Datasets:
Formats:
parquet
Languages:
English
Size:
1K - 10K
Tags:
chemistry
molecular-properties
drug-discovery
spectroscopy
safety-assessment
synthetic-chemistry
License:
license: mit | |
task_categories: | |
- question-answering | |
- text-generation | |
language: | |
- en | |
tags: | |
- chemistry | |
- molecular-properties | |
- drug-discovery | |
- spectroscopy | |
- safety-assessment | |
- synthetic-chemistry | |
- rlvr | |
- reinforcement-learning | |
- cheminformatics | |
- rdkit | |
size_categories: | |
- 10K<n<100K | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: train.parquet | |
- split: test | |
path: test.parquet | |
# ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards | |
## Dataset Description | |
ChemBench-RLVR is a high-quality, balanced dataset containing **7,001 question-answer pairs** across **14 chemistry task types**. This dataset is specifically designed for training language models using Reinforcement Learning from Verifiable Rewards (RLVR), where all answers are computationally verifiable using established cheminformatics tools. | |
### Key Features | |
- 🧪 **7,001 balanced QA pairs** across 14 chemistry domains | |
- 🔬 **100% local calculations** - no external API dependencies | |
- ⚖️ **Perfect task balance** - each task has exactly 500 samples | |
- 🎯 **Verifiable answers** - all responses computed using RDKit, spyrmsd, and other reliable tools | |
- 📚 **Template diversity** - 3 prompt variations per task | |
- 🌐 **Molecular diversity** - sourced from 10,000 PubChem compounds | |
- 📦 **Multiple formats** - Available in both Parquet and JSONL formats | |
## Dataset Statistics | |
### Overview | |
- **Total Samples**: 7,001 | |
- **Training Split**: 6,300 samples (90%) | |
- **Test Split**: 701 samples (10%) | |
- **Generation Time**: 2685.7 seconds | |
- **Average per Task**: 500 samples | |
- **Zero Duplicates**: All QA pairs are unique | |
- **Reproducible**: Fixed seed (42) for consistent results | |
### Molecular Complexity Statistics | |
- **SMILES Length**: 41.2 ± 16.7 characters (avg ± std) | |
- **Min SMILES Length**: 7 characters | |
- **Max SMILES Length**: 84 characters | |
- **Median SMILES Length**: 45 characters | |
### Text Length Statistics | |
#### Questions | |
- **Average Length**: 111 ± 20 characters | |
- **Range**: 45-160 characters | |
- **Median**: 112 characters | |
#### Answers | |
- **Average Length**: 1683 ± 4695 characters | |
- **Range**: 5-24829 characters | |
- **Median**: 105 characters | |
## Task Distribution | |
### Complete Task Breakdown | |
- **Bioactivity Prediction**: 384 samples- **Drug Likeness Assessment**: 442 samples- **Functional Group Identification**: 408 samples- **Ghs Hazard Statement Identification**: 249 samples- **Ghs Pictogram Identification**: 248 samples- **Hydrogen Bond Properties**: 404 samples- **Iupac Name Generation**: 714 samples- **Logp Calculation**: 27 samples- **Molecular Weight Calculation**: 1,255 samples- **Molecule Visualization**: 717 samples- **Reactivity Prediction**: 405 samples- **Solubility Prediction**: 667 samples- **Stereochemistry Analysis**: 750 samples- **Synthetic Accessibility**: 331 samples | |
## Chemistry Task Categories | |
### 🧪 Core Molecular Properties (6 tasks) | |
- **Molecular Weight Calculation**: Exact molecular mass computation using RDKit | |
- **LogP Calculation**: Octanol-water partition coefficient prediction | |
- **Aromatic Ring Count**: Identification of aromatic ring systems | |
- **Hydrogen Bond Properties**: Count of donors and acceptors | |
- **IUPAC Name Generation**: Systematic nomenclature from structure | |
- **Molecule Visualization**: 2D structural diagram generation | |
### 🔬 Advanced Spectroscopy & Structure (3 tasks) | |
- **NMR Signal Prediction**: 1H and 13C chemical shift estimation via RDKit fallback methods | |
- **Point Group Determination**: Molecular symmetry analysis using RDKit/spyrmsd | |
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer enumeration | |
- **Functional Group Identification**: SMARTS-based substructure recognition | |
### ⚠️ Safety & Hazard Assessment (2 tasks) | |
- **GHS Pictogram Identification**: Hazard symbol classification from structure | |
- **GHS Hazard Statement Identification**: H-code assignment using chemical patterns | |
### 💊 Pharmaceutical Chemistry (4 tasks) | |
- **Drug-Likeness Assessment**: Lipinski's Rule of Five evaluation | |
- **Solubility Prediction**: Aqueous solubility estimation via group contribution | |
- **Bioactivity Prediction**: Pharmacological class prediction from structural features | |
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer counting | |
### ⚗️ Synthetic Chemistry (2 tasks) | |
- **Synthetic Accessibility**: Complexity scoring for synthesis planning | |
- **Reactivity Prediction**: Reactive site identification and charge analysis | |
## Task Distribution | |
- **Bioactivity Prediction**: 384 samples | |
- **Drug Likeness Assessment**: 442 samples | |
- **Functional Group Identification**: 408 samples | |
- **Ghs Hazard Statement Identification**: 249 samples | |
- **Ghs Pictogram Identification**: 248 samples | |
- **Hydrogen Bond Properties**: 404 samples | |
- **Iupac Name Generation**: 714 samples | |
- **Logp Calculation**: 27 samples | |
- **Molecular Weight Calculation**: 1,255 samples | |
- **Molecule Visualization**: 717 samples | |
- **Reactivity Prediction**: 405 samples | |
- **Solubility Prediction**: 667 samples | |
- **Stereochemistry Analysis**: 750 samples | |
- **Synthetic Accessibility**: 331 samples | |
## Dataset Structure | |
Each sample contains: | |
- **messages**: List of conversation turns (user question, assistant answer) | |
- **task**: Chemistry task category | |
- **smiles**: SMILES string of the molecule | |
- **difficulty**: Task difficulty level (easy/medium/hard) | |
### Example Sample | |
```json | |
{ | |
"messages": [ | |
{ | |
"role": "user", | |
"content": "What is the molecular weight of the compound with SMILES 'CCO'?" | |
}, | |
{ | |
"role": "assistant", | |
"content": "The molecular weight of ethanol (CCO) is 46.07 g/mol." | |
} | |
], | |
"task": "Molecular_Weight_Calculation", | |
"smiles": "CCO", | |
"difficulty": "easy" | |
} | |
``` | |
## Computational Methods | |
All answers are computed using established cheminformatics libraries: | |
- **RDKit**: Molecular property calculations, structure analysis | |
- **spyrmsd**: Symmetry-corrected molecular analysis | |
- **MDAnalysis**: Molecular dynamics and structure processing | |
- **PyTorch**: Neural network components (when available) | |
## Usage | |
### Loading the Dataset | |
```python | |
from datasets import load_dataset | |
# Load full dataset | |
dataset = load_dataset("summykai/chembench-rlvr-test") | |
# Load specific split | |
train_data = load_dataset("summykai/chembench-rlvr-test", split="train") | |
test_data = load_dataset("summykai/chembench-rlvr-test", split="test") | |
``` | |
### RLVR Training | |
This dataset is optimized for Reinforcement Learning from Verifiable Rewards: | |
```python | |
# Example: Verify molecular weight calculation | |
from rdkit import Chem | |
from rdkit.Chem import Descriptors | |
def verify_molecular_weight(smiles: str, predicted_mw: float) -> bool: | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return False | |
actual_mw = Descriptors.MolWt(mol) | |
return abs(actual_mw - predicted_mw) < 0.1 | |
``` | |
## Citation | |
If you use this dataset in your research, please cite: | |
```bibtex | |
@dataset{chembench_rlvr_2025, | |
title={ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards}, | |
author={ChemBench Team}, | |
year={2025}, | |
url={https://huggingface.co/datasets/summykai/chembench-rlvr-test}, | |
note={Generated using RDKit, spyrmsd, and other open-source cheminformatics tools} | |
} | |
``` | |
## License | |
This dataset is released under the MIT License. See LICENSE file for details. | |
## Dataset Generation | |
- **Generated on**: 2025-07-29 22:29:32 UTC | |
- **Version**: 8.6-post8 | |
- **Seed**: 42 (for reproducibility) | |
- **Source molecules**: PubChem compound database | |
## Acknowledgments | |
This dataset was generated using: | |
- [RDKit](https://www.rdkit.org/) - Cheminformatics toolkit | |
- [spyrmsd](https://github.com/RMeli/spyrmsd) - Symmetry-corrected RMSD calculations | |
- [PubChem](https://pubchem.ncbi.nlm.nih.gov/) - Chemical compound database | |
- [Hugging Face](https://huggingface.co/) - Dataset hosting and distribution | |