TlsAcceptorConfig {
/// Set TLS handshake timeout duration.
pub fn handshake_timeout(self, dur: std::time::Duration) -> Self {
Self {
handshake_timeout: Some(dur),
// ..self
}
}
}
#[cfg(feature = "openssl")]
mod openssl {
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
openssl::{
reexports::{Error as SslError, SslAcceptor},
Acceptor, TlsStream,
},
TlsError,
};
use super::*;
impl<S, B, X, U> HttpService<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, h1::Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create OpenSSL based service.
pub fn openssl(
self,
acceptor: SslAcceptor,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<SslError, DispatchError>,
InitError = (),
> {
self.openssl_with_config(acceptor, TlsAcceptorConfig::default())
}
/// Create OpenSSL based service with custom TLS acceptor configuration.
pub fn openssl_with_config(
self,
acceptor: SslAcceptor,
tls_acceptor_config: TlsAcceptorConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<SslError, DispatchError>,
InitError = (),
> {
let mut acceptor = Acceptor::new(acceptor);
if let Some(handshake_timeout) = tls_acceptor_config.handshake_timeout {
acceptor.set_handshake_timeout(handshake_timeout);
}
acceptor
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.map(|io: TlsStream<TcpStream>| {
let proto = if let Some(protos) = io.ssl().selected_alpn_protocol() {
if protos.windows(2).any(|window| window == b"h2") {
Protocol::Http2
} else {
Protocol::Http1
}
} else {
Protocol::Http1
};
let peer_addr = io.get_ref().peer_addr().ok();
(io, proto, peer_addr)
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_20")]
mod rustls_0_20 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_20::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B, X, U> HttpService<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, h1::Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create Rustls v0.20 based service.
pub fn rustls(
self,
config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
self.rustls_with_config(config, TlsAcceptorConfig::default())
}
/// Create Rustls v0.20 based service with custom TLS acceptor configuration.
pub fn rustls_with_config(
self,
mut config: ServerConfig,
tls_acceptor_config: TlsAcceptorConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
let mut protos = vec![b"h2".to_vec(), b"http/1.1".to_vec()];
protos.extend_from_slice(&config.alpn_protocols);
config.alpn_protocols = protos;
let mut acceptor = Acceptor::new(config);
if let Some(handshake_timeout) = tls_acceptor_config.handshake_timeout {
acceptor.set_handshake_timeout(handshake_timeout);
}
acceptor
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.and_then(|io: TlsStream<TcpStream>| async {
let proto = if let Some(protos) = io.get_ref().1.alpn_protocol() {
if protos.windows(2).any(|window| window == b"h2") {
Protocol::Http2
} else {
Protocol::Http1
}
} else {
Protocol::Http1
};
let peer_addr = io.get_ref().0.peer_addr().ok();
Ok((io, proto, peer_addr))
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_21")]
mod rustls_0_21 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_21::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B, X, U> HttpService<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, h1::Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create Rustls v0.21 based service.
pub fn rustls_021(
self,
config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
self.rustls_021_with_config(config, TlsAcceptorConfig::default())
}
/// Create Rustls v0.21 based service with custom TLS acceptor configuration.
pub fn rustls_021_with_config(
self,
mut config: ServerConfig,
tls_acceptor_config: TlsAcceptorConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
let mut protos = vec![b"h2".to_vec(), b"http/1.1".to_vec()];
protos.extend_from_slice(&config.alpn_protocols);
config.alpn_protocols = protos;
let mut acceptor = Acceptor::new(config);
if let Some(handshake_timeout) = tls_acceptor_config.handshake_timeout {
acceptor.set_handshake_timeout(handshake_timeout);
}
acceptor
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.and_then(|io: TlsStream<TcpStream>| async {
let proto = if let Some(protos) = io.get_ref().1.alpn_protocol() {
if protos.windows(2).any(|window| window == b"h2") {
Protocol::Http2
} else {
Protocol::Http1
}
} else {
Protocol::Http1
};
let peer_addr = io.get_ref().0.peer_addr().ok();
Ok((io, proto, peer_addr))
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_22")]
mod rustls_0_22 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_22::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B, X, U> HttpService<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, h1::Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create Rustls v0.22 based service.
pub fn rustls_0_22(
self,
config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
self.rustls_0_22_with_config(config, TlsAcceptorConfig::default())
}
/// Create Rustls v0.22 based service with custom TLS acceptor configuration.
pub fn rustls_0_22_with_config(
self,
mut config: ServerConfig,
tls_acceptor_config: TlsAcceptorConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
let mut protos = vec![b"h2".to_vec(), b"http/1.1".to_vec()];
protos.extend_from_slice(&config.alpn_protocols);
config.alpn_protocols = protos;
let mut acceptor = Acceptor::new(config);
if let Some(handshake_timeout) = tls_acceptor_config.handshake_timeout {
acceptor.set_handshake_timeout(handshake_timeout);
}
acceptor
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.and_then(|io: TlsStream<TcpStream>| async {
let proto = if let Some(protos) = io.get_ref().1.alpn_protocol() {
if protos.windows(2).any(|window| window == b"h2") {
Protocol::Http2
} else {
Protocol::Http1
}
} else {
Protocol::Http1
};
let peer_addr = io.get_ref().0.peer_addr().ok();
Ok((io, proto, peer_addr))
})
.and_then(self.map_err(TlsError::Service))
}
}
}
#[cfg(feature = "rustls-0_23")]
mod rustls_0_23 {
use std::io;
use actix_service::ServiceFactoryExt as _;
use actix_tls::accept::{
rustls_0_23::{reexports::ServerConfig, Acceptor, TlsStream},
TlsError,
};
use super::*;
impl<S, B, X, U> HttpService<TlsStream<TcpStream>, S, B, X, U>
where
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<
(Request, Framed<TlsStream<TcpStream>, h1::Codec>),
Config = (),
Response = (),
>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
/// Create Rustls v0.23 based service.
pub fn rustls_0_23(
self,
config: ServerConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
self.rustls_0_23_with_config(config, TlsAcceptorConfig::default())
}
/// Create Rustls v0.23 based service with custom TLS acceptor configuration.
pub fn rustls_0_23_with_config(
self,
mut config: ServerConfig,
tls_acceptor_config: TlsAcceptorConfig,
) -> impl ServiceFactory<
TcpStream,
Config = (),
Response = (),
Error = TlsError<io::Error, DispatchError>,
InitError = (),
> {
let mut protos = vec![b"h2".to_vec(), b"http/1.1".to_vec()];
protos.extend_from_slice(&config.alpn_protocols);
config.alpn_protocols = protos;
let mut acceptor = Acceptor::new(config);
if let Some(handshake_timeout) = tls_acceptor_config.handshake_timeout {
acceptor.set_handshake_timeout(handshake_timeout);
}
acceptor
.map_init_err(|_| {
unreachable!("TLS acceptor service factory does not error on init")
})
.map_err(TlsError::into_service_error)
.and_then(|io: TlsStream<TcpStream>| async {
let proto = if let Some(protos) = io.get_ref().1.alpn_protocol() {
if protos.windows(2).any(|window| window == b"h2") {
Protocol::Http2
} else {
Protocol::Http1
}
} else {
Protocol::Http1
};
let peer_addr = io.get_ref().0.peer_addr().ok();
Ok((io, proto, peer_addr))
})
.and_then(self.map_err(TlsError::Service))
}
}
}
impl<T, S, B, X, U> ServiceFactory<(T, Protocol, Option<net::SocketAddr>)>
for HttpService<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin + 'static,
S: ServiceFactory<Request, Config = ()>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>> + 'static,
S::InitError: fmt::Debug,
S::Response: Into<Response<B>> + 'static,
<S::Service as Service<Request>>::Future: 'static,
B: MessageBody + 'static,
X: ServiceFactory<Request, Config = (), Response = Request>,
X::Future: 'static,
X::Error: Into<Response<BoxBody>>,
X::InitError: fmt::Debug,
U: ServiceFactory<(Request, Framed<T, h1::Codec>), Config = (), Response = ()>,
U::Future: 'static,
U::Error: fmt::Display + Into<Response<BoxBody>>,
U::InitError: fmt::Debug,
{
type Response = ();
type Error = DispatchError;
type Config = ();
type Service = HttpServiceHandler<T, S::Service, B, X::Service, U::Service>;
type InitError = ();
type Future = LocalBoxFuture<'static, Result<Self::Service, Self::InitError>>;
fn new_service(&self, _: ()) -> Self::Future {
let service = self.srv.new_service(());
let expect = self.expect.new_service(());
let upgrade = self.upgrade.as_ref().map(|s| s.new_service(()));
let on_connect_ext = self.on_connect_ext.clone();
let cfg = self.cfg.clone();
Box::pin(async move {
let expect = expect.await.map_err(|err| {
tracing::error!("Initialization of HTTP expect service error: {err:?}");
})?;
let upgrade = match upgrade {
Some(upgrade) => {
let upgrade = upgrade.await.map_err(|err| {
tracing::error!("Initialization of HTTP upgrade service error: {err:?}");
})?;
Some(upgrade)
}
None => None,
};
let service = service.await.map_err(|err| {
tracing::error!("Initialization of HTTP service error: {err:?}");
})?;
Ok(HttpServiceHandler::new(
cfg,
service,
expect,
upgrade,
on_connect_ext,
))
})
}
}
/// `Service` implementation for HTTP/1 and HTTP/2 transport
pub struct HttpServiceHandler<T, S, B, X, U>
where
S: Service<Request>,
X: Service<Request>,
U: Service<(Request, Framed<T, h1::Codec>)>,
{
pub(super) flow: Rc<HttpFlow<S, X, U>>,
pub(super) cfg: ServiceConfig,
pub(super) on_connect_ext: Option<Rc<ConnectCallback<T>>>,
_phantom: PhantomData<B>,
}
impl<T, S, B, X, U> HttpServiceHandler<T, S, B, X, U>
where
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
X: Service<Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, h1::Codec>)>,
U::Error: Into<Response<BoxBody>>,
{
pub(super) fn new(
cfg: ServiceConfig,
service: S,
expect: X,
upgrade: Option<U>,
on_connect_ext: Option<Rc<ConnectCallback<T>>>,
) -> HttpServiceHandler<T, S, B, X, U> {
HttpServiceHandler {
cfg,
on_connect_ext,
flow: HttpFlow::new(service, expect, upgrade),
_phantom: PhantomData,
}
}
pub(super) fn _poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Response<BoxBody>>> {
ready!(self.flow.expect.poll_ready(cx).map_err(Into::into))?;
ready!(self.flow.service.poll_ready(cx).map_err(Into::into))?;
if let Some(ref upg) = self.flow.upgrade {
ready!(upg.poll_ready(cx).map_err(Into::into))?;
};
Poll::Ready(Ok(()))
}
}
/// A collection of services that describe an HTTP request flow.
pub(super) struct HttpFlow<S, X, U> {
pub(super) service: S,
pub(super) expect: X,
pub(super) upgrade: Option<U>,
}
impl<S, X, U> HttpFlow<S, X, U> {
pub(super) fn new(service: S, expect: X, upgrade: Option<U>) -> Rc<Self> {
Rc::new(Self {
service,
expect,
upgrade,
})
}
}
impl<T, S, B, X, U> Service<(T, Protocol, Option<net::SocketAddr>)>
for HttpServiceHandler<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>> + 'static,
S::Future: 'static,
S::Response: Into<Response<B>> + 'static,
B: MessageBody + 'static,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, h1::Codec>), Response = ()>,
U::Error: fmt::Display + Into<Response<BoxBody>>,
{
type Response = ();
type Error = DispatchError;
type Future = HttpServiceHandlerResponse<T, S, B, X, U>;
fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self._poll_ready(cx).map_err(|err| {
error!("HTTP service readiness error: {:?}", err);
DispatchError::Service(err)
})
}
fn call(&self, (io, proto, peer_addr): (T, Protocol, Option<net::SocketAddr>)) -> Self::Future {
let conn_data = OnConnectData::from_io(&io, self.on_connect_ext.as_deref());
match proto {
#[cfg(feature = "http2")]
Protocol::Http2 => HttpServiceHandlerResponse {
state: State::H2Handshake {
handshake: Some((
crate::h2::handshake_with_timeout(io, &self.cfg),
self.cfg.clone(),
Rc::clone(&self.flow),
conn_data,
peer_addr,
)),
},
},
#[cfg(not(feature = "http2"))]
Protocol::Http2 => {
panic!("HTTP/2 support is disabled (enable with the `http2` feature flag)")
}
Protocol::Http1 => HttpServiceHandlerResponse {
state: State::H1 {
dispatcher: h1::Dispatcher::new(
io,
Rc::clone(&self.flow),
self.cfg.clone(),
peer_addr,
conn_data,
),
},
},
proto => unimplemented!("Unsupported HTTP version: {:?}.", proto),
}
}
}
#[cfg(not(feature = "http2"))]
pin_project! {
#[project = StateProj]
enum State<T, S, B, X, U>
where
T: AsyncRead,
T: AsyncWrite,
T: Unpin,
S: Service<Request>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, h1::Codec>), Response = ()>,
U::Error: fmt::Display,
{
H1 { #[pin] dispatcher: h1::Dispatcher<T, S, B, X, U> },
}
}
#[cfg(feature = "http2")]
pin_project! {
#[project = StateProj]
enum State<T, S, B, X, U>
where
T: AsyncRead,
T: AsyncWrite,
T: Unpin,
S: Service<Request>,
S::Future: 'static,
S::Error: Into<Response<BoxBody>>,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, h1::Codec>), Response = ()>,
U::Error: fmt::Display,
{
H1 { #[pin] dispatcher: h1::Dispatcher<T, S, B, X, U> },
H2 { #[pin] dispatcher: crate::h2::Dispatcher<T, S, B, X, U> },
H2Handshake {
handshake: Option<(
crate::h2::HandshakeWithTimeout<T>,
ServiceConfig,
Rc<HttpFlow<S, X, U>>,
OnConnectData,
Option<net::SocketAddr>,
)>,
},
}
}
pin_project! {
pub struct HttpServiceHandlerResponse<T, S, B, X, U>
where
T: AsyncRead,
T: AsyncWrite,
T: Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>>,
S::Error: 'static,
S::Future: 'static,
S::Response: Into<Response<B>>,
S::Response: 'static,
B: MessageBody,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, h1::Codec>), Response = ()>,
U::Error: fmt::Display,
{
#[pin]
state: State<T, S, B, X, U>,
}
}
impl<T, S, B, X, U> Future for HttpServiceHandlerResponse<T, S, B, X, U>
where
T: AsyncRead + AsyncWrite + Unpin,
S: Service<Request>,
S::Error: Into<Response<BoxBody>> + 'static,
S::Future: 'static,
S::Response: Into<Response<B>> + 'static,
B: MessageBody + 'static,
X: Service<Request, Response = Request>,
X::Error: Into<Response<BoxBody>>,
U: Service<(Request, Framed<T, h1::Codec>), Response = ()>,
U::Error: fmt::Display,
{
type Output = Result<(), DispatchError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.as_mut().project().state.project() {
StateProj::H1 { dispatcher } => dispatcher.poll(cx),
#[cfg(feature = "http2")]
StateProj::H2 { dispatcher } => dispatcher.poll(cx),
#[cfg(feature = "http2")]
StateProj::H2Handshake { handshake: data } => {
match ready!(Pin::new(&mut data.as_mut().unwrap().0).poll(cx)) {
Ok((conn, timer)) => {
let (_, config, flow, conn_data, peer_addr) = data.take().unwrap();
self.as_mut().project().state.set(State::H2 {
dispatcher: crate::h2::Dispatcher::new(
conn, flow, config, peer_addr, conn_data, timer,
),
});
self.poll(cx)
}
Err(err) => {
tracing::trace!("H2 handshake error: {}", err);
Poll::Ready(Err(err))
}
}
}
}
}
}
|
//! Various testing helpers for use in internal and app tests.
use std::{
cell::{Ref, RefCell, RefMut},
io::{self, Read, Write},
pin::Pin,
rc::Rc,
str::FromStr,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite, ReadBuf};
use bytes::{Bytes, BytesMut};
use http::{Method, Uri, Version};
use crate::{
header::{HeaderMap, TryIntoHeaderPair},
payload::Payload,
Request,
};
/// Test `Request` builder.
pub struct TestRequest(Option<Inner>);
struct Inner {
version: Version,
method: Method,
uri: Uri,
headers: HeaderMap,
payload: Option<Payload>,
}
impl Default for TestRequest {
fn default() -> TestRequest {
TestRequest(Some(Inner {
method: Method::GET,
uri: Uri::from_str("/").unwrap(),
version: Version::HTTP_11,
headers: HeaderMap::new(),
payload: None,
}))
}
}
impl TestRequest {
/// Create a default TestRequest and then set its URI.
pub fn with_uri(path: &str) -> TestRequest {
TestRequest::default().uri(path).take()
}
/// Set HTTP version of this request.
pub fn version(&mut self, ver: Version) -> &mut Self {
parts(&mut self.0).version = ver;
self
}
/// Set HTTP method of this request.
pub fn method(&mut self, meth: Method) -> &mut Self {
parts(&mut self.0).method = meth;
self
}
/// Set URI of this request.
///
/// # Panics
/// If provided URI is invalid.
pub fn uri(&mut self, path: &str) -> &mut Self {
parts(&mut self.0).uri = Uri::from_str(path).unwrap();
self
}
/// Insert a header, replacing any that were set with an equivalent field name.
pub fn insert_header(&mut self, header: impl TryIntoHeaderPair) -> &mut Self {
match header.try_into_pair() {
Ok((key, value)) => {
parts(&mut self.0).headers.insert(key, value);
}
Err(err) => {
panic!("Error inserting test header: {}.", err.into());
}
}
self
}
/// Append a header, keeping any that were set with an equivalent field name.
pub fn append_header(&mut self, header: impl TryIntoHeaderPair) -> &mut Self {
match header.try_into_pair() {
Ok((key, value)) => {
parts(&mut self.0).headers.append(key, value);
}
Err(err) => {
panic!("Error inserting test header: {}.", err.into());
}
}
self
}
/// Set request payload.
pub fn set_payload(&mut self, data: impl Into<Bytes>) -> &mut Self {
let mut payload = crate::h1::Payload::empty();
payload.unread_data(data.into());
parts(&mut self.0).payload = Some(payload.into());
self
}
pub fn take(&mut self) -> TestRequest {
TestRequest(self.0.take())
}
/// Complete request creation and generate `Request` instance.
pub fn finish(&mut self) -> Request {
let inner = self.0.take().expect("cannot reuse test request builder");
let mut req = if let Some(pl) = inner.payload {
Request::with_payload(pl)
} else {
Request::with_payload(crate::h1::Payload::empty().into())
};
let head = req.head_mut();
head.uri = inner.uri;
head.method = inner.method;
head.version = inner.version;
head.headers = inner.headers;
req
}
}
#[inline]
fn parts(parts: &mut Option<Inner>) -> &mut Inner {
parts.as_mut().expect("cannot reuse test request builder")
}
/// Async I/O test buffer.
#[derive(Debug)]
pub struct TestBuffer {
pub read_buf: Rc<RefCell<BytesMut>>,
pub write_buf: Rc<RefCell<BytesMut>>,
pub err: Option<Rc<io::Error>>,
}
impl TestBuffer {
/// Create new `TestBuffer` instance with initial read buffer.
pub fn new<T>(data: T) -> Self
where
T: Into<BytesMut>,
{
Self {
read_buf: Rc::new(RefCell::new(data.into())),
write_buf: Rc::new(RefCell::new(BytesMut::new())),
err: None,
}
}
// intentionally not using Clone trait
#[allow(dead_code)]
pub(crate) fn clone(&self) -> Self {
Self {
read_buf: Rc::clone(&self.read_buf),
write_buf: Rc::clone(&self.write_buf),
err: self.err.clone(),
}
}
/// Create new empty `TestBuffer` instance.
pub fn empty() -> Self {
Self::new("")
}
#[allow(dead_code)]
pub(crate) fn read_buf_slice(&self) -> Ref<'_, [u8]> {
Ref::map(self.read_buf.borrow(), |b| b.as_ref())
}
#[allow(dead_code)]
pub(crate) fn read_buf_slice_mut(&self) -> RefMut<'_, [u8]> {
RefMut::map(self.read_buf.borrow_mut(), |b| b.as_mut())
}
#[allow(dead_code)]
pub(crate) fn write_buf_slice(&self) -> Ref<'_, [u8]> {
Ref::map(self.write_buf.borrow(), |b| b.as_ref())
}
#[allow(dead_code)]
pub(crate) fn write_buf_slice_mut(&self) -> RefMut<'_, [u8]> {
RefMut::map(self.write_buf.borrow_mut(), |b| b.as_mut())
}
#[allow(dead_code)]
pub(crate) fn take_write_buf(&self) -> Bytes {
self.write_buf.borrow_mut().split().freeze()
}
/// Add data to read buffer.
pub fn extend_read_buf<T: AsRef<[u8]>>(&mut self, data: T) {
self.read_buf.borrow_mut().extend_from_slice(data.as_ref())
}
}
impl io::Read for TestBuffer {
fn read(&mut self, dst: &mut [u8]) -> Result<usize, io::Error> {
if self.read_buf.borrow().is_empty() {
if self.err.is_some() {
Err(Rc::try_unwrap(self.err.take().unwrap()).unwrap())
} else {
Err(io::Error::new(io::ErrorKind::WouldBlock, ""))
}
} else {
let size = std::cmp::min(self.read_buf.borrow().len(), dst.len());
let b = self.read_buf.borrow_mut().split_to(size);
dst[..size].copy_from_slice(&b);
Ok(size)
}
}
}
impl io::Write for TestBuffer {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.write_buf.borrow_mut().extend(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl AsyncRead for TestBuffer {
fn poll_read(
self: Pin<&mut Self>,
_: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
let dst = buf.initialize_unfilled();
let res = self.get_mut().read(dst).map(|n| buf.advance(n));
Poll::Ready(res)
}
}
impl AsyncWrite for TestBuffer {
fn poll_write(
self: Pin<&mut Self>,
_: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
Poll::Ready(self.get_mut().write(buf))
}
fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
}
/// Async I/O test buffer with ability to incrementally add to the read buffer.
#[derive(Clone)]
pub struct TestSeqBuffer(Rc<RefCell<TestSeqInner>>);
impl TestSeqBuffer {
/// Create new `TestBuffer` instance with initial read buffer.
pub fn new<T>(data: T) -> Self
where
T: Into<BytesMut>,
{
Self(Rc::new(RefCell::new(TestSeqInner {
read_buf: data.into(),
write_buf: BytesMut::new(),
err: None,
})))
}
/// Create new empty `TestBuffer` instance.
pub fn empty() -> Self {
Self::new(BytesMut::new())
}
pub fn read_buf(&self) -> Ref<'_, BytesMut> {
Ref::map(self.0.borrow(), |inner| &inner.read_buf)
}
pub fn write_buf(&self) -> Ref<'_, BytesMut> {
Ref::map(self.0.borrow(), |inner| &inner.write_buf)
}
pub fn err(&self) -> Ref<'_, Option<io::Error>> {
Ref::map(self.0.borrow(), |inner| &inner.err)
}
/// Add data to read buffer.
pub fn extend_read_buf<T: AsRef<[u8]>>(&mut self, data: T) {
self.0
.borrow_mut()
.read_buf
.extend_from_slice(data.as_ref())
}
}
pub struct TestSeqInner {
read_buf: BytesMut,
write_buf: BytesMut,
err: Option<io::Error>,
}
impl io::Read for TestSeqBuffer {
fn read(&mut self, dst: &mut [u8]) -> Result<usize, io::Error> {
if self.0.borrow().read_buf.is_empty() {
if self.0.borrow().err.is_some() {
Err(self.0.borrow_mut().err.take().unwrap())
} else {
Err(io::Error::new(io::ErrorKind::WouldBlock, ""))
}
} else {
let size = std::cmp::min(self.0.borrow().read_buf.len(), dst.len());
let b = self.0.borrow_mut().read_buf.split_to(size);
dst[..size].copy_from_slice(&b);
Ok(size)
}
}
}
impl io::Write for TestSeqBuffer {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.0.borrow_mut().write_buf.extend(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl AsyncRead for TestSeqBuffer {
fn poll_read(
self: Pin<&mut Self>,
_: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
let dst = buf.initialize_unfilled();
let r = self.get_mut().read(dst);
match r {
Ok(n) => {
buf.advance(n);
Poll::Ready(Ok(()))
}
Err(err) if err.kind() == io::ErrorKind::WouldBlock => Poll::Pending,
Err(err) => Poll::Ready(Err(err)),
}
}
}
impl AsyncWrite for TestSeqBuffer {
fn poll_write(
self: Pin<&mut Self>,
_: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
Poll::Ready(self.get_mut().write(buf))
}
fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
}
|
use bitflags::bitflags;
use bytes::{Bytes, BytesMut};
use bytestring::ByteString;
use tokio_util::codec::{Decoder, Encoder};
use tracing::error;
use super::{
frame::Parser,
proto::{CloseReason, OpCode},
ProtocolError,
};
/// A WebSocket message.
#[derive(Debug, PartialEq, Eq)]
pub enum Message {
/// Text message.
Text(ByteString),
/// Binary message.
Binary(Bytes),
/// Continuation.
Continuation(Item),
/// Ping message.
Ping(Bytes),
/// Pong message.
Pong(Bytes),
/// Close message with optional reason.
Close(Option<CloseReason>),
/// No-op. Useful for low-level services.
Nop,
}
/// A WebSocket frame.
#[derive(Debug, PartialEq, Eq)]
pub enum Frame {
/// Text frame. Note that the codec does not validate UTF-8 encoding.
Text(Bytes),
/// Binary frame.
Binary(Bytes),
/// Continuation.
Continuation(Item),
/// Ping message.
Ping(Bytes),
/// Pong message.
Pong(Bytes),
/// Close message with optional reason.
Close(Option<CloseReason>),
}
/// A WebSocket continuation item.
#[derive(Debug, PartialEq, Eq)]
pub enum Item {
FirstText(Bytes),
FirstBinary(Bytes),
Continue(Bytes),
Last(Bytes),
}
/// WebSocket protocol codec.
#[derive(Debug, Clone)]
pub struct Codec {
flags: Flags,
max_size: usize,
}
bitflags! {
#[derive(Debug, Clone, Copy)]
struct Flags: u8 {
const SERVER = 0b0000_0001;
const CONTINUATION = 0b0000_0010;
const W_CONTINUATION = 0b0000_0100;
}
}
impl Codec {
/// Create new WebSocket frames decoder.
pub const fn new() -> Codec {
Codec {
max_size: 65_536,
flags: Flags::SERVER,
}
}
/// Set max frame size.
///
/// By default max size is set to 64KiB.
#[must_use = "This returns the a new Codec, without modifying the original."]
pub fn max_size(mut self, size: usize) -> Self {
self.max_size = size;
self
}
/// Set decoder to client mode.
///
/// By default decoder works in server mode.
#[must_use = "This returns the a new Codec, without modifying the original."]
pub fn client_mode(mut self) -> Self {
self.flags.remove(Flags::SERVER);
self
}
}
impl Default for Codec {
fn default() -> Self {
Self::new()
}
}
impl Encoder<Message> for Codec {
type Error = ProtocolError;
fn encode(&mut self, item: Message, dst: &mut BytesMut) -> Result<(), Self::Error> {
match item {
Message::Text(txt) => Parser::write_message(
dst,
txt,
OpCode::Text,
true,
!self.flags.contains(Flags::SERVER),
),
Message::Binary(bin) => Parser::write_message(
dst,
bin,
OpCode::Binary,
true,
!self.flags.contains(Flags::SERVER),
),
Message::Ping(txt) => Parser::write_message(
dst,
txt,
OpCode::Ping,
true,
!self.flags.contains(Flags::SERVER),
),
Message::Pong(txt) => Parser::write_message(
dst,
txt,
OpCode::Pong,
true,
!self.flags.contains(Flags::SERVER),
),
Message::Close(reason) => {
Parser::write_close(dst, reason, !self.flags.contains(Flags::SERVER))
}
Message::Continuation(cont) => match cont {
Item::FirstText(data) => {
if self.flags.contains(Flags::W_CONTINUATION) {
return Err(ProtocolError::ContinuationStarted);
} else {
self.flags.insert(Flags::W_CONTINUATION);
Parser::write_message(
dst,
&data[..],
OpCode::Text,
false,
!self.flags.contains(Flags::SERVER),
)
}
}
Item::FirstBinary(data) => {
if self.flags.contains(Flags::W_CONTINUATION) {
return Err(ProtocolError::ContinuationStarted);
} else {
self.flags.insert(Flags::W_CONTINUATION);
Parser::write_message(
dst,
&data[..],
OpCode::Binary,
false,
!self.flags.contains(Flags::SERVER),
)
}
}
Item::Continue(data) => {
if self.flags.contains(Flags::W_CONTINUATION) {
Parser::write_message(
dst,
&data[..],
OpCode::Continue,
false,
!self.flags.contains(Flags::SERVER),
)
} else {
return Err(ProtocolError::ContinuationNotStarted);
}
}
Item::Last(data) => {
if self.flags.contains(Flags::W_CONTINUATION) {
self.flags.remove(Flags::W_CONTINUATION);
Parser::write_message(
dst,
&data[..],
OpCode::Continue,
true,
!self.flags.contains(Flags::SERVER),
)
} else {
return Err(ProtocolError::ContinuationNotStarted);
}
}
},
Message::Nop => {}
}
Ok(())
}
}
impl Decoder for Codec {
type Item = Frame;
type Error = ProtocolError;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
match Parser::parse(src, self.flags.contains(Flags::SERVER), self.max_size) {
Ok(Some((finished, opcode, payload))) => {
// continuation is not supported
if !finished {
return match opcode {
OpCode::Continue => {
if self.flags.contains(Flags::CONTINUATION) {
Ok(Some(Frame::Continuation(Item::Continue(
payload.map(|pl| pl.freeze()).unwrap_or_else(Bytes::new),
))))
} else {
Err(ProtocolError::ContinuationNotStarted)
}
}
OpCode::Binary => {
if !self.flags.contains(Flags::CONTINUATION) {
self.flags.insert(Flags::CONTINUATION);
Ok(Some(Frame::Continuation(Item::FirstBinary(
payload.map(|pl| pl.freeze()).unwrap_or_else(Bytes::new),
))))
} else {
Err(ProtocolError::ContinuationStarted)
}
}
OpCode::Text => {
if !self.flags.contains(Flags::CONTINUATION) {
self.flags.insert(Flags::CONTINUATION);
Ok(Some(Frame::Continuation(Item::FirstText(
payload.map(|pl| pl.freeze()).unwrap_or_else(Bytes::new),
))))
} else {
Err(ProtocolError::ContinuationStarted)
}
}
_ => {
error!("Unfinished fragment {:?}", opcode);
Err(ProtocolError::ContinuationFragment(opcode))
}
};
}
match opcode {
OpCode::Continue => {
if self.flags.contains(Flags::CONTINUATION) {
self.flags.remove(Flags::CONTINUATION);
Ok(Some(Frame::Continuation(Item::Last(
payload.map(|pl| pl.freeze()).unwrap_or_else(Bytes::new),
))))
} else {
Err(ProtocolError::ContinuationNotStarted)
}
}
OpCode::Bad => Err(ProtocolError::BadOpCode),
OpCode::Close => {
if let Some(ref pl) = payload {
let close_reason = Parser::parse_close_payload(pl);
Ok(Some(Frame::Close(close_reason)))
} else {
Ok(Some(Frame::Close(None)))
}
}
OpCode::Ping => Ok(Some(Frame::Ping(
payload.map(|pl| pl.freeze()).unwrap_or_else(Bytes::new),
))),
OpCode::Pong => Ok(Some(Frame::Pong(
payload.map(|pl| pl.freeze()).unwrap_or_else(Bytes::new),
))),
OpCode::Binary => Ok(Some(Frame::Binary(
payload.map(|pl| pl.freeze()).unwrap_or_else(Bytes::new),
))),
OpCode::Text => Ok(Some(Frame::Text(
payload.map(|pl| pl.freeze()).unwrap_or_else(Bytes::new),
))),
}
}
Ok(None) => Ok(None),
Err(err) => Err(err),
}
}
}
|
use std::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite, Framed};
use actix_service::{IntoService, Service};
use pin_project_lite::pin_project;
use super::{Codec, Frame, Message};
pin_project! {
pub struct Dispatcher<S, T>
where
S: Service<Frame, Response = Message>,
S: 'static,
T: AsyncRead,
T: AsyncWrite,
{
#[pin]
inner: inner::Dispatcher<S, T, Codec, Message>,
}
}
impl<S, T> Dispatcher<S, T>
where
T: AsyncRead + AsyncWrite,
S: Service<Frame, Response = Message>,
S::Future: 'static,
S::Error: 'static,
{
pub fn new<F: IntoService<S, Frame>>(io: T, service: F) -> Self {
Dispatcher {
inner: inner::Dispatcher::new(Framed::new(io, Codec::new()), service),
}
}
pub fn with<F: IntoService<S, Frame>>(framed: Framed<T, Codec>, service: F) -> Self {
Dispatcher {
inner: inner::Dispatcher::new(framed, service),
}
}
}
impl<S, T> Future for Dispatcher<S, T>
where
T: AsyncRead + AsyncWrite,
S: Service<Frame, Response = Message>,
S::Future: 'static,
S::Error: 'static,
{
type Output = Result<(), inner::DispatcherError<S::Error, Codec, Message>>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.project().inner.poll(cx)
}
}
/// Framed dispatcher service and related utilities.
mod inner {
// allow dead code since this mod was ripped from actix-utils
#![allow(dead_code)]
use core::{
fmt,
future::Future,
mem,
pin::Pin,
task::{Context, Poll},
};
use actix_codec::Framed;
use actix_service::{IntoService, Service};
use futures_core::stream::Stream;
use local_channel::mpsc;
use pin_project_lite::pin_project;
use tokio::io::{AsyncRead, AsyncWrite};
use tokio_util::codec::{Decoder, Encoder};
use tracing::debug;
use crate::{body::BoxBody, Response};
/// Framed transport errors
pub enum DispatcherError<E, U, I>
where
U: Encoder<I> + Decoder,
{
/// Inner service error.
Service(E),
/// Frame encoding error.
Encoder(<U as Encoder<I>>::Error),
/// Frame decoding error.
Decoder(<U as Decoder>::Error),
}
impl<E, U, I> From<E> for DispatcherError<E, U, I>
where
U: Encoder<I> + Decoder,
{
fn from(err: E) -> Self {
DispatcherError::Service(err)
}
}
impl<E, U, I> fmt::Debug for DispatcherError<E, U, I>
where
E: fmt::Debug,
U: Encoder<I> + Decoder,
<U as Encoder<I>>::Error: fmt::Debug,
<U as Decoder>::Error: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
DispatcherError::Service(ref err) => {
write!(fmt, "DispatcherError::Service({err:?})")
}
DispatcherError::Encoder(ref err) => {
write!(fmt, "DispatcherError::Encoder({err:?})")
}
DispatcherError::Decoder(ref err) => {
write!(fmt, "DispatcherError::Decoder({err:?})")
}
}
}
}
impl<E, U, I> fmt::Display for DispatcherError<E, U, I>
where
E: fmt::Display,
U: Encoder<I> + Decoder,
<U as Encoder<I>>::Error: fmt::Debug,
<U as Decoder>::Error: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
DispatcherError::Service(ref err) => write!(fmt, "{err}"),
DispatcherError::Encoder(ref err) => write!(fmt, "{err:?}"),
DispatcherError::Decoder(ref err) => write!(fmt, "{err:?}"),
}
}
}
impl<E, U, I> From<DispatcherError<E, U, I>> for Response<BoxBody>
where
E: fmt::Debug + fmt::Display,
U: Encoder<I> + Decoder,
<U as Encoder<I>>::Error: fmt::Debug,
<U as Decoder>::Error: fmt::Debug,
{
fn from(err: DispatcherError<E, U, I>) -> Self {
Response::internal_server_error().set_body(BoxBody::new(err.to_string()))
}
}
/// Message type wrapper for signalling end of message stream.
pub enum Message<T> {
/// Message item.
Item(T),
/// Signal from service to flush all messages and stop processing.
Close,
}
pin_project! {
/// A future that reads frames from a [`Framed`] object and passes them to a [`Service`].
pub struct Dispatcher<S, T, U, I>
where
S: Service<<U as Decoder>::Item, Response = I>,
S::Error: 'static,
S::Future: 'static,
T: AsyncRead,
T: AsyncWrite,
U: Encoder<I>,
U: Decoder,
I: 'static,
<U as Encoder<I>>::Error: fmt::Debug,
{
service: S,
state: State<S, U, I>,
#[pin]
framed: Framed<T, U>,
rx: mpsc::Receiver<Result<Message<I>, S::Error>>,
tx: mpsc::Sender<Result<Message<I>, S::Error>>,
}
}
enum State<S, U, I>
where
S: Service<<U as Decoder>::Item>,
U: Encoder<I> + Decoder,
{
Processing,
Error(DispatcherError<S::Error, U, I>),
FramedError(DispatcherError<S::Error, U, I>),
FlushAndStop,
Stopping,
}
impl<S, U, I> State<S, U, I>
where
S: Service<<U as Decoder>::Item>,
U: Encoder<I> + Decoder,
{
fn take_error(&mut self) -> DispatcherError<S::Error, U, I> {
match mem::replace(self, State::Processing) {
State::Error(err) => err,
_ => panic!(),
}
}
fn take_framed_error(&mut self) -> DispatcherError<S::Error, U, I> {
match mem::replace(self, State::Processing) {
State::FramedError(err) => err,
_ => panic!(),
}
}
}
impl<S, T, U, I> Dispatcher<S, T, U, I>
where
S: Service<<U as Decoder>::Item, Response = I>,
S::Error: 'static,
S::Future: 'static,
T: AsyncRead + AsyncWrite,
U: Decoder + Encoder<I>,
I: 'static,
<U as Decoder>::Error: fmt::Debug,
<U as Encoder<I>>::Error: fmt::Debug,
{
/// Create new `Dispatcher`.
pub fn new<F>(framed: Framed<T, U>, service: F) -> Self
where
F: IntoService<S, <U as Decoder>::Item>,
{
let (tx, rx) = mpsc::channel();
Dispatcher {
framed,
rx,
tx,
service: service.into_service(),
state: State::Processing,
}
}
/// Construct new `Dispatcher` instance with customer `mpsc::Receiver`
pub fn with_rx<F>(
framed: Framed<T, U>,
service: F,
rx: mpsc::Receiver<Result<Message<I>, S::Error>>,
) -> Self
where
F: IntoService<S, <U as Decoder>::Item>,
{
let tx = rx.sender();
Dispatcher {
framed,
rx,
tx,
service: service.into_service(),
state: State::Processing,
}
}
/// Get sender handle.
pub fn tx(&self) -> mpsc::Sender<Result<Message<I>, S::Error>> {
self.tx.clone()
}
/// Get reference to a service wrapped by `Dispatcher` instance.
pub fn service(&self) -> &S {
&self.service
}
/// Get mutable reference to a service wrapped by `Dispatcher` instance.
pub fn service_mut(&mut self) -> &mut S {
&mut self.service
}
/// Get reference to a framed instance wrapped by `Dispatcher` instance.
pub fn framed(&self) -> &Framed<T, U> {
&self.framed
}
/// Get mutable reference to a framed instance wrapped by `Dispatcher` instance.
pub fn framed_mut(&mut self) -> &mut Framed<T, U> {
&mut self.framed
}
/// Read from framed object.
fn poll_read(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> bool
where
S: Service<<U as Decoder>::Item, Response = I>,
S::Error: 'static,
S::Future: 'static,
T: AsyncRead + AsyncWrite,
U: Decoder + Encoder<I>,
I: 'static,
<U as Encoder<I>>::Error: fmt::Debug,
{
loop {
let this = self.as_mut().project();
match this.service.poll_ready(cx) {
Poll::Ready(Ok(_)) => {
let item = match this.framed.next_item(cx) {
Poll::Ready(Some(Ok(el))) => el,
Poll::Ready(Some(Err(err))) => {
*this.state = State::FramedError(DispatcherError::Decoder(err));
return true;
}
Poll::Pending => return false,
Poll::Ready(None) => {
*this.state = State::Stopping;
return true;
}
};
let tx = this.tx.clone();
let fut = this.service.call(item);
actix_rt::spawn(async move {
let item = fut.await;
let _ = tx.send(item.map(Message::Item));
});
}
Poll::Pending => return false,
Poll::Ready(Err(err)) => {
*this.state = State::Error(DispatcherError::Service(err));
return true;
}
}
}
}
/// Write to framed object.
fn poll_write(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> bool
where
S: Service<<U as Decoder>::Item, Response = I>,
S::Error: 'static,
S::Future: 'static,
T: AsyncRead + AsyncWrite,
U: Decoder + Encoder<I>,
I: 'static,
<U as Encoder<I>>::Error: fmt::Debug,
{
loop {
let mut this = self.as_mut().project();
while !this.framed.is_write_buf_full() {
match Pin::new(&mut this.rx).poll_next(cx) {
Poll::Ready(Some(Ok(Message::Item(msg)))) => {
if let Err(err) = this.framed.as_mut().write(msg) {
*this.state = State::FramedError(DispatcherError::Encoder(err));
return true;
}
}
Poll::Ready(Some(Ok(Message::Close))) => {
*this.state = State::FlushAndStop;
return true;
}
Poll::Ready(Some(Err(err))) => {
*this.state = State::Error(DispatcherError::Service(err));
return true;
}
Poll::Ready(None) | Poll::Pending => break,
}
}
if !this.framed.is_write_buf_empty() {
match this.framed.flush(cx) {
Poll::Pending => break,
Poll::Ready(Ok(_)) => {}
Poll::Ready(Err(err)) => {
debug!("Error sending data: {:?}", err);
*this.state = State::FramedError(DispatcherError::Encoder(err));
return true;
}
}
} else {
break;
}
}
false
}
}
impl<S, T, U, I> Future for Dispatcher<S, T, U, I>
where
S: Service<<U as Decoder>::Item, Response = I>,
S::Error: 'static,
S::Future: 'static,
T: AsyncRead + AsyncWrite,
U: Decoder + Encoder<I>,
I: 'static,
<U as Encoder<I>>::Error: fmt::Debug,
<U as Decoder>::Error: fmt::Debug,
{
type Output = Result<(), DispatcherError<S::Error, U, I>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
loop {
let this = self.as_mut().project();
return match this.state {
State::Processing => {
if self.as_mut().poll_read(cx) || self.as_mut().poll_write(cx) {
continue;
} else {
Poll::Pending
}
}
State::Error(_) => {
// flush write buffer
if !this.framed.is_write_buf_empty() && this.framed.flush(cx).is_pending() {
return Poll::Pending;
}
Poll::Ready(Err(this.state.take_error()))
}
State::FlushAndStop => {
if !this.framed.is_write_buf_empty() {
this.framed.flush(cx).map(|res| {
if let Err(err) = res {
debug!("Error sending data: {:?}", err);
}
Ok(())
})
} else {
Poll::Ready(Ok(()))
}
}
State::FramedError(_) => Poll::Ready(Err(this.state.take_framed_error())),
State::Stopping => Poll::Ready(Ok(())),
};
}
}
}
}
|
use std::cmp::min;
use bytes::{Buf, BufMut, BytesMut};
use tracing::debug;
use super::{
mask::apply_mask,
proto::{CloseCode, CloseReason, OpCode},
ProtocolError,
};
/// A struct representing a WebSocket frame.
#[derive(Debug)]
pub struct Parser;
impl Parser {
fn parse_metadata(
src: &[u8],
server: bool,
) -> Result<Option<(usize, bool, OpCode, usize, Option<[u8; 4]>)>, ProtocolError> {
let chunk_len = src.len();
let mut idx = 2;
if chunk_len < 2 {
return Ok(None);
}
let first = src[0];
let second = src[1];
let finished = first & 0x80 != 0;
// check masking
let masked = second & 0x80 != 0;
if !masked && server {
return Err(ProtocolError::UnmaskedFrame);
} else if masked && !server {
return Err(ProtocolError::MaskedFrame);
}
// Op code
let opcode = OpCode::from(first & 0x0F);
if let OpCode::Bad = opcode {
return Err(ProtocolError::InvalidOpcode(first & 0x0F));
}
let len = second & 0x7F;
let length = if len == 126 {
if chunk_len < 4 {
return Ok(None);
}
let len = usize::from(u16::from_be_bytes(
TryFrom::try_from(&src[idx..idx + 2]).unwrap(),
));
idx += 2;
len
} else if len == 127 {
if chunk_len < 10 {
return Ok(None);
}
let len = u64::from_be_bytes(TryFrom::try_from(&src[idx..idx + 8]).unwrap());
idx += 8;
len as usize
} else {
len as usize
};
let mask = if server {
if chunk_len < idx + 4 {
return Ok(None);
}
let mask = TryFrom::try_from(&src[idx..idx + 4]).unwrap();
idx += 4;
Some(mask)
} else {
None
};
Ok(Some((idx, finished, opcode, length, mask)))
}
/// Parse the input stream into a frame.
pub fn parse(
src: &mut BytesMut,
server: bool,
max_size: usize,
) -> Result<Option<(bool, OpCode, Option<BytesMut>)>, ProtocolError> {
// try to parse ws frame metadata
let (idx, finished, opcode, length, mask) = match Parser::parse_metadata(src, server)? {
None => return Ok(None),
Some(res) => res,
};
// not enough data
if src.len() < idx + length {
let min_length = min(length, max_size);
if src.capacity() < idx + min_length {
src.reserve(idx + min_length - src.capacity());
}
return Ok(None);
}
// remove prefix
src.advance(idx);
// check for max allowed size
if length > max_size {
// drop the payload
src.advance(length);
return Err(ProtocolError::Overflow);
}
// no need for body
if length == 0 {
return Ok(Some((finished, opcode, None)));
}
let mut data = src.split_to(length);
// control frames must have length <= 125
match opcode {
OpCode::Ping | OpCode::Pong if length > 125 => {
return Err(ProtocolError::InvalidLength(length));
}
OpCode::Close if length > 125 => {
debug!("Received close frame with payload length exceeding 125. Morphing to protocol close frame.");
return Ok(Some((true, OpCode::Close, None)));
}
_ => {}
}
// unmask
if let Some(mask) = mask {
apply_mask(&mut data, mask);
}
Ok(Some((finished, opcode, Some(data))))
}
/// Parse the payload of a close frame.
pub fn parse_close_payload(payload: &[u8]) -> Option<CloseReason> {
if payload.len() >= 2 {
let raw_code = u16::from_be_bytes(TryFrom::try_from(&payload[..2]).unwrap());
let code = CloseCode::from(raw_code);
let description = if payload.len() > 2 {
Some(String::from_utf8_lossy(&payload[2..]).into())
} else {
None
};
Some(CloseReason { code, description })
} else {
None
}
}
/// Generate binary representation
pub fn write_message<B: AsRef<[u8]>>(
dst: &mut BytesMut,
pl: B,
op: OpCode,
fin: bool,
mask: bool,
) {
let payload = pl.as_ref();
let one: u8 = if fin {
0x80 | Into::<u8>::into(op)
} else {
op.into()
};
let payload_len = payload.len();
let (two, p_len) = if mask {
(0x80, payload_len + 4)
} else {
(0, payload_len)
};
if payload_len < 126 {
dst.reserve(p_len + 2);
dst.put_slice(&[one, two | payload_len as u8]);
} else if payload_len <= 65_535 {
dst.reserve(p_len + 4);
dst.put_slice(&[one, two | 126]);
dst.put_u16(payload_len as u16);
} else {
dst.reserve(p_len + 10);
dst.put_slice(&[one, two | 127]);
dst.put_u64(payload_len as u64);
};
if mask {
let mask = rand::random::<[u8; 4]>();
dst.put_slice(mask.as_ref());
dst.put_slice(payload.as_ref());
let pos = dst.len() - payload_len;
apply_mask(&mut dst[pos..], mask);
} else {
dst.put_slice(payload.as_ref());
}
}
/// Create a new Close control frame.
#[inline]
pub fn write_close(dst: &mut BytesMut, reason: Option<CloseReason>, mask: bool) {
let payload = match reason {
None => Vec::new(),
Some(reason) => {
let mut payload = Into::<u16>::into(reason.code).to_be_bytes().to_vec();
if let Some(description) = reason.description {
payload.extend(description.as_bytes());
}
payload
}
};
Parser::write_message(dst, payload, OpCode::Close, true, mask)
}
}
#[cfg(test)]
mod tests {
use bytes::Bytes;
use super::*;
struct F {
finished: bool,
opcode: OpCode,
payload: Bytes,
}
fn is_none(frm: &Result<Option<(bool, OpCode, Option<BytesMut>)>, ProtocolError>) -> bool {
matches!(*frm, Ok(None))
}
fn extract(frm: Result<Option<(bool, OpCode, Option<BytesMut>)>, ProtocolError>) -> F {
match frm {
Ok(Some((finished, opcode, payload))) => F {
finished,
opcode,
payload: payload
.map(|b| b.freeze())
.unwrap_or_else(|| Bytes::from("")),
},
_ => unreachable!("error"),
}
}
#[test]
fn test_parse() {
let mut buf = BytesMut::from(&[0b0000_0001u8, 0b0000_0001u8][..]);
assert!(is_none(&Parser::parse(&mut buf, false, 1024)));
let mut buf = BytesMut::from(&[0b0000_0001u8, 0b0000_0001u8][..]);
buf.extend(b"1");
let frame = extract(Parser::parse(&mut buf, false, 1024));
assert!(!frame.finished);
assert_eq!(frame.opcode, OpCode::Text);
assert_eq!(frame.payload.as_ref(), &b"1"[..]);
}
#[test]
fn test_parse_length0() {
let mut buf = BytesMut::from(&[0b0000_0001u8, 0b0000_0000u8][..]);
let frame = extract(Parser::parse(&mut buf, false, 1024));
assert!(!frame.finished);
assert_eq!(frame.opcode, OpCode::Text);
assert!(frame.payload.is_empty());
}
#[test]
fn test_parse_length2() {
let mut buf = BytesMut::from(&[0b0000_0001u8, 126u8][..]);
assert!(is_none(&Parser::parse(&mut buf, false, 1024)));
let mut buf = BytesMut::from(&[0b0000_0001u8, 126u8][..]);
buf.extend(&[0u8, 4u8][..]);
buf.extend(b"1234");
let frame = extract(Parser::parse(&mut buf, false, 1024));
assert!(!frame.finished);
assert_eq!(frame.opcode, OpCode::Text);
assert_eq!(frame.payload.as_ref(), &b"1234"[..]);
}
#[test]
fn test_parse_length4() {
let mut buf = BytesMut::from(&[0b0000_0001u8, 127u8][..]);
assert!(is_none(&Parser::parse(&mut buf, false, 1024)));
let mut buf = BytesMut::from(&[0b0000_0001u8, 127u8][..]);
buf.extend(&[0u8, 0u8, 0u8, 0u8, 0u8, 0u8, 0u8, 4u8][..]);
buf.extend(b"1234");
let frame = extract(Parser::parse(&mut buf, false, 1024));
assert!(!frame.finished);
assert_eq!(frame.opcode, OpCode::Text);
assert_eq!(frame.payload.as_ref(), &b"1234"[..]);
}
#[test]
fn test_parse_frame_mask() {
let mut buf = BytesMut::from(&[0b0000_0001u8, 0b1000_0001u8][..]);
buf.extend(b"0001");
buf.extend(b"1");
assert!(Parser::parse(&mut buf, false, 1024).is_err());
let frame = extract(Parser::parse(&mut buf, true, 1024));
assert!(!frame.finished);
assert_eq!(frame.opcode, OpCode::Text);
assert_eq!(frame.payload, Bytes::from(vec![1u8]));
}
#[test]
fn test_parse_frame_no_mask() {
let mut buf = BytesMut::from(&[0b0000_0001u8, 0b0000_0001u8][..]);
buf.extend([1u8]);
assert!(Parser::parse(&mut buf, true, 1024).is_err());
let frame = extract(Parser::parse(&mut buf, false, 1024));
assert!(!frame.finished);
assert_eq!(frame.opcode, OpCode::Text);
assert_eq!(frame.payload, Bytes::from(vec![1u8]));
}
#[test]
fn test_parse_frame_max_size() {
let mut buf = BytesMut::from(&[0b0000_0001u8, 0b0000_0010u8][..]);
buf.extend([1u8, 1u8]);
assert!(Parser::parse(&mut buf, true, 1).is_err());
if let Err(ProtocolError::Overflow) = Parser::parse(&mut buf, false, 0) {
} else {
unreachable!("error");
}
}
#[test]
fn test_parse_frame_max_size_recoverability() {
let mut buf = BytesMut::new();
// The first text frame with length == 2, payload doesn't matter.
buf.extend([0b0000_0001u8, 0b0000_0010u8, 0b0000_0000u8, 0b0000_0000u8]);
// Next binary frame with length == 2 and payload == `[0x1111_1111u8, 0x1111_1111u8]`.
buf.extend([0b0000_0010u8, 0b0000_0010u8, 0b1111_1111u8, 0b1111_1111u8]);
assert_eq!(buf.len(), 8);
assert!(matches!(
Parser::parse(&mut buf, false, 1),
Err(ProtocolError::Overflow)
));
assert_eq!(buf.len(), 4);
let frame = extract(Parser::parse(&mut buf, false, 2));
assert!(!frame.finished);
assert_eq!(frame.opcode, OpCode::Binary);
assert_eq!(
frame.payload,
Bytes::from(vec![0b1111_1111u8, 0b1111_1111u8])
);
assert_eq!(buf.len(), 0);
}
#[test]
fn test_ping_frame() {
let mut buf = BytesMut::new();
Parser::write_message(&mut buf, Vec::from("data"), OpCode::Ping, true, false);
let mut v = vec![137u8, 4u8];
v.extend(b"data");
assert_eq!(&buf[..], &v[..]);
}
#[test]
fn test_pong_frame() {
let mut buf = BytesMut::new();
Parser::write_message(&mut buf, Vec::from("data"), OpCode::Pong, true, false);
let mut v = vec![138u8, 4u8];
v.extend(b"data");
assert_eq!(&buf[..], &v[..]);
}
#[test]
fn test_close_frame() {
let mut buf = BytesMut::new();
let reason = (CloseCode::Normal, "data");
Parser::write_close(&mut buf, Some(reason.into()), false);
let mut v = vec![136u8, 6u8, 3u8, 232u8];
v.extend(b"data");
assert_eq!(&buf[..], &v[..]);
}
#[test]
fn test_empty_close_frame() {
let mut buf = BytesMut::new();
Parser::write_close(&mut buf, None, false);
assert_eq!(&buf[..], &vec![0x88, 0x00][..]);
}
}
|
//! This is code from [Tungstenite project](https://github.com/snapview/tungstenite-rs)
/// Mask/unmask a frame.
#[inline]
pub fn apply_mask(buf: &mut [u8], mask: [u8; 4]) {
apply_mask_fast32(buf, mask)
}
/// A safe unoptimized mask application.
#[inline]
fn apply_mask_fallback(buf: &mut [u8], mask: [u8; 4]) {
for (i, byte) in buf.iter_mut().enumerate() {
*byte ^= mask[i & 3];
}
}
/// Faster version of `apply_mask()` which operates on 4-byte blocks.
#[inline]
pub fn apply_mask_fast32(buf: &mut [u8], mask: [u8; 4]) {
let mask_u32 = u32::from_ne_bytes(mask);
// SAFETY:
//
// buf is a valid slice borrowed mutably from bytes::BytesMut.
//
// un aligned prefix and suffix would be mask/unmask per byte.
// proper aligned middle slice goes into fast path and operates on 4-byte blocks.
let (prefix, words, suffix) = unsafe { buf.align_to_mut::<u32>() };
apply_mask_fallback(prefix, mask);
let head = prefix.len() & 3;
let mask_u32 = if head > 0 {
if cfg!(target_endian = "big") {
mask_u32.rotate_left(8 * head as u32)
} else {
mask_u32.rotate_right(8 * head as u32)
}
} else {
mask_u32
};
for word in words.iter_mut() {
*word ^= mask_u32;
}
apply_mask_fallback(suffix, mask_u32.to_ne_bytes());
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_apply_mask() {
let mask = [0x6d, 0xb6, 0xb2, 0x80];
let unmasked = [
0xf3, 0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x82, 0xff, 0xfe, 0x00, 0x17, 0x74, 0xf9,
0x12, 0x03,
];
for data_len in 0..=unmasked.len() {
let unmasked = &unmasked[0..data_len];
// Check masking with different alignment.
for off in 0..=3 {
if unmasked.len() < off {
continue;
}
let mut masked = unmasked.to_vec();
apply_mask_fallback(&mut masked[off..], mask);
let mut masked_fast = unmasked.to_vec();
apply_mask_fast32(&mut masked_fast[off..], mask);
assert_eq!(masked, masked_fast);
}
}
}
}
|
//! WebSocket protocol implementation.
//!
//! To setup a WebSocket, first perform the WebSocket handshake then on success convert `Payload` into a
//! `WsStream` stream and then use `WsWriter` to communicate with the peer.
use std::io;
use derive_more::{Display, Error, From};
use http::{header, Method, StatusCode};
use crate::{body::BoxBody, header::HeaderValue, RequestHead, Response, ResponseBuilder};
mod codec;
mod dispatcher;
mod frame;
mod mask;
mod proto;
pub use self::{
codec::{Codec, Frame, Item, Message},
dispatcher::Dispatcher,
frame::Parser,
proto::{hash_key, CloseCode, CloseReason, OpCode},
};
/// WebSocket protocol errors.
#[derive(Debug, Display, Error, From)]
pub enum ProtocolError {
/// Received an unmasked frame from client.
#[display("received an unmasked frame from client")]
UnmaskedFrame,
/// Received a masked frame from server.
#[display("received a masked frame from server")]
MaskedFrame,
/// Encountered invalid opcode.
#[display("invalid opcode ({})", _0)]
InvalidOpcode(#[error(not(source))] u8),
/// Invalid control frame length
#[display("invalid control frame length ({})", _0)]
InvalidLength(#[error(not(source))] usize),
/// Bad opcode.
#[display("bad opcode")]
BadOpCode,
/// A payload reached size limit.
#[display("payload reached size limit")]
Overflow,
/// Continuation has not started.
#[display("continuation has not started")]
ContinuationNotStarted,
/// Received new continuation but it is already started.
#[display("received new continuation but it has already started")]
ContinuationStarted,
/// Unknown continuation fragment.
#[display("unknown continuation fragment: {}", _0)]
ContinuationFragment(#[error(not(source))] OpCode),
/// I/O error.
#[display("I/O error: {}", _0)]
Io(io::Error),
}
/// WebSocket handshake errors
#[derive(Debug, Clone, Copy, PartialEq, Eq, Display, Error)]
pub enum HandshakeError {
/// Only get method is allowed.
#[display("method not allowed")]
GetMethodRequired,
/// Upgrade header if not set to WebSocket.
#[display("WebSocket upgrade is expected")]
NoWebsocketUpgrade,
/// Connection header is not set to upgrade.
#[display("connection upgrade is expected")]
NoConnectionUpgrade,
/// WebSocket version header is not set.
#[display("WebSocket version header is required")]
NoVersionHeader,
/// Unsupported WebSocket version.
#[display("unsupported WebSocket version")]
UnsupportedVersion,
/// WebSocket key is not set or wrong.
#[display("unknown WebSocket key")]
BadWebsocketKey,
}
impl From<HandshakeError> for Response<BoxBody> {
fn from(err: HandshakeError) -> Self {
match err {
HandshakeError::GetMethodRequired => {
let mut res = Response::new(StatusCode::METHOD_NOT_ALLOWED);
#[allow(clippy::declare_interior_mutable_const)]
const HV_GET: HeaderValue = HeaderValue::from_static("GET");
res.headers_mut().insert(header::ALLOW, HV_GET);
res
}
HandshakeError::NoWebsocketUpgrade => {
let mut res = Response::bad_request();
res.head_mut().reason = Some("No WebSocket Upgrade header found");
res
}
HandshakeError::NoConnectionUpgrade => {
let mut res = Response::bad_request();
res.head_mut().reason = Some("No Connection upgrade");
res
}
HandshakeError::NoVersionHeader => {
let mut res = Response::bad_request();
res.head_mut().reason = Some("WebSocket version header is required");
res
}
HandshakeError::UnsupportedVersion => {
let mut res = Response::bad_request();
res.head_mut().reason = Some("Unsupported WebSocket version");
res
}
HandshakeError::BadWebsocketKey => {
let mut res = Response::bad_request();
res.head_mut().reason = Some("Handshake error");
res
}
}
}
}
impl From<&HandshakeError> for Response<BoxBody> {
fn from(err: &HandshakeError) -> Self {
(*err).into()
}
}
/// Verify WebSocket handshake request and create handshake response.
pub fn handshake(req: &RequestHead) -> Result<ResponseBuilder, HandshakeError> {
verify_handshake(req)?;
Ok(handshake_response(req))
}
/// Verify WebSocket handshake request.
pub fn verify_handshake(req: &RequestHead) -> Result<(), HandshakeError> {
// WebSocket accepts only GET
if req.method != Method::GET {
return Err(HandshakeError::GetMethodRequired);
}
// Check for "UPGRADE" to WebSocket header
let has_hdr = if let Some(hdr) = req.headers().get(header::UPGRADE) {
if let Ok(s) = hdr.to_str() {
s.to_ascii_lowercase().contains("websocket")
} else {
false
}
} else {
false
};
if !has_hdr {
return Err(HandshakeError::NoWebsocketUpgrade);
}
// Upgrade connection
if !req.upgrade() {
return Err(HandshakeError::NoConnectionUpgrade);
}
// check supported version
if !req.headers().contains_key(header::SEC_WEBSOCKET_VERSION) {
return Err(HandshakeError::NoVersionHeader);
}
let supported_ver = {
if let Some(hdr) = req.headers().get(header::SEC_WEBSOCKET_VERSION) {
hdr == "13" || hdr == "8" || hdr == "7"
} else {
false
}
};
if !supported_ver {
return Err(HandshakeError::UnsupportedVersion);
}
// check client handshake for validity
if !req.headers().contains_key(header::SEC_WEBSOCKET_KEY) {
return Err(HandshakeError::BadWebsocketKey);
}
Ok(())
}
/// Create WebSocket handshake response.
///
/// This function returns handshake `Response`, ready to send to peer.
pub fn handshake_response(req: &RequestHead) -> ResponseBuilder {
let key = {
let key = req.headers().get(header::SEC_WEBSOCKET_KEY).unwrap();
proto::hash_key(key.as_ref())
};
Response::build(StatusCode::SWITCHING_PROTOCOLS)
.upgrade("websocket")
.insert_header((
header::SEC_WEBSOCKET_ACCEPT,
// key is known to be header value safe ascii
HeaderValue::from_bytes(&key).unwrap(),
))
.take()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{header, test::TestRequest};
#[test]
fn test_handshake() {
let req = TestRequest::default().method(Method::POST).finish();
assert_eq!(
HandshakeError::GetMethodRequired,
verify_handshake(req.head()).unwrap_err(),
);
let req = TestRequest::default().finish();
assert_eq!(
HandshakeError::NoWebsocketUpgrade,
verify_handshake(req.head()).unwrap_err(),
);
let req = TestRequest::default()
.insert_header((header::UPGRADE, header::HeaderValue::from_static("test")))
.finish();
assert_eq!(
HandshakeError::NoWebsocketUpgrade,
verify_handshake(req.head()).unwrap_err(),
);
let req = TestRequest::default()
.insert_header((
header::UPGRADE,
header::HeaderValue::from_static("websocket"),
))
.finish();
assert_eq!(
HandshakeError::NoConnectionUpgrade,
verify_handshake(req.head()).unwrap_err(),
);
let req = TestRequest::default()
.insert_header((
header::UPGRADE,
header::HeaderValue::from_static("websocket"),
))
.insert_header((
header::CONNECTION,
header::HeaderValue::from_static("upgrade"),
))
.finish();
assert_eq!(
HandshakeError::NoVersionHeader,
verify_handshake(req.head()).unwrap_err(),
);
let req = TestRequest::default()
.insert_header((
header::UPGRADE,
header::HeaderValue::from_static("websocket"),
))
.insert_header((
header::CONNECTION,
header::HeaderValue::from_static("upgrade"),
))
.insert_header((
header::SEC_WEBSOCKET_VERSION,
header::HeaderValue::from_static("5"),
))
.finish();
assert_eq!(
HandshakeError::UnsupportedVersion,
verify_handshake(req.head()).unwrap_err(),
);
let req = TestRequest::default()
.insert_header((
header::UPGRADE,
header::HeaderValue::from_static("websocket"),
))
.insert_header((
header::CONNECTION,
header::HeaderValue::from_static("upgrade"),
))
.insert_header((
header::SEC_WEBSOCKET_VERSION,
header::HeaderValue::from_static("13"),
))
.finish();
assert_eq!(
HandshakeError::BadWebsocketKey,
verify_handshake(req.head()).unwrap_err(),
);
let req = TestRequest::default()
.insert_header((
header::UPGRADE,
header::HeaderValue::from_static("websocket"),
))
.insert_header((
header::CONNECTION,
header::HeaderValue::from_static("upgrade"),
))
.insert_header((
header::SEC_WEBSOCKET_VERSION,
header::HeaderValue::from_static("13"),
))
.insert_header((
header::SEC_WEBSOCKET_KEY,
header::HeaderValue::from_static("13"),
))
.finish();
assert_eq!(
StatusCode::SWITCHING_PROTOCOLS,
handshake_response(req.head()).finish().status()
);
}
#[test]
fn test_ws_error_http_response() {
let resp: Response<BoxBody> = HandshakeError::GetMethodRequired.into();
assert_eq!(resp.status(), StatusCode::METHOD_NOT_ALLOWED);
let resp: Response<BoxBody> = HandshakeError::NoWebsocketUpgrade.into();
assert_eq!(resp.status(), StatusCode::BAD_REQUEST);
let resp: Response<BoxBody> = HandshakeError::NoConnectionUpgrade.into();
assert_eq!(resp.status(), StatusCode::BAD_REQUEST);
let resp: Response<BoxBody> = HandshakeError::NoVersionHeader.into();
assert_eq!(resp.status(), StatusCode::BAD_REQUEST);
let resp: Response<BoxBody> = HandshakeError::UnsupportedVersion.into();
assert_eq!(resp.status(), StatusCode::BAD_REQUEST);
let resp: Response<BoxBody> = HandshakeError::BadWebsocketKey.into();
assert_eq!(resp.status(), StatusCode::BAD_REQUEST);
}
}
|
use std::fmt;
use base64::prelude::*;
use tracing::error;
/// Operation codes defined in [RFC 6455 §11.8].
///
/// [RFC 6455]: https://datatracker.ietf.org/doc/html/rfc6455#section-11.8
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum OpCode {
/// Indicates a continuation frame of a fragmented message.
Continue,
/// Indicates a text data frame.
Text,
/// Indicates a binary data frame.
Binary,
/// Indicates a close control frame.
Close,
/// Indicates a ping control frame.
Ping,
/// Indicates a pong control frame.
Pong,
/// Indicates an invalid opcode was received.
Bad,
}
impl fmt::Display for OpCode {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use OpCode::*;
match self {
Continue => write!(f, "CONTINUE"),
Text => write!(f, "TEXT"),
Binary => write!(f, "BINARY"),
Close => write!(f, "CLOSE"),
Ping => write!(f, "PING"),
Pong => write!(f, "PONG"),
Bad => write!(f, "BAD"),
}
}
}
impl From<OpCode> for u8 {
fn from(op: OpCode) -> u8 {
use self::OpCode::*;
match op {
Continue => 0,
Text => 1,
Binary => 2,
Close => 8,
Ping => 9,
Pong => 10,
Bad => {
error!("Attempted to convert invalid opcode to u8. This is a bug.");
8 // if this somehow happens, a close frame will help us tear down quickly
}
}
}
}
impl From<u8> for OpCode {
fn from(byte: u8) -> OpCode {
use self::OpCode::*;
match byte {
0 => Continue,
1 => Text,
2 => Binary,
8 => Close,
9 => Ping,
10 => Pong,
_ => Bad,
}
}
}
/// Status code used to indicate why an endpoint is closing the WebSocket connection.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum CloseCode {
/// Indicates a normal closure, meaning that the purpose for which the connection was
/// established has been fulfilled.
Normal,
/// Indicates that an endpoint is "going away", such as a server going down or a browser having
/// navigated away from a page.
Away,
/// Indicates that an endpoint is terminating the connection due to a protocol error.
Protocol,
/// Indicates that an endpoint is terminating the connection because it has received a type of
/// data it cannot accept (e.g., an endpoint that understands only text data MAY send this if it
/// receives a binary message).
Unsupported,
/// Indicates an abnormal closure. If the abnormal closure was due to an error, this close code
/// will not be used. Instead, the `on_error` method of the handler will be called with
/// the error. However, if the connection is simply dropped, without an error, this close code
/// will be sent to the handler.
Abnormal,
/// Indicates that an endpoint is terminating the connection because it has received data within
/// a message that was not consistent with the type of the message (e.g., non-UTF-8 \[RFC 3629\]
/// data within a text message).
Invalid,
/// Indicates that an endpoint is terminating the connection because it has received a message
/// that violates its policy. This is a generic status code that can be returned when there is
/// no other more suitable status code (e.g., Unsupported or Size) or if there is a need to hide
/// specific details about the policy.
Policy,
/// Indicates that an endpoint is terminating the connection because it has received a message
/// that is too big for it to process.
Size,
/// Indicates that an endpoint (client) is terminating the connection because it has expected
/// the server to negotiate one or more extension, but the server didn't return them in the
/// response message of the WebSocket handshake. The list of extensions that are needed should
/// be given as the reason for closing. Note that this status code is not used by the server,
/// because it can fail the WebSocket handshake instead.
Extension,
/// Indicates that a server is terminating the connection because it encountered an unexpected
/// condition that prevented it from fulfilling the request.
Error,
/// Indicates that the server is restarting. A client may choose to reconnect, and if it does,
/// it should use a randomized delay of 5-30 seconds between attempts.
Restart,
/// Indicates that the server is overloaded and the client should either connect to a different
/// IP (when multiple targets exist), or reconnect to the same IP when a user has performed
/// an action.
Again,
#[doc(hidden)]
Tls,
#[doc(hidden)]
Other(u16),
}
impl From<CloseCode> for u16 {
fn from(code: CloseCode) -> u16 {
use self::CloseCode::*;
match code {
Normal => 1000,
Away => 1001,
Protocol => 1002,
Unsupported => 1003,
Abnormal => 1006,
Invalid => 1007,
Policy => 1008,
Size => 1009,
Extension => 1010,
Error => 1011,
Restart => 1012,
Again => 1013,
Tls => 1015,
Other(code) => code,
}
}
}
impl From<u16> for CloseCode {
fn from(code: u16) -> CloseCode {
use self::CloseCode::*;
match code {
1000 => Normal,
1001 => Away,
1002 => Protocol,
1003 => Unsupported,
1006 => Abnormal,
1007 => Invalid,
1008 => Policy,
1009 => Size,
1010 => Extension,
1011 => Error,
1012 => Restart,
1013 => Again,
1015 => Tls,
_ => Other(code),
}
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
/// Reason for closing the connection
pub struct CloseReason {
/// Exit code
pub code: CloseCode,
/// Optional description of the exit code
pub description: Option<String>,
}
impl From<CloseCode> for CloseReason {
fn from(code: CloseCode) -> Self {
CloseReason {
code,
description: None,
}
}
}
impl<T: Into<String>> From<(CloseCode, T)> for CloseReason {
fn from(info: (CloseCode, T)) -> Self {
CloseReason {
code: info.0,
description: Some(info.1.into()),
}
}
}
/// The WebSocket GUID as stated in the spec.
/// See <https://datatracker.ietf.org/doc/html/rfc6455#section-1.3>.
static WS_GUID: &[u8] = b"258EAFA5-E914-47DA-95CA-C5AB0DC85B11";
/// Hashes the `Sec-WebSocket-Key` header according to the WebSocket spec.
///
/// Result is a Base64 encoded byte array. `base64(sha1(input))` is always 28 bytes.
pub fn hash_key(key: &[u8]) -> [u8; 28] {
let hash = {
use sha1::Digest as _;
let mut hasher = sha1::Sha1::new();
hasher.update(key);
hasher.update(WS_GUID);
hasher.finalize()
};
let mut hash_b64 = [0; 28];
let n = BASE64_STANDARD.encode_slice(hash, &mut hash_b64).unwrap();
assert_eq!(n, 28);
hash_b64
}
#[cfg(test)]
mod test {
#![allow(unused_imports, unused_variables, dead_code)]
use super::*;
macro_rules! opcode_into {
($from:expr => $opcode:pat) => {
match OpCode::from($from) {
e @ $opcode => {}
e => unreachable!("{:?}", e),
}
};
}
macro_rules! opcode_from {
($from:expr => $opcode:pat) => {
let res: u8 = $from.into();
match res {
e @ $opcode => {}
e => unreachable!("{:?}", e),
}
};
}
#[test]
fn test_to_opcode() {
opcode_into!(0 => OpCode::Continue);
opcode_into!(1 => OpCode::Text);
opcode_into!(2 => OpCode::Binary);
opcode_into!(8 => OpCode::Close);
opcode_into!(9 => OpCode::Ping);
opcode_into!(10 => OpCode::Pong);
opcode_into!(99 => OpCode::Bad);
}
#[test]
fn test_from_opcode() {
opcode_from!(OpCode::Continue => 0);
opcode_from!(OpCode::Text => 1);
opcode_from!(OpCode::Binary => 2);
opcode_from!(OpCode::Close => 8);
opcode_from!(OpCode::Ping => 9);
opcode_from!(OpCode::Pong => 10);
}
#[test]
#[should_panic]
fn test_from_opcode_debug() {
opcode_from!(OpCode::Bad => 99);
}
#[test]
fn test_from_opcode_display() {
assert_eq!(format!("{}", OpCode::Continue), "CONTINUE");
assert_eq!(format!("{}", OpCode::Text), "TEXT");
assert_eq!(format!("{}", OpCode::Binary), "BINARY");
assert_eq!(format!("{}", OpCode::Close), "CLOSE");
assert_eq!(format!("{}", OpCode::Ping), "PING");
assert_eq!(format!("{}", OpCode::Pong), "PONG");
assert_eq!(format!("{}", OpCode::Bad), "BAD");
}
#[test]
fn test_hash_key() {
let hash = hash_key(b"hello actix-web");
assert_eq!(&hash, b"cR1dlyUUJKp0s/Bel25u5TgvC3E=");
}
#[test]
fn close_code_from_u16() {
assert_eq!(CloseCode::from(1000u16), CloseCode::Normal);
assert_eq!(CloseCode::from(1001u16), CloseCode::Away);
assert_eq!(CloseCode::from(1002u16), CloseCode::Protocol);
assert_eq!(CloseCode::from(1003u16), CloseCode::Unsupported);
assert_eq!(CloseCode::from(1006u16), CloseCode::Abnormal);
assert_eq!(CloseCode::from(1007u16), CloseCode::Invalid);
assert_eq!(CloseCode::from(1008u16), CloseCode::Policy);
assert_eq!(CloseCode::from(1009u16), CloseCode::Size);
assert_eq!(CloseCode::from(1010u16), CloseCode::Extension);
assert_eq!(CloseCode::from(1011u16), CloseCode::Error);
assert_eq!(CloseCode::from(1012u16), CloseCode::Restart);
assert_eq!(CloseCode::from(1013u16), CloseCode::Again);
assert_eq!(CloseCode::from(1015u16), CloseCode::Tls);
assert_eq!(CloseCode::from(2000u16), CloseCode::Other(2000));
}
#[test]
fn close_code_into_u16() {
assert_eq!(1000u16, Into::<u16>::into(CloseCode::Normal));
assert_eq!(1001u16, Into::<u16>::into(CloseCode::Away));
assert_eq!(1002u16, Into::<u16>::into(CloseCode::Protocol));
assert_eq!(1003u16, Into::<u16>::into(CloseCode::Unsupported));
assert_eq!(1006u16, Into::<u16>::into(CloseCode::Abnormal));
assert_eq!(1007u16, Into::<u16>::into(CloseCode::Invalid));
assert_eq!(1008u16, Into::<u16>::into(CloseCode::Policy));
assert_eq!(1009u16, Into::<u16>::into(CloseCode::Size));
assert_eq!(1010u16, Into::<u16>::into(CloseCode::Extension));
assert_eq!(1011u16, Into::<u16>::into(CloseCode::Error));
assert_eq!(1012u16, Into::<u16>::into(CloseCode::Restart));
assert_eq!(1013u16, Into::<u16>::into(CloseCode::Again));
assert_eq!(1015u16, Into::<u16>::into(CloseCode::Tls));
assert_eq!(2000u16, Into::<u16>::into(CloseCode::Other(2000)));
}
}
|
use std::convert::Infallible;
use actix_http::{body::BoxBody, HttpMessage, HttpService, Request, Response, StatusCode};
use actix_http_test::test_server;
use actix_service::ServiceFactoryExt;
use actix_utils::future;
use bytes::Bytes;
use derive_more::{Display, Error};
use futures_util::StreamExt as _;
const STR: &str = "Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World";
#[actix_rt::test]
async fn h1_v2() {
let srv = test_server(move || {
HttpService::build()
.finish(|_| future::ok::<_, Infallible>(Response::ok().set_body(STR)))
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
let request = srv.get("/").insert_header(("x-test", "111")).send();
let mut response = request.await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = response.body().await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
let mut response = srv.post("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = response.body().await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
}
#[actix_rt::test]
async fn connection_close() {
let srv = test_server(move || {
HttpService::build()
.finish(|_| future::ok::<_, Infallible>(Response::ok().set_body(STR)))
.tcp()
.map(|_| ())
})
.await;
let response = srv.get("/").force_close().send().await.unwrap();
assert!(response.status().is_success());
}
#[actix_rt::test]
async fn with_query_parameter() {
let srv = test_server(move || {
HttpService::build()
.finish(|req: Request| async move {
if req.uri().query().unwrap().contains("qp=") {
Ok::<_, Infallible>(Response::ok())
} else {
Ok(Response::bad_request())
}
})
.tcp()
.map(|_| ())
})
.await;
let request = srv.request(http::Method::GET, srv.url("/?qp=5"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
#[derive(Debug, Display, Error)]
#[display("expect failed")]
struct ExpectFailed;
impl From<ExpectFailed> for Response<BoxBody> {
fn from(_: ExpectFailed) -> Self {
Response::new(StatusCode::EXPECTATION_FAILED)
}
}
#[actix_rt::test]
async fn h1_expect() {
let srv = test_server(move || {
HttpService::build()
.expect(|req: Request| async {
if req.headers().contains_key("AUTH") {
Ok(req)
} else {
Err(ExpectFailed)
}
})
.h1(|req: Request| async move {
let (_, mut body) = req.into_parts();
let mut buf = Vec::new();
while let Some(Ok(chunk)) = body.next().await {
buf.extend_from_slice(&chunk);
}
let str = std::str::from_utf8(&buf).unwrap();
assert_eq!(str, "expect body");
Ok::<_, Infallible>(Response::ok())
})
.tcp()
})
.await;
// test expect without payload.
let request = srv
.request(http::Method::GET, srv.url("/"))
.insert_header(("Expect", "100-continue"));
let response = request.send().await;
assert!(response.is_err());
// test expect would fail to continue
let request = srv
.request(http::Method::GET, srv.url("/"))
.insert_header(("Expect", "100-continue"));
let response = request.send_body("expect body").await.unwrap();
assert_eq!(response.status(), StatusCode::EXPECTATION_FAILED);
// test expect would continue
let request = srv
.request(http::Method::GET, srv.url("/"))
.insert_header(("Expect", "100-continue"))
.insert_header(("AUTH", "996"));
let response = request.send_body("expect body").await.unwrap();
assert!(response.status().is_success());
}
|
use std::{io, time::Duration};
use actix_http::{error::Error, HttpService, Response};
use actix_server::Server;
use tokio::io::AsyncWriteExt;
#[actix_rt::test]
async fn h2_ping_pong() -> io::Result<()> {
let (tx, rx) = std::sync::mpsc::sync_channel(1);
let lst = std::net::TcpListener::bind("127.0.0.1:0")?;
let addr = lst.local_addr().unwrap();
let join = std::thread::spawn(move || {
actix_rt::System::new().block_on(async move {
let srv = Server::build()
.disable_signals()
.workers(1)
.listen("h2_ping_pong", lst, || {
HttpService::build()
.keep_alive(Duration::from_secs(3))
.h2(|_| async { Ok::<_, Error>(Response::ok()) })
.tcp()
})?
.run();
tx.send(srv.handle()).unwrap();
srv.await
})
});
let handle = rx.recv().unwrap();
let (sync_tx, rx) = std::sync::mpsc::sync_channel(1);
// use a separate thread for h2 client so it can be blocked.
std::thread::spawn(move || {
tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap()
.block_on(async move {
let stream = tokio::net::TcpStream::connect(addr).await.unwrap();
let (mut tx, conn) = h2::client::handshake(stream).await.unwrap();
tokio::spawn(async move { conn.await.unwrap() });
let (res, _) = tx.send_request(::http::Request::new(()), true).unwrap();
let res = res.await.unwrap();
assert_eq!(res.status().as_u16(), 200);
sync_tx.send(()).unwrap();
// intentionally block the client thread so it can not answer ping pong.
std::thread::sleep(std::time::Duration::from_secs(1000));
})
});
rx.recv().unwrap();
let now = std::time::Instant::now();
// stop server gracefully. this step would take up to 30 seconds.
handle.stop(true).await;
// join server thread. only when connection are all gone this step would finish.
join.join().unwrap()?;
// check the time used for join server thread so it's known that the server shutdown
// is from keep alive and not server graceful shutdown timeout.
assert!(now.elapsed() < std::time::Duration::from_secs(30));
Ok(())
}
#[actix_rt::test]
async fn h2_handshake_timeout() -> io::Result<()> {
let (tx, rx) = std::sync::mpsc::sync_channel(1);
let lst = std::net::TcpListener::bind("127.0.0.1:0")?;
let addr = lst.local_addr().unwrap();
let join = std::thread::spawn(move || {
actix_rt::System::new().block_on(async move {
let srv = Server::build()
.disable_signals()
.workers(1)
.listen("h2_ping_pong", lst, || {
HttpService::build()
.keep_alive(Duration::from_secs(30))
// set first request timeout to 5 seconds.
// this is the timeout used for http2 handshake.
.client_request_timeout(Duration::from_secs(5))
.h2(|_| async { Ok::<_, Error>(Response::ok()) })
.tcp()
})?
.run();
tx.send(srv.handle()).unwrap();
srv.await
})
});
let handle = rx.recv().unwrap();
let (sync_tx, rx) = std::sync::mpsc::sync_channel(1);
// use a separate thread for tcp client so it can be blocked.
std::thread::spawn(move || {
tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap()
.block_on(async move {
let mut stream = tokio::net::TcpStream::connect(addr).await.unwrap();
// do not send the last new line intentionally.
// This should hang the server handshake
let malicious_buf = b"PRI * HTTP/2.0\r\n\r\nSM\r\n";
stream.write_all(malicious_buf).await.unwrap();
stream.flush().await.unwrap();
sync_tx.send(()).unwrap();
// intentionally block the client thread so it sit idle and not do handshake.
std::thread::sleep(std::time::Duration::from_secs(1000));
drop(stream)
})
});
rx.recv().unwrap();
let now = std::time::Instant::now();
// stop server gracefully. this step would take up to 30 seconds.
handle.stop(true).await;
// join server thread. only when connection are all gone this step would finish.
join.join().unwrap()?;
// check the time used for join server thread so it's known that the server shutdown
// is from handshake timeout and not server graceful shutdown timeout.
assert!(now.elapsed() < std::time::Duration::from_secs(30));
Ok(())
}
|
#![cfg(feature = "openssl")]
extern crate tls_openssl as openssl;
use std::{convert::Infallible, io, time::Duration};
use actix_http::{
body::{BodyStream, BoxBody, SizedStream},
error::PayloadError,
header::{self, HeaderValue},
Error, HttpService, Method, Request, Response, StatusCode, TlsAcceptorConfig, Version,
};
use actix_http_test::test_server;
use actix_service::{fn_service, ServiceFactoryExt};
use actix_utils::future::{err, ok, ready};
use bytes::{Bytes, BytesMut};
use derive_more::{Display, Error};
use futures_core::Stream;
use futures_util::{stream::once, StreamExt as _};
use openssl::{
pkey::PKey,
ssl::{SslAcceptor, SslMethod},
x509::X509,
};
async fn load_body<S>(stream: S) -> Result<BytesMut, PayloadError>
where
S: Stream<Item = Result<Bytes, PayloadError>>,
{
let body = stream
.map(|res| match res {
Ok(chunk) => chunk,
Err(_) => panic!(),
})
.fold(BytesMut::new(), move |mut body, chunk| {
body.extend_from_slice(&chunk);
ready(body)
})
.await;
Ok(body)
}
fn tls_config() -> SslAcceptor {
let rcgen::CertifiedKey { cert, key_pair } =
rcgen::generate_simple_self_signed(["localhost".to_owned()]).unwrap();
let cert_file = cert.pem();
let key_file = key_pair.serialize_pem();
let cert = X509::from_pem(cert_file.as_bytes()).unwrap();
let key = PKey::private_key_from_pem(key_file.as_bytes()).unwrap();
let mut builder = SslAcceptor::mozilla_intermediate(SslMethod::tls()).unwrap();
builder.set_certificate(&cert).unwrap();
builder.set_private_key(&key).unwrap();
builder.set_alpn_select_callback(|_, protos| {
const H2: &[u8] = b"\x02h2";
if protos.windows(3).any(|window| window == H2) {
Ok(b"h2")
} else {
Err(openssl::ssl::AlpnError::NOACK)
}
});
builder.set_alpn_protos(b"\x02h2").unwrap();
builder.build()
}
#[actix_rt::test]
async fn h2() -> io::Result<()> {
let srv = test_server(move || {
HttpService::build()
.h2(|_| ok::<_, Error>(Response::ok()))
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
#[actix_rt::test]
async fn h2_1() -> io::Result<()> {
let srv = test_server(move || {
HttpService::build()
.finish(|req: Request| {
assert!(req.peer_addr().is_some());
assert_eq!(req.version(), Version::HTTP_2);
ok::<_, Error>(Response::ok())
})
.openssl_with_config(
tls_config(),
TlsAcceptorConfig::default().handshake_timeout(Duration::from_secs(5)),
)
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
#[actix_rt::test]
async fn h2_body() -> io::Result<()> {
let data = "HELLOWORLD".to_owned().repeat(64 * 1024); // 640 KiB
let mut srv = test_server(move || {
HttpService::build()
.h2(|mut req: Request<_>| async move {
let body = load_body(req.take_payload()).await?;
Ok::<_, Error>(Response::ok().set_body(body))
})
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send_body(data.clone()).await.unwrap();
assert!(response.status().is_success());
let body = srv.load_body(response).await.unwrap();
assert_eq!(&body, data.as_bytes());
Ok(())
}
#[actix_rt::test]
async fn h2_content_length() {
let srv = test_server(move || {
HttpService::build()
.h2(|req: Request| {
let idx: usize = req.uri().path()[1..].parse().unwrap();
let statuses = [
StatusCode::CONTINUE,
StatusCode::NO_CONTENT,
StatusCode::OK,
StatusCode::NOT_FOUND,
];
ok::<_, Infallible>(Response::new(statuses[idx]))
})
.openssl(tls_config())
.map_err(|_| ())
})
.await;
static VALUE: HeaderValue = HeaderValue::from_static("0");
{
let req = srv.request(Method::HEAD, srv.surl("/0")).send();
req.await.expect_err("should timeout on recv 1xx frame");
let req = srv.request(Method::GET, srv.surl("/0")).send();
req.await.expect_err("should timeout on recv 1xx frame");
let req = srv.request(Method::GET, srv.surl("/1")).send();
let response = req.await.unwrap();
assert!(response.headers().get("content-length").is_none());
for &i in &[2, 3] {
let req = srv
.request(Method::GET, srv.surl(&format!("/{}", i)))
.send();
let response = req.await.unwrap();
assert_eq!(response.headers().get("content-length"), Some(&VALUE));
}
}
}
#[actix_rt::test]
async fn h2_headers() {
let data = STR.repeat(10);
let data2 = data.clone();
let mut srv = test_server(move || {
let data = data.clone();
HttpService::build()
.h2(move |_| {
let mut builder = Response::build(StatusCode::OK);
for idx in 0..90 {
builder.insert_header(
(format!("X-TEST-{}", idx).as_str(),
"TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST ",
));
}
ok::<_, Infallible>(builder.body(data.clone()))
})
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from(data2));
}
const STR: &str = "Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World";
#[actix_rt::test]
async fn h2_body2() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
}
#[actix_rt::test]
async fn h2_head_empty() {
let mut srv = test_server(move || {
HttpService::build()
.finish(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.shead("/").send().await.unwrap();
assert!(response.status().is_success());
assert_eq!(response.version(), Version::HTTP_2);
{
let len = response.headers().get(header::CONTENT_LENGTH).unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
// read response
let bytes = srv.load_body(response).await.unwrap();
assert!(bytes.is_empty());
}
#[actix_rt::test]
async fn h2_head_binary() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.shead("/").send().await.unwrap();
assert!(response.status().is_success());
{
let len = response.headers().get(header::CONTENT_LENGTH).unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
// read response
let bytes = srv.load_body(response).await.unwrap();
assert!(bytes.is_empty());
}
#[actix_rt::test]
async fn h2_head_binary2() {
let srv = test_server(move || {
HttpService::build()
.h2(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.shead("/").send().await.unwrap();
assert!(response.status().is_success());
{
let len = response.headers().get(header::CONTENT_LENGTH).unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
}
#[actix_rt::test]
async fn h2_body_length() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| async {
let body = once(async { Ok::<_, Infallible>(Bytes::from_static(STR.as_ref())) });
Ok::<_, Infallible>(
Response::ok().set_body(SizedStream::new(STR.len() as u64, body)),
)
})
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
}
#[actix_rt::test]
async fn h2_body_chunked_explicit() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| {
let body = once(ok::<_, Error>(Bytes::from_static(STR.as_ref())));
ok::<_, Infallible>(
Response::build(StatusCode::OK)
.insert_header((header::TRANSFER_ENCODING, "chunked"))
.body(BodyStream::new(body)),
)
})
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
assert!(!response.headers().contains_key(header::TRANSFER_ENCODING));
// read response
let bytes = srv.load_body(response).await.unwrap();
// decode
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
}
#[actix_rt::test]
async fn h2_response_http_error_handling() {
let mut srv = test_server(move || {
HttpService::build()
.h2(fn_service(|_| {
let broken_header = Bytes::from_static(b"\0\0\0");
ok::<_, Infallible>(
Response::build(StatusCode::OK)
.insert_header((header::CONTENT_TYPE, broken_header))
.body(STR),
)
}))
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert_eq!(response.status(), StatusCode::INTERNAL_SERVER_ERROR);
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(
bytes,
Bytes::from_static(b"error processing HTTP: failed to parse header value")
);
}
#[derive(Debug, Display, Error)]
#[display("error")]
struct BadRequest;
impl From<BadRequest> for Response<BoxBody> {
fn from(err: BadRequest) -> Self {
Response::build(StatusCode::BAD_REQUEST)
.body(err.to_string())
.map_into_boxed_body()
}
}
#[actix_rt::test]
async fn h2_service_error() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| err::<Response<BoxBody>, _>(BadRequest))
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert_eq!(response.status(), StatusCode::BAD_REQUEST);
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(b"error"));
}
#[actix_rt::test]
async fn h2_on_connect() {
let srv = test_server(move || {
HttpService::build()
.on_connect_ext(|_, data| {
data.insert(20isize);
})
.h2(|req: Request| {
assert!(req.conn_data::<isize>().is_some());
ok::<_, Infallible>(Response::ok())
})
.openssl(tls_config())
.map_err(|_| ())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
}
|
#![cfg(feature = "rustls-0_23")]
extern crate tls_rustls_023 as rustls;
use std::{
convert::Infallible,
io::{self, BufReader, Write},
net::{SocketAddr, TcpStream as StdTcpStream},
sync::Arc,
task::Poll,
time::Duration,
};
use actix_http::{
body::{BodyStream, BoxBody, SizedStream},
error::PayloadError,
header::{self, HeaderName, HeaderValue},
Error, HttpService, Method, Request, Response, StatusCode, TlsAcceptorConfig, Version,
};
use actix_http_test::test_server;
use actix_rt::pin;
use actix_service::{fn_factory_with_config, fn_service};
use actix_tls::connect::rustls_0_23::webpki_roots_cert_store;
use actix_utils::future::{err, ok, poll_fn};
use bytes::{Bytes, BytesMut};
use derive_more::{Display, Error};
use futures_core::{ready, Stream};
use futures_util::stream::once;
use rustls::{pki_types::ServerName, ServerConfig as RustlsServerConfig};
use rustls_pemfile::{certs, pkcs8_private_keys};
async fn load_body<S>(stream: S) -> Result<BytesMut, PayloadError>
where
S: Stream<Item = Result<Bytes, PayloadError>>,
{
let mut buf = BytesMut::new();
pin!(stream);
poll_fn(|cx| loop {
let body = stream.as_mut();
match ready!(body.poll_next(cx)) {
Some(Ok(bytes)) => buf.extend_from_slice(&bytes),
None => return Poll::Ready(Ok(())),
Some(Err(err)) => return Poll::Ready(Err(err)),
}
})
.await?;
Ok(buf)
}
fn tls_config() -> RustlsServerConfig {
let rcgen::CertifiedKey { cert, key_pair } =
rcgen::generate_simple_self_signed(["localhost".to_owned()]).unwrap();
let cert_file = cert.pem();
let key_file = key_pair.serialize_pem();
let cert_file = &mut BufReader::new(cert_file.as_bytes());
let key_file = &mut BufReader::new(key_file.as_bytes());
let cert_chain = certs(cert_file).collect::<Result<Vec<_>, _>>().unwrap();
let mut keys = pkcs8_private_keys(key_file)
.collect::<Result<Vec<_>, _>>()
.unwrap();
let mut config = RustlsServerConfig::builder()
.with_no_client_auth()
.with_single_cert(
cert_chain,
rustls::pki_types::PrivateKeyDer::Pkcs8(keys.remove(0)),
)
.unwrap();
config.alpn_protocols.push(HTTP1_1_ALPN_PROTOCOL.to_vec());
config.alpn_protocols.push(H2_ALPN_PROTOCOL.to_vec());
config
}
pub fn get_negotiated_alpn_protocol(
addr: SocketAddr,
client_alpn_protocol: &[u8],
) -> Option<Vec<u8>> {
let mut config = rustls::ClientConfig::builder()
.with_root_certificates(webpki_roots_cert_store())
.with_no_client_auth();
config.alpn_protocols.push(client_alpn_protocol.to_vec());
let mut sess =
rustls::ClientConnection::new(Arc::new(config), ServerName::try_from("localhost").unwrap())
.unwrap();
let mut sock = StdTcpStream::connect(addr).unwrap();
let mut stream = rustls::Stream::new(&mut sess, &mut sock);
// The handshake will fails because the client will not be able to verify the server
// certificate, but it doesn't matter here as we are just interested in the negotiated ALPN
// protocol
let _ = stream.flush();
sess.alpn_protocol().map(|proto| proto.to_vec())
}
#[actix_rt::test]
async fn h1() -> io::Result<()> {
let srv = test_server(move || {
HttpService::build()
.h1(|_| ok::<_, Error>(Response::ok()))
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
#[actix_rt::test]
async fn h2() -> io::Result<()> {
let srv = test_server(move || {
HttpService::build()
.h2(|_| ok::<_, Error>(Response::ok()))
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
#[actix_rt::test]
async fn h1_1() -> io::Result<()> {
let srv = test_server(move || {
HttpService::build()
.h1(|req: Request| {
assert!(req.peer_addr().is_some());
assert_eq!(req.version(), Version::HTTP_11);
ok::<_, Error>(Response::ok())
})
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
#[actix_rt::test]
async fn h2_1() -> io::Result<()> {
let srv = test_server(move || {
HttpService::build()
.finish(|req: Request| {
assert!(req.peer_addr().is_some());
assert_eq!(req.version(), Version::HTTP_2);
ok::<_, Error>(Response::ok())
})
.rustls_0_23_with_config(
tls_config(),
TlsAcceptorConfig::default().handshake_timeout(Duration::from_secs(5)),
)
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
#[actix_rt::test]
async fn h2_body1() -> io::Result<()> {
let data = "HELLOWORLD".to_owned().repeat(64 * 1024);
let mut srv = test_server(move || {
HttpService::build()
.h2(|mut req: Request<_>| async move {
let body = load_body(req.take_payload()).await?;
Ok::<_, Error>(Response::ok().set_body(body))
})
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send_body(data.clone()).await.unwrap();
assert!(response.status().is_success());
let body = srv.load_body(response).await.unwrap();
assert_eq!(&body, data.as_bytes());
Ok(())
}
#[actix_rt::test]
async fn h2_content_length() {
let srv = test_server(move || {
HttpService::build()
.h2(|req: Request| {
let indx: usize = req.uri().path()[1..].parse().unwrap();
let statuses = [
StatusCode::CONTINUE,
StatusCode::NO_CONTENT,
StatusCode::OK,
StatusCode::NOT_FOUND,
];
ok::<_, Infallible>(Response::new(statuses[indx]))
})
.rustls_0_23(tls_config())
})
.await;
let header = HeaderName::from_static("content-length");
let value = HeaderValue::from_static("0");
{
#[allow(clippy::single_element_loop)]
for &i in &[0] {
let req = srv
.request(Method::HEAD, srv.surl(&format!("/{}", i)))
.send();
let _response = req.await.expect_err("should timeout on recv 1xx frame");
// assert_eq!(response.headers().get(&header), None);
let req = srv
.request(Method::GET, srv.surl(&format!("/{}", i)))
.send();
let _response = req.await.expect_err("should timeout on recv 1xx frame");
// assert_eq!(response.headers().get(&header), None);
}
#[allow(clippy::single_element_loop)]
for &i in &[1] {
let req = srv
.request(Method::GET, srv.surl(&format!("/{}", i)))
.send();
let response = req.await.unwrap();
assert_eq!(response.headers().get(&header), None);
}
for &i in &[2, 3] {
let req = srv
.request(Method::GET, srv.surl(&format!("/{}", i)))
.send();
let response = req.await.unwrap();
assert_eq!(response.headers().get(&header), Some(&value));
}
}
}
#[actix_rt::test]
async fn h2_headers() {
let data = STR.repeat(10);
let data2 = data.clone();
let mut srv = test_server(move || {
let data = data.clone();
HttpService::build()
.h2(move |_| {
let mut config = Response::build(StatusCode::OK);
for idx in 0..90 {
config.insert_header((
format!("X-TEST-{}", idx).as_str(),
"TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST ",
));
}
ok::<_, Infallible>(config.body(data.clone()))
})
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from(data2));
}
const STR: &str = "Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World";
#[actix_rt::test]
async fn h2_body2() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
}
#[actix_rt::test]
async fn h2_head_empty() {
let mut srv = test_server(move || {
HttpService::build()
.finish(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.rustls_0_23(tls_config())
})
.await;
let response = srv.shead("/").send().await.unwrap();
assert!(response.status().is_success());
assert_eq!(response.version(), Version::HTTP_2);
{
let len = response
.headers()
.get(http::header::CONTENT_LENGTH)
.unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
// read response
let bytes = srv.load_body(response).await.unwrap();
assert!(bytes.is_empty());
}
#[actix_rt::test]
async fn h2_head_binary() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.rustls_0_23(tls_config())
})
.await;
let response = srv.shead("/").send().await.unwrap();
assert!(response.status().is_success());
{
let len = response
.headers()
.get(http::header::CONTENT_LENGTH)
.unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
// read response
let bytes = srv.load_body(response).await.unwrap();
assert!(bytes.is_empty());
}
#[actix_rt::test]
async fn h2_head_binary2() {
let srv = test_server(move || {
HttpService::build()
.h2(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.rustls_0_23(tls_config())
})
.await;
let response = srv.shead("/").send().await.unwrap();
assert!(response.status().is_success());
{
let len = response
.headers()
.get(http::header::CONTENT_LENGTH)
.unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
}
#[actix_rt::test]
async fn h2_body_length() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| {
let body = once(ok::<_, Infallible>(Bytes::from_static(STR.as_ref())));
ok::<_, Infallible>(
Response::ok().set_body(SizedStream::new(STR.len() as u64, body)),
)
})
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
}
#[actix_rt::test]
async fn h2_body_chunked_explicit() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| {
let body = once(ok::<_, Error>(Bytes::from_static(STR.as_ref())));
ok::<_, Infallible>(
Response::build(StatusCode::OK)
.insert_header((header::TRANSFER_ENCODING, "chunked"))
.body(BodyStream::new(body)),
)
})
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
assert!(!response.headers().contains_key(header::TRANSFER_ENCODING));
// read response
let bytes = srv.load_body(response).await.unwrap();
// decode
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
}
#[actix_rt::test]
async fn h2_response_http_error_handling() {
let mut srv = test_server(move || {
HttpService::build()
.h2(fn_factory_with_config(|_: ()| {
ok::<_, Infallible>(fn_service(|_| {
let broken_header = Bytes::from_static(b"\0\0\0");
ok::<_, Infallible>(
Response::build(StatusCode::OK)
.insert_header((http::header::CONTENT_TYPE, broken_header))
.body(STR),
)
}))
}))
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert_eq!(response.status(), http::StatusCode::INTERNAL_SERVER_ERROR);
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(
bytes,
Bytes::from_static(b"error processing HTTP: failed to parse header value")
);
}
#[derive(Debug, Display, Error)]
#[display("error")]
struct BadRequest;
impl From<BadRequest> for Response<BoxBody> {
fn from(_: BadRequest) -> Self {
Response::bad_request().set_body(BoxBody::new("error"))
}
}
#[actix_rt::test]
async fn h2_service_error() {
let mut srv = test_server(move || {
HttpService::build()
.h2(|_| err::<Response<BoxBody>, _>(BadRequest))
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert_eq!(response.status(), http::StatusCode::BAD_REQUEST);
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(b"error"));
}
#[actix_rt::test]
async fn h1_service_error() {
let mut srv = test_server(move || {
HttpService::build()
.h1(|_| err::<Response<BoxBody>, _>(BadRequest))
.rustls_0_23(tls_config())
})
.await;
let response = srv.sget("/").send().await.unwrap();
assert_eq!(response.status(), http::StatusCode::BAD_REQUEST);
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(b"error"));
}
const H2_ALPN_PROTOCOL: &[u8] = b"h2";
const HTTP1_1_ALPN_PROTOCOL: &[u8] = b"http/1.1";
const CUSTOM_ALPN_PROTOCOL: &[u8] = b"custom";
#[actix_rt::test]
async fn alpn_h1() -> io::Result<()> {
let srv = test_server(move || {
let mut config = tls_config();
config.alpn_protocols.push(CUSTOM_ALPN_PROTOCOL.to_vec());
HttpService::build()
.h1(|_| ok::<_, Error>(Response::ok()))
.rustls_0_23(config)
})
.await;
assert_eq!(
get_negotiated_alpn_protocol(srv.addr(), CUSTOM_ALPN_PROTOCOL),
Some(CUSTOM_ALPN_PROTOCOL.to_vec())
);
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
#[actix_rt::test]
async fn alpn_h2() -> io::Result<()> {
let srv = test_server(move || {
let mut config = tls_config();
config.alpn_protocols.push(CUSTOM_ALPN_PROTOCOL.to_vec());
HttpService::build()
.h2(|_| ok::<_, Error>(Response::ok()))
.rustls_0_23(config)
})
.await;
assert_eq!(
get_negotiated_alpn_protocol(srv.addr(), H2_ALPN_PROTOCOL),
Some(H2_ALPN_PROTOCOL.to_vec())
);
assert_eq!(
get_negotiated_alpn_protocol(srv.addr(), CUSTOM_ALPN_PROTOCOL),
Some(CUSTOM_ALPN_PROTOCOL.to_vec())
);
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
#[actix_rt::test]
async fn alpn_h2_1() -> io::Result<()> {
let srv = test_server(move || {
let mut config = tls_config();
config.alpn_protocols.push(CUSTOM_ALPN_PROTOCOL.to_vec());
HttpService::build()
.finish(|_| ok::<_, Error>(Response::ok()))
.rustls_0_23(config)
})
.await;
assert_eq!(
get_negotiated_alpn_protocol(srv.addr(), H2_ALPN_PROTOCOL),
Some(H2_ALPN_PROTOCOL.to_vec())
);
assert_eq!(
get_negotiated_alpn_protocol(srv.addr(), HTTP1_1_ALPN_PROTOCOL),
Some(HTTP1_1_ALPN_PROTOCOL.to_vec())
);
assert_eq!(
get_negotiated_alpn_protocol(srv.addr(), CUSTOM_ALPN_PROTOCOL),
Some(CUSTOM_ALPN_PROTOCOL.to_vec())
);
let response = srv.sget("/").send().await.unwrap();
assert!(response.status().is_success());
Ok(())
}
|
use std::{
convert::Infallible,
io::{Read, Write},
net, thread,
time::{Duration, Instant},
};
use actix_http::{
body::{self, BodyStream, BoxBody, SizedStream},
header, Error, HttpService, KeepAlive, Request, Response, StatusCode, Version,
};
use actix_http_test::test_server;
use actix_rt::{net::TcpStream, time::sleep};
use actix_service::fn_service;
use actix_utils::future::{err, ok, ready};
use bytes::Bytes;
use derive_more::{Display, Error};
use futures_util::{stream::once, FutureExt as _, StreamExt as _};
use rand::Rng as _;
use regex::Regex;
#[actix_rt::test]
async fn h1_basic() {
let mut srv = test_server(|| {
HttpService::build()
.keep_alive(KeepAlive::Disabled)
.client_request_timeout(Duration::from_secs(1))
.client_disconnect_timeout(Duration::from_secs(1))
.h1(|req: Request| {
assert!(req.peer_addr().is_some());
ok::<_, Infallible>(Response::ok())
})
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
srv.stop().await;
}
#[actix_rt::test]
async fn h1_2() {
let mut srv = test_server(|| {
HttpService::build()
.keep_alive(KeepAlive::Disabled)
.client_request_timeout(Duration::from_secs(1))
.client_disconnect_timeout(Duration::from_secs(1))
.finish(|req: Request| {
assert!(req.peer_addr().is_some());
assert_eq!(req.version(), http::Version::HTTP_11);
ok::<_, Infallible>(Response::ok())
})
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
srv.stop().await;
}
#[derive(Debug, Display, Error)]
#[display("expect failed")]
struct ExpectFailed;
impl From<ExpectFailed> for Response<BoxBody> {
fn from(_: ExpectFailed) -> Self {
Response::new(StatusCode::EXPECTATION_FAILED)
}
}
#[actix_rt::test]
async fn expect_continue() {
let mut srv = test_server(|| {
HttpService::build()
.expect(fn_service(|req: Request| {
if req.head().uri.query() == Some("yes=") {
ok(req)
} else {
err(ExpectFailed)
}
}))
.finish(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test HTTP/1.1\r\nexpect: 100-continue\r\n\r\n");
let mut data = String::new();
let _ = stream.read_to_string(&mut data);
assert!(data.starts_with("HTTP/1.1 417 Expectation Failed\r\ncontent-length"));
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test?yes= HTTP/1.1\r\nexpect: 100-continue\r\n\r\n");
let mut data = String::new();
let _ = stream.read_to_string(&mut data);
assert!(data.starts_with("HTTP/1.1 100 Continue\r\n\r\nHTTP/1.1 200 OK\r\n"));
srv.stop().await;
}
#[actix_rt::test]
async fn expect_continue_h1() {
let mut srv = test_server(|| {
HttpService::build()
.expect(fn_service(|req: Request| {
sleep(Duration::from_millis(20)).then(move |_| {
if req.head().uri.query() == Some("yes=") {
ok(req)
} else {
err(ExpectFailed)
}
})
}))
.h1(fn_service(|_| ok::<_, Infallible>(Response::ok())))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test HTTP/1.1\r\nexpect: 100-continue\r\n\r\n");
let mut data = String::new();
let _ = stream.read_to_string(&mut data);
assert!(data.starts_with("HTTP/1.1 417 Expectation Failed\r\ncontent-length"));
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test?yes= HTTP/1.1\r\nexpect: 100-continue\r\n\r\n");
let mut data = String::new();
let _ = stream.read_to_string(&mut data);
assert!(data.starts_with("HTTP/1.1 100 Continue\r\n\r\nHTTP/1.1 200 OK\r\n"));
srv.stop().await;
}
#[actix_rt::test]
async fn chunked_payload() {
let chunk_sizes = [32768, 32, 32768];
let total_size: usize = chunk_sizes.iter().sum();
let mut srv = test_server(|| {
HttpService::build()
.h1(fn_service(|mut request: Request| {
request
.take_payload()
.map(|res| match res {
Ok(pl) => pl,
Err(err) => panic!("Error reading payload: {err}"),
})
.fold(0usize, |acc, chunk| ready(acc + chunk.len()))
.map(|req_size| {
Ok::<_, Error>(Response::ok().set_body(format!("size={}", req_size)))
})
}))
.tcp()
})
.await;
let returned_size = {
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"POST /test HTTP/1.1\r\nTransfer-Encoding: chunked\r\n\r\n");
for chunk_size in chunk_sizes.iter() {
let mut bytes = Vec::new();
let random_bytes = rand::rng()
.sample_iter(rand::distr::StandardUniform)
.take(*chunk_size)
.collect::<Vec<_>>();
bytes.extend(format!("{:X}\r\n", chunk_size).as_bytes());
bytes.extend(&random_bytes[..]);
bytes.extend(b"\r\n");
let _ = stream.write_all(&bytes);
}
let _ = stream.write_all(b"0\r\n\r\n");
stream.shutdown(net::Shutdown::Write).unwrap();
let mut data = String::new();
let _ = stream.read_to_string(&mut data);
let re = Regex::new(r"size=(\d+)").unwrap();
let size: usize = match re.captures(&data) {
Some(caps) => caps.get(1).unwrap().as_str().parse().unwrap(),
None => panic!("Failed to find size in HTTP Response: {}", data),
};
size
};
assert_eq!(returned_size, total_size);
srv.stop().await;
}
#[actix_rt::test]
async fn slow_request_408() {
let mut srv = test_server(|| {
HttpService::build()
.client_request_timeout(Duration::from_millis(200))
.keep_alive(Duration::from_secs(2))
.finish(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let start = Instant::now();
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test HTTP/1.1\r\n");
let mut data = String::new();
let _ = stream.read_to_string(&mut data);
assert!(
data.starts_with("HTTP/1.1 408 Request Timeout"),
"response was not 408: {}",
data
);
let diff = start.elapsed();
if diff < Duration::from_secs(1) {
// test success
} else if diff < Duration::from_secs(3) {
panic!("request seems to have wrongly timed-out according to keep-alive");
} else {
panic!("request took way too long to time out");
}
srv.stop().await;
}
#[actix_rt::test]
async fn http1_malformed_request() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test/tests/test HTTP1.1\r\n");
let mut data = String::new();
let _ = stream.read_to_string(&mut data);
assert!(data.starts_with("HTTP/1.1 400 Bad Request"));
srv.stop().await;
}
#[actix_rt::test]
async fn http1_keepalive() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test/tests/test HTTP/1.1\r\n\r\n");
let mut data = vec![0; 1024];
let _ = stream.read(&mut data);
assert_eq!(&data[..17], b"HTTP/1.1 200 OK\r\n");
let _ = stream.write_all(b"GET /test/tests/test HTTP/1.1\r\n\r\n");
let mut data = vec![0; 1024];
let _ = stream.read(&mut data);
assert_eq!(&data[..17], b"HTTP/1.1 200 OK\r\n");
srv.stop().await;
}
#[actix_rt::test]
async fn http1_keepalive_timeout() {
let mut srv = test_server(|| {
HttpService::build()
.keep_alive(Duration::from_secs(1))
.h1(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test HTTP/1.1\r\n\r\n");
let mut data = vec![0; 256];
let _ = stream.read(&mut data);
assert_eq!(&data[..17], b"HTTP/1.1 200 OK\r\n");
thread::sleep(Duration::from_millis(1100));
let mut data = vec![0; 256];
let res = stream.read(&mut data).unwrap();
assert_eq!(res, 0);
srv.stop().await;
}
#[actix_rt::test]
async fn http1_keepalive_close() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test/tests/test HTTP/1.1\r\nconnection: close\r\n\r\n");
let mut data = vec![0; 1024];
let _ = stream.read(&mut data);
assert_eq!(&data[..17], b"HTTP/1.1 200 OK\r\n");
let mut data = vec![0; 1024];
let res = stream.read(&mut data).unwrap();
assert_eq!(res, 0);
srv.stop().await;
}
#[actix_rt::test]
async fn http10_keepalive_default_close() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test/tests/test HTTP/1.0\r\n\r\n");
let mut data = vec![0; 1024];
let _ = stream.read(&mut data);
assert_eq!(&data[..17], b"HTTP/1.0 200 OK\r\n");
let mut data = vec![0; 1024];
let res = stream.read(&mut data).unwrap();
assert_eq!(res, 0);
srv.stop().await;
}
#[actix_rt::test]
async fn http10_keepalive() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test/tests/test HTTP/1.0\r\nconnection: keep-alive\r\n\r\n");
let mut data = vec![0; 1024];
let _ = stream.read(&mut data);
assert_eq!(&data[..17], b"HTTP/1.0 200 OK\r\n");
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test/tests/test HTTP/1.0\r\n\r\n");
let mut data = vec![0; 1024];
let _ = stream.read(&mut data);
assert_eq!(&data[..17], b"HTTP/1.0 200 OK\r\n");
let mut data = vec![0; 1024];
let res = stream.read(&mut data).unwrap();
assert_eq!(res, 0);
srv.stop().await;
}
#[actix_rt::test]
async fn http1_keepalive_disabled() {
let mut srv = test_server(|| {
HttpService::build()
.keep_alive(KeepAlive::Disabled)
.h1(|_| ok::<_, Infallible>(Response::ok()))
.tcp()
})
.await;
let mut stream = net::TcpStream::connect(srv.addr()).unwrap();
let _ = stream.write_all(b"GET /test/tests/test HTTP/1.1\r\n\r\n");
let mut data = vec![0; 1024];
let _ = stream.read(&mut data);
assert_eq!(&data[..17], b"HTTP/1.1 200 OK\r\n");
let mut data = vec![0; 1024];
let res = stream.read(&mut data).unwrap();
assert_eq!(res, 0);
srv.stop().await;
}
#[actix_rt::test]
async fn content_length() {
use actix_http::{
header::{HeaderName, HeaderValue},
StatusCode,
};
let mut srv = test_server(|| {
HttpService::build()
.h1(|req: Request| {
let idx: usize = req.uri().path()[1..].parse().unwrap();
let statuses = [
StatusCode::NO_CONTENT,
StatusCode::CONTINUE,
StatusCode::SWITCHING_PROTOCOLS,
StatusCode::PROCESSING,
StatusCode::OK,
StatusCode::NOT_FOUND,
];
ok::<_, Infallible>(Response::new(statuses[idx]))
})
.tcp()
})
.await;
let header = HeaderName::from_static("content-length");
let value = HeaderValue::from_static("0");
{
for i in 0..4 {
let req = srv.request(http::Method::GET, srv.url(&format!("/{}", i)));
let response = req.send().await.unwrap();
assert_eq!(response.headers().get(&header), None);
let req = srv.request(http::Method::HEAD, srv.url(&format!("/{}", i)));
let response = req.send().await.unwrap();
assert_eq!(response.headers().get(&header), None);
}
for i in 4..6 {
let req = srv.request(http::Method::GET, srv.url(&format!("/{}", i)));
let response = req.send().await.unwrap();
assert_eq!(response.headers().get(&header), Some(&value));
}
}
srv.stop().await;
}
#[actix_rt::test]
async fn h1_headers() {
let data = STR.repeat(10);
let data2 = data.clone();
let mut srv = test_server(move || {
let data = data.clone();
HttpService::build()
.h1(move |_| {
let mut builder = Response::build(StatusCode::OK);
for idx in 0..90 {
builder.insert_header((
format!("X-TEST-{}", idx).as_str(),
"TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST \
TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST ",
));
}
ok::<_, Infallible>(builder.body(data.clone()))
})
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from(data2));
srv.stop().await;
}
const STR: &str = "Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World \
Hello World Hello World Hello World Hello World Hello World";
#[actix_rt::test]
async fn h1_body() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
srv.stop().await;
}
#[actix_rt::test]
async fn h1_head_empty() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.tcp()
})
.await;
let response = srv.head("/").send().await.unwrap();
assert!(response.status().is_success());
{
let len = response
.headers()
.get(http::header::CONTENT_LENGTH)
.unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
// read response
let bytes = srv.load_body(response).await.unwrap();
assert!(bytes.is_empty());
srv.stop().await;
}
#[actix_rt::test]
async fn h1_head_binary() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.tcp()
})
.await;
let response = srv.head("/").send().await.unwrap();
assert!(response.status().is_success());
{
let len = response
.headers()
.get(http::header::CONTENT_LENGTH)
.unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
// read response
let bytes = srv.load_body(response).await.unwrap();
assert!(bytes.is_empty());
srv.stop().await;
}
#[actix_rt::test]
async fn h1_head_binary2() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| ok::<_, Infallible>(Response::ok().set_body(STR)))
.tcp()
})
.await;
let response = srv.head("/").send().await.unwrap();
assert!(response.status().is_success());
{
let len = response
.headers()
.get(http::header::CONTENT_LENGTH)
.unwrap();
assert_eq!(format!("{}", STR.len()), len.to_str().unwrap());
}
srv.stop().await;
}
#[actix_rt::test]
async fn h1_body_length() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| {
let body = once(ok::<_, Infallible>(Bytes::from_static(STR.as_ref())));
ok::<_, Infallible>(
Response::ok().set_body(SizedStream::new(STR.len() as u64, body)),
)
})
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
srv.stop().await;
}
#[actix_rt::test]
async fn h1_body_chunked_explicit() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| {
let body = once(ok::<_, Error>(Bytes::from_static(STR.as_ref())));
ok::<_, Infallible>(
Response::build(StatusCode::OK)
.insert_header((header::TRANSFER_ENCODING, "chunked"))
.body(BodyStream::new(body)),
)
})
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
assert_eq!(
response
.headers()
.get(header::TRANSFER_ENCODING)
.unwrap()
.to_str()
.unwrap(),
"chunked"
);
// read response
let bytes = srv.load_body(response).await.unwrap();
// decode
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
srv.stop().await;
}
#[actix_rt::test]
async fn h1_body_chunked_implicit() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| {
let body = once(ok::<_, Error>(Bytes::from_static(STR.as_ref())));
ok::<_, Infallible>(Response::build(StatusCode::OK).body(BodyStream::new(body)))
})
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
assert_eq!(
response
.headers()
.get(header::TRANSFER_ENCODING)
.unwrap()
.to_str()
.unwrap(),
"chunked"
);
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(STR.as_ref()));
srv.stop().await;
}
#[actix_rt::test]
async fn h1_response_http_error_handling() {
let mut srv = test_server(|| {
HttpService::build()
.h1(fn_service(|_| {
let broken_header = Bytes::from_static(b"\0\0\0");
ok::<_, Infallible>(
Response::build(StatusCode::OK)
.insert_header((http::header::CONTENT_TYPE, broken_header))
.body(STR),
)
}))
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert_eq!(response.status(), http::StatusCode::INTERNAL_SERVER_ERROR);
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(
bytes,
Bytes::from_static(b"error processing HTTP: failed to parse header value")
);
srv.stop().await;
}
#[derive(Debug, Display, Error)]
#[display("error")]
struct BadRequest;
impl From<BadRequest> for Response<BoxBody> {
fn from(_: BadRequest) -> Self {
Response::bad_request().set_body(BoxBody::new("error"))
}
}
#[actix_rt::test]
async fn h1_service_error() {
let mut srv = test_server(|| {
HttpService::build()
.h1(|_| err::<Response<()>, _>(BadRequest))
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert_eq!(response.status(), http::StatusCode::BAD_REQUEST);
// read response
let bytes = srv.load_body(response).await.unwrap();
assert_eq!(bytes, Bytes::from_static(b"error"));
srv.stop().await;
}
#[actix_rt::test]
async fn h1_on_connect() {
let mut srv = test_server(|| {
HttpService::build()
.on_connect_ext(|_, data| {
data.insert(20isize);
})
.h1(|req: Request| {
assert!(req.conn_data::<isize>().is_some());
ok::<_, Infallible>(Response::ok())
})
.tcp()
})
.await;
let response = srv.get("/").send().await.unwrap();
assert!(response.status().is_success());
srv.stop().await;
}
/// Tests compliance with 304 Not Modified spec in RFC 7232 §4.1.
/// https://datatracker.ietf.org/doc/html/rfc7232#section-4.1
#[actix_rt::test]
async fn not_modified_spec_h1() {
// TODO: this test needing a few seconds to complete reveals some weirdness with either the
// dispatcher or the client, though similar hangs occur on other tests in this file, only
// succeeding, it seems, because of the keepalive timer
static CL: header::HeaderName = header::CONTENT_LENGTH;
let mut srv = test_server(|| {
HttpService::build()
.h1(|req: Request| {
let res: Response<BoxBody> = match req.path() {
// with no content-length
"/none" => Response::with_body(StatusCode::NOT_MODIFIED, body::None::new())
.map_into_boxed_body(),
// with no content-length
"/body" => {
Response::with_body(StatusCode::NOT_MODIFIED, "1234").map_into_boxed_body()
}
// with manual content-length header and specific None body
"/cl-none" => {
let mut res =
Response::with_body(StatusCode::NOT_MODIFIED, body::None::new());
res.headers_mut()
.insert(CL.clone(), header::HeaderValue::from_static("24"));
res.map_into_boxed_body()
}
// with manual content-length header and ignore-able body
"/cl-body" => {
let mut res = Response::with_body(StatusCode::NOT_MODIFIED, "1234");
res.headers_mut()
.insert(CL.clone(), header::HeaderValue::from_static("4"));
res.map_into_boxed_body()
}
_ => panic!("unknown route"),
};
ok::<_, Infallible>(res)
})
.tcp()
})
.await;
let res = srv.get("/none").send().await.unwrap();
assert_eq!(res.status(), http::StatusCode::NOT_MODIFIED);
assert_eq!(res.headers().get(&CL), None);
assert!(srv.load_body(res).await.unwrap().is_empty());
let res = srv.get("/body").send().await.unwrap();
assert_eq!(res.status(), http::StatusCode::NOT_MODIFIED);
assert_eq!(res.headers().get(&CL), None);
assert!(srv.load_body(res).await.unwrap().is_empty());
let res = srv.get("/cl-none").send().await.unwrap();
assert_eq!(res.status(), http::StatusCode::NOT_MODIFIED);
assert_eq!(
res.headers().get(&CL),
Some(&header::HeaderValue::from_static("24")),
);
assert!(srv.load_body(res).await.unwrap().is_empty());
let res = srv.get("/cl-body").send().await.unwrap();
assert_eq!(res.status(), http::StatusCode::NOT_MODIFIED);
assert_eq!(
res.headers().get(&CL),
Some(&header::HeaderValue::from_static("4")),
);
// server does not prevent payload from being sent but clients may choose not to read it
// TODO: this is probably a bug in the client, especially since CL header can differ in length
// from the body
assert!(!srv.load_body(res).await.unwrap().is_empty());
// TODO: add stream response tests
srv.stop().await;
}
#[actix_rt::test]
async fn h2c_auto() {
let mut srv = test_server(|| {
HttpService::build()
.keep_alive(KeepAlive::Disabled)
.finish(|req: Request| {
let body = match req.version() {
Version::HTTP_11 => "h1",
Version::HTTP_2 => "h2",
_ => unreachable!(),
};
ok::<_, Infallible>(Response::ok().set_body(body))
})
.tcp_auto_h2c()
})
.await;
let req = srv.get("/");
assert_eq!(req.get_version(), &Version::HTTP_11);
let mut res = req.send().await.unwrap();
assert!(res.status().is_success());
assert_eq!(res.body().await.unwrap(), &b"h1"[..]);
// awc doesn't support forcing the version to http/2 so use h2 manually
let tcp = TcpStream::connect(srv.addr()).await.unwrap();
let (h2, connection) = h2::client::handshake(tcp).await.unwrap();
tokio::spawn(async move { connection.await.unwrap() });
let mut h2 = h2.ready().await.unwrap();
let request = ::http::Request::new(());
let (response, _) = h2.send_request(request, true).unwrap();
let (head, mut body) = response.await.unwrap().into_parts();
let body = body.data().await.unwrap().unwrap();
assert!(head.status.is_success());
assert_eq!(body, &b"h2"[..]);
srv.stop().await;
}
|
use std::{
cell::Cell,
convert::Infallible,
task::{Context, Poll},
};
use actix_codec::{AsyncRead, AsyncWrite, Framed};
use actix_http::{
body::{BodySize, BoxBody},
h1,
ws::{self, CloseCode, Frame, Item, Message},
Error, HttpService, Request, Response,
};
use actix_http_test::test_server;
use actix_service::{fn_factory, Service};
use bytes::Bytes;
use derive_more::{Display, Error, From};
use futures_core::future::LocalBoxFuture;
use futures_util::{SinkExt as _, StreamExt as _};
#[derive(Clone)]
struct WsService(Cell<bool>);
impl WsService {
fn new() -> Self {
WsService(Cell::new(false))
}
fn set_polled(&self) {
self.0.set(true);
}
fn was_polled(&self) -> bool {
self.0.get()
}
}
#[derive(Debug, Display, Error, From)]
enum WsServiceError {
#[display("HTTP error")]
Http(actix_http::Error),
#[display("WS handshake error")]
Ws(actix_http::ws::HandshakeError),
#[display("I/O error")]
Io(std::io::Error),
#[display("dispatcher error")]
Dispatcher,
}
impl From<WsServiceError> for Response<BoxBody> {
fn from(err: WsServiceError) -> Self {
match err {
WsServiceError::Http(err) => err.into(),
WsServiceError::Ws(err) => err.into(),
WsServiceError::Io(_err) => unreachable!(),
WsServiceError::Dispatcher => {
Response::internal_server_error().set_body(BoxBody::new(format!("{}", err)))
}
}
}
}
impl<T> Service<(Request, Framed<T, h1::Codec>)> for WsService
where
T: AsyncRead + AsyncWrite + Unpin + 'static,
{
type Response = ();
type Error = WsServiceError;
type Future = LocalBoxFuture<'static, Result<Self::Response, Self::Error>>;
fn poll_ready(&self, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.set_polled();
Poll::Ready(Ok(()))
}
fn call(&self, (req, mut framed): (Request, Framed<T, h1::Codec>)) -> Self::Future {
assert!(self.was_polled());
Box::pin(async move {
let res = ws::handshake(req.head())?.message_body(())?;
framed.send((res, BodySize::None).into()).await?;
let framed = framed.replace_codec(ws::Codec::new());
ws::Dispatcher::with(framed, service)
.await
.map_err(|_| WsServiceError::Dispatcher)?;
Ok(())
})
}
}
async fn service(msg: Frame) -> Result<Message, Error> {
let msg = match msg {
Frame::Ping(msg) => Message::Pong(msg),
Frame::Text(text) => Message::Text(String::from_utf8_lossy(&text).into_owned().into()),
Frame::Binary(bin) => Message::Binary(bin),
Frame::Continuation(item) => Message::Continuation(item),
Frame::Close(reason) => Message::Close(reason),
_ => return Err(ws::ProtocolError::BadOpCode.into()),
};
Ok(msg)
}
#[actix_rt::test]
async fn simple() {
let mut srv = test_server(|| {
HttpService::build()
.upgrade(fn_factory(|| async {
Ok::<_, Infallible>(WsService::new())
}))
.finish(|_| async { Ok::<_, Infallible>(Response::not_found()) })
.tcp()
})
.await;
// client service
let mut framed = srv.ws().await.unwrap();
framed.send(Message::Text("text".into())).await.unwrap();
let item = framed.next().await.unwrap().unwrap();
assert_eq!(item, Frame::Text(Bytes::from_static(b"text")));
framed.send(Message::Binary("text".into())).await.unwrap();
let item = framed.next().await.unwrap().unwrap();
assert_eq!(item, Frame::Binary(Bytes::from_static(&b"text"[..])));
framed.send(Message::Ping("text".into())).await.unwrap();
let item = framed.next().await.unwrap().unwrap();
assert_eq!(item, Frame::Pong("text".to_string().into()));
framed
.send(Message::Continuation(Item::FirstText("text".into())))
.await
.unwrap();
let item = framed.next().await.unwrap().unwrap();
assert_eq!(
item,
Frame::Continuation(Item::FirstText(Bytes::from_static(b"text")))
);
assert!(framed
.send(Message::Continuation(Item::FirstText("text".into())))
.await
.is_err());
assert!(framed
.send(Message::Continuation(Item::FirstBinary("text".into())))
.await
.is_err());
framed
.send(Message::Continuation(Item::Continue("text".into())))
.await
.unwrap();
let item = framed.next().await.unwrap().unwrap();
assert_eq!(
item,
Frame::Continuation(Item::Continue(Bytes::from_static(b"text")))
);
framed
.send(Message::Continuation(Item::Last("text".into())))
.await
.unwrap();
let item = framed.next().await.unwrap().unwrap();
assert_eq!(
item,
Frame::Continuation(Item::Last(Bytes::from_static(b"text")))
);
assert!(framed
.send(Message::Continuation(Item::Continue("text".into())))
.await
.is_err());
assert!(framed
.send(Message::Continuation(Item::Last("text".into())))
.await
.is_err());
framed
.send(Message::Close(Some(CloseCode::Normal.into())))
.await
.unwrap();
let item = framed.next().await.unwrap().unwrap();
assert_eq!(item, Frame::Close(Some(CloseCode::Normal.into())));
}
|
//! Macros for Actix system and runtime.
//!
//! The [`actix-rt`](https://docs.rs/actix-rt) crate must be available for macro output to compile.
//!
//! # Entry-point
//! See docs for the [`#[main]`](macro@main) macro.
//!
//! # Tests
//! See docs for the [`#[test]`](macro@test) macro.
#![deny(rust_2018_idioms, nonstandard_style)]
#![warn(future_incompatible)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
use proc_macro::TokenStream;
use quote::quote;
use syn::parse::Parser as _;
type AttributeArgs = syn::punctuated::Punctuated<syn::Meta, syn::Token![,]>;
/// Marks async entry-point function to be executed by Actix system.
///
/// # Examples
/// ```
/// #[actix_rt::main]
/// async fn main() {
/// println!("Hello world");
/// }
/// ```
// #[allow(clippy::needless_doctest_main)]
// #[cfg(not(test))] // Work around for rust-lang/rust#62127
#[proc_macro_attribute]
pub fn main(args: TokenStream, item: TokenStream) -> TokenStream {
let mut input = match syn::parse::<syn::ItemFn>(item.clone()) {
Ok(input) => input,
// on parse err, make IDEs happy; see fn docs
Err(err) => return input_and_compile_error(item, err),
};
let parser = AttributeArgs::parse_terminated;
let args = match parser.parse(args.clone()) {
Ok(args) => args,
Err(err) => return input_and_compile_error(args, err),
};
let attrs = &input.attrs;
let vis = &input.vis;
let sig = &mut input.sig;
let body = &input.block;
if sig.asyncness.is_none() {
return syn::Error::new_spanned(
sig.fn_token,
"the async keyword is missing from the function declaration",
)
.to_compile_error()
.into();
}
let mut system = syn::parse_str::<syn::Path>("::actix_rt::System").unwrap();
for arg in &args {
match arg {
syn::Meta::NameValue(syn::MetaNameValue {
path,
value:
syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(lit),
..
}),
..
}) => match path
.get_ident()
.map(|i| i.to_string().to_lowercase())
.as_deref()
{
Some("system") => match lit.parse() {
Ok(path) => system = path,
Err(_) => {
return syn::Error::new_spanned(lit, "Expected path")
.to_compile_error()
.into();
}
},
_ => {
return syn::Error::new_spanned(arg, "Unknown attribute specified")
.to_compile_error()
.into();
}
},
_ => {
return syn::Error::new_spanned(arg, "Unknown attribute specified")
.to_compile_error()
.into();
}
}
}
sig.asyncness = None;
(quote! {
#(#attrs)*
#vis #sig {
<#system>::new().block_on(async move { #body })
}
})
.into()
}
/// Marks async test function to be executed in an Actix system.
///
/// # Examples
/// ```
/// #[actix_rt::test]
/// async fn my_test() {
/// assert!(true);
/// }
/// ```
#[proc_macro_attribute]
pub fn test(args: TokenStream, item: TokenStream) -> TokenStream {
let mut input = match syn::parse::<syn::ItemFn>(item.clone()) {
Ok(input) => input,
// on parse err, make IDEs happy; see fn docs
Err(err) => return input_and_compile_error(item, err),
};
let parser = AttributeArgs::parse_terminated;
let args = match parser.parse(args.clone()) {
Ok(args) => args,
Err(err) => return input_and_compile_error(args, err),
};
let attrs = &input.attrs;
let vis = &input.vis;
let sig = &mut input.sig;
let body = &input.block;
let mut has_test_attr = false;
for attr in attrs {
if attr.path().is_ident("test") {
has_test_attr = true;
}
}
if sig.asyncness.is_none() {
return syn::Error::new_spanned(
input.sig.fn_token,
"the async keyword is missing from the function declaration",
)
.to_compile_error()
.into();
}
sig.asyncness = None;
let missing_test_attr = if has_test_attr {
quote! {}
} else {
quote! { #[::core::prelude::v1::test] }
};
let mut system = syn::parse_str::<syn::Path>("::actix_rt::System").unwrap();
for arg in &args {
match arg {
syn::Meta::NameValue(syn::MetaNameValue {
path,
value:
syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(lit),
..
}),
..
}) => match path
.get_ident()
.map(|i| i.to_string().to_lowercase())
.as_deref()
{
Some("system") => match lit.parse() {
Ok(path) => system = path,
Err(_) => {
return syn::Error::new_spanned(lit, "Expected path")
.to_compile_error()
.into();
}
},
_ => {
return syn::Error::new_spanned(arg, "Unknown attribute specified")
.to_compile_error()
.into();
}
},
_ => {
return syn::Error::new_spanned(arg, "Unknown attribute specified")
.to_compile_error()
.into();
}
}
}
(quote! {
#missing_test_attr
#(#attrs)*
#vis #sig {
<#system>::new().block_on(async { #body })
}
})
.into()
}
/// Converts the error to a token stream and appends it to the original input.
///
/// Returning the original input in addition to the error is good for IDEs which can gracefully
/// recover and show more precise errors within the macro body.
///
/// See <https://github.com/rust-analyzer/rust-analyzer/issues/10468> for more info.
fn input_and_compile_error(mut item: TokenStream, err: syn::Error) -> TokenStream {
let compile_err = TokenStream::from(err.to_compile_error());
item.extend(compile_err);
item
}
|
#[actix_rt::main]
async fn main() {
println!("Hello world");
}
|
#[actix_rt::main]
fn main() {
futures_util::future::ready(()).await
}
|
#[actix_rt::main]
async fn main2(_param: bool) {
futures_util::future::ready(()).await
}
fn main() {}
|
mod system {
pub use actix_rt::System as MySystem;
}
#[actix_rt::main(system = "system::MySystem")]
async fn main() {
futures_util::future::ready(()).await
}
|
#[actix_rt::main(system = "!@#*&")]
async fn main2() {}
fn main() {}
|
#[actix_rt::main(foo = "bar")]
async fn async_main() {}
#[actix_rt::main(bar::baz)]
async fn async_main2() {}
fn main() {}
|
#[actix_rt::test]
async fn my_test() {
assert!(true);
}
fn main() {}
|
#[actix_rt::test]
#[should_panic]
async fn my_test() {
todo!()
}
fn main() {}
|
#[actix_rt::test]
fn my_test() {
futures_util::future::ready(()).await
}
fn main() {}
|
mod system {
pub use actix_rt::System as MySystem;
}
#[actix_rt::test(system = "system::MySystem")]
async fn my_test() {
futures_util::future::ready(()).await
}
fn main() {}
|
#[actix_rt::test(system = "!@#*&")]
async fn my_test() {}
fn main() {}
|
#[actix_rt::test(foo = "bar")]
async fn my_test_1() {}
#[actix_rt::test(bar::baz)]
async fn my_test_2() {}
fn main() {}
|
#[rustversion::stable(1.65)] // MSRV
#[test]
fn compile_macros() {
let t = trybuild::TestCases::new();
t.pass("tests/trybuild/main-01-basic.rs");
t.compile_fail("tests/trybuild/main-02-only-async.rs");
t.pass("tests/trybuild/main-03-fn-params.rs");
t.pass("tests/trybuild/main-04-system-path.rs");
t.compile_fail("tests/trybuild/main-05-system-expect-path.rs");
t.compile_fail("tests/trybuild/main-06-unknown-attr.rs");
t.pass("tests/trybuild/test-01-basic.rs");
t.pass("tests/trybuild/test-02-keep-attrs.rs");
t.compile_fail("tests/trybuild/test-03-only-async.rs");
t.pass("tests/trybuild/test-04-system-path.rs");
t.compile_fail("tests/trybuild/test-05-system-expect-path.rs");
t.compile_fail("tests/trybuild/test-06-unknown-attr.rs");
}
|
use std::{borrow::Cow, fmt::Write as _};
use criterion::{black_box, criterion_group, criterion_main, Criterion};
fn compare_quoters(c: &mut Criterion) {
let mut group = c.benchmark_group("Compare Quoters");
let quoter = actix_router::Quoter::new(b"", b"");
let path_quoted = (0..=0x7f).fold(String::new(), |mut buf, c| {
write!(&mut buf, "%{:02X}", c).unwrap();
buf
});
let path_unquoted = ('\u{00}'..='\u{7f}').collect::<String>();
group.bench_function("quoter_unquoted", |b| {
b.iter(|| {
for _ in 0..10 {
black_box(quoter.requote(path_unquoted.as_bytes()));
}
});
});
group.bench_function("percent_encode_unquoted", |b| {
b.iter(|| {
for _ in 0..10 {
let decode = percent_encoding::percent_decode(path_unquoted.as_bytes());
black_box(Into::<Cow<'_, [u8]>>::into(decode));
}
});
});
group.bench_function("quoter_quoted", |b| {
b.iter(|| {
for _ in 0..10 {
black_box(quoter.requote(path_quoted.as_bytes()));
}
});
});
group.bench_function("percent_encode_quoted", |b| {
b.iter(|| {
for _ in 0..10 {
let decode = percent_encoding::percent_decode(path_quoted.as_bytes());
black_box(Into::<Cow<'_, [u8]>>::into(decode));
}
});
});
group.finish();
}
criterion_group!(benches, compare_quoters);
criterion_main!(benches);
|
//! Based on https://github.com/ibraheemdev/matchit/blob/master/benches/bench.rs
use criterion::{black_box, criterion_group, criterion_main, Criterion};
macro_rules! register {
(colon) => {{
register!(finish => ":p1", ":p2", ":p3", ":p4")
}};
(brackets) => {{
register!(finish => "{p1}", "{p2}", "{p3}", "{p4}")
}};
(regex) => {{
register!(finish => "(.*)", "(.*)", "(.*)", "(.*)")
}};
(finish => $p1:literal, $p2:literal, $p3:literal, $p4:literal) => {{
let arr = [
concat!("/authorizations"),
concat!("/authorizations/", $p1),
concat!("/applications/", $p1, "/tokens/", $p2),
concat!("/events"),
concat!("/repos/", $p1, "/", $p2, "/events"),
concat!("/networks/", $p1, "/", $p2, "/events"),
concat!("/orgs/", $p1, "/events"),
concat!("/users/", $p1, "/received_events"),
concat!("/users/", $p1, "/received_events/public"),
concat!("/users/", $p1, "/events"),
concat!("/users/", $p1, "/events/public"),
concat!("/users/", $p1, "/events/orgs/", $p2),
concat!("/feeds"),
concat!("/notifications"),
concat!("/repos/", $p1, "/", $p2, "/notifications"),
concat!("/notifications/threads/", $p1),
concat!("/notifications/threads/", $p1, "/subscription"),
concat!("/repos/", $p1, "/", $p2, "/stargazers"),
concat!("/users/", $p1, "/starred"),
concat!("/user/starred"),
concat!("/user/starred/", $p1, "/", $p2),
concat!("/repos/", $p1, "/", $p2, "/subscribers"),
concat!("/users/", $p1, "/subscriptions"),
concat!("/user/subscriptions"),
concat!("/repos/", $p1, "/", $p2, "/subscription"),
concat!("/user/subscriptions/", $p1, "/", $p2),
concat!("/users/", $p1, "/gists"),
concat!("/gists"),
concat!("/gists/", $p1),
concat!("/gists/", $p1, "/star"),
concat!("/repos/", $p1, "/", $p2, "/git/blobs/", $p3),
concat!("/repos/", $p1, "/", $p2, "/git/commits/", $p3),
concat!("/repos/", $p1, "/", $p2, "/git/refs"),
concat!("/repos/", $p1, "/", $p2, "/git/tags/", $p3),
concat!("/repos/", $p1, "/", $p2, "/git/trees/", $p3),
concat!("/issues"),
concat!("/user/issues"),
concat!("/orgs/", $p1, "/issues"),
concat!("/repos/", $p1, "/", $p2, "/issues"),
concat!("/repos/", $p1, "/", $p2, "/issues/", $p3),
concat!("/repos/", $p1, "/", $p2, "/assignees"),
concat!("/repos/", $p1, "/", $p2, "/assignees/", $p3),
concat!("/repos/", $p1, "/", $p2, "/issues/", $p3, "/comments"),
concat!("/repos/", $p1, "/", $p2, "/issues/", $p3, "/events"),
concat!("/repos/", $p1, "/", $p2, "/labels"),
concat!("/repos/", $p1, "/", $p2, "/labels/", $p3),
concat!("/repos/", $p1, "/", $p2, "/issues/", $p3, "/labels"),
concat!("/repos/", $p1, "/", $p2, "/milestones/", $p3, "/labels"),
concat!("/repos/", $p1, "/", $p2, "/milestones/"),
concat!("/repos/", $p1, "/", $p2, "/milestones/", $p3),
concat!("/emojis"),
concat!("/gitignore/templates"),
concat!("/gitignore/templates/", $p1),
concat!("/meta"),
concat!("/rate_limit"),
concat!("/users/", $p1, "/orgs"),
concat!("/user/orgs"),
concat!("/orgs/", $p1),
concat!("/orgs/", $p1, "/members"),
concat!("/orgs/", $p1, "/members", $p2),
concat!("/orgs/", $p1, "/public_members"),
concat!("/orgs/", $p1, "/public_members/", $p2),
concat!("/orgs/", $p1, "/teams"),
concat!("/teams/", $p1),
concat!("/teams/", $p1, "/members"),
concat!("/teams/", $p1, "/members", $p2),
concat!("/teams/", $p1, "/repos"),
concat!("/teams/", $p1, "/repos/", $p2, "/", $p3),
concat!("/user/teams"),
concat!("/repos/", $p1, "/", $p2, "/pulls"),
concat!("/repos/", $p1, "/", $p2, "/pulls/", $p3),
concat!("/repos/", $p1, "/", $p2, "/pulls/", $p3, "/commits"),
concat!("/repos/", $p1, "/", $p2, "/pulls/", $p3, "/files"),
concat!("/repos/", $p1, "/", $p2, "/pulls/", $p3, "/merge"),
concat!("/repos/", $p1, "/", $p2, "/pulls/", $p3, "/comments"),
concat!("/user/repos"),
concat!("/users/", $p1, "/repos"),
concat!("/orgs/", $p1, "/repos"),
concat!("/repositories"),
concat!("/repos/", $p1, "/", $p2),
concat!("/repos/", $p1, "/", $p2, "/contributors"),
concat!("/repos/", $p1, "/", $p2, "/languages"),
concat!("/repos/", $p1, "/", $p2, "/teams"),
concat!("/repos/", $p1, "/", $p2, "/tags"),
concat!("/repos/", $p1, "/", $p2, "/branches"),
concat!("/repos/", $p1, "/", $p2, "/branches/", $p3),
concat!("/repos/", $p1, "/", $p2, "/collaborators"),
concat!("/repos/", $p1, "/", $p2, "/collaborators/", $p3),
concat!("/repos/", $p1, "/", $p2, "/comments"),
concat!("/repos/", $p1, "/", $p2, "/commits/", $p3, "/comments"),
concat!("/repos/", $p1, "/", $p2, "/commits"),
concat!("/repos/", $p1, "/", $p2, "/commits/", $p3),
concat!("/repos/", $p1, "/", $p2, "/readme"),
concat!("/repos/", $p1, "/", $p2, "/keys"),
concat!("/repos/", $p1, "/", $p2, "/keys", $p3),
concat!("/repos/", $p1, "/", $p2, "/downloads"),
concat!("/repos/", $p1, "/", $p2, "/downloads", $p3),
concat!("/repos/", $p1, "/", $p2, "/forks"),
concat!("/repos/", $p1, "/", $p2, "/hooks"),
concat!("/repos/", $p1, "/", $p2, "/hooks", $p3),
concat!("/repos/", $p1, "/", $p2, "/releases"),
concat!("/repos/", $p1, "/", $p2, "/releases/", $p3),
concat!("/repos/", $p1, "/", $p2, "/releases/", $p3, "/assets"),
concat!("/repos/", $p1, "/", $p2, "/stats/contributors"),
concat!("/repos/", $p1, "/", $p2, "/stats/commit_activity"),
concat!("/repos/", $p1, "/", $p2, "/stats/code_frequency"),
concat!("/repos/", $p1, "/", $p2, "/stats/participation"),
concat!("/repos/", $p1, "/", $p2, "/stats/punch_card"),
concat!("/repos/", $p1, "/", $p2, "/statuses/", $p3),
concat!("/search/repositories"),
concat!("/search/code"),
concat!("/search/issues"),
concat!("/search/users"),
concat!("/legacy/issues/search/", $p1, "/", $p2, "/", $p3, "/", $p4),
concat!("/legacy/repos/search/", $p1),
concat!("/legacy/user/search/", $p1),
concat!("/legacy/user/email/", $p1),
concat!("/users/", $p1),
concat!("/user"),
concat!("/users"),
concat!("/user/emails"),
concat!("/users/", $p1, "/followers"),
concat!("/user/followers"),
concat!("/users/", $p1, "/following"),
concat!("/user/following"),
concat!("/user/following/", $p1),
concat!("/users/", $p1, "/following", $p2),
concat!("/users/", $p1, "/keys"),
concat!("/user/keys"),
concat!("/user/keys/", $p1),
];
IntoIterator::into_iter(arr)
}};
}
fn call() -> impl Iterator<Item = &'static str> {
let arr = [
"/authorizations",
"/user/repos",
"/repos/rust-lang/rust/stargazers",
"/orgs/rust-lang/public_members/nikomatsakis",
"/repos/rust-lang/rust/releases/1.51.0",
];
IntoIterator::into_iter(arr)
}
fn compare_routers(c: &mut Criterion) {
let mut group = c.benchmark_group("Compare Routers");
let mut actix = actix_router::Router::<bool>::build();
for route in register!(brackets) {
actix.path(route, true);
}
let actix = actix.finish();
group.bench_function("actix", |b| {
b.iter(|| {
for route in call() {
let mut path = actix_router::Path::new(route);
black_box(actix.recognize(&mut path).unwrap());
}
});
});
let regex_set = regex::RegexSet::new(register!(regex)).unwrap();
group.bench_function("regex", |b| {
b.iter(|| {
for route in call() {
black_box(regex_set.matches(route));
}
});
});
group.finish();
}
criterion_group!(benches, compare_routers);
criterion_main!(benches);
|
use std::borrow::Cow;
use serde::{
de::{self, Deserializer, Error as DeError, Visitor},
forward_to_deserialize_any,
};
use crate::{
path::{Path, PathIter},
Quoter, ResourcePath,
};
thread_local! {
static FULL_QUOTER: Quoter = Quoter::new(b"", b"");
}
macro_rules! unsupported_type {
($trait_fn:ident, $name:expr) => {
fn $trait_fn<V>(self, _: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
Err(de::Error::custom(concat!("unsupported type: ", $name)))
}
};
}
macro_rules! parse_single_value {
($trait_fn:ident) => {
fn $trait_fn<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
if self.path.segment_count() != 1 {
Err(de::value::Error::custom(
format!(
"wrong number of parameters: {} expected 1",
self.path.segment_count()
)
.as_str(),
))
} else {
Value {
value: &self.path[0],
}
.$trait_fn(visitor)
}
}
};
}
macro_rules! parse_value {
($trait_fn:ident, $visit_fn:ident, $tp:tt) => {
fn $trait_fn<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
let decoded = FULL_QUOTER
.with(|q| q.requote_str_lossy(self.value))
.map(Cow::Owned)
.unwrap_or(Cow::Borrowed(self.value));
let v = decoded.parse().map_err(|_| {
de::value::Error::custom(format!("can not parse {:?} to a {}", self.value, $tp))
})?;
visitor.$visit_fn(v)
}
};
}
pub struct PathDeserializer<'de, T: ResourcePath> {
path: &'de Path<T>,
}
impl<'de, T: ResourcePath + 'de> PathDeserializer<'de, T> {
pub fn new(path: &'de Path<T>) -> Self {
PathDeserializer { path }
}
}
impl<'de, T: ResourcePath + 'de> Deserializer<'de> for PathDeserializer<'de, T> {
type Error = de::value::Error;
fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_map(ParamsDeserializer {
params: self.path.iter(),
current: None,
})
}
fn deserialize_struct<V>(
self,
_: &'static str,
_: &'static [&'static str],
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
self.deserialize_map(visitor)
}
fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_unit()
}
fn deserialize_unit_struct<V>(
self,
_: &'static str,
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
self.deserialize_unit(visitor)
}
fn deserialize_newtype_struct<V>(
self,
_: &'static str,
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_newtype_struct(self)
}
fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
if self.path.segment_count() < len {
Err(de::value::Error::custom(
format!(
"wrong number of parameters: {} expected {}",
self.path.segment_count(),
len
)
.as_str(),
))
} else {
visitor.visit_seq(ParamsSeq {
params: self.path.iter(),
})
}
}
fn deserialize_tuple_struct<V>(
self,
_: &'static str,
len: usize,
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
if self.path.segment_count() < len {
Err(de::value::Error::custom(
format!(
"wrong number of parameters: {} expected {}",
self.path.segment_count(),
len
)
.as_str(),
))
} else {
visitor.visit_seq(ParamsSeq {
params: self.path.iter(),
})
}
}
fn deserialize_enum<V>(
self,
_: &'static str,
_: &'static [&'static str],
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
if self.path.is_empty() {
Err(de::value::Error::custom("expected at least one parameters"))
} else {
visitor.visit_enum(ValueEnum {
value: &self.path[0],
})
}
}
fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_seq(ParamsSeq {
params: self.path.iter(),
})
}
unsupported_type!(deserialize_any, "'any'");
unsupported_type!(deserialize_option, "Option<T>");
unsupported_type!(deserialize_identifier, "identifier");
unsupported_type!(deserialize_ignored_any, "ignored_any");
parse_single_value!(deserialize_bool);
parse_single_value!(deserialize_i8);
parse_single_value!(deserialize_i16);
parse_single_value!(deserialize_i32);
parse_single_value!(deserialize_i64);
parse_single_value!(deserialize_u8);
parse_single_value!(deserialize_u16);
parse_single_value!(deserialize_u32);
parse_single_value!(deserialize_u64);
parse_single_value!(deserialize_f32);
parse_single_value!(deserialize_f64);
parse_single_value!(deserialize_str);
parse_single_value!(deserialize_string);
parse_single_value!(deserialize_bytes);
parse_single_value!(deserialize_byte_buf);
parse_single_value!(deserialize_char);
}
struct ParamsDeserializer<'de, T: ResourcePath> {
params: PathIter<'de, T>,
current: Option<(&'de str, &'de str)>,
}
impl<'de, T: ResourcePath> de::MapAccess<'de> for ParamsDeserializer<'de, T> {
type Error = de::value::Error;
fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
where
K: de::DeserializeSeed<'de>,
{
self.current = self.params.next().map(|ref item| (item.0, item.1));
match self.current {
Some((key, _)) => Ok(Some(seed.deserialize(Key { key })?)),
None => Ok(None),
}
}
fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
where
V: de::DeserializeSeed<'de>,
{
if let Some((_, value)) = self.current.take() {
seed.deserialize(Value { value })
} else {
Err(de::value::Error::custom("unexpected item"))
}
}
}
struct Key<'de> {
key: &'de str,
}
impl<'de> Deserializer<'de> for Key<'de> {
type Error = de::value::Error;
fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_str(self.key)
}
fn deserialize_any<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
Err(de::value::Error::custom("Unexpected"))
}
forward_to_deserialize_any! {
bool i8 i16 i32 i64 u8 u16 u32 u64 f32 f64 char str string bytes
byte_buf option unit unit_struct newtype_struct seq tuple
tuple_struct map struct enum ignored_any
}
}
struct Value<'de> {
value: &'de str,
}
impl<'de> Deserializer<'de> for Value<'de> {
type Error = de::value::Error;
parse_value!(deserialize_bool, visit_bool, "bool");
parse_value!(deserialize_i8, visit_i8, "i8");
parse_value!(deserialize_i16, visit_i16, "i16");
parse_value!(deserialize_i32, visit_i32, "i32");
parse_value!(deserialize_i64, visit_i64, "i64");
parse_value!(deserialize_u8, visit_u8, "u8");
parse_value!(deserialize_u16, visit_u16, "u16");
parse_value!(deserialize_u32, visit_u32, "u32");
parse_value!(deserialize_u64, visit_u64, "u64");
parse_value!(deserialize_f32, visit_f32, "f32");
parse_value!(deserialize_f64, visit_f64, "f64");
parse_value!(deserialize_char, visit_char, "char");
fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_unit()
}
fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_unit()
}
fn deserialize_unit_struct<V>(
self,
_: &'static str,
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_unit()
}
fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
match FULL_QUOTER.with(|q| q.requote_str_lossy(self.value)) {
Some(s) => visitor.visit_string(s),
None => visitor.visit_borrowed_str(self.value),
}
}
fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
match FULL_QUOTER.with(|q| q.requote_str_lossy(self.value)) {
Some(s) => visitor.visit_byte_buf(s.into()),
None => visitor.visit_borrowed_bytes(self.value.as_bytes()),
}
}
fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
self.deserialize_bytes(visitor)
}
fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
self.deserialize_str(visitor)
}
fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_some(self)
}
fn deserialize_enum<V>(
self,
_: &'static str,
_: &'static [&'static str],
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_enum(ValueEnum { value: self.value })
}
fn deserialize_newtype_struct<V>(
self,
_: &'static str,
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_newtype_struct(self)
}
fn deserialize_tuple<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
Err(de::value::Error::custom("unsupported type: tuple"))
}
fn deserialize_struct<V>(
self,
_: &'static str,
_: &'static [&'static str],
_: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
Err(de::value::Error::custom("unsupported type: struct"))
}
fn deserialize_tuple_struct<V>(
self,
_: &'static str,
_: usize,
_: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
Err(de::value::Error::custom("unsupported type: tuple struct"))
}
unsupported_type!(deserialize_any, "any");
unsupported_type!(deserialize_seq, "seq");
unsupported_type!(deserialize_map, "map");
unsupported_type!(deserialize_identifier, "identifier");
}
struct ParamsSeq<'de, T: ResourcePath> {
params: PathIter<'de, T>,
}
impl<'de, T: ResourcePath> de::SeqAccess<'de> for ParamsSeq<'de, T> {
type Error = de::value::Error;
fn next_element_seed<U>(&mut self, seed: U) -> Result<Option<U::Value>, Self::Error>
where
U: de::DeserializeSeed<'de>,
{
match self.params.next() {
Some(item) => Ok(Some(seed.deserialize(Value { value: item.1 })?)),
None => Ok(None),
}
}
}
struct ValueEnum<'de> {
value: &'de str,
}
impl<'de> de::EnumAccess<'de> for ValueEnum<'de> {
type Error = de::value::Error;
type Variant = UnitVariant;
fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error>
where
V: de::DeserializeSeed<'de>,
{
Ok((seed.deserialize(Key { key: self.value })?, UnitVariant))
}
}
struct UnitVariant;
impl<'de> de::VariantAccess<'de> for UnitVariant {
type Error = de::value::Error;
fn unit_variant(self) -> Result<(), Self::Error> {
Ok(())
}
fn newtype_variant_seed<T>(self, _seed: T) -> Result<T::Value, Self::Error>
where
T: de::DeserializeSeed<'de>,
{
Err(de::value::Error::custom("not supported"))
}
fn tuple_variant<V>(self, _len: usize, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
Err(de::value::Error::custom("not supported"))
}
fn struct_variant<V>(self, _: &'static [&'static str], _: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
Err(de::value::Error::custom("not supported"))
}
}
#[cfg(test)]
mod tests {
use serde::Deserialize;
use super::*;
use crate::{router::Router, ResourceDef};
#[derive(Deserialize)]
struct MyStruct {
key: String,
value: String,
}
#[derive(Deserialize)]
struct Id {
_id: String,
}
#[derive(Debug, Deserialize)]
struct Test1(String, u32);
#[derive(Debug, Deserialize)]
struct Test2 {
key: String,
value: u32,
}
#[derive(Debug, Deserialize, PartialEq)]
#[serde(rename_all = "lowercase")]
enum TestEnum {
Val1,
Val2,
}
#[derive(Debug, Deserialize)]
struct Test3 {
val: TestEnum,
}
#[test]
fn test_request_extract() {
let mut router = Router::<()>::build();
router.path("/{key}/{value}/", ());
let router = router.finish();
let mut path = Path::new("/name/user1/");
assert!(router.recognize(&mut path).is_some());
let s: MyStruct = de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(s.key, "name");
assert_eq!(s.value, "user1");
let s: (String, String) =
de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(s.0, "name");
assert_eq!(s.1, "user1");
let mut router = Router::<()>::build();
router.path("/{key}/{value}/", ());
let router = router.finish();
let mut path = Path::new("/name/32/");
assert!(router.recognize(&mut path).is_some());
let s: Test1 = de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(s.0, "name");
assert_eq!(s.1, 32);
let s: Test2 = de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(s.key, "name");
assert_eq!(s.value, 32);
let s: (String, u8) = de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(s.0, "name");
assert_eq!(s.1, 32);
let res: Vec<String> = de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(res[0], "name".to_owned());
assert_eq!(res[1], "32".to_owned());
}
#[test]
fn test_extract_path_single() {
let mut router = Router::<()>::build();
router.path("/{value}/", ());
let router = router.finish();
let mut path = Path::new("/32/");
assert!(router.recognize(&mut path).is_some());
let i: i8 = de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(i, 32);
}
#[test]
fn test_extract_enum() {
let mut router = Router::<()>::build();
router.path("/{val}/", ());
let router = router.finish();
let mut path = Path::new("/val1/");
assert!(router.recognize(&mut path).is_some());
let i: TestEnum = de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(i, TestEnum::Val1);
let mut router = Router::<()>::build();
router.path("/{val1}/{val2}/", ());
let router = router.finish();
let mut path = Path::new("/val1/val2/");
assert!(router.recognize(&mut path).is_some());
let i: (TestEnum, TestEnum) =
de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(i, (TestEnum::Val1, TestEnum::Val2));
}
#[test]
fn test_extract_enum_value() {
let mut router = Router::<()>::build();
router.path("/{val}/", ());
let router = router.finish();
let mut path = Path::new("/val1/");
assert!(router.recognize(&mut path).is_some());
let i: Test3 = de::Deserialize::deserialize(PathDeserializer::new(&path)).unwrap();
assert_eq!(i.val, TestEnum::Val1);
let mut path = Path::new("/val3/");
assert!(router.recognize(&mut path).is_some());
let i: Result<Test3, de::value::Error> =
de::Deserialize::deserialize(PathDeserializer::new(&path));
assert!(i.is_err());
assert!(format!("{:?}", i).contains("unknown variant"));
}
#[test]
fn test_extract_errors() {
let mut router = Router::<()>::build();
router.path("/{value}/", ());
let router = router.finish();
let mut path = Path::new("/name/");
assert!(router.recognize(&mut path).is_some());
let s: Result<Test1, de::value::Error> =
de::Deserialize::deserialize(PathDeserializer::new(&path));
assert!(s.is_err());
assert!(format!("{:?}", s).contains("wrong number of parameters"));
let s: Result<Test2, de::value::Error> =
de::Deserialize::deserialize(PathDeserializer::new(&path));
assert!(s.is_err());
assert!(format!("{:?}", s).contains("can not parse"));
let s: Result<(String, String), de::value::Error> =
de::Deserialize::deserialize(PathDeserializer::new(&path));
assert!(s.is_err());
assert!(format!("{:?}", s).contains("wrong number of parameters"));
let s: Result<u32, de::value::Error> =
de::Deserialize::deserialize(PathDeserializer::new(&path));
assert!(s.is_err());
assert!(format!("{:?}", s).contains("can not parse"));
}
#[test]
fn deserialize_path_decode_string() {
let rdef = ResourceDef::new("/{key}");
let mut path = Path::new("/%25");
rdef.capture_match_info(&mut path);
let de = PathDeserializer::new(&path);
let segment: String = serde::Deserialize::deserialize(de).unwrap();
assert_eq!(segment, "%");
let mut path = Path::new("/%2F");
rdef.capture_match_info(&mut path);
let de = PathDeserializer::new(&path);
let segment: String = serde::Deserialize::deserialize(de).unwrap();
assert_eq!(segment, "/")
}
#[test]
fn deserialize_path_decode_seq() {
let rdef = ResourceDef::new("/{key}/{value}");
let mut path = Path::new("/%30%25/%30%2F");
rdef.capture_match_info(&mut path);
let de = PathDeserializer::new(&path);
let segment: (String, String) = serde::Deserialize::deserialize(de).unwrap();
assert_eq!(segment.0, "0%");
assert_eq!(segment.1, "0/");
}
#[test]
fn deserialize_path_decode_map() {
#[derive(Deserialize)]
struct Vals {
key: String,
value: String,
}
let rdef = ResourceDef::new("/{key}/{value}");
let mut path = Path::new("/%25/%2F");
rdef.capture_match_info(&mut path);
let de = PathDeserializer::new(&path);
let vals: Vals = serde::Deserialize::deserialize(de).unwrap();
assert_eq!(vals.key, "%");
assert_eq!(vals.value, "/");
}
#[test]
fn deserialize_borrowed() {
#[derive(Debug, Deserialize)]
struct Params<'a> {
val: &'a str,
}
let rdef = ResourceDef::new("/{val}");
let mut path = Path::new("/X");
rdef.capture_match_info(&mut path);
let de = PathDeserializer::new(&path);
let params: Params<'_> = serde::Deserialize::deserialize(de).unwrap();
assert_eq!(params.val, "X");
let de = PathDeserializer::new(&path);
let params: &str = serde::Deserialize::deserialize(de).unwrap();
assert_eq!(params, "X");
let mut path = Path::new("/%2F");
rdef.capture_match_info(&mut path);
let de = PathDeserializer::new(&path);
assert!(<Params<'_> as serde::Deserialize>::deserialize(de).is_err());
let de = PathDeserializer::new(&path);
assert!(<&str as serde::Deserialize>::deserialize(de).is_err());
}
// #[test]
// fn test_extract_path_decode() {
// let mut router = Router::<()>::default();
// router.register_resource(Resource::new(ResourceDef::new("/{value}/")));
// macro_rules! test_single_value {
// ($value:expr, $expected:expr) => {{
// let req = TestRequest::with_uri($value).finish();
// let info = router.recognize(&req, &(), 0);
// let req = req.with_route_info(info);
// assert_eq!(
// *Path::<String>::from_request(&req, &PathConfig::default()).unwrap(),
// $expected
// );
// }};
// }
// test_single_value!("/%25/", "%");
// test_single_value!("/%40%C2%A3%24%25%5E%26%2B%3D/", "@£$%^&+=");
// test_single_value!("/%2B/", "+");
// test_single_value!("/%252B/", "%2B");
// test_single_value!("/%2F/", "/");
// test_single_value!("/%252F/", "%2F");
// test_single_value!(
// "/http%3A%2F%2Flocalhost%3A80%2Ffoo/",
// "http://localhost:80/foo"
// );
// test_single_value!("/%2Fvar%2Flog%2Fsyslog/", "/var/log/syslog");
// test_single_value!(
// "/http%3A%2F%2Flocalhost%3A80%2Ffile%2F%252Fvar%252Flog%252Fsyslog/",
// "http://localhost:80/file/%2Fvar%2Flog%2Fsyslog"
// );
// let req = TestRequest::with_uri("/%25/7/?id=test").finish();
// let mut router = Router::<()>::default();
// router.register_resource(Resource::new(ResourceDef::new("/{key}/{value}/")));
// let info = router.recognize(&req, &(), 0);
// let req = req.with_route_info(info);
// let s = Path::<Test2>::from_request(&req, &PathConfig::default()).unwrap();
// assert_eq!(s.key, "%");
// assert_eq!(s.value, 7);
// let s = Path::<(String, String)>::from_request(&req, &PathConfig::default()).unwrap();
// assert_eq!(s.0, "%");
// assert_eq!(s.1, "7");
// }
// #[test]
// fn test_extract_path_no_decode() {
// let mut router = Router::<()>::default();
// router.register_resource(Resource::new(ResourceDef::new("/{value}/")));
// let req = TestRequest::with_uri("/%25/").finish();
// let info = router.recognize(&req, &(), 0);
// let req = req.with_route_info(info);
// assert_eq!(
// *Path::<String>::from_request(&req, &&PathConfig::default().disable_decoding())
// .unwrap(),
// "%25"
// );
// }
}
|
//! Resource path matching and router.
#![deny(rust_2018_idioms, nonstandard_style)]
#![warn(future_incompatible)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
mod de;
mod path;
mod pattern;
mod quoter;
mod regex_set;
mod resource;
mod resource_path;
mod router;
#[cfg(feature = "http")]
mod url;
#[cfg(feature = "http")]
pub use self::url::Url;
pub use self::{
de::PathDeserializer,
path::Path,
pattern::{IntoPatterns, Patterns},
quoter::Quoter,
resource::ResourceDef,
resource_path::{Resource, ResourcePath},
router::{ResourceId, Router, RouterBuilder},
};
|
use std::{
borrow::Cow,
ops::{DerefMut, Index},
};
use serde::{de, Deserialize};
use crate::{de::PathDeserializer, Resource, ResourcePath};
#[derive(Debug, Clone)]
pub(crate) enum PathItem {
Static(Cow<'static, str>),
Segment(u16, u16),
}
impl Default for PathItem {
fn default() -> Self {
Self::Static(Cow::Borrowed(""))
}
}
/// Resource path match information.
///
/// If resource path contains variable patterns, `Path` stores them.
#[derive(Debug, Clone, Default)]
pub struct Path<T> {
/// Full path representation.
path: T,
/// Number of characters in `path` that have been processed into `segments`.
pub(crate) skip: u16,
/// List of processed dynamic segments; name->value pairs.
pub(crate) segments: Vec<(Cow<'static, str>, PathItem)>,
}
impl<T: ResourcePath> Path<T> {
pub fn new(path: T) -> Path<T> {
Path {
path,
skip: 0,
segments: Vec::new(),
}
}
/// Returns reference to inner path instance.
#[inline]
pub fn get_ref(&self) -> &T {
&self.path
}
/// Returns mutable reference to inner path instance.
#[inline]
pub fn get_mut(&mut self) -> &mut T {
&mut self.path
}
/// Returns full path as a string.
#[inline]
pub fn as_str(&self) -> &str {
self.path.path()
}
/// Returns unprocessed part of the path.
///
/// Returns empty string if no more is to be processed.
#[inline]
pub fn unprocessed(&self) -> &str {
// clamp skip to path length
let skip = (self.skip as usize).min(self.as_str().len());
&self.path.path()[skip..]
}
/// Returns unprocessed part of the path.
#[doc(hidden)]
#[deprecated(since = "0.6.0", note = "Use `.as_str()` or `.unprocessed()`.")]
#[inline]
pub fn path(&self) -> &str {
let skip = self.skip as usize;
let path = self.path.path();
if skip <= path.len() {
&path[skip..]
} else {
""
}
}
/// Set new path.
#[inline]
pub fn set(&mut self, path: T) {
self.path = path;
self.skip = 0;
self.segments.clear();
}
/// Reset state.
#[inline]
pub fn reset(&mut self) {
self.skip = 0;
self.segments.clear();
}
/// Skip first `n` chars in path.
#[inline]
pub fn skip(&mut self, n: u16) {
self.skip += n;
}
pub(crate) fn add(&mut self, name: impl Into<Cow<'static, str>>, value: PathItem) {
match value {
PathItem::Static(seg) => self.segments.push((name.into(), PathItem::Static(seg))),
PathItem::Segment(begin, end) => self.segments.push((
name.into(),
PathItem::Segment(self.skip + begin, self.skip + end),
)),
}
}
#[doc(hidden)]
pub fn add_static(
&mut self,
name: impl Into<Cow<'static, str>>,
value: impl Into<Cow<'static, str>>,
) {
self.segments
.push((name.into(), PathItem::Static(value.into())));
}
/// Check if there are any matched patterns.
#[inline]
pub fn is_empty(&self) -> bool {
self.segments.is_empty()
}
/// Returns number of interpolated segments.
#[inline]
pub fn segment_count(&self) -> usize {
self.segments.len()
}
/// Get matched parameter by name without type conversion
pub fn get(&self, name: &str) -> Option<&str> {
for (seg_name, val) in self.segments.iter() {
if name == seg_name {
return match val {
PathItem::Static(ref s) => Some(s),
PathItem::Segment(s, e) => {
Some(&self.path.path()[(*s as usize)..(*e as usize)])
}
};
}
}
None
}
/// Returns matched parameter by name.
///
/// If keyed parameter is not available empty string is used as default value.
pub fn query(&self, key: &str) -> &str {
self.get(key).unwrap_or_default()
}
/// Return iterator to items in parameter container.
pub fn iter(&self) -> PathIter<'_, T> {
PathIter {
idx: 0,
params: self,
}
}
/// Deserializes matching parameters to a specified type `U`.
///
/// # Errors
///
/// Returns error when dynamic path segments cannot be deserialized into a `U` type.
pub fn load<'de, U: Deserialize<'de>>(&'de self) -> Result<U, de::value::Error> {
Deserialize::deserialize(PathDeserializer::new(self))
}
}
#[derive(Debug)]
pub struct PathIter<'a, T> {
idx: usize,
params: &'a Path<T>,
}
impl<'a, T: ResourcePath> Iterator for PathIter<'a, T> {
type Item = (&'a str, &'a str);
#[inline]
fn next(&mut self) -> Option<(&'a str, &'a str)> {
if self.idx < self.params.segment_count() {
let idx = self.idx;
let res = match self.params.segments[idx].1 {
PathItem::Static(ref s) => s,
PathItem::Segment(s, e) => &self.params.path.path()[(s as usize)..(e as usize)],
};
self.idx += 1;
return Some((&self.params.segments[idx].0, res));
}
None
}
}
impl<'a, T: ResourcePath> Index<&'a str> for Path<T> {
type Output = str;
fn index(&self, name: &'a str) -> &str {
self.get(name)
.expect("Value for parameter is not available")
}
}
impl<T: ResourcePath> Index<usize> for Path<T> {
type Output = str;
fn index(&self, idx: usize) -> &str {
match self.segments[idx].1 {
PathItem::Static(ref s) => s,
PathItem::Segment(s, e) => &self.path.path()[(s as usize)..(e as usize)],
}
}
}
impl<T: ResourcePath> Resource for Path<T> {
type Path = T;
fn resource_path(&mut self) -> &mut Path<Self::Path> {
self
}
}
impl<T, P> Resource for T
where
T: DerefMut<Target = Path<P>>,
P: ResourcePath,
{
type Path = P;
fn resource_path(&mut self) -> &mut Path<Self::Path> {
&mut *self
}
}
#[cfg(test)]
mod tests {
use std::cell::RefCell;
use super::*;
#[allow(clippy::needless_borrow)]
#[test]
fn deref_impls() {
let mut foo = Path::new("/foo");
let _ = (&mut foo).resource_path();
let foo = RefCell::new(foo);
let _ = foo.borrow_mut().resource_path();
}
}
|
/// One or many patterns.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Patterns {
Single(String),
List(Vec<String>),
}
impl Patterns {
pub fn is_empty(&self) -> bool {
match self {
Patterns::Single(_) => false,
Patterns::List(pats) => pats.is_empty(),
}
}
}
/// Helper trait for type that could be converted to one or more path patterns.
pub trait IntoPatterns {
fn patterns(&self) -> Patterns;
}
impl IntoPatterns for String {
fn patterns(&self) -> Patterns {
Patterns::Single(self.clone())
}
}
impl IntoPatterns for &String {
fn patterns(&self) -> Patterns {
(*self).patterns()
}
}
impl IntoPatterns for str {
fn patterns(&self) -> Patterns {
Patterns::Single(self.to_owned())
}
}
impl IntoPatterns for &str {
fn patterns(&self) -> Patterns {
(*self).patterns()
}
}
impl IntoPatterns for bytestring::ByteString {
fn patterns(&self) -> Patterns {
Patterns::Single(self.to_string())
}
}
impl IntoPatterns for Patterns {
fn patterns(&self) -> Patterns {
self.clone()
}
}
impl<T: AsRef<str>> IntoPatterns for Vec<T> {
fn patterns(&self) -> Patterns {
let mut patterns = self.iter().map(|v| v.as_ref().to_owned());
match patterns.size_hint() {
(1, _) => Patterns::Single(patterns.next().unwrap()),
_ => Patterns::List(patterns.collect()),
}
}
}
macro_rules! array_patterns_single (($tp:ty) => {
impl IntoPatterns for [$tp; 1] {
fn patterns(&self) -> Patterns {
Patterns::Single(self[0].to_owned())
}
}
});
macro_rules! array_patterns_multiple (($tp:ty, $str_fn:expr, $($num:tt) +) => {
// for each array length specified in space-separated $num
$(
impl IntoPatterns for [$tp; $num] {
fn patterns(&self) -> Patterns {
Patterns::List(self.iter().map($str_fn).collect())
}
}
)+
});
array_patterns_single!(&str);
array_patterns_multiple!(&str, |&v| v.to_owned(), 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16);
array_patterns_single!(String);
array_patterns_multiple!(String, |v| v.clone(), 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16);
|
/// Partial percent-decoding.
///
/// Performs percent-decoding on a slice but can selectively skip decoding certain sequences.
///
/// # Examples
/// ```
/// # use actix_router::Quoter;
/// // + is set as a protected character and will not be decoded...
/// let q = Quoter::new(&[], b"+");
///
/// // ...but the other encoded characters (like the hyphen below) will.
/// assert_eq!(q.requote(b"/a%2Db%2Bc").unwrap(), b"/a-b%2Bc");
/// ```
pub struct Quoter {
/// Simple bit-map of protected values in the 0-127 ASCII range.
protected_table: AsciiBitmap,
}
impl Quoter {
/// Constructs a new `Quoter` instance given a set of protected ASCII bytes.
///
/// The first argument is ignored but is kept for backward compatibility.
///
/// # Panics
/// Panics if any of the `protected` bytes are not in the 0-127 ASCII range.
pub fn new(_: &[u8], protected: &[u8]) -> Quoter {
let mut protected_table = AsciiBitmap::default();
// prepare protected table
for &ch in protected {
protected_table.set_bit(ch);
}
Quoter { protected_table }
}
/// Decodes the next escape sequence, if any, and advances `val`.
#[inline(always)]
fn decode_next<'a>(&self, val: &mut &'a [u8]) -> Option<(&'a [u8], u8)> {
for i in 0..val.len() {
if let (prev, [b'%', p1, p2, rem @ ..]) = val.split_at(i) {
if let Some(ch) = hex_pair_to_char(*p1, *p2)
// ignore protected ascii bytes
.filter(|&ch| !(ch < 128 && self.protected_table.bit_at(ch)))
{
*val = rem;
return Some((prev, ch));
}
}
}
None
}
/// Partially percent-decodes the given bytes.
///
/// Escape sequences of the protected set are *not* decoded.
///
/// Returns `None` when no modification to the original bytes was required.
///
/// Invalid/incomplete percent-encoding sequences are passed unmodified.
pub fn requote(&self, val: &[u8]) -> Option<Vec<u8>> {
let mut remaining = val;
// early return indicates that no percent-encoded sequences exist and we can skip allocation
let (pre, decoded_char) = self.decode_next(&mut remaining)?;
// decoded output will always be shorter than the input
let mut decoded = Vec::<u8>::with_capacity(val.len());
// push first segment and decoded char
decoded.extend_from_slice(pre);
decoded.push(decoded_char);
// decode and push rest of segments and decoded chars
while let Some((prev, ch)) = self.decode_next(&mut remaining) {
// this ugly conditional achieves +50% perf in cases where this is a tight loop.
if !prev.is_empty() {
decoded.extend_from_slice(prev);
}
decoded.push(ch);
}
decoded.extend_from_slice(remaining);
Some(decoded)
}
pub(crate) fn requote_str_lossy(&self, val: &str) -> Option<String> {
self.requote(val.as_bytes())
.map(|data| String::from_utf8_lossy(&data).into_owned())
}
}
/// Decode a ASCII hex-encoded pair to an integer.
///
/// Returns `None` if either portion of the decoded pair does not evaluate to a valid hex value.
///
/// - `0x33 ('3'), 0x30 ('0') => 0x30 ('0')`
/// - `0x34 ('4'), 0x31 ('1') => 0x41 ('A')`
/// - `0x36 ('6'), 0x31 ('1') => 0x61 ('a')`
#[inline(always)]
fn hex_pair_to_char(d1: u8, d2: u8) -> Option<u8> {
let d_high = char::from(d1).to_digit(16)?;
let d_low = char::from(d2).to_digit(16)?;
// left shift high nibble by 4 bits
Some((d_high as u8) << 4 | (d_low as u8))
}
#[derive(Debug, Default, Clone)]
struct AsciiBitmap {
array: [u8; 16],
}
impl AsciiBitmap {
/// Sets bit in given bit-map to 1=true.
///
/// # Panics
/// Panics if `ch` index is out of bounds.
fn set_bit(&mut self, ch: u8) {
self.array[(ch >> 3) as usize] |= 0b1 << (ch & 0b111)
}
/// Returns true if bit to true in given bit-map.
///
/// # Panics
/// Panics if `ch` index is out of bounds.
fn bit_at(&self, ch: u8) -> bool {
self.array[(ch >> 3) as usize] & (0b1 << (ch & 0b111)) != 0
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn custom_quoter() {
let q = Quoter::new(b"", b"+");
assert_eq!(q.requote(b"/a%25c").unwrap(), b"/a%c");
assert_eq!(q.requote(b"/a%2Bc"), None);
let q = Quoter::new(b"%+", b"/");
assert_eq!(q.requote(b"/a%25b%2Bc").unwrap(), b"/a%b+c");
assert_eq!(q.requote(b"/a%2fb"), None);
assert_eq!(q.requote(b"/a%2Fb"), None);
assert_eq!(q.requote(b"/a%0Ab").unwrap(), b"/a\nb");
assert_eq!(q.requote(b"/a%FE\xffb").unwrap(), b"/a\xfe\xffb");
assert_eq!(q.requote(b"/a\xfe\xffb"), None);
}
#[test]
fn non_ascii() {
let q = Quoter::new(b"%+", b"/");
assert_eq!(q.requote(b"/a%FE\xffb").unwrap(), b"/a\xfe\xffb");
assert_eq!(q.requote(b"/a\xfe\xffb"), None);
}
#[test]
fn invalid_sequences() {
let q = Quoter::new(b"%+", b"/");
assert_eq!(q.requote(b"/a%2x%2X%%"), None);
assert_eq!(q.requote(b"/a%20%2X%%").unwrap(), b"/a %2X%%");
}
#[test]
fn quoter_no_modification() {
let q = Quoter::new(b"", b"");
assert_eq!(q.requote(b"/abc/../efg"), None);
}
}
|
//! Abstraction over `regex` and `regex-lite` depending on whether we have `unicode` crate feature
//! enabled.
use cfg_if::cfg_if;
#[cfg(feature = "unicode")]
pub(crate) use regex::{escape, Regex};
#[cfg(not(feature = "unicode"))]
pub(crate) use regex_lite::{escape, Regex};
#[cfg(feature = "unicode")]
#[derive(Debug, Clone)]
pub(crate) struct RegexSet(regex::RegexSet);
#[cfg(not(feature = "unicode"))]
#[derive(Debug, Clone)]
pub(crate) struct RegexSet(Vec<regex_lite::Regex>);
impl RegexSet {
/// Create a new regex set.
///
/// # Panics
///
/// Panics if any path patterns are malformed.
pub(crate) fn new(re_set: Vec<String>) -> Self {
cfg_if! {
if #[cfg(feature = "unicode")] {
Self(regex::RegexSet::new(re_set).unwrap())
} else {
Self(re_set.iter().map(|re| Regex::new(re).unwrap()).collect())
}
}
}
/// Create a new empty regex set.
pub(crate) fn empty() -> Self {
cfg_if! {
if #[cfg(feature = "unicode")] {
Self(regex::RegexSet::empty())
} else {
Self(Vec::new())
}
}
}
/// Returns true if regex set matches `path`.
pub(crate) fn is_match(&self, path: &str) -> bool {
cfg_if! {
if #[cfg(feature = "unicode")] {
self.0.is_match(path)
} else {
self.0.iter().any(|re| re.is_match(path))
}
}
}
/// Returns index within `path` of first match.
pub(crate) fn first_match_idx(&self, path: &str) -> Option<usize> {
cfg_if! {
if #[cfg(feature = "unicode")] {
self.0.matches(path).into_iter().next()
} else {
Some(self.0.iter().enumerate().find(|(_, re)| re.is_match(path))?.0)
}
}
}
}
|
use std::{
borrow::{Borrow, Cow},
collections::HashMap,
hash::{BuildHasher, Hash, Hasher},
mem,
};
use tracing::error;
use crate::{
path::PathItem,
regex_set::{escape, Regex, RegexSet},
IntoPatterns, Patterns, Resource, ResourcePath,
};
const MAX_DYNAMIC_SEGMENTS: usize = 16;
/// Regex flags to allow '.' in regex to match '\n'
///
/// See the docs under: https://docs.rs/regex/1/regex/#grouping-and-flags
const REGEX_FLAGS: &str = "(?s-m)";
/// Describes the set of paths that match to a resource.
///
/// `ResourceDef`s are effectively a way to transform the a custom resource pattern syntax into
/// suitable regular expressions from which to check matches with paths and capture portions of a
/// matched path into variables. Common cases are on a fast path that avoids going through the
/// regex engine.
///
///
/// # Pattern Format and Matching Behavior
/// Resource pattern is defined as a string of zero or more _segments_ where each segment is
/// preceded by a slash `/`.
///
/// This means that pattern string __must__ either be empty or begin with a slash (`/`). This also
/// implies that a trailing slash in pattern defines an empty segment. For example, the pattern
/// `"/user/"` has two segments: `["user", ""]`
///
/// A key point to understand is that `ResourceDef` matches segments, not strings. Segments are
/// matched individually. For example, the pattern `/user/` is not considered a prefix for the path
/// `/user/123/456`, because the second segment doesn't match: `["user", ""]`
/// vs `["user", "123", "456"]`.
///
/// This definition is consistent with the definition of absolute URL path in
/// [RFC 3986 §3.3](https://datatracker.ietf.org/doc/html/rfc3986#section-3.3)
///
///
/// # Static Resources
/// A static resource is the most basic type of definition. Pass a pattern to [new][Self::new].
/// Conforming paths must match the pattern exactly.
///
/// ## Examples
/// ```
/// # use actix_router::ResourceDef;
/// let resource = ResourceDef::new("/home");
///
/// assert!(resource.is_match("/home"));
///
/// assert!(!resource.is_match("/home/"));
/// assert!(!resource.is_match("/home/new"));
/// assert!(!resource.is_match("/homes"));
/// assert!(!resource.is_match("/search"));
/// ```
///
/// # Dynamic Segments
/// Also known as "path parameters". Resources can define sections of a pattern that be extracted
/// from a conforming path, if it conforms to (one of) the resource pattern(s).
///
/// The marker for a dynamic segment is curly braces wrapping an identifier. For example,
/// `/user/{id}` would match paths like `/user/123` or `/user/james` and be able to extract the user
/// IDs "123" and "james", respectively.
///
/// However, this resource pattern (`/user/{id}`) would, not cover `/user/123/stars` (unless
/// constructed as a prefix; see next section) since the default pattern for segments matches all
/// characters until it finds a `/` character (or the end of the path). Custom segment patterns are
/// covered further down.
///
/// Dynamic segments do not need to be delimited by `/` characters, they can be defined within a
/// path segment. For example, `/rust-is-{opinion}` can match the paths `/rust-is-cool` and
/// `/rust-is-hard`.
///
/// For information on capturing segment values from paths or other custom resource types,
/// see [`capture_match_info`][Self::capture_match_info]
/// and [`capture_match_info_fn`][Self::capture_match_info_fn].
///
/// A resource definition can contain at most 16 dynamic segments.
///
/// ## Examples
/// ```
/// use actix_router::{Path, ResourceDef};
///
/// let resource = ResourceDef::prefix("/user/{id}");
///
/// assert!(resource.is_match("/user/123"));
/// assert!(!resource.is_match("/user"));
/// assert!(!resource.is_match("/user/"));
///
/// let mut path = Path::new("/user/123");
/// resource.capture_match_info(&mut path);
/// assert_eq!(path.get("id").unwrap(), "123");
/// ```
///
/// # Prefix Resources
/// A prefix resource is defined as pattern that can match just the start of a path, up to a
/// segment boundary.
///
/// Prefix patterns with a trailing slash may have an unexpected, though correct, behavior.
/// They define and therefore require an empty segment in order to match. It is easier to understand
/// this behavior after reading the [matching behavior section]. Examples are given below.
///
/// The empty pattern (`""`), as a prefix, matches any path.
///
/// Prefix resources can contain dynamic segments.
///
/// ## Examples
/// ```
/// # use actix_router::ResourceDef;
/// let resource = ResourceDef::prefix("/home");
/// assert!(resource.is_match("/home"));
/// assert!(resource.is_match("/home/new"));
/// assert!(!resource.is_match("/homes"));
///
/// // prefix pattern with a trailing slash
/// let resource = ResourceDef::prefix("/user/{id}/");
/// assert!(resource.is_match("/user/123/"));
/// assert!(resource.is_match("/user/123//stars"));
/// assert!(!resource.is_match("/user/123/stars"));
/// assert!(!resource.is_match("/user/123"));
/// ```
///
/// # Custom Regex Segments
/// Dynamic segments can be customised to only match a specific regular expression. It can be
/// helpful to do this if resource definitions would otherwise conflict and cause one to
/// be inaccessible.
///
/// The regex used when capturing segment values can be specified explicitly using this syntax:
/// `{name:regex}`. For example, `/user/{id:\d+}` will only match paths where the user ID
/// is numeric.
///
/// The regex could potentially match multiple segments. If this is not wanted, then care must be
/// taken to avoid matching a slash `/`. It is guaranteed, however, that the match ends at a
/// segment boundary; the pattern `r"(/|$)` is always appended to the regex.
///
/// By default, dynamic segments use this regex: `[^/]+`. This shows why it is the case, as shown in
/// the earlier section, that segments capture a slice of the path up to the next `/` character.
///
/// Custom regex segments can be used in static and prefix resource definition variants.
///
/// ## Examples
/// ```
/// # use actix_router::ResourceDef;
/// let resource = ResourceDef::new(r"/user/{id:\d+}");
/// assert!(resource.is_match("/user/123"));
/// assert!(resource.is_match("/user/314159"));
/// assert!(!resource.is_match("/user/abc"));
/// ```
///
/// # Tail Segments
/// As a shortcut to defining a custom regex for matching _all_ remaining characters (not just those
/// up until a `/` character), there is a special pattern to match (and capture) the remaining
/// path portion.
///
/// To do this, use the segment pattern: `{name}*`. Since a tail segment also has a name, values are
/// extracted in the same way as non-tail dynamic segments.
///
/// ## Examples
/// ```
/// # use actix_router::{Path, ResourceDef};
/// let resource = ResourceDef::new("/blob/{tail}*");
/// assert!(resource.is_match("/blob/HEAD/Cargo.toml"));
/// assert!(resource.is_match("/blob/HEAD/README.md"));
///
/// let mut path = Path::new("/blob/main/LICENSE");
/// resource.capture_match_info(&mut path);
/// assert_eq!(path.get("tail").unwrap(), "main/LICENSE");
/// ```
///
/// # Multi-Pattern Resources
/// For resources that can map to multiple distinct paths, it may be suitable to use
/// multi-pattern resources by passing an array/vec to [`new`][Self::new]. They will be combined
/// into a regex set which is usually quicker to check matches on than checking each
/// pattern individually.
///
/// Multi-pattern resources can contain dynamic segments just like single pattern ones.
/// However, take care to use consistent and semantically-equivalent segment names; it could affect
/// expectations in the router using these definitions and cause runtime panics.
///
/// ## Examples
/// ```
/// # use actix_router::ResourceDef;
/// let resource = ResourceDef::new(["/home", "/index"]);
/// assert!(resource.is_match("/home"));
/// assert!(resource.is_match("/index"));
/// ```
///
/// # Trailing Slashes
/// It should be noted that this library takes no steps to normalize intra-path or trailing slashes.
/// As such, all resource definitions implicitly expect a pre-processing step to normalize paths if
/// you wish to accommodate "recoverable" path errors. Below are several examples of resource-path
/// pairs that would not be compatible.
///
/// ## Examples
/// ```
/// # use actix_router::ResourceDef;
/// assert!(!ResourceDef::new("/root").is_match("/root/"));
/// assert!(!ResourceDef::new("/root/").is_match("/root"));
/// assert!(!ResourceDef::prefix("/root/").is_match("/root"));
/// ```
///
/// [matching behavior section]: #pattern-format-and-matching-behavior
#[derive(Clone, Debug)]
pub struct ResourceDef {
id: u16,
/// Optional name of resource.
name: Option<String>,
/// Pattern that generated the resource definition.
patterns: Patterns,
is_prefix: bool,
/// Pattern type.
pat_type: PatternType,
/// List of segments that compose the pattern, in order.
segments: Vec<PatternSegment>,
}
#[derive(Debug, Clone, PartialEq)]
enum PatternSegment {
/// Literal slice of pattern.
Const(String),
/// Name of dynamic segment.
Var(String),
}
#[derive(Debug, Clone)]
#[allow(clippy::large_enum_variant)]
enum PatternType {
/// Single constant/literal segment.
Static(String),
/// Single regular expression and list of dynamic segment names.
Dynamic(Regex, Vec<&'static str>),
/// Regular expression set and list of component expressions plus dynamic segment names.
DynamicSet(RegexSet, Vec<(Regex, Vec<&'static str>)>),
}
impl ResourceDef {
/// Constructs a new resource definition from patterns.
///
/// Multi-pattern resources can be constructed by providing a slice (or vec) of patterns.
///
/// # Panics
/// Panics if any path patterns are malformed.
///
/// # Examples
/// ```
/// use actix_router::ResourceDef;
///
/// let resource = ResourceDef::new("/user/{id}");
/// assert!(resource.is_match("/user/123"));
/// assert!(!resource.is_match("/user/123/stars"));
/// assert!(!resource.is_match("user/1234"));
/// assert!(!resource.is_match("/foo"));
///
/// let resource = ResourceDef::new(["/profile", "/user/{id}"]);
/// assert!(resource.is_match("/profile"));
/// assert!(resource.is_match("/user/123"));
/// assert!(!resource.is_match("user/123"));
/// assert!(!resource.is_match("/foo"));
/// ```
pub fn new<T: IntoPatterns>(paths: T) -> Self {
Self::construct(paths, false)
}
/// Constructs a new resource definition using a pattern that performs prefix matching.
///
/// More specifically, the regular expressions generated for matching are different when using
/// this method vs using `new`; they will not be appended with the `$` meta-character that
/// matches the end of an input.
///
/// Although it will compile and run correctly, it is meaningless to construct a prefix
/// resource definition with a tail segment; use [`new`][Self::new] in this case.
///
/// # Panics
/// Panics if path pattern is malformed.
///
/// # Examples
/// ```
/// use actix_router::ResourceDef;
///
/// let resource = ResourceDef::prefix("/user/{id}");
/// assert!(resource.is_match("/user/123"));
/// assert!(resource.is_match("/user/123/stars"));
/// assert!(!resource.is_match("user/123"));
/// assert!(!resource.is_match("user/123/stars"));
/// assert!(!resource.is_match("/foo"));
/// ```
pub fn prefix<T: IntoPatterns>(paths: T) -> Self {
ResourceDef::construct(paths, true)
}
/// Constructs a new resource definition using a string pattern that performs prefix matching,
/// ensuring a leading `/` if pattern is not empty.
///
/// # Panics
/// Panics if path pattern is malformed.
///
/// # Examples
/// ```
/// use actix_router::ResourceDef;
///
/// let resource = ResourceDef::root_prefix("user/{id}");
///
/// assert_eq!(&resource, &ResourceDef::prefix("/user/{id}"));
/// assert_eq!(&resource, &ResourceDef::root_prefix("/user/{id}"));
/// assert_ne!(&resource, &ResourceDef::new("user/{id}"));
/// assert_ne!(&resource, &ResourceDef::new("/user/{id}"));
///
/// assert!(resource.is_match("/user/123"));
/// assert!(!resource.is_match("user/123"));
/// ```
pub fn root_prefix(path: &str) -> Self {
ResourceDef::prefix(insert_slash(path).into_owned())
}
/// Returns a numeric resource ID.
///
/// If not explicitly set using [`set_id`][Self::set_id], this will return `0`.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// let mut resource = ResourceDef::new("/root");
/// assert_eq!(resource.id(), 0);
///
/// resource.set_id(42);
/// assert_eq!(resource.id(), 42);
/// ```
pub fn id(&self) -> u16 {
self.id
}
/// Set numeric resource ID.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// let mut resource = ResourceDef::new("/root");
/// resource.set_id(42);
/// assert_eq!(resource.id(), 42);
/// ```
pub fn set_id(&mut self, id: u16) {
self.id = id;
}
/// Returns resource definition name, if set.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// let mut resource = ResourceDef::new("/root");
/// assert!(resource.name().is_none());
///
/// resource.set_name("root");
/// assert_eq!(resource.name().unwrap(), "root");
pub fn name(&self) -> Option<&str> {
self.name.as_deref()
}
/// Assigns a new name to the resource.
///
/// # Panics
/// Panics if `name` is an empty string.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// let mut resource = ResourceDef::new("/root");
/// resource.set_name("root");
/// assert_eq!(resource.name().unwrap(), "root");
/// ```
pub fn set_name(&mut self, name: impl Into<String>) {
let name = name.into();
assert!(!name.is_empty(), "resource name should not be empty");
self.name = Some(name)
}
/// Returns `true` if pattern type is prefix.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// assert!(ResourceDef::prefix("/user").is_prefix());
/// assert!(!ResourceDef::new("/user").is_prefix());
/// ```
pub fn is_prefix(&self) -> bool {
self.is_prefix
}
/// Returns the pattern string that generated the resource definition.
///
/// If definition is constructed with multiple patterns, the first pattern is returned. To get
/// all patterns, use [`patterns_iter`][Self::pattern_iter]. If resource has 0 patterns,
/// returns `None`.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// let mut resource = ResourceDef::new("/user/{id}");
/// assert_eq!(resource.pattern().unwrap(), "/user/{id}");
///
/// let mut resource = ResourceDef::new(["/profile", "/user/{id}"]);
/// assert_eq!(resource.pattern(), Some("/profile"));
pub fn pattern(&self) -> Option<&str> {
match &self.patterns {
Patterns::Single(pattern) => Some(pattern.as_str()),
Patterns::List(patterns) => patterns.first().map(AsRef::as_ref),
}
}
/// Returns iterator of pattern strings that generated the resource definition.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// let mut resource = ResourceDef::new("/root");
/// let mut iter = resource.pattern_iter();
/// assert_eq!(iter.next().unwrap(), "/root");
/// assert!(iter.next().is_none());
///
/// let mut resource = ResourceDef::new(["/root", "/backup"]);
/// let mut iter = resource.pattern_iter();
/// assert_eq!(iter.next().unwrap(), "/root");
/// assert_eq!(iter.next().unwrap(), "/backup");
/// assert!(iter.next().is_none());
pub fn pattern_iter(&self) -> impl Iterator<Item = &str> {
struct PatternIter<'a> {
patterns: &'a Patterns,
list_idx: usize,
done: bool,
}
impl<'a> Iterator for PatternIter<'a> {
type Item = &'a str;
fn next(&mut self) -> Option<Self::Item> {
match &self.patterns {
Patterns::Single(pattern) => {
if self.done {
return None;
}
self.done = true;
Some(pattern.as_str())
}
Patterns::List(patterns) if patterns.is_empty() => None,
Patterns::List(patterns) => match patterns.get(self.list_idx) {
Some(pattern) => {
self.list_idx += 1;
Some(pattern.as_str())
}
None => {
// fast path future call
self.done = true;
None
}
},
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match &self.patterns {
Patterns::Single(_) => (1, Some(1)),
Patterns::List(patterns) => (patterns.len(), Some(patterns.len())),
}
}
}
PatternIter {
patterns: &self.patterns,
list_idx: 0,
done: false,
}
}
/// Joins two resources.
///
/// Resulting resource is prefix if `other` is prefix.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// let joined = ResourceDef::prefix("/root").join(&ResourceDef::prefix("/seg"));
/// assert_eq!(joined, ResourceDef::prefix("/root/seg"));
/// ```
pub fn join(&self, other: &ResourceDef) -> ResourceDef {
let patterns = self
.pattern_iter()
.flat_map(move |this| other.pattern_iter().map(move |other| (this, other)))
.map(|(this, other)| {
let mut pattern = String::with_capacity(this.len() + other.len());
pattern.push_str(this);
pattern.push_str(other);
pattern
})
.collect::<Vec<_>>();
match patterns.len() {
1 => ResourceDef::construct(&patterns[0], other.is_prefix()),
_ => ResourceDef::construct(patterns, other.is_prefix()),
}
}
/// Returns `true` if `path` matches this resource.
///
/// The behavior of this method depends on how the `ResourceDef` was constructed. For example,
/// static resources will not be able to match as many paths as dynamic and prefix resources.
/// See [`ResourceDef`] struct docs for details on resource definition types.
///
/// This method will always agree with [`find_match`][Self::find_match] on whether the path
/// matches or not.
///
/// # Examples
/// ```
/// use actix_router::ResourceDef;
///
/// // static resource
/// let resource = ResourceDef::new("/user");
/// assert!(resource.is_match("/user"));
/// assert!(!resource.is_match("/users"));
/// assert!(!resource.is_match("/user/123"));
/// assert!(!resource.is_match("/foo"));
///
/// // dynamic resource
/// let resource = ResourceDef::new("/user/{user_id}");
/// assert!(resource.is_match("/user/123"));
/// assert!(!resource.is_match("/user/123/stars"));
///
/// // prefix resource
/// let resource = ResourceDef::prefix("/root");
/// assert!(resource.is_match("/root"));
/// assert!(resource.is_match("/root/leaf"));
/// assert!(!resource.is_match("/roots"));
///
/// // more examples are shown in the `ResourceDef` struct docs
/// ```
#[inline]
pub fn is_match(&self, path: &str) -> bool {
// this function could be expressed as:
// `self.find_match(path).is_some()`
// but this skips some checks and uses potentially faster regex methods
match &self.pat_type {
PatternType::Static(pattern) => self.static_match(pattern, path).is_some(),
PatternType::Dynamic(re, _) => re.is_match(path),
PatternType::DynamicSet(re, _) => re.is_match(path),
}
}
/// Tries to match `path` to this resource, returning the position in the path where the
/// match ends.
///
/// This method will always agree with [`is_match`][Self::is_match] on whether the path matches
/// or not.
///
/// # Examples
/// ```
/// use actix_router::ResourceDef;
///
/// // static resource
/// let resource = ResourceDef::new("/user");
/// assert_eq!(resource.find_match("/user"), Some(5));
/// assert!(resource.find_match("/user/").is_none());
/// assert!(resource.find_match("/user/123").is_none());
/// assert!(resource.find_match("/foo").is_none());
///
/// // constant prefix resource
/// let resource = ResourceDef::prefix("/user");
/// assert_eq!(resource.find_match("/user"), Some(5));
/// assert_eq!(resource.find_match("/user/"), Some(5));
/// assert_eq!(resource.find_match("/user/123"), Some(5));
///
/// // dynamic prefix resource
/// let resource = ResourceDef::prefix("/user/{id}");
/// assert_eq!(resource.find_match("/user/123"), Some(9));
/// assert_eq!(resource.find_match("/user/1234/"), Some(10));
/// assert_eq!(resource.find_match("/user/12345/stars"), Some(11));
/// assert!(resource.find_match("/user/").is_none());
///
/// // multi-pattern resource
/// let resource = ResourceDef::new(["/user/{id}", "/profile/{id}"]);
/// assert_eq!(resource.find_match("/user/123"), Some(9));
/// assert_eq!(resource.find_match("/profile/1234"), Some(13));
/// ```
pub fn find_match(&self, path: &str) -> Option<usize> {
match &self.pat_type {
PatternType::Static(pattern) => self.static_match(pattern, path),
PatternType::Dynamic(re, _) => Some(re.captures(path)?[1].len()),
PatternType::DynamicSet(re, params) => {
let idx = re.first_match_idx(path)?;
let (ref pattern, _) = params[idx];
Some(pattern.captures(path)?[1].len())
}
}
}
/// Collects dynamic segment values into `resource`.
///
/// Returns `true` if `path` matches this resource.
///
/// # Examples
/// ```
/// use actix_router::{Path, ResourceDef};
///
/// let resource = ResourceDef::prefix("/user/{id}");
/// let mut path = Path::new("/user/123/stars");
/// assert!(resource.capture_match_info(&mut path));
/// assert_eq!(path.get("id").unwrap(), "123");
/// assert_eq!(path.unprocessed(), "/stars");
///
/// let resource = ResourceDef::new("/blob/{path}*");
/// let mut path = Path::new("/blob/HEAD/Cargo.toml");
/// assert!(resource.capture_match_info(&mut path));
/// assert_eq!(path.get("path").unwrap(), "HEAD/Cargo.toml");
/// assert_eq!(path.unprocessed(), "");
/// ```
pub fn capture_match_info<R: Resource>(&self, resource: &mut R) -> bool {
self.capture_match_info_fn(resource, |_| true)
}
/// Collects dynamic segment values into `resource` after matching paths and executing
/// check function.
///
/// The check function is given a reference to the passed resource and optional arbitrary data.
/// This is useful if you want to conditionally match on some non-path related aspect of the
/// resource type.
///
/// Returns `true` if resource path matches this resource definition _and_ satisfies the
/// given check function.
///
/// # Examples
/// ```
/// use actix_router::{Path, ResourceDef};
///
/// fn try_match(resource: &ResourceDef, path: &mut Path<&str>) -> bool {
/// let admin_allowed = std::env::var("ADMIN_ALLOWED").is_ok();
///
/// resource.capture_match_info_fn(
/// path,
/// // when env var is not set, reject when path contains "admin"
/// |path| !(!admin_allowed && path.as_str().contains("admin")),
/// )
/// }
///
/// let resource = ResourceDef::prefix("/user/{id}");
///
/// // path matches; segment values are collected into path
/// let mut path = Path::new("/user/james/stars");
/// assert!(try_match(&resource, &mut path));
/// assert_eq!(path.get("id").unwrap(), "james");
/// assert_eq!(path.unprocessed(), "/stars");
///
/// // path matches but fails check function; no segments are collected
/// let mut path = Path::new("/user/admin/stars");
/// assert!(!try_match(&resource, &mut path));
/// assert_eq!(path.unprocessed(), "/user/admin/stars");
/// ```
pub fn capture_match_info_fn<R, F>(&self, resource: &mut R, check_fn: F) -> bool
where
R: Resource,
F: FnOnce(&R) -> bool,
{
let mut segments = <[PathItem; MAX_DYNAMIC_SEGMENTS]>::default();
let path = resource.resource_path();
let path_str = path.unprocessed();
let (matched_len, matched_vars) = match &self.pat_type {
PatternType::Static(pattern) => match self.static_match(pattern, path_str) {
Some(len) => (len, None),
None => return false,
},
PatternType::Dynamic(re, names) => {
let captures = match re.captures(path.unprocessed()) {
Some(captures) => captures,
_ => return false,
};
for (no, name) in names.iter().enumerate() {
if let Some(m) = captures.name(name) {
segments[no] = PathItem::Segment(m.start() as u16, m.end() as u16);
} else {
error!("Dynamic path match but not all segments found: {}", name);
return false;
}
}
(captures[1].len(), Some(names))
}
PatternType::DynamicSet(re, params) => {
let path = path.unprocessed();
let (pattern, names) = match re.first_match_idx(path) {
Some(idx) => ¶ms[idx],
_ => return false,
};
let captures = match pattern.captures(path.path()) {
Some(captures) => captures,
_ => return false,
};
for (no, name) in names.iter().enumerate() {
if let Some(m) = captures.name(name) {
segments[no] = PathItem::Segment(m.start() as u16, m.end() as u16);
} else {
error!("Dynamic path match but not all segments found: {}", name);
return false;
}
}
(captures[1].len(), Some(names))
}
};
if !check_fn(resource) {
return false;
}
// Modify `path` to skip matched part and store matched segments
let path = resource.resource_path();
if let Some(vars) = matched_vars {
for i in 0..vars.len() {
path.add(vars[i], mem::take(&mut segments[i]));
}
}
path.skip(matched_len as u16);
true
}
/// Assembles resource path using a closure that maps variable segment names to values.
fn build_resource_path<F, I>(&self, path: &mut String, mut vars: F) -> bool
where
F: FnMut(&str) -> Option<I>,
I: AsRef<str>,
{
for segment in &self.segments {
match segment {
PatternSegment::Const(val) => path.push_str(val),
PatternSegment::Var(name) => match vars(name) {
Some(val) => path.push_str(val.as_ref()),
_ => return false,
},
}
}
true
}
/// Assembles full resource path from iterator of dynamic segment values.
///
/// Returns `true` on success.
///
/// For multi-pattern resources, the first pattern is used under the assumption that it would be
/// equivalent to any other choice.
///
/// # Examples
/// ```
/// # use actix_router::ResourceDef;
/// let mut s = String::new();
/// let resource = ResourceDef::new("/user/{id}/post/{title}");
///
/// assert!(resource.resource_path_from_iter(&mut s, &["123", "my-post"]));
/// assert_eq!(s, "/user/123/post/my-post");
/// ```
pub fn resource_path_from_iter<I>(&self, path: &mut String, values: I) -> bool
where
I: IntoIterator,
I::Item: AsRef<str>,
{
let mut iter = values.into_iter();
self.build_resource_path(path, |_| iter.next())
}
/// Assembles resource path from map of dynamic segment values.
///
/// Returns `true` on success.
///
/// For multi-pattern resources, the first pattern is used under the assumption that it would be
/// equivalent to any other choice.
///
/// # Examples
/// ```
/// # use std::collections::HashMap;
/// # use actix_router::ResourceDef;
/// let mut s = String::new();
/// let resource = ResourceDef::new("/user/{id}/post/{title}");
///
/// let mut map = HashMap::new();
/// map.insert("id", "123");
/// map.insert("title", "my-post");
///
/// assert!(resource.resource_path_from_map(&mut s, &map));
/// assert_eq!(s, "/user/123/post/my-post");
/// ```
pub fn resource_path_from_map<K, V, S>(
&self,
path: &mut String,
values: &HashMap<K, V, S>,
) -> bool
where
K: Borrow<str> + Eq + Hash,
V: AsRef<str>,
S: BuildHasher,
{
self.build_resource_path(path, |name| values.get(name))
}
/// Returns true if `prefix` acts as a proper prefix (i.e., separated by a slash) in `path`.
fn static_match(&self, pattern: &str, path: &str) -> Option<usize> {
let rem = path.strip_prefix(pattern)?;
match self.is_prefix {
// resource is not a prefix so an exact match is needed
false if rem.is_empty() => Some(pattern.len()),
// resource is a prefix so rem should start with a path delimiter
true if rem.is_empty() || rem.starts_with('/') => Some(pattern.len()),
// otherwise, no match
_ => None,
}
}
fn construct<T: IntoPatterns>(paths: T, is_prefix: bool) -> Self {
let patterns = paths.patterns();
let (pat_type, segments) = match &patterns {
Patterns::Single(pattern) => ResourceDef::parse(pattern, is_prefix, false),
// since zero length pattern sets are possible
// just return a useless `ResourceDef`
Patterns::List(patterns) if patterns.is_empty() => (
PatternType::DynamicSet(RegexSet::empty(), Vec::new()),
Vec::new(),
),
Patterns::List(patterns) => {
let mut re_set = Vec::with_capacity(patterns.len());
let mut pattern_data = Vec::new();
let mut segments = None;
for pattern in patterns {
match ResourceDef::parse(pattern, is_prefix, true) {
(PatternType::Dynamic(re, names), segs) => {
re_set.push(re.as_str().to_owned());
pattern_data.push((re, names));
segments.get_or_insert(segs);
}
_ => unreachable!(),
}
}
let pattern_re_set = RegexSet::new(re_set);
let segments = segments.unwrap_or_default();
(
PatternType::DynamicSet(pattern_re_set, pattern_data),
segments,
)
}
};
ResourceDef {
id: 0,
name: None,
patterns,
is_prefix,
pat_type,
segments,
}
}
/// Parses a dynamic segment definition from a pattern.
///
/// The returned tuple includes:
/// - the segment descriptor, either `Var` or `Tail`
/// - the segment's regex to check values against
/// - the remaining, unprocessed string slice
/// - whether the parsed parameter represents a tail pattern
///
/// # Panics
/// Panics if given patterns does not contain a dynamic segment.
fn parse_param(pattern: &str) -> (PatternSegment, String, &str, bool) {
const DEFAULT_PATTERN: &str = "[^/]+";
const DEFAULT_PATTERN_TAIL: &str = ".*";
let mut params_nesting = 0usize;
let close_idx = pattern
.find(|c| match c {
'{' => {
params_nesting += 1;
false
}
'}' => {
params_nesting -= 1;
params_nesting == 0
}
_ => false,
})
.unwrap_or_else(|| {
panic!(
r#"pattern "{}" contains malformed dynamic segment"#,
pattern
)
});
let (mut param, mut unprocessed) = pattern.split_at(close_idx + 1);
// remove outer curly brackets
param = ¶m[1..param.len() - 1];
let tail = unprocessed == "*";
let (name, pattern) = match param.find(':') {
Some(idx) => {
assert!(!tail, "custom regex is not supported for tail match");
let (name, pattern) = param.split_at(idx);
(name, &pattern[1..])
}
None => (
param,
if tail {
unprocessed = &unprocessed[1..];
DEFAULT_PATTERN_TAIL
} else {
DEFAULT_PATTERN
},
),
};
let segment = PatternSegment::Var(name.to_string());
let regex = format!(r"(?P<{}>{})", &name, &pattern);
(segment, regex, unprocessed, tail)
}
/// Parse `pattern` using `is_prefix` and `force_dynamic` flags.
///
/// Parameters:
/// - `is_prefix`: Use `true` if `pattern` should be treated as a prefix; i.e., a conforming
/// path will be a match even if it has parts remaining to process
/// - `force_dynamic`: Use `true` to disallow the return of static and prefix segments.
///
/// The returned tuple includes:
/// - the pattern type detected, either `Static`, `Prefix`, or `Dynamic`
/// - a list of segment descriptors from the pattern
fn parse(
pattern: &str,
is_prefix: bool,
force_dynamic: bool,
) -> (PatternType, Vec<PatternSegment>) {
if !force_dynamic && pattern.find('{').is_none() && !pattern.ends_with('*') {
// pattern is static
return (
PatternType::Static(pattern.to_owned()),
vec![PatternSegment::Const(pattern.to_owned())],
);
}
let mut unprocessed = pattern;
let mut segments = Vec::new();
let mut re = format!("{}^", REGEX_FLAGS);
let mut dyn_segment_count = 0;
let mut has_tail_segment = false;
while let Some(idx) = unprocessed.find('{') {
let (prefix, rem) = unprocessed.split_at(idx);
segments.push(PatternSegment::Const(prefix.to_owned()));
re.push_str(&escape(prefix));
let (param_pattern, re_part, rem, tail) = Self::parse_param(rem);
if tail {
has_tail_segment = true;
}
segments.push(param_pattern);
re.push_str(&re_part);
unprocessed = rem;
dyn_segment_count += 1;
}
if is_prefix && has_tail_segment {
// tail segments in prefixes have no defined semantics
#[cfg(not(test))]
tracing::warn!(
"Prefix resources should not have tail segments. \
Use `ResourceDef::new` constructor. \
This may become a panic in the future."
);
// panic in tests to make this case detectable
#[cfg(test)]
panic!("prefix resource definitions should not have tail segments");
}
if unprocessed.ends_with('*') {
// unnamed tail segment
#[cfg(not(test))]
tracing::warn!(
"Tail segments must have names. \
Consider `.../{{tail}}*`. \
This may become a panic in the future."
);
// panic in tests to make this case detectable
#[cfg(test)]
panic!("tail segments must have names");
} else if !has_tail_segment && !unprocessed.is_empty() {
// prevent `Const("")` element from being added after last dynamic segment
segments.push(PatternSegment::Const(unprocessed.to_owned()));
re.push_str(&escape(unprocessed));
}
assert!(
dyn_segment_count <= MAX_DYNAMIC_SEGMENTS,
"Only {} dynamic segments are allowed, provided: {}",
MAX_DYNAMIC_SEGMENTS,
dyn_segment_count
);
// Store the pattern in capture group #1 to have context info outside it
let mut re = format!("({})", re);
// Ensure the match ends at a segment boundary
if !has_tail_segment {
if is_prefix {
re.push_str(r"(/|$)");
} else {
re.push('$');
}
}
let re = match Regex::new(&re) {
Ok(re) => re,
Err(err) => panic!("Wrong path pattern: \"{}\" {}", pattern, err),
};
// `Bok::leak(Box::new(name))` is an intentional memory leak. In typical applications the
// routing table is only constructed once (per worker) so leak is bounded. If you are
// constructing `ResourceDef`s more than once in your application's lifecycle you would
// expect a linear increase in leaked memory over time.
let names = re
.capture_names()
.filter_map(|name| name.map(|name| Box::leak(Box::new(name.to_owned())).as_str()))
.collect();
(PatternType::Dynamic(re, names), segments)
}
}
impl Eq for ResourceDef {}
impl PartialEq for ResourceDef {
fn eq(&self, other: &ResourceDef) -> bool {
self.patterns == other.patterns && self.is_prefix == other.is_prefix
}
}
impl Hash for ResourceDef {
fn hash<H: Hasher>(&self, state: &mut H) {
self.patterns.hash(state);
}
}
impl<'a> From<&'a str> for ResourceDef {
fn from(path: &'a str) -> ResourceDef {
ResourceDef::new(path)
}
}
impl From<String> for ResourceDef {
fn from(path: String) -> ResourceDef {
ResourceDef::new(path)
}
}
pub(crate) fn insert_slash(path: &str) -> Cow<'_, str> {
if !path.is_empty() && !path.starts_with('/') {
let mut new_path = String::with_capacity(path.len() + 1);
new_path.push('/');
new_path.push_str(path);
Cow::Owned(new_path)
} else {
Cow::Borrowed(path)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Path;
#[test]
fn equivalence() {
assert_eq!(
ResourceDef::root_prefix("/root"),
ResourceDef::prefix("/root")
);
assert_eq!(
ResourceDef::root_prefix("root"),
ResourceDef::prefix("/root")
);
assert_eq!(
ResourceDef::root_prefix("/{id}"),
ResourceDef::prefix("/{id}")
);
assert_eq!(
ResourceDef::root_prefix("{id}"),
ResourceDef::prefix("/{id}")
);
assert_eq!(ResourceDef::new("/"), ResourceDef::new(["/"]));
assert_eq!(ResourceDef::new("/"), ResourceDef::new(vec!["/"]));
assert_ne!(ResourceDef::new(""), ResourceDef::prefix(""));
assert_ne!(ResourceDef::new("/"), ResourceDef::prefix("/"));
assert_ne!(ResourceDef::new("/{id}"), ResourceDef::prefix("/{id}"));
}
#[test]
fn parse_static() {
let re = ResourceDef::new("");
assert!(!re.is_prefix());
assert!(re.is_match(""));
assert!(!re.is_match("/"));
assert_eq!(re.find_match(""), Some(0));
assert_eq!(re.find_match("/"), None);
let re = ResourceDef::new("/");
assert!(re.is_match("/"));
assert!(!re.is_match(""));
assert!(!re.is_match("/foo"));
let re = ResourceDef::new("/name");
assert!(re.is_match("/name"));
assert!(!re.is_match("/name1"));
assert!(!re.is_match("/name/"));
assert!(!re.is_match("/name~"));
let mut path = Path::new("/name");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.unprocessed(), "");
assert_eq!(re.find_match("/name"), Some(5));
assert_eq!(re.find_match("/name1"), None);
assert_eq!(re.find_match("/name/"), None);
assert_eq!(re.find_match("/name~"), None);
let re = ResourceDef::new("/name/");
assert!(re.is_match("/name/"));
assert!(!re.is_match("/name"));
assert!(!re.is_match("/name/gs"));
let re = ResourceDef::new("/user/profile");
assert!(re.is_match("/user/profile"));
assert!(!re.is_match("/user/profile/profile"));
let mut path = Path::new("/user/profile");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.unprocessed(), "");
}
#[test]
fn parse_param() {
let re = ResourceDef::new("/user/{id}");
assert!(re.is_match("/user/profile"));
assert!(re.is_match("/user/2345"));
assert!(!re.is_match("/user/2345/"));
assert!(!re.is_match("/user/2345/sdg"));
let mut path = Path::new("/user/profile");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "profile");
assert_eq!(path.unprocessed(), "");
let mut path = Path::new("/user/1245125");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "1245125");
assert_eq!(path.unprocessed(), "");
let re = ResourceDef::new("/v{version}/resource/{id}");
assert!(re.is_match("/v1/resource/320120"));
assert!(!re.is_match("/v/resource/1"));
assert!(!re.is_match("/resource"));
let mut path = Path::new("/v151/resource/adage32");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("version").unwrap(), "151");
assert_eq!(path.get("id").unwrap(), "adage32");
assert_eq!(path.unprocessed(), "");
let re = ResourceDef::new("/{id:[[:digit:]]{6}}");
assert!(re.is_match("/012345"));
assert!(!re.is_match("/012"));
assert!(!re.is_match("/01234567"));
assert!(!re.is_match("/XXXXXX"));
let mut path = Path::new("/012345");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "012345");
assert_eq!(path.unprocessed(), "");
}
#[allow(clippy::cognitive_complexity)]
#[test]
fn dynamic_set() {
let re = ResourceDef::new(vec![
"/user/{id}",
"/v{version}/resource/{id}",
"/{id:[[:digit:]]{6}}",
"/static",
]);
assert!(re.is_match("/user/profile"));
assert!(re.is_match("/user/2345"));
assert!(!re.is_match("/user/2345/"));
assert!(!re.is_match("/user/2345/sdg"));
let mut path = Path::new("/user/profile");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "profile");
assert_eq!(path.unprocessed(), "");
let mut path = Path::new("/user/1245125");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "1245125");
assert_eq!(path.unprocessed(), "");
assert!(re.is_match("/v1/resource/320120"));
assert!(!re.is_match("/v/resource/1"));
assert!(!re.is_match("/resource"));
let mut path = Path::new("/v151/resource/adage32");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("version").unwrap(), "151");
assert_eq!(path.get("id").unwrap(), "adage32");
assert!(re.is_match("/012345"));
assert!(!re.is_match("/012"));
assert!(!re.is_match("/01234567"));
assert!(!re.is_match("/XXXXXX"));
assert!(re.is_match("/static"));
assert!(!re.is_match("/a/static"));
assert!(!re.is_match("/static/a"));
let mut path = Path::new("/012345");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "012345");
let re = ResourceDef::new([
"/user/{id}",
"/v{version}/resource/{id}",
"/{id:[[:digit:]]{6}}",
]);
assert!(re.is_match("/user/profile"));
assert!(re.is_match("/user/2345"));
assert!(!re.is_match("/user/2345/"));
assert!(!re.is_match("/user/2345/sdg"));
let re = ResourceDef::new([
"/user/{id}".to_string(),
"/v{version}/resource/{id}".to_string(),
"/{id:[[:digit:]]{6}}".to_string(),
]);
assert!(re.is_match("/user/profile"));
assert!(re.is_match("/user/2345"));
assert!(!re.is_match("/user/2345/"));
assert!(!re.is_match("/user/2345/sdg"));
}
#[test]
fn dynamic_set_prefix() {
let re = ResourceDef::prefix(vec!["/u/{id}", "/{id:[[:digit:]]{3}}"]);
assert_eq!(re.find_match("/u/abc"), Some(6));
assert_eq!(re.find_match("/u/abc/123"), Some(6));
assert_eq!(re.find_match("/s/user/profile"), None);
assert_eq!(re.find_match("/123"), Some(4));
assert_eq!(re.find_match("/123/456"), Some(4));
assert_eq!(re.find_match("/12345"), None);
let mut path = Path::new("/151/res");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "151");
assert_eq!(path.unprocessed(), "/res");
}
#[test]
fn parse_tail() {
let re = ResourceDef::new("/user/-{id}*");
let mut path = Path::new("/user/-profile");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "profile");
let mut path = Path::new("/user/-2345");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "2345");
let mut path = Path::new("/user/-2345/");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "2345/");
let mut path = Path::new("/user/-2345/sdg");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "2345/sdg");
}
#[test]
fn static_tail() {
let re = ResourceDef::new("/user{tail}*");
assert!(re.is_match("/users"));
assert!(re.is_match("/user-foo"));
assert!(re.is_match("/user/profile"));
assert!(re.is_match("/user/2345"));
assert!(re.is_match("/user/2345/"));
assert!(re.is_match("/user/2345/sdg"));
assert!(!re.is_match("/foo/profile"));
let re = ResourceDef::new("/user/{tail}*");
assert!(re.is_match("/user/profile"));
assert!(re.is_match("/user/2345"));
assert!(re.is_match("/user/2345/"));
assert!(re.is_match("/user/2345/sdg"));
assert!(!re.is_match("/foo/profile"));
}
#[test]
fn dynamic_tail() {
let re = ResourceDef::new("/user/{id}/{tail}*");
assert!(!re.is_match("/user/2345"));
let mut path = Path::new("/user/2345/sdg");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "2345");
assert_eq!(path.get("tail").unwrap(), "sdg");
assert_eq!(path.unprocessed(), "");
}
#[test]
fn newline_patterns_and_paths() {
let re = ResourceDef::new("/user/a\nb");
assert!(re.is_match("/user/a\nb"));
assert!(!re.is_match("/user/a\nb/profile"));
let re = ResourceDef::new("/a{x}b/test/a{y}b");
let mut path = Path::new("/a\nb/test/a\nb");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("x").unwrap(), "\n");
assert_eq!(path.get("y").unwrap(), "\n");
let re = ResourceDef::new("/user/{tail}*");
assert!(re.is_match("/user/a\nb/"));
let re = ResourceDef::new("/user/{id}*");
let mut path = Path::new("/user/a\nb/a\nb");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "a\nb/a\nb");
let re = ResourceDef::new("/user/{id:.*}");
let mut path = Path::new("/user/a\nb/a\nb");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "a\nb/a\nb");
}
#[cfg(feature = "http")]
#[test]
fn parse_urlencoded_param() {
let re = ResourceDef::new("/user/{id}/test");
let mut path = Path::new("/user/2345/test");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "2345");
let mut path = Path::new("/user/qwe%25/test");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "qwe%25");
let uri = http::Uri::try_from("/user/qwe%25/test").unwrap();
let mut path = Path::new(uri);
assert!(re.capture_match_info(&mut path));
assert_eq!(path.get("id").unwrap(), "qwe%25");
}
#[test]
fn prefix_static() {
let re = ResourceDef::prefix("/name");
assert!(re.is_prefix());
assert!(re.is_match("/name"));
assert!(re.is_match("/name/"));
assert!(re.is_match("/name/test/test"));
assert!(!re.is_match("/name1"));
assert!(!re.is_match("/name~"));
let mut path = Path::new("/name");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.unprocessed(), "");
let mut path = Path::new("/name/test");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.unprocessed(), "/test");
assert_eq!(re.find_match("/name"), Some(5));
assert_eq!(re.find_match("/name/"), Some(5));
assert_eq!(re.find_match("/name/test/test"), Some(5));
assert_eq!(re.find_match("/name1"), None);
assert_eq!(re.find_match("/name~"), None);
let re = ResourceDef::prefix("/name/");
assert!(re.is_match("/name/"));
assert!(re.is_match("/name//gs"));
assert!(!re.is_match("/name/gs"));
assert!(!re.is_match("/name"));
let mut path = Path::new("/name/gs");
assert!(!re.capture_match_info(&mut path));
let mut path = Path::new("/name//gs");
assert!(re.capture_match_info(&mut path));
assert_eq!(path.unprocessed(), "/gs");
let re = ResourceDef::root_prefix("name/");
assert!(re.is_match("/name/"));
assert!(re.is_match("/name//gs"));
assert!(!re.is_match("/name/gs"));
assert!(!re.is_match("/name"));
let mut path = Path::new("/name/gs");
assert!(!re.capture_match_info(&mut path));
}
#[test]
fn prefix_dynamic() {
let re = ResourceDef::prefix("/{name}");
assert!(re.is_prefix());
assert!(re.is_match("/name/"));
assert!(re.is_match("/name/gs"));
assert!(re.is_match("/name"));
assert_eq!(re.find_match("/name/"), Some(5));
assert_eq!(re.find_match("/name/gs"), Some(5));
assert_eq!(re.find_match("/name"), Some(5));
assert_eq!(re.find_match(""), None);
let mut path = Path::new("/test2/");
assert!(re.capture_match_info(&mut path));
assert_eq!(&path["name"], "test2");
assert_eq!(&path[0], "test2");
assert_eq!(path.unprocessed(), "/");
let mut path = Path::new("/test2/subpath1/subpath2/index.html");
assert!(re.capture_match_info(&mut path));
assert_eq!(&path["name"], "test2");
assert_eq!(&path[0], "test2");
assert_eq!(path.unprocessed(), "/subpath1/subpath2/index.html");
let resource = ResourceDef::prefix("/user");
// input string shorter than prefix
assert!(resource.find_match("/foo").is_none());
}
#[test]
fn prefix_empty() {
let re = ResourceDef::prefix("");
assert!(re.is_prefix());
assert!(re.is_match(""));
assert!(re.is_match("/"));
assert!(re.is_match("/name/test/test"));
}
#[test]
fn build_path_list() {
let mut s = String::new();
let resource = ResourceDef::new("/user/{item1}/test");
assert!(resource.resource_path_from_iter(&mut s, &mut ["user1"].iter()));
assert_eq!(s, "/user/user1/test");
let mut s = String::new();
let resource = ResourceDef::new("/user/{item1}/{item2}/test");
assert!(resource.resource_path_from_iter(&mut s, &mut ["item", "item2"].iter()));
assert_eq!(s, "/user/item/item2/test");
let mut s = String::new();
let resource = ResourceDef::new("/user/{item1}/{item2}");
assert!(resource.resource_path_from_iter(&mut s, &mut ["item", "item2"].iter()));
assert_eq!(s, "/user/item/item2");
let mut s = String::new();
let resource = ResourceDef::new("/user/{item1}/{item2}/");
assert!(resource.resource_path_from_iter(&mut s, &mut ["item", "item2"].iter()));
assert_eq!(s, "/user/item/item2/");
let mut s = String::new();
assert!(!resource.resource_path_from_iter(&mut s, &mut ["item"].iter()));
let mut s = String::new();
assert!(resource.resource_path_from_iter(&mut s, &mut ["item", "item2"].iter()));
assert_eq!(s, "/user/item/item2/");
assert!(!resource.resource_path_from_iter(&mut s, &mut ["item"].iter()));
let mut s = String::new();
assert!(resource.resource_path_from_iter(
&mut s,
#[allow(clippy::useless_vec)]
&mut vec!["item", "item2"].iter()
));
assert_eq!(s, "/user/item/item2/");
}
#[test]
fn multi_pattern_build_path() {
let resource = ResourceDef::new(["/user/{id}", "/profile/{id}"]);
let mut s = String::new();
assert!(resource.resource_path_from_iter(&mut s, &mut ["123"].iter()));
assert_eq!(s, "/user/123");
}
#[test]
fn multi_pattern_capture_segment_values() {
let resource = ResourceDef::new(["/user/{id}", "/profile/{id}"]);
let mut path = Path::new("/user/123");
assert!(resource.capture_match_info(&mut path));
assert!(path.get("id").is_some());
let mut path = Path::new("/profile/123");
assert!(resource.capture_match_info(&mut path));
assert!(path.get("id").is_some());
let resource = ResourceDef::new(["/user/{id}", "/profile/{uid}"]);
let mut path = Path::new("/user/123");
assert!(resource.capture_match_info(&mut path));
assert!(path.get("id").is_some());
assert!(path.get("uid").is_none());
let mut path = Path::new("/profile/123");
assert!(resource.capture_match_info(&mut path));
assert!(path.get("id").is_none());
assert!(path.get("uid").is_some());
}
#[test]
fn dynamic_prefix_proper_segmentation() {
let resource = ResourceDef::prefix(r"/id/{id:\d{3}}");
assert!(resource.is_match("/id/123"));
assert!(resource.is_match("/id/123/foo"));
assert!(!resource.is_match("/id/1234"));
assert!(!resource.is_match("/id/123a"));
assert_eq!(resource.find_match("/id/123"), Some(7));
assert_eq!(resource.find_match("/id/123/foo"), Some(7));
assert_eq!(resource.find_match("/id/1234"), None);
assert_eq!(resource.find_match("/id/123a"), None);
}
#[test]
fn build_path_map() {
let resource = ResourceDef::new("/user/{item1}/{item2}/");
let mut map = HashMap::new();
map.insert("item1", "item");
let mut s = String::new();
assert!(!resource.resource_path_from_map(&mut s, &map));
map.insert("item2", "item2");
let mut s = String::new();
assert!(resource.resource_path_from_map(&mut s, &map));
assert_eq!(s, "/user/item/item2/");
}
#[test]
fn build_path_tail() {
let resource = ResourceDef::new("/user/{item1}*");
let mut s = String::new();
assert!(!resource.resource_path_from_iter(&mut s, &mut [""; 0].iter()));
let mut s = String::new();
assert!(resource.resource_path_from_iter(&mut s, &mut ["user1"].iter()));
assert_eq!(s, "/user/user1");
let mut s = String::new();
let mut map = HashMap::new();
map.insert("item1", "item");
assert!(resource.resource_path_from_map(&mut s, &map));
assert_eq!(s, "/user/item");
}
#[test]
fn prefix_trailing_slash() {
// The prefix "/abc/" matches two segments: ["user", ""]
// These are not prefixes
let re = ResourceDef::prefix("/abc/");
assert_eq!(re.find_match("/abc/def"), None);
assert_eq!(re.find_match("/abc//def"), Some(5));
let re = ResourceDef::prefix("/{id}/");
assert_eq!(re.find_match("/abc/def"), None);
assert_eq!(re.find_match("/abc//def"), Some(5));
}
#[test]
fn join() {
// test joined defs match the same paths as each component separately
fn seq_find_match(re1: &ResourceDef, re2: &ResourceDef, path: &str) -> Option<usize> {
let len1 = re1.find_match(path)?;
let len2 = re2.find_match(&path[len1..])?;
Some(len1 + len2)
}
macro_rules! join_test {
($pat1:expr, $pat2:expr => $($test:expr),+) => {{
let pat1 = $pat1;
let pat2 = $pat2;
$({
let _path = $test;
let (re1, re2) = (ResourceDef::prefix(pat1), ResourceDef::new(pat2));
let _seq = seq_find_match(&re1, &re2, _path);
let _join = re1.join(&re2).find_match(_path);
assert_eq!(
_seq, _join,
"patterns: prefix {:?}, {:?}; mismatch on \"{}\"; seq={:?}; join={:?}",
pat1, pat2, _path, _seq, _join
);
assert!(!re1.join(&re2).is_prefix());
let (re1, re2) = (ResourceDef::prefix(pat1), ResourceDef::prefix(pat2));
let _seq = seq_find_match(&re1, &re2, _path);
let _join = re1.join(&re2).find_match(_path);
assert_eq!(
_seq, _join,
"patterns: prefix {:?}, prefix {:?}; mismatch on \"{}\"; seq={:?}; join={:?}",
pat1, pat2, _path, _seq, _join
);
assert!(re1.join(&re2).is_prefix());
})+
}}
}
join_test!("", "" => "", "/hello", "/");
join_test!("/user", "" => "", "/user", "/user/123", "/user11", "user", "user/123");
join_test!("", "/user" => "", "/user", "foo", "/user11", "user", "user/123");
join_test!("/user", "/xx" => "", "", "/", "/user", "/xx", "/userxx", "/user/xx");
join_test!(["/ver/{v}", "/v{v}"], ["/req/{req}", "/{req}"] => "/v1/abc",
"/ver/1/abc", "/v1/req/abc", "/ver/1/req/abc", "/v1/abc/def",
"/ver1/req/abc/def", "", "/", "/v1/");
}
#[test]
fn match_methods_agree() {
macro_rules! match_methods_agree {
($pat:expr => $($test:expr),+) => {{
match_methods_agree!(finish $pat, ResourceDef::new($pat), $($test),+);
}};
(prefix $pat:expr => $($test:expr),+) => {{
match_methods_agree!(finish $pat, ResourceDef::prefix($pat), $($test),+);
}};
(finish $pat:expr, $re:expr, $($test:expr),+) => {{
let re = $re;
$({
let _is = re.is_match($test);
let _find = re.find_match($test).is_some();
assert_eq!(
_is, _find,
"pattern: {:?}; mismatch on \"{}\"; is={}; find={}",
$pat, $test, _is, _find
);
})+
}}
}
match_methods_agree!("" => "", "/", "/foo");
match_methods_agree!("/" => "", "/", "/foo");
match_methods_agree!("/user" => "user", "/user", "/users", "/user/123", "/foo");
match_methods_agree!("/v{v}" => "v", "/v", "/v1", "/v222", "/foo");
match_methods_agree!(["/v{v}", "/version/{v}"] => "/v", "/v1", "/version", "/version/1", "/foo");
match_methods_agree!("/path{tail}*" => "/path", "/path1", "/path/123");
match_methods_agree!("/path/{tail}*" => "/path", "/path1", "/path/123");
match_methods_agree!(prefix "" => "", "/", "/foo");
match_methods_agree!(prefix "/user" => "user", "/user", "/users", "/user/123", "/foo");
match_methods_agree!(prefix r"/id/{id:\d{3}}" => "/id/123", "/id/1234");
match_methods_agree!(["/v{v}", "/ver/{v}"] => "", "s/v", "/v1", "/v1/xx", "/ver/i3/5", "/ver/1");
}
#[test]
#[should_panic]
fn duplicate_segment_name() {
ResourceDef::new("/user/{id}/post/{id}");
}
#[test]
#[should_panic]
fn invalid_dynamic_segment_delimiter() {
ResourceDef::new("/user/{username");
}
#[test]
#[should_panic]
fn invalid_dynamic_segment_name() {
ResourceDef::new("/user/{}");
}
#[test]
#[should_panic]
fn invalid_too_many_dynamic_segments() {
// valid
ResourceDef::new("/{a}/{b}/{c}/{d}/{e}/{f}/{g}/{h}/{i}/{j}/{k}/{l}/{m}/{n}/{o}/{p}");
// panics
ResourceDef::new("/{a}/{b}/{c}/{d}/{e}/{f}/{g}/{h}/{i}/{j}/{k}/{l}/{m}/{n}/{o}/{p}/{q}");
}
#[test]
#[should_panic]
fn invalid_custom_regex_for_tail() {
ResourceDef::new(r"/{tail:\d+}*");
}
#[test]
#[should_panic]
fn invalid_unnamed_tail_segment() {
ResourceDef::new("/*");
}
#[test]
#[should_panic]
fn prefix_plus_tail_match_disallowed() {
ResourceDef::prefix("/user/{id}*");
}
}
|
use crate::Path;
// TODO: this trait is necessary, document it
// see impl Resource for ServiceRequest
pub trait Resource {
/// Type of resource's path returned in `resource_path`.
type Path: ResourcePath;
fn resource_path(&mut self) -> &mut Path<Self::Path>;
}
pub trait ResourcePath {
fn path(&self) -> &str;
}
impl ResourcePath for String {
fn path(&self) -> &str {
self.as_str()
}
}
impl<'a> ResourcePath for &'a str {
fn path(&self) -> &str {
self
}
}
impl ResourcePath for bytestring::ByteString {
fn path(&self) -> &str {
self
}
}
#[cfg(feature = "http")]
impl ResourcePath for http::Uri {
fn path(&self) -> &str {
self.path()
}
}
|
use crate::{IntoPatterns, Resource, ResourceDef};
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct ResourceId(pub u16);
/// Resource router.
///
/// It matches a [routing resource](Resource) to an ordered list of _routes_. Each is defined by a
/// single [`ResourceDef`] and contains two types of custom data:
/// 1. The route _value_, of the generic type `T`.
/// 1. Some _context_ data, of the generic type `U`, which is only provided to the check function in
/// [`recognize_fn`](Self::recognize_fn). This parameter defaults to `()` and can be omitted if
/// not required.
pub struct Router<T, U = ()> {
routes: Vec<(ResourceDef, T, U)>,
}
impl<T, U> Router<T, U> {
/// Constructs new `RouterBuilder` with empty route list.
pub fn build() -> RouterBuilder<T, U> {
RouterBuilder { routes: Vec::new() }
}
/// Finds the value in the router that matches a given [routing resource](Resource).
///
/// The match result, including the captured dynamic segments, in the `resource`.
pub fn recognize<R>(&self, resource: &mut R) -> Option<(&T, ResourceId)>
where
R: Resource,
{
self.recognize_fn(resource, |_, _| true)
}
/// Same as [`recognize`](Self::recognize) but returns a mutable reference to the matched value.
pub fn recognize_mut<R>(&mut self, resource: &mut R) -> Option<(&mut T, ResourceId)>
where
R: Resource,
{
self.recognize_mut_fn(resource, |_, _| true)
}
/// Finds the value in the router that matches a given [routing resource](Resource) and passes
/// an additional predicate check using context data.
///
/// Similar to [`recognize`](Self::recognize). However, before accepting the route as matched,
/// the `check` closure is executed, passing the resource and each route's context data. If the
/// closure returns true then the match result is stored into `resource` and a reference to
/// the matched _value_ is returned.
pub fn recognize_fn<R, F>(&self, resource: &mut R, mut check: F) -> Option<(&T, ResourceId)>
where
R: Resource,
F: FnMut(&R, &U) -> bool,
{
for (rdef, val, ctx) in self.routes.iter() {
if rdef.capture_match_info_fn(resource, |res| check(res, ctx)) {
return Some((val, ResourceId(rdef.id())));
}
}
None
}
/// Same as [`recognize_fn`](Self::recognize_fn) but returns a mutable reference to the matched
/// value.
pub fn recognize_mut_fn<R, F>(
&mut self,
resource: &mut R,
mut check: F,
) -> Option<(&mut T, ResourceId)>
where
R: Resource,
F: FnMut(&R, &U) -> bool,
{
for (rdef, val, ctx) in self.routes.iter_mut() {
if rdef.capture_match_info_fn(resource, |res| check(res, ctx)) {
return Some((val, ResourceId(rdef.id())));
}
}
None
}
}
/// Builder for an ordered [routing](Router) list.
pub struct RouterBuilder<T, U = ()> {
routes: Vec<(ResourceDef, T, U)>,
}
impl<T, U> RouterBuilder<T, U> {
/// Adds a new route to the end of the routing list.
///
/// Returns mutable references to elements of the new route.
pub fn push(
&mut self,
rdef: ResourceDef,
val: T,
ctx: U,
) -> (&mut ResourceDef, &mut T, &mut U) {
self.routes.push((rdef, val, ctx));
#[allow(clippy::map_identity)] // map is used to distribute &mut-ness to tuple elements
self.routes
.last_mut()
.map(|(rdef, val, ctx)| (rdef, val, ctx))
.unwrap()
}
/// Finish configuration and create router instance.
pub fn finish(self) -> Router<T, U> {
Router {
routes: self.routes,
}
}
}
/// Convenience methods provided when context data impls [`Default`]
impl<T, U> RouterBuilder<T, U>
where
U: Default,
{
/// Registers resource for specified path.
pub fn path(&mut self, path: impl IntoPatterns, val: T) -> (&mut ResourceDef, &mut T, &mut U) {
self.push(ResourceDef::new(path), val, U::default())
}
/// Registers resource for specified path prefix.
pub fn prefix(
&mut self,
prefix: impl IntoPatterns,
val: T,
) -> (&mut ResourceDef, &mut T, &mut U) {
self.push(ResourceDef::prefix(prefix), val, U::default())
}
/// Registers resource for [`ResourceDef`].
pub fn rdef(&mut self, rdef: ResourceDef, val: T) -> (&mut ResourceDef, &mut T, &mut U) {
self.push(rdef, val, U::default())
}
}
#[cfg(test)]
mod tests {
use crate::{
path::Path,
router::{ResourceId, Router},
};
#[allow(clippy::cognitive_complexity)]
#[test]
fn test_recognizer_1() {
let mut router = Router::<usize>::build();
router.path("/name", 10).0.set_id(0);
router.path("/name/{val}", 11).0.set_id(1);
router.path("/name/{val}/index.html", 12).0.set_id(2);
router.path("/file/{file}.{ext}", 13).0.set_id(3);
router.path("/v{val}/{val2}/index.html", 14).0.set_id(4);
router.path("/v/{tail:.*}", 15).0.set_id(5);
router.path("/test2/{test}.html", 16).0.set_id(6);
router.path("/{test}/index.html", 17).0.set_id(7);
let mut router = router.finish();
let mut path = Path::new("/unknown");
assert!(router.recognize_mut(&mut path).is_none());
let mut path = Path::new("/name");
let (h, info) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 10);
assert_eq!(info, ResourceId(0));
assert!(path.is_empty());
let mut path = Path::new("/name/value");
let (h, info) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 11);
assert_eq!(info, ResourceId(1));
assert_eq!(path.get("val").unwrap(), "value");
assert_eq!(&path["val"], "value");
let mut path = Path::new("/name/value2/index.html");
let (h, info) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 12);
assert_eq!(info, ResourceId(2));
assert_eq!(path.get("val").unwrap(), "value2");
let mut path = Path::new("/file/file.gz");
let (h, info) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 13);
assert_eq!(info, ResourceId(3));
assert_eq!(path.get("file").unwrap(), "file");
assert_eq!(path.get("ext").unwrap(), "gz");
let mut path = Path::new("/v2/ttt/index.html");
let (h, info) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 14);
assert_eq!(info, ResourceId(4));
assert_eq!(path.get("val").unwrap(), "2");
assert_eq!(path.get("val2").unwrap(), "ttt");
let mut path = Path::new("/v/blah-blah/index.html");
let (h, info) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 15);
assert_eq!(info, ResourceId(5));
assert_eq!(path.get("tail").unwrap(), "blah-blah/index.html");
let mut path = Path::new("/test2/index.html");
let (h, info) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 16);
assert_eq!(info, ResourceId(6));
assert_eq!(path.get("test").unwrap(), "index");
let mut path = Path::new("/bbb/index.html");
let (h, info) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 17);
assert_eq!(info, ResourceId(7));
assert_eq!(path.get("test").unwrap(), "bbb");
}
#[test]
fn test_recognizer_2() {
let mut router = Router::<usize>::build();
router.path("/index.json", 10);
router.path("/{source}.json", 11);
let mut router = router.finish();
let mut path = Path::new("/index.json");
let (h, _) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 10);
let mut path = Path::new("/test.json");
let (h, _) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 11);
}
#[test]
fn test_recognizer_with_prefix() {
let mut router = Router::<usize>::build();
router.path("/name", 10).0.set_id(0);
router.path("/name/{val}", 11).0.set_id(1);
let mut router = router.finish();
let mut path = Path::new("/name");
path.skip(5);
assert!(router.recognize_mut(&mut path).is_none());
let mut path = Path::new("/test/name");
path.skip(5);
let (h, _) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 10);
let mut path = Path::new("/test/name/value");
path.skip(5);
let (h, id) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 11);
assert_eq!(id, ResourceId(1));
assert_eq!(path.get("val").unwrap(), "value");
assert_eq!(&path["val"], "value");
// same patterns
let mut router = Router::<usize>::build();
router.path("/name", 10);
router.path("/name/{val}", 11);
let mut router = router.finish();
// test skip beyond path length
let mut path = Path::new("/name");
path.skip(6);
assert!(router.recognize_mut(&mut path).is_none());
let mut path = Path::new("/test2/name");
path.skip(6);
let (h, _) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 10);
let mut path = Path::new("/test2/name-test");
path.skip(6);
assert!(router.recognize_mut(&mut path).is_none());
let mut path = Path::new("/test2/name/ttt");
path.skip(6);
let (h, _) = router.recognize_mut(&mut path).unwrap();
assert_eq!(*h, 11);
assert_eq!(&path["val"], "ttt");
}
}
|
use crate::{Quoter, ResourcePath};
thread_local! {
static DEFAULT_QUOTER: Quoter = Quoter::new(b"", b"%/+");
}
#[derive(Debug, Clone, Default)]
pub struct Url {
uri: http::Uri,
path: Option<String>,
}
impl Url {
#[inline]
pub fn new(uri: http::Uri) -> Url {
let path = DEFAULT_QUOTER.with(|q| q.requote_str_lossy(uri.path()));
Url { uri, path }
}
#[inline]
pub fn new_with_quoter(uri: http::Uri, quoter: &Quoter) -> Url {
Url {
path: quoter.requote_str_lossy(uri.path()),
uri,
}
}
/// Returns URI.
#[inline]
pub fn uri(&self) -> &http::Uri {
&self.uri
}
/// Returns path.
#[inline]
pub fn path(&self) -> &str {
match self.path {
Some(ref path) => path,
_ => self.uri.path(),
}
}
#[inline]
pub fn update(&mut self, uri: &http::Uri) {
self.uri = uri.clone();
self.path = DEFAULT_QUOTER.with(|q| q.requote_str_lossy(uri.path()));
}
#[inline]
pub fn update_with_quoter(&mut self, uri: &http::Uri, quoter: &Quoter) {
self.uri = uri.clone();
self.path = quoter.requote_str_lossy(uri.path());
}
}
impl ResourcePath for Url {
#[inline]
fn path(&self) -> &str {
self.path()
}
}
#[cfg(test)]
mod tests {
use std::fmt::Write as _;
use http::Uri;
use super::*;
use crate::{Path, ResourceDef};
const PROTECTED: &[u8] = b"%/+";
fn match_url(pattern: &'static str, url: impl AsRef<str>) -> Path<Url> {
let re = ResourceDef::new(pattern);
let uri = Uri::try_from(url.as_ref()).unwrap();
let mut path = Path::new(Url::new(uri));
assert!(re.capture_match_info(&mut path));
path
}
fn percent_encode(data: &[u8]) -> String {
data.iter()
.fold(String::with_capacity(data.len() * 3), |mut buf, c| {
write!(&mut buf, "%{:02X}", c).unwrap();
buf
})
}
#[test]
fn parse_url() {
let re = "/user/{id}/test";
let path = match_url(re, "/user/2345/test");
assert_eq!(path.get("id").unwrap(), "2345");
}
#[test]
fn protected_chars() {
let re = "/user/{id}/test";
let encoded = percent_encode(PROTECTED);
let path = match_url(re, format!("/user/{}/test", encoded));
// characters in captured segment remain unencoded
assert_eq!(path.get("id").unwrap(), &encoded);
// "%25" should never be decoded into '%' to guarantee the output is a valid
// percent-encoded format
let path = match_url(re, "/user/qwe%25/test");
assert_eq!(path.get("id").unwrap(), "qwe%25");
let path = match_url(re, "/user/qwe%25rty/test");
assert_eq!(path.get("id").unwrap(), "qwe%25rty");
}
#[test]
fn non_protected_ascii() {
let non_protected_ascii = ('\u{0}'..='\u{7F}')
.filter(|&c| c.is_ascii() && !PROTECTED.contains(&(c as u8)))
.collect::<String>();
let encoded = percent_encode(non_protected_ascii.as_bytes());
let path = match_url("/user/{id}/test", format!("/user/{}/test", encoded));
assert_eq!(path.get("id").unwrap(), &non_protected_ascii);
}
#[test]
fn valid_utf8_multi_byte() {
let test = ('\u{FF00}'..='\u{FFFF}').collect::<String>();
let encoded = percent_encode(test.as_bytes());
let path = match_url("/a/{id}/b", format!("/a/{}/b", &encoded));
assert_eq!(path.get("id").unwrap(), &test);
}
#[test]
fn invalid_utf8() {
let invalid_utf8 = percent_encode((0x80..=0xff).collect::<Vec<_>>().as_slice());
let uri = Uri::try_from(format!("/{}", invalid_utf8)).unwrap();
let path = Path::new(Url::new(uri));
// We should always get a valid utf8 string
assert!(String::from_utf8(path.as_str().as_bytes().to_owned()).is_ok());
}
}
|
//! An example on how to build a multi-thread tokio runtime for Actix System.
//! Then spawn async task that can make use of work stealing of tokio runtime.
use actix_rt::System;
fn main() {
System::with_tokio_rt(|| {
// build system with a multi-thread tokio runtime.
tokio::runtime::Builder::new_multi_thread()
.worker_threads(2)
.enable_all()
.build()
.unwrap()
})
.block_on(async_main());
}
// async main function that acts like #[actix_web::main] or #[tokio::main]
async fn async_main() {
let (tx, rx) = tokio::sync::oneshot::channel();
// get a handle to system arbiter and spawn async task on it
System::current().arbiter().spawn(async {
// use tokio::spawn to get inside the context of multi thread tokio runtime
let h1 = tokio::spawn(async {
println!("thread id is {:?}", std::thread::current().id());
std::thread::sleep(std::time::Duration::from_secs(2));
});
// work stealing occurs for this task spawn
let h2 = tokio::spawn(async {
println!("thread id is {:?}", std::thread::current().id());
});
h1.await.unwrap();
h2.await.unwrap();
let _ = tx.send(());
});
rx.await.unwrap();
let (tx, rx) = tokio::sync::oneshot::channel();
let now = std::time::Instant::now();
// without additional tokio::spawn, all spawned tasks run on single thread
System::current().arbiter().spawn(async {
println!("thread id is {:?}", std::thread::current().id());
std::thread::sleep(std::time::Duration::from_secs(2));
let _ = tx.send(());
});
// previous spawn task has blocked the system arbiter thread
// so this task will wait for 2 seconds until it can be run
System::current().arbiter().spawn(async move {
println!("thread id is {:?}", std::thread::current().id());
assert!(now.elapsed() > std::time::Duration::from_secs(2));
});
rx.await.unwrap();
}
|
use std::{
cell::RefCell,
fmt,
future::Future,
pin::Pin,
sync::atomic::{AtomicUsize, Ordering},
task::{Context, Poll},
thread,
};
use futures_core::ready;
use tokio::sync::mpsc;
use crate::system::{System, SystemCommand};
pub(crate) static COUNT: AtomicUsize = AtomicUsize::new(0);
thread_local!(
static HANDLE: RefCell<Option<ArbiterHandle>> = const { RefCell::new(None) };
);
pub(crate) enum ArbiterCommand {
Stop,
Execute(Pin<Box<dyn Future<Output = ()> + Send>>),
}
impl fmt::Debug for ArbiterCommand {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ArbiterCommand::Stop => write!(f, "ArbiterCommand::Stop"),
ArbiterCommand::Execute(_) => write!(f, "ArbiterCommand::Execute"),
}
}
}
/// A handle for sending spawn and stop messages to an [Arbiter].
#[derive(Debug, Clone)]
pub struct ArbiterHandle {
tx: mpsc::UnboundedSender<ArbiterCommand>,
}
impl ArbiterHandle {
pub(crate) fn new(tx: mpsc::UnboundedSender<ArbiterCommand>) -> Self {
Self { tx }
}
/// Send a future to the [Arbiter]'s thread and spawn it.
///
/// If you require a result, include a response channel in the future.
///
/// Returns true if future was sent successfully and false if the [Arbiter] has died.
pub fn spawn<Fut>(&self, future: Fut) -> bool
where
Fut: Future<Output = ()> + Send + 'static,
{
self.tx
.send(ArbiterCommand::Execute(Box::pin(future)))
.is_ok()
}
/// Send a function to the [Arbiter]'s thread and execute it.
///
/// Any result from the function is discarded. If you require a result, include a response
/// channel in the function.
///
/// Returns true if function was sent successfully and false if the [Arbiter] has died.
pub fn spawn_fn<F>(&self, f: F) -> bool
where
F: FnOnce() + Send + 'static,
{
self.spawn(async { f() })
}
/// Instruct [Arbiter] to stop processing it's event loop.
///
/// Returns true if stop message was sent successfully and false if the [Arbiter] has
/// been dropped.
pub fn stop(&self) -> bool {
self.tx.send(ArbiterCommand::Stop).is_ok()
}
}
/// An Arbiter represents a thread that provides an asynchronous execution environment for futures
/// and functions.
///
/// When an arbiter is created, it spawns a new [OS thread](thread), and hosts an event loop.
#[derive(Debug)]
pub struct Arbiter {
tx: mpsc::UnboundedSender<ArbiterCommand>,
thread_handle: thread::JoinHandle<()>,
}
impl Arbiter {
/// Spawn a new Arbiter thread and start its event loop.
///
/// # Panics
/// Panics if a [System] is not registered on the current thread.
#[cfg(not(all(target_os = "linux", feature = "io-uring")))]
#[allow(clippy::new_without_default)]
pub fn new() -> Arbiter {
Self::with_tokio_rt(|| {
crate::runtime::default_tokio_runtime().expect("Cannot create new Arbiter's Runtime.")
})
}
/// Spawn a new Arbiter using the [Tokio Runtime](tokio-runtime) returned from a closure.
///
/// [tokio-runtime]: tokio::runtime::Runtime
#[cfg(not(all(target_os = "linux", feature = "io-uring")))]
pub fn with_tokio_rt<F>(runtime_factory: F) -> Arbiter
where
F: FnOnce() -> tokio::runtime::Runtime + Send + 'static,
{
let sys = System::current();
let system_id = sys.id();
let arb_id = COUNT.fetch_add(1, Ordering::Relaxed);
let name = format!("actix-rt|system:{}|arbiter:{}", system_id, arb_id);
let (tx, rx) = mpsc::unbounded_channel();
let (ready_tx, ready_rx) = std::sync::mpsc::channel::<()>();
let thread_handle = thread::Builder::new()
.name(name.clone())
.spawn({
let tx = tx.clone();
move || {
let rt = crate::runtime::Runtime::from(runtime_factory());
let hnd = ArbiterHandle::new(tx);
System::set_current(sys);
HANDLE.with(|cell| *cell.borrow_mut() = Some(hnd.clone()));
// register arbiter
let _ = System::current()
.tx()
.send(SystemCommand::RegisterArbiter(arb_id, hnd));
ready_tx.send(()).unwrap();
// run arbiter event processing loop
rt.block_on(ArbiterRunner { rx });
// deregister arbiter
let _ = System::current()
.tx()
.send(SystemCommand::DeregisterArbiter(arb_id));
}
})
.unwrap_or_else(|err| panic!("Cannot spawn Arbiter's thread: {name:?}: {err:?}"));
ready_rx.recv().unwrap();
Arbiter { tx, thread_handle }
}
/// Spawn a new Arbiter thread and start its event loop with `tokio-uring` runtime.
///
/// # Panics
/// Panics if a [System] is not registered on the current thread.
#[cfg(all(target_os = "linux", feature = "io-uring"))]
#[allow(clippy::new_without_default)]
pub fn new() -> Arbiter {
let sys = System::current();
let system_id = sys.id();
let arb_id = COUNT.fetch_add(1, Ordering::Relaxed);
let name = format!("actix-rt|system:{}|arbiter:{}", system_id, arb_id);
let (tx, rx) = mpsc::unbounded_channel();
let (ready_tx, ready_rx) = std::sync::mpsc::channel::<()>();
let thread_handle = thread::Builder::new()
.name(name.clone())
.spawn({
let tx = tx.clone();
move || {
let hnd = ArbiterHandle::new(tx);
System::set_current(sys);
HANDLE.with(|cell| *cell.borrow_mut() = Some(hnd.clone()));
// register arbiter
let _ = System::current()
.tx()
.send(SystemCommand::RegisterArbiter(arb_id, hnd));
ready_tx.send(()).unwrap();
// run arbiter event processing loop
tokio_uring::start(ArbiterRunner { rx });
// deregister arbiter
let _ = System::current()
.tx()
.send(SystemCommand::DeregisterArbiter(arb_id));
}
})
.unwrap_or_else(|err| panic!("Cannot spawn Arbiter's thread: {name:?}: {err:?}"));
ready_rx.recv().unwrap();
Arbiter { tx, thread_handle }
}
/// Sets up an Arbiter runner in a new System using the environment's local set.
pub(crate) fn in_new_system() -> ArbiterHandle {
let (tx, rx) = mpsc::unbounded_channel();
let hnd = ArbiterHandle::new(tx);
HANDLE.with(|cell| *cell.borrow_mut() = Some(hnd.clone()));
crate::spawn(ArbiterRunner { rx });
hnd
}
/// Return a handle to the this Arbiter's message sender.
pub fn handle(&self) -> ArbiterHandle {
ArbiterHandle::new(self.tx.clone())
}
/// Return a handle to the current thread's Arbiter's message sender.
///
/// # Panics
/// Panics if no Arbiter is running on the current thread.
pub fn current() -> ArbiterHandle {
HANDLE.with(|cell| match *cell.borrow() {
Some(ref hnd) => hnd.clone(),
None => panic!("Arbiter is not running."),
})
}
/// Try to get current running arbiter handle.
///
/// Returns `None` if no Arbiter has been started.
///
/// Unlike [`current`](Self::current), this never panics.
pub fn try_current() -> Option<ArbiterHandle> {
HANDLE.with(|cell| cell.borrow().clone())
}
/// Stop Arbiter from continuing it's event loop.
///
/// Returns true if stop message was sent successfully and false if the Arbiter has been dropped.
pub fn stop(&self) -> bool {
self.tx.send(ArbiterCommand::Stop).is_ok()
}
/// Send a future to the Arbiter's thread and spawn it.
///
/// If you require a result, include a response channel in the future.
///
/// Returns true if future was sent successfully and false if the Arbiter has died.
#[track_caller]
pub fn spawn<Fut>(&self, future: Fut) -> bool
where
Fut: Future<Output = ()> + Send + 'static,
{
self.tx
.send(ArbiterCommand::Execute(Box::pin(future)))
.is_ok()
}
/// Send a function to the Arbiter's thread and execute it.
///
/// Any result from the function is discarded. If you require a result, include a response
/// channel in the function.
///
/// Returns true if function was sent successfully and false if the Arbiter has died.
#[track_caller]
pub fn spawn_fn<F>(&self, f: F) -> bool
where
F: FnOnce() + Send + 'static,
{
self.spawn(async { f() })
}
/// Wait for Arbiter's event loop to complete.
///
/// Joins the underlying OS thread handle. See [`JoinHandle::join`](thread::JoinHandle::join).
pub fn join(self) -> thread::Result<()> {
self.thread_handle.join()
}
}
/// A persistent future that processes [Arbiter] commands.
struct ArbiterRunner {
rx: mpsc::UnboundedReceiver<ArbiterCommand>,
}
impl Future for ArbiterRunner {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// process all items currently buffered in channel
loop {
match ready!(self.rx.poll_recv(cx)) {
// channel closed; no more messages can be received
None => return Poll::Ready(()),
// process arbiter command
Some(item) => match item {
ArbiterCommand::Stop => {
return Poll::Ready(());
}
ArbiterCommand::Execute(task_fut) => {
tokio::task::spawn_local(task_fut);
}
},
}
}
}
}
|
//! Tokio-based single-threaded async runtime for the Actix ecosystem.
//!
//! In most parts of the the Actix ecosystem, it has been chosen to use !Send futures. For this
//! reason, a single-threaded runtime is appropriate since it is guaranteed that futures will not
//! be moved between threads. This can result in small performance improvements over cases where
//! atomics would otherwise be needed.
//!
//! To achieve similar performance to multi-threaded, work-stealing runtimes, applications
//! using `actix-rt` will create multiple, mostly disconnected, single-threaded runtimes.
//! This approach has good performance characteristics for workloads where the majority of tasks
//! have similar runtime expense.
//!
//! The disadvantage is that idle threads will not steal work from very busy, stuck or otherwise
//! backlogged threads. Tasks that are disproportionately expensive should be offloaded to the
//! blocking task thread-pool using [`task::spawn_blocking`].
//!
//! # Examples
//! ```no_run
//! use std::sync::mpsc;
//! use actix_rt::{Arbiter, System};
//!
//! let _ = System::new();
//!
//! let (tx, rx) = mpsc::channel::<u32>();
//!
//! let arbiter = Arbiter::new();
//! arbiter.spawn_fn(move || tx.send(42).unwrap());
//!
//! let num = rx.recv().unwrap();
//! assert_eq!(num, 42);
//!
//! arbiter.stop();
//! arbiter.join().unwrap();
//! ```
//!
//! # `io-uring` Support
//!
//! There is experimental support for using io-uring with this crate by enabling the
//! `io-uring` feature. For now, it is semver exempt.
//!
//! Note that there are currently some unimplemented parts of using `actix-rt` with `io-uring`.
//! In particular, when running a `System`, only `System::block_on` is supported.
#![deny(rust_2018_idioms, nonstandard_style)]
#![warn(future_incompatible, missing_docs)]
#![allow(clippy::type_complexity)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
#[cfg(all(not(target_os = "linux"), feature = "io-uring"))]
compile_error!("io_uring is a linux only feature.");
use std::future::Future;
// Cannot define a main macro when compiled into test harness.
// Workaround for https://github.com/rust-lang/rust/issues/62127.
#[cfg(all(feature = "macros", not(test)))]
pub use actix_macros::main;
#[cfg(feature = "macros")]
pub use actix_macros::test;
mod arbiter;
mod runtime;
mod system;
pub use tokio::pin;
use tokio::task::JoinHandle;
pub use self::{
arbiter::{Arbiter, ArbiterHandle},
runtime::Runtime,
system::{System, SystemRunner},
};
pub mod signal {
//! Asynchronous signal handling (Tokio re-exports).
#[cfg(unix)]
pub mod unix {
//! Unix specific signals (Tokio re-exports).
pub use tokio::signal::unix::*;
}
pub use tokio::signal::ctrl_c;
}
pub mod net {
//! TCP/UDP/Unix bindings (mostly Tokio re-exports).
use std::{
future::Future,
io,
task::{Context, Poll},
};
use tokio::io::{AsyncRead, AsyncWrite, Interest};
#[cfg(unix)]
pub use tokio::net::{UnixDatagram, UnixListener, UnixStream};
pub use tokio::{
io::Ready,
net::{TcpListener, TcpSocket, TcpStream, UdpSocket},
};
/// Extension trait over async read+write types that can also signal readiness.
#[doc(hidden)]
pub trait ActixStream: AsyncRead + AsyncWrite + Unpin {
/// Poll stream and check read readiness of Self.
///
/// See [tokio::net::TcpStream::poll_read_ready] for detail on intended use.
fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>>;
/// Poll stream and check write readiness of Self.
///
/// See [tokio::net::TcpStream::poll_write_ready] for detail on intended use.
fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>>;
}
impl ActixStream for TcpStream {
fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>> {
let ready = self.ready(Interest::READABLE);
tokio::pin!(ready);
ready.poll(cx)
}
fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>> {
let ready = self.ready(Interest::WRITABLE);
tokio::pin!(ready);
ready.poll(cx)
}
}
#[cfg(unix)]
impl ActixStream for UnixStream {
fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>> {
let ready = self.ready(Interest::READABLE);
tokio::pin!(ready);
ready.poll(cx)
}
fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>> {
let ready = self.ready(Interest::WRITABLE);
tokio::pin!(ready);
ready.poll(cx)
}
}
impl<Io: ActixStream + ?Sized> ActixStream for Box<Io> {
fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>> {
(**self).poll_read_ready(cx)
}
fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>> {
(**self).poll_write_ready(cx)
}
}
}
pub mod time {
//! Utilities for tracking time (Tokio re-exports).
pub use tokio::time::{
interval, interval_at, sleep, sleep_until, timeout, Instant, Interval, Sleep, Timeout,
};
}
pub mod task {
//! Task management (Tokio re-exports).
pub use tokio::task::{spawn_blocking, yield_now, JoinError, JoinHandle};
}
/// Spawns a future on the current thread as a new task.
///
/// If not immediately awaited, the task can be cancelled using [`JoinHandle::abort`].
///
/// The provided future is spawned as a new task; therefore, panics are caught.
///
/// # Panics
/// Panics if Actix system is not running.
///
/// # Examples
/// ```
/// # use std::time::Duration;
/// # actix_rt::Runtime::new().unwrap().block_on(async {
/// // task resolves successfully
/// assert_eq!(actix_rt::spawn(async { 1 }).await.unwrap(), 1);
///
/// // task panics
/// assert!(actix_rt::spawn(async {
/// panic!("panic is caught at task boundary");
/// })
/// .await
/// .unwrap_err()
/// .is_panic());
///
/// // task is cancelled before completion
/// let handle = actix_rt::spawn(actix_rt::time::sleep(Duration::from_secs(100)));
/// handle.abort();
/// assert!(handle.await.unwrap_err().is_cancelled());
/// # });
/// ```
#[track_caller]
#[inline]
pub fn spawn<Fut>(f: Fut) -> JoinHandle<Fut::Output>
where
Fut: Future + 'static,
Fut::Output: 'static,
{
tokio::task::spawn_local(f)
}
|
use std::{future::Future, io};
use tokio::task::{JoinHandle, LocalSet};
/// A Tokio-based runtime proxy.
///
/// All spawned futures will be executed on the current thread. Therefore, there is no `Send` bound
/// on submitted futures.
#[derive(Debug)]
pub struct Runtime {
local: LocalSet,
rt: tokio::runtime::Runtime,
}
pub(crate) fn default_tokio_runtime() -> io::Result<tokio::runtime::Runtime> {
tokio::runtime::Builder::new_current_thread()
.enable_io()
.enable_time()
.build()
}
impl Runtime {
/// Returns a new runtime initialized with default configuration values.
#[allow(clippy::new_ret_no_self)]
pub fn new() -> io::Result<Self> {
let rt = default_tokio_runtime()?;
Ok(Runtime {
rt,
local: LocalSet::new(),
})
}
/// Offload a future onto the single-threaded runtime.
///
/// The returned join handle can be used to await the future's result.
///
/// See [crate root][crate] documentation for more details.
///
/// # Examples
/// ```
/// let rt = actix_rt::Runtime::new().unwrap();
///
/// // Spawn a future onto the runtime
/// let handle = rt.spawn(async {
/// println!("running on the runtime");
/// 42
/// });
///
/// assert_eq!(rt.block_on(handle).unwrap(), 42);
/// ```
///
/// # Panics
/// This function panics if the spawn fails. Failure occurs if the executor is currently at
/// capacity and is unable to spawn a new future.
#[track_caller]
pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
where
F: Future + 'static,
{
self.local.spawn_local(future)
}
/// Retrieves a reference to the underlying Tokio runtime associated with this instance.
///
/// The Tokio runtime is responsible for executing asynchronous tasks and managing
/// the event loop for an asynchronous Rust program. This method allows accessing
/// the runtime to interact with its features directly.
///
/// In a typical use case, you might need to share the same runtime between different
/// modules of your project. For example, a module might require a `tokio::runtime::Handle`
/// to spawn tasks on the same runtime, or the runtime itself to configure more complex
/// behaviours.
///
/// # Example
///
/// ```
/// use actix_rt::Runtime;
///
/// mod module_a {
/// pub fn do_something(handle: tokio::runtime::Handle) {
/// handle.spawn(async {
/// // Some asynchronous task here
/// });
/// }
/// }
///
/// mod module_b {
/// pub fn do_something_else(rt: &tokio::runtime::Runtime) {
/// rt.spawn(async {
/// // Another asynchronous task here
/// });
/// }
/// }
///
/// let actix_runtime = actix_rt::Runtime::new().unwrap();
/// let tokio_runtime = actix_runtime.tokio_runtime();
///
/// let handle = tokio_runtime.handle().clone();
///
/// module_a::do_something(handle);
/// module_b::do_something_else(tokio_runtime);
/// ```
///
/// # Returns
///
/// An immutable reference to the `tokio::runtime::Runtime` instance associated with this
/// `Runtime` instance.
///
/// # Note
///
/// While this method provides an immutable reference to the Tokio runtime, which is safe to share across threads,
/// be aware that spawning blocking tasks on the Tokio runtime could potentially impact the execution
/// of the Actix runtime. This is because Tokio is responsible for driving the Actix system,
/// and blocking tasks could delay or deadlock other tasks in run loop.
pub fn tokio_runtime(&self) -> &tokio::runtime::Runtime {
&self.rt
}
/// Runs the provided future, blocking the current thread until the future completes.
///
/// This function can be used to synchronously block the current thread until the provided
/// `future` has resolved either successfully or with an error. The result of the future is
/// then returned from this function call.
///
/// Note that this function will also execute any spawned futures on the current thread, but
/// will not block until these other spawned futures have completed. Once the function returns,
/// any uncompleted futures remain pending in the `Runtime` instance. These futures will not run
/// until `block_on` or `run` is called again.
///
/// The caller is responsible for ensuring that other spawned futures complete execution by
/// calling `block_on` or `run`.
#[track_caller]
pub fn block_on<F>(&self, f: F) -> F::Output
where
F: Future,
{
self.local.block_on(&self.rt, f)
}
}
impl From<tokio::runtime::Runtime> for Runtime {
fn from(rt: tokio::runtime::Runtime) -> Self {
Self {
local: LocalSet::new(),
rt,
}
}
}
|
use std::{
cell::RefCell,
collections::HashMap,
future::Future,
io,
pin::Pin,
sync::atomic::{AtomicUsize, Ordering},
task::{Context, Poll},
};
use futures_core::ready;
use tokio::sync::{mpsc, oneshot};
use crate::{arbiter::ArbiterHandle, Arbiter};
static SYSTEM_COUNT: AtomicUsize = AtomicUsize::new(0);
thread_local!(
static CURRENT: RefCell<Option<System>> = const { RefCell::new(None) };
);
/// A manager for a per-thread distributed async runtime.
#[derive(Clone, Debug)]
pub struct System {
id: usize,
sys_tx: mpsc::UnboundedSender<SystemCommand>,
/// Handle to the first [Arbiter] that is created with the System.
arbiter_handle: ArbiterHandle,
}
#[cfg(not(feature = "io-uring"))]
impl System {
/// Create a new system.
///
/// # Panics
/// Panics if underlying Tokio runtime can not be created.
#[allow(clippy::new_ret_no_self)]
pub fn new() -> SystemRunner {
Self::with_tokio_rt(|| {
crate::runtime::default_tokio_runtime()
.expect("Default Actix (Tokio) runtime could not be created.")
})
}
/// Create a new System using the [Tokio Runtime](tokio-runtime) returned from a closure.
///
/// [tokio-runtime]: tokio::runtime::Runtime
pub fn with_tokio_rt<F>(runtime_factory: F) -> SystemRunner
where
F: FnOnce() -> tokio::runtime::Runtime,
{
let (stop_tx, stop_rx) = oneshot::channel();
let (sys_tx, sys_rx) = mpsc::unbounded_channel();
let rt = crate::runtime::Runtime::from(runtime_factory());
let sys_arbiter = rt.block_on(async { Arbiter::in_new_system() });
let system = System::construct(sys_tx, sys_arbiter.clone());
system
.tx()
.send(SystemCommand::RegisterArbiter(usize::MAX, sys_arbiter))
.unwrap();
// init background system arbiter
let sys_ctrl = SystemController::new(sys_rx, stop_tx);
rt.spawn(sys_ctrl);
SystemRunner { rt, stop_rx }
}
}
#[cfg(feature = "io-uring")]
impl System {
/// Create a new system.
///
/// # Panics
/// Panics if underlying Tokio runtime can not be created.
#[allow(clippy::new_ret_no_self)]
pub fn new() -> SystemRunner {
SystemRunner
}
/// Create a new System using the [Tokio Runtime](tokio-runtime) returned from a closure.
///
/// [tokio-runtime]: tokio::runtime::Runtime
#[doc(hidden)]
pub fn with_tokio_rt<F>(_: F) -> SystemRunner
where
F: FnOnce() -> tokio::runtime::Runtime,
{
unimplemented!("System::with_tokio_rt is not implemented for io-uring feature yet")
}
}
impl System {
/// Constructs new system and registers it on the current thread.
pub(crate) fn construct(
sys_tx: mpsc::UnboundedSender<SystemCommand>,
arbiter_handle: ArbiterHandle,
) -> Self {
let sys = System {
sys_tx,
arbiter_handle,
id: SYSTEM_COUNT.fetch_add(1, Ordering::SeqCst),
};
System::set_current(sys.clone());
sys
}
/// Get current running system.
///
/// # Panics
/// Panics if no system is registered on the current thread.
pub fn current() -> System {
CURRENT.with(|cell| match *cell.borrow() {
Some(ref sys) => sys.clone(),
None => panic!("System is not running"),
})
}
/// Try to get current running system.
///
/// Returns `None` if no System has been started.
///
/// Unlike [`current`](Self::current), this never panics.
pub fn try_current() -> Option<System> {
CURRENT.with(|cell| cell.borrow().clone())
}
/// Get handle to a the System's initial [Arbiter].
pub fn arbiter(&self) -> &ArbiterHandle {
&self.arbiter_handle
}
/// Check if there is a System registered on the current thread.
pub fn is_registered() -> bool {
CURRENT.with(|sys| sys.borrow().is_some())
}
/// Register given system on current thread.
#[doc(hidden)]
pub fn set_current(sys: System) {
CURRENT.with(|cell| {
*cell.borrow_mut() = Some(sys);
})
}
/// Numeric system identifier.
///
/// Useful when using multiple Systems.
pub fn id(&self) -> usize {
self.id
}
/// Stop the system (with code 0).
pub fn stop(&self) {
self.stop_with_code(0)
}
/// Stop the system with a given exit code.
pub fn stop_with_code(&self, code: i32) {
let _ = self.sys_tx.send(SystemCommand::Exit(code));
}
pub(crate) fn tx(&self) -> &mpsc::UnboundedSender<SystemCommand> {
&self.sys_tx
}
}
/// Runner that keeps a [System]'s event loop alive until stop message is received.
#[cfg(not(feature = "io-uring"))]
#[must_use = "A SystemRunner does nothing unless `run` is called."]
#[derive(Debug)]
pub struct SystemRunner {
rt: crate::runtime::Runtime,
stop_rx: oneshot::Receiver<i32>,
}
#[cfg(not(feature = "io-uring"))]
impl SystemRunner {
/// Starts event loop and will return once [System] is [stopped](System::stop).
pub fn run(self) -> io::Result<()> {
let exit_code = self.run_with_code()?;
match exit_code {
0 => Ok(()),
nonzero => Err(io::Error::new(
io::ErrorKind::Other,
format!("Non-zero exit code: {}", nonzero),
)),
}
}
/// Runs the event loop until [stopped](System::stop_with_code), returning the exit code.
pub fn run_with_code(self) -> io::Result<i32> {
let SystemRunner { rt, stop_rx, .. } = self;
// run loop
rt.block_on(stop_rx)
.map_err(|err| io::Error::new(io::ErrorKind::Other, err))
}
/// Retrieves a reference to the underlying [Actix runtime](crate::Runtime) associated with this
/// `SystemRunner` instance.
///
/// The Actix runtime is responsible for managing the event loop for an Actix system and
/// executing asynchronous tasks. This method provides access to the runtime, allowing direct
/// interaction with its features.
///
/// In a typical use case, you might need to share the same runtime between different
/// parts of your project. For example, some components might require a [`Runtime`] to spawn
/// tasks on the same runtime.
///
/// Read more in the documentation for [`Runtime`].
///
/// # Examples
///
/// ```
/// let system_runner = actix_rt::System::new();
/// let actix_runtime = system_runner.runtime();
///
/// // Use the runtime to spawn an async task or perform other operations
/// ```
///
/// # Note
///
/// While this method provides an immutable reference to the Actix runtime, which is safe to
/// share across threads, be aware that spawning blocking tasks on the Actix runtime could
/// potentially impact system performance. This is because the Actix runtime is responsible for
/// driving the system, and blocking tasks could delay other tasks in the run loop.
///
/// [`Runtime`]: crate::Runtime
pub fn runtime(&self) -> &crate::runtime::Runtime {
&self.rt
}
/// Runs the provided future, blocking the current thread until the future completes.
#[track_caller]
#[inline]
pub fn block_on<F: Future>(&self, fut: F) -> F::Output {
self.rt.block_on(fut)
}
}
/// Runner that keeps a [System]'s event loop alive until stop message is received.
#[cfg(feature = "io-uring")]
#[must_use = "A SystemRunner does nothing unless `run` is called."]
#[derive(Debug)]
pub struct SystemRunner;
#[cfg(feature = "io-uring")]
impl SystemRunner {
/// Starts event loop and will return once [System] is [stopped](System::stop).
pub fn run(self) -> io::Result<()> {
unimplemented!("SystemRunner::run is not implemented for io-uring feature yet");
}
/// Runs the event loop until [stopped](System::stop_with_code), returning the exit code.
pub fn run_with_code(self) -> io::Result<i32> {
unimplemented!("SystemRunner::run_with_code is not implemented for io-uring feature yet");
}
/// Runs the provided future, blocking the current thread until the future completes.
#[inline]
pub fn block_on<F: Future>(&self, fut: F) -> F::Output {
tokio_uring::start(async move {
let (stop_tx, stop_rx) = oneshot::channel();
let (sys_tx, sys_rx) = mpsc::unbounded_channel();
let sys_arbiter = Arbiter::in_new_system();
let system = System::construct(sys_tx, sys_arbiter.clone());
system
.tx()
.send(SystemCommand::RegisterArbiter(usize::MAX, sys_arbiter))
.unwrap();
// init background system arbiter
let sys_ctrl = SystemController::new(sys_rx, stop_tx);
tokio_uring::spawn(sys_ctrl);
let res = fut.await;
drop(stop_rx);
res
})
}
}
#[derive(Debug)]
pub(crate) enum SystemCommand {
Exit(i32),
RegisterArbiter(usize, ArbiterHandle),
DeregisterArbiter(usize),
}
/// There is one `SystemController` per [System]. It runs in the background, keeping track of
/// [Arbiter]s and is able to distribute a system-wide stop command.
#[derive(Debug)]
pub(crate) struct SystemController {
stop_tx: Option<oneshot::Sender<i32>>,
cmd_rx: mpsc::UnboundedReceiver<SystemCommand>,
arbiters: HashMap<usize, ArbiterHandle>,
}
impl SystemController {
pub(crate) fn new(
cmd_rx: mpsc::UnboundedReceiver<SystemCommand>,
stop_tx: oneshot::Sender<i32>,
) -> Self {
SystemController {
cmd_rx,
stop_tx: Some(stop_tx),
arbiters: HashMap::with_capacity(4),
}
}
}
impl Future for SystemController {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// process all items currently buffered in channel
loop {
match ready!(self.cmd_rx.poll_recv(cx)) {
// channel closed; no more messages can be received
None => return Poll::Ready(()),
// process system command
Some(cmd) => match cmd {
SystemCommand::Exit(code) => {
// stop all arbiters
for arb in self.arbiters.values() {
arb.stop();
}
// stop event loop
// will only fire once
if let Some(stop_tx) = self.stop_tx.take() {
let _ = stop_tx.send(code);
}
}
SystemCommand::RegisterArbiter(id, arb) => {
self.arbiters.insert(id, arb);
}
SystemCommand::DeregisterArbiter(id) => {
self.arbiters.remove(&id);
}
},
}
}
}
}
|
//! Checks that test macro does not cause problems in the presence of imports named "test" that
//! could be either a module with test items or the "test with runtime" macro itself.
//!
//! Before actix/actix-net#399 was implemented, this macro was running twice. The first run output
//! `#[test]` and it got run again and since it was in scope.
//!
//! Prevented by using the fully-qualified test marker (`#[::core::prelude::v1::test]`).
#![cfg(feature = "macros")]
use actix_rt::time as test;
#[actix_rt::test]
async fn test_naming_conflict() {
use test as time;
time::sleep(std::time::Duration::from_millis(2)).await;
}
|
use std::{
future::Future,
time::{Duration, Instant},
};
use actix_rt::{task::JoinError, Arbiter, System};
#[cfg(not(feature = "io-uring"))]
use {
std::{sync::mpsc::channel, thread},
tokio::sync::oneshot,
};
#[test]
fn await_for_timer() {
let time = Duration::from_secs(1);
let instant = Instant::now();
System::new().block_on(async move {
tokio::time::sleep(time).await;
});
assert!(
instant.elapsed() >= time,
"Block on should poll awaited future to completion"
);
}
#[cfg(not(feature = "io-uring"))]
#[test]
fn run_with_code() {
let sys = System::new();
System::current().stop_with_code(42);
let exit_code = sys.run_with_code().expect("system stop should not error");
assert_eq!(exit_code, 42);
}
#[test]
fn join_another_arbiter() {
let time = Duration::from_secs(1);
let instant = Instant::now();
System::new().block_on(async move {
let arbiter = Arbiter::new();
arbiter.spawn(Box::pin(async move {
tokio::time::sleep(time).await;
Arbiter::current().stop();
}));
arbiter.join().unwrap();
});
assert!(
instant.elapsed() >= time,
"Join on another arbiter should complete only when it calls stop"
);
let instant = Instant::now();
System::new().block_on(async move {
let arbiter = Arbiter::new();
arbiter.spawn_fn(move || {
actix_rt::spawn(async move {
tokio::time::sleep(time).await;
Arbiter::current().stop();
});
});
arbiter.join().unwrap();
});
assert!(
instant.elapsed() >= time,
"Join on an arbiter that has used actix_rt::spawn should wait for said future"
);
let instant = Instant::now();
System::new().block_on(async move {
let arbiter = Arbiter::new();
arbiter.spawn(Box::pin(async move {
tokio::time::sleep(time).await;
Arbiter::current().stop();
}));
arbiter.stop();
arbiter.join().unwrap();
});
assert!(
instant.elapsed() < time,
"Premature stop of arbiter should conclude regardless of it's current state"
);
}
#[test]
fn non_static_block_on() {
let string = String::from("test_str");
let string = string.as_str();
let sys = System::new();
sys.block_on(async {
actix_rt::time::sleep(Duration::from_millis(1)).await;
assert_eq!("test_str", string);
});
let rt = actix_rt::Runtime::new().unwrap();
rt.block_on(async {
actix_rt::time::sleep(Duration::from_millis(1)).await;
assert_eq!("test_str", string);
});
}
#[test]
fn wait_for_spawns() {
let rt = actix_rt::Runtime::new().unwrap();
let handle = rt.spawn(async {
println!("running on the runtime");
// panic is caught at task boundary
panic!("intentional test panic");
});
assert!(rt.block_on(handle).is_err());
}
// Temporary disabled tests for io-uring feature.
// They should be enabled when possible.
#[cfg(not(feature = "io-uring"))]
#[test]
fn arbiter_spawn_fn_runs() {
let _ = System::new();
let (tx, rx) = channel::<u32>();
let arbiter = Arbiter::new();
arbiter.spawn_fn(move || tx.send(42).unwrap());
let num = rx.recv().unwrap();
assert_eq!(num, 42);
arbiter.stop();
arbiter.join().unwrap();
}
#[cfg(not(feature = "io-uring"))]
#[test]
fn arbiter_handle_spawn_fn_runs() {
let sys = System::new();
let (tx, rx) = channel::<u32>();
let arbiter = Arbiter::new();
let handle = arbiter.handle();
drop(arbiter);
handle.spawn_fn(move || {
tx.send(42).unwrap();
System::current().stop()
});
let num = rx.recv_timeout(Duration::from_secs(2)).unwrap();
assert_eq!(num, 42);
handle.stop();
sys.run().unwrap();
}
#[cfg(not(feature = "io-uring"))]
#[test]
fn arbiter_drop_no_panic_fn() {
let _ = System::new();
let arbiter = Arbiter::new();
arbiter.spawn_fn(|| panic!("test"));
arbiter.stop();
arbiter.join().unwrap();
}
#[cfg(not(feature = "io-uring"))]
#[test]
fn arbiter_drop_no_panic_fut() {
let _ = System::new();
let arbiter = Arbiter::new();
arbiter.spawn(async { panic!("test") });
arbiter.stop();
arbiter.join().unwrap();
}
#[cfg(not(feature = "io-uring"))]
#[test]
fn system_arbiter_spawn() {
let runner = System::new();
let (tx, rx) = oneshot::channel();
let sys = System::current();
thread::spawn(|| {
// this thread will have no arbiter in it's thread local so call will panic
Arbiter::current();
})
.join()
.unwrap_err();
let thread = thread::spawn(|| {
// this thread will have no arbiter in it's thread local so use the system handle instead
System::set_current(sys);
let sys = System::current();
let arb = sys.arbiter();
arb.spawn(async move {
tx.send(42u32).unwrap();
System::current().stop();
});
});
assert_eq!(runner.block_on(rx).unwrap(), 42);
thread.join().unwrap();
}
#[cfg(not(feature = "io-uring"))]
#[test]
fn system_stop_stops_arbiters() {
let sys = System::new();
let arb = Arbiter::new();
// arbiter should be alive to receive spawn msg
assert!(Arbiter::current().spawn_fn(|| {}));
assert!(arb.spawn_fn(|| {}));
System::current().stop();
sys.run().unwrap();
// account for slightly slow thread de-spawns
thread::sleep(Duration::from_millis(500));
// arbiter should be dead and return false
assert!(!Arbiter::current().spawn_fn(|| {}));
assert!(!arb.spawn_fn(|| {}));
arb.join().unwrap();
}
#[cfg(not(feature = "io-uring"))]
#[test]
fn new_system_with_tokio() {
let (tx, rx) = channel();
let res = System::with_tokio_rt(move || {
tokio::runtime::Builder::new_multi_thread()
.enable_io()
.enable_time()
.thread_keep_alive(Duration::from_millis(1000))
.worker_threads(2)
.max_blocking_threads(2)
.on_thread_start(|| {})
.on_thread_stop(|| {})
.build()
.unwrap()
})
.block_on(async {
actix_rt::time::sleep(Duration::from_millis(1)).await;
tokio::task::spawn(async move {
tx.send(42).unwrap();
})
.await
.unwrap();
123usize
});
assert_eq!(res, 123);
assert_eq!(rx.recv().unwrap(), 42);
}
#[cfg(not(feature = "io-uring"))]
#[test]
fn new_arbiter_with_tokio() {
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
let _ = System::new();
let arb = Arbiter::with_tokio_rt(|| {
tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap()
});
let counter = Arc::new(AtomicBool::new(true));
let counter1 = counter.clone();
let did_spawn = arb.spawn(async move {
actix_rt::time::sleep(Duration::from_millis(1)).await;
counter1.store(false, Ordering::SeqCst);
Arbiter::current().stop();
});
assert!(did_spawn);
arb.join().unwrap();
assert!(!counter.load(Ordering::SeqCst));
}
#[test]
#[should_panic]
fn no_system_current_panic() {
System::current();
}
#[test]
#[should_panic]
fn no_system_arbiter_new_panic() {
Arbiter::new();
}
#[test]
fn try_current_no_system() {
assert!(System::try_current().is_none())
}
#[test]
fn try_current_with_system() {
System::new().block_on(async { assert!(System::try_current().is_some()) });
}
#[allow(clippy::unit_cmp)]
#[test]
fn spawn_local() {
System::new().block_on(async {
// demonstrate that spawn -> R is strictly more capable than spawn -> ()
assert_eq!(actix_rt::spawn(async {}).await.unwrap(), ());
assert_eq!(actix_rt::spawn(async { 1 }).await.unwrap(), 1);
assert!(actix_rt::spawn(async { panic!("") }).await.is_err());
actix_rt::spawn(async { tokio::time::sleep(Duration::from_millis(50)).await })
.await
.unwrap();
fn g<F: Future<Output = Result<(), JoinError>>>(_f: F) {}
g(actix_rt::spawn(async {}));
// g(actix_rt::spawn(async { 1 })); // compile err
fn h<F: Future<Output = Result<R, JoinError>>, R>(_f: F) {}
h(actix_rt::spawn(async {}));
h(actix_rt::spawn(async { 1 }));
})
}
#[cfg(all(target_os = "linux", feature = "io-uring"))]
#[test]
fn tokio_uring_arbiter() {
System::new().block_on(async {
let (tx, rx) = std::sync::mpsc::channel();
Arbiter::new().spawn(async move {
let handle = actix_rt::spawn(async move {
let f = tokio_uring::fs::File::create("test.txt").await.unwrap();
let buf = b"Hello World!";
let (res, _) = f.write_all_at(&buf[..], 0).await;
assert!(res.is_ok());
f.sync_all().await.unwrap();
f.close().await.unwrap();
std::fs::remove_file("test.txt").unwrap();
});
handle.await.unwrap();
tx.send(true).unwrap();
});
assert!(rx.recv().unwrap());
})
}
|
//! Simple file-reader TCP server with framed stream.
//!
//! Using the following command:
//!
//! ```sh
//! nc 127.0.0.1 8080
//! ```
//!
//! Follow the prompt and enter a file path, relative or absolute.
#![allow(missing_docs)]
use std::io;
use actix_codec::{Framed, LinesCodec};
use actix_rt::net::TcpStream;
use actix_server::Server;
use actix_service::{fn_service, ServiceFactoryExt as _};
use futures_util::{SinkExt as _, StreamExt as _};
use tokio::{fs::File, io::AsyncReadExt as _};
async fn run() -> io::Result<()> {
pretty_env_logger::formatted_timed_builder()
.parse_env(pretty_env_logger::env_logger::Env::default().default_filter_or("info"));
let addr = ("127.0.0.1", 8080);
tracing::info!("starting server on port: {}", &addr.0);
// Bind socket address and start worker(s). By default, the server uses the number of physical
// CPU cores as the worker count. For this reason, the closure passed to bind needs to return
// a service *factory*; so it can be created once per worker.
Server::build()
.bind("file-reader", addr, move || {
fn_service(move |stream: TcpStream| async move {
// set up codec to use with I/O resource
let mut framed = Framed::new(stream, LinesCodec::default());
loop {
// prompt for file name
framed.send("Type file name to return:").await?;
// wait for next line
match framed.next().await {
Some(Ok(line)) => {
match File::open(&line).await {
Ok(mut file) => {
tracing::info!("reading file: {}", &line);
// read file into String buffer
let mut buf = String::new();
file.read_to_string(&mut buf).await?;
// send String into framed object
framed.send(buf).await?;
// break out of loop and
break;
}
Err(err) => {
tracing::error!("{}", err);
framed
.send("File not found or not readable. Try again.")
.await?;
continue;
}
};
}
// not being able to read a line from the stream is unrecoverable
Some(Err(err)) => return Err(err),
// This EOF won't be hit.
None => continue,
}
}
// close connection after file has been copied to TCP stream
Ok(())
})
.map_err(|err| tracing::error!("service error: {:?}", err))
})?
.workers(2)
.run()
.await
}
#[tokio::main]
async fn main() -> io::Result<()> {
run().await?;
Ok(())
}
// alternatively:
// #[actix_rt::main]
// async fn main() -> io::Result<()> {
// run().await?;
// Ok(())
// }
|
//! Simple composite-service TCP echo server.
//!
//! Using the following command:
//!
//! ```sh
//! nc 127.0.0.1 8080
//! ```
//!
//! Start typing. When you press enter the typed line will be echoed back. The server will log
//! the length of each line it echos and the total size of data sent when the connection is closed.
use std::{
io,
sync::{
atomic::{AtomicUsize, Ordering},
Arc,
},
};
use actix_rt::net::TcpStream;
use actix_server::Server;
use actix_service::{fn_service, ServiceFactoryExt as _};
use bytes::BytesMut;
use futures_util::future::ok;
use tokio::io::{AsyncReadExt as _, AsyncWriteExt as _};
async fn run() -> io::Result<()> {
pretty_env_logger::formatted_timed_builder()
.parse_env(pretty_env_logger::env_logger::Env::default().default_filter_or("info"));
let count = Arc::new(AtomicUsize::new(0));
let addr = ("127.0.0.1", 8080);
tracing::info!("starting server on port: {}", &addr.0);
// Bind socket address and start worker(s). By default, the server uses the number of physical
// CPU cores as the worker count. For this reason, the closure passed to bind needs to return
// a service *factory*; so it can be created once per worker.
Server::build()
.bind("echo", addr, move || {
let count = Arc::clone(&count);
let num2 = Arc::clone(&count);
fn_service(move |mut stream: TcpStream| {
let count = Arc::clone(&count);
async move {
let num = count.fetch_add(1, Ordering::SeqCst);
let num = num + 1;
let mut size = 0;
let mut buf = BytesMut::new();
loop {
match stream.read_buf(&mut buf).await {
// end of stream; bail from loop
Ok(0) => break,
// more bytes to process
Ok(bytes_read) => {
tracing::info!("[{}] read {} bytes", num, bytes_read);
stream.write_all(&buf[size..]).await.unwrap();
size += bytes_read;
}
// stream error; bail from loop with error
Err(err) => {
tracing::error!("stream error: {:?}", err);
return Err(());
}
}
}
// send data down service pipeline
Ok((buf.freeze(), size))
}
})
.map_err(|err| tracing::error!("service error: {:?}", err))
.and_then(move |(_, size)| {
let num = num2.load(Ordering::SeqCst);
tracing::info!("[{}] total bytes read: {}", num, size);
ok(size)
})
})?
.workers(2)
.run()
.await
}
#[tokio::main]
async fn main() -> io::Result<()> {
run().await?;
Ok(())
}
// alternatively:
// #[actix_rt::main]
// async fn main() -> io::Result<()> {
// run().await?;
// Ok(())
// }
|
use std::{io, thread, time::Duration};
use actix_rt::time::Instant;
use mio::{Interest, Poll, Token as MioToken};
use tracing::{debug, error, info};
use crate::{
availability::Availability,
socket::MioListener,
waker_queue::{WakerInterest, WakerQueue, WAKER_TOKEN},
worker::{Conn, ServerWorker, WorkerHandleAccept, WorkerHandleServer},
ServerBuilder, ServerHandle,
};
const TIMEOUT_DURATION_ON_ERROR: Duration = Duration::from_millis(510);
struct ServerSocketInfo {
token: usize,
lst: MioListener,
/// Timeout is used to mark the deadline when this socket's listener should be registered again
/// after an error.
timeout: Option<actix_rt::time::Instant>,
}
/// Poll instance of the server.
pub(crate) struct Accept {
poll: Poll,
waker_queue: WakerQueue,
handles: Vec<WorkerHandleAccept>,
srv: ServerHandle,
next: usize,
avail: Availability,
/// use the smallest duration from sockets timeout.
timeout: Option<Duration>,
paused: bool,
}
impl Accept {
pub(crate) fn start(
sockets: Vec<(usize, MioListener)>,
builder: &ServerBuilder,
) -> io::Result<(WakerQueue, Vec<WorkerHandleServer>, thread::JoinHandle<()>)> {
let handle_server = ServerHandle::new(builder.cmd_tx.clone());
// construct poll instance and its waker
let poll = Poll::new()?;
let waker_queue = WakerQueue::new(poll.registry())?;
// start workers and collect handles
let (handles_accept, handles_server) = (0..builder.threads)
.map(|idx| {
// clone service factories
let factories = builder
.factories
.iter()
.map(|f| f.clone_factory())
.collect::<Vec<_>>();
// start worker using service factories
ServerWorker::start(idx, factories, waker_queue.clone(), builder.worker_config)
})
.collect::<io::Result<Vec<_>>>()?
.into_iter()
.unzip();
let (mut accept, mut sockets) = Accept::new_with_sockets(
poll,
waker_queue.clone(),
sockets,
handles_accept,
handle_server,
)?;
let accept_handle = thread::Builder::new()
.name("actix-server acceptor".to_owned())
.spawn(move || accept.poll_with(&mut sockets))
.map_err(|err| io::Error::new(io::ErrorKind::Other, err))?;
Ok((waker_queue, handles_server, accept_handle))
}
fn new_with_sockets(
poll: Poll,
waker_queue: WakerQueue,
sockets: Vec<(usize, MioListener)>,
accept_handles: Vec<WorkerHandleAccept>,
server_handle: ServerHandle,
) -> io::Result<(Accept, Box<[ServerSocketInfo]>)> {
let sockets = sockets
.into_iter()
.map(|(token, mut lst)| {
// Start listening for incoming connections
poll.registry()
.register(&mut lst, MioToken(token), Interest::READABLE)?;
Ok(ServerSocketInfo {
token,
lst,
timeout: None,
})
})
.collect::<io::Result<_>>()?;
let mut avail = Availability::default();
// Assume all handles are avail at construct time.
avail.set_available_all(&accept_handles);
let accept = Accept {
poll,
waker_queue,
handles: accept_handles,
srv: server_handle,
next: 0,
avail,
timeout: None,
paused: false,
};
Ok((accept, sockets))
}
/// blocking wait for readiness events triggered by mio
fn poll_with(&mut self, sockets: &mut [ServerSocketInfo]) {
let mut events = mio::Events::with_capacity(256);
loop {
if let Err(err) = self.poll.poll(&mut events, self.timeout) {
match err.kind() {
io::ErrorKind::Interrupted => {}
_ => panic!("Poll error: {}", err),
}
}
for event in events.iter() {
let token = event.token();
match token {
WAKER_TOKEN => {
let exit = self.handle_waker(sockets);
if exit {
info!("accept thread stopped");
return;
}
}
_ => {
let token = usize::from(token);
self.accept(sockets, token);
}
}
}
// check for timeout and re-register sockets
self.process_timeout(sockets);
}
}
fn handle_waker(&mut self, sockets: &mut [ServerSocketInfo]) -> bool {
// This is a loop because interests for command from previous version was
// a loop that would try to drain the command channel. It's yet unknown
// if it's necessary/good practice to actively drain the waker queue.
loop {
// Take guard with every iteration so no new interests can be added until the current
// task is done. Take care not to take the guard again inside this loop.
let mut guard = self.waker_queue.guard();
#[allow(clippy::significant_drop_in_scrutinee)]
match guard.pop_front() {
// Worker notified it became available.
Some(WakerInterest::WorkerAvailable(idx)) => {
drop(guard);
self.avail.set_available(idx, true);
if !self.paused {
self.accept_all(sockets);
}
}
// A new worker thread has been created so store its handle.
Some(WakerInterest::Worker(handle)) => {
drop(guard);
self.avail.set_available(handle.idx(), true);
self.handles.push(handle);
if !self.paused {
self.accept_all(sockets);
}
}
Some(WakerInterest::Pause) => {
drop(guard);
if !self.paused {
self.paused = true;
self.deregister_all(sockets);
}
}
Some(WakerInterest::Resume) => {
drop(guard);
if self.paused {
self.paused = false;
sockets.iter_mut().for_each(|info| {
self.register_logged(info);
});
self.accept_all(sockets);
}
}
Some(WakerInterest::Stop) => {
if !self.paused {
self.deregister_all(sockets);
}
return true;
}
// waker queue is drained
None => {
// Reset the WakerQueue before break so it does not grow infinitely
WakerQueue::reset(&mut guard);
return false;
}
}
}
}
fn process_timeout(&mut self, sockets: &mut [ServerSocketInfo]) {
// always remove old timeouts
if self.timeout.take().is_some() {
let now = Instant::now();
sockets
.iter_mut()
// Only sockets that had an associated timeout were deregistered.
.filter(|info| info.timeout.is_some())
.for_each(|info| {
let inst = info.timeout.take().unwrap();
if now < inst {
// still timed out; try to set new timeout
info.timeout = Some(inst);
self.set_timeout(inst - now);
} else if !self.paused {
// timeout expired; register socket again
self.register_logged(info);
}
// Drop the timeout if server is paused and socket timeout is expired.
// When server recovers from pause it will register all sockets without
// a timeout value so this socket register will be delayed till then.
});
}
}
/// Update accept timeout with `duration` if it is shorter than current timeout.
fn set_timeout(&mut self, duration: Duration) {
match self.timeout {
Some(ref mut timeout) => {
if *timeout > duration {
*timeout = duration;
}
}
None => self.timeout = Some(duration),
}
}
#[cfg(not(target_os = "windows"))]
fn register(&self, info: &mut ServerSocketInfo) -> io::Result<()> {
let token = MioToken(info.token);
self.poll
.registry()
.register(&mut info.lst, token, Interest::READABLE)
}
#[cfg(target_os = "windows")]
fn register(&self, info: &mut ServerSocketInfo) -> io::Result<()> {
// On windows, calling register without deregister cause an error.
// See https://github.com/actix/actix-web/issues/905
// Calling reregister seems to fix the issue.
let token = MioToken(info.token);
self.poll
.registry()
.register(&mut info.lst, token, Interest::READABLE)
.or_else(|_| {
self.poll
.registry()
.reregister(&mut info.lst, token, Interest::READABLE)
})
}
fn register_logged(&self, info: &mut ServerSocketInfo) {
match self.register(info) {
Ok(_) => debug!("resume accepting connections on {}", info.lst.local_addr()),
Err(err) => error!("can not register server socket {}", err),
}
}
fn deregister_logged(&self, info: &mut ServerSocketInfo) {
match self.poll.registry().deregister(&mut info.lst) {
Ok(_) => debug!("paused accepting connections on {}", info.lst.local_addr()),
Err(err) => {
error!("can not deregister server socket {}", err)
}
}
}
fn deregister_all(&self, sockets: &mut [ServerSocketInfo]) {
// This is a best effort implementation with following limitation:
//
// Every ServerSocketInfo with associated timeout will be skipped and it's timeout is
// removed in the process.
//
// Therefore WakerInterest::Pause followed by WakerInterest::Resume in a very short gap
// (less than 500ms) would cause all timing out ServerSocketInfos be re-registered before
// expected timing.
sockets
.iter_mut()
// Take all timeout.
// This is to prevent Accept::process_timer method re-register a socket afterwards.
.map(|info| (info.timeout.take(), info))
// Socket info with a timeout is already deregistered so skip them.
.filter(|(timeout, _)| timeout.is_none())
.for_each(|(_, info)| self.deregister_logged(info));
}
// Send connection to worker and handle error.
fn send_connection(&mut self, conn: Conn) -> Result<(), Conn> {
let next = self.next();
match next.send(conn) {
Ok(_) => {
// Increment counter of WorkerHandle.
// Set worker to unavailable with it hit max (Return false).
if !next.inc_counter() {
let idx = next.idx();
self.avail.set_available(idx, false);
}
self.set_next();
Ok(())
}
Err(conn) => {
// Worker thread is error and could be gone.
// Remove worker handle and notify `ServerBuilder`.
self.remove_next();
if self.handles.is_empty() {
error!("no workers");
// All workers are gone and Conn is nowhere to be sent.
// Treat this situation as Ok and drop Conn.
return Ok(());
} else if self.handles.len() <= self.next {
self.next = 0;
}
Err(conn)
}
}
}
fn accept_one(&mut self, mut conn: Conn) {
loop {
let next = self.next();
let idx = next.idx();
if self.avail.get_available(idx) {
match self.send_connection(conn) {
Ok(_) => return,
Err(c) => conn = c,
}
} else {
self.avail.set_available(idx, false);
self.set_next();
if !self.avail.available() {
while let Err(c) = self.send_connection(conn) {
conn = c;
}
return;
}
}
}
}
fn accept(&mut self, sockets: &mut [ServerSocketInfo], token: usize) {
while self.avail.available() {
let info = &mut sockets[token];
match info.lst.accept() {
Ok(io) => {
let conn = Conn { io, token };
self.accept_one(conn);
}
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => return,
Err(ref err) if connection_error(err) => continue,
Err(err) => {
error!("error accepting connection: {}", err);
// deregister listener temporary
self.deregister_logged(info);
// sleep after error. write the timeout to socket info as later
// the poll would need it mark which socket and when it's
// listener should be registered
info.timeout = Some(Instant::now() + Duration::from_millis(500));
self.set_timeout(TIMEOUT_DURATION_ON_ERROR);
return;
}
};
}
}
fn accept_all(&mut self, sockets: &mut [ServerSocketInfo]) {
sockets
.iter_mut()
.map(|info| info.token)
.collect::<Vec<_>>()
.into_iter()
.for_each(|idx| self.accept(sockets, idx))
}
#[inline(always)]
fn next(&self) -> &WorkerHandleAccept {
&self.handles[self.next]
}
/// Set next worker handle that would accept connection.
#[inline(always)]
fn set_next(&mut self) {
self.next = (self.next + 1) % self.handles.len();
}
/// Remove next worker handle that fail to accept connection.
fn remove_next(&mut self) {
let handle = self.handles.swap_remove(self.next);
let idx = handle.idx();
// A message is sent to `ServerBuilder` future to notify it a new worker
// should be made.
self.srv.worker_faulted(idx);
self.avail.set_available(idx, false);
}
}
/// This function defines errors that are per-connection; if we get this error from the `accept()`
/// system call it means the next connection might be ready to be accepted.
///
/// All other errors will incur a timeout before next `accept()` call is attempted. The timeout is
/// useful to handle resource exhaustion errors like `ENFILE` and `EMFILE`. Otherwise, it could
/// enter into a temporary spin loop.
fn connection_error(e: &io::Error) -> bool {
e.kind() == io::ErrorKind::ConnectionRefused
|| e.kind() == io::ErrorKind::ConnectionAborted
|| e.kind() == io::ErrorKind::ConnectionReset
}
|
use crate::worker::WorkerHandleAccept;
/// Array of u128 with every bit as marker for a worker handle's availability.
#[derive(Debug, Default)]
pub(crate) struct Availability([u128; 4]);
impl Availability {
/// Check if any worker handle is available
#[inline(always)]
pub(crate) fn available(&self) -> bool {
self.0.iter().any(|a| *a != 0)
}
/// Check if worker handle is available by index
#[inline(always)]
pub(crate) fn get_available(&self, idx: usize) -> bool {
let (offset, idx) = Self::offset(idx);
self.0[offset] & (1 << idx as u128) != 0
}
/// Set worker handle available state by index.
pub(crate) fn set_available(&mut self, idx: usize, avail: bool) {
let (offset, idx) = Self::offset(idx);
let off = 1 << idx as u128;
if avail {
self.0[offset] |= off;
} else {
self.0[offset] &= !off
}
}
/// Set all worker handle to available state.
/// This would result in a re-check on all workers' availability.
pub(crate) fn set_available_all(&mut self, handles: &[WorkerHandleAccept]) {
handles.iter().for_each(|handle| {
self.set_available(handle.idx(), true);
})
}
/// Get offset and adjusted index of given worker handle index.
pub(crate) fn offset(idx: usize) -> (usize, usize) {
if idx < 128 {
(0, idx)
} else if idx < 128 * 2 {
(1, idx - 128)
} else if idx < 128 * 3 {
(2, idx - 128 * 2)
} else if idx < 128 * 4 {
(3, idx - 128 * 3)
} else {
panic!("Max WorkerHandle count is 512")
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn single(aval: &mut Availability, idx: usize) {
aval.set_available(idx, true);
assert!(aval.available());
aval.set_available(idx, true);
aval.set_available(idx, false);
assert!(!aval.available());
aval.set_available(idx, false);
assert!(!aval.available());
}
fn multi(aval: &mut Availability, mut idx: Vec<usize>) {
idx.iter().for_each(|idx| aval.set_available(*idx, true));
assert!(aval.available());
while let Some(idx) = idx.pop() {
assert!(aval.available());
aval.set_available(idx, false);
}
assert!(!aval.available());
}
#[test]
fn availability() {
let mut aval = Availability::default();
single(&mut aval, 1);
single(&mut aval, 128);
single(&mut aval, 256);
single(&mut aval, 511);
let idx = (0..511).filter(|i| i % 3 == 0 && i % 5 == 0).collect();
multi(&mut aval, idx);
multi(&mut aval, (0..511).collect())
}
#[test]
#[should_panic]
fn overflow() {
let mut aval = Availability::default();
single(&mut aval, 512);
}
#[test]
fn pin_point() {
let mut aval = Availability::default();
aval.set_available(438, true);
aval.set_available(479, true);
assert_eq!(aval.0[3], 1 << (438 - 384) | 1 << (479 - 384));
}
}
|
use std::{io, num::NonZeroUsize, time::Duration};
use actix_rt::net::TcpStream;
use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender};
use crate::{
server::ServerCommand,
service::{InternalServiceFactory, ServerServiceFactory, StreamNewService},
socket::{create_mio_tcp_listener, MioListener, MioTcpListener, StdTcpListener, ToSocketAddrs},
worker::ServerWorkerConfig,
Server,
};
/// Multipath TCP (MPTCP) preference.
///
/// Currently only useful on Linux.
///
#[cfg_attr(target_os = "linux", doc = "Also see [`ServerBuilder::mptcp()`].")]
#[derive(Debug, Clone)]
pub enum MpTcp {
/// MPTCP will not be used when binding sockets.
Disabled,
/// MPTCP will be attempted when binding sockets. If errors occur, regular TCP will be
/// attempted, too.
TcpFallback,
/// MPTCP will be used when binding sockets (with no fallback).
NoFallback,
}
/// [Server] builder.
pub struct ServerBuilder {
pub(crate) threads: usize,
pub(crate) token: usize,
pub(crate) backlog: u32,
pub(crate) factories: Vec<Box<dyn InternalServiceFactory>>,
pub(crate) sockets: Vec<(usize, String, MioListener)>,
pub(crate) mptcp: MpTcp,
pub(crate) exit: bool,
pub(crate) listen_os_signals: bool,
pub(crate) cmd_tx: UnboundedSender<ServerCommand>,
pub(crate) cmd_rx: UnboundedReceiver<ServerCommand>,
pub(crate) worker_config: ServerWorkerConfig,
}
impl Default for ServerBuilder {
fn default() -> Self {
Self::new()
}
}
impl ServerBuilder {
/// Create new Server builder instance
pub fn new() -> ServerBuilder {
let (cmd_tx, cmd_rx) = unbounded_channel();
ServerBuilder {
threads: std::thread::available_parallelism().map_or(2, NonZeroUsize::get),
token: 0,
factories: Vec::new(),
sockets: Vec::new(),
backlog: 2048,
mptcp: MpTcp::Disabled,
exit: false,
listen_os_signals: true,
cmd_tx,
cmd_rx,
worker_config: ServerWorkerConfig::default(),
}
}
/// Sets number of workers to start.
///
/// See [`bind()`](Self::bind()) for more details on how worker count affects the number of
/// server factory instantiations.
///
/// The default worker count is the determined by [`std::thread::available_parallelism()`]. See
/// its documentation to determine what behavior you should expect when server is run.
///
/// `num` must be greater than 0.
///
/// # Panics
///
/// Panics if `num` is 0.
pub fn workers(mut self, num: usize) -> Self {
assert_ne!(num, 0, "workers must be greater than 0");
self.threads = num;
self
}
/// Set max number of threads for each worker's blocking task thread pool.
///
/// One thread pool is set up **per worker**; not shared across workers.
///
/// # Examples:
/// ```
/// # use actix_server::ServerBuilder;
/// let builder = ServerBuilder::new()
/// .workers(4) // server has 4 worker thread.
/// .worker_max_blocking_threads(4); // every worker has 4 max blocking threads.
/// ```
///
/// See [tokio::runtime::Builder::max_blocking_threads] for behavior reference.
pub fn worker_max_blocking_threads(mut self, num: usize) -> Self {
self.worker_config.max_blocking_threads(num);
self
}
/// Set the maximum number of pending connections.
///
/// This refers to the number of clients that can be waiting to be served. Exceeding this number
/// results in the client getting an error when attempting to connect. It should only affect
/// servers under significant load.
///
/// Generally set in the 64-2048 range. Default value is 2048.
///
/// This method should be called before `bind()` method call.
pub fn backlog(mut self, num: u32) -> Self {
self.backlog = num;
self
}
/// Sets MultiPath TCP (MPTCP) preference on bound sockets.
///
/// Multipath TCP (MPTCP) builds on top of TCP to improve connection redundancy and performance
/// by sharing a network data stream across multiple underlying TCP sessions. See [mptcp.dev]
/// for more info about MPTCP itself.
///
/// MPTCP is available on Linux kernel version 5.6 and higher. In addition, you'll also need to
/// ensure the kernel option is enabled using `sysctl net.mptcp.enabled=1`.
///
/// This method will have no effect if called after a `bind()`.
///
/// [mptcp.dev]: https://www.mptcp.dev
#[cfg(target_os = "linux")]
pub fn mptcp(mut self, mptcp_enabled: MpTcp) -> Self {
self.mptcp = mptcp_enabled;
self
}
/// Sets the maximum per-worker number of concurrent connections.
///
/// All socket listeners will stop accepting connections when this limit is reached for
/// each worker.
///
/// By default max connections is set to a 25k per worker.
pub fn max_concurrent_connections(mut self, num: usize) -> Self {
self.worker_config.max_concurrent_connections(num);
self
}
#[doc(hidden)]
#[deprecated(since = "2.0.0", note = "Renamed to `max_concurrent_connections`.")]
pub fn maxconn(self, num: usize) -> Self {
self.max_concurrent_connections(num)
}
/// Sets flag to stop Actix `System` after server shutdown.
///
/// This has no effect when server is running in a Tokio-only runtime.
pub fn system_exit(mut self) -> Self {
self.exit = true;
self
}
/// Disables OS signal handling.
pub fn disable_signals(mut self) -> Self {
self.listen_os_signals = false;
self
}
/// Timeout for graceful workers shutdown in seconds.
///
/// After receiving a stop signal, workers have this much time to finish serving requests.
/// Workers still alive after the timeout are force dropped.
///
/// By default shutdown timeout sets to 30 seconds.
pub fn shutdown_timeout(mut self, sec: u64) -> Self {
self.worker_config
.shutdown_timeout(Duration::from_secs(sec));
self
}
/// Adds new service to the server.
///
/// Note that, if a DNS lookup is required, resolving hostnames is a blocking operation.
///
/// # Worker Count
///
/// The `factory` will be instantiated multiple times in most scenarios. The number of
/// instantiations is number of [`workers`](Self::workers()) × number of sockets resolved by
/// `addrs`.
///
/// For example, if you've manually set [`workers`](Self::workers()) to 2, and use `127.0.0.1`
/// as the bind `addrs`, then `factory` will be instantiated twice. However, using `localhost`
/// as the bind `addrs` can often resolve to both `127.0.0.1` (IPv4) _and_ `::1` (IPv6), causing
/// the `factory` to be instantiated 4 times (2 workers × 2 bind addresses).
///
/// Using a bind address of `0.0.0.0`, which signals to use all interfaces, may also multiple
/// the number of instantiations in a similar way.
///
/// # Errors
///
/// Returns an `io::Error` if:
/// - `addrs` cannot be resolved into one or more socket addresses;
/// - all the resolved socket addresses are already bound.
pub fn bind<F, U, N>(mut self, name: N, addrs: U, factory: F) -> io::Result<Self>
where
F: ServerServiceFactory<TcpStream>,
U: ToSocketAddrs,
N: AsRef<str>,
{
let sockets = bind_addr(addrs, self.backlog, &self.mptcp)?;
tracing::trace!("binding server to: {sockets:?}");
for lst in sockets {
let token = self.next_token();
self.factories.push(StreamNewService::create(
name.as_ref().to_string(),
token,
factory.clone(),
lst.local_addr()?,
));
self.sockets
.push((token, name.as_ref().to_string(), MioListener::Tcp(lst)));
}
Ok(self)
}
/// Adds service to the server using a socket listener already bound.
///
/// # Worker Count
///
/// The `factory` will be instantiated multiple times in most scenarios. The number of
/// instantiations is: number of [`workers`](Self::workers()).
pub fn listen<F, N: AsRef<str>>(
mut self,
name: N,
lst: StdTcpListener,
factory: F,
) -> io::Result<Self>
where
F: ServerServiceFactory<TcpStream>,
{
lst.set_nonblocking(true)?;
let addr = lst.local_addr()?;
let token = self.next_token();
self.factories.push(StreamNewService::create(
name.as_ref().to_string(),
token,
factory,
addr,
));
self.sockets
.push((token, name.as_ref().to_string(), MioListener::from(lst)));
Ok(self)
}
/// Starts processing incoming connections and return server controller.
pub fn run(self) -> Server {
if self.sockets.is_empty() {
panic!("Server should have at least one bound socket");
} else {
tracing::info!("starting {} workers", self.threads);
Server::new(self)
}
}
fn next_token(&mut self) -> usize {
let token = self.token;
self.token += 1;
token
}
}
#[cfg(unix)]
impl ServerBuilder {
/// Adds new service to the server using a UDS (unix domain socket) address.
///
/// # Worker Count
///
/// The `factory` will be instantiated multiple times in most scenarios. The number of
/// instantiations is: number of [`workers`](Self::workers()).
pub fn bind_uds<F, U, N>(self, name: N, addr: U, factory: F) -> io::Result<Self>
where
F: ServerServiceFactory<actix_rt::net::UnixStream>,
N: AsRef<str>,
U: AsRef<std::path::Path>,
{
// The path must not exist when we try to bind.
// Try to remove it to avoid bind error.
if let Err(err) = std::fs::remove_file(addr.as_ref()) {
// NotFound is expected and not an issue. Anything else is.
if err.kind() != std::io::ErrorKind::NotFound {
return Err(err);
}
}
let lst = crate::socket::StdUnixListener::bind(addr)?;
self.listen_uds(name, lst, factory)
}
/// Adds new service to the server using a UDS (unix domain socket) listener already bound.
///
/// Useful when running as a systemd service and a socket FD is acquired externally.
///
/// # Worker Count
///
/// The `factory` will be instantiated multiple times in most scenarios. The number of
/// instantiations is: number of [`workers`](Self::workers()).
pub fn listen_uds<F, N: AsRef<str>>(
mut self,
name: N,
lst: crate::socket::StdUnixListener,
factory: F,
) -> io::Result<Self>
where
F: ServerServiceFactory<actix_rt::net::UnixStream>,
{
use std::net::{IpAddr, Ipv4Addr};
lst.set_nonblocking(true)?;
let token = self.next_token();
let addr = crate::socket::StdSocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 8080);
self.factories.push(StreamNewService::create(
name.as_ref().to_string(),
token,
factory,
addr,
));
self.sockets
.push((token, name.as_ref().to_string(), MioListener::from(lst)));
Ok(self)
}
}
pub(super) fn bind_addr<S: ToSocketAddrs>(
addr: S,
backlog: u32,
mptcp: &MpTcp,
) -> io::Result<Vec<MioTcpListener>> {
let mut opt_err = None;
let mut success = false;
let mut sockets = Vec::new();
for addr in addr.to_socket_addrs()? {
match create_mio_tcp_listener(addr, backlog, mptcp) {
Ok(lst) => {
success = true;
sockets.push(lst);
}
Err(err) => opt_err = Some(err),
}
}
if success {
Ok(sockets)
} else if let Some(err) = opt_err.take() {
Err(err)
} else {
Err(io::Error::new(
io::ErrorKind::Other,
"Can not bind to address.",
))
}
}
|
use std::future::Future;
use tokio::sync::{mpsc::UnboundedSender, oneshot};
use crate::server::ServerCommand;
/// Server handle.
#[derive(Debug, Clone)]
pub struct ServerHandle {
cmd_tx: UnboundedSender<ServerCommand>,
}
impl ServerHandle {
pub(crate) fn new(cmd_tx: UnboundedSender<ServerCommand>) -> Self {
ServerHandle { cmd_tx }
}
pub(crate) fn worker_faulted(&self, idx: usize) {
let _ = self.cmd_tx.send(ServerCommand::WorkerFaulted(idx));
}
/// Pause accepting incoming connections.
///
/// May drop socket pending connection. All open connections remain active.
pub fn pause(&self) -> impl Future<Output = ()> {
let (tx, rx) = oneshot::channel();
let _ = self.cmd_tx.send(ServerCommand::Pause(tx));
async {
let _ = rx.await;
}
}
/// Resume accepting incoming connections.
pub fn resume(&self) -> impl Future<Output = ()> {
let (tx, rx) = oneshot::channel();
let _ = self.cmd_tx.send(ServerCommand::Resume(tx));
async {
let _ = rx.await;
}
}
/// Stop incoming connection processing, stop all workers and exit.
pub fn stop(&self, graceful: bool) -> impl Future<Output = ()> {
let (tx, rx) = oneshot::channel();
let _ = self.cmd_tx.send(ServerCommand::Stop {
graceful,
completion: Some(tx),
force_system_stop: false,
});
async {
let _ = rx.await;
}
}
}
|
use std::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
use futures_core::future::BoxFuture;
// a poor man's join future. joined future is only used when starting/stopping the server.
// pin_project and pinned futures are overkill for this task.
pub(crate) struct JoinAll<T> {
fut: Vec<JoinFuture<T>>,
}
pub(crate) fn join_all<T>(fut: Vec<impl Future<Output = T> + Send + 'static>) -> JoinAll<T> {
let fut = fut
.into_iter()
.map(|f| JoinFuture::Future(Box::pin(f)))
.collect();
JoinAll { fut }
}
enum JoinFuture<T> {
Future(BoxFuture<'static, T>),
Result(Option<T>),
}
impl<T> Unpin for JoinAll<T> {}
impl<T> Future for JoinAll<T> {
type Output = Vec<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut ready = true;
let this = self.get_mut();
for fut in this.fut.iter_mut() {
if let JoinFuture::Future(f) = fut {
match f.as_mut().poll(cx) {
Poll::Ready(t) => {
*fut = JoinFuture::Result(Some(t));
}
Poll::Pending => ready = false,
}
}
}
if ready {
let mut res = Vec::new();
for fut in this.fut.iter_mut() {
if let JoinFuture::Result(f) = fut {
res.push(f.take().unwrap());
}
}
Poll::Ready(res)
} else {
Poll::Pending
}
}
}
#[cfg(test)]
mod test {
use actix_utils::future::ready;
use super::*;
#[actix_rt::test]
async fn test_join_all() {
let futs = vec![ready(Ok(1)), ready(Err(3)), ready(Ok(9))];
let mut res = join_all(futs).await.into_iter();
assert_eq!(Ok(1), res.next().unwrap());
assert_eq!(Err(3), res.next().unwrap());
assert_eq!(Ok(9), res.next().unwrap());
}
}
|
//! General purpose TCP server.
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
mod accept;
mod availability;
mod builder;
mod handle;
mod join_all;
mod server;
mod service;
mod signals;
mod socket;
mod test_server;
mod waker_queue;
mod worker;
#[doc(hidden)]
pub use self::socket::FromStream;
pub use self::{
builder::{MpTcp, ServerBuilder},
handle::ServerHandle,
server::Server,
service::ServerServiceFactory,
test_server::TestServer,
};
/// Start server building process
#[doc(hidden)]
#[deprecated(since = "2.0.0", note = "Use `Server::build()`.")]
pub fn new() -> ServerBuilder {
ServerBuilder::default()
}
|
use std::{
future::Future,
io, mem,
pin::Pin,
task::{Context, Poll},
thread,
time::Duration,
};
use actix_rt::{time::sleep, System};
use futures_core::{future::BoxFuture, Stream};
use futures_util::stream::StreamExt as _;
use tokio::sync::{mpsc::UnboundedReceiver, oneshot};
use tracing::{error, info};
use crate::{
accept::Accept,
builder::ServerBuilder,
join_all::join_all,
service::InternalServiceFactory,
signals::{SignalKind, Signals},
waker_queue::{WakerInterest, WakerQueue},
worker::{ServerWorker, ServerWorkerConfig, WorkerHandleServer},
ServerHandle,
};
#[derive(Debug)]
pub(crate) enum ServerCommand {
/// Worker failed to accept connection, indicating a probable panic.
///
/// Contains index of faulted worker.
WorkerFaulted(usize),
/// Pause accepting connections.
///
/// Contains return channel to notify caller of successful state change.
Pause(oneshot::Sender<()>),
/// Resume accepting connections.
///
/// Contains return channel to notify caller of successful state change.
Resume(oneshot::Sender<()>),
/// Stop accepting connections and begin shutdown procedure.
Stop {
/// True if shut down should be graceful.
graceful: bool,
/// Return channel to notify caller that shutdown is complete.
completion: Option<oneshot::Sender<()>>,
/// Force System exit when true, overriding `ServerBuilder::system_exit()` if it is false.
force_system_stop: bool,
},
}
/// General purpose TCP server that runs services receiving Tokio `TcpStream`s.
///
/// Handles creating worker threads, restarting faulted workers, connection accepting, and
/// back-pressure logic.
///
/// Creates a worker per CPU core (or the number specified in [`ServerBuilder::workers`]) and
/// distributes connections with a round-robin strategy.
///
/// The [Server] must be awaited or polled in order to start running. It will resolve when the
/// server has fully shut down.
///
/// # Shutdown Signals
/// On UNIX systems, `SIGTERM` will start a graceful shutdown and `SIGQUIT` or `SIGINT` will start a
/// forced shutdown. On Windows, a Ctrl-C signal will start a forced shutdown.
///
/// A graceful shutdown will wait for all workers to stop first.
///
/// # Examples
/// The following is a TCP echo server. Test using `telnet 127.0.0.1 8080`.
///
/// ```no_run
/// use std::io;
///
/// use actix_rt::net::TcpStream;
/// use actix_server::Server;
/// use actix_service::{fn_service, ServiceFactoryExt as _};
/// use bytes::BytesMut;
/// use tokio::io::{AsyncReadExt as _, AsyncWriteExt as _};
///
/// #[actix_rt::main]
/// async fn main() -> io::Result<()> {
/// let bind_addr = ("127.0.0.1", 8080);
///
/// Server::build()
/// .bind("echo", bind_addr, move || {
/// fn_service(move |mut stream: TcpStream| {
/// async move {
/// let mut size = 0;
/// let mut buf = BytesMut::new();
///
/// loop {
/// match stream.read_buf(&mut buf).await {
/// // end of stream; bail from loop
/// Ok(0) => break,
///
/// // write bytes back to stream
/// Ok(bytes_read) => {
/// stream.write_all(&buf[size..]).await.unwrap();
/// size += bytes_read;
/// }
///
/// Err(err) => {
/// eprintln!("Stream Error: {:?}", err);
/// return Err(());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// })
/// .map_err(|err| eprintln!("Service Error: {:?}", err))
/// })?
/// .run()
/// .await
/// }
/// ```
#[must_use = "Server does nothing unless you `.await` or poll it"]
pub struct Server {
handle: ServerHandle,
fut: BoxFuture<'static, io::Result<()>>,
}
impl Server {
/// Create server build.
pub fn build() -> ServerBuilder {
ServerBuilder::default()
}
pub(crate) fn new(builder: ServerBuilder) -> Self {
Server {
handle: ServerHandle::new(builder.cmd_tx.clone()),
fut: Box::pin(ServerInner::run(builder)),
}
}
/// Get a `Server` handle that can be used issue commands and change it's state.
///
/// See [ServerHandle](ServerHandle) for usage.
pub fn handle(&self) -> ServerHandle {
self.handle.clone()
}
}
impl Future for Server {
type Output = io::Result<()>;
#[inline]
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
Pin::new(&mut Pin::into_inner(self).fut).poll(cx)
}
}
pub struct ServerInner {
worker_handles: Vec<WorkerHandleServer>,
accept_handle: Option<thread::JoinHandle<()>>,
worker_config: ServerWorkerConfig,
services: Vec<Box<dyn InternalServiceFactory>>,
waker_queue: WakerQueue,
system_stop: bool,
stopping: bool,
}
impl ServerInner {
async fn run(builder: ServerBuilder) -> io::Result<()> {
let (mut this, mut mux) = Self::run_sync(builder)?;
while let Some(cmd) = mux.next().await {
this.handle_cmd(cmd).await;
if this.stopping {
break;
}
}
Ok(())
}
fn run_sync(mut builder: ServerBuilder) -> io::Result<(Self, ServerEventMultiplexer)> {
// Give log information on what runtime will be used.
let is_actix = actix_rt::System::try_current().is_some();
let is_tokio = tokio::runtime::Handle::try_current().is_ok();
match (is_actix, is_tokio) {
(true, _) => info!("Actix runtime found; starting in Actix runtime"),
(_, true) => info!("Tokio runtime found; starting in existing Tokio runtime"),
(_, false) => panic!("Actix or Tokio runtime not found; halting"),
}
for (_, name, lst) in &builder.sockets {
info!(
r#"starting service: "{}", workers: {}, listening on: {}"#,
name,
builder.threads,
lst.local_addr()
);
}
let sockets = mem::take(&mut builder.sockets)
.into_iter()
.map(|t| (t.0, t.2))
.collect();
let (waker_queue, worker_handles, accept_handle) = Accept::start(sockets, &builder)?;
let mux = ServerEventMultiplexer {
signal_fut: (builder.listen_os_signals).then(Signals::new),
cmd_rx: builder.cmd_rx,
};
let server = ServerInner {
waker_queue,
accept_handle: Some(accept_handle),
worker_handles,
worker_config: builder.worker_config,
services: builder.factories,
system_stop: builder.exit,
stopping: false,
};
Ok((server, mux))
}
async fn handle_cmd(&mut self, item: ServerCommand) {
match item {
ServerCommand::Pause(tx) => {
self.waker_queue.wake(WakerInterest::Pause);
let _ = tx.send(());
}
ServerCommand::Resume(tx) => {
self.waker_queue.wake(WakerInterest::Resume);
let _ = tx.send(());
}
ServerCommand::Stop {
graceful,
completion,
force_system_stop,
} => {
self.stopping = true;
// Signal accept thread to stop.
// Signal is non-blocking; we wait for thread to stop later.
self.waker_queue.wake(WakerInterest::Stop);
// send stop signal to workers
let workers_stop = self
.worker_handles
.iter()
.map(|worker| worker.stop(graceful))
.collect::<Vec<_>>();
if graceful {
// wait for all workers to shut down
let _ = join_all(workers_stop).await;
}
// wait for accept thread stop
self.accept_handle
.take()
.unwrap()
.join()
.expect("Accept thread must not panic in any case");
if let Some(tx) = completion {
let _ = tx.send(());
}
if self.system_stop || force_system_stop {
sleep(Duration::from_millis(300)).await;
System::try_current().as_ref().map(System::stop);
}
}
ServerCommand::WorkerFaulted(idx) => {
// TODO: maybe just return with warning log if not found ?
assert!(self.worker_handles.iter().any(|wrk| wrk.idx == idx));
error!("worker {} has died; restarting", idx);
let factories = self
.services
.iter()
.map(|service| service.clone_factory())
.collect();
match ServerWorker::start(
idx,
factories,
self.waker_queue.clone(),
self.worker_config,
) {
Ok((handle_accept, handle_server)) => {
*self
.worker_handles
.iter_mut()
.find(|wrk| wrk.idx == idx)
.unwrap() = handle_server;
self.waker_queue.wake(WakerInterest::Worker(handle_accept));
}
Err(err) => error!("can not restart worker {}: {}", idx, err),
};
}
}
}
fn map_signal(signal: SignalKind) -> ServerCommand {
match signal {
SignalKind::Int => {
info!("SIGINT received; starting forced shutdown");
ServerCommand::Stop {
graceful: false,
completion: None,
force_system_stop: true,
}
}
SignalKind::Term => {
info!("SIGTERM received; starting graceful shutdown");
ServerCommand::Stop {
graceful: true,
completion: None,
force_system_stop: true,
}
}
SignalKind::Quit => {
info!("SIGQUIT received; starting forced shutdown");
ServerCommand::Stop {
graceful: false,
completion: None,
force_system_stop: true,
}
}
}
}
}
struct ServerEventMultiplexer {
cmd_rx: UnboundedReceiver<ServerCommand>,
signal_fut: Option<Signals>,
}
impl Stream for ServerEventMultiplexer {
type Item = ServerCommand;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let this = Pin::into_inner(self);
if let Some(signal_fut) = &mut this.signal_fut {
if let Poll::Ready(signal) = Pin::new(signal_fut).poll(cx) {
this.signal_fut = None;
return Poll::Ready(Some(ServerInner::map_signal(signal)));
}
}
this.cmd_rx.poll_recv(cx)
}
}
|
use std::{
marker::PhantomData,
net::SocketAddr,
task::{Context, Poll},
};
use actix_service::{Service, ServiceFactory as BaseServiceFactory};
use actix_utils::future::{ready, Ready};
use futures_core::future::LocalBoxFuture;
use tracing::error;
use crate::{
socket::{FromStream, MioStream},
worker::WorkerCounterGuard,
};
#[doc(hidden)]
pub trait ServerServiceFactory<Stream: FromStream>: Send + Clone + 'static {
type Factory: BaseServiceFactory<Stream, Config = ()>;
fn create(&self) -> Self::Factory;
}
pub(crate) trait InternalServiceFactory: Send {
fn name(&self, token: usize) -> &str;
fn clone_factory(&self) -> Box<dyn InternalServiceFactory>;
fn create(&self) -> LocalBoxFuture<'static, Result<(usize, BoxedServerService), ()>>;
}
pub(crate) type BoxedServerService = Box<
dyn Service<
(WorkerCounterGuard, MioStream),
Response = (),
Error = (),
Future = Ready<Result<(), ()>>,
>,
>;
pub(crate) struct StreamService<S, I> {
service: S,
_phantom: PhantomData<I>,
}
impl<S, I> StreamService<S, I> {
pub(crate) fn new(service: S) -> Self {
StreamService {
service,
_phantom: PhantomData,
}
}
}
impl<S, I> Service<(WorkerCounterGuard, MioStream)> for StreamService<S, I>
where
S: Service<I>,
S::Future: 'static,
S::Error: 'static,
I: FromStream,
{
type Response = ();
type Error = ();
type Future = Ready<Result<(), ()>>;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.service.poll_ready(ctx).map_err(|_| ())
}
fn call(&self, (guard, req): (WorkerCounterGuard, MioStream)) -> Self::Future {
ready(match FromStream::from_mio(req) {
Ok(stream) => {
let f = self.service.call(stream);
actix_rt::spawn(async move {
let _ = f.await;
drop(guard);
});
Ok(())
}
Err(err) => {
error!("can not convert to an async TCP stream: {err}");
Err(())
}
})
}
}
pub(crate) struct StreamNewService<F: ServerServiceFactory<Io>, Io: FromStream> {
name: String,
inner: F,
token: usize,
addr: SocketAddr,
_t: PhantomData<Io>,
}
impl<F, Io> StreamNewService<F, Io>
where
F: ServerServiceFactory<Io>,
Io: FromStream + Send + 'static,
{
pub(crate) fn create(
name: String,
token: usize,
inner: F,
addr: SocketAddr,
) -> Box<dyn InternalServiceFactory> {
Box::new(Self {
name,
token,
inner,
addr,
_t: PhantomData,
})
}
}
impl<F, Io> InternalServiceFactory for StreamNewService<F, Io>
where
F: ServerServiceFactory<Io>,
Io: FromStream + Send + 'static,
{
fn name(&self, _: usize) -> &str {
&self.name
}
fn clone_factory(&self) -> Box<dyn InternalServiceFactory> {
Box::new(Self {
name: self.name.clone(),
inner: self.inner.clone(),
token: self.token,
addr: self.addr,
_t: PhantomData,
})
}
fn create(&self) -> LocalBoxFuture<'static, Result<(usize, BoxedServerService), ()>> {
let token = self.token;
let fut = self.inner.create().new_service(());
Box::pin(async move {
match fut.await {
Ok(inner) => {
let service = Box::new(StreamService::new(inner)) as _;
Ok((token, service))
}
Err(_) => Err(()),
}
})
}
}
impl<F, T, I> ServerServiceFactory<I> for F
where
F: Fn() -> T + Send + Clone + 'static,
T: BaseServiceFactory<I, Config = ()>,
I: FromStream,
{
type Factory = T;
fn create(&self) -> T {
(self)()
}
}
|
use std::{
fmt,
future::Future,
pin::Pin,
task::{Context, Poll},
};
use tracing::trace;
/// Types of process signals.
// #[allow(dead_code)]
#[derive(Debug, Clone, Copy, PartialEq)]
#[allow(dead_code)] // variants are never constructed on non-unix
pub(crate) enum SignalKind {
/// `SIGINT`
Int,
/// `SIGTERM`
Term,
/// `SIGQUIT`
Quit,
}
impl fmt::Display for SignalKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
SignalKind::Int => "SIGINT",
SignalKind::Term => "SIGTERM",
SignalKind::Quit => "SIGQUIT",
})
}
}
/// Process signal listener.
pub(crate) struct Signals {
#[cfg(not(unix))]
signals: futures_core::future::BoxFuture<'static, std::io::Result<()>>,
#[cfg(unix)]
signals: Vec<(SignalKind, actix_rt::signal::unix::Signal)>,
}
impl Signals {
/// Constructs an OS signal listening future.
pub(crate) fn new() -> Self {
trace!("setting up OS signal listener");
#[cfg(not(unix))]
{
Signals {
signals: Box::pin(actix_rt::signal::ctrl_c()),
}
}
#[cfg(unix)]
{
use actix_rt::signal::unix;
let sig_map = [
(unix::SignalKind::interrupt(), SignalKind::Int),
(unix::SignalKind::terminate(), SignalKind::Term),
(unix::SignalKind::quit(), SignalKind::Quit),
];
let signals = sig_map
.iter()
.filter_map(|(kind, sig)| {
unix::signal(*kind)
.map(|tokio_sig| (*sig, tokio_sig))
.map_err(|e| {
tracing::error!(
"can not initialize stream handler for {:?} err: {}",
sig,
e
)
})
.ok()
})
.collect::<Vec<_>>();
Signals { signals }
}
}
}
impl Future for Signals {
type Output = SignalKind;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
#[cfg(not(unix))]
{
self.signals.as_mut().poll(cx).map(|_| SignalKind::Int)
}
#[cfg(unix)]
{
for (sig, fut) in self.signals.iter_mut() {
if fut.poll_recv(cx).is_ready() {
trace!("{} received", sig);
return Poll::Ready(*sig);
}
}
Poll::Pending
}
}
}
|
pub(crate) use std::net::{
SocketAddr as StdSocketAddr, TcpListener as StdTcpListener, ToSocketAddrs,
};
use std::{fmt, io};
use actix_rt::net::TcpStream;
pub(crate) use mio::net::TcpListener as MioTcpListener;
use mio::{event::Source, Interest, Registry, Token};
#[cfg(unix)]
pub(crate) use {
mio::net::UnixListener as MioUnixListener, std::os::unix::net::UnixListener as StdUnixListener,
};
use crate::builder::MpTcp;
pub(crate) enum MioListener {
Tcp(MioTcpListener),
#[cfg(unix)]
Uds(MioUnixListener),
}
impl MioListener {
pub(crate) fn local_addr(&self) -> SocketAddr {
match *self {
MioListener::Tcp(ref lst) => lst
.local_addr()
.map(SocketAddr::Tcp)
.unwrap_or(SocketAddr::Unknown),
#[cfg(unix)]
MioListener::Uds(ref lst) => lst
.local_addr()
.map(SocketAddr::Uds)
.unwrap_or(SocketAddr::Unknown),
}
}
pub(crate) fn accept(&self) -> io::Result<MioStream> {
match *self {
MioListener::Tcp(ref lst) => lst.accept().map(|(stream, _)| MioStream::Tcp(stream)),
#[cfg(unix)]
MioListener::Uds(ref lst) => lst.accept().map(|(stream, _)| MioStream::Uds(stream)),
}
}
}
impl Source for MioListener {
fn register(
&mut self,
registry: &Registry,
token: Token,
interests: Interest,
) -> io::Result<()> {
match *self {
MioListener::Tcp(ref mut lst) => lst.register(registry, token, interests),
#[cfg(unix)]
MioListener::Uds(ref mut lst) => lst.register(registry, token, interests),
}
}
fn reregister(
&mut self,
registry: &Registry,
token: Token,
interests: Interest,
) -> io::Result<()> {
match *self {
MioListener::Tcp(ref mut lst) => lst.reregister(registry, token, interests),
#[cfg(unix)]
MioListener::Uds(ref mut lst) => lst.reregister(registry, token, interests),
}
}
fn deregister(&mut self, registry: &Registry) -> io::Result<()> {
match *self {
MioListener::Tcp(ref mut lst) => lst.deregister(registry),
#[cfg(unix)]
MioListener::Uds(ref mut lst) => {
let res = lst.deregister(registry);
// cleanup file path
if let Ok(addr) = lst.local_addr() {
if let Some(path) = addr.as_pathname() {
let _ = std::fs::remove_file(path);
}
}
res
}
}
}
}
impl From<StdTcpListener> for MioListener {
fn from(lst: StdTcpListener) -> Self {
MioListener::Tcp(MioTcpListener::from_std(lst))
}
}
#[cfg(unix)]
impl From<StdUnixListener> for MioListener {
fn from(lst: StdUnixListener) -> Self {
MioListener::Uds(MioUnixListener::from_std(lst))
}
}
impl fmt::Debug for MioListener {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
MioListener::Tcp(ref lst) => write!(f, "{:?}", lst),
#[cfg(unix)]
MioListener::Uds(ref lst) => write!(f, "{:?}", lst),
}
}
}
impl fmt::Display for MioListener {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
MioListener::Tcp(ref lst) => write!(f, "{:?}", lst),
#[cfg(unix)]
MioListener::Uds(ref lst) => write!(f, "{:?}", lst),
}
}
}
pub(crate) enum SocketAddr {
Unknown,
Tcp(StdSocketAddr),
#[cfg(unix)]
Uds(std::os::unix::net::SocketAddr),
}
impl fmt::Display for SocketAddr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Self::Unknown => write!(f, "Unknown SocketAddr"),
Self::Tcp(ref addr) => write!(f, "{}", addr),
#[cfg(unix)]
Self::Uds(ref addr) => write!(f, "{:?}", addr),
}
}
}
impl fmt::Debug for SocketAddr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Self::Unknown => write!(f, "Unknown SocketAddr"),
Self::Tcp(ref addr) => write!(f, "{:?}", addr),
#[cfg(unix)]
Self::Uds(ref addr) => write!(f, "{:?}", addr),
}
}
}
#[derive(Debug)]
pub enum MioStream {
Tcp(mio::net::TcpStream),
#[cfg(unix)]
Uds(mio::net::UnixStream),
}
/// Helper trait for converting a Mio stream into a Tokio stream.
pub trait FromStream: Sized {
/// Creates stream from a `mio` stream.
fn from_mio(sock: MioStream) -> io::Result<Self>;
}
#[cfg(windows)]
mod win_impl {
use std::os::windows::io::{FromRawSocket, IntoRawSocket};
use super::*;
// TODO: This is a workaround and we need an efficient way to convert between Mio and Tokio stream
impl FromStream for TcpStream {
fn from_mio(sock: MioStream) -> io::Result<Self> {
match sock {
MioStream::Tcp(mio) => {
let raw = IntoRawSocket::into_raw_socket(mio);
// SAFETY: This is an in-place conversion from Mio stream to Tokio stream.
TcpStream::from_std(unsafe { FromRawSocket::from_raw_socket(raw) })
}
}
}
}
}
#[cfg(unix)]
mod unix_impl {
use std::os::unix::io::{FromRawFd, IntoRawFd};
use actix_rt::net::UnixStream;
use super::*;
// HACK: This is a workaround and we need an efficient way to convert between Mio and Tokio stream
impl FromStream for TcpStream {
fn from_mio(sock: MioStream) -> io::Result<Self> {
match sock {
MioStream::Tcp(mio) => {
let raw = IntoRawFd::into_raw_fd(mio);
// SAFETY: This is an in-place conversion from Mio stream to Tokio stream.
TcpStream::from_std(unsafe { FromRawFd::from_raw_fd(raw) })
}
MioStream::Uds(_) => {
panic!("Should not happen, bug in server impl");
}
}
}
}
// HACK: This is a workaround and we need an efficient way to convert between Mio and Tokio stream
impl FromStream for UnixStream {
fn from_mio(sock: MioStream) -> io::Result<Self> {
match sock {
MioStream::Tcp(_) => panic!("Should not happen, bug in server impl"),
MioStream::Uds(mio) => {
let raw = IntoRawFd::into_raw_fd(mio);
// SAFETY: This is an in-place conversion from Mio stream to Tokio stream.
UnixStream::from_std(unsafe { FromRawFd::from_raw_fd(raw) })
}
}
}
}
}
pub(crate) fn create_mio_tcp_listener(
addr: StdSocketAddr,
backlog: u32,
mptcp: &MpTcp,
) -> io::Result<MioTcpListener> {
use socket2::{Domain, Protocol, Socket, Type};
#[cfg(not(target_os = "linux"))]
let protocol = Protocol::TCP;
#[cfg(target_os = "linux")]
let protocol = if matches!(mptcp, MpTcp::Disabled) {
Protocol::TCP
} else {
Protocol::MPTCP
};
let socket = match Socket::new(Domain::for_address(addr), Type::STREAM, Some(protocol)) {
Ok(sock) => sock,
Err(err) if matches!(mptcp, MpTcp::TcpFallback) => {
tracing::warn!("binding socket as MPTCP failed: {err}");
tracing::warn!("falling back to TCP");
Socket::new(Domain::for_address(addr), Type::STREAM, Some(Protocol::TCP))?
}
Err(err) => return Err(err),
};
socket.set_reuse_address(true)?;
socket.set_nonblocking(true)?;
socket.bind(&addr.into())?;
socket.listen(backlog as i32)?;
Ok(MioTcpListener::from_std(StdTcpListener::from(socket)))
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn socket_addr() {
let addr = SocketAddr::Tcp("127.0.0.1:8080".parse().unwrap());
assert!(format!("{:?}", addr).contains("127.0.0.1:8080"));
assert_eq!(format!("{}", addr), "127.0.0.1:8080");
let addr: StdSocketAddr = "127.0.0.1:0".parse().unwrap();
let lst = create_mio_tcp_listener(addr, 128, &MpTcp::Disabled).unwrap();
let lst = MioListener::Tcp(lst);
assert!(format!("{:?}", lst).contains("TcpListener"));
assert!(format!("{}", lst).contains("127.0.0.1"));
}
#[test]
#[cfg(unix)]
fn uds() {
let _ = std::fs::remove_file("/tmp/sock.xxxxx");
if let Ok(socket) = MioUnixListener::bind("/tmp/sock.xxxxx") {
let addr = socket.local_addr().expect("Couldn't get local address");
let a = SocketAddr::Uds(addr);
assert!(format!("{:?}", a).contains("/tmp/sock.xxxxx"));
assert!(format!("{}", a).contains("/tmp/sock.xxxxx"));
let lst = MioListener::Uds(socket);
assert!(format!("{:?}", lst).contains("/tmp/sock.xxxxx"));
assert!(format!("{}", lst).contains("/tmp/sock.xxxxx"));
}
}
}
|
use std::{io, net, sync::mpsc, thread};
use actix_rt::{net::TcpStream, System};
use crate::{Server, ServerBuilder, ServerHandle, ServerServiceFactory};
/// A testing server.
///
/// `TestServer` is very simple test server that simplify process of writing integration tests for
/// network applications.
///
/// # Examples
/// ```
/// use actix_service::fn_service;
/// use actix_server::TestServer;
///
/// #[actix_rt::main]
/// async fn main() {
/// let srv = TestServer::start(|| fn_service(
/// |sock| async move {
/// println!("New connection: {:?}", sock);
/// Ok::<_, ()>(())
/// }
/// ));
///
/// println!("SOCKET: {:?}", srv.connect());
/// }
/// ```
pub struct TestServer;
/// Test server handle.
pub struct TestServerHandle {
addr: net::SocketAddr,
host: String,
port: u16,
server_handle: ServerHandle,
thread_handle: Option<thread::JoinHandle<io::Result<()>>>,
}
impl TestServer {
/// Start new `TestServer` using application factory and default server config.
pub fn start(factory: impl ServerServiceFactory<TcpStream>) -> TestServerHandle {
Self::start_with_builder(Server::build(), factory)
}
/// Start new `TestServer` using application factory and server builder.
pub fn start_with_builder(
server_builder: ServerBuilder,
factory: impl ServerServiceFactory<TcpStream>,
) -> TestServerHandle {
let (tx, rx) = mpsc::channel();
// run server in separate thread
let thread_handle = thread::spawn(move || {
let lst = net::TcpListener::bind("127.0.0.1:0").unwrap();
let local_addr = lst.local_addr().unwrap();
System::new().block_on(async {
let server = server_builder
.listen("test", lst, factory)
.unwrap()
.workers(1)
.disable_signals()
.run();
tx.send((server.handle(), local_addr)).unwrap();
server.await
})
});
let (server_handle, addr) = rx.recv().unwrap();
let host = format!("{}", addr.ip());
let port = addr.port();
TestServerHandle {
addr,
host,
port,
server_handle,
thread_handle: Some(thread_handle),
}
}
/// Get first available unused local address.
pub fn unused_addr() -> net::SocketAddr {
use socket2::{Domain, Protocol, Socket, Type};
let addr: net::SocketAddr = "127.0.0.1:0".parse().unwrap();
let domain = Domain::for_address(addr);
let socket = Socket::new(domain, Type::STREAM, Some(Protocol::TCP)).unwrap();
socket.set_reuse_address(true).unwrap();
socket.set_nonblocking(true).unwrap();
socket.bind(&addr.into()).unwrap();
socket.listen(1024).unwrap();
net::TcpListener::from(socket).local_addr().unwrap()
}
}
impl TestServerHandle {
/// Test server host.
pub fn host(&self) -> &str {
&self.host
}
/// Test server port.
pub fn port(&self) -> u16 {
self.port
}
/// Get test server address.
pub fn addr(&self) -> net::SocketAddr {
self.addr
}
/// Stop server.
fn stop(&mut self) {
drop(self.server_handle.stop(false));
self.thread_handle.take().unwrap().join().unwrap().unwrap();
}
/// Connect to server, returning a Tokio `TcpStream`.
pub fn connect(&self) -> io::Result<TcpStream> {
let stream = net::TcpStream::connect(self.addr)?;
stream.set_nonblocking(true)?;
TcpStream::from_std(stream)
}
}
impl Drop for TestServerHandle {
fn drop(&mut self) {
self.stop()
}
}
#[cfg(test)]
mod tests {
use actix_service::fn_service;
use super::*;
#[tokio::test]
async fn connect_in_tokio_runtime() {
let srv = TestServer::start(|| fn_service(|_sock| async move { Ok::<_, ()>(()) }));
assert!(srv.connect().is_ok());
}
#[actix_rt::test]
async fn connect_in_actix_runtime() {
let srv = TestServer::start(|| fn_service(|_sock| async move { Ok::<_, ()>(()) }));
assert!(srv.connect().is_ok());
}
}
|
use std::{
collections::VecDeque,
ops::Deref,
sync::{Arc, Mutex, MutexGuard},
};
use mio::{Registry, Token as MioToken, Waker};
use crate::worker::WorkerHandleAccept;
/// Waker token for `mio::Poll` instance.
pub(crate) const WAKER_TOKEN: MioToken = MioToken(usize::MAX);
/// `mio::Waker` with a queue for waking up the `Accept`'s `Poll` and contains the `WakerInterest`
/// the `Poll` would want to look into.
pub(crate) struct WakerQueue(Arc<(Waker, Mutex<VecDeque<WakerInterest>>)>);
impl Clone for WakerQueue {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl Deref for WakerQueue {
type Target = (Waker, Mutex<VecDeque<WakerInterest>>);
fn deref(&self) -> &Self::Target {
self.0.deref()
}
}
impl WakerQueue {
/// Construct a waker queue with given `Poll`'s `Registry` and capacity.
///
/// A fixed `WAKER_TOKEN` is used to identify the wake interest and the `Poll` needs to match
/// event's token for it to properly handle `WakerInterest`.
pub(crate) fn new(registry: &Registry) -> std::io::Result<Self> {
let waker = Waker::new(registry, WAKER_TOKEN)?;
let queue = Mutex::new(VecDeque::with_capacity(16));
Ok(Self(Arc::new((waker, queue))))
}
/// Push a new interest to the queue and wake up the accept poll afterwards.
pub(crate) fn wake(&self, interest: WakerInterest) {
let (waker, queue) = self.deref();
queue
.lock()
.expect("Failed to lock WakerQueue")
.push_back(interest);
waker
.wake()
.unwrap_or_else(|e| panic!("can not wake up Accept Poll: {}", e));
}
/// Get a MutexGuard of the waker queue.
pub(crate) fn guard(&self) -> MutexGuard<'_, VecDeque<WakerInterest>> {
self.deref().1.lock().expect("Failed to lock WakerQueue")
}
/// Reset the waker queue so it does not grow infinitely.
pub(crate) fn reset(queue: &mut VecDeque<WakerInterest>) {
std::mem::swap(&mut VecDeque::<WakerInterest>::with_capacity(16), queue);
}
}
/// Types of interests we would look into when `Accept`'s `Poll` is waked up by waker.
///
/// These interests should not be confused with `mio::Interest` and mostly not I/O related
pub(crate) enum WakerInterest {
/// `WorkerAvailable` is an interest from `Worker` notifying `Accept` there is a worker
/// available and can accept new tasks.
WorkerAvailable(usize),
/// `Pause`, `Resume`, `Stop` Interest are from `ServerBuilder` future. It listens to
/// `ServerCommand` and notify `Accept` to do exactly these tasks.
Pause,
Resume,
Stop,
/// `Worker` is an interest that is triggered after a worker faults. This is determined by
/// trying to send work to it. `Accept` would be waked up and add the new `WorkerHandleAccept`.
Worker(WorkerHandleAccept),
}
|
use std::{
future::Future,
io, mem,
num::NonZeroUsize,
pin::Pin,
rc::Rc,
sync::{
atomic::{AtomicUsize, Ordering},
Arc,
},
task::{Context, Poll},
time::Duration,
};
use actix_rt::{
spawn,
time::{sleep, Instant, Sleep},
Arbiter, ArbiterHandle, System,
};
use futures_core::{future::LocalBoxFuture, ready};
use tokio::sync::{
mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender},
oneshot,
};
use tracing::{error, info, trace};
use crate::{
service::{BoxedServerService, InternalServiceFactory},
socket::MioStream,
waker_queue::{WakerInterest, WakerQueue},
};
/// Stop worker message. Returns `true` on successful graceful shutdown
/// and `false` if some connections still alive when shutdown execute.
pub(crate) struct Stop {
graceful: bool,
tx: oneshot::Sender<bool>,
}
#[derive(Debug)]
pub(crate) struct Conn {
pub io: MioStream,
pub token: usize,
}
/// Create accept and server worker handles.
fn handle_pair(
idx: usize,
conn_tx: UnboundedSender<Conn>,
stop_tx: UnboundedSender<Stop>,
counter: Counter,
) -> (WorkerHandleAccept, WorkerHandleServer) {
let accept = WorkerHandleAccept {
idx,
conn_tx,
counter,
};
let server = WorkerHandleServer { idx, stop_tx };
(accept, server)
}
/// counter: Arc<AtomicUsize> field is owned by `Accept` thread and `ServerWorker` thread.
///
/// `Accept` would increment the counter and `ServerWorker` would decrement it.
///
/// # Atomic Ordering:
///
/// `Accept` always look into it's cached `Availability` field for `ServerWorker` state.
/// It lazily increment counter after successful dispatching new work to `ServerWorker`.
/// On reaching counter limit `Accept` update it's cached `Availability` and mark worker as
/// unable to accept any work.
///
/// `ServerWorker` always decrement the counter when every work received from `Accept` is done.
/// On reaching counter limit worker would use `mio::Waker` and `WakerQueue` to wake up `Accept`
/// and notify it to update cached `Availability` again to mark worker as able to accept work again.
///
/// Hence, a wake up would only happen after `Accept` increment it to limit.
/// And a decrement to limit always wake up `Accept`.
#[derive(Clone)]
pub(crate) struct Counter {
counter: Arc<AtomicUsize>,
limit: usize,
}
impl Counter {
pub(crate) fn new(limit: usize) -> Self {
Self {
counter: Arc::new(AtomicUsize::new(1)),
limit,
}
}
/// Increment counter by 1 and return true when hitting limit
#[inline(always)]
pub(crate) fn inc(&self) -> bool {
self.counter.fetch_add(1, Ordering::Relaxed) != self.limit
}
/// Decrement counter by 1 and return true if crossing limit.
#[inline(always)]
pub(crate) fn dec(&self) -> bool {
self.counter.fetch_sub(1, Ordering::Relaxed) == self.limit
}
pub(crate) fn total(&self) -> usize {
self.counter.load(Ordering::SeqCst) - 1
}
}
pub(crate) struct WorkerCounter {
idx: usize,
inner: Rc<(WakerQueue, Counter)>,
}
impl Clone for WorkerCounter {
fn clone(&self) -> Self {
Self {
idx: self.idx,
inner: self.inner.clone(),
}
}
}
impl WorkerCounter {
pub(crate) fn new(idx: usize, waker_queue: WakerQueue, counter: Counter) -> Self {
Self {
idx,
inner: Rc::new((waker_queue, counter)),
}
}
#[inline(always)]
pub(crate) fn guard(&self) -> WorkerCounterGuard {
WorkerCounterGuard(self.clone())
}
fn total(&self) -> usize {
self.inner.1.total()
}
}
pub(crate) struct WorkerCounterGuard(WorkerCounter);
impl Drop for WorkerCounterGuard {
fn drop(&mut self) {
let (waker_queue, counter) = &*self.0.inner;
if counter.dec() {
waker_queue.wake(WakerInterest::WorkerAvailable(self.0.idx));
}
}
}
/// Handle to worker that can send connection message to worker and share the availability of worker
/// to other threads.
///
/// Held by [Accept](crate::accept::Accept).
pub(crate) struct WorkerHandleAccept {
idx: usize,
conn_tx: UnboundedSender<Conn>,
counter: Counter,
}
impl WorkerHandleAccept {
#[inline(always)]
pub(crate) fn idx(&self) -> usize {
self.idx
}
#[inline(always)]
pub(crate) fn send(&self, conn: Conn) -> Result<(), Conn> {
self.conn_tx.send(conn).map_err(|msg| msg.0)
}
#[inline(always)]
pub(crate) fn inc_counter(&self) -> bool {
self.counter.inc()
}
}
/// Handle to worker than can send stop message to worker.
///
/// Held by [ServerBuilder](crate::builder::ServerBuilder).
#[derive(Debug)]
pub(crate) struct WorkerHandleServer {
pub(crate) idx: usize,
stop_tx: UnboundedSender<Stop>,
}
impl WorkerHandleServer {
pub(crate) fn stop(&self, graceful: bool) -> oneshot::Receiver<bool> {
let (tx, rx) = oneshot::channel();
let _ = self.stop_tx.send(Stop { graceful, tx });
rx
}
}
/// Service worker.
///
/// Worker accepts Socket objects via unbounded channel and starts stream processing.
pub(crate) struct ServerWorker {
// UnboundedReceiver<Conn> should always be the first field.
// It must be dropped as soon as ServerWorker dropping.
conn_rx: UnboundedReceiver<Conn>,
stop_rx: UnboundedReceiver<Stop>,
counter: WorkerCounter,
services: Box<[WorkerService]>,
factories: Box<[Box<dyn InternalServiceFactory>]>,
state: WorkerState,
shutdown_timeout: Duration,
}
struct WorkerService {
factory_idx: usize,
status: WorkerServiceStatus,
service: BoxedServerService,
}
impl WorkerService {
fn created(&mut self, service: BoxedServerService) {
self.service = service;
self.status = WorkerServiceStatus::Unavailable;
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum WorkerServiceStatus {
Available,
Unavailable,
Failed,
Restarting,
Stopping,
Stopped,
}
impl Default for WorkerServiceStatus {
fn default() -> Self {
Self::Unavailable
}
}
/// Config for worker behavior passed down from server builder.
#[derive(Debug, Clone, Copy)]
pub(crate) struct ServerWorkerConfig {
shutdown_timeout: Duration,
max_blocking_threads: usize,
max_concurrent_connections: usize,
}
impl Default for ServerWorkerConfig {
fn default() -> Self {
let parallelism = std::thread::available_parallelism().map_or(2, NonZeroUsize::get);
// 512 is the default max blocking thread count of a Tokio runtime.
let max_blocking_threads = std::cmp::max(512 / parallelism, 1);
Self {
shutdown_timeout: Duration::from_secs(30),
max_blocking_threads,
max_concurrent_connections: 25600,
}
}
}
impl ServerWorkerConfig {
pub(crate) fn max_blocking_threads(&mut self, num: usize) {
self.max_blocking_threads = num;
}
pub(crate) fn max_concurrent_connections(&mut self, num: usize) {
self.max_concurrent_connections = num;
}
pub(crate) fn shutdown_timeout(&mut self, dur: Duration) {
self.shutdown_timeout = dur;
}
}
impl ServerWorker {
pub(crate) fn start(
idx: usize,
factories: Vec<Box<dyn InternalServiceFactory>>,
waker_queue: WakerQueue,
config: ServerWorkerConfig,
) -> io::Result<(WorkerHandleAccept, WorkerHandleServer)> {
trace!("starting server worker {}", idx);
let (tx1, conn_rx) = unbounded_channel();
let (tx2, stop_rx) = unbounded_channel();
let counter = Counter::new(config.max_concurrent_connections);
let pair = handle_pair(idx, tx1, tx2, counter.clone());
// get actix system context if it is set
let actix_system = System::try_current();
// get tokio runtime handle if it is set
let tokio_handle = tokio::runtime::Handle::try_current().ok();
// service factories initialization channel
let (factory_tx, factory_rx) = std::sync::mpsc::sync_channel::<io::Result<()>>(1);
// outline of following code:
//
// if system exists
// if uring enabled
// start arbiter using uring method
// else
// start arbiter with regular tokio
// else
// if uring enabled
// start uring in spawned thread
// else
// start regular tokio in spawned thread
// every worker runs in it's own thread and tokio runtime.
// use a custom tokio runtime builder to change the settings of runtime.
match (actix_system, tokio_handle) {
(None, None) => {
panic!("No runtime detected. Start a Tokio (or Actix) runtime.");
}
// no actix system
(None, Some(rt_handle)) => {
std::thread::Builder::new()
.name(format!("actix-server worker {}", idx))
.spawn(move || {
let (worker_stopped_tx, worker_stopped_rx) = oneshot::channel();
// local set for running service init futures and worker services
let ls = tokio::task::LocalSet::new();
// init services using existing Tokio runtime (so probably on main thread)
let services = rt_handle.block_on(ls.run_until(async {
let mut services = Vec::new();
for (idx, factory) in factories.iter().enumerate() {
match factory.create().await {
Ok((token, svc)) => services.push((idx, token, svc)),
Err(err) => {
error!("can not start worker: {:?}", err);
return Err(io::Error::new(
io::ErrorKind::Other,
format!("can not start server service {}", idx),
));
}
}
}
Ok(services)
}));
let services = match services {
Ok(services) => {
factory_tx.send(Ok(())).unwrap();
services
}
Err(err) => {
factory_tx.send(Err(err)).unwrap();
return;
}
};
let worker_services = wrap_worker_services(services);
let worker_fut = async move {
// spawn to make sure ServerWorker runs as non boxed future.
spawn(async move {
ServerWorker {
conn_rx,
stop_rx,
services: worker_services.into_boxed_slice(),
counter: WorkerCounter::new(idx, waker_queue, counter),
factories: factories.into_boxed_slice(),
state: WorkerState::default(),
shutdown_timeout: config.shutdown_timeout,
}
.await;
// wake up outermost task waiting for shutdown
worker_stopped_tx.send(()).unwrap();
});
worker_stopped_rx.await.unwrap();
};
#[cfg(all(target_os = "linux", feature = "io-uring"))]
{
// TODO: pass max blocking thread config when tokio-uring enable configuration
// on building runtime.
let _ = config.max_blocking_threads;
tokio_uring::start(worker_fut);
}
#[cfg(not(all(target_os = "linux", feature = "io-uring")))]
{
let rt = tokio::runtime::Builder::new_current_thread()
.enable_all()
.max_blocking_threads(config.max_blocking_threads)
.build()
.unwrap();
rt.block_on(ls.run_until(worker_fut));
}
})
.expect("cannot spawn server worker thread");
}
// with actix system
(Some(_sys), _) => {
#[cfg(all(target_os = "linux", feature = "io-uring"))]
let arbiter = {
// TODO: pass max blocking thread config when tokio-uring enable configuration
// on building runtime.
let _ = config.max_blocking_threads;
Arbiter::new()
};
#[cfg(not(all(target_os = "linux", feature = "io-uring")))]
let arbiter = {
Arbiter::with_tokio_rt(move || {
tokio::runtime::Builder::new_current_thread()
.enable_all()
.max_blocking_threads(config.max_blocking_threads)
.build()
.unwrap()
})
};
arbiter.spawn(async move {
// spawn_local to run !Send future tasks.
spawn(async move {
let mut services = Vec::new();
for (idx, factory) in factories.iter().enumerate() {
match factory.create().await {
Ok((token, svc)) => services.push((idx, token, svc)),
Err(err) => {
error!("can not start worker: {:?}", err);
Arbiter::current().stop();
factory_tx
.send(Err(io::Error::new(
io::ErrorKind::Other,
format!("can not start server service {}", idx),
)))
.unwrap();
return;
}
}
}
factory_tx.send(Ok(())).unwrap();
let worker_services = wrap_worker_services(services);
// spawn to make sure ServerWorker runs as non boxed future.
spawn(ServerWorker {
conn_rx,
stop_rx,
services: worker_services.into_boxed_slice(),
counter: WorkerCounter::new(idx, waker_queue, counter),
factories: factories.into_boxed_slice(),
state: Default::default(),
shutdown_timeout: config.shutdown_timeout,
});
});
});
}
};
// wait for service factories initialization
factory_rx.recv().unwrap()?;
Ok(pair)
}
fn restart_service(&mut self, idx: usize, factory_id: usize) {
let factory = &self.factories[factory_id];
trace!("service {:?} failed, restarting", factory.name(idx));
self.services[idx].status = WorkerServiceStatus::Restarting;
self.state = WorkerState::Restarting(Restart {
factory_id,
token: idx,
fut: factory.create(),
});
}
fn shutdown(&mut self, force: bool) {
self.services
.iter_mut()
.filter(|srv| srv.status == WorkerServiceStatus::Available)
.for_each(|srv| {
srv.status = if force {
WorkerServiceStatus::Stopped
} else {
WorkerServiceStatus::Stopping
};
});
}
fn check_readiness(&mut self, cx: &mut Context<'_>) -> Result<bool, (usize, usize)> {
let mut ready = true;
for (idx, srv) in self.services.iter_mut().enumerate() {
if srv.status == WorkerServiceStatus::Available
|| srv.status == WorkerServiceStatus::Unavailable
{
match srv.service.poll_ready(cx) {
Poll::Ready(Ok(_)) => {
if srv.status == WorkerServiceStatus::Unavailable {
trace!(
"service {:?} is available",
self.factories[srv.factory_idx].name(idx)
);
srv.status = WorkerServiceStatus::Available;
}
}
Poll::Pending => {
ready = false;
if srv.status == WorkerServiceStatus::Available {
trace!(
"service {:?} is unavailable",
self.factories[srv.factory_idx].name(idx)
);
srv.status = WorkerServiceStatus::Unavailable;
}
}
Poll::Ready(Err(_)) => {
error!(
"service {:?} readiness check returned error, restarting",
self.factories[srv.factory_idx].name(idx)
);
srv.status = WorkerServiceStatus::Failed;
return Err((idx, srv.factory_idx));
}
}
}
}
Ok(ready)
}
}
enum WorkerState {
Available,
Unavailable,
Restarting(Restart),
Shutdown(Shutdown),
}
struct Restart {
factory_id: usize,
token: usize,
fut: LocalBoxFuture<'static, Result<(usize, BoxedServerService), ()>>,
}
/// State necessary for server shutdown.
struct Shutdown {
// Interval for checking the shutdown progress.
timer: Pin<Box<Sleep>>,
/// Start time of shutdown.
start_from: Instant,
/// Notify caller of the shutdown outcome (graceful/force).
tx: oneshot::Sender<bool>,
}
impl Default for WorkerState {
fn default() -> Self {
Self::Unavailable
}
}
impl Drop for ServerWorker {
fn drop(&mut self) {
Arbiter::try_current().as_ref().map(ArbiterHandle::stop);
}
}
impl Future for ServerWorker {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.as_mut().get_mut();
// `StopWorker` message handler
if let Poll::Ready(Some(Stop { graceful, tx })) = this.stop_rx.poll_recv(cx) {
let num = this.counter.total();
if num == 0 {
info!("shutting down idle worker");
let _ = tx.send(true);
return Poll::Ready(());
} else if graceful {
info!("graceful worker shutdown; finishing {} connections", num);
this.shutdown(false);
this.state = WorkerState::Shutdown(Shutdown {
timer: Box::pin(sleep(Duration::from_secs(1))),
start_from: Instant::now(),
tx,
});
} else {
info!("force shutdown worker, closing {} connections", num);
this.shutdown(true);
let _ = tx.send(false);
return Poll::Ready(());
}
}
match this.state {
WorkerState::Unavailable => match this.check_readiness(cx) {
Ok(true) => {
this.state = WorkerState::Available;
self.poll(cx)
}
Ok(false) => Poll::Pending,
Err((token, idx)) => {
this.restart_service(token, idx);
self.poll(cx)
}
},
WorkerState::Restarting(ref mut restart) => {
let factory_id = restart.factory_id;
let token = restart.token;
let (token_new, service) =
ready!(restart.fut.as_mut().poll(cx)).unwrap_or_else(|_| {
panic!(
"Can not restart {:?} service",
this.factories[factory_id].name(token)
)
});
assert_eq!(token, token_new);
trace!(
"service {:?} has been restarted",
this.factories[factory_id].name(token)
);
this.services[token].created(service);
this.state = WorkerState::Unavailable;
self.poll(cx)
}
WorkerState::Shutdown(ref mut shutdown) => {
// drop all pending connections in rx channel.
while let Poll::Ready(Some(conn)) = this.conn_rx.poll_recv(cx) {
// WorkerCounterGuard is needed as Accept thread has incremented counter.
// It's guard's job to decrement the counter together with drop of Conn.
let guard = this.counter.guard();
drop((conn, guard));
}
// wait for 1 second
ready!(shutdown.timer.as_mut().poll(cx));
if this.counter.total() == 0 {
// graceful shutdown
if let WorkerState::Shutdown(shutdown) = mem::take(&mut this.state) {
let _ = shutdown.tx.send(true);
}
Poll::Ready(())
} else if shutdown.start_from.elapsed() >= this.shutdown_timeout {
// timeout forceful shutdown
if let WorkerState::Shutdown(shutdown) = mem::take(&mut this.state) {
let _ = shutdown.tx.send(false);
}
Poll::Ready(())
} else {
// reset timer and wait for 1 second
let time = Instant::now() + Duration::from_secs(1);
shutdown.timer.as_mut().reset(time);
shutdown.timer.as_mut().poll(cx)
}
}
// actively poll stream and handle worker command
WorkerState::Available => loop {
match this.check_readiness(cx) {
Ok(true) => {}
Ok(false) => {
trace!("worker is unavailable");
this.state = WorkerState::Unavailable;
return self.poll(cx);
}
Err((token, idx)) => {
this.restart_service(token, idx);
return self.poll(cx);
}
}
// handle incoming io stream
match ready!(this.conn_rx.poll_recv(cx)) {
Some(msg) => {
let guard = this.counter.guard();
let _ = this.services[msg.token]
.service
.call((guard, msg.io))
.into_inner();
}
None => return Poll::Ready(()),
};
},
}
}
}
fn wrap_worker_services(services: Vec<(usize, usize, BoxedServerService)>) -> Vec<WorkerService> {
services
.into_iter()
.fold(Vec::new(), |mut services, (idx, token, service)| {
assert_eq!(token, services.len());
services.push(WorkerService {
factory_idx: idx,
service,
status: WorkerServiceStatus::Unavailable,
});
services
})
}
|
#![allow(clippy::let_underscore_future, missing_docs)]
use std::{
net,
sync::{
atomic::{AtomicUsize, Ordering},
mpsc, Arc,
},
thread,
time::Duration,
};
use actix_rt::{net::TcpStream, time::sleep};
use actix_server::{Server, TestServer};
use actix_service::fn_service;
fn unused_addr() -> net::SocketAddr {
TestServer::unused_addr()
}
#[test]
fn test_bind() {
let addr = unused_addr();
let (tx, rx) = mpsc::channel();
let h = thread::spawn(move || {
actix_rt::System::new().block_on(async {
let srv = Server::build()
.workers(1)
.disable_signals()
.shutdown_timeout(3600)
.bind("test", addr, move || {
fn_service(|_| async { Ok::<_, ()>(()) })
})?
.run();
tx.send(srv.handle()).unwrap();
srv.await
})
});
let srv = rx.recv().unwrap();
thread::sleep(Duration::from_millis(500));
net::TcpStream::connect(addr).unwrap();
let _ = srv.stop(true);
h.join().unwrap().unwrap();
}
#[test]
fn test_listen() {
let addr = unused_addr();
let (tx, rx) = mpsc::channel();
let lst = net::TcpListener::bind(addr).unwrap();
let h = thread::spawn(move || {
actix_rt::System::new().block_on(async {
let srv = Server::build()
.workers(1)
.disable_signals()
.shutdown_timeout(3600)
.listen("test", lst, move || {
fn_service(|_| async { Ok::<_, ()>(()) })
})?
.run();
tx.send(srv.handle()).unwrap();
srv.await
})
});
let srv = rx.recv().unwrap();
thread::sleep(Duration::from_millis(500));
net::TcpStream::connect(addr).unwrap();
let _ = srv.stop(true);
h.join().unwrap().unwrap();
}
#[test]
fn plain_tokio_runtime() {
let addr = unused_addr();
let (tx, rx) = mpsc::channel();
let h = thread::spawn(move || {
let rt = tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap();
rt.block_on(async {
let srv = Server::build()
.workers(1)
.disable_signals()
.bind("test", addr, move || {
fn_service(|_| async { Ok::<_, ()>(()) })
})?
.run();
tx.send(srv.handle()).unwrap();
srv.await
})
});
let srv = rx.recv().unwrap();
thread::sleep(Duration::from_millis(500));
assert!(net::TcpStream::connect(addr).is_ok());
let _ = srv.stop(true);
h.join().unwrap().unwrap();
}
#[test]
#[cfg(unix)]
fn test_start() {
use std::io::Read;
use actix_codec::{BytesCodec, Framed};
use bytes::Bytes;
use futures_util::sink::SinkExt;
let addr = unused_addr();
let (tx, rx) = mpsc::channel();
let h = thread::spawn(move || {
actix_rt::System::new().block_on(async {
let srv = Server::build()
.backlog(100)
.disable_signals()
.bind("test", addr, move || {
fn_service(|io: TcpStream| async move {
let mut f = Framed::new(io, BytesCodec);
f.send(Bytes::from_static(b"test")).await.unwrap();
Ok::<_, ()>(())
})
})?
.run();
let _ = tx.send((srv.handle(), actix_rt::System::current()));
srv.await
})
});
let (srv, sys) = rx.recv().unwrap();
let mut buf = [1u8; 4];
let mut conn = net::TcpStream::connect(addr).unwrap();
let _ = conn.read_exact(&mut buf);
assert_eq!(buf, b"test"[..]);
// pause
let _ = srv.pause();
thread::sleep(Duration::from_millis(200));
let mut conn = net::TcpStream::connect(addr).unwrap();
conn.set_read_timeout(Some(Duration::from_millis(100)))
.unwrap();
let res = conn.read_exact(&mut buf);
assert!(res.is_err());
// resume
let _ = srv.resume();
thread::sleep(Duration::from_millis(100));
assert!(net::TcpStream::connect(addr).is_ok());
assert!(net::TcpStream::connect(addr).is_ok());
assert!(net::TcpStream::connect(addr).is_ok());
let mut buf = [0u8; 4];
let mut conn = net::TcpStream::connect(addr).unwrap();
let _ = conn.read_exact(&mut buf);
assert_eq!(buf, b"test"[..]);
// stop
let _ = srv.stop(false);
sys.stop();
h.join().unwrap().unwrap();
thread::sleep(Duration::from_secs(1));
assert!(net::TcpStream::connect(addr).is_err());
}
#[actix_rt::test]
async fn test_max_concurrent_connections() {
// Note:
// A TCP listener would accept connects based on it's backlog setting.
//
// The limit test on the other hand is only for concurrent TCP stream limiting a work
// thread accept.
use tokio::io::AsyncWriteExt;
let addr = unused_addr();
let (tx, rx) = mpsc::channel();
let counter = Arc::new(AtomicUsize::new(0));
let counter_clone = counter.clone();
let max_conn = 3;
let h = thread::spawn(move || {
actix_rt::System::new().block_on(async {
let srv = Server::build()
// Set a relative higher backlog.
.backlog(12)
// max connection for a worker is 3.
.max_concurrent_connections(max_conn)
.workers(1)
.disable_signals()
.bind("test", addr, move || {
let counter = counter.clone();
fn_service(move |_io: TcpStream| {
let counter = counter.clone();
async move {
counter.fetch_add(1, Ordering::SeqCst);
sleep(Duration::from_secs(20)).await;
counter.fetch_sub(1, Ordering::SeqCst);
Ok::<(), ()>(())
}
})
})?
.run();
let _ = tx.send((srv.handle(), actix_rt::System::current()));
srv.await
})
});
let (srv, sys) = rx.recv().unwrap();
let mut conns = vec![];
for _ in 0..12 {
let conn = tokio::net::TcpStream::connect(addr).await.unwrap();
conns.push(conn);
}
sleep(Duration::from_secs(5)).await;
// counter would remain at 3 even with 12 successful connection.
// and 9 of them remain in backlog.
assert_eq!(max_conn, counter_clone.load(Ordering::SeqCst));
for mut conn in conns {
conn.shutdown().await.unwrap();
}
srv.stop(false).await;
sys.stop();
h.join().unwrap().unwrap();
}
// TODO: race-y failures detected due to integer underflow when calling Counter::total
#[actix_rt::test]
async fn test_service_restart() {
use std::task::{Context, Poll};
use actix_service::{fn_factory, Service};
use futures_core::future::LocalBoxFuture;
use tokio::io::AsyncWriteExt;
struct TestService(Arc<AtomicUsize>);
impl Service<TcpStream> for TestService {
type Response = ();
type Error = ();
type Future = LocalBoxFuture<'static, Result<Self::Response, Self::Error>>;
fn poll_ready(&self, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
let TestService(ref counter) = self;
let c = counter.fetch_add(1, Ordering::SeqCst);
// Force the service to restart on first readiness check.
if c > 0 {
Poll::Ready(Ok(()))
} else {
Poll::Ready(Err(()))
}
}
fn call(&self, _: TcpStream) -> Self::Future {
Box::pin(async { Ok(()) })
}
}
let addr1 = unused_addr();
let addr2 = unused_addr();
let (tx, rx) = mpsc::channel();
let num = Arc::new(AtomicUsize::new(0));
let num2 = Arc::new(AtomicUsize::new(0));
let num_clone = num.clone();
let num2_clone = num2.clone();
let h = thread::spawn(move || {
let num = num.clone();
actix_rt::System::new().block_on(async {
let srv = Server::build()
.backlog(1)
.disable_signals()
.bind("addr1", addr1, move || {
let num = num.clone();
fn_factory(move || {
let num = num.clone();
async move { Ok::<_, ()>(TestService(num)) }
})
})?
.bind("addr2", addr2, move || {
let num2 = num2.clone();
fn_factory(move || {
let num2 = num2.clone();
async move { Ok::<_, ()>(TestService(num2)) }
})
})?
.workers(1)
.run();
let _ = tx.send(srv.handle());
srv.await
})
});
let srv = rx.recv().unwrap();
for _ in 0..5 {
TcpStream::connect(addr1)
.await
.unwrap()
.shutdown()
.await
.unwrap();
TcpStream::connect(addr2)
.await
.unwrap()
.shutdown()
.await
.unwrap();
}
sleep(Duration::from_secs(3)).await;
assert!(num_clone.load(Ordering::SeqCst) > 5);
assert!(num2_clone.load(Ordering::SeqCst) > 5);
let _ = srv.stop(false);
h.join().unwrap().unwrap();
}
#[ignore] // non-deterministic on CI
#[actix_rt::test]
async fn worker_restart() {
use actix_service::{Service, ServiceFactory};
use futures_core::future::LocalBoxFuture;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
struct TestServiceFactory(Arc<AtomicUsize>);
impl ServiceFactory<TcpStream> for TestServiceFactory {
type Response = ();
type Error = ();
type Config = ();
type Service = TestService;
type InitError = ();
type Future = LocalBoxFuture<'static, Result<Self::Service, Self::InitError>>;
fn new_service(&self, _: Self::Config) -> Self::Future {
let counter = self.0.fetch_add(1, Ordering::Relaxed);
Box::pin(async move { Ok(TestService(counter)) })
}
}
struct TestService(usize);
impl Service<TcpStream> for TestService {
type Response = ();
type Error = ();
type Future = LocalBoxFuture<'static, Result<Self::Response, Self::Error>>;
actix_service::always_ready!();
fn call(&self, stream: TcpStream) -> Self::Future {
let counter = self.0;
let mut stream = stream.into_std().unwrap();
use std::io::Write;
let str = counter.to_string();
let buf = str.as_bytes();
let mut written = 0;
while written < buf.len() {
if let Ok(n) = stream.write(&buf[written..]) {
written += n;
}
}
stream.flush().unwrap();
stream.shutdown(net::Shutdown::Write).unwrap();
// force worker 2 to restart service once.
if counter == 2 {
panic!("panic on purpose")
} else {
Box::pin(async { Ok(()) })
}
}
}
let addr = unused_addr();
let (tx, rx) = mpsc::channel();
let counter = Arc::new(AtomicUsize::new(1));
let h = thread::spawn(move || {
let counter = counter.clone();
actix_rt::System::new().block_on(async {
let srv = Server::build()
.disable_signals()
.bind("addr", addr, move || TestServiceFactory(counter.clone()))?
.workers(2)
.run();
let _ = tx.send(srv.handle());
srv.await
})
});
let srv = rx.recv().unwrap();
sleep(Duration::from_secs(3)).await;
let mut buf = [0; 8];
// worker 1 would not restart and return it's id consistently.
let mut stream = TcpStream::connect(addr).await.unwrap();
let n = stream.read(&mut buf).await.unwrap();
let id = String::from_utf8_lossy(&buf[0..n]);
assert_eq!("1", id);
stream.shutdown().await.unwrap();
// worker 2 dead after return response.
let mut stream = TcpStream::connect(addr).await.unwrap();
let n = stream.read(&mut buf).await.unwrap();
let id = String::from_utf8_lossy(&buf[0..n]);
assert_eq!("2", id);
stream.shutdown().await.unwrap();
// request to worker 1
let mut stream = TcpStream::connect(addr).await.unwrap();
let n = stream.read(&mut buf).await.unwrap();
let id = String::from_utf8_lossy(&buf[0..n]);
assert_eq!("1", id);
stream.shutdown().await.unwrap();
// TODO: Remove sleep if it can pass CI.
sleep(Duration::from_secs(3)).await;
// worker 2 restarting and work goes to worker 1.
let mut stream = TcpStream::connect(addr).await.unwrap();
let n = stream.read(&mut buf).await.unwrap();
let id = String::from_utf8_lossy(&buf[0..n]);
assert_eq!("1", id);
stream.shutdown().await.unwrap();
// TODO: Remove sleep if it can pass CI.
sleep(Duration::from_secs(3)).await;
// worker 2 restarted but worker 1 was still the next to accept connection.
let mut stream = TcpStream::connect(addr).await.unwrap();
let n = stream.read(&mut buf).await.unwrap();
let id = String::from_utf8_lossy(&buf[0..n]);
assert_eq!("1", id);
stream.shutdown().await.unwrap();
// TODO: Remove sleep if it can pass CI.
sleep(Duration::from_secs(3)).await;
// worker 2 accept connection again but it's id is 3.
let mut stream = TcpStream::connect(addr).await.unwrap();
let n = stream.read(&mut buf).await.unwrap();
let id = String::from_utf8_lossy(&buf[0..n]);
assert_eq!("3", id);
stream.shutdown().await.unwrap();
let _ = srv.stop(false);
h.join().unwrap().unwrap();
}
#[test]
fn no_runtime_on_init() {
use std::{thread::sleep, time::Duration};
let addr = unused_addr();
let counter = Arc::new(AtomicUsize::new(0));
let mut srv = Server::build()
.workers(2)
.disable_signals()
.bind("test", addr, {
let counter = counter.clone();
move || {
counter.fetch_add(1, Ordering::SeqCst);
fn_service(|_| async { Ok::<_, ()>(()) })
}
})
.unwrap()
.run();
fn is_send<T: Send>(_: &T) {}
is_send(&srv);
is_send(&srv.handle());
sleep(Duration::from_millis(1_000));
assert_eq!(counter.load(Ordering::SeqCst), 0);
let rt = tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap();
rt.block_on(async move {
let _ = futures_util::poll!(&mut srv);
// available after the first poll
sleep(Duration::from_millis(500));
assert_eq!(counter.load(Ordering::SeqCst), 2);
let _ = srv.handle().stop(true);
srv.await
})
.unwrap();
}
|
#![allow(missing_docs)]
use std::net;
use actix_rt::net::TcpStream;
use actix_server::{Server, TestServer};
use actix_service::fn_service;
use bytes::BytesMut;
use tokio::io::{AsyncReadExt as _, AsyncWriteExt as _};
macro_rules! await_timeout_ms {
($fut:expr, $limit:expr) => {
::actix_rt::time::timeout(::std::time::Duration::from_millis($limit), $fut)
.await
.unwrap()
.unwrap();
};
}
#[tokio::test]
async fn testing_server_echo() {
let srv = TestServer::start(|| {
fn_service(move |mut stream: TcpStream| async move {
let mut size = 0;
let mut buf = BytesMut::new();
match stream.read_buf(&mut buf).await {
Ok(0) => return Err(()),
Ok(bytes_read) => {
stream.write_all(&buf[size..]).await.unwrap();
size += bytes_read;
}
Err(_) => return Err(()),
}
Ok((buf.freeze(), size))
})
});
let mut conn = srv.connect().unwrap();
await_timeout_ms!(conn.write_all(b"test"), 200);
let mut buf = Vec::new();
await_timeout_ms!(conn.read_to_end(&mut buf), 200);
assert_eq!(&buf, b"test".as_ref());
}
#[tokio::test]
async fn new_with_builder() {
let alt_addr = TestServer::unused_addr();
let srv = TestServer::start_with_builder(
Server::build()
.bind("alt", alt_addr, || {
fn_service(|_| async { Ok::<_, ()>(()) })
})
.unwrap(),
|| {
fn_service(|mut sock: TcpStream| async move {
let mut buf = [0u8; 16];
sock.read_exact(&mut buf).await
})
},
);
// connect to test server
srv.connect().unwrap();
// connect to alt service defined in custom ServerBuilder
TcpStream::from_std(net::TcpStream::connect(alt_addr).unwrap()).unwrap();
}
|
#![allow(missing_docs)]
use std::{future::Future, sync::mpsc, time::Duration};
async fn oracle<F, Fut>(f: F) -> (u32, u32)
where
F: FnOnce() -> Fut + Clone + Send + 'static,
Fut: Future<Output = u32> + 'static,
{
let f1 = actix_rt::spawn(f.clone()());
let f2 = actix_rt::spawn(f());
(f1.await.unwrap(), f2.await.unwrap())
}
#[actix_rt::main]
async fn main() {
let (tx, rx) = mpsc::channel();
let (r1, r2) = oracle({
let tx = tx.clone();
|| async move {
tx.send(()).unwrap();
4 * 4
}
})
.await;
assert_eq!(r1, r2);
tx.send(()).unwrap();
rx.recv_timeout(Duration::from_millis(100)).unwrap();
rx.recv_timeout(Duration::from_millis(100)).unwrap();
}
|
use alloc::rc::Rc;
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use futures_core::ready;
use pin_project_lite::pin_project;
use super::{Service, ServiceFactory};
/// Service for the `and_then` combinator, chaining a computation onto the end of another service
/// which completes successfully.
///
/// This is created by the `Pipeline::and_then` method.
pub struct AndThenService<A, B, Req>(Rc<(A, B)>, PhantomData<Req>);
impl<A, B, Req> AndThenService<A, B, Req> {
/// Create new `AndThen` combinator
pub(crate) fn new(a: A, b: B) -> Self
where
A: Service<Req>,
B: Service<A::Response, Error = A::Error>,
{
Self(Rc::new((a, b)), PhantomData)
}
}
impl<A, B, Req> Clone for AndThenService<A, B, Req> {
fn clone(&self) -> Self {
AndThenService(self.0.clone(), PhantomData)
}
}
impl<A, B, Req> Service<Req> for AndThenService<A, B, Req>
where
A: Service<Req>,
B: Service<A::Response, Error = A::Error>,
{
type Response = B::Response;
type Error = A::Error;
type Future = AndThenServiceResponse<A, B, Req>;
fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
let (a, b) = &*self.0;
let not_ready = !a.poll_ready(cx)?.is_ready();
if !b.poll_ready(cx)?.is_ready() || not_ready {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
fn call(&self, req: Req) -> Self::Future {
AndThenServiceResponse {
state: State::A {
fut: self.0 .0.call(req),
b: Some(self.0.clone()),
},
}
}
}
pin_project! {
pub struct AndThenServiceResponse<A, B, Req>
where
A: Service<Req>,
B: Service<A::Response, Error = A::Error>,
{
#[pin]
state: State<A, B, Req>,
}
}
pin_project! {
#[project = StateProj]
enum State<A, B, Req>
where
A: Service<Req>,
B: Service<A::Response, Error = A::Error>,
{
A {
#[pin]
fut: A::Future,
b: Option<Rc<(A, B)>>,
},
B {
#[pin]
fut: B::Future,
},
}
}
impl<A, B, Req> Future for AndThenServiceResponse<A, B, Req>
where
A: Service<Req>,
B: Service<A::Response, Error = A::Error>,
{
type Output = Result<B::Response, A::Error>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.as_mut().project();
match this.state.as_mut().project() {
StateProj::A { fut, b } => {
let res = ready!(fut.poll(cx))?;
let b = b.take().unwrap();
let fut = b.1.call(res);
this.state.set(State::B { fut });
self.poll(cx)
}
StateProj::B { fut } => fut.poll(cx),
}
}
}
/// `.and_then()` service factory combinator
pub struct AndThenServiceFactory<A, B, Req>
where
A: ServiceFactory<Req>,
A::Config: Clone,
B: ServiceFactory<A::Response, Config = A::Config, Error = A::Error, InitError = A::InitError>,
{
inner: Rc<(A, B)>,
_phantom: PhantomData<Req>,
}
impl<A, B, Req> AndThenServiceFactory<A, B, Req>
where
A: ServiceFactory<Req>,
A::Config: Clone,
B: ServiceFactory<A::Response, Config = A::Config, Error = A::Error, InitError = A::InitError>,
{
/// Create new `AndThenFactory` combinator
pub(crate) fn new(a: A, b: B) -> Self {
Self {
inner: Rc::new((a, b)),
_phantom: PhantomData,
}
}
}
impl<A, B, Req> ServiceFactory<Req> for AndThenServiceFactory<A, B, Req>
where
A: ServiceFactory<Req>,
A::Config: Clone,
B: ServiceFactory<A::Response, Config = A::Config, Error = A::Error, InitError = A::InitError>,
{
type Response = B::Response;
type Error = A::Error;
type Config = A::Config;
type Service = AndThenService<A::Service, B::Service, Req>;
type InitError = A::InitError;
type Future = AndThenServiceFactoryResponse<A, B, Req>;
fn new_service(&self, cfg: A::Config) -> Self::Future {
let inner = &*self.inner;
AndThenServiceFactoryResponse::new(
inner.0.new_service(cfg.clone()),
inner.1.new_service(cfg),
)
}
}
impl<A, B, Req> Clone for AndThenServiceFactory<A, B, Req>
where
A: ServiceFactory<Req>,
A::Config: Clone,
B: ServiceFactory<A::Response, Config = A::Config, Error = A::Error, InitError = A::InitError>,
{
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
_phantom: PhantomData,
}
}
}
pin_project! {
pub struct AndThenServiceFactoryResponse<A, B, Req>
where
A: ServiceFactory<Req>,
B: ServiceFactory<A::Response>,
{
#[pin]
fut_a: A::Future,
#[pin]
fut_b: B::Future,
a: Option<A::Service>,
b: Option<B::Service>,
}
}
impl<A, B, Req> AndThenServiceFactoryResponse<A, B, Req>
where
A: ServiceFactory<Req>,
B: ServiceFactory<A::Response>,
{
fn new(fut_a: A::Future, fut_b: B::Future) -> Self {
AndThenServiceFactoryResponse {
fut_a,
fut_b,
a: None,
b: None,
}
}
}
impl<A, B, Req> Future for AndThenServiceFactoryResponse<A, B, Req>
where
A: ServiceFactory<Req>,
B: ServiceFactory<A::Response, Error = A::Error, InitError = A::InitError>,
{
type Output = Result<AndThenService<A::Service, B::Service, Req>, A::InitError>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if this.a.is_none() {
if let Poll::Ready(service) = this.fut_a.poll(cx)? {
*this.a = Some(service);
}
}
if this.b.is_none() {
if let Poll::Ready(service) = this.fut_b.poll(cx)? {
*this.b = Some(service);
}
}
if this.a.is_some() && this.b.is_some() {
Poll::Ready(Ok(AndThenService::new(
this.a.take().unwrap(),
this.b.take().unwrap(),
)))
} else {
Poll::Pending
}
}
}
#[cfg(test)]
mod tests {
use alloc::rc::Rc;
use core::{
cell::Cell,
task::{Context, Poll},
};
use futures_util::future::lazy;
use crate::{
fn_factory, ok,
pipeline::{pipeline, pipeline_factory},
ready, Ready, Service, ServiceFactory,
};
struct Srv1(Rc<Cell<usize>>);
impl Service<&'static str> for Srv1 {
type Response = &'static str;
type Error = ();
type Future = Ready<Result<Self::Response, ()>>;
fn poll_ready(&self, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.0.set(self.0.get() + 1);
Poll::Ready(Ok(()))
}
fn call(&self, req: &'static str) -> Self::Future {
ok(req)
}
}
#[derive(Clone)]
struct Srv2(Rc<Cell<usize>>);
impl Service<&'static str> for Srv2 {
type Response = (&'static str, &'static str);
type Error = ();
type Future = Ready<Result<Self::Response, ()>>;
fn poll_ready(&self, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.0.set(self.0.get() + 1);
Poll::Ready(Ok(()))
}
fn call(&self, req: &'static str) -> Self::Future {
ok((req, "srv2"))
}
}
#[actix_rt::test]
async fn test_poll_ready() {
let cnt = Rc::new(Cell::new(0));
let srv = pipeline(Srv1(cnt.clone())).and_then(Srv2(cnt.clone()));
let res = lazy(|cx| srv.poll_ready(cx)).await;
assert_eq!(res, Poll::Ready(Ok(())));
assert_eq!(cnt.get(), 2);
}
#[actix_rt::test]
async fn test_call() {
let cnt = Rc::new(Cell::new(0));
let srv = pipeline(Srv1(cnt.clone())).and_then(Srv2(cnt));
let res = srv.call("srv1").await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv1", "srv2"));
}
#[actix_rt::test]
async fn test_new_service() {
let cnt = Rc::new(Cell::new(0));
let cnt2 = cnt.clone();
let new_srv = pipeline_factory(fn_factory(move || ready(Ok::<_, ()>(Srv1(cnt2.clone())))))
.and_then(move || ready(Ok(Srv2(cnt.clone()))));
let srv = new_srv.new_service(()).await.unwrap();
let res = srv.call("srv1").await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv1", "srv2"));
}
}
|
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use futures_core::ready;
use pin_project_lite::pin_project;
use super::{IntoService, IntoServiceFactory, Service, ServiceFactory};
/// Apply transform function to a service.
///
/// The In and Out type params refer to the request and response types for the wrapped service.
pub fn apply_fn<I, S, F, Fut, Req, In, Res, Err>(
service: I,
wrap_fn: F,
) -> Apply<S, F, Req, In, Res, Err>
where
I: IntoService<S, In>,
S: Service<In, Error = Err>,
F: Fn(Req, &S) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
Apply::new(service.into_service(), wrap_fn)
}
/// Service factory that produces `apply_fn` service.
///
/// The In and Out type params refer to the request and response types for the wrapped service.
pub fn apply_fn_factory<I, SF, F, Fut, Req, In, Res, Err>(
service: I,
f: F,
) -> ApplyFactory<SF, F, Req, In, Res, Err>
where
I: IntoServiceFactory<SF, In>,
SF: ServiceFactory<In, Error = Err>,
F: Fn(Req, &SF::Service) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
ApplyFactory::new(service.into_factory(), f)
}
/// `Apply` service combinator.
///
/// The In and Out type params refer to the request and response types for the wrapped service.
pub struct Apply<S, F, Req, In, Res, Err>
where
S: Service<In, Error = Err>,
{
service: S,
wrap_fn: F,
_phantom: PhantomData<fn(Req) -> (In, Res, Err)>,
}
impl<S, F, Fut, Req, In, Res, Err> Apply<S, F, Req, In, Res, Err>
where
S: Service<In, Error = Err>,
F: Fn(Req, &S) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
/// Create new `Apply` combinator
fn new(service: S, wrap_fn: F) -> Self {
Self {
service,
wrap_fn,
_phantom: PhantomData,
}
}
}
impl<S, F, Fut, Req, In, Res, Err> Clone for Apply<S, F, Req, In, Res, Err>
where
S: Service<In, Error = Err> + Clone,
F: Fn(Req, &S) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
fn clone(&self) -> Self {
Apply {
service: self.service.clone(),
wrap_fn: self.wrap_fn.clone(),
_phantom: PhantomData,
}
}
}
impl<S, F, Fut, Req, In, Res, Err> Service<Req> for Apply<S, F, Req, In, Res, Err>
where
S: Service<In, Error = Err>,
F: Fn(Req, &S) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
type Response = Res;
type Error = Err;
type Future = Fut;
crate::forward_ready!(service);
fn call(&self, req: Req) -> Self::Future {
(self.wrap_fn)(req, &self.service)
}
}
/// `ApplyFactory` service factory combinator.
pub struct ApplyFactory<SF, F, Req, In, Res, Err> {
factory: SF,
wrap_fn: F,
_phantom: PhantomData<fn(Req) -> (In, Res, Err)>,
}
impl<SF, F, Fut, Req, In, Res, Err> ApplyFactory<SF, F, Req, In, Res, Err>
where
SF: ServiceFactory<In, Error = Err>,
F: Fn(Req, &SF::Service) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
/// Create new `ApplyFactory` new service instance
fn new(factory: SF, wrap_fn: F) -> Self {
Self {
factory,
wrap_fn,
_phantom: PhantomData,
}
}
}
impl<SF, F, Fut, Req, In, Res, Err> Clone for ApplyFactory<SF, F, Req, In, Res, Err>
where
SF: ServiceFactory<In, Error = Err> + Clone,
F: Fn(Req, &SF::Service) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
fn clone(&self) -> Self {
Self {
factory: self.factory.clone(),
wrap_fn: self.wrap_fn.clone(),
_phantom: PhantomData,
}
}
}
impl<SF, F, Fut, Req, In, Res, Err> ServiceFactory<Req> for ApplyFactory<SF, F, Req, In, Res, Err>
where
SF: ServiceFactory<In, Error = Err>,
F: Fn(Req, &SF::Service) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
type Response = Res;
type Error = Err;
type Config = SF::Config;
type Service = Apply<SF::Service, F, Req, In, Res, Err>;
type InitError = SF::InitError;
type Future = ApplyServiceFactoryResponse<SF, F, Fut, Req, In, Res, Err>;
fn new_service(&self, cfg: SF::Config) -> Self::Future {
let svc = self.factory.new_service(cfg);
ApplyServiceFactoryResponse::new(svc, self.wrap_fn.clone())
}
}
pin_project! {
pub struct ApplyServiceFactoryResponse<SF, F, Fut, Req, In, Res, Err>
where
SF: ServiceFactory<In, Error = Err>,
F: Fn(Req, &SF::Service) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
#[pin]
fut: SF::Future,
wrap_fn: Option<F>,
_phantom: PhantomData<fn(Req) -> Res>,
}
}
impl<SF, F, Fut, Req, In, Res, Err> ApplyServiceFactoryResponse<SF, F, Fut, Req, In, Res, Err>
where
SF: ServiceFactory<In, Error = Err>,
F: Fn(Req, &SF::Service) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
fn new(fut: SF::Future, wrap_fn: F) -> Self {
Self {
fut,
wrap_fn: Some(wrap_fn),
_phantom: PhantomData,
}
}
}
impl<SF, F, Fut, Req, In, Res, Err> Future
for ApplyServiceFactoryResponse<SF, F, Fut, Req, In, Res, Err>
where
SF: ServiceFactory<In, Error = Err>,
F: Fn(Req, &SF::Service) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
type Output = Result<Apply<SF::Service, F, Req, In, Res, Err>, SF::InitError>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let svc = ready!(this.fut.poll(cx))?;
Poll::Ready(Ok(Apply::new(svc, this.wrap_fn.take().unwrap())))
}
}
#[cfg(test)]
mod tests {
use futures_util::future::lazy;
use super::*;
use crate::{
ok,
pipeline::{pipeline, pipeline_factory},
Ready,
};
#[derive(Clone)]
struct Srv;
impl Service<()> for Srv {
type Response = ();
type Error = ();
type Future = Ready<Result<(), ()>>;
crate::always_ready!();
fn call(&self, _: ()) -> Self::Future {
ok(())
}
}
#[actix_rt::test]
async fn test_call() {
let srv = pipeline(apply_fn(Srv, |req: &'static str, srv| {
let fut = srv.call(());
async move {
fut.await.unwrap();
Ok((req, ()))
}
}));
assert_eq!(lazy(|cx| srv.poll_ready(cx)).await, Poll::Ready(Ok(())));
let res = srv.call("srv").await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv", ()));
}
#[actix_rt::test]
async fn test_new_service() {
let new_srv = pipeline_factory(apply_fn_factory(
|| ok::<_, ()>(Srv),
|req: &'static str, srv| {
let fut = srv.call(());
async move {
fut.await.unwrap();
Ok((req, ()))
}
},
));
let srv = new_srv.new_service(()).await.unwrap();
assert_eq!(lazy(|cx| srv.poll_ready(cx)).await, Poll::Ready(Ok(())));
let res = srv.call("srv").await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv", ()));
}
}
|
use alloc::rc::Rc;
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use futures_core::ready;
use pin_project_lite::pin_project;
use crate::{Service, ServiceFactory};
/// Convert `Fn(Config, &Service1) -> Future<Service2>` fn to a service factory.
pub fn apply_cfg<S1, Req, F, Cfg, Fut, S2, Err>(
srv: S1,
f: F,
) -> impl ServiceFactory<
Req,
Config = Cfg,
Response = S2::Response,
Error = S2::Error,
Service = S2,
InitError = Err,
Future = Fut,
> + Clone
where
S1: Service<Req>,
F: Fn(Cfg, &S1) -> Fut,
Fut: Future<Output = Result<S2, Err>>,
S2: Service<Req>,
{
ApplyConfigService {
srv: Rc::new((srv, f)),
_phantom: PhantomData,
}
}
/// Convert `Fn(Config, &ServiceFactory1) -> Future<ServiceFactory2>` fn to a service factory.
///
/// Service1 get constructed from `T` factory.
pub fn apply_cfg_factory<SF, Req, F, Cfg, Fut, S>(
factory: SF,
f: F,
) -> impl ServiceFactory<
Req,
Config = Cfg,
Response = S::Response,
Error = S::Error,
Service = S,
InitError = SF::InitError,
> + Clone
where
SF: ServiceFactory<Req, Config = ()>,
F: Fn(Cfg, &SF::Service) -> Fut,
SF::InitError: From<SF::Error>,
Fut: Future<Output = Result<S, SF::InitError>>,
S: Service<Req>,
{
ApplyConfigServiceFactory {
srv: Rc::new((factory, f)),
_phantom: PhantomData,
}
}
/// Convert `Fn(Config, &Server) -> Future<Service>` fn to NewService\
struct ApplyConfigService<S1, Req, F, Cfg, Fut, S2, Err>
where
S1: Service<Req>,
F: Fn(Cfg, &S1) -> Fut,
Fut: Future<Output = Result<S2, Err>>,
S2: Service<Req>,
{
srv: Rc<(S1, F)>,
_phantom: PhantomData<(Cfg, Req, Fut, S2)>,
}
impl<S1, Req, F, Cfg, Fut, S2, Err> Clone for ApplyConfigService<S1, Req, F, Cfg, Fut, S2, Err>
where
S1: Service<Req>,
F: Fn(Cfg, &S1) -> Fut,
Fut: Future<Output = Result<S2, Err>>,
S2: Service<Req>,
{
fn clone(&self) -> Self {
ApplyConfigService {
srv: self.srv.clone(),
_phantom: PhantomData,
}
}
}
impl<S1, Req, F, Cfg, Fut, S2, Err> ServiceFactory<Req>
for ApplyConfigService<S1, Req, F, Cfg, Fut, S2, Err>
where
S1: Service<Req>,
F: Fn(Cfg, &S1) -> Fut,
Fut: Future<Output = Result<S2, Err>>,
S2: Service<Req>,
{
type Response = S2::Response;
type Error = S2::Error;
type Config = Cfg;
type Service = S2;
type InitError = Err;
type Future = Fut;
fn new_service(&self, cfg: Cfg) -> Self::Future {
let (t, f) = &*self.srv;
f(cfg, t)
}
}
/// Convert `Fn(&Config) -> Future<Service>` fn to NewService
struct ApplyConfigServiceFactory<SF, Req, F, Cfg, Fut, S>
where
SF: ServiceFactory<Req, Config = ()>,
F: Fn(Cfg, &SF::Service) -> Fut,
Fut: Future<Output = Result<S, SF::InitError>>,
S: Service<Req>,
{
srv: Rc<(SF, F)>,
_phantom: PhantomData<(Cfg, Req, Fut, S)>,
}
impl<SF, Req, F, Cfg, Fut, S> Clone for ApplyConfigServiceFactory<SF, Req, F, Cfg, Fut, S>
where
SF: ServiceFactory<Req, Config = ()>,
F: Fn(Cfg, &SF::Service) -> Fut,
Fut: Future<Output = Result<S, SF::InitError>>,
S: Service<Req>,
{
fn clone(&self) -> Self {
Self {
srv: self.srv.clone(),
_phantom: PhantomData,
}
}
}
impl<SF, Req, F, Cfg, Fut, S> ServiceFactory<Req>
for ApplyConfigServiceFactory<SF, Req, F, Cfg, Fut, S>
where
SF: ServiceFactory<Req, Config = ()>,
SF::InitError: From<SF::Error>,
F: Fn(Cfg, &SF::Service) -> Fut,
Fut: Future<Output = Result<S, SF::InitError>>,
S: Service<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Config = Cfg;
type Service = S;
type InitError = SF::InitError;
type Future = ApplyConfigServiceFactoryResponse<SF, Req, F, Cfg, Fut, S>;
fn new_service(&self, cfg: Cfg) -> Self::Future {
ApplyConfigServiceFactoryResponse {
cfg: Some(cfg),
store: self.srv.clone(),
state: State::A {
fut: self.srv.0.new_service(()),
},
}
}
}
pin_project! {
struct ApplyConfigServiceFactoryResponse<SF, Req, F, Cfg, Fut, S>
where
SF: ServiceFactory<Req, Config = ()>,
SF::InitError: From<SF::Error>,
F: Fn(Cfg, &SF::Service) -> Fut,
Fut: Future<Output = Result<S, SF::InitError>>,
S: Service<Req>,
{
cfg: Option<Cfg>,
store: Rc<(SF, F)>,
#[pin]
state: State<SF, Fut, S, Req>,
}
}
pin_project! {
#[project = StateProj]
enum State<SF, Fut, S, Req>
where
SF: ServiceFactory<Req, Config = ()>,
SF::InitError: From<SF::Error>,
Fut: Future<Output = Result<S, SF::InitError>>,
S: Service<Req>,
{
A { #[pin] fut: SF::Future },
B { svc: SF::Service },
C { #[pin] fut: Fut },
}
}
impl<SF, Req, F, Cfg, Fut, S> Future for ApplyConfigServiceFactoryResponse<SF, Req, F, Cfg, Fut, S>
where
SF: ServiceFactory<Req, Config = ()>,
SF::InitError: From<SF::Error>,
F: Fn(Cfg, &SF::Service) -> Fut,
Fut: Future<Output = Result<S, SF::InitError>>,
S: Service<Req>,
{
type Output = Result<S, SF::InitError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.as_mut().project();
match this.state.as_mut().project() {
StateProj::A { fut } => {
let svc = ready!(fut.poll(cx))?;
this.state.set(State::B { svc });
self.poll(cx)
}
StateProj::B { svc } => {
ready!(svc.poll_ready(cx))?;
{
let (_, f) = &**this.store;
let fut = f(this.cfg.take().unwrap(), svc);
this.state.set(State::C { fut });
}
self.poll(cx)
}
StateProj::C { fut } => fut.poll(cx),
}
}
}
|
//! Trait object forms of services and service factories.
use alloc::{boxed::Box, rc::Rc};
use core::{future::Future, pin::Pin};
use crate::{Service, ServiceFactory};
/// A boxed future with no send bound or lifetime parameters.
pub type BoxFuture<T> = Pin<Box<dyn Future<Output = T>>>;
/// Type alias for service trait object using [`Box`].
pub type BoxService<Req, Res, Err> =
Box<dyn Service<Req, Response = Res, Error = Err, Future = BoxFuture<Result<Res, Err>>>>;
/// Wraps service as a trait object using [`BoxService`].
pub fn service<S, Req>(service: S) -> BoxService<Req, S::Response, S::Error>
where
S: Service<Req> + 'static,
Req: 'static,
S::Future: 'static,
{
Box::new(ServiceWrapper::new(service))
}
/// Type alias for service trait object using [`Rc`].
pub type RcService<Req, Res, Err> =
Rc<dyn Service<Req, Response = Res, Error = Err, Future = BoxFuture<Result<Res, Err>>>>;
/// Wraps service as a trait object using [`RcService`].
pub fn rc_service<S, Req>(service: S) -> RcService<Req, S::Response, S::Error>
where
S: Service<Req> + 'static,
Req: 'static,
S::Future: 'static,
{
Rc::new(ServiceWrapper::new(service))
}
struct ServiceWrapper<S> {
inner: S,
}
impl<S> ServiceWrapper<S> {
fn new(inner: S) -> Self {
Self { inner }
}
}
impl<S, Req, Res, Err> Service<Req> for ServiceWrapper<S>
where
S: Service<Req, Response = Res, Error = Err>,
S::Future: 'static,
{
type Response = Res;
type Error = Err;
type Future = BoxFuture<Result<Res, Err>>;
crate::forward_ready!(inner);
fn call(&self, req: Req) -> Self::Future {
Box::pin(self.inner.call(req))
}
}
/// Wrapper for a service factory that will map it's services to boxed trait object services.
pub struct BoxServiceFactory<Cfg, Req, Res, Err, InitErr>(Inner<Cfg, Req, Res, Err, InitErr>);
/// Wraps a service factory that returns service trait objects.
pub fn factory<SF, Req>(
factory: SF,
) -> BoxServiceFactory<SF::Config, Req, SF::Response, SF::Error, SF::InitError>
where
SF: ServiceFactory<Req> + 'static,
Req: 'static,
SF::Response: 'static,
SF::Service: 'static,
SF::Future: 'static,
SF::Error: 'static,
SF::InitError: 'static,
{
BoxServiceFactory(Box::new(FactoryWrapper(factory)))
}
type Inner<C, Req, Res, Err, InitErr> = Box<
dyn ServiceFactory<
Req,
Config = C,
Response = Res,
Error = Err,
InitError = InitErr,
Service = BoxService<Req, Res, Err>,
Future = BoxFuture<Result<BoxService<Req, Res, Err>, InitErr>>,
>,
>;
impl<C, Req, Res, Err, InitErr> ServiceFactory<Req> for BoxServiceFactory<C, Req, Res, Err, InitErr>
where
Req: 'static,
Res: 'static,
Err: 'static,
InitErr: 'static,
{
type Response = Res;
type Error = Err;
type Config = C;
type Service = BoxService<Req, Res, Err>;
type InitError = InitErr;
type Future = BoxFuture<Result<Self::Service, InitErr>>;
fn new_service(&self, cfg: C) -> Self::Future {
self.0.new_service(cfg)
}
}
struct FactoryWrapper<SF>(SF);
impl<SF, Req, Cfg, Res, Err, InitErr> ServiceFactory<Req> for FactoryWrapper<SF>
where
Req: 'static,
Res: 'static,
Err: 'static,
InitErr: 'static,
SF: ServiceFactory<Req, Config = Cfg, Response = Res, Error = Err, InitError = InitErr>,
SF::Future: 'static,
SF::Service: 'static,
<SF::Service as Service<Req>>::Future: 'static,
{
type Response = Res;
type Error = Err;
type Config = Cfg;
type Service = BoxService<Req, Res, Err>;
type InitError = InitErr;
type Future = BoxFuture<Result<Self::Service, Self::InitError>>;
fn new_service(&self, cfg: Cfg) -> Self::Future {
let f = self.0.new_service(cfg);
Box::pin(async { f.await.map(|s| Box::new(ServiceWrapper::new(s)) as _) })
}
}
|
use crate::{
and_then::{AndThenService, AndThenServiceFactory},
map::Map,
map_err::MapErr,
transform_err::TransformMapInitErr,
IntoService, IntoServiceFactory, Service, ServiceFactory, Transform,
};
/// An extension trait for [`Service`]s that provides a variety of convenient adapters.
pub trait ServiceExt<Req>: Service<Req> {
/// Map this service's output to a different type, returning a new service
/// of the resulting type.
///
/// This function is similar to the `Option::map` or `Iterator::map` where
/// it will change the type of the underlying service.
///
/// Note that this function consumes the receiving service and returns a
/// wrapped version of it, similar to the existing `map` methods in the
/// standard library.
fn map<F, R>(self, f: F) -> Map<Self, F, Req, R>
where
Self: Sized,
F: FnMut(Self::Response) -> R,
{
Map::new(self, f)
}
/// Map this service's error to a different error, returning a new service.
///
/// This function is similar to the `Result::map_err` where it will change
/// the error type of the underlying service. For example, this can be useful to
/// ensure that services have the same error type.
///
/// Note that this function consumes the receiving service and returns a
/// wrapped version of it.
fn map_err<F, E>(self, f: F) -> MapErr<Self, Req, F, E>
where
Self: Sized,
F: Fn(Self::Error) -> E,
{
MapErr::new(self, f)
}
/// Call another service after call to this one has resolved successfully.
///
/// This function can be used to chain two services together and ensure that the second service
/// isn't called until call to the first service have finished. Result of the call to the first
/// service is used as an input parameter for the second service's call.
///
/// Note that this function consumes the receiving service and returns a wrapped version of it.
fn and_then<I, S1>(self, service: I) -> AndThenService<Self, S1, Req>
where
Self: Sized,
I: IntoService<S1, Self::Response>,
S1: Service<Self::Response, Error = Self::Error>,
{
AndThenService::new(self, service.into_service())
}
}
impl<S, Req> ServiceExt<Req> for S where S: Service<Req> {}
/// An extension trait for [`ServiceFactory`]s that provides a variety of convenient adapters.
pub trait ServiceFactoryExt<Req>: ServiceFactory<Req> {
/// Map this service's output to a different type, returning a new service
/// of the resulting type.
fn map<F, R>(self, f: F) -> crate::map::MapServiceFactory<Self, F, Req, R>
where
Self: Sized,
F: FnMut(Self::Response) -> R + Clone,
{
crate::map::MapServiceFactory::new(self, f)
}
/// Map this service's error to a different error, returning a new service.
fn map_err<F, E>(self, f: F) -> crate::map_err::MapErrServiceFactory<Self, Req, F, E>
where
Self: Sized,
F: Fn(Self::Error) -> E + Clone,
{
crate::map_err::MapErrServiceFactory::new(self, f)
}
/// Map this factory's init error to a different error, returning a new service.
fn map_init_err<F, E>(self, f: F) -> crate::map_init_err::MapInitErr<Self, F, Req, E>
where
Self: Sized,
F: Fn(Self::InitError) -> E + Clone,
{
crate::map_init_err::MapInitErr::new(self, f)
}
/// Call another service after call to this one has resolved successfully.
fn and_then<I, SF1>(self, factory: I) -> AndThenServiceFactory<Self, SF1, Req>
where
Self: Sized,
Self::Config: Clone,
I: IntoServiceFactory<SF1, Self::Response>,
SF1: ServiceFactory<
Self::Response,
Config = Self::Config,
Error = Self::Error,
InitError = Self::InitError,
>,
{
AndThenServiceFactory::new(self, factory.into_factory())
}
}
impl<SF, Req> ServiceFactoryExt<Req> for SF where SF: ServiceFactory<Req> {}
/// An extension trait for [`Transform`]s that provides a variety of convenient adapters.
pub trait TransformExt<S, Req>: Transform<S, Req> {
/// Return a new `Transform` whose init error is mapped to to a different type.
fn map_init_err<F, E>(self, f: F) -> TransformMapInitErr<Self, S, Req, F, E>
where
Self: Sized,
F: Fn(Self::InitError) -> E + Clone,
{
TransformMapInitErr::new(self, f)
}
}
impl<T, Req> TransformExt<T, Req> for T where T: Transform<T, Req> {}
|
use core::{future::Future, marker::PhantomData};
use crate::{ok, IntoService, IntoServiceFactory, Ready, Service, ServiceFactory};
/// Create `ServiceFactory` for function that can act as a `Service`
pub fn fn_service<F, Fut, Req, Res, Err, Cfg>(f: F) -> FnServiceFactory<F, Fut, Req, Res, Err, Cfg>
where
F: Fn(Req) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
FnServiceFactory::new(f)
}
/// Create `ServiceFactory` for function that can produce services
///
/// # Examples
/// ```
/// use std::io;
/// use actix_service::{fn_factory, fn_service, Service, ServiceFactory};
/// use futures_util::future::ok;
///
/// /// Service that divides two usize values.
/// async fn div((x, y): (usize, usize)) -> Result<usize, io::Error> {
/// if y == 0 {
/// Err(io::Error::new(io::ErrorKind::Other, "divide by zero"))
/// } else {
/// Ok(x / y)
/// }
/// }
///
/// #[actix_rt::main]
/// async fn main() -> io::Result<()> {
/// // Create service factory that produces `div` services
/// let factory = fn_factory(|| {
/// ok::<_, io::Error>(fn_service(div))
/// });
///
/// // construct new service
/// let srv = factory.new_service(()).await?;
///
/// // now we can use `div` service
/// let result = srv.call((10, 20)).await?;
///
/// println!("10 / 20 = {}", result);
///
/// Ok(())
/// }
/// ```
pub fn fn_factory<F, Cfg, Srv, Req, Fut, Err>(f: F) -> FnServiceNoConfig<F, Cfg, Srv, Req, Fut, Err>
where
F: Fn() -> Fut,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
FnServiceNoConfig::new(f)
}
/// Create `ServiceFactory` for function that accepts config argument and can produce services
///
/// Any function that has following form `Fn(Config) -> Future<Output = Service>` could act as
/// a `ServiceFactory`.
///
/// # Examples
/// ```
/// use std::io;
/// use actix_service::{fn_factory_with_config, fn_service, Service, ServiceFactory};
/// use futures_util::future::ok;
///
/// #[actix_rt::main]
/// async fn main() -> io::Result<()> {
/// // Create service factory. factory uses config argument for
/// // services it generates.
/// let factory = fn_factory_with_config(|y: usize| {
/// ok::<_, io::Error>(fn_service(move |x: usize| ok::<_, io::Error>(x * y)))
/// });
///
/// // construct new service with config argument
/// let srv = factory.new_service(10).await?;
///
/// let result = srv.call(10).await?;
/// assert_eq!(result, 100);
///
/// println!("10 * 10 = {}", result);
/// Ok(())
/// }
/// ```
pub fn fn_factory_with_config<F, Fut, Cfg, Srv, Req, Err>(
f: F,
) -> FnServiceConfig<F, Fut, Cfg, Srv, Req, Err>
where
F: Fn(Cfg) -> Fut,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
FnServiceConfig::new(f)
}
pub struct FnService<F, Fut, Req, Res, Err>
where
F: FnMut(Req) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
f: F,
_t: PhantomData<fn(Req)>,
}
impl<F, Fut, Req, Res, Err> FnService<F, Fut, Req, Res, Err>
where
F: FnMut(Req) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
pub(crate) fn new(f: F) -> Self {
Self { f, _t: PhantomData }
}
}
impl<F, Fut, Req, Res, Err> Clone for FnService<F, Fut, Req, Res, Err>
where
F: FnMut(Req) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
fn clone(&self) -> Self {
Self::new(self.f.clone())
}
}
impl<F, Fut, Req, Res, Err> Service<Req> for FnService<F, Fut, Req, Res, Err>
where
F: Fn(Req) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
type Response = Res;
type Error = Err;
type Future = Fut;
crate::always_ready!();
fn call(&self, req: Req) -> Self::Future {
(self.f)(req)
}
}
impl<F, Fut, Req, Res, Err> IntoService<FnService<F, Fut, Req, Res, Err>, Req> for F
where
F: Fn(Req) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
fn into_service(self) -> FnService<F, Fut, Req, Res, Err> {
FnService::new(self)
}
}
pub struct FnServiceFactory<F, Fut, Req, Res, Err, Cfg>
where
F: Fn(Req) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
{
f: F,
_t: PhantomData<fn(Req, Cfg)>,
}
impl<F, Fut, Req, Res, Err, Cfg> FnServiceFactory<F, Fut, Req, Res, Err, Cfg>
where
F: Fn(Req) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
fn new(f: F) -> Self {
FnServiceFactory { f, _t: PhantomData }
}
}
impl<F, Fut, Req, Res, Err, Cfg> Clone for FnServiceFactory<F, Fut, Req, Res, Err, Cfg>
where
F: Fn(Req) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
fn clone(&self) -> Self {
Self::new(self.f.clone())
}
}
impl<F, Fut, Req, Res, Err> Service<Req> for FnServiceFactory<F, Fut, Req, Res, Err, ()>
where
F: Fn(Req) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
type Response = Res;
type Error = Err;
type Future = Fut;
crate::always_ready!();
fn call(&self, req: Req) -> Self::Future {
(self.f)(req)
}
}
impl<F, Fut, Req, Res, Err, Cfg> ServiceFactory<Req>
for FnServiceFactory<F, Fut, Req, Res, Err, Cfg>
where
F: Fn(Req) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
type Response = Res;
type Error = Err;
type Config = Cfg;
type Service = FnService<F, Fut, Req, Res, Err>;
type InitError = ();
type Future = Ready<Result<Self::Service, Self::InitError>>;
fn new_service(&self, _: Cfg) -> Self::Future {
ok(FnService::new(self.f.clone()))
}
}
impl<F, Fut, Req, Res, Err, Cfg>
IntoServiceFactory<FnServiceFactory<F, Fut, Req, Res, Err, Cfg>, Req> for F
where
F: Fn(Req) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
{
fn into_factory(self) -> FnServiceFactory<F, Fut, Req, Res, Err, Cfg> {
FnServiceFactory::new(self)
}
}
/// Convert `Fn(&Config) -> Future<Service>` fn to NewService
pub struct FnServiceConfig<F, Fut, Cfg, Srv, Req, Err>
where
F: Fn(Cfg) -> Fut,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
f: F,
_t: PhantomData<fn(Cfg, Req) -> (Fut, Srv, Err)>,
}
impl<F, Fut, Cfg, Srv, Req, Err> FnServiceConfig<F, Fut, Cfg, Srv, Req, Err>
where
F: Fn(Cfg) -> Fut,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
fn new(f: F) -> Self {
FnServiceConfig { f, _t: PhantomData }
}
}
impl<F, Fut, Cfg, Srv, Req, Err> Clone for FnServiceConfig<F, Fut, Cfg, Srv, Req, Err>
where
F: Fn(Cfg) -> Fut + Clone,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
fn clone(&self) -> Self {
FnServiceConfig {
f: self.f.clone(),
_t: PhantomData,
}
}
}
impl<F, Fut, Cfg, Srv, Req, Err> ServiceFactory<Req> for FnServiceConfig<F, Fut, Cfg, Srv, Req, Err>
where
F: Fn(Cfg) -> Fut,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
type Response = Srv::Response;
type Error = Srv::Error;
type Config = Cfg;
type Service = Srv;
type InitError = Err;
type Future = Fut;
fn new_service(&self, cfg: Cfg) -> Self::Future {
(self.f)(cfg)
}
}
/// Converter for `Fn() -> Future<Service>` fn
pub struct FnServiceNoConfig<F, Cfg, Srv, Req, Fut, Err>
where
F: Fn() -> Fut,
Srv: Service<Req>,
Fut: Future<Output = Result<Srv, Err>>,
{
f: F,
_t: PhantomData<fn(Cfg, Req)>,
}
impl<F, Cfg, Srv, Req, Fut, Err> FnServiceNoConfig<F, Cfg, Srv, Req, Fut, Err>
where
F: Fn() -> Fut,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
fn new(f: F) -> Self {
Self { f, _t: PhantomData }
}
}
impl<F, Cfg, Srv, Req, Fut, Err> ServiceFactory<Req>
for FnServiceNoConfig<F, Cfg, Srv, Req, Fut, Err>
where
F: Fn() -> Fut,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
type Response = Srv::Response;
type Error = Srv::Error;
type Config = Cfg;
type Service = Srv;
type InitError = Err;
type Future = Fut;
fn new_service(&self, _: Cfg) -> Self::Future {
(self.f)()
}
}
impl<F, Cfg, Srv, Req, Fut, Err> Clone for FnServiceNoConfig<F, Cfg, Srv, Req, Fut, Err>
where
F: Fn() -> Fut + Clone,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
fn clone(&self) -> Self {
Self::new(self.f.clone())
}
}
impl<F, Cfg, Srv, Req, Fut, Err>
IntoServiceFactory<FnServiceNoConfig<F, Cfg, Srv, Req, Fut, Err>, Req> for F
where
F: Fn() -> Fut,
Fut: Future<Output = Result<Srv, Err>>,
Srv: Service<Req>,
{
fn into_factory(self) -> FnServiceNoConfig<F, Cfg, Srv, Req, Fut, Err> {
FnServiceNoConfig::new(self)
}
}
#[cfg(test)]
mod tests {
use core::task::Poll;
use futures_util::future::lazy;
use super::*;
#[actix_rt::test]
async fn test_fn_service() {
let new_srv = fn_service(|()| ok::<_, ()>("srv"));
let srv = new_srv.new_service(()).await.unwrap();
let res = srv.call(()).await;
assert_eq!(lazy(|cx| srv.poll_ready(cx)).await, Poll::Ready(Ok(())));
assert!(res.is_ok());
assert_eq!(res.unwrap(), "srv");
}
#[actix_rt::test]
async fn test_fn_service_service() {
let srv = fn_service(|()| ok::<_, ()>("srv"));
let res = srv.call(()).await;
assert_eq!(lazy(|cx| srv.poll_ready(cx)).await, Poll::Ready(Ok(())));
assert!(res.is_ok());
assert_eq!(res.unwrap(), "srv");
}
#[actix_rt::test]
async fn test_fn_service_with_config() {
let new_srv = fn_factory_with_config(|cfg: usize| {
ok::<_, ()>(fn_service(move |()| ok::<_, ()>(("srv", cfg))))
});
let srv = new_srv.new_service(1).await.unwrap();
let res = srv.call(()).await;
assert_eq!(lazy(|cx| srv.poll_ready(cx)).await, Poll::Ready(Ok(())));
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv", 1));
}
#[actix_rt::test]
async fn test_auto_impl_send() {
use alloc::rc::Rc;
use crate::{map_config, ServiceExt, ServiceFactoryExt};
let srv_1 = fn_service(|_: Rc<u8>| ok::<_, Rc<u8>>(Rc::new(0u8)));
let fac_1 = fn_factory_with_config(|_: Rc<u8>| {
ok::<_, Rc<u8>>(fn_service(|_: Rc<u8>| ok::<_, Rc<u8>>(Rc::new(0u8))))
});
let fac_2 =
fn_factory(|| ok::<_, Rc<u8>>(fn_service(|_: Rc<u8>| ok::<_, Rc<u8>>(Rc::new(0u8)))));
fn is_send<T: Send + Sync + Clone>(_: &T) {}
is_send(&fac_1);
is_send(&map_config(fac_1.clone(), |_: Rc<u8>| Rc::new(0u8)));
is_send(&fac_1.clone().map_err(|_| Rc::new(0u8)));
is_send(&fac_1.clone().map(|_| Rc::new(0u8)));
is_send(&fac_1.clone().map_init_err(|_| Rc::new(0u8)));
// `and_then` is always !Send
// is_send(&fac_1.clone().and_then(fac_1.clone()));
is_send(&fac_1.new_service(Rc::new(0u8)).await.unwrap());
is_send(&fac_2);
is_send(&fac_2.new_service(Rc::new(0u8)).await.unwrap());
is_send(&srv_1);
is_send(&ServiceExt::map(srv_1.clone(), |_| Rc::new(0u8)));
is_send(&ServiceExt::map_err(srv_1.clone(), |_| Rc::new(0u8)));
// `and_then` is always !Send
// is_send(&ServiceExt::and_then(srv_1.clone(), srv_1.clone()));
}
}
|
//! See [`Service`] docs for information on this crate's foundational trait.
#![no_std]
#![allow(clippy::type_complexity)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
extern crate alloc;
use alloc::{boxed::Box, rc::Rc, sync::Arc};
use core::{
cell::RefCell,
future::Future,
task::{self, Context, Poll},
};
mod and_then;
mod apply;
mod apply_cfg;
pub mod boxed;
mod ext;
mod fn_service;
mod macros;
mod map;
mod map_config;
mod map_err;
mod map_init_err;
mod pipeline;
mod ready;
mod then;
mod transform;
mod transform_err;
#[allow(unused_imports)]
use self::ready::{err, ok, ready, Ready};
pub use self::{
apply::{apply_fn, apply_fn_factory},
apply_cfg::{apply_cfg, apply_cfg_factory},
ext::{ServiceExt, ServiceFactoryExt, TransformExt},
fn_service::{fn_factory, fn_factory_with_config, fn_service},
map_config::{map_config, unit_config},
transform::{apply, ApplyTransform, Transform},
};
/// An asynchronous operation from `Request` to a `Response`.
///
/// The `Service` trait models a request/response interaction, receiving requests and returning
/// replies. You can think about a service as a function with one argument that returns some result
/// asynchronously. Conceptually, the operation looks like this:
///
/// ```ignore
/// async fn(Request) -> Result<Response, Err>
/// ```
///
/// The `Service` trait just generalizes this form. Requests are defined as a generic type parameter
/// and responses and other details are defined as associated types on the trait impl. Notice that
/// this design means that services can receive many request types and converge them to a single
/// response type.
///
/// Services can also have mutable state that influence computation by using a `Cell`, `RefCell`
/// or `Mutex`. Services intentionally do not take `&mut self` to reduce overhead in the
/// common cases.
///
/// `Service` provides a symmetric and uniform API; the same abstractions can be used to represent
/// both clients and servers. Services describe only _transformation_ operations which encourage
/// simple API surfaces. This leads to simpler design of each service, improves test-ability and
/// makes composition easier.
///
/// ```ignore
/// struct MyService;
///
/// impl Service<u8> for MyService {
/// type Response = u64;
/// type Error = MyError;
/// type Future = Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>>>>;
///
/// fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> { ... }
///
/// fn call(&self, req: u8) -> Self::Future { ... }
/// }
/// ```
///
/// Sometimes it is not necessary to implement the Service trait. For example, the above service
/// could be rewritten as a simple function and passed to [`fn_service`](fn_service()).
///
/// ```ignore
/// async fn my_service(req: u8) -> Result<u64, MyError>;
///
/// let svc = fn_service(my_service)
/// svc.call(123)
/// ```
pub trait Service<Req> {
/// Responses given by the service.
type Response;
/// Errors produced by the service when polling readiness or executing call.
type Error;
/// The future response value.
type Future: Future<Output = Result<Self::Response, Self::Error>>;
/// Returns `Ready` when the service is able to process requests.
///
/// If the service is at capacity, then `Pending` is returned and the task is notified when the
/// service becomes ready again. This function is expected to be called while on a task.
///
/// This is a best effort implementation. False positives are permitted. It is permitted for
/// the service to return `Ready` from a `poll_ready` call and the next invocation of `call`
/// results in an error.
///
/// # Notes
/// 1. `poll_ready` might be called on a different task to `call`.
/// 1. In cases of chained services, `.poll_ready()` is called for all services at once.
fn poll_ready(&self, ctx: &mut task::Context<'_>) -> Poll<Result<(), Self::Error>>;
/// Process the request and return the response asynchronously.
///
/// This function is expected to be callable off-task. As such, implementations of `call` should
/// take care to not call `poll_ready`. If the service is at capacity and the request is unable
/// to be handled, the returned `Future` should resolve to an error.
///
/// Invoking `call` without first invoking `poll_ready` is permitted. Implementations must be
/// resilient to this fact.
fn call(&self, req: Req) -> Self::Future;
}
/// Factory for creating `Service`s.
///
/// This is useful for cases where new `Service`s must be produced. One case is a TCP
/// server listener: a listener accepts new connections, constructs a new `Service` for each using
/// the `ServiceFactory` trait, and uses the new `Service` to process inbound requests on that new
/// connection.
///
/// `Config` is a service factory configuration type.
///
/// Simple factories may be able to use [`fn_factory`] or [`fn_factory_with_config`] to
/// reduce boilerplate.
pub trait ServiceFactory<Req> {
/// Responses given by the created services.
type Response;
/// Errors produced by the created services.
type Error;
/// Service factory configuration.
type Config;
/// The kind of `Service` created by this factory.
type Service: Service<Req, Response = Self::Response, Error = Self::Error>;
/// Errors potentially raised while building a service.
type InitError;
/// The future of the `Service` instance.g
type Future: Future<Output = Result<Self::Service, Self::InitError>>;
/// Create and return a new service asynchronously.
fn new_service(&self, cfg: Self::Config) -> Self::Future;
}
// TODO: remove implement on mut reference.
impl<'a, S, Req> Service<Req> for &'a mut S
where
S: Service<Req> + 'a,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
impl<'a, S, Req> Service<Req> for &'a S
where
S: Service<Req> + 'a,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
impl<S, Req> Service<Req> for Box<S>
where
S: Service<Req> + ?Sized,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), S::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
impl<S, Req> Service<Req> for Rc<S>
where
S: Service<Req> + ?Sized,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
/// This impl is deprecated since v2 because the `Service` trait now receives shared reference.
impl<S, Req> Service<Req> for RefCell<S>
where
S: Service<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.borrow().poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
self.borrow().call(request)
}
}
impl<S, Req> ServiceFactory<Req> for Rc<S>
where
S: ServiceFactory<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Config = S::Config;
type Service = S::Service;
type InitError = S::InitError;
type Future = S::Future;
fn new_service(&self, cfg: S::Config) -> S::Future {
self.as_ref().new_service(cfg)
}
}
impl<S, Req> ServiceFactory<Req> for Arc<S>
where
S: ServiceFactory<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Config = S::Config;
type Service = S::Service;
type InitError = S::InitError;
type Future = S::Future;
fn new_service(&self, cfg: S::Config) -> S::Future {
self.as_ref().new_service(cfg)
}
}
/// Trait for types that can be converted to a `Service`
pub trait IntoService<S, Req>
where
S: Service<Req>,
{
/// Convert to a `Service`
fn into_service(self) -> S;
}
/// Trait for types that can be converted to a `ServiceFactory`
pub trait IntoServiceFactory<SF, Req>
where
SF: ServiceFactory<Req>,
{
/// Convert `Self` to a `ServiceFactory`
fn into_factory(self) -> SF;
}
impl<S, Req> IntoService<S, Req> for S
where
S: Service<Req>,
{
fn into_service(self) -> S {
self
}
}
impl<SF, Req> IntoServiceFactory<SF, Req> for SF
where
SF: ServiceFactory<Req>,
{
fn into_factory(self) -> SF {
self
}
}
/// Convert object of type `U` to a service `S`
pub fn into_service<I, S, Req>(tp: I) -> S
where
I: IntoService<S, Req>,
S: Service<Req>,
{
tp.into_service()
}
|
/// An implementation of [`poll_ready`]() that always signals readiness.
///
/// This should only be used for basic leaf services that have no concept of un-readiness.
/// For wrapper or other service types, use [`forward_ready!`] for simple cases or write a bespoke
/// `poll_ready` implementation.
///
/// [`poll_ready`]: crate::Service::poll_ready
///
/// # Examples
/// ```no_run
/// use actix_service::Service;
/// use futures_util::future::{ready, Ready};
///
/// struct IdentityService;
///
/// impl Service<u32> for IdentityService {
/// type Response = u32;
/// type Error = ();
/// type Future = Ready<Result<Self::Response, Self::Error>>;
///
/// actix_service::always_ready!();
///
/// fn call(&self, req: u32) -> Self::Future {
/// ready(Ok(req))
/// }
/// }
/// ```
///
/// [`forward_ready!`]: crate::forward_ready
#[macro_export]
macro_rules! always_ready {
() => {
#[inline]
fn poll_ready(
&self,
_: &mut ::core::task::Context<'_>,
) -> ::core::task::Poll<Result<(), Self::Error>> {
::core::task::Poll::Ready(Ok(()))
}
};
}
/// An implementation of [`poll_ready`] that forwards readiness checks to a
/// named struct field.
///
/// Tuple structs are not supported.
///
/// [`poll_ready`]: crate::Service::poll_ready
///
/// # Examples
/// ```no_run
/// use actix_service::Service;
/// use futures_util::future::{ready, Ready};
///
/// struct WrapperService<S> {
/// inner: S,
/// }
///
/// impl<S> Service<()> for WrapperService<S>
/// where
/// S: Service<()>,
/// {
/// type Response = S::Response;
/// type Error = S::Error;
/// type Future = S::Future;
///
/// actix_service::forward_ready!(inner);
///
/// fn call(&self, req: ()) -> Self::Future {
/// self.inner.call(req)
/// }
/// }
/// ```
#[macro_export]
macro_rules! forward_ready {
($field:ident) => {
#[inline]
fn poll_ready(
&self,
cx: &mut ::core::task::Context<'_>,
) -> ::core::task::Poll<Result<(), Self::Error>> {
self.$field
.poll_ready(cx)
.map_err(::core::convert::Into::into)
}
};
}
#[cfg(test)]
mod tests {
use core::{
cell::Cell,
convert::Infallible,
task::{self, Context, Poll},
};
use futures_util::{
future::{ready, Ready},
task::noop_waker,
};
use crate::Service;
struct IdentityService;
impl Service<u32> for IdentityService {
type Response = u32;
type Error = Infallible;
type Future = Ready<Result<Self::Response, Self::Error>>;
always_ready!();
fn call(&self, req: u32) -> Self::Future {
ready(Ok(req))
}
}
struct CountdownService(Cell<u32>);
impl Service<()> for CountdownService {
type Response = ();
type Error = Infallible;
type Future = Ready<Result<Self::Response, Self::Error>>;
fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
let count = self.0.get();
if count == 0 {
Poll::Ready(Ok(()))
} else {
self.0.set(count - 1);
cx.waker().wake_by_ref();
Poll::Pending
}
}
fn call(&self, _: ()) -> Self::Future {
ready(Ok(()))
}
}
struct WrapperService<S> {
inner: S,
}
impl<S> Service<()> for WrapperService<S>
where
S: Service<()>,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
forward_ready!(inner);
fn call(&self, _: ()) -> Self::Future {
self.inner.call(())
}
}
#[test]
fn test_always_ready_macro() {
let waker = noop_waker();
let mut cx = task::Context::from_waker(&waker);
let svc = IdentityService;
assert!(svc.poll_ready(&mut cx).is_ready());
assert!(svc.poll_ready(&mut cx).is_ready());
assert!(svc.poll_ready(&mut cx).is_ready());
}
#[test]
fn test_forward_ready_macro() {
let waker = noop_waker();
let mut cx = task::Context::from_waker(&waker);
let svc = WrapperService {
inner: CountdownService(Cell::new(3)),
};
assert!(svc.poll_ready(&mut cx).is_pending());
assert!(svc.poll_ready(&mut cx).is_pending());
assert!(svc.poll_ready(&mut cx).is_pending());
assert!(svc.poll_ready(&mut cx).is_ready());
}
}
|
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use pin_project_lite::pin_project;
use super::{Service, ServiceFactory};
/// Service for the `map` combinator, changing the type of a service's response.
///
/// This is created by the `ServiceExt::map` method.
pub struct Map<A, F, Req, Res> {
service: A,
f: F,
_t: PhantomData<fn(Req) -> Res>,
}
impl<A, F, Req, Res> Map<A, F, Req, Res> {
/// Create new `Map` combinator
pub(crate) fn new(service: A, f: F) -> Self
where
A: Service<Req>,
F: FnMut(A::Response) -> Res,
{
Self {
service,
f,
_t: PhantomData,
}
}
}
impl<A, F, Req, Res> Clone for Map<A, F, Req, Res>
where
A: Clone,
F: Clone,
{
fn clone(&self) -> Self {
Map {
service: self.service.clone(),
f: self.f.clone(),
_t: PhantomData,
}
}
}
impl<A, F, Req, Res> Service<Req> for Map<A, F, Req, Res>
where
A: Service<Req>,
F: FnMut(A::Response) -> Res + Clone,
{
type Response = Res;
type Error = A::Error;
type Future = MapFuture<A, F, Req, Res>;
crate::forward_ready!(service);
fn call(&self, req: Req) -> Self::Future {
MapFuture::new(self.service.call(req), self.f.clone())
}
}
pin_project! {
pub struct MapFuture<A, F, Req, Res>
where
A: Service<Req>,
F: FnMut(A::Response) -> Res,
{
f: F,
#[pin]
fut: A::Future,
}
}
impl<A, F, Req, Res> MapFuture<A, F, Req, Res>
where
A: Service<Req>,
F: FnMut(A::Response) -> Res,
{
fn new(fut: A::Future, f: F) -> Self {
MapFuture { f, fut }
}
}
impl<A, F, Req, Res> Future for MapFuture<A, F, Req, Res>
where
A: Service<Req>,
F: FnMut(A::Response) -> Res,
{
type Output = Result<Res, A::Error>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
match this.fut.poll(cx) {
Poll::Ready(Ok(resp)) => Poll::Ready(Ok((this.f)(resp))),
Poll::Ready(Err(err)) => Poll::Ready(Err(err)),
Poll::Pending => Poll::Pending,
}
}
}
/// `MapNewService` new service combinator
pub struct MapServiceFactory<A, F, Req, Res> {
a: A,
f: F,
r: PhantomData<fn(Req) -> Res>,
}
impl<A, F, Req, Res> MapServiceFactory<A, F, Req, Res> {
/// Create new `Map` new service instance
pub(crate) fn new(a: A, f: F) -> Self
where
A: ServiceFactory<Req>,
F: FnMut(A::Response) -> Res,
{
Self {
a,
f,
r: PhantomData,
}
}
}
impl<A, F, Req, Res> Clone for MapServiceFactory<A, F, Req, Res>
where
A: Clone,
F: Clone,
{
fn clone(&self) -> Self {
Self {
a: self.a.clone(),
f: self.f.clone(),
r: PhantomData,
}
}
}
impl<A, F, Req, Res> ServiceFactory<Req> for MapServiceFactory<A, F, Req, Res>
where
A: ServiceFactory<Req>,
F: FnMut(A::Response) -> Res + Clone,
{
type Response = Res;
type Error = A::Error;
type Config = A::Config;
type Service = Map<A::Service, F, Req, Res>;
type InitError = A::InitError;
type Future = MapServiceFuture<A, F, Req, Res>;
fn new_service(&self, cfg: A::Config) -> Self::Future {
MapServiceFuture::new(self.a.new_service(cfg), self.f.clone())
}
}
pin_project! {
pub struct MapServiceFuture<A, F, Req, Res>
where
A: ServiceFactory<Req>,
F: FnMut(A::Response) -> Res,
{
#[pin]
fut: A::Future,
f: Option<F>,
}
}
impl<A, F, Req, Res> MapServiceFuture<A, F, Req, Res>
where
A: ServiceFactory<Req>,
F: FnMut(A::Response) -> Res,
{
fn new(fut: A::Future, f: F) -> Self {
MapServiceFuture { f: Some(f), fut }
}
}
impl<A, F, Req, Res> Future for MapServiceFuture<A, F, Req, Res>
where
A: ServiceFactory<Req>,
F: FnMut(A::Response) -> Res,
{
type Output = Result<Map<A::Service, F, Req, Res>, A::InitError>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if let Poll::Ready(svc) = this.fut.poll(cx)? {
Poll::Ready(Ok(Map::new(svc, this.f.take().unwrap())))
} else {
Poll::Pending
}
}
}
#[cfg(test)]
mod tests {
use futures_util::future::lazy;
use super::*;
use crate::{ok, IntoServiceFactory, Ready, ServiceExt, ServiceFactoryExt};
struct Srv;
impl Service<()> for Srv {
type Response = ();
type Error = ();
type Future = Ready<Result<(), ()>>;
crate::always_ready!();
fn call(&self, _: ()) -> Self::Future {
ok(())
}
}
#[actix_rt::test]
async fn test_poll_ready() {
let srv = Srv.map(|_| "ok");
let res = lazy(|cx| srv.poll_ready(cx)).await;
assert_eq!(res, Poll::Ready(Ok(())));
}
#[actix_rt::test]
async fn test_call() {
let srv = Srv.map(|_| "ok");
let res = srv.call(()).await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), "ok");
}
#[actix_rt::test]
async fn test_new_service() {
let new_srv = (|| ok::<_, ()>(Srv)).into_factory().map(|_| "ok");
let srv = new_srv.new_service(&()).await.unwrap();
let res = srv.call(()).await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("ok"));
}
}
|
use core::marker::PhantomData;
use super::{IntoServiceFactory, ServiceFactory};
/// Adapt external config argument to a config for provided service factory
///
/// Note that this function consumes the receiving service factory and returns
/// a wrapped version of it.
pub fn map_config<I, SF, Req, F, Cfg>(factory: I, f: F) -> MapConfig<SF, Req, F, Cfg>
where
I: IntoServiceFactory<SF, Req>,
SF: ServiceFactory<Req>,
F: Fn(Cfg) -> SF::Config,
{
MapConfig::new(factory.into_factory(), f)
}
/// Replace config with unit.
pub fn unit_config<I, SF, Cfg, Req>(factory: I) -> UnitConfig<SF, Cfg, Req>
where
I: IntoServiceFactory<SF, Req>,
SF: ServiceFactory<Req, Config = ()>,
{
UnitConfig::new(factory.into_factory())
}
/// `map_config()` adapter service factory
pub struct MapConfig<SF, Req, F, Cfg> {
factory: SF,
cfg_mapper: F,
e: PhantomData<fn(Cfg, Req)>,
}
impl<SF, Req, F, Cfg> MapConfig<SF, Req, F, Cfg> {
/// Create new `MapConfig` combinator
pub(crate) fn new(factory: SF, cfg_mapper: F) -> Self
where
SF: ServiceFactory<Req>,
F: Fn(Cfg) -> SF::Config,
{
Self {
factory,
cfg_mapper,
e: PhantomData,
}
}
}
impl<SF, Req, F, Cfg> Clone for MapConfig<SF, Req, F, Cfg>
where
SF: Clone,
F: Clone,
{
fn clone(&self) -> Self {
Self {
factory: self.factory.clone(),
cfg_mapper: self.cfg_mapper.clone(),
e: PhantomData,
}
}
}
impl<SF, Req, F, Cfg> ServiceFactory<Req> for MapConfig<SF, Req, F, Cfg>
where
SF: ServiceFactory<Req>,
F: Fn(Cfg) -> SF::Config,
{
type Response = SF::Response;
type Error = SF::Error;
type Config = Cfg;
type Service = SF::Service;
type InitError = SF::InitError;
type Future = SF::Future;
fn new_service(&self, cfg: Self::Config) -> Self::Future {
let mapped_cfg = (self.cfg_mapper)(cfg);
self.factory.new_service(mapped_cfg)
}
}
/// `unit_config()` config combinator
pub struct UnitConfig<SF, Cfg, Req> {
factory: SF,
_phantom: PhantomData<fn(Cfg, Req)>,
}
impl<SF, Cfg, Req> UnitConfig<SF, Cfg, Req>
where
SF: ServiceFactory<Req, Config = ()>,
{
/// Create new `UnitConfig` combinator
pub(crate) fn new(factory: SF) -> Self {
Self {
factory,
_phantom: PhantomData,
}
}
}
impl<SF, Cfg, Req> Clone for UnitConfig<SF, Cfg, Req>
where
SF: Clone,
{
fn clone(&self) -> Self {
Self {
factory: self.factory.clone(),
_phantom: PhantomData,
}
}
}
impl<SF, Cfg, Req> ServiceFactory<Req> for UnitConfig<SF, Cfg, Req>
where
SF: ServiceFactory<Req, Config = ()>,
{
type Response = SF::Response;
type Error = SF::Error;
type Config = Cfg;
type Service = SF::Service;
type InitError = SF::InitError;
type Future = SF::Future;
fn new_service(&self, _: Cfg) -> Self::Future {
self.factory.new_service(())
}
}
|
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use pin_project_lite::pin_project;
use super::{Service, ServiceFactory};
/// Service for the `map_err` combinator, changing the type of a service's error.
///
/// This is created by the `ServiceExt::map_err` method.
pub struct MapErr<S, Req, F, E> {
service: S,
mapper: F,
_t: PhantomData<fn(Req) -> E>,
}
impl<S, Req, F, E> MapErr<S, Req, F, E> {
/// Create new `MapErr` combinator
pub(crate) fn new(service: S, mapper: F) -> Self
where
S: Service<Req>,
F: Fn(S::Error) -> E,
{
Self {
service,
mapper,
_t: PhantomData,
}
}
}
impl<S, Req, F, E> Clone for MapErr<S, Req, F, E>
where
S: Clone,
F: Clone,
{
fn clone(&self) -> Self {
MapErr {
service: self.service.clone(),
mapper: self.mapper.clone(),
_t: PhantomData,
}
}
}
impl<A, Req, F, E> Service<Req> for MapErr<A, Req, F, E>
where
A: Service<Req>,
F: Fn(A::Error) -> E + Clone,
{
type Response = A::Response;
type Error = E;
type Future = MapErrFuture<A, Req, F, E>;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.service.poll_ready(ctx).map_err(&self.mapper)
}
fn call(&self, req: Req) -> Self::Future {
MapErrFuture::new(self.service.call(req), self.mapper.clone())
}
}
pin_project! {
pub struct MapErrFuture<A, Req, F, E>
where
A: Service<Req>,
F: Fn(A::Error) -> E,
{
f: F,
#[pin]
fut: A::Future,
}
}
impl<A, Req, F, E> MapErrFuture<A, Req, F, E>
where
A: Service<Req>,
F: Fn(A::Error) -> E,
{
fn new(fut: A::Future, f: F) -> Self {
MapErrFuture { f, fut }
}
}
impl<A, Req, F, E> Future for MapErrFuture<A, Req, F, E>
where
A: Service<Req>,
F: Fn(A::Error) -> E,
{
type Output = Result<A::Response, E>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
this.fut.poll(cx).map_err(this.f)
}
}
/// Factory for the `map_err` combinator, changing the type of a new
/// service's error.
///
/// This is created by the `NewServiceExt::map_err` method.
pub struct MapErrServiceFactory<SF, Req, F, E>
where
SF: ServiceFactory<Req>,
F: Fn(SF::Error) -> E + Clone,
{
a: SF,
f: F,
e: PhantomData<fn(Req) -> E>,
}
impl<SF, Req, F, E> MapErrServiceFactory<SF, Req, F, E>
where
SF: ServiceFactory<Req>,
F: Fn(SF::Error) -> E + Clone,
{
/// Create new `MapErr` new service instance
pub(crate) fn new(a: SF, f: F) -> Self {
Self {
a,
f,
e: PhantomData,
}
}
}
impl<SF, Req, F, E> Clone for MapErrServiceFactory<SF, Req, F, E>
where
SF: ServiceFactory<Req> + Clone,
F: Fn(SF::Error) -> E + Clone,
{
fn clone(&self) -> Self {
Self {
a: self.a.clone(),
f: self.f.clone(),
e: PhantomData,
}
}
}
impl<SF, Req, F, E> ServiceFactory<Req> for MapErrServiceFactory<SF, Req, F, E>
where
SF: ServiceFactory<Req>,
F: Fn(SF::Error) -> E + Clone,
{
type Response = SF::Response;
type Error = E;
type Config = SF::Config;
type Service = MapErr<SF::Service, Req, F, E>;
type InitError = SF::InitError;
type Future = MapErrServiceFuture<SF, Req, F, E>;
fn new_service(&self, cfg: SF::Config) -> Self::Future {
MapErrServiceFuture::new(self.a.new_service(cfg), self.f.clone())
}
}
pin_project! {
pub struct MapErrServiceFuture<SF, Req, F, E>
where
SF: ServiceFactory<Req>,
F: Fn(SF::Error) -> E,
{
#[pin]
fut: SF::Future,
mapper: F,
}
}
impl<SF, Req, F, E> MapErrServiceFuture<SF, Req, F, E>
where
SF: ServiceFactory<Req>,
F: Fn(SF::Error) -> E,
{
fn new(fut: SF::Future, mapper: F) -> Self {
MapErrServiceFuture { fut, mapper }
}
}
impl<SF, Req, F, E> Future for MapErrServiceFuture<SF, Req, F, E>
where
SF: ServiceFactory<Req>,
F: Fn(SF::Error) -> E + Clone,
{
type Output = Result<MapErr<SF::Service, Req, F, E>, SF::InitError>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if let Poll::Ready(svc) = this.fut.poll(cx)? {
Poll::Ready(Ok(MapErr::new(svc, this.mapper.clone())))
} else {
Poll::Pending
}
}
}
#[cfg(test)]
mod tests {
use futures_util::future::lazy;
use super::*;
use crate::{err, ok, IntoServiceFactory, Ready, ServiceExt, ServiceFactoryExt};
struct Srv;
impl Service<()> for Srv {
type Response = ();
type Error = ();
type Future = Ready<Result<(), ()>>;
fn poll_ready(&self, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Err(()))
}
fn call(&self, _: ()) -> Self::Future {
err(())
}
}
#[actix_rt::test]
async fn test_poll_ready() {
let srv = Srv.map_err(|_| "error");
let res = lazy(|cx| srv.poll_ready(cx)).await;
assert_eq!(res, Poll::Ready(Err("error")));
}
#[actix_rt::test]
async fn test_call() {
let srv = Srv.map_err(|_| "error");
let res = srv.call(()).await;
assert!(res.is_err());
assert_eq!(res.err().unwrap(), "error");
}
#[actix_rt::test]
async fn test_new_service() {
let new_srv = (|| ok::<_, ()>(Srv)).into_factory().map_err(|_| "error");
let srv = new_srv.new_service(&()).await.unwrap();
let res = srv.call(()).await;
assert!(res.is_err());
assert_eq!(res.err().unwrap(), "error");
}
}
|
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use pin_project_lite::pin_project;
use super::ServiceFactory;
/// `MapInitErr` service combinator
pub struct MapInitErr<A, F, Req, Err> {
a: A,
f: F,
e: PhantomData<fn(Req) -> Err>,
}
impl<A, F, Req, Err> MapInitErr<A, F, Req, Err>
where
A: ServiceFactory<Req>,
F: Fn(A::InitError) -> Err,
{
/// Create new `MapInitErr` combinator
pub(crate) fn new(a: A, f: F) -> Self {
Self {
a,
f,
e: PhantomData,
}
}
}
impl<A, F, Req, E> Clone for MapInitErr<A, F, Req, E>
where
A: Clone,
F: Clone,
{
fn clone(&self) -> Self {
Self {
a: self.a.clone(),
f: self.f.clone(),
e: PhantomData,
}
}
}
impl<A, F, Req, E> ServiceFactory<Req> for MapInitErr<A, F, Req, E>
where
A: ServiceFactory<Req>,
F: Fn(A::InitError) -> E + Clone,
{
type Response = A::Response;
type Error = A::Error;
type Config = A::Config;
type Service = A::Service;
type InitError = E;
type Future = MapInitErrFuture<A, F, Req, E>;
fn new_service(&self, cfg: A::Config) -> Self::Future {
MapInitErrFuture::new(self.a.new_service(cfg), self.f.clone())
}
}
pin_project! {
pub struct MapInitErrFuture<A, F, Req, E>
where
A: ServiceFactory<Req>,
F: Fn(A::InitError) -> E,
{
f: F,
#[pin]
fut: A::Future,
}
}
impl<A, F, Req, E> MapInitErrFuture<A, F, Req, E>
where
A: ServiceFactory<Req>,
F: Fn(A::InitError) -> E,
{
fn new(fut: A::Future, f: F) -> Self {
MapInitErrFuture { f, fut }
}
}
impl<A, F, Req, E> Future for MapInitErrFuture<A, F, Req, E>
where
A: ServiceFactory<Req>,
F: Fn(A::InitError) -> E,
{
type Output = Result<A::Service, E>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
this.fut.poll(cx).map_err(this.f)
}
}
|
// TODO: see if pipeline is necessary
#![allow(dead_code)]
use core::{
marker::PhantomData,
task::{Context, Poll},
};
use crate::{
and_then::{AndThenService, AndThenServiceFactory},
map::{Map, MapServiceFactory},
map_err::{MapErr, MapErrServiceFactory},
map_init_err::MapInitErr,
then::{ThenService, ThenServiceFactory},
IntoService, IntoServiceFactory, Service, ServiceFactory,
};
/// Construct new pipeline with one service in pipeline chain.
pub(crate) fn pipeline<I, S, Req>(service: I) -> Pipeline<S, Req>
where
I: IntoService<S, Req>,
S: Service<Req>,
{
Pipeline {
service: service.into_service(),
_phantom: PhantomData,
}
}
/// Construct new pipeline factory with one service factory.
pub(crate) fn pipeline_factory<I, SF, Req>(factory: I) -> PipelineFactory<SF, Req>
where
I: IntoServiceFactory<SF, Req>,
SF: ServiceFactory<Req>,
{
PipelineFactory {
factory: factory.into_factory(),
_phantom: PhantomData,
}
}
/// Pipeline service - pipeline allows to compose multiple service into one service.
pub(crate) struct Pipeline<S, Req> {
service: S,
_phantom: PhantomData<fn(Req)>,
}
impl<S, Req> Pipeline<S, Req>
where
S: Service<Req>,
{
/// Call another service after call to this one has resolved successfully.
///
/// This function can be used to chain two services together and ensure that
/// the second service isn't called until call to the first service have
/// finished. Result of the call to the first service is used as an
/// input parameter for the second service's call.
///
/// Note that this function consumes the receiving service and returns a
/// wrapped version of it.
pub fn and_then<I, S1>(
self,
service: I,
) -> Pipeline<impl Service<Req, Response = S1::Response, Error = S::Error> + Clone, Req>
where
Self: Sized,
I: IntoService<S1, S::Response>,
S1: Service<S::Response, Error = S::Error>,
{
Pipeline {
service: AndThenService::new(self.service, service.into_service()),
_phantom: PhantomData,
}
}
/// Chain on a computation for when a call to the service finished,
/// passing the result of the call to the next service `U`.
///
/// Note that this function consumes the receiving pipeline and returns a
/// wrapped version of it.
pub fn then<F, S1>(
self,
service: F,
) -> Pipeline<impl Service<Req, Response = S1::Response, Error = S::Error> + Clone, Req>
where
Self: Sized,
F: IntoService<S1, Result<S::Response, S::Error>>,
S1: Service<Result<S::Response, S::Error>, Error = S::Error>,
{
Pipeline {
service: ThenService::new(self.service, service.into_service()),
_phantom: PhantomData,
}
}
/// Map this service's output to a different type, returning a new service
/// of the resulting type.
///
/// This function is similar to the `Option::map` or `Iterator::map` where
/// it will change the type of the underlying service.
///
/// Note that this function consumes the receiving service and returns a
/// wrapped version of it, similar to the existing `map` methods in the
/// standard library.
pub fn map<F, R>(self, f: F) -> Pipeline<Map<S, F, Req, R>, Req>
where
Self: Sized,
F: FnMut(S::Response) -> R,
{
Pipeline {
service: Map::new(self.service, f),
_phantom: PhantomData,
}
}
/// Map this service's error to a different error, returning a new service.
///
/// This function is similar to the `Result::map_err` where it will change
/// the error type of the underlying service. This is useful for example to
/// ensure that services have the same error type.
///
/// Note that this function consumes the receiving service and returns a
/// wrapped version of it.
pub fn map_err<F, E>(self, f: F) -> Pipeline<MapErr<S, Req, F, E>, Req>
where
Self: Sized,
F: Fn(S::Error) -> E,
{
Pipeline {
service: MapErr::new(self.service, f),
_phantom: PhantomData,
}
}
}
impl<T, Req> Clone for Pipeline<T, Req>
where
T: Clone,
{
fn clone(&self) -> Self {
Pipeline {
service: self.service.clone(),
_phantom: PhantomData,
}
}
}
impl<S: Service<Req>, Req> Service<Req> for Pipeline<S, Req> {
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
#[inline]
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), S::Error>> {
self.service.poll_ready(ctx)
}
#[inline]
fn call(&self, req: Req) -> Self::Future {
self.service.call(req)
}
}
/// Pipeline factory
pub(crate) struct PipelineFactory<SF, Req> {
factory: SF,
_phantom: PhantomData<fn(Req)>,
}
impl<SF, Req> PipelineFactory<SF, Req>
where
SF: ServiceFactory<Req>,
{
/// Call another service after call to this one has resolved successfully.
pub fn and_then<I, SF1>(
self,
factory: I,
) -> PipelineFactory<
impl ServiceFactory<
Req,
Response = SF1::Response,
Error = SF::Error,
Config = SF::Config,
InitError = SF::InitError,
Service = impl Service<Req, Response = SF1::Response, Error = SF::Error> + Clone,
> + Clone,
Req,
>
where
Self: Sized,
SF::Config: Clone,
I: IntoServiceFactory<SF1, SF::Response>,
SF1: ServiceFactory<
SF::Response,
Config = SF::Config,
Error = SF::Error,
InitError = SF::InitError,
>,
{
PipelineFactory {
factory: AndThenServiceFactory::new(self.factory, factory.into_factory()),
_phantom: PhantomData,
}
}
/// Create `NewService` to chain on a computation for when a call to the
/// service finished, passing the result of the call to the next
/// service `U`.
///
/// Note that this function consumes the receiving pipeline and returns a
/// wrapped version of it.
pub fn then<I, SF1>(
self,
factory: I,
) -> PipelineFactory<
impl ServiceFactory<
Req,
Response = SF1::Response,
Error = SF::Error,
Config = SF::Config,
InitError = SF::InitError,
Service = impl Service<Req, Response = SF1::Response, Error = SF::Error> + Clone,
> + Clone,
Req,
>
where
Self: Sized,
SF::Config: Clone,
I: IntoServiceFactory<SF1, Result<SF::Response, SF::Error>>,
SF1: ServiceFactory<
Result<SF::Response, SF::Error>,
Config = SF::Config,
Error = SF::Error,
InitError = SF::InitError,
>,
{
PipelineFactory {
factory: ThenServiceFactory::new(self.factory, factory.into_factory()),
_phantom: PhantomData,
}
}
/// Map this service's output to a different type, returning a new service
/// of the resulting type.
pub fn map<F, R>(self, f: F) -> PipelineFactory<MapServiceFactory<SF, F, Req, R>, Req>
where
Self: Sized,
F: FnMut(SF::Response) -> R + Clone,
{
PipelineFactory {
factory: MapServiceFactory::new(self.factory, f),
_phantom: PhantomData,
}
}
/// Map this service's error to a different error, returning a new service.
pub fn map_err<F, E>(self, f: F) -> PipelineFactory<MapErrServiceFactory<SF, Req, F, E>, Req>
where
Self: Sized,
F: Fn(SF::Error) -> E + Clone,
{
PipelineFactory {
factory: MapErrServiceFactory::new(self.factory, f),
_phantom: PhantomData,
}
}
/// Map this factory's init error to a different error, returning a new service.
pub fn map_init_err<F, E>(self, f: F) -> PipelineFactory<MapInitErr<SF, F, Req, E>, Req>
where
Self: Sized,
F: Fn(SF::InitError) -> E + Clone,
{
PipelineFactory {
factory: MapInitErr::new(self.factory, f),
_phantom: PhantomData,
}
}
}
impl<T, Req> Clone for PipelineFactory<T, Req>
where
T: Clone,
{
fn clone(&self) -> Self {
PipelineFactory {
factory: self.factory.clone(),
_phantom: PhantomData,
}
}
}
impl<SF, Req> ServiceFactory<Req> for PipelineFactory<SF, Req>
where
SF: ServiceFactory<Req>,
{
type Config = SF::Config;
type Response = SF::Response;
type Error = SF::Error;
type Service = SF::Service;
type InitError = SF::InitError;
type Future = SF::Future;
#[inline]
fn new_service(&self, cfg: SF::Config) -> Self::Future {
self.factory.new_service(cfg)
}
}
|
//! When MSRV is 1.48, replace with `core::future::Ready` and `core::future::ready()`.
use core::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
/// Future for the [`ready`](ready()) function.
#[derive(Debug, Clone)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Ready<T> {
val: Option<T>,
}
impl<T> Ready<T> {
/// Unwraps the value from this immediately ready future.
#[inline]
pub fn into_inner(mut self) -> T {
self.val.take().unwrap()
}
}
impl<T> Unpin for Ready<T> {}
impl<T> Future for Ready<T> {
type Output = T;
#[inline]
fn poll(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<T> {
let val = self.val.take().expect("Ready can not be polled twice.");
Poll::Ready(val)
}
}
/// Creates a future that is immediately ready with a value.
#[allow(dead_code)]
pub(crate) fn ready<T>(val: T) -> Ready<T> {
Ready { val: Some(val) }
}
/// Create a future that is immediately ready with a success value.
#[allow(dead_code)]
pub(crate) fn ok<T, E>(val: T) -> Ready<Result<T, E>> {
Ready { val: Some(Ok(val)) }
}
/// Create a future that is immediately ready with an error value.
#[allow(dead_code)]
pub(crate) fn err<T, E>(err: E) -> Ready<Result<T, E>> {
Ready {
val: Some(Err(err)),
}
}
|
use alloc::rc::Rc;
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use futures_core::ready;
use pin_project_lite::pin_project;
use super::{Service, ServiceFactory};
/// Service for the `then` combinator, chaining a computation onto the end of
/// another service.
///
/// This is created by the `Pipeline::then` method.
pub(crate) struct ThenService<A, B, Req>(Rc<(A, B)>, PhantomData<Req>);
impl<A, B, Req> ThenService<A, B, Req> {
/// Create new `.then()` combinator
pub(crate) fn new(a: A, b: B) -> ThenService<A, B, Req>
where
A: Service<Req>,
B: Service<Result<A::Response, A::Error>, Error = A::Error>,
{
Self(Rc::new((a, b)), PhantomData)
}
}
impl<A, B, Req> Clone for ThenService<A, B, Req> {
fn clone(&self) -> Self {
ThenService(self.0.clone(), PhantomData)
}
}
impl<A, B, Req> Service<Req> for ThenService<A, B, Req>
where
A: Service<Req>,
B: Service<Result<A::Response, A::Error>, Error = A::Error>,
{
type Response = B::Response;
type Error = B::Error;
type Future = ThenServiceResponse<A, B, Req>;
fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
let (a, b) = &*self.0;
let not_ready = !a.poll_ready(cx)?.is_ready();
if !b.poll_ready(cx)?.is_ready() || not_ready {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
fn call(&self, req: Req) -> Self::Future {
ThenServiceResponse {
state: State::A {
fut: self.0 .0.call(req),
b: Some(self.0.clone()),
},
}
}
}
pin_project! {
pub(crate) struct ThenServiceResponse<A, B, Req>
where
A: Service<Req>,
B: Service<Result<A::Response, A::Error>>,
{
#[pin]
state: State<A, B, Req>,
}
}
pin_project! {
#[project = StateProj]
enum State<A, B, Req>
where
A: Service<Req>,
B: Service<Result<A::Response, A::Error>>,
{
A { #[pin] fut: A::Future, b: Option<Rc<(A, B)>> },
B { #[pin] fut: B::Future },
}
}
impl<A, B, Req> Future for ThenServiceResponse<A, B, Req>
where
A: Service<Req>,
B: Service<Result<A::Response, A::Error>>,
{
type Output = Result<B::Response, B::Error>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.as_mut().project();
match this.state.as_mut().project() {
StateProj::A { fut, b } => {
let res = ready!(fut.poll(cx));
let b = b.take().unwrap();
let fut = b.1.call(res);
this.state.set(State::B { fut });
self.poll(cx)
}
StateProj::B { fut } => fut.poll(cx),
}
}
}
/// `.then()` service factory combinator
pub(crate) struct ThenServiceFactory<A, B, Req>(Rc<(A, B)>, PhantomData<Req>);
impl<A, B, Req> ThenServiceFactory<A, B, Req>
where
A: ServiceFactory<Req>,
A::Config: Clone,
B: ServiceFactory<
Result<A::Response, A::Error>,
Config = A::Config,
Error = A::Error,
InitError = A::InitError,
>,
{
/// Create new `AndThen` combinator
pub(crate) fn new(a: A, b: B) -> Self {
Self(Rc::new((a, b)), PhantomData)
}
}
impl<A, B, Req> ServiceFactory<Req> for ThenServiceFactory<A, B, Req>
where
A: ServiceFactory<Req>,
A::Config: Clone,
B: ServiceFactory<
Result<A::Response, A::Error>,
Config = A::Config,
Error = A::Error,
InitError = A::InitError,
>,
{
type Response = B::Response;
type Error = A::Error;
type Config = A::Config;
type Service = ThenService<A::Service, B::Service, Req>;
type InitError = A::InitError;
type Future = ThenServiceFactoryResponse<A, B, Req>;
fn new_service(&self, cfg: A::Config) -> Self::Future {
let srv = &*self.0;
ThenServiceFactoryResponse::new(srv.0.new_service(cfg.clone()), srv.1.new_service(cfg))
}
}
impl<A, B, Req> Clone for ThenServiceFactory<A, B, Req> {
fn clone(&self) -> Self {
Self(self.0.clone(), PhantomData)
}
}
pin_project! {
pub(crate) struct ThenServiceFactoryResponse<A, B, Req>
where
A: ServiceFactory<Req>,
B: ServiceFactory<
Result<A::Response, A::Error>,
Config = A::Config,
Error = A::Error,
InitError = A::InitError,
>,
{
#[pin]
fut_b: B::Future,
#[pin]
fut_a: A::Future,
a: Option<A::Service>,
b: Option<B::Service>,
}
}
impl<A, B, Req> ThenServiceFactoryResponse<A, B, Req>
where
A: ServiceFactory<Req>,
B: ServiceFactory<
Result<A::Response, A::Error>,
Config = A::Config,
Error = A::Error,
InitError = A::InitError,
>,
{
fn new(fut_a: A::Future, fut_b: B::Future) -> Self {
Self {
fut_a,
fut_b,
a: None,
b: None,
}
}
}
impl<A, B, Req> Future for ThenServiceFactoryResponse<A, B, Req>
where
A: ServiceFactory<Req>,
B: ServiceFactory<
Result<A::Response, A::Error>,
Config = A::Config,
Error = A::Error,
InitError = A::InitError,
>,
{
type Output = Result<ThenService<A::Service, B::Service, Req>, A::InitError>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if this.a.is_none() {
if let Poll::Ready(service) = this.fut_a.poll(cx)? {
*this.a = Some(service);
}
}
if this.b.is_none() {
if let Poll::Ready(service) = this.fut_b.poll(cx)? {
*this.b = Some(service);
}
}
if this.a.is_some() && this.b.is_some() {
Poll::Ready(Ok(ThenService::new(
this.a.take().unwrap(),
this.b.take().unwrap(),
)))
} else {
Poll::Pending
}
}
}
#[cfg(test)]
mod tests {
use alloc::rc::Rc;
use core::{
cell::Cell,
task::{Context, Poll},
};
use futures_util::future::lazy;
use crate::{
err, ok,
pipeline::{pipeline, pipeline_factory},
ready, Ready, Service, ServiceFactory,
};
#[derive(Clone)]
struct Srv1(Rc<Cell<usize>>);
impl Service<Result<&'static str, &'static str>> for Srv1 {
type Response = &'static str;
type Error = ();
type Future = Ready<Result<Self::Response, Self::Error>>;
fn poll_ready(&self, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.0.set(self.0.get() + 1);
Poll::Ready(Ok(()))
}
fn call(&self, req: Result<&'static str, &'static str>) -> Self::Future {
match req {
Ok(msg) => ok(msg),
Err(_) => err(()),
}
}
}
struct Srv2(Rc<Cell<usize>>);
impl Service<Result<&'static str, ()>> for Srv2 {
type Response = (&'static str, &'static str);
type Error = ();
type Future = Ready<Result<Self::Response, ()>>;
fn poll_ready(&self, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.0.set(self.0.get() + 1);
Poll::Ready(Err(()))
}
fn call(&self, req: Result<&'static str, ()>) -> Self::Future {
match req {
Ok(msg) => ok((msg, "ok")),
Err(()) => ok(("srv2", "err")),
}
}
}
#[actix_rt::test]
async fn test_poll_ready() {
let cnt = Rc::new(Cell::new(0));
let srv = pipeline(Srv1(cnt.clone())).then(Srv2(cnt.clone()));
let res = lazy(|cx| srv.poll_ready(cx)).await;
assert_eq!(res, Poll::Ready(Err(())));
assert_eq!(cnt.get(), 2);
}
#[actix_rt::test]
async fn test_call() {
let cnt = Rc::new(Cell::new(0));
let srv = pipeline(Srv1(cnt.clone())).then(Srv2(cnt));
let res = srv.call(Ok("srv1")).await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv1", "ok"));
let res = srv.call(Err("srv")).await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv2", "err"));
}
#[actix_rt::test]
async fn test_factory() {
let cnt = Rc::new(Cell::new(0));
let cnt2 = cnt.clone();
let blank = move || ready(Ok::<_, ()>(Srv1(cnt2.clone())));
let factory = pipeline_factory(blank).then(move || ready(Ok(Srv2(cnt.clone()))));
let srv = factory.new_service(&()).await.unwrap();
let res = srv.call(Ok("srv1")).await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv1", "ok"));
let res = srv.call(Err("srv")).await;
assert!(res.is_ok());
assert_eq!(res.unwrap(), ("srv2", "err"));
}
}
|
use alloc::{rc::Rc, sync::Arc};
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use futures_core::ready;
use pin_project_lite::pin_project;
use crate::{IntoServiceFactory, Service, ServiceFactory};
/// Apply a [`Transform`] to a [`Service`].
pub fn apply<T, S, I, Req>(t: T, factory: I) -> ApplyTransform<T, S, Req>
where
I: IntoServiceFactory<S, Req>,
S: ServiceFactory<Req>,
T: Transform<S::Service, Req, InitError = S::InitError>,
{
ApplyTransform::new(t, factory.into_factory())
}
/// Defines the interface of a service factory that wraps inner service during construction.
///
/// Transformers wrap an inner service and runs during inbound and/or outbound processing in the
/// service lifecycle. It may modify request and/or response.
///
/// For example, a timeout service wrapper:
///
/// ```ignore
/// pub struct Timeout<S> {
/// service: S,
/// timeout: Duration,
/// }
///
/// impl<S: Service<Req>, Req> Service<Req> for Timeout<S> {
/// type Response = S::Response;
/// type Error = TimeoutError<S::Error>;
/// type Future = TimeoutServiceResponse<S>;
///
/// actix_service::forward_ready!(service);
///
/// fn call(&self, req: Req) -> Self::Future {
/// TimeoutServiceResponse {
/// fut: self.service.call(req),
/// sleep: Sleep::new(clock::now() + self.timeout),
/// }
/// }
/// }
/// ```
///
/// This wrapper service is decoupled from the underlying service implementation and could be
/// applied to any service.
///
/// The `Transform` trait defines the interface of a service wrapper. `Transform` is often
/// implemented for middleware, defining how to construct a middleware Service. A Service that is
/// constructed by the factory takes the Service that follows it during execution as a parameter,
/// assuming ownership of the next Service.
///
/// A transform for the `Timeout` middleware could look like this:
///
/// ```ignore
/// pub struct TimeoutTransform {
/// timeout: Duration,
/// }
///
/// impl<S: Service<Req>, Req> Transform<S, Req> for TimeoutTransform {
/// type Response = S::Response;
/// type Error = TimeoutError<S::Error>;
/// type InitError = S::Error;
/// type Transform = Timeout<S>;
/// type Future = Ready<Result<Self::Transform, Self::InitError>>;
///
/// fn new_transform(&self, service: S) -> Self::Future {
/// ready(Ok(Timeout {
/// service,
/// timeout: self.timeout,
/// }))
/// }
/// }
/// ```
pub trait Transform<S, Req> {
/// Responses produced by the service.
type Response;
/// Errors produced by the service.
type Error;
/// The `TransformService` value created by this factory
type Transform: Service<Req, Response = Self::Response, Error = Self::Error>;
/// Errors produced while building a transform service.
type InitError;
/// The future response value.
type Future: Future<Output = Result<Self::Transform, Self::InitError>>;
/// Creates and returns a new Transform component, asynchronously
fn new_transform(&self, service: S) -> Self::Future;
}
impl<T, S, Req> Transform<S, Req> for Rc<T>
where
T: Transform<S, Req>,
{
type Response = T::Response;
type Error = T::Error;
type Transform = T::Transform;
type InitError = T::InitError;
type Future = T::Future;
fn new_transform(&self, service: S) -> T::Future {
self.as_ref().new_transform(service)
}
}
impl<T, S, Req> Transform<S, Req> for Arc<T>
where
T: Transform<S, Req>,
{
type Response = T::Response;
type Error = T::Error;
type Transform = T::Transform;
type InitError = T::InitError;
type Future = T::Future;
fn new_transform(&self, service: S) -> T::Future {
self.as_ref().new_transform(service)
}
}
/// Apply a [`Transform`] to a [`Service`].
pub struct ApplyTransform<T, S, Req>(Rc<(T, S)>, PhantomData<Req>);
impl<T, S, Req> ApplyTransform<T, S, Req>
where
S: ServiceFactory<Req>,
T: Transform<S::Service, Req, InitError = S::InitError>,
{
/// Create new `ApplyTransform` new service instance
fn new(t: T, service: S) -> Self {
Self(Rc::new((t, service)), PhantomData)
}
}
impl<T, S, Req> Clone for ApplyTransform<T, S, Req> {
fn clone(&self) -> Self {
ApplyTransform(self.0.clone(), PhantomData)
}
}
impl<T, S, Req> ServiceFactory<Req> for ApplyTransform<T, S, Req>
where
S: ServiceFactory<Req>,
T: Transform<S::Service, Req, InitError = S::InitError>,
{
type Response = T::Response;
type Error = T::Error;
type Config = S::Config;
type Service = T::Transform;
type InitError = T::InitError;
type Future = ApplyTransformFuture<T, S, Req>;
fn new_service(&self, cfg: S::Config) -> Self::Future {
ApplyTransformFuture {
store: self.0.clone(),
state: ApplyTransformFutureState::A {
fut: self.0.as_ref().1.new_service(cfg),
},
}
}
}
pin_project! {
pub struct ApplyTransformFuture<T, S, Req>
where
S: ServiceFactory<Req>,
T: Transform<S::Service, Req, InitError = S::InitError>,
{
store: Rc<(T, S)>,
#[pin]
state: ApplyTransformFutureState<T, S, Req>,
}
}
pin_project! {
#[project = ApplyTransformFutureStateProj]
pub enum ApplyTransformFutureState<T, S, Req>
where
S: ServiceFactory<Req>,
T: Transform<S::Service, Req, InitError = S::InitError>,
{
A { #[pin] fut: S::Future },
B { #[pin] fut: T::Future },
}
}
impl<T, S, Req> Future for ApplyTransformFuture<T, S, Req>
where
S: ServiceFactory<Req>,
T: Transform<S::Service, Req, InitError = S::InitError>,
{
type Output = Result<T::Transform, T::InitError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.as_mut().project();
match this.state.as_mut().project() {
ApplyTransformFutureStateProj::A { fut } => {
let srv = ready!(fut.poll(cx))?;
let fut = this.store.0.new_transform(srv);
this.state.set(ApplyTransformFutureState::B { fut });
self.poll(cx)
}
ApplyTransformFutureStateProj::B { fut } => fut.poll(cx),
}
}
}
#[cfg(test)]
mod tests {
use core::time::Duration;
use actix_utils::future::{ready, Ready};
use super::*;
// pseudo-doctest for Transform trait
#[allow(unused)]
pub struct TimeoutTransform {
timeout: Duration,
}
// pseudo-doctest for Transform trait
impl<S: Service<Req>, Req> Transform<S, Req> for TimeoutTransform {
type Response = S::Response;
type Error = S::Error;
type InitError = S::Error;
type Transform = Timeout<S>;
type Future = Ready<Result<Self::Transform, Self::InitError>>;
fn new_transform(&self, service: S) -> Self::Future {
ready(Ok(Timeout {
service,
_timeout: self.timeout,
}))
}
}
// pseudo-doctest for Transform trait
#[allow(unused)]
pub struct Timeout<S> {
service: S,
_timeout: Duration,
}
// pseudo-doctest for Transform trait
impl<S: Service<Req>, Req> Service<Req> for Timeout<S> {
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
crate::forward_ready!(service);
fn call(&self, req: Req) -> Self::Future {
self.service.call(req)
}
}
}
|
use core::{
future::Future,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
};
use pin_project_lite::pin_project;
use super::Transform;
/// Transform for the [`TransformExt::map_init_err`] combinator, changing the type of a new
/// [`Transform`]'s initialization error.
pub struct TransformMapInitErr<T, S, Req, F, E> {
transform: T,
mapper: F,
_phantom: PhantomData<fn(Req) -> (S, E)>,
}
impl<T, S, F, E, Req> TransformMapInitErr<T, S, Req, F, E> {
pub(crate) fn new(t: T, f: F) -> Self
where
T: Transform<S, Req>,
F: Fn(T::InitError) -> E,
{
Self {
transform: t,
mapper: f,
_phantom: PhantomData,
}
}
}
impl<T, S, Req, F, E> Clone for TransformMapInitErr<T, S, Req, F, E>
where
T: Clone,
F: Clone,
{
fn clone(&self) -> Self {
Self {
transform: self.transform.clone(),
mapper: self.mapper.clone(),
_phantom: PhantomData,
}
}
}
impl<T, S, F, E, Req> Transform<S, Req> for TransformMapInitErr<T, S, Req, F, E>
where
T: Transform<S, Req>,
F: Fn(T::InitError) -> E + Clone,
{
type Response = T::Response;
type Error = T::Error;
type Transform = T::Transform;
type InitError = E;
type Future = TransformMapInitErrFuture<T, S, F, E, Req>;
fn new_transform(&self, service: S) -> Self::Future {
TransformMapInitErrFuture {
fut: self.transform.new_transform(service),
f: self.mapper.clone(),
}
}
}
pin_project! {
pub struct TransformMapInitErrFuture<T, S, F, E, Req>
where
T: Transform<S, Req>,
F: Fn(T::InitError) -> E,
{
#[pin]
fut: T::Future,
f: F,
}
}
impl<T, S, F, E, Req> Future for TransformMapInitErrFuture<T, S, F, E, Req>
where
T: Transform<S, Req>,
F: Fn(T::InitError) -> E + Clone,
{
type Output = Result<T::Transform, E>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if let Poll::Ready(res) = this.fut.poll(cx) {
Poll::Ready(res.map_err(this.f))
} else {
Poll::Pending
}
}
}
|
//! Task-notifying counter.
use core::{cell::Cell, fmt, task};
use std::rc::Rc;
use local_waker::LocalWaker;
/// Simple counter with ability to notify task on reaching specific number
///
/// Counter could be cloned, total n-count is shared across all clones.
#[derive(Debug, Clone)]
pub struct Counter(Rc<CounterInner>);
impl Counter {
/// Create `Counter` instance with max value.
pub fn new(capacity: usize) -> Self {
Counter(Rc::new(CounterInner {
capacity,
count: Cell::new(0),
task: LocalWaker::new(),
}))
}
/// Create new counter guard, incrementing the counter.
#[inline]
pub fn get(&self) -> CounterGuard {
CounterGuard::new(self.0.clone())
}
/// Returns true if counter is below capacity. Otherwise, register to wake task when it is.
#[inline]
pub fn available(&self, cx: &mut task::Context<'_>) -> bool {
self.0.available(cx)
}
/// Get total number of acquired guards.
#[inline]
pub fn total(&self) -> usize {
self.0.count.get()
}
}
struct CounterInner {
count: Cell<usize>,
capacity: usize,
task: LocalWaker,
}
impl CounterInner {
fn inc(&self) {
self.count.set(self.count.get() + 1);
}
fn dec(&self) {
let num = self.count.get();
self.count.set(num - 1);
if num == self.capacity {
self.task.wake();
}
}
fn available(&self, cx: &mut task::Context<'_>) -> bool {
if self.count.get() < self.capacity {
true
} else {
self.task.register(cx.waker());
false
}
}
}
impl fmt::Debug for CounterInner {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Counter")
.field("count", &self.count.get())
.field("capacity", &self.capacity)
.field("task", &self.task)
.finish()
}
}
/// An RAII structure that keeps the underlying counter incremented until this guard is dropped.
#[derive(Debug)]
pub struct CounterGuard(Rc<CounterInner>);
impl CounterGuard {
fn new(inner: Rc<CounterInner>) -> Self {
inner.inc();
CounterGuard(inner)
}
}
impl Unpin for CounterGuard {}
impl Drop for CounterGuard {
fn drop(&mut self) {
self.0.dec();
}
}
|
//! A symmetric either future.
use core::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
use pin_project_lite::pin_project;
pin_project! {
/// Combines two different futures that have the same output type.
///
/// Construct variants with [`Either::left`] and [`Either::right`].
///
/// # Examples
/// ```
/// use actix_utils::future::{ready, Ready, Either};
///
/// # async fn run() {
/// let res = Either::<_, Ready<usize>>::left(ready(42));
/// assert_eq!(res.await, 42);
///
/// let res = Either::<Ready<usize>, _>::right(ready(43));
/// assert_eq!(res.await, 43);
/// # }
/// ```
#[project = EitherProj]
#[derive(Debug, Clone)]
pub enum Either<L, R> {
/// A value of type `L`.
#[allow(missing_docs)]
Left { #[pin] value: L },
/// A value of type `R`.
#[allow(missing_docs)]
Right { #[pin] value: R },
}
}
impl<L, R> Either<L, R> {
/// Creates new `Either` using left variant.
#[inline]
pub fn left(value: L) -> Either<L, R> {
Either::Left { value }
}
/// Creates new `Either` using right variant.
#[inline]
pub fn right(value: R) -> Either<L, R> {
Either::Right { value }
}
}
impl<T> Either<T, T> {
/// Unwraps into inner value when left and right have a common type.
#[inline]
pub fn into_inner(self) -> T {
match self {
Either::Left { value } => value,
Either::Right { value } => value,
}
}
}
impl<L, R> Future for Either<L, R>
where
L: Future,
R: Future<Output = L::Output>,
{
type Output = L::Output;
#[inline]
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.project() {
EitherProj::Left { value } => value.poll(cx),
EitherProj::Right { value } => value.poll(cx),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::future::{ready, Ready};
#[actix_rt::test]
async fn test_either() {
let res = Either::<_, Ready<usize>>::left(ready(42));
assert_eq!(res.await, 42);
let res = Either::<Ready<usize>, _>::right(ready(43));
assert_eq!(res.await, 43);
}
}
|
//! Helpers for constructing futures.
mod either;
mod poll_fn;
mod ready;
pub use self::either::Either;
pub use self::poll_fn::{poll_fn, PollFn};
pub use self::ready::{err, ok, ready, Ready};
|
//! Simple "poll function" future and factory.
use core::{
fmt,
future::Future,
pin::Pin,
task::{Context, Poll},
};
/// Creates a future driven by the provided function that receives a task context.
///
/// # Examples
/// ```
/// # use std::task::Poll;
/// # use actix_utils::future::poll_fn;
/// # async fn test_poll_fn() {
/// let res = poll_fn(|_| Poll::Ready(42)).await;
/// assert_eq!(res, 42);
///
/// let mut i = 5;
/// let res = poll_fn(|cx| {
/// i -= 1;
///
/// if i > 0 {
/// cx.waker().wake_by_ref();
/// Poll::Pending
/// } else {
/// Poll::Ready(42)
/// }
/// })
/// .await;
/// assert_eq!(res, 42);
/// # }
/// # actix_rt::Runtime::new().unwrap().block_on(test_poll_fn());
/// ```
#[inline]
pub fn poll_fn<F, T>(f: F) -> PollFn<F>
where
F: FnMut(&mut Context<'_>) -> Poll<T>,
{
PollFn { f }
}
/// Future for the [`poll_fn`] function.
pub struct PollFn<F> {
f: F,
}
impl<F> fmt::Debug for PollFn<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PollFn").finish()
}
}
impl<F, T> Future for PollFn<F>
where
F: FnMut(&mut Context<'_>) -> Poll<T>,
{
type Output = T;
#[inline]
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// SAFETY: we are not moving out of the pinned field
// see https://github.com/rust-lang/rust/pull/102737
(unsafe { &mut self.get_unchecked_mut().f })(cx)
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomPinned;
use super::*;
static_assertions::assert_impl_all!(PollFn<()>: Unpin);
static_assertions::assert_not_impl_all!(PollFn<PhantomPinned>: Unpin);
#[actix_rt::test]
async fn test_poll_fn() {
let res = poll_fn(|_| Poll::Ready(42)).await;
assert_eq!(res, 42);
let mut i = 5;
let res = poll_fn(|cx| {
i -= 1;
if i > 0 {
cx.waker().wake_by_ref();
Poll::Pending
} else {
Poll::Ready(42)
}
})
.await;
assert_eq!(res, 42);
}
// following soundness tests taken from https://github.com/tokio-rs/tokio/pull/5087
#[allow(dead_code)]
fn require_send<T: Send>(_t: &T) {}
#[allow(dead_code)]
fn require_sync<T: Sync>(_t: &T) {}
trait AmbiguousIfUnpin<A> {
fn some_item(&self) {}
}
impl<T: ?Sized> AmbiguousIfUnpin<()> for T {}
impl<T: ?Sized + Unpin> AmbiguousIfUnpin<[u8; 0]> for T {}
const _: fn() = || {
let pinned = std::marker::PhantomPinned;
let f = poll_fn(move |_| {
// Use `pinned` to take ownership of it.
let _ = &pinned;
std::task::Poll::Pending::<()>
});
require_send(&f);
require_sync(&f);
AmbiguousIfUnpin::some_item(&f);
};
}
|
//! When `core::future::Ready` has a `into_inner()` method, this can be deprecated.
use core::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
/// Future for the [`ready`] function.
///
/// Panic will occur if polled more than once.
///
/// # Examples
/// ```
/// use actix_utils::future::ready;
///
/// // async
/// # async fn run() {
/// let a = ready(1);
/// assert_eq!(a.await, 1);
/// # }
///
/// // sync
/// let a = ready(1);
/// assert_eq!(a.into_inner(), 1);
/// ```
#[derive(Debug, Clone)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Ready<T> {
val: Option<T>,
}
impl<T> Ready<T> {
/// Unwraps the value from this immediately ready future.
#[inline]
pub fn into_inner(mut self) -> T {
self.val.take().unwrap()
}
}
impl<T> Unpin for Ready<T> {}
impl<T> Future for Ready<T> {
type Output = T;
#[inline]
fn poll(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<T> {
let val = self.val.take().expect("Ready polled after completion");
Poll::Ready(val)
}
}
/// Creates a future that is immediately ready with a value.
///
/// # Examples
/// ```no_run
/// use actix_utils::future::ready;
///
/// # async fn run() {
/// let a = ready(1);
/// assert_eq!(a.await, 1);
/// # }
///
/// // sync
/// let a = ready(1);
/// assert_eq!(a.into_inner(), 1);
/// ```
#[inline]
pub fn ready<T>(val: T) -> Ready<T> {
Ready { val: Some(val) }
}
/// Creates a future that is immediately ready with a success value.
///
/// # Examples
/// ```no_run
/// use actix_utils::future::ok;
///
/// # async fn run() {
/// let a = ok::<_, ()>(1);
/// assert_eq!(a.await, Ok(1));
/// # }
/// ```
#[inline]
pub fn ok<T, E>(val: T) -> Ready<Result<T, E>> {
Ready { val: Some(Ok(val)) }
}
/// Creates a future that is immediately ready with an error value.
///
/// # Examples
/// ```no_run
/// use actix_utils::future::err;
///
/// # async fn run() {
/// let a = err::<(), _>(1);
/// assert_eq!(a.await, Err(1));
/// # }
/// ```
#[inline]
pub fn err<T, E>(err: E) -> Ready<Result<T, E>> {
Ready {
val: Some(Err(err)),
}
}
#[cfg(test)]
mod tests {
use std::rc::Rc;
use futures_util::task::noop_waker;
use static_assertions::{assert_impl_all, assert_not_impl_any};
use super::*;
assert_impl_all!(Ready<()>: Send, Sync, Unpin, Clone);
assert_impl_all!(Ready<Rc<()>>: Unpin, Clone);
assert_not_impl_any!(Ready<Rc<()>>: Send, Sync);
#[test]
#[should_panic]
fn multiple_poll_panics() {
let waker = noop_waker();
let mut cx = Context::from_waker(&waker);
let mut ready = ready(1);
assert_eq!(Pin::new(&mut ready).poll(&mut cx), Poll::Ready(1));
// panic!
let _ = Pin::new(&mut ready).poll(&mut cx);
}
}
|
//! Various utilities used in the Actix ecosystem.
#![deny(rust_2018_idioms, nonstandard_style)]
#![warn(future_incompatible, missing_docs)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
pub mod counter;
pub mod future;
|
//! Routing and runtime macros for Actix Web.
//!
//! # Actix Web Re-exports
//! Actix Web re-exports a version of this crate in it's entirety so you usually don't have to
//! specify a dependency on this crate explicitly. Sometimes, however, updates are made to this
//! crate before the actix-web dependency is updated. Therefore, code examples here will show
//! explicit imports. Check the latest [actix-web attributes docs] to see which macros
//! are re-exported.
//!
//! # Runtime Setup
//! Used for setting up the actix async runtime. See [macro@main] macro docs.
//!
//! ```
//! #[actix_web_codegen::main] // or `#[actix_web::main]` in Actix Web apps
//! async fn main() {
//! async { println!("Hello world"); }.await
//! }
//! ```
//!
//! # Single Method Handler
//! There is a macro to set up a handler for each of the most common HTTP methods that also define
//! additional guards and route-specific middleware.
//!
//! See docs for: [GET], [POST], [PATCH], [PUT], [DELETE], [HEAD], [CONNECT], [OPTIONS], [TRACE]
//!
//! ```
//! # use actix_web::HttpResponse;
//! # use actix_web_codegen::get;
//! #[get("/test")]
//! async fn get_handler() -> HttpResponse {
//! HttpResponse::Ok().finish()
//! }
//! ```
//!
//! # Multiple Method Handlers
//! Similar to the single method handler macro but takes one or more arguments for the HTTP methods
//! it should respond to. See [macro@route] macro docs.
//!
//! ```
//! # use actix_web::HttpResponse;
//! # use actix_web_codegen::route;
//! #[route("/test", method = "GET", method = "HEAD")]
//! async fn get_and_head_handler() -> HttpResponse {
//! HttpResponse::Ok().finish()
//! }
//! ```
//!
//! # Multiple Path Handlers
//! Acts as a wrapper for multiple single method handler macros. It takes no arguments and
//! delegates those to the macros for the individual methods. See [macro@routes] macro docs.
//!
//! ```
//! # use actix_web::HttpResponse;
//! # use actix_web_codegen::routes;
//! #[routes]
//! #[get("/test")]
//! #[get("/test2")]
//! #[delete("/test")]
//! async fn example() -> HttpResponse {
//! HttpResponse::Ok().finish()
//! }
//! ```
//!
//! [actix-web attributes docs]: https://docs.rs/actix-web/latest/actix_web/#attributes
//! [GET]: macro@get
//! [POST]: macro@post
//! [PUT]: macro@put
//! [HEAD]: macro@head
//! [CONNECT]: macro@macro@connect
//! [OPTIONS]: macro@options
//! [TRACE]: macro@trace
//! [PATCH]: macro@patch
//! [DELETE]: macro@delete
#![recursion_limit = "512"]
#![deny(rust_2018_idioms, nonstandard_style)]
#![warn(future_incompatible)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
use proc_macro::TokenStream;
use quote::quote;
mod route;
mod scope;
/// Creates resource handler, allowing multiple HTTP method guards.
///
/// # Syntax
/// ```plain
/// #[route("path", method="HTTP_METHOD"[, attributes])]
/// ```
///
/// # Attributes
/// - `"path"`: Raw literal string with path for which to register handler.
/// - `name = "resource_name"`: Specifies resource name for the handler. If not set, the function
/// name of handler is used.
/// - `method = "HTTP_METHOD"`: Registers HTTP method to provide guard for. Upper-case string,
/// "GET", "POST" for example.
/// - `guard = "function_name"`: Registers function as guard using `actix_web::guard::fn_guard`.
/// - `wrap = "Middleware"`: Registers a resource middleware.
///
/// # Notes
/// Function name can be specified as any expression that is going to be accessible to the generate
/// code, e.g `my_guard` or `my_module::my_guard`.
///
/// # Examples
/// ```
/// # use actix_web::HttpResponse;
/// # use actix_web_codegen::route;
/// #[route("/test", method = "GET", method = "HEAD", method = "CUSTOM")]
/// async fn example() -> HttpResponse {
/// HttpResponse::Ok().finish()
/// }
/// ```
#[proc_macro_attribute]
pub fn route(args: TokenStream, input: TokenStream) -> TokenStream {
route::with_method(None, args, input)
}
/// Creates resource handler, allowing multiple HTTP methods and paths.
///
/// # Syntax
/// ```plain
/// #[routes]
/// #[<method>("path", ...)]
/// #[<method>("path", ...)]
/// ...
/// ```
///
/// # Attributes
/// The `routes` macro itself has no parameters, but allows specifying the attribute macros for
/// the multiple paths and/or methods, e.g. [`GET`](macro@get) and [`POST`](macro@post).
///
/// These helper attributes take the same parameters as the [single method handlers](crate#single-method-handler).
///
/// # Examples
/// ```
/// # use actix_web::HttpResponse;
/// # use actix_web_codegen::routes;
/// #[routes]
/// #[get("/test")]
/// #[get("/test2")]
/// #[delete("/test")]
/// async fn example() -> HttpResponse {
/// HttpResponse::Ok().finish()
/// }
/// ```
#[proc_macro_attribute]
pub fn routes(_: TokenStream, input: TokenStream) -> TokenStream {
route::with_methods(input)
}
macro_rules! method_macro {
($variant:ident, $method:ident) => {
#[doc = concat!("Creates route handler with `actix_web::guard::", stringify!($variant), "`.")]
///
/// # Syntax
/// ```plain
#[doc = concat!("#[", stringify!($method), r#"("path"[, attributes])]"#)]
/// ```
///
/// # Attributes
/// - `"path"`: Raw literal string with path for which to register handler.
/// - `name = "resource_name"`: Specifies resource name for the handler. If not set, the
/// function name of handler is used.
/// - `guard = "function_name"`: Registers function as guard using `actix_web::guard::fn_guard`.
/// - `wrap = "Middleware"`: Registers a resource middleware.
///
/// # Notes
/// Function name can be specified as any expression that is going to be accessible to the
/// generate code, e.g `my_guard` or `my_module::my_guard`.
///
/// # Examples
/// ```
/// # use actix_web::HttpResponse;
#[doc = concat!("# use actix_web_codegen::", stringify!($method), ";")]
#[doc = concat!("#[", stringify!($method), r#"("/")]"#)]
/// async fn example() -> HttpResponse {
/// HttpResponse::Ok().finish()
/// }
/// ```
#[proc_macro_attribute]
pub fn $method(args: TokenStream, input: TokenStream) -> TokenStream {
route::with_method(Some(route::MethodType::$variant), args, input)
}
};
}
method_macro!(Get, get);
method_macro!(Post, post);
method_macro!(Put, put);
method_macro!(Delete, delete);
method_macro!(Head, head);
method_macro!(Connect, connect);
method_macro!(Options, options);
method_macro!(Trace, trace);
method_macro!(Patch, patch);
/// Prepends a path prefix to all handlers using routing macros inside the attached module.
///
/// # Syntax
///
/// ```
/// # use actix_web_codegen::scope;
/// #[scope("/prefix")]
/// mod api {
/// // ...
/// }
/// ```
///
/// # Arguments
///
/// - `"/prefix"` - Raw literal string to be prefixed onto contained handlers' paths.
///
/// # Example
///
/// ```
/// # use actix_web_codegen::{scope, get};
/// # use actix_web::Responder;
/// #[scope("/api")]
/// mod api {
/// # use super::*;
/// #[get("/hello")]
/// pub async fn hello() -> impl Responder {
/// // this has path /api/hello
/// "Hello, world!"
/// }
/// }
/// # fn main() {}
/// ```
#[proc_macro_attribute]
pub fn scope(args: TokenStream, input: TokenStream) -> TokenStream {
scope::with_scope(args, input)
}
/// Marks async main function as the Actix Web system entry-point.
///
/// Note that Actix Web also works under `#[tokio::main]` since version 4.0. However, this macro is
/// still necessary for actor support (since actors use a `System`). Read more in the
/// [`actix_web::rt`](https://docs.rs/actix-web/4/actix_web/rt) module docs.
///
/// # Examples
/// ```
/// #[actix_web::main]
/// async fn main() {
/// async { println!("Hello world"); }.await
/// }
/// ```
#[proc_macro_attribute]
pub fn main(_: TokenStream, item: TokenStream) -> TokenStream {
let mut output: TokenStream = (quote! {
#[::actix_web::rt::main(system = "::actix_web::rt::System")]
})
.into();
output.extend(item);
output
}
/// Marks async test functions to use the Actix Web system entry-point.
///
/// # Examples
/// ```
/// #[actix_web::test]
/// async fn test() {
/// assert_eq!(async { "Hello world" }.await, "Hello world");
/// }
/// ```
#[proc_macro_attribute]
pub fn test(_: TokenStream, item: TokenStream) -> TokenStream {
let mut output: TokenStream = (quote! {
#[::actix_web::rt::test(system = "::actix_web::rt::System")]
})
.into();
output.extend(item);
output
}
/// Converts the error to a token stream and appends it to the original input.
///
/// Returning the original input in addition to the error is good for IDEs which can gracefully
/// recover and show more precise errors within the macro body.
///
/// See <https://github.com/rust-analyzer/rust-analyzer/issues/10468> for more info.
fn input_and_compile_error(mut item: TokenStream, err: syn::Error) -> TokenStream {
let compile_err = TokenStream::from(err.to_compile_error());
item.extend(compile_err);
item
}
|
use std::collections::HashSet;
use actix_router::ResourceDef;
use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2};
use quote::{quote, ToTokens, TokenStreamExt};
use syn::{punctuated::Punctuated, Ident, LitStr, Path, Token};
use crate::input_and_compile_error;
#[derive(Debug)]
pub struct RouteArgs {
pub(crate) path: syn::LitStr,
pub(crate) options: Punctuated<syn::MetaNameValue, Token![,]>,
}
impl syn::parse::Parse for RouteArgs {
fn parse(input: syn::parse::ParseStream<'_>) -> syn::Result<Self> {
// path to match: "/foo"
let path = input.parse::<syn::LitStr>().map_err(|mut err| {
err.combine(syn::Error::new(
err.span(),
r#"invalid service definition, expected #[<method>("<path>")]"#,
));
err
})?;
// verify that path pattern is valid
let _ = ResourceDef::new(path.value());
// if there's no comma, assume that no options are provided
if !input.peek(Token![,]) {
return Ok(Self {
path,
options: Punctuated::new(),
});
}
// advance past comma separator
input.parse::<Token![,]>()?;
// if next char is a literal, assume that it is a string and show multi-path error
if input.cursor().literal().is_some() {
return Err(syn::Error::new(
Span::call_site(),
r#"Multiple paths specified! There should be only one."#,
));
}
// zero or more options: name = "foo"
let options = input.parse_terminated(syn::MetaNameValue::parse, Token![,])?;
Ok(Self { path, options })
}
}
macro_rules! standard_method_type {
(
$($variant:ident, $upper:ident, $lower:ident,)+
) => {
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum MethodType {
$(
$variant,
)+
}
impl MethodType {
fn as_str(&self) -> &'static str {
match self {
$(Self::$variant => stringify!($variant),)+
}
}
fn parse(method: &str) -> Result<Self, String> {
match method {
$(stringify!($upper) => Ok(Self::$variant),)+
_ => Err(format!("HTTP method must be uppercase: `{}`", method)),
}
}
pub(crate) fn from_path(method: &Path) -> Result<Self, ()> {
match () {
$(_ if method.is_ident(stringify!($lower)) => Ok(Self::$variant),)+
_ => Err(()),
}
}
}
};
}
standard_method_type! {
Get, GET, get,
Post, POST, post,
Put, PUT, put,
Delete, DELETE, delete,
Head, HEAD, head,
Connect, CONNECT, connect,
Options, OPTIONS, options,
Trace, TRACE, trace,
Patch, PATCH, patch,
}
impl TryFrom<&syn::LitStr> for MethodType {
type Error = syn::Error;
fn try_from(value: &syn::LitStr) -> Result<Self, Self::Error> {
Self::parse(value.value().as_str())
.map_err(|message| syn::Error::new_spanned(value, message))
}
}
impl ToTokens for MethodType {
fn to_tokens(&self, stream: &mut TokenStream2) {
let ident = Ident::new(self.as_str(), Span::call_site());
stream.append(ident);
}
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
enum MethodTypeExt {
Standard(MethodType),
Custom(LitStr),
}
impl MethodTypeExt {
/// Returns a single method guard token stream.
fn to_tokens_single_guard(&self) -> TokenStream2 {
match self {
MethodTypeExt::Standard(method) => {
quote! {
.guard(::actix_web::guard::#method())
}
}
MethodTypeExt::Custom(lit) => {
quote! {
.guard(::actix_web::guard::Method(
::actix_web::http::Method::from_bytes(#lit.as_bytes()).unwrap()
))
}
}
}
}
/// Returns a multi-method guard chain token stream.
fn to_tokens_multi_guard(&self, or_chain: Vec<impl ToTokens>) -> TokenStream2 {
debug_assert!(
!or_chain.is_empty(),
"empty or_chain passed to multi-guard constructor"
);
match self {
MethodTypeExt::Standard(method) => {
quote! {
.guard(
::actix_web::guard::Any(::actix_web::guard::#method())
#(#or_chain)*
)
}
}
MethodTypeExt::Custom(lit) => {
quote! {
.guard(
::actix_web::guard::Any(
::actix_web::guard::Method(
::actix_web::http::Method::from_bytes(#lit.as_bytes()).unwrap()
)
)
#(#or_chain)*
)
}
}
}
}
/// Returns a token stream containing the `.or` chain to be passed in to
/// [`MethodTypeExt::to_tokens_multi_guard()`].
fn to_tokens_multi_guard_or_chain(&self) -> TokenStream2 {
match self {
MethodTypeExt::Standard(method_type) => {
quote! {
.or(::actix_web::guard::#method_type())
}
}
MethodTypeExt::Custom(lit) => {
quote! {
.or(
::actix_web::guard::Method(
::actix_web::http::Method::from_bytes(#lit.as_bytes()).unwrap()
)
)
}
}
}
}
}
impl ToTokens for MethodTypeExt {
fn to_tokens(&self, stream: &mut TokenStream2) {
match self {
MethodTypeExt::Custom(lit_str) => {
let ident = Ident::new(lit_str.value().as_str(), Span::call_site());
stream.append(ident);
}
MethodTypeExt::Standard(method) => method.to_tokens(stream),
}
}
}
impl TryFrom<&syn::LitStr> for MethodTypeExt {
type Error = syn::Error;
fn try_from(value: &syn::LitStr) -> Result<Self, Self::Error> {
match MethodType::try_from(value) {
Ok(method) => Ok(MethodTypeExt::Standard(method)),
Err(_) if value.value().chars().all(|c| c.is_ascii_uppercase()) => {
Ok(MethodTypeExt::Custom(value.clone()))
}
Err(err) => Err(err),
}
}
}
struct Args {
path: syn::LitStr,
resource_name: Option<syn::LitStr>,
guards: Vec<Path>,
wrappers: Vec<syn::Expr>,
methods: HashSet<MethodTypeExt>,
}
impl Args {
fn new(args: RouteArgs, method: Option<MethodType>) -> syn::Result<Self> {
let mut resource_name = None;
let mut guards = Vec::new();
let mut wrappers = Vec::new();
let mut methods = HashSet::new();
let is_route_macro = method.is_none();
if let Some(method) = method {
methods.insert(MethodTypeExt::Standard(method));
}
for nv in args.options {
if nv.path.is_ident("name") {
if let syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(lit),
..
}) = nv.value
{
resource_name = Some(lit);
} else {
return Err(syn::Error::new_spanned(
nv.value,
"Attribute name expects literal string",
));
}
} else if nv.path.is_ident("guard") {
if let syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(lit),
..
}) = nv.value
{
guards.push(lit.parse::<Path>()?);
} else {
return Err(syn::Error::new_spanned(
nv.value,
"Attribute guard expects literal string",
));
}
} else if nv.path.is_ident("wrap") {
if let syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(lit),
..
}) = nv.value
{
wrappers.push(lit.parse()?);
} else {
return Err(syn::Error::new_spanned(
nv.value,
"Attribute wrap expects type",
));
}
} else if nv.path.is_ident("method") {
if !is_route_macro {
return Err(syn::Error::new_spanned(
&nv,
"HTTP method forbidden here; to handle multiple methods, use `route` instead",
));
} else if let syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(lit),
..
}) = nv.value.clone()
{
if !methods.insert(MethodTypeExt::try_from(&lit)?) {
return Err(syn::Error::new_spanned(
nv.value,
format!("HTTP method defined more than once: `{}`", lit.value()),
));
}
} else {
return Err(syn::Error::new_spanned(
nv.value,
"Attribute method expects literal string",
));
}
} else {
return Err(syn::Error::new_spanned(
nv.path,
"Unknown attribute key is specified; allowed: guard, method and wrap",
));
}
}
Ok(Args {
path: args.path,
resource_name,
guards,
wrappers,
methods,
})
}
}
pub struct Route {
/// Name of the handler function being annotated.
name: syn::Ident,
/// Args passed to routing macro.
///
/// When using `#[routes]`, this will contain args for each specific routing macro.
args: Vec<Args>,
/// AST of the handler function being annotated.
ast: syn::ItemFn,
/// The doc comment attributes to copy to generated struct, if any.
doc_attributes: Vec<syn::Attribute>,
}
impl Route {
pub fn new(args: RouteArgs, ast: syn::ItemFn, method: Option<MethodType>) -> syn::Result<Self> {
let name = ast.sig.ident.clone();
// Try and pull out the doc comments so that we can reapply them to the generated struct.
// Note that multi line doc comments are converted to multiple doc attributes.
let doc_attributes = ast
.attrs
.iter()
.filter(|attr| attr.path().is_ident("doc"))
.cloned()
.collect();
let args = Args::new(args, method)?;
if args.methods.is_empty() {
return Err(syn::Error::new(
Span::call_site(),
"The #[route(..)] macro requires at least one `method` attribute",
));
}
if matches!(ast.sig.output, syn::ReturnType::Default) {
return Err(syn::Error::new_spanned(
ast,
"Function has no return type. Cannot be used as handler",
));
}
Ok(Self {
name,
args: vec![args],
ast,
doc_attributes,
})
}
fn multiple(args: Vec<Args>, ast: syn::ItemFn) -> syn::Result<Self> {
let name = ast.sig.ident.clone();
// Try and pull out the doc comments so that we can reapply them to the generated struct.
// Note that multi line doc comments are converted to multiple doc attributes.
let doc_attributes = ast
.attrs
.iter()
.filter(|attr| attr.path().is_ident("doc"))
.cloned()
.collect();
if matches!(ast.sig.output, syn::ReturnType::Default) {
return Err(syn::Error::new_spanned(
ast,
"Function has no return type. Cannot be used as handler",
));
}
Ok(Self {
name,
args,
ast,
doc_attributes,
})
}
}
impl ToTokens for Route {
fn to_tokens(&self, output: &mut TokenStream2) {
let Self {
name,
ast,
args,
doc_attributes,
} = self;
#[allow(unused_variables)] // used when force-pub feature is disabled
let vis = &ast.vis;
// TODO(breaking): remove this force-pub forwards-compatibility feature
#[cfg(feature = "compat-routing-macros-force-pub")]
let vis = syn::Visibility::Public(<Token![pub]>::default());
let registrations: TokenStream2 = args
.iter()
.map(|args| {
let Args {
path,
resource_name,
guards,
wrappers,
methods,
} = args;
let resource_name = resource_name
.as_ref()
.map_or_else(|| name.to_string(), LitStr::value);
let method_guards = {
debug_assert!(!methods.is_empty(), "Args::methods should not be empty");
let mut others = methods.iter();
let first = others.next().unwrap();
if methods.len() > 1 {
let other_method_guards = others
.map(|method_ext| method_ext.to_tokens_multi_guard_or_chain())
.collect();
first.to_tokens_multi_guard(other_method_guards)
} else {
first.to_tokens_single_guard()
}
};
quote! {
let __resource = ::actix_web::Resource::new(#path)
.name(#resource_name)
#method_guards
#(.guard(::actix_web::guard::fn_guard(#guards)))*
#(.wrap(#wrappers))*
.to(#name);
::actix_web::dev::HttpServiceFactory::register(__resource, __config);
}
})
.collect();
let stream = quote! {
#(#doc_attributes)*
#[allow(non_camel_case_types, missing_docs)]
#vis struct #name;
impl ::actix_web::dev::HttpServiceFactory for #name {
fn register(self, __config: &mut actix_web::dev::AppService) {
#ast
#registrations
}
}
};
output.extend(stream);
}
}
pub(crate) fn with_method(
method: Option<MethodType>,
args: TokenStream,
input: TokenStream,
) -> TokenStream {
let args = match syn::parse(args) {
Ok(args) => args,
// on parse error, make IDEs happy; see fn docs
Err(err) => return input_and_compile_error(input, err),
};
let ast = match syn::parse::<syn::ItemFn>(input.clone()) {
Ok(ast) => ast,
// on parse error, make IDEs happy; see fn docs
Err(err) => return input_and_compile_error(input, err),
};
match Route::new(args, ast, method) {
Ok(route) => route.into_token_stream().into(),
// on macro related error, make IDEs happy; see fn docs
Err(err) => input_and_compile_error(input, err),
}
}
pub(crate) fn with_methods(input: TokenStream) -> TokenStream {
let mut ast = match syn::parse::<syn::ItemFn>(input.clone()) {
Ok(ast) => ast,
// on parse error, make IDEs happy; see fn docs
Err(err) => return input_and_compile_error(input, err),
};
let (methods, others) = ast
.attrs
.into_iter()
.map(|attr| match MethodType::from_path(attr.path()) {
Ok(method) => Ok((method, attr)),
Err(_) => Err(attr),
})
.partition::<Vec<_>, _>(Result::is_ok);
ast.attrs = others.into_iter().map(Result::unwrap_err).collect();
let methods = match methods
.into_iter()
.map(Result::unwrap)
.map(|(method, attr)| {
attr.parse_args()
.and_then(|args| Args::new(args, Some(method)))
})
.collect::<Result<Vec<_>, _>>()
{
Ok(methods) if methods.is_empty() => {
return input_and_compile_error(
input,
syn::Error::new(
Span::call_site(),
"The #[routes] macro requires at least one `#[<method>(..)]` attribute.",
),
)
}
Ok(methods) => methods,
Err(err) => return input_and_compile_error(input, err),
};
match Route::multiple(methods, ast) {
Ok(route) => route.into_token_stream().into(),
// on macro related error, make IDEs happy; see fn docs
Err(err) => input_and_compile_error(input, err),
}
}
|
use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2};
use quote::{quote, ToTokens as _};
use crate::{
input_and_compile_error,
route::{MethodType, RouteArgs},
};
pub fn with_scope(args: TokenStream, input: TokenStream) -> TokenStream {
match with_scope_inner(args, input.clone()) {
Ok(stream) => stream,
Err(err) => input_and_compile_error(input, err),
}
}
fn with_scope_inner(args: TokenStream, input: TokenStream) -> syn::Result<TokenStream> {
if args.is_empty() {
return Err(syn::Error::new(
Span::call_site(),
"missing arguments for scope macro, expected: #[scope(\"/prefix\")]",
));
}
let scope_prefix = syn::parse::<syn::LitStr>(args.clone()).map_err(|err| {
syn::Error::new(
err.span(),
"argument to scope macro is not a string literal, expected: #[scope(\"/prefix\")]",
)
})?;
let scope_prefix_value = scope_prefix.value();
if scope_prefix_value.ends_with('/') {
// trailing slashes cause non-obvious problems
// it's better to point them out to developers rather than
return Err(syn::Error::new(
scope_prefix.span(),
"scopes should not have trailing slashes; see https://docs.rs/actix-web/4/actix_web/struct.Scope.html#avoid-trailing-slashes",
));
}
let mut module = syn::parse::<syn::ItemMod>(input).map_err(|err| {
syn::Error::new(err.span(), "#[scope] macro must be attached to a module")
})?;
// modify any routing macros (method or route[s]) attached to
// functions by prefixing them with this scope macro's argument
if let Some((_, items)) = &mut module.content {
for item in items {
if let syn::Item::Fn(fun) = item {
fun.attrs = fun
.attrs
.iter()
.map(|attr| modify_attribute_with_scope(attr, &scope_prefix_value))
.collect();
}
}
}
Ok(module.to_token_stream().into())
}
/// Checks if the attribute is a method type and has a route path, then modifies it.
fn modify_attribute_with_scope(attr: &syn::Attribute, scope_path: &str) -> syn::Attribute {
match (attr.parse_args::<RouteArgs>(), attr.clone().meta) {
(Ok(route_args), syn::Meta::List(meta_list)) if has_allowed_methods_in_scope(attr) => {
let modified_path = format!("{}{}", scope_path, route_args.path.value());
let options_tokens: Vec<TokenStream2> = route_args
.options
.iter()
.map(|option| {
quote! { ,#option }
})
.collect();
let combined_options_tokens: TokenStream2 =
options_tokens
.into_iter()
.fold(TokenStream2::new(), |mut acc, ts| {
acc.extend(std::iter::once(ts));
acc
});
syn::Attribute {
meta: syn::Meta::List(syn::MetaList {
tokens: quote! { #modified_path #combined_options_tokens },
..meta_list.clone()
}),
..attr.clone()
}
}
_ => attr.clone(),
}
}
fn has_allowed_methods_in_scope(attr: &syn::Attribute) -> bool {
MethodType::from_path(attr.path()).is_ok()
|| attr.path().is_ident("route")
|| attr.path().is_ident("ROUTE")
}
|
use std::future::Future;
use actix_utils::future::{ok, Ready};
use actix_web::{
dev::{Service, ServiceRequest, ServiceResponse, Transform},
http::{
self,
header::{HeaderName, HeaderValue},
StatusCode,
},
web, App, Error, HttpRequest, HttpResponse, Responder,
};
use actix_web_codegen::{
connect, delete, get, head, options, patch, post, put, route, routes, trace,
};
use futures_core::future::LocalBoxFuture;
// Make sure that we can name function as 'config'
#[get("/config")]
async fn config() -> impl Responder {
HttpResponse::Ok()
}
#[get("/test")]
async fn test_handler() -> impl Responder {
HttpResponse::Ok()
}
#[put("/test")]
async fn put_test() -> impl Responder {
HttpResponse::Created()
}
#[patch("/test")]
async fn patch_test() -> impl Responder {
HttpResponse::Ok()
}
#[post("/test")]
async fn post_test() -> impl Responder {
HttpResponse::NoContent()
}
#[head("/test")]
async fn head_test() -> impl Responder {
HttpResponse::Ok()
}
#[connect("/test")]
async fn connect_test() -> impl Responder {
HttpResponse::Ok()
}
#[options("/test")]
async fn options_test() -> impl Responder {
HttpResponse::Ok()
}
#[trace("/test")]
async fn trace_test() -> impl Responder {
HttpResponse::Ok()
}
#[get("/test")]
fn auto_async() -> impl Future<Output = Result<HttpResponse, actix_web::Error>> {
ok(HttpResponse::Ok().finish())
}
#[get("/test")]
fn auto_sync() -> impl Future<Output = Result<HttpResponse, actix_web::Error>> {
ok(HttpResponse::Ok().finish())
}
#[put("/test/{param}")]
async fn put_param_test(_: web::Path<String>) -> impl Responder {
HttpResponse::Created()
}
#[delete("/test/{param}")]
async fn delete_param_test(_: web::Path<String>) -> impl Responder {
HttpResponse::NoContent()
}
#[get("/test/{param}")]
async fn get_param_test(_: web::Path<String>) -> impl Responder {
HttpResponse::Ok()
}
#[route("/hello", method = "HELLO")]
async fn custom_route_test() -> impl Responder {
HttpResponse::Ok()
}
#[route(
"/multi",
method = "GET",
method = "POST",
method = "HEAD",
method = "HELLO"
)]
async fn route_test() -> impl Responder {
HttpResponse::Ok()
}
#[routes]
#[get("/routes/test")]
#[get("/routes/test2")]
#[post("/routes/test")]
async fn routes_test() -> impl Responder {
HttpResponse::Ok()
}
// routes overlap with the more specific route first, therefore accessible
#[routes]
#[get("/routes/overlap/test")]
#[get("/routes/overlap/{foo}")]
async fn routes_overlapping_test(req: HttpRequest) -> impl Responder {
// foo is only populated when route is not /routes/overlap/test
match req.match_info().get("foo") {
None => assert!(req.uri() == "/routes/overlap/test"),
Some(_) => assert!(req.uri() != "/routes/overlap/test"),
}
HttpResponse::Ok()
}
// routes overlap with the more specific route last, therefore inaccessible
#[routes]
#[get("/routes/overlap2/{foo}")]
#[get("/routes/overlap2/test")]
async fn routes_overlapping_inaccessible_test(req: HttpRequest) -> impl Responder {
// foo is always populated even when path is /routes/overlap2/test
assert!(req.match_info().get("foo").is_some());
HttpResponse::Ok()
}
#[get("/custom_resource_name", name = "custom")]
async fn custom_resource_name_test<'a>(req: HttpRequest) -> impl Responder {
assert!(req.url_for_static("custom").is_ok());
assert!(req.url_for_static("custom_resource_name_test").is_err());
HttpResponse::Ok()
}
mod guard_module {
use actix_web::{guard::GuardContext, http::header};
pub fn guard(ctx: &GuardContext) -> bool {
ctx.header::<header::Accept>()
.map(|h| h.preference() == "image/*")
.unwrap_or(false)
}
}
#[get("/test/guard", guard = "guard_module::guard")]
async fn guard_test() -> impl Responder {
HttpResponse::Ok()
}
pub struct ChangeStatusCode;
impl<S, B> Transform<S, ServiceRequest> for ChangeStatusCode
where
S: Service<ServiceRequest, Response = ServiceResponse<B>, Error = Error>,
S::Future: 'static,
B: 'static,
{
type Response = ServiceResponse<B>;
type Error = Error;
type Transform = ChangeStatusCodeMiddleware<S>;
type InitError = ();
type Future = Ready<Result<Self::Transform, Self::InitError>>;
fn new_transform(&self, service: S) -> Self::Future {
ok(ChangeStatusCodeMiddleware { service })
}
}
pub struct ChangeStatusCodeMiddleware<S> {
service: S,
}
impl<S, B> Service<ServiceRequest> for ChangeStatusCodeMiddleware<S>
where
S: Service<ServiceRequest, Response = ServiceResponse<B>, Error = Error>,
S::Future: 'static,
B: 'static,
{
type Response = ServiceResponse<B>;
type Error = Error;
type Future = LocalBoxFuture<'static, Result<Self::Response, Self::Error>>;
actix_web::dev::forward_ready!(service);
fn call(&self, req: ServiceRequest) -> Self::Future {
let fut = self.service.call(req);
Box::pin(async move {
let mut res = fut.await?;
let headers = res.headers_mut();
let header_name = HeaderName::from_lowercase(b"custom-header").unwrap();
let header_value = HeaderValue::from_str("hello").unwrap();
headers.insert(header_name, header_value);
Ok(res)
})
}
}
#[get("/test/wrap", wrap = "ChangeStatusCode")]
async fn get_wrap(_: web::Path<String>) -> impl Responder {
// panic!("actually never gets called because path failed to extract");
HttpResponse::Ok()
}
/// Using expression, not just path to type, in wrap attribute.
///
/// Regression from <https://github.com/actix/actix-web/issues/3118>.
#[route(
"/catalog",
method = "GET",
method = "HEAD",
wrap = "actix_web::middleware::Compress::default()"
)]
async fn get_catalog() -> impl Responder {
HttpResponse::Ok().body("123123123")
}
#[actix_rt::test]
async fn test_params() {
let srv = actix_test::start(|| {
App::new()
.service(get_param_test)
.service(put_param_test)
.service(delete_param_test)
});
let request = srv.request(http::Method::GET, srv.url("/test/it"));
let response = request.send().await.unwrap();
assert_eq!(response.status(), http::StatusCode::OK);
let request = srv.request(http::Method::PUT, srv.url("/test/it"));
let response = request.send().await.unwrap();
assert_eq!(response.status(), http::StatusCode::CREATED);
let request = srv.request(http::Method::DELETE, srv.url("/test/it"));
let response = request.send().await.unwrap();
assert_eq!(response.status(), http::StatusCode::NO_CONTENT);
}
#[actix_rt::test]
async fn test_body() {
let srv = actix_test::start(|| {
App::new()
.service(post_test)
.service(put_test)
.service(head_test)
.service(connect_test)
.service(options_test)
.service(trace_test)
.service(patch_test)
.service(test_handler)
.service(route_test)
.service(routes_overlapping_test)
.service(routes_overlapping_inaccessible_test)
.service(routes_test)
.service(custom_resource_name_test)
.service(guard_test)
});
let request = srv.request(http::Method::GET, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::HEAD, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::CONNECT, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::OPTIONS, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::TRACE, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::PATCH, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::PUT, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
assert_eq!(response.status(), http::StatusCode::CREATED);
let request = srv.request(http::Method::POST, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
assert_eq!(response.status(), http::StatusCode::NO_CONTENT);
let request = srv.request(http::Method::GET, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::GET, srv.url("/multi"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::POST, srv.url("/multi"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::HEAD, srv.url("/multi"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::PATCH, srv.url("/multi"));
let response = request.send().await.unwrap();
assert!(!response.status().is_success());
let request = srv.request(http::Method::GET, srv.url("/routes/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::GET, srv.url("/routes/test2"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::POST, srv.url("/routes/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::GET, srv.url("/routes/not-set"));
let response = request.send().await.unwrap();
assert!(response.status().is_client_error());
let request = srv.request(http::Method::GET, srv.url("/routes/overlap/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::GET, srv.url("/routes/overlap/bar"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::GET, srv.url("/routes/overlap2/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::GET, srv.url("/routes/overlap2/bar"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::GET, srv.url("/custom_resource_name"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv
.request(http::Method::GET, srv.url("/test/guard"))
.insert_header(("Accept", "image/*"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
#[actix_rt::test]
async fn test_auto_async() {
let srv = actix_test::start(|| App::new().service(auto_async));
let request = srv.request(http::Method::GET, srv.url("/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
#[actix_web::test]
async fn test_wrap() {
let srv = actix_test::start(|| App::new().service(get_wrap));
let request = srv.request(http::Method::GET, srv.url("/test/wrap"));
let mut response = request.send().await.unwrap();
assert_eq!(response.status(), StatusCode::NOT_FOUND);
assert!(response.headers().contains_key("custom-header"));
let body = response.body().await.unwrap();
let body = String::from_utf8(body.to_vec()).unwrap();
assert!(body.contains("wrong number of parameters"));
}
|
use actix_web::{guard::GuardContext, http, http::header, web, App, HttpResponse, Responder};
use actix_web_codegen::{delete, get, post, route, routes, scope};
pub fn image_guard(ctx: &GuardContext) -> bool {
ctx.header::<header::Accept>()
.map(|h| h.preference() == "image/*")
.unwrap_or(false)
}
#[scope("/test")]
mod scope_module {
// ensure that imports can be brought into the scope
use super::*;
#[get("/test/guard", guard = "image_guard")]
pub async fn guard() -> impl Responder {
HttpResponse::Ok()
}
#[get("/test")]
pub async fn test() -> impl Responder {
HttpResponse::Ok().finish()
}
#[get("/twice-test/{value}")]
pub async fn twice(value: web::Path<String>) -> impl actix_web::Responder {
let int_value: i32 = value.parse().unwrap_or(0);
let doubled = int_value * 2;
HttpResponse::Ok().body(format!("Twice value: {}", doubled))
}
#[post("/test")]
pub async fn post() -> impl Responder {
HttpResponse::Ok().body("post works")
}
#[delete("/test")]
pub async fn delete() -> impl Responder {
"delete works"
}
#[route("/test", method = "PUT", method = "PATCH", method = "CUSTOM")]
pub async fn multiple_shared_path() -> impl Responder {
HttpResponse::Ok().finish()
}
#[routes]
#[head("/test1")]
#[connect("/test2")]
#[options("/test3")]
#[trace("/test4")]
pub async fn multiple_separate_paths() -> impl Responder {
HttpResponse::Ok().finish()
}
// test calling this from other mod scope with scope attribute...
pub fn mod_common(message: String) -> impl actix_web::Responder {
HttpResponse::Ok().body(message)
}
}
/// Scope doc string to check in cargo expand.
#[scope("/v1")]
mod mod_scope_v1 {
use super::*;
/// Route doc string to check in cargo expand.
#[get("/test")]
pub async fn test() -> impl Responder {
scope_module::mod_common("version1 works".to_string())
}
}
#[scope("/v2")]
mod mod_scope_v2 {
use super::*;
// check to make sure non-function tokens in the scope block are preserved...
enum TestEnum {
Works,
}
#[get("/test")]
pub async fn test() -> impl Responder {
// make sure this type still exists...
let test_enum = TestEnum::Works;
match test_enum {
TestEnum::Works => scope_module::mod_common("version2 works".to_string()),
}
}
}
#[actix_rt::test]
async fn scope_get_async() {
let srv = actix_test::start(|| App::new().service(scope_module::test));
let request = srv.request(http::Method::GET, srv.url("/test/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
#[actix_rt::test]
async fn scope_get_param_async() {
let srv = actix_test::start(|| App::new().service(scope_module::twice));
let request = srv.request(http::Method::GET, srv.url("/test/twice-test/4"));
let mut response = request.send().await.unwrap();
let body = response.body().await.unwrap();
let body_str = String::from_utf8(body.to_vec()).unwrap();
assert_eq!(body_str, "Twice value: 8");
}
#[actix_rt::test]
async fn scope_post_async() {
let srv = actix_test::start(|| App::new().service(scope_module::post));
let request = srv.request(http::Method::POST, srv.url("/test/test"));
let mut response = request.send().await.unwrap();
let body = response.body().await.unwrap();
let body_str = String::from_utf8(body.to_vec()).unwrap();
assert_eq!(body_str, "post works");
}
#[actix_rt::test]
async fn multiple_shared_path_async() {
let srv = actix_test::start(|| App::new().service(scope_module::multiple_shared_path));
let request = srv.request(http::Method::PUT, srv.url("/test/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::PATCH, srv.url("/test/test"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
#[actix_rt::test]
async fn multiple_multi_path_async() {
let srv = actix_test::start(|| App::new().service(scope_module::multiple_separate_paths));
let request = srv.request(http::Method::HEAD, srv.url("/test/test1"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::CONNECT, srv.url("/test/test2"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::OPTIONS, srv.url("/test/test3"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
let request = srv.request(http::Method::TRACE, srv.url("/test/test4"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
#[actix_rt::test]
async fn scope_delete_async() {
let srv = actix_test::start(|| App::new().service(scope_module::delete));
let request = srv.request(http::Method::DELETE, srv.url("/test/test"));
let mut response = request.send().await.unwrap();
let body = response.body().await.unwrap();
let body_str = String::from_utf8(body.to_vec()).unwrap();
assert_eq!(body_str, "delete works");
}
#[actix_rt::test]
async fn scope_get_with_guard_async() {
let srv = actix_test::start(|| App::new().service(scope_module::guard));
let request = srv
.request(http::Method::GET, srv.url("/test/test/guard"))
.insert_header(("Accept", "image/*"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
#[actix_rt::test]
async fn scope_v1_v2_async() {
let srv = actix_test::start(|| {
App::new()
.service(mod_scope_v1::test)
.service(mod_scope_v2::test)
});
let request = srv.request(http::Method::GET, srv.url("/v1/test"));
let mut response = request.send().await.unwrap();
let body = response.body().await.unwrap();
let body_str = String::from_utf8(body.to_vec()).unwrap();
assert_eq!(body_str, "version1 works");
let request = srv.request(http::Method::GET, srv.url("/v2/test"));
let mut response = request.send().await.unwrap();
let body = response.body().await.unwrap();
let body_str = String::from_utf8(body.to_vec()).unwrap();
assert_eq!(body_str, "version2 works");
}
|
use actix_web::{Responder, HttpResponse, App};
use actix_web_codegen::*;
/// doc comments shouldn't break anything
#[get("/")]
async fn index() -> impl Responder {
HttpResponse::Ok()
}
#[actix_web::main]
async fn main() {
let srv = actix_test::start(|| App::new().service(index));
let request = srv.get("/");
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
|
use actix_web_codegen::*;
use actix_web::http::Method;
use std::str::FromStr;
#[route("/", method = "hello")]
async fn index() -> String {
"Hello World!".to_owned()
}
#[actix_web::main]
async fn main() {
use actix_web::App;
let srv = actix_test::start(|| App::new().service(index));
let request = srv.request(Method::from_str("hello").unwrap(), srv.url("/"));
let response = request.send().await.unwrap();
assert!(response.status().is_success());
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.