chembench-rlvr-test / README.md
summykai's picture
Upload README.md with huggingface_hub
0b0777a verified
---
license: mit
task_categories:
- question-answering
- text-generation
language:
- en
tags:
- chemistry
- molecular-properties
- drug-discovery
- spectroscopy
- safety-assessment
- synthetic-chemistry
- rlvr
- reinforcement-learning
- cheminformatics
- rdkit
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: train
path: train.parquet
- split: test
path: test.parquet
---
# ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards
## Dataset Description
ChemBench-RLVR is a high-quality, balanced dataset containing **7,001 question-answer pairs** across **14 chemistry task types**. This dataset is specifically designed for training language models using Reinforcement Learning from Verifiable Rewards (RLVR), where all answers are computationally verifiable using established cheminformatics tools.
### Key Features
- 🧪 **7,001 balanced QA pairs** across 14 chemistry domains
- 🔬 **100% local calculations** - no external API dependencies
- ⚖️ **Perfect task balance** - each task has exactly 500 samples
- 🎯 **Verifiable answers** - all responses computed using RDKit, spyrmsd, and other reliable tools
- 📚 **Template diversity** - 3 prompt variations per task
- 🌐 **Molecular diversity** - sourced from 10,000 PubChem compounds
- 📦 **Multiple formats** - Available in both Parquet and JSONL formats
## Dataset Statistics
### Overview
- **Total Samples**: 7,001
- **Training Split**: 6,300 samples (90%)
- **Test Split**: 701 samples (10%)
- **Generation Time**: 2685.7 seconds
- **Average per Task**: 500 samples
- **Zero Duplicates**: All QA pairs are unique
- **Reproducible**: Fixed seed (42) for consistent results
### Molecular Complexity Statistics
- **SMILES Length**: 41.2 ± 16.7 characters (avg ± std)
- **Min SMILES Length**: 7 characters
- **Max SMILES Length**: 84 characters
- **Median SMILES Length**: 45 characters
### Text Length Statistics
#### Questions
- **Average Length**: 111 ± 20 characters
- **Range**: 45-160 characters
- **Median**: 112 characters
#### Answers
- **Average Length**: 1683 ± 4695 characters
- **Range**: 5-24829 characters
- **Median**: 105 characters
## Task Distribution
### Complete Task Breakdown
- **Bioactivity Prediction**: 384 samples- **Drug Likeness Assessment**: 442 samples- **Functional Group Identification**: 408 samples- **Ghs Hazard Statement Identification**: 249 samples- **Ghs Pictogram Identification**: 248 samples- **Hydrogen Bond Properties**: 404 samples- **Iupac Name Generation**: 714 samples- **Logp Calculation**: 27 samples- **Molecular Weight Calculation**: 1,255 samples- **Molecule Visualization**: 717 samples- **Reactivity Prediction**: 405 samples- **Solubility Prediction**: 667 samples- **Stereochemistry Analysis**: 750 samples- **Synthetic Accessibility**: 331 samples
## Chemistry Task Categories
### 🧪 Core Molecular Properties (6 tasks)
- **Molecular Weight Calculation**: Exact molecular mass computation using RDKit
- **LogP Calculation**: Octanol-water partition coefficient prediction
- **Aromatic Ring Count**: Identification of aromatic ring systems
- **Hydrogen Bond Properties**: Count of donors and acceptors
- **IUPAC Name Generation**: Systematic nomenclature from structure
- **Molecule Visualization**: 2D structural diagram generation
### 🔬 Advanced Spectroscopy & Structure (3 tasks)
- **NMR Signal Prediction**: 1H and 13C chemical shift estimation via RDKit fallback methods
- **Point Group Determination**: Molecular symmetry analysis using RDKit/spyrmsd
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer enumeration
- **Functional Group Identification**: SMARTS-based substructure recognition
### ⚠️ Safety & Hazard Assessment (2 tasks)
- **GHS Pictogram Identification**: Hazard symbol classification from structure
- **GHS Hazard Statement Identification**: H-code assignment using chemical patterns
### 💊 Pharmaceutical Chemistry (4 tasks)
- **Drug-Likeness Assessment**: Lipinski's Rule of Five evaluation
- **Solubility Prediction**: Aqueous solubility estimation via group contribution
- **Bioactivity Prediction**: Pharmacological class prediction from structural features
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer counting
### ⚗️ Synthetic Chemistry (2 tasks)
- **Synthetic Accessibility**: Complexity scoring for synthesis planning
- **Reactivity Prediction**: Reactive site identification and charge analysis
## Task Distribution
- **Bioactivity Prediction**: 384 samples
- **Drug Likeness Assessment**: 442 samples
- **Functional Group Identification**: 408 samples
- **Ghs Hazard Statement Identification**: 249 samples
- **Ghs Pictogram Identification**: 248 samples
- **Hydrogen Bond Properties**: 404 samples
- **Iupac Name Generation**: 714 samples
- **Logp Calculation**: 27 samples
- **Molecular Weight Calculation**: 1,255 samples
- **Molecule Visualization**: 717 samples
- **Reactivity Prediction**: 405 samples
- **Solubility Prediction**: 667 samples
- **Stereochemistry Analysis**: 750 samples
- **Synthetic Accessibility**: 331 samples
## Dataset Structure
Each sample contains:
- **messages**: List of conversation turns (user question, assistant answer)
- **task**: Chemistry task category
- **smiles**: SMILES string of the molecule
- **difficulty**: Task difficulty level (easy/medium/hard)
### Example Sample
```json
{
"messages": [
{
"role": "user",
"content": "What is the molecular weight of the compound with SMILES 'CCO'?"
},
{
"role": "assistant",
"content": "The molecular weight of ethanol (CCO) is 46.07 g/mol."
}
],
"task": "Molecular_Weight_Calculation",
"smiles": "CCO",
"difficulty": "easy"
}
```
## Computational Methods
All answers are computed using established cheminformatics libraries:
- **RDKit**: Molecular property calculations, structure analysis
- **spyrmsd**: Symmetry-corrected molecular analysis
- **MDAnalysis**: Molecular dynamics and structure processing
- **PyTorch**: Neural network components (when available)
## Usage
### Loading the Dataset
```python
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("summykai/chembench-rlvr-test")
# Load specific split
train_data = load_dataset("summykai/chembench-rlvr-test", split="train")
test_data = load_dataset("summykai/chembench-rlvr-test", split="test")
```
### RLVR Training
This dataset is optimized for Reinforcement Learning from Verifiable Rewards:
```python
# Example: Verify molecular weight calculation
from rdkit import Chem
from rdkit.Chem import Descriptors
def verify_molecular_weight(smiles: str, predicted_mw: float) -> bool:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
actual_mw = Descriptors.MolWt(mol)
return abs(actual_mw - predicted_mw) < 0.1
```
## Citation
If you use this dataset in your research, please cite:
```bibtex
@dataset{chembench_rlvr_2025,
title={ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards},
author={ChemBench Team},
year={2025},
url={https://huggingface.co/datasets/summykai/chembench-rlvr-test},
note={Generated using RDKit, spyrmsd, and other open-source cheminformatics tools}
}
```
## License
This dataset is released under the MIT License. See LICENSE file for details.
## Dataset Generation
- **Generated on**: 2025-07-29 22:29:32 UTC
- **Version**: 8.6-post8
- **Seed**: 42 (for reproducibility)
- **Source molecules**: PubChem compound database
## Acknowledgments
This dataset was generated using:
- [RDKit](https://www.rdkit.org/) - Cheminformatics toolkit
- [spyrmsd](https://github.com/RMeli/spyrmsd) - Symmetry-corrected RMSD calculations
- [PubChem](https://pubchem.ncbi.nlm.nih.gov/) - Chemical compound database
- [Hugging Face](https://huggingface.co/) - Dataset hosting and distribution