task
stringclasses
14 values
smiles
stringclasses
929 values
cid
int64
4.09k
1.99M
answer
stringlengths
5
24.8k
molecular_weight
float64
102
600
logp
float64
-6.97
13.1
messages
listlengths
2
2
GHS_Pictogram_Identification
CCP(=O)(OCc1c(F)c(F)c(F)c(F)c1F)OC(C)C
602,596
["GHS08", "GHS09"]
332.205
4.5367
[ { "content": "Identify the GHS pictograms that apply to the compound with SMILES 'CCP(=O)(OCc1c(F)c(F)c(F)c(F)c1F)OC(C)C'.", "role": "user" }, { "content": "[\"GHS08\", \"GHS09\"]", "role": "assistant" } ]
Bioactivity_Prediction
N#CC1CC=CCC1
66,013
{"predicted_classes": ["Unknown"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 0, "enzyme_inhibitor": 0, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Medium", "drug_like_properties": {"molecular_weight": 107.16, "logp": 1.87, "hbd": 0, "hba": 1}, "structural_complexity": "Low"}
107.156
1.86628
[ { "content": "Determine the bioactivity prediction of the chemical structure 'N#CC1CC=CCC1'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"Unknown\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 0, \"enzyme_inhibitor\": 0, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Medium\", \"drug_like_properties\": {\"molecular_weight\": 107.16, \"logp\": 1.87, \"hbd\": 0, \"hba\": 1}, \"structural_complexity\": \"Low\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCc1cnc([N+](=O)[O-])[nH]1
88,922
141.13
141.13
0.8803
[ { "content": "What is the molecular weight of the compound with SMILES 'CCc1cnc([N+](=O)[O-])[nH]1'?", "role": "user" }, { "content": "141.13", "role": "assistant" } ]
Hydrogen_Bond_Properties
Cc1ccc(C)c(OCC(=O)Nc2ccc(Cl)cc2C)c1
1,121,090
{"donors": 1, "acceptors": 2}
303.789
4.28276
[ { "content": "How many hydrogen bond donors and acceptors are in the molecule with SMILES 'Cc1ccc(C)c(OCC(=O)Nc2ccc(Cl)cc2C)c1'?", "role": "user" }, { "content": "{\"donors\": 1, \"acceptors\": 2}", "role": "assistant" } ]
IUPAC_Name_Generation
Fc1ccc2cc[nH]c2c1
351,278
6-fluoro-1H-indole
135.141
2.307
[ { "content": "Give the IUPAC-compliant name for the molecule 'Fc1ccc2cc[nH]c2c1'.", "role": "user" }, { "content": "6-fluoro-1H-indole", "role": "assistant" } ]
Molecular_Weight_Calculation
CC(C)Cc1nc2sc3c(NCC[NH+]4CCOCC4)ncnc3c2c2c1COC(C)(C)C2
1,916,693
456.64
456.636
2.6163
[ { "content": "What is the molecular weight of the compound with SMILES 'CC(C)Cc1nc2sc3c(NCC[NH+]4CCOCC4)ncnc3c2c2c1COC(C)(C)C2'?", "role": "user" }, { "content": "456.64", "role": "assistant" } ]
Hydrogen_Bond_Properties
C[N+](C)(C)C=NCCCCCCN=C[N+](C)(C)C.[I-]
379,829
{"donors": 0, "acceptors": 2}
383.342
-0.9802
[ { "content": "How many hydrogen bond donors and acceptors are in the molecule with SMILES 'C[N+](C)(C)C=NCCCCCCN=C[N+](C)(C)C.[I-]'?", "role": "user" }, { "content": "{\"donors\": 0, \"acceptors\": 2}", "role": "assistant" } ]
Drug_Likeness_Assessment
CCP(=O)(OCc1c(F)c(F)c(F)c(F)c1F)OC(C)C
602,596
{"molecular_weight": 332.21, "logp": 4.54, "hydrogen_bond_donors": 0, "hydrogen_bond_acceptors": 3, "rotatable_bonds": 6, "topological_polar_surface_area": 35.53, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
332.205
4.5367
[ { "content": "What is the drug likeness assessment for the compound represented by 'CCP(=O)(OCc1c(F)c(F)c(F)c(F)c1F)OC(C)C'?", "role": "user" }, { "content": "{\"molecular_weight\": 332.21, \"logp\": 4.54, \"hydrogen_bond_donors\": 0, \"hydrogen_bond_acceptors\": 3, \"rotatable_bonds\": 6, \"topological_polar_surface_area\": 35.53, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Solubility_Prediction
Cc1cc(CCC(=O)O)c(C)cc1CCC(=O)O
658,500
{"log_s": 0.53, "solubility_mg_ml": 0.8445, "solubility_category": "Slightly soluble", "contributing_factors": {"molecular_weight": 250.29399999999995, "logp": 2.34, "oh_groups": 2, "nh_groups": 0, "cooh_groups": 2, "aromatic_rings": 1}}
250.294
2.33784
[ { "content": "Determine the solubility prediction of the chemical structure 'Cc1cc(CCC(=O)O)c(C)cc1CCC(=O)O'.", "role": "user" }, { "content": "{\"log_s\": 0.53, \"solubility_mg_ml\": 0.8445, \"solubility_category\": \"Slightly soluble\", \"contributing_factors\": {\"molecular_weight\": 250.29399999999995, \"logp\": 2.34, \"oh_groups\": 2, \"nh_groups\": 0, \"cooh_groups\": 2, \"aromatic_rings\": 1}}", "role": "assistant" } ]
Solubility_Prediction
CC1CCN(C(=O)Nc2cccc(Cl)c2)CC1
707,662
{"log_s": -2.23, "solubility_mg_ml": 0.0015, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 252.74499999999998, "logp": 3.6, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 1}}
252.745
3.6038
[ { "content": "What is the solubility prediction for the compound represented by 'CC1CCN(C(=O)Nc2cccc(Cl)c2)CC1'?", "role": "user" }, { "content": "{\"log_s\": -2.23, \"solubility_mg_ml\": 0.0015, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 252.74499999999998, \"logp\": 3.6, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 1}}", "role": "assistant" } ]
Solubility_Prediction
CSc1ncc(-c2ccc[n+](CC(=O)C3CC3)c2)cc1C#N
1,608,195
{"log_s": -2.81, "solubility_mg_ml": 0.0005, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 310.402, "logp": 2.61, "oh_groups": 0, "nh_groups": 0, "cooh_groups": 0, "aromatic_rings": 2}}
310.402
2.60878
[ { "content": "Determine the solubility prediction of the chemical structure 'CSc1ncc(-c2ccc[n+](CC(=O)C3CC3)c2)cc1C#N'.", "role": "user" }, { "content": "{\"log_s\": -2.81, \"solubility_mg_ml\": 0.0005, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 310.402, \"logp\": 2.61, \"oh_groups\": 0, \"nh_groups\": 0, \"cooh_groups\": 0, \"aromatic_rings\": 2}}", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1cc2oc(-c3ccccc3)c(OCC(=O)Nc3ccc(Oc4ccccc4)cc3)c(=O)c2cc1C
1,650,480
491.54
491.543
6.88664
[ { "content": "What is the molecular weight of the compound with SMILES 'Cc1cc2oc(-c3ccccc3)c(OCC(=O)Nc3ccc(Oc4ccccc4)cc3)c(=O)c2cc1C'?", "role": "user" }, { "content": "491.54", "role": "assistant" } ]
Synthetic_Accessibility
CC(O)CN1CCN(CCOC(c2ccccc2)c2ccc(Cl)cc2)CC1
90,825
{'sa_score': 7.8, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
388.939
3.4444
[ { "content": "What is the synthetic accessibility for the compound represented by 'CC(O)CN1CCN(CCOC(c2ccccc2)c2ccc(Cl)cc2)CC1'?", "role": "user" }, { "content": "{'sa_score': 7.8, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCC(c1nnnn1Cc1ccc(F)cc1)N(Cc1ccccc1)Cc1cc2cc3c(cc2[nH]c1=O)OCCO3
1,464,882
540.60
540.599
4.6267
[ { "content": "What is the molecular weight of the compound with SMILES 'CCC(c1nnnn1Cc1ccc(F)cc1)N(Cc1ccccc1)Cc1cc2cc3c(cc2[nH]c1=O)OCCO3'?", "role": "user" }, { "content": "540.60", "role": "assistant" } ]
Functional_Group_Identification
O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1
797,349
{"alcohol": 1, "ketone": 1, "amine": 1, "nitro": 1, "phenyl": 3}
345.354
4.7018
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1'.", "role": "user" }, { "content": "{\"alcohol\": 1, \"ketone\": 1, \"amine\": 1, \"nitro\": 1, \"phenyl\": 3}", "role": "assistant" } ]
Molecule_Visualization
CCOc1ccc(C=NNC(=O)Cc2csc(Nc3cccc(C(F)(F)F)c3)n2)cc1OC
996,613
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxUVf8H8O/MwLCLKCKrC6AYbuQIqKi55IZIKvKqLNJMK31CLe2x1MJHn7RcSa2flk+5hKnkhpCguCIugLgAKiCCyo6KAwwwMDPf3x9XJ0RBljtzGPm+X/5BOHPOIfzMPffec79HgIhACGFHyHoAhLR2FEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEpMUJCgpyc3OLjo5mPRAtESAi6zEQ8o9169YtXLhQT09PqVROmTJlzZo1nTt3Zj0ozaIjIWkpEHHZsmULFy4UCAROTk4GBgahoaE9e/ZcsWJFRUUF69FpEhLSAlRXV8+YMQMAxGJxSEgIIt6/fz8gIEAgEACAvb39jh07VCoV62FqBIWQsFdWVjZu3DgAMDExOXr0aHFxcXZ2NvdXFy9e9PT05A4YHh4eFy5cYDtUTaAQEsYePnw4cOBAAOjYsWNCQkJubq6bm5urq+vDhw+5FygUil9++cXKygoA/Pxcs7I+qqrKZztmftGFGcJSVlbW2LFjU1NTu3btGhkZqVKpxo4de/fuXVdX16ioKHt7e/UrpVLpihUr3n77lFCYKBK1sbFZamU1TyAQMxw8XyiEhJnk5OSxY8fm5OT07t07MjIyOzvbx8enqKjI09MzPDzc0tLy+bfI5bdzchYXF4cCgIGBs53dSgsLf60PnG+sD8WklTp16pS5uTkADB8+XCqVHjt2zMzMDAAmTJggk8nqf29JyYmUlN4JCZCQAKmpI8rLr2lnzBpCISQMHDhwwNDQEAAmT55cUVGxY8cOfX19AJg2bVpVVVVDWlCpqgsKNl692i4hAS5f1rt7919KpTQ7+9/p6ePS08fJ5fc0/SPwiEJIXiI2NnbWrFnbtm17/PgxLw1u3rxZKBQCQGBgoFKpDA4O5u5DLFq0qLE3IRSKR9nZiy5fFicnv/bo0f7MzGmIqFAUq1QNSnILQSEk9UlKShKJROqTFxsbG39//+Dg4JiYmIqKisa2plKpgoKCAEAgEAQFBalUqoULF3L/uW7duiYPsrw8uazsQmnp2Rs33MrLk5rcDisUQlKnvLw8R0dHADAyMnJzc+MmkGoGBgaenp6BgYE7d+68devWSw9iCoVi1qxZACASiX799Ve5XP7OO+8AgFgs3rNnDy8DLi4+kJY2JjV1WHX1A14a1A4KoY7ZtQuvPb0MsW8fXrqkqY5KSkr69esHAO7u7qWlpYhYXV2dnJy8Y8eOuXPnSiQSbkqpZmZm5uXlNXfu3B07dmRmZtZqraKiws/PDwCMjY3Dw8NLS0vHjBkDAKamplFRUfyOPDt7cUHBj/y2qVEUQh0zdy4ePfrk68WLcd8+jfRSVVU1evRoAHB2di4oKHjha0pLS2NiYoKDgwMCAlxdXWtddbexsfHx8QkKCgoLC8vIyBg8eDAAtGvX7ty5c/n5+Vy8ra2tExMT+RqzTBYvlR4tL7+WljZaKj368je0GHq83esgrwpEnDlz5rFjx2xsbI4fP84tVXmeqanp4MGDuXQBQG5ubnx8fFxcXFxcXHx8fF5eXnh4eHh4OACIRCKlUtm5c+fIyEixWDxkyJD09HRHR8eoqChnZ2e+hq2nZ1Vaeqa09LSV1Wdt2ozlq1ltYP0pQBpn7lx0d0dvb/T2RmdnjRwJv/jiCwBo06ZNcw5TOTk5+/btmzt3rpeXl4WFBQAcPXoUETdu3AgAHh4ehYWF/A0ZEbGoaFta2pji4sP8NqsFFEIdo+np6Jo1awBALBYfO3aMrza5S6Dvvfce95/btm3jTjL5defOuwkJUFT0K+8taxo9T0j+sWfPnkWLFgkEgm3bto0aNYqvZufPn6+vr79v37579+4BwEcffWRqaspX42oyWRwAmJh48t6yplEIdcyAAaBe1SyRQNeuvLV86tSp6dOnq1SqdevWBQQE8NYugJ2d3ZQpU6qrq3/66Scem61JoXgkl98RCk0MDV/TUBeaQyHUMUol7Nz55Ou8PNDj6cra9evXJ02aJJfLFy1a9Pnnn/PTaA0LFiwAgC1btpSUlPDeOADIZJcA0MSkv0Cge9caKYQ65s4d2LcPoqIAAFJT4dEjXtq8M2bMGKlUOnXq1FWrVvHQ4nMkEsmQIUNKSkq2b9+uifbLy+MAwNjYQxONaxqFUPd8/TUsWQJ8VV158OCBt7d3fn7+iBEjfv/9d24ZpyZwF103bNigVCp5b1wmiwcAExN33lvWAgqh7unQAaZNA/URy8MD/P1h7Vo4cwbKyhrXVHl5ua+vb2pqav/+/Q8fPiwWa/AZWV9fX2dn56ysrPDw47w3/jSEOnkk1L0JNAGAOXNg6FCwtITCQoiPh/h4+OsvAACRCFxcQCJ58sfdHQwM6mykurraz8/vwoULTk5O4eHhmrhiWZNQKFy8+MeNG41Wrx7+1lt8tlxenlVV9UAsthKLdbM4Iut7JKRx/vMf3L8fEfHCBRSJ8MQJzMnBfftw7lz08kJDQwT458+QIQESiYRbz5mcnFxzjbVKpZo+fToAdOjQITU1VTuDl8mwfXsEQH7LNe3du9fcvM2iRbP4bFSL6EioM44ehcxM8PKCjh0BAAYMgP/7P+jcGWxtwd8f/P0BAORyuHIF4uMhLg7i4uDu3fP37mVcvnyZa8HS0tLDw8PDw8Pd3f3nn3+OiIjQ19ePjIzs3r27dn4EY2P4+GNYtQo2bIC9e3lrNi4uTiotMTFx4K1F7aIaM7ohLg5GjACZDI4dg4bfRS8pKbl+/frly5djY2NjYmLy8/Off82NGzdee01799Zyc6FrV1AqIS0NHB35aXPo0KExMTGRkZHckxm6h/WhmLzc7dvYsSMC4PvvY3Pq3969e3fr1q0CgUAoFBoYGPTq1QsAVqxYwd9IG+SDDxAAP/+cn9YUCoWJiYlAIHjwQJeeIayJQtjSFRZit24IgOPHY3U1Dw1yRT5DQ0MjIiIAwM3NjYdGG+P6dRQI0MwMm1Mu49GjR0qlEhGvXLkCAN26deNtfFpH54QtWmkpjB0L6eng7g579/KzPoa7InrgwIEdO3ZYWFhcvXr19u3bPD5S9FK9e8Pw4XDyJGzbBgsW1PkyhQIKCiAnpzw7OzI7OzsnJyc3N/f+/ft5eXnZ2dnl5eVZWVmdO3eOi4sDAA8Pnbw58QTrTwFSp6oqHD0aAdDZGet4sLYpMjMzBQKBmZlZRUUFt0b0+++/5631hgkPRwC0t0d1abWUFFy1CgMDceJE9PBAW1sUiRAAbWwUL/x3a2pqeuXKFUScOXMmAAQHB2v5R+ARXZhpoRBh+nTYuRNsbOD8eejShc/G3d3dExISwsLCVCrVxIkT3d3dueOJ1iDCnDng7w8jRjz5zr598Pbbz7xGIABra3BwQGvrSQ4O9jY2Nvb29nZ2dra2tg4ODlyRUgDo06dPUlLS+fPnuWm2LqLpaAu1cCHs3Alt2kBEBM8JBAA/P7+EhIT9+/dv2bKlTZs2CQkJd+/e1eY2gAIB9O8PGzbA8OEgEMCaNWBlBQsWgIMD2NmBrS04OIC1NejrA4AA8VBBwaOcnMzc3Ny0tLQzZ87cv38/Nzc3JycnOzu7srJST0/Pka8rrUywPhS/Inbv3t2rV685c+b8+eefGRkZzWxt9WoEQLEY+Xuw9hlpaWkA0LZtW3XJs/Xr12ukp7qtXYs9e+KvvyIifvUVhoXh7dt49iyGhODatThvHvr746BB2KkT6uvj0KF13lXkasC98cYbTSjB2ELQdJQHt27d6tOnj0KhUP/PNDc379Wr1+DBg728vDw9Pesq0/JCJ07AqFEgEMDu3bVnaDzq27fv9evXjx49CuXlhcHBoxwcbEJCNNXZi6xbB2ZmsHUrREbC+vXg6Ql+fqBSvfjF3t6XsrM/dnBwsLW1tbOzs7e35yaltra2FRUVgwYNunfvnq+v74EDB2pWSdUVFMLmys3N9fLy4q7UTZ8+PTExMT4+vtZtcXd3X2fnw+7u4OEB/fqBkdEzLRQWwrVrT27B37sHJSWwYQP06QPz5mlw2L+uXm0WETFs4EDrb78FKyuoqID798HWVoNdPmvdOrCygjZt4NAhsLYGLy8ICgIjI7C1BTs7sLcHW1uwt38yO3224mltKSkpQ4cOffTo0SeffLJlyxZt/QT8YXwk1nFSqdTNzQ0APD09y8rKlEold/MqJycnLCwsKCjIx8fHwsJiwIDV6vWcIhG6umJAAAYHY0wMyuUYHY36+njuHCLi7t2opZvnKSkIgJaWWF2NkycjAG7apJWOn1i7FnfuRET09cWRI/HIkWa1duHCBWNjYwBYvnw5L8PTJgph08nl8jfffBMA1Dtanjp1ytTUVF0DNzk5GREVCkVKSvH//oeffIJubqin98waa1NT/PNPfPddHDgQq6q0GEJEfO01BMATJzAkBAFw2DBtdYxYI4R376KJSXNDiIhhYWF6enoAsEm7nybNRyFsIqVS6e/vDwC2trZZWVncN3/++edaEw1bW9u33nrru+++O3mylFsgUlWFCQkYHIwBAejqiu3b4/HjuGABfv89/vCDdkO4dCkC4Jw5WFKChoYoEvF5O/Jlrl3DtLQnXx8/jnfv8tAmNxcViUTh4bq0qzaFsInmzZsHAObm5levXq35/cePHx8/fpybiHbo0IGLokgkNjHhbj2jv/+TiSh3Ma+0FKOjccEClMvR3R3XrNFiCK9cQQDs2BEVCpwwAQFw61Zt9a0py5Yt8/La0qYNnj3LeigNRiFsiu+++w4AxGJxdHR0/a9MT08PCQlZsmTzwIG1H/YzMEBPTzxy5EkIEfHkSbSy0mIIEdHZGQHw7Fncvh0BcPRoLfatKZ9+igBoYYHJyayH0jAUwkb7448/uAcRQkNDG/XG6mpMTsYdO3DuXJRIUChEADxyBM+cwaVLn7zmww9x7Vr+x1ynRYsQAOfNw+JiFItRTw+LirTYvUYolThlCgKgrS0+PVFo0SiEjRMREcGd/f/4Y3P3/ZFK8eTJZj1JwIO4uCeLOFUqHDMGAfC335gOiB9yOY4ciQDo6ooPH7IezctQCBshLi6OK8TyzTffsB4Lf7p2RQC8eBF378ZZszA+nvWA+CGVopsbAqCHB5aVsR5NvehmfUNlZGR4eXkVFBS8//77O3fu1FxpQG1buRJycmDePLCygtxccHKqrziUTsnNBS8vyMqC8ePh0CHeCiXz7pUNYVVV1ZtvvpmSkjJ8+PDx48d7eHj06NGjyWuaioqKvLy80tPTx48ff+jQIb0W+/tsssWLISEBeveGc+dgyRLw9WU9IH7cugWDB4OpKcTEgEOLrUHD+lCsKe+++26tn/T52+gNVFJS8vrrrwOAh4dHWQuf2TTN+fM4fvyTrx8/RhcX1NnF0M+Lj8fsbPz6a1Q/Nfnpp/jwIc6fj+oNhRcvxpQURuN7VZ+sX758+Z9//mloaPjOO+/07t2b27kyMzMzNjY2NjaWe42NjY27u7u6+ljbtm1f2FR1dfWUKVOuXLni7Ox85MgRExMTLf4c2nLhAowe/eRrc3NwdoaMDOjZk+mYeNO/PwBAZiZcuwYTJoCrK6SnQ3U13LkDlZVPXpOVBTIZsxG+giHctWvXsmXLRCJRSEjI5MmTCwsLP/vsM7FYLJVKk5KSYmNjz507FxcXl5eXFxYWFhYWxr3LxsaGe+hBIpFIJBIjIyMAQMSPPvro2LFjtra29exZq/MEgmeeX0CEV+aMt4blyyEwEKKj//nO3bvAnaCUlrIaFMCrF8KIiIgZM2YgYnBw8OTJkwFgzpw5hw8f7t69u0QiGTx4sI+Pz5dffikUCjMyMtR7OycmJubl5YWGhoaGhgKAWCzu27evh4dHVlZWREREmzZtIiIiuvD+aG3LMWgQ/Oc/MH8+AIBUCpmZ4OTEekz869UL+vT5Z08rANi9GywsAADS0lgNCgBerXPCS5cucdPFZcuWqb85evRoofCZLTfatm07evTopUuXHj58OC8vDxGrq6uTk5N37NjBbe+sr6/PvdLW1lZPT4/HPWtbrsWLccwY/Pe/ccAAHhZTtzzvvIM3b6JUiv36oacn5uejry/evPnkb6dOxbg4ZmN7dUKYnp7OTRdnzapdDr20tDQmJiY4ODggIMDV1bXWx5CNjY2Pj09QUFBYWNijR4+4158+fTooKEgkEnHzWBY/kNY9eoTXr79Kl2Rq4kKIiH/+iQAUQg3Iycnhpos+Pj7VL6vOmZOTc/DgwcWLF48cOdLc3LxmIEUiUa9evWbMmHHr1i1EHDZsGADs3r1bKz8E0aC//kJ1ceDNm7GsDA8e/GcxTUQE5uWxGtorEcJaT9Y29u05OTn79u3jJqKGTx/hvnnzJiJu2rQJAPz8/DQwaqJVEydiv36YkMB6HC+i8zfrq6qqxo8fHx0d7erqGhMT065du+a0JpfLr169mpCQMHv2bKFQmJ+fb2dnZ2hoWFhY+GrenGgdysrAygrkci1X8Ggw1p8CzfLCJ2v5NWjQIABo7AMTpEXZuxcB0MuL9TjqoNs79X7xxRehoaFt2rT5+++/NVQ208/PDwD279+vicaJdnC/vcmTWY+jDjo8HV25cuWSJUvEYvHff/89cuRIDfVy//79zp07m5iYFBYWGtUqk0Z0gVwOHTpAaSlkZPC2GRu/dPVIGBISsnTpUqFQGBISorkEAoCDg0P//v3LysqOHTumuV6I5kRFQWkpSCQtNIGgoyH8+++/p0+fjogbNmyYMmWKprujGalO435vfn6sx1E33ZuOxsfHjxgxoqysbOnSpStWrNBCj5mZmY6Ojm3bti0oKBCLxVrokfCluhqsreHRI7h5E3r0YD2aOujYkTA6OnrIkCFlZWUzZsxYvny5djrt2rWrm5vb48ePT5w4oZ0eCV9iYpKcnCJef13eYhMIOhfClStXyuVya2trbttnrfVLM1IdtXfv5vh4nwkTvmc9kProWAi5Sp4uLi56enpbt24dOHBgamqqFvrl7kYeOnRIoXjxnpWkBVKpVNyjan5+k1iPpT46FsJ169YJBIL4+Pjy8vJLly5dvHhRO0cnFxcXrtb96dOntdAd4cXZs2fz8/OdnZ379OnDeiz10bEQ2tvbe3h4lJeXR0VFaXmKyF2GpRmpDjlw4AA8PZVoyXQshFDj9GzUqFEWFhaJiYkZGRla6/fgwYNKpVIL3ZFmQsRDhw4BhVAT/P39BQIBt9+6t7c3PP3A07Q+ffq4uLgUFBScO3dOC92RZrp06dL9+/ft7e37c0VmWjDdC2GXLl1ef/310tLSEydOaHlGytXLoBmpTuB+TVOmTGn5FWJ1L4RQY0Y6btw4MzOzuLi4e/fuaa3fAwcOqOra1pmwhoipqam7du3avn076MJcFHQ0hNw1koMHDwqFwnHjxiGiRmekiYmJO3fuBACJRNKpU6ecnJwQ7W7vTuonlUqjo6OXLVs2YcIEKyurHj16fPDBBzKZTCwWX716lfXoGoDlc1TN0Lt3bwCIiorau3cvAAwePFhDHWVkZFhbW3NnoYjIlcN49913NdQdaYiKiorY2NgNGza8++67js+ty7azs5s8eTJ37iASifbv3896vC+hqyFctmwZAHz88ccymczY2FgoFObk5PDeS1FRkYuLCwCMGDGisrLyv//9LwAIBIKDBw/y3hepX80qJAbP7pZRs7Z6RkaG+i1BQUEAYGRkdLZl7xiqqyFMSkoCAEtLy+rq6kmTJgHATz/9xG8XMpls4MCBACCRSEpLS3ft2iUQCLiawvx2RF4oNTU1PDyc2/O4ffv2NVMnEolcXV0DAgKCg4NjYmKqqqoQMScnJywsLCgo6M0335w9ezbXSGBgILxoQ+UWRVdDiIg9evQAgJMnT/7xxx/cwYrHxquqqsaNGwcAjo6O+fn54eHh3CYwGzdu5LEXUpf33nuv1iSzZmXK4uJiRCwpKVFXsqxVmrlHjx5cOwqFgrs2Y2dnp6ECKM2nwyFcsmQJAPzrX/8qKSkxNDQUiUQFBQW8tKxSqT788EMA6NChQ2pqalxcHFflKSgoiJf2Sf0UCgVXf9nJyenrr78+ePBgbm4u9311jWaJRFKrprO5ubmXl9eiRYvCwsIKCwvVrVVUVAwZMgQAuIWH7H6sOulwCBMTEwHA2tpaqVSOHz8eAH755RdeWl60aBEAGBsbX7hwQV1TeObMmbw0Tl7q1KlTANCpUydELC4u3rNnzxdffDF48GBjY+OaqTMwMBgwYMC8efNCQkJu375dT4OPHz/u27cvNLUopqbpcAgR0cnJCQDOnTv322+/AcCYMWOa3+bPP/8MAPr6+pGRkbm5uQ2vKUz48tlnnwHAV199hYhxcXG1JqX+/v7cqWBFY4qFN6o8tJbpdgi//PJLAPj888+Li4vFYrG+vn4z5xt79+4VCoUCgWD79u1SqfQV35awRVKpVA4ODgAQHx+PiHK53NfXd/ny5ZGRkdwmBU2mntQEBASoVCqexssD3Q7hxYsXAcDe3l6lUo0ePRoAtm/f3uTWTp06xV37XrNmjVwuHzVqFAB069at5gkG0bTz588DgIODgyZyot4yaOnSpbw33mS6HUKVStWpUycAuHTp0tatW93c3Pbu3du0ppKSkrh9QufMmaNSqQICAkCTNYVJXRYuXMjNbjTUvvpCd3BwsIa6aCzdDiEizp8/HwD+/e9/N+eD8/79+9wU6J133lEqlVybbdq0uXLlCo9DJQ3BnefHxMRorgvulq9QKNy3b5/memk4nQ9hTEwMd8i6detW03L44MED7pbj8OHDKysrV61aBQBisfj48eO8j5bUj7vi3bFjR4VCodGOVq5cyf2WW8LmkzofwqSkJFNTU0tLSwAwMzNTL1/KzMxsyNurq6sHDBgAAG5ublKpNCQkpEV9RrY23L1f9XoXjVLPdxITE7XQXT10O4TqaWSXLl3s7e1rrbFwcHDw8/P74YcfTp06VVJSUlcjmzdvdnZ2zsvLi46O5sqKtpyzhdbmtddeA4Do6Ggt9KU+87eyskpLS9NCj3XR4RCq78AOGDBAJpMhYm5uLrd68PnVhgDg6OioXm1YWVlZs6ny8vL4+HhTU1MAWLJkCaMfqLVLSUkBgPbt22vtPl5VVRV3Ub19+/Y3btzQTqfP09UQNmQt0gt3/+To6+tLJBJu4pqcnJyent6xY0cAeO+991rUHaRWhavmPGPGDG12KpVKuTqa/K49bhSdDKFSqVSvyr17925D3iKXyy9durRp06aAgAAXF5daJQ+4e0fe3t7cenzCBLfdcnh4uBb6evjw4aeffnrixAlE5A6GAwYM0EK/L6STIZw7dy63YPfatWtNa6HWAnwLCwtDQ8NmLsggzXHnzh3u0lqjFqM1GbfOcfTo0eoFOufOndNCvy+keyEs++EHj549DQ0NeXxSk3tO/++//+arQdJYq1evBoCpU6dqpztuxf+WLVsuXLigXnSlna6fp2s1Zn7/3eSrr07eu3csNJQ7J+QFV+WeyqgxxP3P105dJq5Un1Ao9PX1bRFF2VilvynCw1FPDwGQ7ydrb926Bdq9Lkdqys7OFggExsbG2lkov3v3bgAYOnQoPl2gw7b+he4cCePj4e23QaGAoCAIDOS3bfVWE2fOnOG3ZdIQXC2msWPHclfItNAdAPj5+V29ejUjI6Njx46DBg3SQr910ZEQ3r4NPj4gk8HMmbBsmSZ6oM3PGNLmphHl5eWRkZECgWDixIncr3vSpEkikUgLXddJE4dXuVy+aNGib7755sqVKzxM8HJzsUsXBEAfH9TYdJErUKmFVYukloyMDJFIZGBg8PjxY0S8c+cOX2VKXogLnqenJz5doMN8kbBGQljz4F7rtnhTrkHNno0AOHAgymQaGOw/uOqGZ86c0WgvpJZ58+YBQPv27RExKSnJxsZGIpHUs8ywmaZOnQoAq1ev5i4EWFhYML85zH8IuWKPIpFo0KBB3bt3r3XRydLS8v1JkzAoCCMisKiozlYUCszPf/J1ZSUuWIAPHvA+1Fq+Wbz4cze3G8uXa7ojUhNXT4Qrr6wu9Mo90cJ7X3K5nHtq9Pbt2ytWrACADz/8kPdeGovnEP7yyy9cAg8cOMB95/m6dHP79kWAJ39sbNDHB4OC8Pjxfw50GzfioEE4fTp6eGBkJL8jrE98PAKgnR3SyjXt+uCDDwDAyMgoJiaGK3kOT5/t5Lej8PBwAOjbty8icrVLjhw5wm8XTcBnCMPCwvT09AQCwbZt2+p6zb1791KPHMEvv8Q33kBT03/SCIB6ejhkCCYn45AhyJ2YPXyIPXpgeTmPg3wJR0cEwPPntdcjQcSnxZ24VVDXr19XVzngt5cZM2YAwPLlyzMzMwUCgdYW6NSPtxBevHiRu768YsWKhr5HocDkZNyxA+fORS8vNDDA4cNxyxZcteqf10yahJcv8zXIl1uwAAFwwQLt9UgQEVGhUHC7R3DrgU+ePMnV+1m9ejWPXXBrtVNSUtasWQMtZk8RfkKYkpLSrl07APjkk0+a3kp5Od69iz/9hD/88M83/cVk/bUAAApBSURBVP0xLq75I2yo8+cRALt0oRmp9pWXl3OroHr27Pnw4cM9e/Zwle9+++03XtqPjo4GgO7duyMi9yT3X3/9xUvLzcRDCHNycjp37gwAvr6+PFzfv3QJx49/8nVlJb72GmrsQtkLqFTo4IAAmJCgvU7JUzWfES0rK/vpp5+4C+y8LOudPXs2ACxZsoRboGNkZNRCKlk2N4TPP1nLg/nz0d8fV6/G4cPx99/5abPhAgMRAL/+Wtv9EkREzM7O5j7TuSq9X331FQAYGxvHxsY2p1mlUmljYwMAiYmJmzZtAoBJkybxNeZmalYI1U/W9uzZk+fngO7cwdOnUZM3bet0+jQCYLduDLomiFjj7GbWrFkqlYq7mmJpaXnz5s0mt8kVBOvSpYtKpRo2bBgA/PHHHzyOuTmaHkKlUsntmNvwJ2t1g1KJNjYIgE19WJE0n/o637fffqtQKCZOnAgADg4O9+7da1qDv//+u7Gx8RdffFFUVKSnp6evr99yHh9tegib/2Rty7V3L549i3zfpCKNcuTIEa5K748//lheXu7l5QUAvXr1anJ4ZDJZUVERdyvb29ub39E2RxNDyJUD4e6u8jugFuHmTfT2Rm9vHDYM9+xhPZrWa+fOnVwFytDQ0AcPHnBLPd94443m3NwbPnw4ANRzK7vJNmZnf5aWxv1p1BubEkL1nrUtfzfwplAqsV8/TElBRJTJ0MMDm3EqQpqJW1zG1WJWV7h86623Gn4dXiqVxsTEfP/99z4+PlZWVmZmZmKxWBMb9/4rLS1PLm/CGxsdwld/z9rMTBw+/J//XL8ef/yR3WjIkxXe3K4E3GKaN998s55L8VxRr40bN77//vvPr17mTjW5W5H8jvNfaWnXyspy5fJHjXzWR6/hDz0BQHx8/Ntvv61QKIKCggL5frK2pSgrg5qPlpqYwIMH7EZDYP369bm5uaGhoePHj4+NjY2JienevTtXplktNzf38uXLsbGx586dS0xMrKioUP+Vvr5+nz59vLy8JBKJRCKxs7MbNmzYtWvXvL29T5w4we9jxHsLC42Ewh7GxlM6dGjE2xqe19ayZ21ZGbq4oPrxlpkz8fBhpgMiqN6pztnZOT8/H5+dZHZ47l98PYWescbyEn43DNXGdHTLli0CgWDChAmvfiGWdetwyhT86y/89lscN44uk7YE6mUh+vr63JlhTTY2NhMnTly5cuWJEyekUulLW0tLS+Nrw9AqlWrxnTvhDx40OYQCRGz4YTM8PHzEiBG1tg5/dahUEBMDb7wBAHDtGiQmgp0djBwJbGsfkKeysrJcXFyqqqoAwMTExM3NTfJUz549G9taXFzciBEjZDLZ0qVLucs/TSBTKhdmZMSXllro6X1qZzfGwsK0Cf9amvMZ8KoJDESBADdtYj0OUqebN29+++23ERERvFQhaeaGoQ+qqqbeuCFJSBh97VpqM9ZsUgif+u47BECxGLWyJRBpIZq8YWh2ZeWkpCRJQsJbSUn3mlcEgEKIiIh//IECAQqFGBrKeihE25qwYWiKTDbq6lVJQkLAzZuNvSHxPAohYkTEk5rCdD+wtWrUhqFxJSVDr1yRJCTMTkuT8TErbtyFmVdQfDyMGAFlZfDNN7B8OevREDYQcdq0abt27bKxsYmNje3atWtdr9y9e3e4s3OaSOTdvv23nTvr8VI8v/k51l1FaWnYoQMC4IwZ9Ch9KyeXy7k90pycnPLVlf6etX79eoFAYGFruyU9ncd/Lq03hIWFhd26dZsxeHC1r6/magoTHVJSUtKvXz8A6N+/f2lpac2/UqlUXC1PgUDAY9kbTisNoVQq5SreDRgwoFzDNYWJDuE+mgFg5MiR8qd33qurqz/66CMAEIvFISEhvHfaGkOo3qnc2dlZoxXXiS66ffs2t3f61KlTlUplWVmZt7c3AJiamh49elQTPba6EKpUqoCAAACwsbHJzMxkPRzSEsXHx5uZmQFAYGAgt6dDx44dEzRW+6vVhfDzzz+HBl+MJq1WVFSUvr4+d/HSycnp9u3bmutLR7ZG48natWs3bNhgYGBw6NAh7pyQkBeysrIyMTERi8UCgWDBggXcXqIa0rpC6ObmZm5uvnPnTq7GASEvdPr06WHDhj1+/LhLly6IOG/evKioKA32p7mDbMtUWFjIegikRTtw4IChoSEATJ48uaKiYuHChQBgbGx84cIFDfXY6kJISD02b94sFAoBIDAwkNsTSqVSTZ8+HQAsLS1v3bqliU4phIQgPns7PigoqOZfVVVVjRs3DgAcHR3z8vJ475pCSAgqVKr5S5YAgJ6e3vbt259/gUwmGzhwIAD07t27uLiY395b14UZQp5Xhfh1ZuadyZPtXVwOHTo0bdq0519jbGx8+PDh7t2730pLW3v1ajWvjz20+qcoSOtWolDMz8i4XlbWVk8vuHPnXm3b1vPizMzMVbm5iYaGo9u1+2/XrnwdwSiEpPUqqq6em56eXlFhIxZv6tati6HhS99yu6JiVmpqqVI5pUOHrzp14mUYNB0lrdSdysrpt26lV1Q4Ghn9z8WlIQkEAGcjo7VOTmKh8K+iou35+byMhEJIWqMkmezj1NSCqqp+Zma/ubhYPVtKuH4SM7NVXbsKBYKfcnLC+CgMTdNR0iqUKZUypZL7+oZMtjQrS65SjbCw+G+XLmJhUw5F+4uKVt27JxQIVjs6Dqv3TPKlGlcGnxAd9VteXnpFhbVYDACeZmaI6GtpuaRTJ1FT61P4dehQUFX1W37+kszMn7t162tq2uSxUQhJa+FvZTXU3Jz7uouRkbORUTMbnG1n90ChiC4uzpLLY0tKuG8OMzd3beT+FjQdJa3CxuzswurqToaG5iLR21ZWfDWrRLwvl9+prDwnlfp36AAANmJxW73GHdvoSEhai+7Gxm4mJk07A6yLSCDoYmh4p7LSUk/vtaZuD0EhJK1FF0PDPs04c6tfVHHxjfJyAPje0bGx21FQCAnhwRgLizl2dk17L4WQtArTrK35nYjyiEJIWgXzRl4saZR2enr2BgZNfjtdHSWEsRZ6gCak9aAQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEsf8HUETPtad+5hMAAAJYelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIUARiZSBuYGRjSADSjMwQmomJg0EDSDMzsTmAaRY2hwwQzcyIxIDKMEAF2CFamNkhAkxAMyEq4GZBzcYwU8AB1TKECXhsx3CGApBm4QRTjKgUXDE7RDEzhm5UJzIyczMwMjAyMTAxKzCzZDCxsCawsmUwsbErsHNoMHFwKnByKXBxazBx8TDw8DLw8mUw8fEn8AskCAgqCAopCAlnMAmLJIiIZjCJiiWIiTOISzCISzKISzGISWcwCcgADZJNkJXLYJKTV5BXYJBjTpDhTZAWSnBiBlrNxiwny8bKwsrHKyPAzyYsIiomLSQ+jRHoJgZYnDUpqR3k1TE+AOL8lhA7uK7h+n4QO9r674FnBv/BbF+Nuwe+bkoAs29xvzkQHMNjD2Kf/nH6wFTWq2C2AdPcA7Gha8Fsl3uVB1LE5BxAbL6P0gc87LjA7EdTt+//tzIQzA6YyGH76KItmP3b67+dvMxRsN7DE1rsz8xrAovPMFVwqE4tBLNfVqQ7WN2ZAWZvD53r4PuyAcxemTnZIeWpMpitOnmzg6rLTrA5vmeWOEw4s9QGxP6wPduhymbaPhDbXsvPQdDmDtgvc+zaHaISTcF+/6i3zcHQTxHMzo245tA8MQPMftX4zSHr1XQw++i2TQ52RVPAbLFfPx267DTA7JNfjzgUvO8Gmykf6+5QvU8S7J7Fcn0HSlQm7wWxNxquO7CZcwZYjYrf/AOrPdTBeo0S9x9I3JIHMRMAoQiiNYhfYngAAAMOelRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVbLbhsxDLz7K/QDEcSHSPHQQ94oijhAk/Yfeu//o0MZ0TqI0F0v4ZVH1JAcEj6VvH4+/Pjzt6yLH06nUtp/PhFRfktr7fRS8ku5e3z+fi7377d3Hyv3r7/O729FpEjHHtyfsbfvry8fK1Tuyw21KkOUe7nh6hHdtLTa5nVs5oQGkAQS2FRtiNEOKeW13HgNEo2eyAix0TZITZ8GJJHBZ6vD3YU2yJ5Ir+Km6vi96+CxO9wuLsWVGPFVM2Wk4ivQE6g1mnVyAKUr2dgARwIFQKWgwlW9EfkGGOWcGVSxPgaAZK31XTDUEklAKhsXqew2AV+RWSAsiwAKl2E9sqpfgYykt6oxjALRdIng7dkCjwSP3RCt1jZobBNJWRyuvQk7gaM7DbjeALM2Uo3Me4dHdxtjl3Gy8obfA0CwwNGooG89Zm20WkPxMpHd2nDbAQcS2XE0ORKAhKpL8A4Y8NgrKaQ4T+TGsjsampnBDKHGqUgOUdmVhmkimUl49oNz69u4mWc4zCYhqRA0W7OdglgmTQthvAHZuUnsRMlZHQNycGjK00TG2BUcbf1UvDo01Ecq3pEk22mIDche+9AB3QFpMkK3SJ8+AXMfydMYh28jGpMn9d6aZJYaYtv7zPaRStRbj2yzxrztnhxxyU7R4dqyRg3S1N3pMudbBzTlnscTJkzspCTZQDkPHIMlZkyUs24HlYvXGM0gfiTfObzv5PR4fvg0by8T+O71/HBM4Lz5mLJ4KXKMUrRe0WNe5t2PoYiXYsfoUzx+DDjCM44xxnjQB0/P39ZxGBX5XE8mmoauJhCnobUnO22uLJaUNNMsopQ8YWhxpSQLQ4suJV8YWoxzDk+zSKPBaZq46mRNw9ctq2l4cUZraho+0sq5ggm6OHNyhuHFGS1FaXhxRutcVhZntMhlZXFGK+j0szhD8ppR8OLMydkh3CsJa5n6vFIqpZFFWTLNMHKIQXIXHXKQzDKcH3mXzDJf5ysVeK23fP/4t4Dvp3/YOpQzBzkWfAAAAYR6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwlkjuO5DAMRK+yoQ3IAv8U0ZjIwITdh1C+yaZz+C16AEcPxVKx6Pv+bN57H/fX+30fX5/z3rL/7eO9dT/8+D7xfZ9bz79y7s2f+8/PcTFNXWrjkplVHuN1FQjzuHjG0mCQnMXqTao0FkiAMOe4aK7M1F+VZpgPmm5Llj0yTWMZsAoTBbFZFN5E3WDwuhTEuIZMS4L2hSim4U04iByEQUxi6JRERJqkqj0us6C0RlYrYMPTtQo2DJFHDpu0eCG0TCeVhEkmLyh0Bkc6FJnRCoQD4B5B/gcERTie8aBWOEYYCgSy1GrAVgiASEKixY/tQiGoRkpNG4iwaveXQv74igTGsSrKp3yMS9EQiAthoQBYAgnsVPvtnIm1Y6DDxOPRQ46Y3CR0lbcGp8vVNiGrl4zJ/pyO4G8dhtkpum4S8eckhhtZByYUY4G1LgdUzx7klev3cvkEgjXjD3lEtQh/CDKmFC5z/vwH2dKFHxJGqcgAAAAASUVORK5CYII=</base64_image>
478.496
5.0056
[ { "content": "Determine the molecule visualization of the chemical structure 'CCOc1ccc(C=NNC(=O)Cc2csc(Nc3cccc(C(F)(F)F)c3)n2)cc1OC'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxUVf8H8O/MwLCLKCKrC6AYbuQIqKi55IZIKvKqLNJMK31CLe2x1MJHn7RcSa2flk+5hKnkhpCguCIugLgAKiCCyo6KAwwwMDPf3x9XJ0RBljtzGPm+X/5BOHPOIfzMPffec79HgIhACGFHyHoAhLR2FEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEpMUJCgpyc3OLjo5mPRAtESAi6zEQ8o9169YtXLhQT09PqVROmTJlzZo1nTt3Zj0ozaIjIWkpEHHZsmULFy4UCAROTk4GBgahoaE9e/ZcsWJFRUUF69FpEhLSAlRXV8+YMQMAxGJxSEgIIt6/fz8gIEAgEACAvb39jh07VCoV62FqBIWQsFdWVjZu3DgAMDExOXr0aHFxcXZ2NvdXFy9e9PT05A4YHh4eFy5cYDtUTaAQEsYePnw4cOBAAOjYsWNCQkJubq6bm5urq+vDhw+5FygUil9++cXKygoA/Pxcs7I+qqrKZztmftGFGcJSVlbW2LFjU1NTu3btGhkZqVKpxo4de/fuXVdX16ioKHt7e/UrpVLpihUr3n77lFCYKBK1sbFZamU1TyAQMxw8XyiEhJnk5OSxY8fm5OT07t07MjIyOzvbx8enqKjI09MzPDzc0tLy+bfI5bdzchYXF4cCgIGBs53dSgsLf60PnG+sD8WklTp16pS5uTkADB8+XCqVHjt2zMzMDAAmTJggk8nqf29JyYmUlN4JCZCQAKmpI8rLr2lnzBpCISQMHDhwwNDQEAAmT55cUVGxY8cOfX19AJg2bVpVVVVDWlCpqgsKNl692i4hAS5f1rt7919KpTQ7+9/p6ePS08fJ5fc0/SPwiEJIXiI2NnbWrFnbtm17/PgxLw1u3rxZKBQCQGBgoFKpDA4O5u5DLFq0qLE3IRSKR9nZiy5fFicnv/bo0f7MzGmIqFAUq1QNSnILQSEk9UlKShKJROqTFxsbG39//+Dg4JiYmIqKisa2plKpgoKCAEAgEAQFBalUqoULF3L/uW7duiYPsrw8uazsQmnp2Rs33MrLk5rcDisUQlKnvLw8R0dHADAyMnJzc+MmkGoGBgaenp6BgYE7d+68devWSw9iCoVi1qxZACASiX799Ve5XP7OO+8AgFgs3rNnDy8DLi4+kJY2JjV1WHX1A14a1A4KoY7ZtQuvPb0MsW8fXrqkqY5KSkr69esHAO7u7qWlpYhYXV2dnJy8Y8eOuXPnSiQSbkqpZmZm5uXlNXfu3B07dmRmZtZqraKiws/PDwCMjY3Dw8NLS0vHjBkDAKamplFRUfyOPDt7cUHBj/y2qVEUQh0zdy4ePfrk68WLcd8+jfRSVVU1evRoAHB2di4oKHjha0pLS2NiYoKDgwMCAlxdXWtddbexsfHx8QkKCgoLC8vIyBg8eDAAtGvX7ty5c/n5+Vy8ra2tExMT+RqzTBYvlR4tL7+WljZaKj368je0GHq83esgrwpEnDlz5rFjx2xsbI4fP84tVXmeqanp4MGDuXQBQG5ubnx8fFxcXFxcXHx8fF5eXnh4eHh4OACIRCKlUtm5c+fIyEixWDxkyJD09HRHR8eoqChnZ2e+hq2nZ1Vaeqa09LSV1Wdt2ozlq1ltYP0pQBpn7lx0d0dvb/T2RmdnjRwJv/jiCwBo06ZNcw5TOTk5+/btmzt3rpeXl4WFBQAcPXoUETdu3AgAHh4ehYWF/A0ZEbGoaFta2pji4sP8NqsFFEIdo+np6Jo1awBALBYfO3aMrza5S6Dvvfce95/btm3jTjL5defOuwkJUFT0K+8taxo9T0j+sWfPnkWLFgkEgm3bto0aNYqvZufPn6+vr79v37579+4BwEcffWRqaspX42oyWRwAmJh48t6yplEIdcyAAaBe1SyRQNeuvLV86tSp6dOnq1SqdevWBQQE8NYugJ2d3ZQpU6qrq3/66Scem61JoXgkl98RCk0MDV/TUBeaQyHUMUol7Nz55Ou8PNDj6cra9evXJ02aJJfLFy1a9Pnnn/PTaA0LFiwAgC1btpSUlPDeOADIZJcA0MSkv0Cge9caKYQ65s4d2LcPoqIAAFJT4dEjXtq8M2bMGKlUOnXq1FWrVvHQ4nMkEsmQIUNKSkq2b9+uifbLy+MAwNjYQxONaxqFUPd8/TUsWQJ8VV158OCBt7d3fn7+iBEjfv/9d24ZpyZwF103bNigVCp5b1wmiwcAExN33lvWAgqh7unQAaZNA/URy8MD/P1h7Vo4cwbKyhrXVHl5ua+vb2pqav/+/Q8fPiwWa/AZWV9fX2dn56ysrPDw47w3/jSEOnkk1L0JNAGAOXNg6FCwtITCQoiPh/h4+OsvAACRCFxcQCJ58sfdHQwM6mykurraz8/vwoULTk5O4eHhmrhiWZNQKFy8+MeNG41Wrx7+1lt8tlxenlVV9UAsthKLdbM4Iut7JKRx/vMf3L8fEfHCBRSJ8MQJzMnBfftw7lz08kJDQwT458+QIQESiYRbz5mcnFxzjbVKpZo+fToAdOjQITU1VTuDl8mwfXsEQH7LNe3du9fcvM2iRbP4bFSL6EioM44ehcxM8PKCjh0BAAYMgP/7P+jcGWxtwd8f/P0BAORyuHIF4uMhLg7i4uDu3fP37mVcvnyZa8HS0tLDw8PDw8Pd3f3nn3+OiIjQ19ePjIzs3r27dn4EY2P4+GNYtQo2bIC9e3lrNi4uTiotMTFx4K1F7aIaM7ohLg5GjACZDI4dg4bfRS8pKbl+/frly5djY2NjYmLy8/Off82NGzdee01799Zyc6FrV1AqIS0NHB35aXPo0KExMTGRkZHckxm6h/WhmLzc7dvYsSMC4PvvY3Pq3969e3fr1q0CgUAoFBoYGPTq1QsAVqxYwd9IG+SDDxAAP/+cn9YUCoWJiYlAIHjwQJeeIayJQtjSFRZit24IgOPHY3U1Dw1yRT5DQ0MjIiIAwM3NjYdGG+P6dRQI0MwMm1Mu49GjR0qlEhGvXLkCAN26deNtfFpH54QtWmkpjB0L6eng7g579/KzPoa7InrgwIEdO3ZYWFhcvXr19u3bPD5S9FK9e8Pw4XDyJGzbBgsW1PkyhQIKCiAnpzw7OzI7OzsnJyc3N/f+/ft5eXnZ2dnl5eVZWVmdO3eOi4sDAA8Pnbw58QTrTwFSp6oqHD0aAdDZGet4sLYpMjMzBQKBmZlZRUUFt0b0+++/5631hgkPRwC0t0d1abWUFFy1CgMDceJE9PBAW1sUiRAAbWwUL/x3a2pqeuXKFUScOXMmAAQHB2v5R+ARXZhpoRBh+nTYuRNsbOD8eejShc/G3d3dExISwsLCVCrVxIkT3d3dueOJ1iDCnDng7w8jRjz5zr598Pbbz7xGIABra3BwQGvrSQ4O9jY2Nvb29nZ2dra2tg4ODlyRUgDo06dPUlLS+fPnuWm2LqLpaAu1cCHs3Alt2kBEBM8JBAA/P7+EhIT9+/dv2bKlTZs2CQkJd+/e1eY2gAIB9O8PGzbA8OEgEMCaNWBlBQsWgIMD2NmBrS04OIC1NejrA4AA8VBBwaOcnMzc3Ny0tLQzZ87cv38/Nzc3JycnOzu7srJST0/Pka8rrUywPhS/Inbv3t2rV685c+b8+eefGRkZzWxt9WoEQLEY+Xuw9hlpaWkA0LZtW3XJs/Xr12ukp7qtXYs9e+KvvyIifvUVhoXh7dt49iyGhODatThvHvr746BB2KkT6uvj0KF13lXkasC98cYbTSjB2ELQdJQHt27d6tOnj0KhUP/PNDc379Wr1+DBg728vDw9Pesq0/JCJ07AqFEgEMDu3bVnaDzq27fv9evXjx49CuXlhcHBoxwcbEJCNNXZi6xbB2ZmsHUrREbC+vXg6Ql+fqBSvfjF3t6XsrM/dnBwsLW1tbOzs7e35yaltra2FRUVgwYNunfvnq+v74EDB2pWSdUVFMLmys3N9fLy4q7UTZ8+PTExMT4+vtZtcXd3X2fnw+7u4OEB/fqBkdEzLRQWwrVrT27B37sHJSWwYQP06QPz5mlw2L+uXm0WETFs4EDrb78FKyuoqID798HWVoNdPmvdOrCygjZt4NAhsLYGLy8ICgIjI7C1BTs7sLcHW1uwt38yO3224mltKSkpQ4cOffTo0SeffLJlyxZt/QT8YXwk1nFSqdTNzQ0APD09y8rKlEold/MqJycnLCwsKCjIx8fHwsJiwIDV6vWcIhG6umJAAAYHY0wMyuUYHY36+njuHCLi7t2opZvnKSkIgJaWWF2NkycjAG7apJWOn1i7FnfuRET09cWRI/HIkWa1duHCBWNjYwBYvnw5L8PTJgph08nl8jfffBMA1Dtanjp1ytTUVF0DNzk5GREVCkVKSvH//oeffIJubqin98waa1NT/PNPfPddHDgQq6q0GEJEfO01BMATJzAkBAFw2DBtdYxYI4R376KJSXNDiIhhYWF6enoAsEm7nybNRyFsIqVS6e/vDwC2trZZWVncN3/++edaEw1bW9u33nrru+++O3mylFsgUlWFCQkYHIwBAejqiu3b4/HjuGABfv89/vCDdkO4dCkC4Jw5WFKChoYoEvF5O/Jlrl3DtLQnXx8/jnfv8tAmNxcViUTh4bq0qzaFsInmzZsHAObm5levXq35/cePHx8/fpybiHbo0IGLokgkNjHhbj2jv/+TiSh3Ma+0FKOjccEClMvR3R3XrNFiCK9cQQDs2BEVCpwwAQFw61Zt9a0py5Yt8/La0qYNnj3LeigNRiFsiu+++w4AxGJxdHR0/a9MT08PCQlZsmTzwIG1H/YzMEBPTzxy5EkIEfHkSbSy0mIIEdHZGQHw7Fncvh0BcPRoLfatKZ9+igBoYYHJyayH0jAUwkb7448/uAcRQkNDG/XG6mpMTsYdO3DuXJRIUChEADxyBM+cwaVLn7zmww9x7Vr+x1ynRYsQAOfNw+JiFItRTw+LirTYvUYolThlCgKgrS0+PVFo0SiEjRMREcGd/f/4Y3P3/ZFK8eTJZj1JwIO4uCeLOFUqHDMGAfC335gOiB9yOY4ciQDo6ooPH7IezctQCBshLi6OK8TyzTffsB4Lf7p2RQC8eBF378ZZszA+nvWA+CGVopsbAqCHB5aVsR5NvehmfUNlZGR4eXkVFBS8//77O3fu1FxpQG1buRJycmDePLCygtxccHKqrziUTsnNBS8vyMqC8ePh0CHeCiXz7pUNYVVV1ZtvvpmSkjJ8+PDx48d7eHj06NGjyWuaioqKvLy80tPTx48ff+jQIb0W+/tsssWLISEBeveGc+dgyRLw9WU9IH7cugWDB4OpKcTEgEOLrUHD+lCsKe+++26tn/T52+gNVFJS8vrrrwOAh4dHWQuf2TTN+fM4fvyTrx8/RhcX1NnF0M+Lj8fsbPz6a1Q/Nfnpp/jwIc6fj+oNhRcvxpQURuN7VZ+sX758+Z9//mloaPjOO+/07t2b27kyMzMzNjY2NjaWe42NjY27u7u6+ljbtm1f2FR1dfWUKVOuXLni7Ox85MgRExMTLf4c2nLhAowe/eRrc3NwdoaMDOjZk+mYeNO/PwBAZiZcuwYTJoCrK6SnQ3U13LkDlZVPXpOVBTIZsxG+giHctWvXsmXLRCJRSEjI5MmTCwsLP/vsM7FYLJVKk5KSYmNjz507FxcXl5eXFxYWFhYWxr3LxsaGe+hBIpFIJBIjIyMAQMSPPvro2LFjtra29exZq/MEgmeeX0CEV+aMt4blyyEwEKKj//nO3bvAnaCUlrIaFMCrF8KIiIgZM2YgYnBw8OTJkwFgzpw5hw8f7t69u0QiGTx4sI+Pz5dffikUCjMyMtR7OycmJubl5YWGhoaGhgKAWCzu27evh4dHVlZWREREmzZtIiIiuvD+aG3LMWgQ/Oc/MH8+AIBUCpmZ4OTEekz869UL+vT5Z08rANi9GywsAADS0lgNCgBerXPCS5cucdPFZcuWqb85evRoofCZLTfatm07evTopUuXHj58OC8vDxGrq6uTk5N37NjBbe+sr6/PvdLW1lZPT4/HPWtbrsWLccwY/Pe/ccAAHhZTtzzvvIM3b6JUiv36oacn5uejry/evPnkb6dOxbg4ZmN7dUKYnp7OTRdnzapdDr20tDQmJiY4ODggIMDV1bXWx5CNjY2Pj09QUFBYWNijR4+4158+fTooKEgkEnHzWBY/kNY9eoTXr79Kl2Rq4kKIiH/+iQAUQg3Iycnhpos+Pj7VL6vOmZOTc/DgwcWLF48cOdLc3LxmIEUiUa9evWbMmHHr1i1EHDZsGADs3r1bKz8E0aC//kJ1ceDNm7GsDA8e/GcxTUQE5uWxGtorEcJaT9Y29u05OTn79u3jJqKGTx/hvnnzJiJu2rQJAPz8/DQwaqJVEydiv36YkMB6HC+i8zfrq6qqxo8fHx0d7erqGhMT065du+a0JpfLr169mpCQMHv2bKFQmJ+fb2dnZ2hoWFhY+GrenGgdysrAygrkci1X8Ggw1p8CzfLCJ2v5NWjQIABo7AMTpEXZuxcB0MuL9TjqoNs79X7xxRehoaFt2rT5+++/NVQ208/PDwD279+vicaJdnC/vcmTWY+jDjo8HV25cuWSJUvEYvHff/89cuRIDfVy//79zp07m5iYFBYWGtUqk0Z0gVwOHTpAaSlkZPC2GRu/dPVIGBISsnTpUqFQGBISorkEAoCDg0P//v3LysqOHTumuV6I5kRFQWkpSCQtNIGgoyH8+++/p0+fjogbNmyYMmWKprujGalO435vfn6sx1E33ZuOxsfHjxgxoqysbOnSpStWrNBCj5mZmY6Ojm3bti0oKBCLxVrokfCluhqsreHRI7h5E3r0YD2aOujYkTA6OnrIkCFlZWUzZsxYvny5djrt2rWrm5vb48ePT5w4oZ0eCV9iYpKcnCJef13eYhMIOhfClStXyuVya2trbttnrfVLM1IdtXfv5vh4nwkTvmc9kProWAi5Sp4uLi56enpbt24dOHBgamqqFvrl7kYeOnRIoXjxnpWkBVKpVNyjan5+k1iPpT46FsJ169YJBIL4+Pjy8vJLly5dvHhRO0cnFxcXrtb96dOntdAd4cXZs2fz8/OdnZ379OnDeiz10bEQ2tvbe3h4lJeXR0VFaXmKyF2GpRmpDjlw4AA8PZVoyXQshFDj9GzUqFEWFhaJiYkZGRla6/fgwYNKpVIL3ZFmQsRDhw4BhVAT/P39BQIBt9+6t7c3PP3A07Q+ffq4uLgUFBScO3dOC92RZrp06dL9+/ft7e37c0VmWjDdC2GXLl1ef/310tLSEydOaHlGytXLoBmpTuB+TVOmTGn5FWJ1L4RQY0Y6btw4MzOzuLi4e/fuaa3fAwcOqOra1pmwhoipqam7du3avn076MJcFHQ0hNw1koMHDwqFwnHjxiGiRmekiYmJO3fuBACJRNKpU6ecnJwQ7W7vTuonlUqjo6OXLVs2YcIEKyurHj16fPDBBzKZTCwWX716lfXoGoDlc1TN0Lt3bwCIiorau3cvAAwePFhDHWVkZFhbW3NnoYjIlcN49913NdQdaYiKiorY2NgNGza8++67js+ty7azs5s8eTJ37iASifbv3896vC+hqyFctmwZAHz88ccymczY2FgoFObk5PDeS1FRkYuLCwCMGDGisrLyv//9LwAIBIKDBw/y3hepX80qJAbP7pZRs7Z6RkaG+i1BQUEAYGRkdLZl7xiqqyFMSkoCAEtLy+rq6kmTJgHATz/9xG8XMpls4MCBACCRSEpLS3ft2iUQCLiawvx2RF4oNTU1PDyc2/O4ffv2NVMnEolcXV0DAgKCg4NjYmKqqqoQMScnJywsLCgo6M0335w9ezbXSGBgILxoQ+UWRVdDiIg9evQAgJMnT/7xxx/cwYrHxquqqsaNGwcAjo6O+fn54eHh3CYwGzdu5LEXUpf33nuv1iSzZmXK4uJiRCwpKVFXsqxVmrlHjx5cOwqFgrs2Y2dnp6ECKM2nwyFcsmQJAPzrX/8qKSkxNDQUiUQFBQW8tKxSqT788EMA6NChQ2pqalxcHFflKSgoiJf2Sf0UCgVXf9nJyenrr78+ePBgbm4u9311jWaJRFKrprO5ubmXl9eiRYvCwsIKCwvVrVVUVAwZMgQAuIWH7H6sOulwCBMTEwHA2tpaqVSOHz8eAH755RdeWl60aBEAGBsbX7hwQV1TeObMmbw0Tl7q1KlTANCpUydELC4u3rNnzxdffDF48GBjY+OaqTMwMBgwYMC8efNCQkJu375dT4OPHz/u27cvNLUopqbpcAgR0cnJCQDOnTv322+/AcCYMWOa3+bPP/8MAPr6+pGRkbm5uQ2vKUz48tlnnwHAV199hYhxcXG1JqX+/v7cqWBFY4qFN6o8tJbpdgi//PJLAPj888+Li4vFYrG+vn4z5xt79+4VCoUCgWD79u1SqfQV35awRVKpVA4ODgAQHx+PiHK53NfXd/ny5ZGRkdwmBU2mntQEBASoVCqexssD3Q7hxYsXAcDe3l6lUo0ePRoAtm/f3uTWTp06xV37XrNmjVwuHzVqFAB069at5gkG0bTz588DgIODgyZyot4yaOnSpbw33mS6HUKVStWpUycAuHTp0tatW93c3Pbu3du0ppKSkrh9QufMmaNSqQICAkCTNYVJXRYuXMjNbjTUvvpCd3BwsIa6aCzdDiEizp8/HwD+/e9/N+eD8/79+9wU6J133lEqlVybbdq0uXLlCo9DJQ3BnefHxMRorgvulq9QKNy3b5/memk4nQ9hTEwMd8i6detW03L44MED7pbj8OHDKysrV61aBQBisfj48eO8j5bUj7vi3bFjR4VCodGOVq5cyf2WW8LmkzofwqSkJFNTU0tLSwAwMzNTL1/KzMxsyNurq6sHDBgAAG5ublKpNCQkpEV9RrY23L1f9XoXjVLPdxITE7XQXT10O4TqaWSXLl3s7e1rrbFwcHDw8/P74YcfTp06VVJSUlcjmzdvdnZ2zsvLi46O5sqKtpyzhdbmtddeA4Do6Ggt9KU+87eyskpLS9NCj3XR4RCq78AOGDBAJpMhYm5uLrd68PnVhgDg6OioXm1YWVlZs6ny8vL4+HhTU1MAWLJkCaMfqLVLSUkBgPbt22vtPl5VVRV3Ub19+/Y3btzQTqfP09UQNmQt0gt3/+To6+tLJBJu4pqcnJyent6xY0cAeO+991rUHaRWhavmPGPGDG12KpVKuTqa/K49bhSdDKFSqVSvyr17925D3iKXyy9durRp06aAgAAXF5daJQ+4e0fe3t7cenzCBLfdcnh4uBb6evjw4aeffnrixAlE5A6GAwYM0EK/L6STIZw7dy63YPfatWtNa6HWAnwLCwtDQ8NmLsggzXHnzh3u0lqjFqM1GbfOcfTo0eoFOufOndNCvy+keyEs++EHj549DQ0NeXxSk3tO/++//+arQdJYq1evBoCpU6dqpztuxf+WLVsuXLigXnSlna6fp2s1Zn7/3eSrr07eu3csNJQ7J+QFV+WeyqgxxP3P105dJq5Un1Ao9PX1bRFF2VilvynCw1FPDwGQ7ydrb926Bdq9Lkdqys7OFggExsbG2lkov3v3bgAYOnQoPl2gw7b+he4cCePj4e23QaGAoCAIDOS3bfVWE2fOnOG3ZdIQXC2msWPHclfItNAdAPj5+V29ejUjI6Njx46DBg3SQr910ZEQ3r4NPj4gk8HMmbBsmSZ6oM3PGNLmphHl5eWRkZECgWDixIncr3vSpEkikUgLXddJE4dXuVy+aNGib7755sqVKzxM8HJzsUsXBEAfH9TYdJErUKmFVYukloyMDJFIZGBg8PjxY0S8c+cOX2VKXogLnqenJz5doMN8kbBGQljz4F7rtnhTrkHNno0AOHAgymQaGOw/uOqGZ86c0WgvpJZ58+YBQPv27RExKSnJxsZGIpHUs8ywmaZOnQoAq1ev5i4EWFhYML85zH8IuWKPIpFo0KBB3bt3r3XRydLS8v1JkzAoCCMisKiozlYUCszPf/J1ZSUuWIAPHvA+1Fq+Wbz4cze3G8uXa7ojUhNXT4Qrr6wu9Mo90cJ7X3K5nHtq9Pbt2ytWrACADz/8kPdeGovnEP7yyy9cAg8cOMB95/m6dHP79kWAJ39sbNDHB4OC8Pjxfw50GzfioEE4fTp6eGBkJL8jrE98PAKgnR3SyjXt+uCDDwDAyMgoJiaGK3kOT5/t5Lej8PBwAOjbty8icrVLjhw5wm8XTcBnCMPCwvT09AQCwbZt2+p6zb1791KPHMEvv8Q33kBT03/SCIB6ejhkCCYn45AhyJ2YPXyIPXpgeTmPg3wJR0cEwPPntdcjQcSnxZ24VVDXr19XVzngt5cZM2YAwPLlyzMzMwUCgdYW6NSPtxBevHiRu768YsWKhr5HocDkZNyxA+fORS8vNDDA4cNxyxZcteqf10yahJcv8zXIl1uwAAFwwQLt9UgQEVGhUHC7R3DrgU+ePMnV+1m9ejWPXXBrtVNSUtasWQMtZk8RfkKYkpLSrl07APjkk0+a3kp5Od69iz/9hD/88M83/cVk/bUAAApBSURBVP0xLq75I2yo8+cRALt0oRmp9pWXl3OroHr27Pnw4cM9e/Zwle9+++03XtqPjo4GgO7duyMi9yT3X3/9xUvLzcRDCHNycjp37gwAvr6+PFzfv3QJx49/8nVlJb72GmrsQtkLqFTo4IAAmJCgvU7JUzWfES0rK/vpp5+4C+y8LOudPXs2ACxZsoRboGNkZNRCKlk2N4TPP1nLg/nz0d8fV6/G4cPx99/5abPhAgMRAL/+Wtv9EkREzM7O5j7TuSq9X331FQAYGxvHxsY2p1mlUmljYwMAiYmJmzZtAoBJkybxNeZmalYI1U/W9uzZk+fngO7cwdOnUZM3bet0+jQCYLduDLomiFjj7GbWrFkqlYq7mmJpaXnz5s0mt8kVBOvSpYtKpRo2bBgA/PHHHzyOuTmaHkKlUsntmNvwJ2t1g1KJNjYIgE19WJE0n/o637fffqtQKCZOnAgADg4O9+7da1qDv//+u7Gx8RdffFFUVKSnp6evr99yHh9tegib/2Rty7V3L549i3zfpCKNcuTIEa5K748//lheXu7l5QUAvXr1anJ4ZDJZUVERdyvb29ub39E2RxNDyJUD4e6u8jugFuHmTfT2Rm9vHDYM9+xhPZrWa+fOnVwFytDQ0AcPHnBLPd94443m3NwbPnw4ANRzK7vJNmZnf5aWxv1p1BubEkL1nrUtfzfwplAqsV8/TElBRJTJ0MMDm3EqQpqJW1zG1WJWV7h86623Gn4dXiqVxsTEfP/99z4+PlZWVmZmZmKxWBMb9/4rLS1PLm/CGxsdwld/z9rMTBw+/J//XL8ef/yR3WjIkxXe3K4E3GKaN998s55L8VxRr40bN77//vvPr17mTjW5W5H8jvNfaWnXyspy5fJHjXzWR6/hDz0BQHx8/Ntvv61QKIKCggL5frK2pSgrg5qPlpqYwIMH7EZDYP369bm5uaGhoePHj4+NjY2JienevTtXplktNzf38uXLsbGx586dS0xMrKioUP+Vvr5+nz59vLy8JBKJRCKxs7MbNmzYtWvXvL29T5w4we9jxHsLC42Ewh7GxlM6dGjE2xqe19ayZ21ZGbq4oPrxlpkz8fBhpgMiqN6pztnZOT8/H5+dZHZ47l98PYWescbyEn43DNXGdHTLli0CgWDChAmvfiGWdetwyhT86y/89lscN44uk7YE6mUh+vr63JlhTTY2NhMnTly5cuWJEyekUulLW0tLS+Nrw9AqlWrxnTvhDx40OYQCRGz4YTM8PHzEiBG1tg5/dahUEBMDb7wBAHDtGiQmgp0djBwJbGsfkKeysrJcXFyqqqoAwMTExM3NTfJUz549G9taXFzciBEjZDLZ0qVLucs/TSBTKhdmZMSXllro6X1qZzfGwsK0Cf9amvMZ8KoJDESBADdtYj0OUqebN29+++23ERERvFQhaeaGoQ+qqqbeuCFJSBh97VpqM9ZsUgif+u47BECxGLWyJRBpIZq8YWh2ZeWkpCRJQsJbSUn3mlcEgEKIiIh//IECAQqFGBrKeihE25qwYWiKTDbq6lVJQkLAzZuNvSHxPAohYkTEk5rCdD+wtWrUhqFxJSVDr1yRJCTMTkuT8TErbtyFmVdQfDyMGAFlZfDNN7B8OevREDYQcdq0abt27bKxsYmNje3atWtdr9y9e3e4s3OaSOTdvv23nTvr8VI8v/k51l1FaWnYoQMC4IwZ9Ch9KyeXy7k90pycnPLVlf6etX79eoFAYGFruyU9ncd/Lq03hIWFhd26dZsxeHC1r6/magoTHVJSUtKvXz8A6N+/f2lpac2/UqlUXC1PgUDAY9kbTisNoVQq5SreDRgwoFzDNYWJDuE+mgFg5MiR8qd33qurqz/66CMAEIvFISEhvHfaGkOo3qnc2dlZoxXXiS66ffs2t3f61KlTlUplWVmZt7c3AJiamh49elQTPba6EKpUqoCAAACwsbHJzMxkPRzSEsXHx5uZmQFAYGAgt6dDx44dEzRW+6vVhfDzzz+HBl+MJq1WVFSUvr4+d/HSycnp9u3bmutLR7ZG48natWs3bNhgYGBw6NAh7pyQkBeysrIyMTERi8UCgWDBggXcXqIa0rpC6ObmZm5uvnPnTq7GASEvdPr06WHDhj1+/LhLly6IOG/evKioKA32p7mDbMtUWFjIegikRTtw4IChoSEATJ48uaKiYuHChQBgbGx84cIFDfXY6kJISD02b94sFAoBIDAwkNsTSqVSTZ8+HQAsLS1v3bqliU4phIQgPns7PigoqOZfVVVVjRs3DgAcHR3z8vJ475pCSAgqVKr5S5YAgJ6e3vbt259/gUwmGzhwIAD07t27uLiY395b14UZQp5Xhfh1ZuadyZPtXVwOHTo0bdq0519jbGx8+PDh7t2730pLW3v1ajWvjz20+qcoSOtWolDMz8i4XlbWVk8vuHPnXm3b1vPizMzMVbm5iYaGo9u1+2/XrnwdwSiEpPUqqq6em56eXlFhIxZv6tati6HhS99yu6JiVmpqqVI5pUOHrzp14mUYNB0lrdSdysrpt26lV1Q4Ghn9z8WlIQkEAGcjo7VOTmKh8K+iou35+byMhEJIWqMkmezj1NSCqqp+Zma/ubhYPVtKuH4SM7NVXbsKBYKfcnLC+CgMTdNR0iqUKZUypZL7+oZMtjQrS65SjbCw+G+XLmJhUw5F+4uKVt27JxQIVjs6Dqv3TPKlGlcGnxAd9VteXnpFhbVYDACeZmaI6GtpuaRTJ1FT61P4dehQUFX1W37+kszMn7t162tq2uSxUQhJa+FvZTXU3Jz7uouRkbORUTMbnG1n90ChiC4uzpLLY0tKuG8OMzd3beT+FjQdJa3CxuzswurqToaG5iLR21ZWfDWrRLwvl9+prDwnlfp36AAANmJxW73GHdvoSEhai+7Gxm4mJk07A6yLSCDoYmh4p7LSUk/vtaZuD0EhJK1FF0PDPs04c6tfVHHxjfJyAPje0bGx21FQCAnhwRgLizl2dk17L4WQtArTrK35nYjyiEJIWgXzRl4saZR2enr2BgZNfjtdHSWEsRZ6gCak9aAQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEsf8HUETPtad+5hMAAAJYelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIUARiZSBuYGRjSADSjMwQmomJg0EDSDMzsTmAaRY2hwwQzcyIxIDKMEAF2CFamNkhAkxAMyEq4GZBzcYwU8AB1TKECXhsx3CGApBm4QRTjKgUXDE7RDEzhm5UJzIyczMwMjAyMTAxKzCzZDCxsCawsmUwsbErsHNoMHFwKnByKXBxazBx8TDw8DLw8mUw8fEn8AskCAgqCAopCAlnMAmLJIiIZjCJiiWIiTOISzCISzKISzGISWcwCcgADZJNkJXLYJKTV5BXYJBjTpDhTZAWSnBiBlrNxiwny8bKwsrHKyPAzyYsIiomLSQ+jRHoJgZYnDUpqR3k1TE+AOL8lhA7uK7h+n4QO9r674FnBv/BbF+Nuwe+bkoAs29xvzkQHMNjD2Kf/nH6wFTWq2C2AdPcA7Gha8Fsl3uVB1LE5BxAbL6P0gc87LjA7EdTt+//tzIQzA6YyGH76KItmP3b67+dvMxRsN7DE1rsz8xrAovPMFVwqE4tBLNfVqQ7WN2ZAWZvD53r4PuyAcxemTnZIeWpMpitOnmzg6rLTrA5vmeWOEw4s9QGxP6wPduhymbaPhDbXsvPQdDmDtgvc+zaHaISTcF+/6i3zcHQTxHMzo245tA8MQPMftX4zSHr1XQw++i2TQ52RVPAbLFfPx267DTA7JNfjzgUvO8Gmykf6+5QvU8S7J7Fcn0HSlQm7wWxNxquO7CZcwZYjYrf/AOrPdTBeo0S9x9I3JIHMRMAoQiiNYhfYngAAAMOelRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVbLbhsxDLz7K/QDEcSHSPHQQ94oijhAk/Yfeu//o0MZ0TqI0F0v4ZVH1JAcEj6VvH4+/Pjzt6yLH06nUtp/PhFRfktr7fRS8ku5e3z+fi7377d3Hyv3r7/O729FpEjHHtyfsbfvry8fK1Tuyw21KkOUe7nh6hHdtLTa5nVs5oQGkAQS2FRtiNEOKeW13HgNEo2eyAix0TZITZ8GJJHBZ6vD3YU2yJ5Ir+Km6vi96+CxO9wuLsWVGPFVM2Wk4ivQE6g1mnVyAKUr2dgARwIFQKWgwlW9EfkGGOWcGVSxPgaAZK31XTDUEklAKhsXqew2AV+RWSAsiwAKl2E9sqpfgYykt6oxjALRdIng7dkCjwSP3RCt1jZobBNJWRyuvQk7gaM7DbjeALM2Uo3Me4dHdxtjl3Gy8obfA0CwwNGooG89Zm20WkPxMpHd2nDbAQcS2XE0ORKAhKpL8A4Y8NgrKaQ4T+TGsjsampnBDKHGqUgOUdmVhmkimUl49oNz69u4mWc4zCYhqRA0W7OdglgmTQthvAHZuUnsRMlZHQNycGjK00TG2BUcbf1UvDo01Ecq3pEk22mIDche+9AB3QFpMkK3SJ8+AXMfydMYh28jGpMn9d6aZJYaYtv7zPaRStRbj2yzxrztnhxxyU7R4dqyRg3S1N3pMudbBzTlnscTJkzspCTZQDkPHIMlZkyUs24HlYvXGM0gfiTfObzv5PR4fvg0by8T+O71/HBM4Lz5mLJ4KXKMUrRe0WNe5t2PoYiXYsfoUzx+DDjCM44xxnjQB0/P39ZxGBX5XE8mmoauJhCnobUnO22uLJaUNNMsopQ8YWhxpSQLQ4suJV8YWoxzDk+zSKPBaZq46mRNw9ctq2l4cUZraho+0sq5ggm6OHNyhuHFGS1FaXhxRutcVhZntMhlZXFGK+j0szhD8ppR8OLMydkh3CsJa5n6vFIqpZFFWTLNMHKIQXIXHXKQzDKcH3mXzDJf5ysVeK23fP/4t4Dvp3/YOpQzBzkWfAAAAYR6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwlkjuO5DAMRK+yoQ3IAv8U0ZjIwITdh1C+yaZz+C16AEcPxVKx6Pv+bN57H/fX+30fX5/z3rL/7eO9dT/8+D7xfZ9bz79y7s2f+8/PcTFNXWrjkplVHuN1FQjzuHjG0mCQnMXqTao0FkiAMOe4aK7M1F+VZpgPmm5Llj0yTWMZsAoTBbFZFN5E3WDwuhTEuIZMS4L2hSim4U04iByEQUxi6JRERJqkqj0us6C0RlYrYMPTtQo2DJFHDpu0eCG0TCeVhEkmLyh0Bkc6FJnRCoQD4B5B/gcERTie8aBWOEYYCgSy1GrAVgiASEKixY/tQiGoRkpNG4iwaveXQv74igTGsSrKp3yMS9EQiAthoQBYAgnsVPvtnIm1Y6DDxOPRQ46Y3CR0lbcGp8vVNiGrl4zJ/pyO4G8dhtkpum4S8eckhhtZByYUY4G1LgdUzx7klev3cvkEgjXjD3lEtQh/CDKmFC5z/vwH2dKFHxJGqcgAAAAASUVORK5CYII=</base64_image>", "role": "assistant" } ]
Solubility_Prediction
O=c1[nH]oc(NS(=O)(=O)c2ccccc2)c1C1CCCCC1
242,307
{"log_s": -2.73, "solubility_mg_ml": 0.0006, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 322.3860000000002, "logp": 2.82, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 2}}
322.386
2.8164
[ { "content": "What is the solubility prediction for the compound represented by 'O=c1[nH]oc(NS(=O)(=O)c2ccccc2)c1C1CCCCC1'?", "role": "user" }, { "content": "{\"log_s\": -2.73, \"solubility_mg_ml\": 0.0006, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 322.3860000000002, \"logp\": 2.82, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 2}}", "role": "assistant" } ]
Drug_Likeness_Assessment
COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1
1,196,382
{"molecular_weight": 414.29, "logp": 4.85, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 5, "rotatable_bonds": 7, "topological_polar_surface_area": 84.67, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
414.289
4.8482
[ { "content": "Determine the drug likeness assessment of the chemical structure 'COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1'.", "role": "user" }, { "content": "{\"molecular_weight\": 414.29, \"logp\": 4.85, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 5, \"rotatable_bonds\": 7, \"topological_polar_surface_area\": 84.67, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Stereochemistry_Analysis
[H]N=C(N=C(N)N)N(C)C
4,091
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
129.167
-1.24383
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES '[H]N=C(N=C(N)N)N(C)C'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Drug_Likeness_Assessment
Cc1ccc(C=CC(=O)Nc2ccc(Cl)c(Cl)c2)cc1
917,667
{"molecular_weight": 306.19, "logp": 4.95, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 1, "rotatable_bonds": 3, "topological_polar_surface_area": 29.1, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
306.192
4.95372
[ { "content": "Provide information about Drug_Likeness_Assessment for the molecule with SMILES 'Cc1ccc(C=CC(=O)Nc2ccc(Cl)c(Cl)c2)cc1'.", "role": "user" }, { "content": "{\"molecular_weight\": 306.19, \"logp\": 4.95, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 1, \"rotatable_bonds\": 3, \"topological_polar_surface_area\": 29.1, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Bioactivity_Prediction
C=CC1CCNCC1
421,846
{"predicted_classes": ["Unknown"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 0, "enzyme_inhibitor": 0, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Medium", "drug_like_properties": {"molecular_weight": 111.19, "logp": 1.17, "hbd": 1, "hba": 1}, "structural_complexity": "Low"}
111.188
1.172
[ { "content": "What is the bioactivity prediction for the compound represented by 'C=CC1CCNCC1'?", "role": "user" }, { "content": "{\"predicted_classes\": [\"Unknown\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 0, \"enzyme_inhibitor\": 0, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Medium\", \"drug_like_properties\": {\"molecular_weight\": 111.19, \"logp\": 1.17, \"hbd\": 1, \"hba\": 1}, \"structural_complexity\": \"Low\"}", "role": "assistant" } ]
Solubility_Prediction
O=C(Nc1cnn(Cc2ccccc2)c1)c1cc2n(n1)C(C(F)(F)F)CC(c1ccco1)N2
1,165,976
{"log_s": -5.08, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 456.4280000000001, "logp": 4.63, "oh_groups": 0, "nh_groups": 2, "cooh_groups": 0, "aromatic_rings": 4}}
456.428
4.6335
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'O=C(Nc1cnn(Cc2ccccc2)c1)c1cc2n(n1)C(C(F)(F)F)CC(c1ccco1)N2'.", "role": "user" }, { "content": "{\"log_s\": -5.08, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 456.4280000000001, \"logp\": 4.63, \"oh_groups\": 0, \"nh_groups\": 2, \"cooh_groups\": 0, \"aromatic_rings\": 4}}", "role": "assistant" } ]
IUPAC_Name_Generation
CCOC(=O)CC(=O)c1ccc2c(Cl)nn(C)c2c1
1,214,803
ethyl 3-(3-chloro-1-methylindazol-6-yl)-3-oxopropanoate
280.711
2.3626
[ { "content": "Generate the IUPAC nomenclature for the chemical with structure 'CCOC(=O)CC(=O)c1ccc2c(Cl)nn(C)c2c1'.", "role": "user" }, { "content": "ethyl 3-(3-chloro-1-methylindazol-6-yl)-3-oxopropanoate", "role": "assistant" } ]
Reactivity_Prediction
O=c1[nH]oc(NS(=O)(=O)c2ccccc2)c1C1CCCCC1
242,307
{"charges": {"O": [{"atom_idx": 0, "charge": -0.266}, {"atom_idx": 3, "charge": -0.36}, {"atom_idx": 7, "charge": -0.201}, {"atom_idx": 8, "charge": -0.201}], "C": [{"atom_idx": 1, "charge": 0.285}, {"atom_idx": 4, "charge": 0.243}, {"atom_idx": 9, "charge": 0.087}, {"atom_idx": 11, "charge": -0.061}, {"atom_idx": 12, "charge": -0.062}, {"atom_idx": 13, "charge": -0.061}, {"atom_idx": 15, "charge": 0.087}, {"atom_idx": 18, "charge": -0.053}, {"atom_idx": 19, "charge": -0.053}, {"atom_idx": 20, "charge": -0.053}], "N": [{"atom_idx": 2, "charge": -0.183}, {"atom_idx": 5, "charge": -0.247}], "S": [{"atom_idx": 6, "charge": 0.264}]}, "dipole": 3.22, "steric_hindrance": 2.73}
322.386
2.8164
[ { "content": "Provide information about Reactivity_Prediction for the molecule with SMILES 'O=c1[nH]oc(NS(=O)(=O)c2ccccc2)c1C1CCCCC1'.", "role": "user" }, { "content": "{\"charges\": {\"O\": [{\"atom_idx\": 0, \"charge\": -0.266}, {\"atom_idx\": 3, \"charge\": -0.36}, {\"atom_idx\": 7, \"charge\": -0.201}, {\"atom_idx\": 8, \"charge\": -0.201}], \"C\": [{\"atom_idx\": 1, \"charge\": 0.285}, {\"atom_idx\": 4, \"charge\": 0.243}, {\"atom_idx\": 9, \"charge\": 0.087}, {\"atom_idx\": 11, \"charge\": -0.061}, {\"atom_idx\": 12, \"charge\": -0.062}, {\"atom_idx\": 13, \"charge\": -0.061}, {\"atom_idx\": 15, \"charge\": 0.087}, {\"atom_idx\": 18, \"charge\": -0.053}, {\"atom_idx\": 19, \"charge\": -0.053}, {\"atom_idx\": 20, \"charge\": -0.053}], \"N\": [{\"atom_idx\": 2, \"charge\": -0.183}, {\"atom_idx\": 5, \"charge\": -0.247}], \"S\": [{\"atom_idx\": 6, \"charge\": 0.264}]}, \"dipole\": 3.22, \"steric_hindrance\": 2.73}", "role": "assistant" } ]
IUPAC_Name_Generation
O=C(NC(Nc1ccccc1F)C(Cl)(Cl)Cl)c1cccs1
1,100,407
N-[(1R)-2,2,2-trichloro-1-(2-fluoroanilino)ethyl]thiophene-2-carboxamide
367.66
4.4254
[ { "content": "What is the IUPAC name for the molecule with SMILES 'O=C(NC(Nc1ccccc1F)C(Cl)(Cl)Cl)c1cccs1'?", "role": "user" }, { "content": "N-[(1R)-2,2,2-trichloro-1-(2-fluoroanilino)ethyl]thiophene-2-carboxamide", "role": "assistant" } ]
Molecular_Weight_Calculation
CN1CCN(CCC(=O)c2cc(-c3ccccc3)oc2-c2ccccc2)CC1.Cl.Cl
120,284
447.41
447.406
5.2774
[ { "content": "What is the molecular weight of the compound with SMILES 'CN1CCN(CCC(=O)c2cc(-c3ccccc3)oc2-c2ccccc2)CC1.Cl.Cl'?", "role": "user" }, { "content": "447.41", "role": "assistant" } ]
Solubility_Prediction
O=C(O)CN(CC(=O)O)CC(=O)Nc1ccc(Br)cc1
450,142
{"log_s": 0.62, "solubility_mg_ml": 1.4359, "solubility_category": "Moderately soluble", "contributing_factors": {"molecular_weight": 345.149, "logp": 0.86, "oh_groups": 2, "nh_groups": 1, "cooh_groups": 2, "aromatic_rings": 1}}
345.149
0.8588
[ { "content": "Determine the solubility prediction of the chemical structure 'O=C(O)CN(CC(=O)O)CC(=O)Nc1ccc(Br)cc1'.", "role": "user" }, { "content": "{\"log_s\": 0.62, \"solubility_mg_ml\": 1.4359, \"solubility_category\": \"Moderately soluble\", \"contributing_factors\": {\"molecular_weight\": 345.149, \"logp\": 0.86, \"oh_groups\": 2, \"nh_groups\": 1, \"cooh_groups\": 2, \"aromatic_rings\": 1}}", "role": "assistant" } ]
Drug_Likeness_Assessment
Cc1ccc(N(C(=O)c2ccco2)C(C(=O)NC2CCCCC2)c2cccs2)cc1
1,441,874
{"molecular_weight": 422.55, "logp": 5.49, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 4, "rotatable_bonds": 6, "topological_polar_surface_area": 62.55, "lipinski_violations": ["LogP>5"], "violation_count": 1, "drug_like": true, "assessment": "Drug-like"}
422.55
5.48652
[ { "content": "What is the drug likeness assessment for the compound represented by 'Cc1ccc(N(C(=O)c2ccco2)C(C(=O)NC2CCCCC2)c2cccs2)cc1'?", "role": "user" }, { "content": "{\"molecular_weight\": 422.55, \"logp\": 5.49, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 4, \"rotatable_bonds\": 6, \"topological_polar_surface_area\": 62.55, \"lipinski_violations\": [\"LogP>5\"], \"violation_count\": 1, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Functional_Group_Identification
Oc1c(I)cc(I)cc1I
11,862
{"alcohol": 1, "halogen": 3, "phenyl": 1}
471.801
3.206
[ { "content": "What is the functional group identification for the compound represented by 'Oc1c(I)cc(I)cc1I'?", "role": "user" }, { "content": "{\"alcohol\": 1, \"halogen\": 3, \"phenyl\": 1}", "role": "assistant" } ]
Reactivity_Prediction
COc1ccc(C(=O)CC(CC(=O)N(CCCl)CCCl)c2ccc(OC)cc2)cc1
319,751
{"charges": {"C": [{"atom_idx": 0, "charge": 0.078}, {"atom_idx": 2, "charge": 0.118}, {"atom_idx": 6, "charge": 0.163}, {"atom_idx": 11, "charge": 0.223}, {"atom_idx": 21, "charge": -0.055}, {"atom_idx": 23, "charge": 0.118}, {"atom_idx": 25, "charge": 0.078}, {"atom_idx": 27, "charge": -0.055}], "O": [{"atom_idx": 1, "charge": -0.497}, {"atom_idx": 7, "charge": -0.294}, {"atom_idx": 12, "charge": -0.275}, {"atom_idx": 24, "charge": -0.497}], "N": [{"atom_idx": 13, "charge": -0.34}], "Cl": [{"atom_idx": 16, "charge": -0.125}, {"atom_idx": 19, "charge": -0.125}]}, "dipole": 4.51, "steric_hindrance": 2.67}
452.378
4.7567
[ { "content": "What is the reactivity prediction for the compound represented by 'COc1ccc(C(=O)CC(CC(=O)N(CCCl)CCCl)c2ccc(OC)cc2)cc1'?", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 0, \"charge\": 0.078}, {\"atom_idx\": 2, \"charge\": 0.118}, {\"atom_idx\": 6, \"charge\": 0.163}, {\"atom_idx\": 11, \"charge\": 0.223}, {\"atom_idx\": 21, \"charge\": -0.055}, {\"atom_idx\": 23, \"charge\": 0.118}, {\"atom_idx\": 25, \"charge\": 0.078}, {\"atom_idx\": 27, \"charge\": -0.055}], \"O\": [{\"atom_idx\": 1, \"charge\": -0.497}, {\"atom_idx\": 7, \"charge\": -0.294}, {\"atom_idx\": 12, \"charge\": -0.275}, {\"atom_idx\": 24, \"charge\": -0.497}], \"N\": [{\"atom_idx\": 13, \"charge\": -0.34}], \"Cl\": [{\"atom_idx\": 16, \"charge\": -0.125}, {\"atom_idx\": 19, \"charge\": -0.125}]}, \"dipole\": 4.51, \"steric_hindrance\": 2.67}", "role": "assistant" } ]
Molecule_Visualization
CCOC(=O)Cn1cnc2scc(-c3ccc(OCc4ccc(C)cc4)cc3)c2c1=O
1,662,958
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxTV9oH8CcJEcImoGwCKlLFDa0rVqwLdavibtVisb5WZaoUu2PXVKfTMp2+bVw6an3bSl3rhjBVO1JXGFdcEFxQEFAQAZElLAGSPO8fB9PUFcLNPYF5vp/+IZic59KPP+7Nuec+R4KIQAjhR8r7AAj5b0chJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkIEVl1d3ajXUwgJEVJ5ebmtra2Pj0/D30IhJERIubm5AGBra9vwt1AICRHS7du3AcDLy6vhb6EQEiIkFsJ27do1/C0UQkKElJeXBxRCQjjKz88HCiEhHNGZkBDOaGKGEM5MmJiRIKLZjoeQ/y56vV6hUNTV1VVVVdnY2DTwXXQmJEQwRUVFtbW1Li4uDU8gUAgJEZAJHwiBQkiIgEyYGgUKISECojMhIZyZMDUKFEJCBEQhJIQzCiEhnNHEDCGcmTYxQytmCBFGXV2djY2NRCKpqamRyWQNfyOdCQkRRn5+vl6v9/DwaFQCgUJIiFAuXrwIAE5OTo19o5UZDoaQ/y56vX7v3r1RUVESiUStVjf27RRCQkxXWVm5YcMGlUqVkZEBAC4uLp9++mljB6EQEmKKgoKCNWvWrF69uri4GAB8fX3Dw8PDw8PpcpQQs7uTmhr19dfbtm2rra0FgOeee+7tt9+eMmVKY+djDOgWBSENlpQEf/87Hjvmg5hfWTlu3LilS5cGBQU1cVQKISFPo9HApk3w7bdw+TIAgIND4vvve8+e7evrK8jwFEJCjFRWgkIB0vu37oqK4McfYdUqyMsDAPDwgPBwiIwEFxcBa9JnQkIAACA5GSIjwc0NCgth6FD48kuIioLVq4FtsdS3L7z9NsyYAXK54JUphIQAaLUwdy7ExkLnzoAIM2fCjh0gkYBGAyNHQmQkTJhgvuIUQkIAMjPB1RU6dwYAkEjg1VchNhb+9jeYNw/8/c1dnEJICIBaDXZ2f3xpbw9qNbi7g7u7CMVp7SghAH5+kJ4OOl39l+fPQ7duohWn2VFCAADggw+gsBDmz4cbNyA6Gg4eBDc3cSpTCAm579df4dQpaNsWQkPB1VW0snQ5Ssh9R49CZiaMGiVmAoFCSMgffvsNtm6F2lqRy1IICbnv9m0AgEZ2iGk6+kxICAAAaDRgawtyOWg0IJGIWZnOhIQAAEBeHiCCp6fICQQKISH1OF2LAoWQkHoshI3s2ysICiEhAAD1DytRCB928eJF1tWYEPPKzwegED5k0aJFffr08fLyCgwMXLFiRT7730SIGfwbYNegQYUdO3KojZYqOjpa8ud5KplMNmzYsBUrVty8eZP30ZGWZtiwYQBw8OBB8UtbYgj1ev17770HABKJRKlUFhQUxMTEhISEWFtbGwLZvXt3pVJ55coV3gdLWojOnTsDAJd/URYXwpqampdffhkAWrVqtXXrVr1eb/irysrK+Pj4sLAwBwcH4zRGRUUlJiZyPGbSAtjZ2QFAWVmZ+KUtK4QVFRVjx44FAHt7+99++62uru61115btmzZAy+rrq5maTRutOrr6xsZGZmYmGicW0IaoqSkhP2r41LdgkJ49+7dQYMGAYC7u/vZs2cNgXRwcMjLy3vkW7RabWJiYmRkpIeHhyGNPj4+kZGRCQkJdXV1Iv8IpJm6dOkSAPj7+3OpbikhvHHjRpcuXdgJ7dq1a8XFxYMHDwaANm3aHD9+/Klv12q1hw4dioiIMN6f0cPD45VXXvnqq69qa2tF+BFI83XgwAEAGDFiBJfqFhHC1NRUFp5+/foVFBRkZ2f7+/sDQMeOHdPT0xs7WlpamlKp9DfqzzN9+nRzHDZpMTZs2AAAPXr00Gg04ldvXAgXLFjwzTffZGdnC3gEhw8fbt26NQAEBweXlZWlpaV5e3sDQM+ePXNzc5sy8vnz5/v37w8ALi4uQh0taZG++OIL9vu6T58+4k+QNiKEWVlZhht37A7BpUuXmlh+9+7dNjY2ADB16tTq6uojR46wuZbhw4eXlpY2cXBELCsrs7KyksvlVVVVTR+NtEgHDhyws7OTSCQuLi4AoFAoVCqVmAfQiBBWVlb+8ssvM2bMsLe3N1zp9ejR45NPPjl//rwJtVevXi2VSgHgjTfe0Ol0e/bsUSgUADB58uTq6moTBjQoKCj48ssvly9fjoi9e/cGgP/85z9NGZC0PDU1NRs2bGD/PNhSkLi4uMjISPbl1KlTi4uLxTkSUz4TsjsECxcudDNqR9WhQwd2h0Cn0z11BL1er1QqDbfjEfHHH3+0srICgMWLFzdkhCfLyclhV6F6vX7hwoUA8M033zRxTNJilJWVqVQq9qkHAORyOQA4OTnt3r0bEXfs2OHs7Mym2Y8ePSrC8TRpYsZwh8DT09OQRldX17CwsPj4+MfNSWq1WhYMmUy2fv16RIyOjmbvjYqKasrxGGvXrh0AXL9+/YcffgCAmTNnCjUyab4yMzMjIyPt7vf57dKli0qlunXr1sSJE9l3wsLCKioqbty4we6WWVlZ/XXZMtRqzXpUwsyO6nS6xMTEqKioZ555xpBGFxcXlsaamhrDKzUazbRp0wDA1tb2119/1Wq1f/nLX1gg165dK8jBMJMmTQKATZs2paWlsYlWAQcnzU5ycnJYWJhhH8+goKD4+HjjdR0xMTG2trYA0LVr1/Pnz9fV1SmVSplM9u/hwzEwEDMzzXdswt+iYHcIuhk1MLazswsJCYmJibl169aQIUMAwNnZOSkpSaPRvPTSSwBgbW29Y8cOYQ+DzXdFRkbqdDpHR0cAuHPnjrAliOXT6XTx8fHsnjMAtGrVKiwsLDU19ZEvvnTpUq9evQDAxsZGpVLp9fpTR47oO3RAAHR2xp07zXSQZrxPePHixc8++4z9VAxbgd2+ffsrV66UlJQMHTqUBfLYsWOCVz948CAABAYGImJwcDAAxMfHC16FWKzy8nKVStWhQwf2b69169aRkZFPvelVVVUVHh7O3jJ/xgwsKsKSEpw5EwEQAMPCsKJC8EMV42Z9VlaWSqUKDAx0dna2s7PLzc3V6XQDBw4EAG9v77S0NHMULS8vl8lk1tbWGo3mgw8+AICPPvrIHIWIpbl9+7ZSqWSTKwDg5+enUqkqKysbPkJsbGybNm1uBAWhuzvu34+IGBODtrYIgF274rlzwh6wqCtm3N3dASArKwsR4+PjAwICcnJyzFeuR48eAHDq1Kk9e/YAwMiRI81Xi1iCc+fOhYWFye/v4xkUFLR9+3atSdMq93JzcdgwBECpFJcuxdpavHwZe/dGALS2xuhobPIcvoGoIQwJCQGAbdu2sS/NvcB63rx5ALBy5Ur2SH7r1q2bfvODWKbTp0+73u9dL5fLQ0NDz54929RB9XpUqVAuRwDs3x+vXcOqKly0qP7S9N13hThwRERR21uwS9BTp06xL9mNQfMJDAxk5Tw8PNq3b19WVpaenm7WioSXb775pqysTCaTRUZGZmRkbN68uW/fvk0dVCKBJUsgKQn8/CA5Gfr1g40b4bvvYM8e6NAB5s8X4sABRO4xY0iF+OVELk1EptPpamtrV61atWLFivbt2ws59MCBcO4czJ4NajWEh8OMGTBsGFy/Dp06wfLlMHIkjBoF334Ler3JFcQ+E0ql0nPnztWKsudGz5497e3tMzMz7969SyFs2VhLPjYLIDxHR9i0CX78EeztYccOWL4c5HL49FOorISEBNi/H1JSYNUq08cX6rq2gdgTRsnJyeKUY3dB9u3bl5iYCAB9+vQRpy4Rma+vLwBcv37dvGXS03HqVGSPFrRvj4anAm7exH79TB5V7JaHvK5I+/XrJ5fLU1NTKysrxSlNRIOIbO7NePmkWXTpArt2QevWgAg1NaBQ1H/f0xPu3DF5VD4hPH36tJjlTp06pVAoevbsqdVqz58/L05pIpri4mKNRuPk5GRYFGp2EgnY2UF5ef2X2dng42PyYP8VZ8LTp08j4gNzs6TFYB8IvUTey2X+fHjvPdBoQK2GqCi4v87GBGKHsFevXgqFIj09nfW3Mjdvb+927drdu3cvIyOD5mZaKhbCdiJ3sF+6FAICYNo0mD0bJk2CuXNNHknsEMrlcjY7kpycLE5FwwmQQthS5eXlgfghlEggIgL27oX4eJgzpykjcdiLQvwrUqlUmpWV1a1bNycnp5s3b9IOMy1MZaVv795vdOoUyPtATNTyQxgeHn7v3r1PPvlEIpGwxx2joqJo6UxLcuVKcErKSheX13kfiIlafgidnZ1ZN7fNmzdfuHDB1dV106ZNXbt29fPzW7JkSVJSEiKKcyTETPjtsSuQpt6+NAl7nOLGjRuiVVSpVKyp1KRJk8LCwgzPuQCAn5/f+++/f/LkSeqf30z1748AePIk7+MwFZ8QTpgwAQC2bt0qQi3jplJ///vf2Tcf2R3H29t74cKFT+iOQyyTpycCYPPdL49PCD///HMAePPNN81diG0pAwCtWrXavHnzwy94ZHecNm3aPNwdh1gmrRZlMpRKsfn+5uQTwoSEBAB47rnn2Jdmug6sqKgYN24cANjZ2e1nz0c/EeuO07VrV0ManZycXnrppZiYGLVabY4jbFFqavDqVSwvF7lsbi4CoIeHyGWFxCeEpaWlUqnUxsaGnWri4+M7deok7MZmjd1SxlhaWlp0dHRQUJAhjQqFgvWqEqQveAu0bRv27YuLFuHzz+N774lZ+fRpBMC+fcWsKTBuG8KwdmxnzpxBxNdf/2NyuWPHjm+//XZSUlJTnoLPyspqypYyBteuXYuOjh4wYICh/79MJuvTp09BQYHJY7ZARUXo74/sYkGvx3Hj8MAB0YrHxiIATpggWkHhcQvh+PHjAWDcuHFoNE1ivPyvbdu2T24i/DgCbiljcPPmzXXr1r344osA4ODgsHr1akGGbSF++w3nzv3jy/Xr8eOPRSv+3XcIgOHhohUUHrcQLliwgIWtffv2hj09dTpdcnKyUqlkexUyhibCDdm26siRI+yuoFBbyjxg0aJFAPCeuFdcli4uDhcs+OPLn3+u779SVIS3b5uvbE0NqtVYXY1Xr2JGBjamnZpl4RbCvLy8ESNGsLa8jKen56JFi37//XfWAIpNk3Tv3t3wAltbW/bBrPwxn/4NW8pMmTKliVvKPM6+ffsAYOjQoeYYvLm6cQP79EHDh/nXX8eNG1Gvx4kTsW1bNFu71y1b0NER2bXOvn0YEWGmOmbHeZPQJ5z6tm/fznpFpqWlLV++/NlnnzVO49SpU7dv3248lLBbyjxOcXGxRCKxtbWlvbj/5K23cM4c3LMHlUocNgxra1GtxjFjEAAlEoyMRDP8TtyyBUeMwBkzECmEQnnqqS87O1ulUgUFBbG1L1OmTDG81xxbyjwOu6N44cIFcxdqZo4dw5UrMTYWa2sxJQWTkupbBlpbIwD26IEXLwpbcMsW/OwznDoV9++nEAotMzOThc0wJ2ljY8PSWFJSgoi5ubmrVq1KSEhAROMtZdatWyfC4c2ePRsAxKnVLFVXY0AAymQYFYW1tXj2LHbpggBoY4MCbb6p1WJWVn0Ic3IwIABjYymE5vHAqY8lLSgoSKVS5efnI6JZt5R5nJUrVwLAvHnzxCnX/NTVoVKJMhkC4KBBmJmJVVUYGVnfM3fKFGzC5ptqNa5bh127YpcuuHkzfvYZImJ0NA4fjhERWFKCzXFVhUWH0ICd+kaMGGHY2komk/Xs2ZPN67i4uLCHIcTBnv/o0aOHaBWbpcOH0dsbAbB1a9yyBRFx61Zs3RoB0iZONGELoNxcjIpCZ+f6LPv54cqV9SGsqcFu3TAiAmfOxI4dsZFLM/hrHiE0KC4ujomJCQkJYRs8sXNgSkqKmMdQU1NjbW0tlUrLysrErNv8PLyfUVZW2dSpLgqFTCb79NNPGzi5deECLlyINjb1I/XrhzExWFeHGRloaJ2Zmor79+OzzyIAtmqFX32FzeiRmGYWQoPS0tKIiIhp06axNTciW/7KK2uff1595Ij4pZufP+9nZNh8EwAGDhyYkZHxuPfp9fp///tacHB99qyscMaMpzyvVFuLSiVKpQiAwcGYlyf8T2MOzTWEnLFPOF98wfs4mon7+xntDA6Ojo7W6XQnTpxg7XodHR0ffrpFo9HExMT06NHD1rati4ve3h4XLsSGrz5MSKh/uMnV1Xw3KYVEITTJ5s0IgJMm8T6O5qOqKvfjj6USCQCMHz++sLCwtLR01qxZ7DNFWFgYe06loKBAqVQa9ldq37792rWXTVj4VFCA48bV36RcuNDSF9NQCE2SkYEA6ObG+ziamT179rRp0wYA3Nzc9u3bh4hr165li5x8fX1DQ0PZrvEA0KdPn5iYmKY8Xa3X49dfY6tWCICzZn15+fJl4X4OgVEITaLXY9u2CIDm3OT0kdRq9Zw5c0aPHn2keX4ivXPnzpgxYwBAIpFERkbW1NR8//33hs7ZUql04sSJAv5oyck4eXI8W/jx/fffCzWssCiEpmKXO39eOmduFRUVAQEBxo99CfsQpjj0er1KpWrVqhUA9OvXz93dvVWrVnK5PCwszBznq6qqqsjISPZ/bMqUKcVNuEtpJhRCUy1bhgD4zjuiFSwoKOjfvz8AKBSKXr16sWZZjLe39xtvvHHkyBHTtobmwjA3wyQmJpq13M6dO1l3Lx8fn6NHj5q1VmNRCE31228IgEOGiFPN8Jiyr6/vtWvXsEV0xykrKwsNDQUAKysrEX595OTkDBkyhK30iIqKspx2XhRCU5WUoESCCoUIDYZSU1PZ484BAQF5eXnZ2dkPbMTXfLvjZGdnszO5OOXq6uo++ugjdpeyf//+Ii/zeBwKYRNMnYqLF2NJiVmLHD58mD2mPGLEiLKysrS0NB8fH19f39uPel72Cd1xLHN9z/Hjx9lde5GLsg+iQUFBYtZ9HAphE1y4gEolfvABmu0zRmxsrI2NDdx/TPnEiRNsin/YsGFP7htw48aNB55Esba2HjlypEqlunPnjpmO1gQ7duwAgMmTJ4tcd9myZQAwZ84ckes+EoXQVIcOYWAgHjmCJ0/i6NH400+CV1i9ejV7fCQiIkKn08XFxbFbapMnT64ybNT8NDk5Od9+++3zzz9v/CSKq6trQ3pAimDFihUAsHjxYhFq6fX6gICA4cOHs4tSAFi2bJkIdZ+KQmiq0aPx1Kn6P9+5g126CDs8e0xZIpEolUpE/Omnn1jfgHnz5pn2UP/du3fZ2neWRi8vL2EP2DRRUVEA8Pnnn4tQq6ioCACcnZ0Rce7cuQCwfv16Eeo+FYXQVL6+WFHxx5deXlhbi0K01dBqteHh4eyUxe4vC9s34OjRo+zq1BI6dISFhQHAT2a4jnjYhQsXAKBnz56IOHr0aABgq3a447ArUwvh7AylpfV/1usBEcrKwNMT5syBf/0LampMG7WmpmbWrFnr1q2zsbHZvn37vHnzFi1atHTpUplMtmbNGkMaTVZWVjZ06NBOnTrV1NRcuXKliaM1nZib7BrX4rO572NQCE0VEgL/93/1f968GYKDISEBCgth40aYOBHc3CA0FHbuhKqqhg9ZWlo6atQodls5ISFh/PjxoaGha9assba23rp1K+viYbK8vDxvb2/WL8tyNi0Wc5Nd41p8Nvd9HN6n4marshLnzsXgYBwzBidPRtaT+9IlXL68/tlS9p9CgVOm4MaNVU97FuD27du9e/cGgHbt2qWkpKjV6lGjRgGAk5OTICs8dDodu9WRn5+vUqkAYP78+U0ftolYb4R79+6JUIvNiH700UdVVVUA0KpVKwtZ7kchbBqd7tE367OzUaXCoCD2hKnexcXexsa4O84DLl++3L59ewDo3r37zZs38/Pz2SnL09Pz/PnzQh3sCy+8AABxcXEnTpwAgICAAKFGNo1arQYAhUIhTjn2SXv16tUZGRkA0LFjR3HqPhWF0Mxyc3HVqiuvvWbcHWfEiBGrVq0ytOg/deoUe4IuMDCwqKgoMzOTrUTr2rVrdna2gMfy4YcfAsCHH36o0WgsoUPH1atXAcDPz0+ccmxXzNjY2MTE0wqFi2FTMO4ohCIpLCxcv379iy++yJ4eAACJRPLcc88tWLDA3t4eACZMmFBZWXnmzBk3NzcAGDBgQGFhobDHEBcXBwAvvPACIg4YMAAADh8+LGyJRjl06BCI2M589uz9gwevOn368rZtCIChoZay2J1CKLbKysr4+PiwsDCWPYVCIZVKX3311bq6ut9//93BwQEARo4c+bhW/01RUFAAAA4ODjqdLiIiAgCio6MFr9JwmzZtAoBZs2aJU87DAwHw1i383/9FAFyyRJyyT0ezo2KztbWdMGHCzz//XFBQ8Msvv7C5gX/84x9WVlYrV65Uq9Wvvvrq/v37WRqF5ebm1qFDB7VaffXqVUuYIBVzilKrhaIikErBwwNu3wYAsJCZUaBbFBzZ2trOmDFj0KBBiHjmzBkA2LJly6pVqwyLY8zBkD32h5MnT5qpUEPk5+eDWCG8cwd0OnB3BysryMsDoBASA+Mzkp2dXUREhGHJtVnLPfPMM23atMnPz8/NzTVfuScT80xofPZjfzbaC5MzCiFnIl8WGspJJBI2N8PxipQtW/ESJQ3GZz+6HCV/MmjQIAA4deoUIopQrm/fvnK5PDU1tbKykvvHwgfWjul0OnPWArh/9svPB6AQEoN27dp5eXmVlpZev35dhHIKhSIgIECn0507d45vCBGRfSb09PQEgB9++GHw4MGZmZlmKseC5+kJJSVQWQkODmCGmS8TUQj543VFGhgYKJFIkpOTtVqtOKWNZWVlaTQae3t7W1tbrVb79ddfnz59ul+/fr/88os5yt29CwDQrp3FfSAECqElGDhwIPAIoYuLi5+fX1VV1aVLl8QpbXDmzJlRo0bZ29tXVlaOGTOmqKjo5MmTs2bNKisrmzVr1pw5cyoqKoStuHYtqNXw8svQrh38/DMolcIO3zR8b1MSRDx8+DAA9O/fX5xy7AkmHx8f5LHhqU6n+/LLL+VyOQB07tzZxcUFADw8PA4cOICIMTExrBGwv7//2bNnhS2dm4vPPFO/p0VZGU6cKOzwpqMQ8ldRUWFlZSWXyxvetKIp9Ho968CZl5cn8oanBQUFY8eOBaP223fu3HngO1euXGGL1+VyuVKp1AnxnDSTnY2dOuGoUajXY0kJ9usn1MBNRSG0CKyv9nGxtrdkD0nFxsaKueFpQkICm4NxdXXdu3ev4fsPNOROT0/XaDRRUVGsDcfIkSPzBNriLDsbx47F11/HjRsphOQh8+fPB4Bvv/1WnHIff/wxACxdulScDU/ZnoQsVMHBwY8M1enTp9mzIwqFQqVSIeKBAwc8PDxYaH/99dcmHoNOVx/C4mLs0QOzsiiE5M/Wr18PIi5lPnLkyJw5c+Li4hCRzdOwj2TmkJWVxe6FWllZPfnysry8/JVXXmFTFdOnT793715BQcGLL75ouFjVaDQmHEB+PiqV6OeHly7h2LGIiD/8gP/zPxRC8mcXL14EgE6dOolct7a2tmfPnu7u7g4ODqx/vmn/0B9n+/btTk5OANChQ4ekpKTGvoXtdWO4WO3Zs2dqamrDq589i6GhKJfXNzn47rv6EOr1OGQIhZD8mU6nY40eClibDFFUVFSw84xhV0AAcHR0DA0N3blzZ2XTdtYsLy9nndQAYNq0aY1qYJGVlTV48GDDyVOr1Z45c6Zz587GF6tPoNNhQgKGhNRnTyrFkBA8fhwLC/Fvf6t/zYULKETnOmFQCC3F8OHDAaDpH34aqLi4mHXLd3FxOX78eGZm5gMdu21sbFj//Ce3+n6ks2fPNjwzj2T8MXL48OG3bt0qLy9fuHDhk1NdWVm7Zg126VIfP0dHfOcd8beQbDQKoaVgbXA/+eQTEWplZ2ez3WM6dux49erVB/6KpdG4Y/cTuuM8gF09Wltbs0nXRl09PuzgwYNsZamTk9O2bdvw/sWqk5PTA40/DPtsd+p0BQA9PVGpRFHaRwmAQmgpdu/eDQCjR482d6G0tDRvb2/2EevWrVuPe1lhYSHr2M1urBun0dAd5+G3jB8/nr04LCysiRe0TFFREesNYxgzIyPj999/N7wgNTV13rx5LPYA8MorX2zbhhbQ1rgRKISWgj1S4OTkxOYPS0tL4+Liqqurha3S8C1lDIqLi1kaDd1xAKB79+5KpTKdLT9BRMRDhw4ZzlrbBd3AWK/Xr1u3jn1w7dat24ULF9j3ExMTQ0JC2PWzVCoNCQlJSEgQsK5oKIQWhJ2g2PVhTEwMCL2x2Z49e0zYUsagpKRk48aNU6ZMYYMwffr0WbZs2RtvvMEuX4cNG/aEs2tTXLhwoVu3buz/SVhYmGHbcDs7u8WLFz+wYWPzQiG0INOmTQOAf/7zn4i4a9cutjm2YZpk4sSJGzZsMLlPbtO3lDGoqqpivapYN2EAcHZ2lslkbCazKSM/WXV1Ndt9nt3Ed3d3VyqVd+/eNV9FcVAILcjMmTNZ3rZs2cJ22M3JyVGpVCNHjjR0nTF8MGvUYi5ht5Qx0Gg0//rXv9gvi4n3F0TrdLoK461yhObu7rEpy+gAAAXxSURBVA4AH3/8cbPYErwhKIQWJDY21vjUFxISsm7dOnbnsKio6IEPZlKpNCgoKDo6+slXYlqt9vXXX2fpXbt2rTkOm600aNu2bV1d3a5du7y8vN59911zFELE5ORkdiYUcGE3dxRCy3LixIm33nrL+A6BXC4fPXr02rVr2Q679+7di4mJeemll9gjP8bTJFeuXHlgNI1GM2PGDACwtrbesWOH+Q6b3fA4dOhQUlISu/Nhpm0eWBNxcTYVFQ2F0EIZTn2GOwQPnPrKysq2bNkyffp04zQGBwcbRjDeUubYsWNmPVq28e3ixYt1Oh2bI01OTjZHIZb2gwcPmmNwXiiElu6pp77q6ur4+PiFCxe6uroaNloy3lLGMKdvPufOnWNXiVqtlvX2/uCDDwSvkpaWBgBt2rSxhO1NBUQhbDYM/fONm3N37949KioqMTEREWtqathUYUZGhmFLmRyxVm35+fkBwLFjx1ijgM6dOwtegu1t9tprrwk+Ml8UwuaHnfrCwsLY0waMr69vZGTkoUOH4uLi2B5PAwcOFHxLmSd4//33AWDJkiU6nY49vJuSkiJsCbZ/o/EDwS0DhbAZq6mp2bdv3/z581nqjI0fP16QVWMNxx7S9/b21uv1bCfATz/9VMDxb9y4AQAODg6CryLiToKi9JwlZqXX648fP75jx47vv/9eo9H4+/unpaWZb0OLR0JEX1/fnJycEydOqNXq0aNH+/v7sx0IBXH58todOzbevdt11aofhBrTUvD+LUCEpNPpzp49y2sX6LfeegsA3n333bq6OnZyvnz5slCDX7kSmJwMJSW7hBrQclDf0RZFKpX27dvXrFvKPAFbdrdz506ZTDZx4kT2Z0FGrqvLq6w8LZXaOjqOEWRAi0IhJIIZPHiwj49Pdnb2uXPnWCB37dolyMglJbsB0NFxrFRq9/RXNzcUQiIYiUQyefJkANi1a9fIkSOdnZ1TUlLS09ObPnJp6W4AcHae2vShLBCFkAjJcEUql8vZw7jGC2JNo9XerahIkkjkrVuPE+AQLQ+FkAjp+eef9/T0vH79ekpKilBXpKWlsYhaR8dRMpmzEMdocSiEREhSqXTSpEkAsGvXrjFjxjg6OiYnJ7NbfCYrKdkNAE5OLfNaFCiERHDsBLh9+3Zra2vWcoa1zzGNTleqVh+SSGROThMFO0QLQyEkAhsxYoSrq2t6evrly5enT58OAHv37jV5NEStu/s7bdq8amX14KqgFoNCSARmfJNw7NixO3fuNC2EiLrCwtW5uW8D6L28vhL6MC0ILVsjwtu/f/+4ceN69eqVkpJi8iB3766vqEhq1+6vGs1Ve/shUqnt09/TPFEIifDq6uratm1bXl7+5ptvshZpD+vRw9bfv+pxIygUvdXqw3V1t318VgDwWQAkGgohMYvu3buz3o2Pe8E77wx/+eUjj/tbd/f3PDzez8kJ12guu7qGu7ktacFRFHWhPfnv8eOPPy5fvtzHx+dxLxgwwK1t2y6P+1s7u0Arq7Z+fru02rs3bsyQy72cnV8yz5HyR2dCYqF0unKZzBEAbt2KVCiebdt2Hu8jMhc6ExILde/e1pKSrYh6udzNyyua9+GYEZ0JCeGM7hMSwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnh7P8BbcQF5wEVa58AAAI1elRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkAdiJSBuYGRjSADSjMwQmomJg0EDSDMzsUFoFgQfIs/uAOYzszlkgGlGhABEg4ADVANMAUwCQcMl0FSg20VYB9z1WFTg1INmGzcDIwMjEwMTswIziwYTMysDKxsDG3sCO0cGEwdnAidXAhd3AjdPBhMPrwIvXwYTH38Cv0AGk4CggqAQg5Awg7BIBpOIaIKoWAaTmDiDmESChCRQVipBShqoRSZBRjZBVk6DSZYtQYYzg0maN0FSOMGJBWgxG5usDCcHOysXpwwPNxsfv4CUNC+biKiYhKSweB0j0FMMsLjKL3vn0Fy2xwHEWdD90kFzew+YXbtnr4OncRGYve7iDoepW4TAbKZt9x0uPtxiD2J3M/U6SH2+BmbvEe9waF9rbwdODH/WOQQoG+4HsR0FVzl0HOc+AGJbt9Q4TGAyBrPvc8U7nNNvB7Nvif6zn+IJYbPHH7L/GQpRw+W/y3beHVEw2zMydd9uxgSwmfapl/fPtLiyD8Se99zgwLnLW8HioUptB3QPlYLZ0WYTDkxYxwh228Mnew/8m1wOZj//cfyA/kFpsF9yl3890GVlCWZ/W8BzMHf9R7Aaywrlg0KBYmDxz9PYD1rduQ72V0L9wwMipfJ7QeyJ+2UOiB2zALuN52jT/iL7MDB70m49hxO1X8FuMJho4VDLeAvsTv6JV+2fSb8AmyMGAKbNnY9ykhjpAAAC4npUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VW27cMAz831PoAhbEl0R+NtmgKIrsAm3aO/S/90eH3kZ2UKHemLCFET3iDJlLyevb9euv32VefL1cSmn/+YuI8lNaa5fXkg/l6eXzl1t5fvv09L7yfP9xe/tehIoo9uD3Efvp7f76vkLluYyqRmGjWHUP7aO02vbr2Mk7jsM5tGiVGGK+wEm5I01wsEWROlzF2wKnyGd1DLPohZGYefACZ8jXa0SL7oWqkpDSAteRT6u2bh2Hqn1EEv0XN8oNODb2yGOSD3Jb4Hznp925R9la7UGhK2AgoVWw6q2XjZFRm62+TBAGFUEWG5TIEaPJ6sxEBepVdWuCj4Muqy1ZUspCNYBUfiDHWOeUHWk4LVt+3RsTL5EpDZZR8gdPUbJYaUgGJGrDnHbIJx/WuK+gqc8GXYyMR0KVVJcK0UgoytMh9shNys3WWR3uwKkpCPpk1jD0xzJrZFat1nqXLCUebKxOxanTBg/j3B4ARB/UVpXibJ6tV9YgdBpXFel9RZRTp23Alr27A4k2o1j1D6dOm6NxYOABxdyd1jl1LynKT92NSgrlfZ3UHkl1qFieRLFnfaT+INowBWI3fhMPWdbpr06QkYJ3S/loS6OwP9SH5bp42QRUR1+6j1MniC8t64M9QSPaquNz0GUlXbzz7ii2EbJCEmwC73XXXVA1EVnV6eV2/TAcH+Py6X67HuMyf3xMRbwUOYYfRm7RY8YxbjtGGeG1HxOLcI9jMCluP+aP4o5jyihuOg8TzUB0GhqagSY5yq8j0ORHSTDDpIhm1ww0WaKp8xUde+pdzUCTK1qU9jDpohNpD5MxGo4y8LmxNANPzpycEfgoaHJG4MmZkzMCT86cnHNlcubkjMCTM++cB0x6sqtm4MmZs8aoBk/OnGVGkLPJuOwWOplJc2UmFn5sOsQRyRU/lVl2yv1UjLTa2Vj5/v4/HM+XP5fIgL55HX/YAAABdXpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nEVRO47lMAy7ypQJ4AjWx/ogmCoHeIdwP822c/il0kwRKKYpiqKf5/Mc35/z+eH9s2Uf+7i27r2Pz7Ot63Pubfj03P/k3Pz9+fo9gmxx+ViUWRbjDpJKqWGkFerjXlRS4kMp0jQbiFg+BEQRdDhVzYrBZKxs4zay6WAweaC3AVmokziDc7WEeaL3muTFZS+EXudxCVg2gSjhYkUjUTF13PjRKeNiKg7oMi3ISTNyCsu4J832wq+OGi+wMESkl+lxGWtimRsavni9mLFZwXcPchx6gMnE5X0ZcbFX02pVvTSjNd0N+6DC4H0hIwzrDcuDYfG+nMSKFTGZqjcpEIdDCmbLmpJItBQxZSY3g+GUX4ZaxsuwMF3QNVy8ukET2bWfqd3drmEfwzuFjFnvcogDDi+FUrh0VJVrAsFbSCALxGt/iHVQ3a/pbySyosWRkqf1YrZU8frn738IFX9lsybr1QAAAABJRU5ErkJggg==</base64_image>
434.517
4.57552
[ { "content": "Provide information about Molecule_Visualization for the molecule with SMILES 'CCOC(=O)Cn1cnc2scc(-c3ccc(OCc4ccc(C)cc4)cc3)c2c1=O'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxTV9oH8CcJEcImoGwCKlLFDa0rVqwLdavibtVisb5WZaoUu2PXVKfTMp2+bVw6an3bSl3rhjBVO1JXGFdcEFxQEFAQAZElLAGSPO8fB9PUFcLNPYF5vp/+IZic59KPP+7Nuec+R4KIQAjhR8r7AAj5b0chJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkIEVl1d3ajXUwgJEVJ5ebmtra2Pj0/D30IhJERIubm5AGBra9vwt1AICRHS7du3AcDLy6vhb6EQEiIkFsJ27do1/C0UQkKElJeXBxRCQjjKz88HCiEhHNGZkBDOaGKGEM5MmJiRIKLZjoeQ/y56vV6hUNTV1VVVVdnY2DTwXXQmJEQwRUVFtbW1Li4uDU8gUAgJEZAJHwiBQkiIgEyYGgUKISECojMhIZyZMDUKFEJCBEQhJIQzCiEhnNHEDCGcmTYxQytmCBFGXV2djY2NRCKpqamRyWQNfyOdCQkRRn5+vl6v9/DwaFQCgUJIiFAuXrwIAE5OTo19o5UZDoaQ/y56vX7v3r1RUVESiUStVjf27RRCQkxXWVm5YcMGlUqVkZEBAC4uLp9++mljB6EQEmKKgoKCNWvWrF69uri4GAB8fX3Dw8PDw8PpcpQQs7uTmhr19dfbtm2rra0FgOeee+7tt9+eMmVKY+djDOgWBSENlpQEf/87Hjvmg5hfWTlu3LilS5cGBQU1cVQKISFPo9HApk3w7bdw+TIAgIND4vvve8+e7evrK8jwFEJCjFRWgkIB0vu37oqK4McfYdUqyMsDAPDwgPBwiIwEFxcBa9JnQkIAACA5GSIjwc0NCgth6FD48kuIioLVq4FtsdS3L7z9NsyYAXK54JUphIQAaLUwdy7ExkLnzoAIM2fCjh0gkYBGAyNHQmQkTJhgvuIUQkIAMjPB1RU6dwYAkEjg1VchNhb+9jeYNw/8/c1dnEJICIBaDXZ2f3xpbw9qNbi7g7u7CMVp7SghAH5+kJ4OOl39l+fPQ7duohWn2VFCAADggw+gsBDmz4cbNyA6Gg4eBDc3cSpTCAm579df4dQpaNsWQkPB1VW0snQ5Ssh9R49CZiaMGiVmAoFCSMgffvsNtm6F2lqRy1IICbnv9m0AgEZ2iGk6+kxICAAAaDRgawtyOWg0IJGIWZnOhIQAAEBeHiCCp6fICQQKISH1OF2LAoWQkHoshI3s2ysICiEhAAD1DytRCB928eJF1tWYEPPKzwegED5k0aJFffr08fLyCgwMXLFiRT7730SIGfwbYNegQYUdO3KojZYqOjpa8ud5KplMNmzYsBUrVty8eZP30ZGWZtiwYQBw8OBB8UtbYgj1ev17770HABKJRKlUFhQUxMTEhISEWFtbGwLZvXt3pVJ55coV3gdLWojOnTsDAJd/URYXwpqampdffhkAWrVqtXXrVr1eb/irysrK+Pj4sLAwBwcH4zRGRUUlJiZyPGbSAtjZ2QFAWVmZ+KUtK4QVFRVjx44FAHt7+99++62uru61115btmzZAy+rrq5maTRutOrr6xsZGZmYmGicW0IaoqSkhP2r41LdgkJ49+7dQYMGAYC7u/vZs2cNgXRwcMjLy3vkW7RabWJiYmRkpIeHhyGNPj4+kZGRCQkJdXV1Iv8IpJm6dOkSAPj7+3OpbikhvHHjRpcuXdgJ7dq1a8XFxYMHDwaANm3aHD9+/Klv12q1hw4dioiIMN6f0cPD45VXXvnqq69qa2tF+BFI83XgwAEAGDFiBJfqFhHC1NRUFp5+/foVFBRkZ2f7+/sDQMeOHdPT0xs7WlpamlKp9DfqzzN9+nRzHDZpMTZs2AAAPXr00Gg04ldvXAgXLFjwzTffZGdnC3gEhw8fbt26NQAEBweXlZWlpaV5e3sDQM+ePXNzc5sy8vnz5/v37w8ALi4uQh0taZG++OIL9vu6T58+4k+QNiKEWVlZhht37A7BpUuXmlh+9+7dNjY2ADB16tTq6uojR46wuZbhw4eXlpY2cXBELCsrs7KyksvlVVVVTR+NtEgHDhyws7OTSCQuLi4AoFAoVCqVmAfQiBBWVlb+8ssvM2bMsLe3N1zp9ejR45NPPjl//rwJtVevXi2VSgHgjTfe0Ol0e/bsUSgUADB58uTq6moTBjQoKCj48ssvly9fjoi9e/cGgP/85z9NGZC0PDU1NRs2bGD/PNhSkLi4uMjISPbl1KlTi4uLxTkSUz4TsjsECxcudDNqR9WhQwd2h0Cn0z11BL1er1QqDbfjEfHHH3+0srICgMWLFzdkhCfLyclhV6F6vX7hwoUA8M033zRxTNJilJWVqVQq9qkHAORyOQA4OTnt3r0bEXfs2OHs7Mym2Y8ePSrC8TRpYsZwh8DT09OQRldX17CwsPj4+MfNSWq1WhYMmUy2fv16RIyOjmbvjYqKasrxGGvXrh0AXL9+/YcffgCAmTNnCjUyab4yMzMjIyPt7vf57dKli0qlunXr1sSJE9l3wsLCKioqbty4we6WWVlZ/XXZMtRqzXpUwsyO6nS6xMTEqKioZ555xpBGFxcXlsaamhrDKzUazbRp0wDA1tb2119/1Wq1f/nLX1gg165dK8jBMJMmTQKATZs2paWlsYlWAQcnzU5ycnJYWJhhH8+goKD4+HjjdR0xMTG2trYA0LVr1/Pnz9fV1SmVSplM9u/hwzEwEDMzzXdswt+iYHcIuhk1MLazswsJCYmJibl169aQIUMAwNnZOSkpSaPRvPTSSwBgbW29Y8cOYQ+DzXdFRkbqdDpHR0cAuHPnjrAliOXT6XTx8fHsnjMAtGrVKiwsLDU19ZEvvnTpUq9evQDAxsZGpVLp9fpTR47oO3RAAHR2xp07zXSQZrxPePHixc8++4z9VAxbgd2+ffsrV66UlJQMHTqUBfLYsWOCVz948CAABAYGImJwcDAAxMfHC16FWKzy8nKVStWhQwf2b69169aRkZFPvelVVVUVHh7O3jJ/xgwsKsKSEpw5EwEQAMPCsKJC8EMV42Z9VlaWSqUKDAx0dna2s7PLzc3V6XQDBw4EAG9v77S0NHMULS8vl8lk1tbWGo3mgw8+AICPPvrIHIWIpbl9+7ZSqWSTKwDg5+enUqkqKysbPkJsbGybNm1uBAWhuzvu34+IGBODtrYIgF274rlzwh6wqCtm3N3dASArKwsR4+PjAwICcnJyzFeuR48eAHDq1Kk9e/YAwMiRI81Xi1iCc+fOhYWFye/v4xkUFLR9+3atSdMq93JzcdgwBECpFJcuxdpavHwZe/dGALS2xuhobPIcvoGoIQwJCQGAbdu2sS/NvcB63rx5ALBy5Ur2SH7r1q2bfvODWKbTp0+73u9dL5fLQ0NDz54929RB9XpUqVAuRwDs3x+vXcOqKly0qP7S9N13hThwRERR21uwS9BTp06xL9mNQfMJDAxk5Tw8PNq3b19WVpaenm7WioSXb775pqysTCaTRUZGZmRkbN68uW/fvk0dVCKBJUsgKQn8/CA5Gfr1g40b4bvvYM8e6NAB5s8X4sABRO4xY0iF+OVELk1EptPpamtrV61atWLFivbt2ws59MCBcO4czJ4NajWEh8OMGTBsGFy/Dp06wfLlMHIkjBoF334Ler3JFcQ+E0ql0nPnztWKsudGz5497e3tMzMz7969SyFs2VhLPjYLIDxHR9i0CX78EeztYccOWL4c5HL49FOorISEBNi/H1JSYNUq08cX6rq2gdgTRsnJyeKUY3dB9u3bl5iYCAB9+vQRpy4Rma+vLwBcv37dvGXS03HqVGSPFrRvj4anAm7exH79TB5V7JaHvK5I+/XrJ5fLU1NTKysrxSlNRIOIbO7NePmkWXTpArt2QevWgAg1NaBQ1H/f0xPu3DF5VD4hPH36tJjlTp06pVAoevbsqdVqz58/L05pIpri4mKNRuPk5GRYFGp2EgnY2UF5ef2X2dng42PyYP8VZ8LTp08j4gNzs6TFYB8IvUTey2X+fHjvPdBoQK2GqCi4v87GBGKHsFevXgqFIj09nfW3Mjdvb+927drdu3cvIyOD5mZaKhbCdiJ3sF+6FAICYNo0mD0bJk2CuXNNHknsEMrlcjY7kpycLE5FwwmQQthS5eXlgfghlEggIgL27oX4eJgzpykjcdiLQvwrUqlUmpWV1a1bNycnp5s3b9IOMy1MZaVv795vdOoUyPtATNTyQxgeHn7v3r1PPvlEIpGwxx2joqJo6UxLcuVKcErKSheX13kfiIlafgidnZ1ZN7fNmzdfuHDB1dV106ZNXbt29fPzW7JkSVJSEiKKcyTETPjtsSuQpt6+NAl7nOLGjRuiVVSpVKyp1KRJk8LCwgzPuQCAn5/f+++/f/LkSeqf30z1748AePIk7+MwFZ8QTpgwAQC2bt0qQi3jplJ///vf2Tcf2R3H29t74cKFT+iOQyyTpycCYPPdL49PCD///HMAePPNN81diG0pAwCtWrXavHnzwy94ZHecNm3aPNwdh1gmrRZlMpRKsfn+5uQTwoSEBAB47rnn2Jdmug6sqKgYN24cANjZ2e1nz0c/EeuO07VrV0ManZycXnrppZiYGLVabY4jbFFqavDqVSwvF7lsbi4CoIeHyGWFxCeEpaWlUqnUxsaGnWri4+M7deok7MZmjd1SxlhaWlp0dHRQUJAhjQqFgvWqEqQveAu0bRv27YuLFuHzz+N774lZ+fRpBMC+fcWsKTBuG8KwdmxnzpxBxNdf/2NyuWPHjm+//XZSUlJTnoLPyspqypYyBteuXYuOjh4wYICh/79MJuvTp09BQYHJY7ZARUXo74/sYkGvx3Hj8MAB0YrHxiIATpggWkHhcQvh+PHjAWDcuHFoNE1ivPyvbdu2T24i/DgCbiljcPPmzXXr1r344osA4ODgsHr1akGGbSF++w3nzv3jy/Xr8eOPRSv+3XcIgOHhohUUHrcQLliwgIWtffv2hj09dTpdcnKyUqlkexUyhibCDdm26siRI+yuoFBbyjxg0aJFAPCeuFdcli4uDhcs+OPLn3+u779SVIS3b5uvbE0NqtVYXY1Xr2JGBjamnZpl4RbCvLy8ESNGsLa8jKen56JFi37//XfWAIpNk3Tv3t3wAltbW/bBrPwxn/4NW8pMmTKliVvKPM6+ffsAYOjQoeYYvLm6cQP79EHDh/nXX8eNG1Gvx4kTsW1bNFu71y1b0NER2bXOvn0YEWGmOmbHeZPQJ5z6tm/fznpFpqWlLV++/NlnnzVO49SpU7dv3248lLBbyjxOcXGxRCKxtbWlvbj/5K23cM4c3LMHlUocNgxra1GtxjFjEAAlEoyMRDP8TtyyBUeMwBkzECmEQnnqqS87O1ulUgUFBbG1L1OmTDG81xxbyjwOu6N44cIFcxdqZo4dw5UrMTYWa2sxJQWTkupbBlpbIwD26IEXLwpbcMsW/OwznDoV9++nEAotMzOThc0wJ2ljY8PSWFJSgoi5ubmrVq1KSEhAROMtZdatWyfC4c2ePRsAxKnVLFVXY0AAymQYFYW1tXj2LHbpggBoY4MCbb6p1WJWVn0Ic3IwIABjYymE5vHAqY8lLSgoSKVS5efnI6JZt5R5nJUrVwLAvHnzxCnX/NTVoVKJMhkC4KBBmJmJVVUYGVnfM3fKFGzC5ptqNa5bh127YpcuuHkzfvYZImJ0NA4fjhERWFKCzXFVhUWH0ICd+kaMGGHY2komk/Xs2ZPN67i4uLCHIcTBnv/o0aOHaBWbpcOH0dsbAbB1a9yyBRFx61Zs3RoB0iZONGELoNxcjIpCZ+f6LPv54cqV9SGsqcFu3TAiAmfOxI4dsZFLM/hrHiE0KC4ujomJCQkJYRs8sXNgSkqKmMdQU1NjbW0tlUrLysrErNv8PLyfUVZW2dSpLgqFTCb79NNPGzi5deECLlyINjb1I/XrhzExWFeHGRloaJ2Zmor79+OzzyIAtmqFX32FzeiRmGYWQoPS0tKIiIhp06axNTciW/7KK2uff1595Ij4pZufP+9nZNh8EwAGDhyYkZHxuPfp9fp///tacHB99qyscMaMpzyvVFuLSiVKpQiAwcGYlyf8T2MOzTWEnLFPOF98wfs4mon7+xntDA6Ojo7W6XQnTpxg7XodHR0ffrpFo9HExMT06NHD1rati4ve3h4XLsSGrz5MSKh/uMnV1Xw3KYVEITTJ5s0IgJMm8T6O5qOqKvfjj6USCQCMHz++sLCwtLR01qxZ7DNFWFgYe06loKBAqVQa9ldq37792rWXTVj4VFCA48bV36RcuNDSF9NQCE2SkYEA6ObG+ziamT179rRp0wYA3Nzc9u3bh4hr165li5x8fX1DQ0PZrvEA0KdPn5iYmKY8Xa3X49dfY6tWCICzZn15+fJl4X4OgVEITaLXY9u2CIDm3OT0kdRq9Zw5c0aPHn2keX4ivXPnzpgxYwBAIpFERkbW1NR8//33hs7ZUql04sSJAv5oyck4eXI8W/jx/fffCzWssCiEpmKXO39eOmduFRUVAQEBxo99CfsQpjj0er1KpWrVqhUA9OvXz93dvVWrVnK5PCwszBznq6qqqsjISPZ/bMqUKcVNuEtpJhRCUy1bhgD4zjuiFSwoKOjfvz8AKBSKXr16sWZZjLe39xtvvHHkyBHTtobmwjA3wyQmJpq13M6dO1l3Lx8fn6NHj5q1VmNRCE31228IgEOGiFPN8Jiyr6/vtWvXsEV0xykrKwsNDQUAKysrEX595OTkDBkyhK30iIqKspx2XhRCU5WUoESCCoUIDYZSU1PZ484BAQF5eXnZ2dkPbMTXfLvjZGdnszO5OOXq6uo++ugjdpeyf//+Ii/zeBwKYRNMnYqLF2NJiVmLHD58mD2mPGLEiLKysrS0NB8fH19f39uPel72Cd1xLHN9z/Hjx9lde5GLsg+iQUFBYtZ9HAphE1y4gEolfvABmu0zRmxsrI2NDdx/TPnEiRNsin/YsGFP7htw48aNB55Esba2HjlypEqlunPnjpmO1gQ7duwAgMmTJ4tcd9myZQAwZ84ckes+EoXQVIcOYWAgHjmCJ0/i6NH400+CV1i9ejV7fCQiIkKn08XFxbFbapMnT64ybNT8NDk5Od9+++3zzz9v/CSKq6trQ3pAimDFihUAsHjxYhFq6fX6gICA4cOHs4tSAFi2bJkIdZ+KQmiq0aPx1Kn6P9+5g126CDs8e0xZIpEolUpE/Omnn1jfgHnz5pn2UP/du3fZ2neWRi8vL2EP2DRRUVEA8Pnnn4tQq6ioCACcnZ0Rce7cuQCwfv16Eeo+FYXQVL6+WFHxx5deXlhbi0K01dBqteHh4eyUxe4vC9s34OjRo+zq1BI6dISFhQHAT2a4jnjYhQsXAKBnz56IOHr0aABgq3a447ArUwvh7AylpfV/1usBEcrKwNMT5syBf/0LampMG7WmpmbWrFnr1q2zsbHZvn37vHnzFi1atHTpUplMtmbNGkMaTVZWVjZ06NBOnTrV1NRcuXKliaM1nZib7BrX4rO572NQCE0VEgL/93/1f968GYKDISEBCgth40aYOBHc3CA0FHbuhKqqhg9ZWlo6atQodls5ISFh/PjxoaGha9assba23rp1K+viYbK8vDxvb2/WL8tyNi0Wc5Nd41p8Nvd9HN6n4marshLnzsXgYBwzBidPRtaT+9IlXL68/tlS9p9CgVOm4MaNVU97FuD27du9e/cGgHbt2qWkpKjV6lGjRgGAk5OTICs8dDodu9WRn5+vUqkAYP78+U0ftolYb4R79+6JUIvNiH700UdVVVUA0KpVKwtZ7kchbBqd7tE367OzUaXCoCD2hKnexcXexsa4O84DLl++3L59ewDo3r37zZs38/Pz2SnL09Pz/PnzQh3sCy+8AABxcXEnTpwAgICAAKFGNo1arQYAhUIhTjn2SXv16tUZGRkA0LFjR3HqPhWF0Mxyc3HVqiuvvWbcHWfEiBGrVq0ytOg/deoUe4IuMDCwqKgoMzOTrUTr2rVrdna2gMfy4YcfAsCHH36o0WgsoUPH1atXAcDPz0+ccmxXzNjY2MTE0wqFi2FTMO4ohCIpLCxcv379iy++yJ4eAACJRPLcc88tWLDA3t4eACZMmFBZWXnmzBk3NzcAGDBgQGFhobDHEBcXBwAvvPACIg4YMAAADh8+LGyJRjl06BCI2M589uz9gwevOn368rZtCIChoZay2J1CKLbKysr4+PiwsDCWPYVCIZVKX3311bq6ut9//93BwQEARo4c+bhW/01RUFAAAA4ODjqdLiIiAgCio6MFr9JwmzZtAoBZs2aJU87DAwHw1i383/9FAFyyRJyyT0ezo2KztbWdMGHCzz//XFBQ8Msvv7C5gX/84x9WVlYrV65Uq9Wvvvrq/v37WRqF5ebm1qFDB7VaffXqVUuYIBVzilKrhaIikErBwwNu3wYAsJCZUaBbFBzZ2trOmDFj0KBBiHjmzBkA2LJly6pVqwyLY8zBkD32h5MnT5qpUEPk5+eDWCG8cwd0OnB3BysryMsDoBASA+Mzkp2dXUREhGHJtVnLPfPMM23atMnPz8/NzTVfuScT80xofPZjfzbaC5MzCiFnIl8WGspJJBI2N8PxipQtW/ESJQ3GZz+6HCV/MmjQIAA4deoUIopQrm/fvnK5PDU1tbKykvvHwgfWjul0OnPWArh/9svPB6AQEoN27dp5eXmVlpZev35dhHIKhSIgIECn0507d45vCBGRfSb09PQEgB9++GHw4MGZmZlmKseC5+kJJSVQWQkODmCGmS8TUQj543VFGhgYKJFIkpOTtVqtOKWNZWVlaTQae3t7W1tbrVb79ddfnz59ul+/fr/88os5yt29CwDQrp3FfSAECqElGDhwIPAIoYuLi5+fX1VV1aVLl8QpbXDmzJlRo0bZ29tXVlaOGTOmqKjo5MmTs2bNKisrmzVr1pw5cyoqKoStuHYtqNXw8svQrh38/DMolcIO3zR8b1MSRDx8+DAA9O/fX5xy7AkmHx8f5LHhqU6n+/LLL+VyOQB07tzZxcUFADw8PA4cOICIMTExrBGwv7//2bNnhS2dm4vPPFO/p0VZGU6cKOzwpqMQ8ldRUWFlZSWXyxvetKIp9Ho968CZl5cn8oanBQUFY8eOBaP223fu3HngO1euXGGL1+VyuVKp1AnxnDSTnY2dOuGoUajXY0kJ9usn1MBNRSG0CKyv9nGxtrdkD0nFxsaKueFpQkICm4NxdXXdu3ev4fsPNOROT0/XaDRRUVGsDcfIkSPzBNriLDsbx47F11/HjRsphOQh8+fPB4Bvv/1WnHIff/wxACxdulScDU/ZnoQsVMHBwY8M1enTp9mzIwqFQqVSIeKBAwc8PDxYaH/99dcmHoNOVx/C4mLs0QOzsiiE5M/Wr18PIi5lPnLkyJw5c+Li4hCRzdOwj2TmkJWVxe6FWllZPfnysry8/JVXXmFTFdOnT793715BQcGLL75ouFjVaDQmHEB+PiqV6OeHly7h2LGIiD/8gP/zPxRC8mcXL14EgE6dOolct7a2tmfPnu7u7g4ODqx/vmn/0B9n+/btTk5OANChQ4ekpKTGvoXtdWO4WO3Zs2dqamrDq589i6GhKJfXNzn47rv6EOr1OGQIhZD8mU6nY40eClibDFFUVFSw84xhV0AAcHR0DA0N3blzZ2XTdtYsLy9nndQAYNq0aY1qYJGVlTV48GDDyVOr1Z45c6Zz587GF6tPoNNhQgKGhNRnTyrFkBA8fhwLC/Fvf6t/zYULKETnOmFQCC3F8OHDAaDpH34aqLi4mHXLd3FxOX78eGZm5gMdu21sbFj//Ce3+n6ks2fPNjwzj2T8MXL48OG3bt0qLy9fuHDhk1NdWVm7Zg126VIfP0dHfOcd8beQbDQKoaVgbXA/+eQTEWplZ2ez3WM6dux49erVB/6KpdG4Y/cTuuM8gF09Wltbs0nXRl09PuzgwYNsZamTk9O2bdvw/sWqk5PTA40/DPtsd+p0BQA9PVGpRFHaRwmAQmgpdu/eDQCjR482d6G0tDRvb2/2EevWrVuPe1lhYSHr2M1urBun0dAd5+G3jB8/nr04LCysiRe0TFFREesNYxgzIyPj999/N7wgNTV13rx5LPYA8MorX2zbhhbQ1rgRKISWgj1S4OTkxOYPS0tL4+Liqqurha3S8C1lDIqLi1kaDd1xAKB79+5KpTKdLT9BRMRDhw4ZzlrbBd3AWK/Xr1u3jn1w7dat24ULF9j3ExMTQ0JC2PWzVCoNCQlJSEgQsK5oKIQWhJ2g2PVhTEwMCL2x2Z49e0zYUsagpKRk48aNU6ZMYYMwffr0WbZs2RtvvMEuX4cNG/aEs2tTXLhwoVu3buz/SVhYmGHbcDs7u8WLFz+wYWPzQiG0INOmTQOAf/7zn4i4a9cutjm2YZpk4sSJGzZsMLlPbtO3lDGoqqpivapYN2EAcHZ2lslkbCazKSM/WXV1Ndt9nt3Ed3d3VyqVd+/eNV9FcVAILcjMmTNZ3rZs2cJ22M3JyVGpVCNHjjR0nTF8MGvUYi5ht5Qx0Gg0//rXv9gvi4n3F0TrdLoK461yhObu7rEpy+gAAAXxSURBVA4AH3/8cbPYErwhKIQWJDY21vjUFxISsm7dOnbnsKio6IEPZlKpNCgoKDo6+slXYlqt9vXXX2fpXbt2rTkOm600aNu2bV1d3a5du7y8vN59911zFELE5ORkdiYUcGE3dxRCy3LixIm33nrL+A6BXC4fPXr02rVr2Q679+7di4mJeemll9gjP8bTJFeuXHlgNI1GM2PGDACwtrbesWOH+Q6b3fA4dOhQUlISu/Nhpm0eWBNxcTYVFQ2F0EIZTn2GOwQPnPrKysq2bNkyffp04zQGBwcbRjDeUubYsWNmPVq28e3ixYt1Oh2bI01OTjZHIZb2gwcPmmNwXiiElu6pp77q6ur4+PiFCxe6uroaNloy3lLGMKdvPufOnWNXiVqtlvX2/uCDDwSvkpaWBgBt2rSxhO1NBUQhbDYM/fONm3N37949KioqMTEREWtqathUYUZGhmFLmRyxVm35+fkBwLFjx1ijgM6dOwtegu1t9tprrwk+Ml8UwuaHnfrCwsLY0waMr69vZGTkoUOH4uLi2B5PAwcOFHxLmSd4//33AWDJkiU6nY49vJuSkiJsCbZ/o/EDwS0DhbAZq6mp2bdv3/z581nqjI0fP16QVWMNxx7S9/b21uv1bCfATz/9VMDxb9y4AQAODg6CryLiToKi9JwlZqXX648fP75jx47vv/9eo9H4+/unpaWZb0OLR0JEX1/fnJycEydOqNXq0aNH+/v7sx0IBXH58todOzbevdt11aofhBrTUvD+LUCEpNPpzp49y2sX6LfeegsA3n333bq6OnZyvnz5slCDX7kSmJwMJSW7hBrQclDf0RZFKpX27dvXrFvKPAFbdrdz506ZTDZx4kT2Z0FGrqvLq6w8LZXaOjqOEWRAi0IhJIIZPHiwj49Pdnb2uXPnWCB37dolyMglJbsB0NFxrFRq9/RXNzcUQiIYiUQyefJkANi1a9fIkSOdnZ1TUlLS09ObPnJp6W4AcHae2vShLBCFkAjJcEUql8vZw7jGC2JNo9XerahIkkjkrVuPE+AQLQ+FkAjp+eef9/T0vH79ekpKilBXpKWlsYhaR8dRMpmzEMdocSiEREhSqXTSpEkAsGvXrjFjxjg6OiYnJ7NbfCYrKdkNAE5OLfNaFCiERHDsBLh9+3Zra2vWcoa1zzGNTleqVh+SSGROThMFO0QLQyEkAhsxYoSrq2t6evrly5enT58OAHv37jV5NEStu/s7bdq8amX14KqgFoNCSARmfJNw7NixO3fuNC2EiLrCwtW5uW8D6L28vhL6MC0ILVsjwtu/f/+4ceN69eqVkpJi8iB3766vqEhq1+6vGs1Ve/shUqnt09/TPFEIifDq6uratm1bXl7+5ptvshZpD+vRw9bfv+pxIygUvdXqw3V1t318VgDwWQAkGgohMYvu3buz3o2Pe8E77wx/+eUjj/tbd/f3PDzez8kJ12guu7qGu7ktacFRFHWhPfnv8eOPPy5fvtzHx+dxLxgwwK1t2y6P+1s7u0Arq7Z+fru02rs3bsyQy72cnV8yz5HyR2dCYqF0unKZzBEAbt2KVCiebdt2Hu8jMhc6ExILde/e1pKSrYh6udzNyyua9+GYEZ0JCeGM7hMSwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnh7P8BbcQF5wEVa58AAAI1elRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkAdiJSBuYGRjSADSjMwQmomJg0EDSDMzsUFoFgQfIs/uAOYzszlkgGlGhABEg4ADVANMAUwCQcMl0FSg20VYB9z1WFTg1INmGzcDIwMjEwMTswIziwYTMysDKxsDG3sCO0cGEwdnAidXAhd3AjdPBhMPrwIvXwYTH38Cv0AGk4CggqAQg5Awg7BIBpOIaIKoWAaTmDiDmESChCRQVipBShqoRSZBRjZBVk6DSZYtQYYzg0maN0FSOMGJBWgxG5usDCcHOysXpwwPNxsfv4CUNC+biKiYhKSweB0j0FMMsLjKL3vn0Fy2xwHEWdD90kFzew+YXbtnr4OncRGYve7iDoepW4TAbKZt9x0uPtxiD2J3M/U6SH2+BmbvEe9waF9rbwdODH/WOQQoG+4HsR0FVzl0HOc+AGJbt9Q4TGAyBrPvc8U7nNNvB7Nvif6zn+IJYbPHH7L/GQpRw+W/y3beHVEw2zMydd9uxgSwmfapl/fPtLiyD8Se99zgwLnLW8HioUptB3QPlYLZ0WYTDkxYxwh228Mnew/8m1wOZj//cfyA/kFpsF9yl3890GVlCWZ/W8BzMHf9R7Aaywrlg0KBYmDxz9PYD1rduQ72V0L9wwMipfJ7QeyJ+2UOiB2zALuN52jT/iL7MDB70m49hxO1X8FuMJho4VDLeAvsTv6JV+2fSb8AmyMGAKbNnY9ykhjpAAAC4npUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VW27cMAz831PoAhbEl0R+NtmgKIrsAm3aO/S/90eH3kZ2UKHemLCFET3iDJlLyevb9euv32VefL1cSmn/+YuI8lNaa5fXkg/l6eXzl1t5fvv09L7yfP9xe/tehIoo9uD3Efvp7f76vkLluYyqRmGjWHUP7aO02vbr2Mk7jsM5tGiVGGK+wEm5I01wsEWROlzF2wKnyGd1DLPohZGYefACZ8jXa0SL7oWqkpDSAteRT6u2bh2Hqn1EEv0XN8oNODb2yGOSD3Jb4Hznp925R9la7UGhK2AgoVWw6q2XjZFRm62+TBAGFUEWG5TIEaPJ6sxEBepVdWuCj4Muqy1ZUspCNYBUfiDHWOeUHWk4LVt+3RsTL5EpDZZR8gdPUbJYaUgGJGrDnHbIJx/WuK+gqc8GXYyMR0KVVJcK0UgoytMh9shNys3WWR3uwKkpCPpk1jD0xzJrZFat1nqXLCUebKxOxanTBg/j3B4ARB/UVpXibJ6tV9YgdBpXFel9RZRTp23Alr27A4k2o1j1D6dOm6NxYOABxdyd1jl1LynKT92NSgrlfZ3UHkl1qFieRLFnfaT+INowBWI3fhMPWdbpr06QkYJ3S/loS6OwP9SH5bp42QRUR1+6j1MniC8t64M9QSPaquNz0GUlXbzz7ii2EbJCEmwC73XXXVA1EVnV6eV2/TAcH+Py6X67HuMyf3xMRbwUOYYfRm7RY8YxbjtGGeG1HxOLcI9jMCluP+aP4o5jyihuOg8TzUB0GhqagSY5yq8j0ORHSTDDpIhm1ww0WaKp8xUde+pdzUCTK1qU9jDpohNpD5MxGo4y8LmxNANPzpycEfgoaHJG4MmZkzMCT86cnHNlcubkjMCTM++cB0x6sqtm4MmZs8aoBk/OnGVGkLPJuOwWOplJc2UmFn5sOsQRyRU/lVl2yv1UjLTa2Vj5/v4/HM+XP5fIgL55HX/YAAABdXpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nEVRO47lMAy7ypQJ4AjWx/ogmCoHeIdwP822c/il0kwRKKYpiqKf5/Mc35/z+eH9s2Uf+7i27r2Pz7Ot63Pubfj03P/k3Pz9+fo9gmxx+ViUWRbjDpJKqWGkFerjXlRS4kMp0jQbiFg+BEQRdDhVzYrBZKxs4zay6WAweaC3AVmokziDc7WEeaL3muTFZS+EXudxCVg2gSjhYkUjUTF13PjRKeNiKg7oMi3ISTNyCsu4J832wq+OGi+wMESkl+lxGWtimRsavni9mLFZwXcPchx6gMnE5X0ZcbFX02pVvTSjNd0N+6DC4H0hIwzrDcuDYfG+nMSKFTGZqjcpEIdDCmbLmpJItBQxZSY3g+GUX4ZaxsuwMF3QNVy8ukET2bWfqd3drmEfwzuFjFnvcogDDi+FUrh0VJVrAsFbSCALxGt/iHVQ3a/pbySyosWRkqf1YrZU8frn738IFX9lsybr1QAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Bioactivity_Prediction
CN1CCN(C2=Cc3ccc(Cl)cc3Nc3cc(Cl)ccc32)CC1
551,166
{"predicted_classes": ["gpcr_ligand"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 2, "enzyme_inhibitor": 0, "ion_channel_modulator": 0}, "bioactivity_likelihood": "High", "drug_like_properties": {"molecular_weight": 360.29, "logp": 4.8, "hbd": 1, "hba": 3}, "structural_complexity": "High"}
360.288
4.7959
[ { "content": "Determine the bioactivity prediction of the chemical structure 'CN1CCN(C2=Cc3ccc(Cl)cc3Nc3cc(Cl)ccc32)CC1'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"gpcr_ligand\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 2, \"enzyme_inhibitor\": 0, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"High\", \"drug_like_properties\": {\"molecular_weight\": 360.29, \"logp\": 4.8, \"hbd\": 1, \"hba\": 3}, \"structural_complexity\": \"High\"}", "role": "assistant" } ]
Functional_Group_Identification
CCC(C)NCC(=O)O
42,811
{"alcohol": 1, "carboxylic_acid": 1, "amine": 1}
131.175
0.4591
[ { "content": "Determine the functional group identification of the chemical structure 'CCC(C)NCC(=O)O'.", "role": "user" }, { "content": "{\"alcohol\": 1, \"carboxylic_acid\": 1, \"amine\": 1}", "role": "assistant" } ]
Stereochemistry_Analysis
Fc1ncc(Cl)cn1
583,264
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
132.525
1.2691
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'Fc1ncc(Cl)cn1'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Drug_Likeness_Assessment
Cc1cc(C)cc(Oc2c(C(F)(F)F)oc3cc(OCC(=O)Nc4cccc5ccccc45)ccc3c2=O)c1
1,681,320
{"molecular_weight": 533.5, "logp": 7.39, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 5, "rotatable_bonds": 6, "topological_polar_surface_area": 77.77, "lipinski_violations": ["MW>500", "LogP>5"], "violation_count": 2, "drug_like": false, "assessment": "Not drug-like"}
533.502
7.39164
[ { "content": "Provide information about Drug_Likeness_Assessment for the molecule with SMILES 'Cc1cc(C)cc(Oc2c(C(F)(F)F)oc3cc(OCC(=O)Nc4cccc5ccccc45)ccc3c2=O)c1'.", "role": "user" }, { "content": "{\"molecular_weight\": 533.5, \"logp\": 7.39, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 5, \"rotatable_bonds\": 6, \"topological_polar_surface_area\": 77.77, \"lipinski_violations\": [\"MW>500\", \"LogP>5\"], \"violation_count\": 2, \"drug_like\": false, \"assessment\": \"Not drug-like\"}", "role": "assistant" } ]
Stereochemistry_Analysis
CCOC(=O)C1=C(C)N=c2sc(=Cc3ccc(OC)c(OC)c3OC)c(=O)n2C1c1ccc(N(C)C)cc1
986,851
{"chiral_centers": 1, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 1, "chiral_center_details": [{"atom_index": 28, "configuration": "?"}], "stereogenic_double_bonds": 3, "max_stereoisomers": 2, "potentially_meso": false, "stereochemistry_complexity": "Medium"}
537.638
2.8901
[ { "content": "What is the stereochemistry analysis for the compound represented by 'CCOC(=O)C1=C(C)N=c2sc(=Cc3ccc(OC)c(OC)c3OC)c(=O)n2C1c1ccc(N(C)C)cc1'?", "role": "user" }, { "content": "{\"chiral_centers\": 1, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 1, \"chiral_center_details\": [{\"atom_index\": 28, \"configuration\": \"?\"}], \"stereogenic_double_bonds\": 3, \"max_stereoisomers\": 2, \"potentially_meso\": false, \"stereochemistry_complexity\": \"Medium\"}", "role": "assistant" } ]
Drug_Likeness_Assessment
CCOc1ccc(C2C(C#N)=C(N)Oc3n[nH]c(-c4ccc(OC)cc4)c32)cc1
993,589
{"molecular_weight": 388.43, "logp": 3.7, "hydrogen_bond_donors": 2, "hydrogen_bond_acceptors": 6, "rotatable_bonds": 5, "topological_polar_surface_area": 106.18, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
388.427
3.70218
[ { "content": "Provide information about Drug_Likeness_Assessment for the molecule with SMILES 'CCOc1ccc(C2C(C#N)=C(N)Oc3n[nH]c(-c4ccc(OC)cc4)c32)cc1'.", "role": "user" }, { "content": "{\"molecular_weight\": 388.43, \"logp\": 3.7, \"hydrogen_bond_donors\": 2, \"hydrogen_bond_acceptors\": 6, \"rotatable_bonds\": 5, \"topological_polar_surface_area\": 106.18, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1cc(Oc2c(C(F)(F)F)oc3cc(OCC(=O)Nc4ccccc4)ccc3c2=O)cc(C)c1Cl
1,669,618
517.89
517.887
6.89184
[ { "content": "Provide the molecular weight for 'Cc1cc(Oc2c(C(F)(F)F)oc3cc(OCC(=O)Nc4ccccc4)ccc3c2=O)cc(C)c1Cl'.", "role": "user" }, { "content": "517.89", "role": "assistant" } ]
Stereochemistry_Analysis
Fc1ccc2cc[nH]c2c1
351,278
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
135.141
2.307
[ { "content": "What is the stereochemistry analysis for the compound represented by 'Fc1ccc2cc[nH]c2c1'?", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
O=C(NC1C(=O)n2c(nc3ccccc32)SC1c1ccc([N+](=O)[O-])cc1)c1ccccc1
178,433
444.47
444.472
4.2303
[ { "content": "What is the molecular weight of the compound with SMILES 'O=C(NC1C(=O)n2c(nc3ccccc32)SC1c1ccc([N+](=O)[O-])cc1)c1ccccc1'?", "role": "user" }, { "content": "444.47", "role": "assistant" } ]
Hydrogen_Bond_Properties
C=C(Br)COC(C)C(C)=O
536,812
{"donors": 0, "acceptors": 2}
207.067
1.8891
[ { "content": "How many hydrogen bond donors and acceptors are in the molecule with SMILES 'C=C(Br)COC(C)C(C)=O'?", "role": "user" }, { "content": "{\"donors\": 0, \"acceptors\": 2}", "role": "assistant" } ]
Reactivity_Prediction
CNC(NC)=S(=O)=O
128,040
{"charges": {"N": [{"atom_idx": 1, "charge": -0.269}, {"atom_idx": 3, "charge": -0.269}], "C": [{"atom_idx": 2, "charge": 0.181}], "S": [{"atom_idx": 5, "charge": 0.244}], "O": [{"atom_idx": 6, "charge": -0.182}, {"atom_idx": 7, "charge": -0.182}]}, "dipole": 1.36, "steric_hindrance": 2.5}
136.176
-1.6083
[ { "content": "Provide information about Reactivity_Prediction for the molecule with SMILES 'CNC(NC)=S(=O)=O'.", "role": "user" }, { "content": "{\"charges\": {\"N\": [{\"atom_idx\": 1, \"charge\": -0.269}, {\"atom_idx\": 3, \"charge\": -0.269}], \"C\": [{\"atom_idx\": 2, \"charge\": 0.181}], \"S\": [{\"atom_idx\": 5, \"charge\": 0.244}], \"O\": [{\"atom_idx\": 6, \"charge\": -0.182}, {\"atom_idx\": 7, \"charge\": -0.182}]}, \"dipole\": 1.36, \"steric_hindrance\": 2.5}", "role": "assistant" } ]
Reactivity_Prediction
CSc1ncc(-c2ccc[n+](CC(=O)C3CC3)c2)cc1C#N
1,608,195
{"charges": {"S": [{"atom_idx": 1, "charge": -0.109}], "C": [{"atom_idx": 2, "charge": 0.114}, {"atom_idx": 9, "charge": 0.169}, {"atom_idx": 11, "charge": 0.206}, {"atom_idx": 12, "charge": 0.2}, {"atom_idx": 17, "charge": 0.177}, {"atom_idx": 19, "charge": 0.085}, {"atom_idx": 20, "charge": 0.102}], "N": [{"atom_idx": 3, "charge": -0.248}, {"atom_idx": 10, "charge": -0.197}, {"atom_idx": 21, "charge": -0.192}], "O": [{"atom_idx": 13, "charge": -0.292}]}, "dipole": 3.1, "steric_hindrance": 3.18}
310.402
2.60878
[ { "content": "Determine the reactivity prediction of the chemical structure 'CSc1ncc(-c2ccc[n+](CC(=O)C3CC3)c2)cc1C#N'.", "role": "user" }, { "content": "{\"charges\": {\"S\": [{\"atom_idx\": 1, \"charge\": -0.109}], \"C\": [{\"atom_idx\": 2, \"charge\": 0.114}, {\"atom_idx\": 9, \"charge\": 0.169}, {\"atom_idx\": 11, \"charge\": 0.206}, {\"atom_idx\": 12, \"charge\": 0.2}, {\"atom_idx\": 17, \"charge\": 0.177}, {\"atom_idx\": 19, \"charge\": 0.085}, {\"atom_idx\": 20, \"charge\": 0.102}], \"N\": [{\"atom_idx\": 3, \"charge\": -0.248}, {\"atom_idx\": 10, \"charge\": -0.197}, {\"atom_idx\": 21, \"charge\": -0.192}], \"O\": [{\"atom_idx\": 13, \"charge\": -0.292}]}, \"dipole\": 3.1, \"steric_hindrance\": 3.18}", "role": "assistant" } ]
GHS_Hazard_Statement_Identification
Cn1nc(C(C)(C)C)cc1C(=O)Nc1nc2c(s1)C(=O)CC(C)(C)C2
654,029
["H301", "H350"]
360.483
3.5815
[ { "content": "List all GHS hazard statements (H-codes) that apply to the chemical 'Cn1nc(C(C)(C)C)cc1C(=O)Nc1nc2c(s1)C(=O)CC(C)(C)C2'.", "role": "user" }, { "content": "[\"H301\", \"H350\"]", "role": "assistant" } ]
IUPAC_Name_Generation
CC[N+](C)(C)CCCOCCC[N+](C)(C)CC.[Br-].[Br-]
46,895
ethyl-[3-[3-[ethyl(dimethyl)azaniumyl]propoxy]propyl]-dimethylazanium;dibromide
406.247
-4.0162
[ { "content": "What is the IUPAC name for the molecule with SMILES 'CC[N+](C)(C)CCCOCCC[N+](C)(C)CC.[Br-].[Br-]'?", "role": "user" }, { "content": "ethyl-[3-[3-[ethyl(dimethyl)azaniumyl]propoxy]propyl]-dimethylazanium;dibromide", "role": "assistant" } ]
Reactivity_Prediction
CCOc1cc(C2C3=C(CC(C)(C)CC3=O)NC3=C2C(=O)CC(C)(C)C3)cc(Cl)c1O
1,340,584
{"charges": {"C": [{"atom_idx": 1, "charge": 0.086}, {"atom_idx": 3, "charge": 0.162}, {"atom_idx": 11, "charge": -0.059}, {"atom_idx": 12, "charge": -0.059}, {"atom_idx": 14, "charge": 0.162}, {"atom_idx": 19, "charge": 0.162}, {"atom_idx": 23, "charge": -0.059}, {"atom_idx": 24, "charge": -0.059}, {"atom_idx": 27, "charge": 0.087}, {"atom_idx": 29, "charge": 0.176}], "O": [{"atom_idx": 2, "charge": -0.49}, {"atom_idx": 15, "charge": -0.294}, {"atom_idx": 20, "charge": -0.294}, {"atom_idx": 30, "charge": -0.503}], "N": [{"atom_idx": 16, "charge": -0.362}], "Cl": [{"atom_idx": 28, "charge": -0.08}]}, "dipole": 4.43, "steric_hindrance": 4.19}
443.971
5.4175
[ { "content": "What is the reactivity prediction for the compound represented by 'CCOc1cc(C2C3=C(CC(C)(C)CC3=O)NC3=C2C(=O)CC(C)(C)C3)cc(Cl)c1O'?", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 1, \"charge\": 0.086}, {\"atom_idx\": 3, \"charge\": 0.162}, {\"atom_idx\": 11, \"charge\": -0.059}, {\"atom_idx\": 12, \"charge\": -0.059}, {\"atom_idx\": 14, \"charge\": 0.162}, {\"atom_idx\": 19, \"charge\": 0.162}, {\"atom_idx\": 23, \"charge\": -0.059}, {\"atom_idx\": 24, \"charge\": -0.059}, {\"atom_idx\": 27, \"charge\": 0.087}, {\"atom_idx\": 29, \"charge\": 0.176}], \"O\": [{\"atom_idx\": 2, \"charge\": -0.49}, {\"atom_idx\": 15, \"charge\": -0.294}, {\"atom_idx\": 20, \"charge\": -0.294}, {\"atom_idx\": 30, \"charge\": -0.503}], \"N\": [{\"atom_idx\": 16, \"charge\": -0.362}], \"Cl\": [{\"atom_idx\": 28, \"charge\": -0.08}]}, \"dipole\": 4.43, \"steric_hindrance\": 4.19}", "role": "assistant" } ]
Stereochemistry_Analysis
CCc1cnc([N+](=O)[O-])[nH]1
88,922
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
141.13
0.8803
[ { "content": "What is the stereochemistry analysis for the compound represented by 'CCc1cnc([N+](=O)[O-])[nH]1'?", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Functional_Group_Identification
CCCC1=NC(C)(C)CO1
293,662
{"ether": 1}
141.214
1.9938
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'CCCC1=NC(C)(C)CO1'.", "role": "user" }, { "content": "{\"ether\": 1}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCCCCOc1ccc(C=c2sc3nc(-c4ccccc4OC(C)=O)nn3c2=O)cc1OC
1,859,763
479.56
479.558
3.8686
[ { "content": "What is the molar mass of the substance with SMILES 'CCCCCOc1ccc(C=c2sc3nc(-c4ccccc4OC(C)=O)nn3c2=O)cc1OC'?", "role": "user" }, { "content": "479.56", "role": "assistant" } ]
Bioactivity_Prediction
O=c1ccc2ccncc2[nH]1
589,676
{"predicted_classes": ["Unknown"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 0, "enzyme_inhibitor": 0, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Medium", "drug_like_properties": {"molecular_weight": 146.15, "logp": 0.92, "hbd": 1, "hba": 2}, "structural_complexity": "Medium"}
146.149
0.9231
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'O=c1ccc2ccncc2[nH]1'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"Unknown\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 0, \"enzyme_inhibitor\": 0, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Medium\", \"drug_like_properties\": {\"molecular_weight\": 146.15, \"logp\": 0.92, \"hbd\": 1, \"hba\": 2}, \"structural_complexity\": \"Medium\"}", "role": "assistant" } ]
Hydrogen_Bond_Properties
CN(C)CCCc1c2ccccc2nc2ccc(Cl)cc12
287,683
{"donors": 0, "acceptors": 2}
298.817
4.5356
[ { "content": "Identify the number of H-bond donors and acceptors in the compound 'CN(C)CCCc1c2ccccc2nc2ccc(Cl)cc12'.", "role": "user" }, { "content": "{\"donors\": 0, \"acceptors\": 2}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCCCOC(=O)c1ccc(NC(=O)C2CCC(=O)N2C2OC(=O)c3ccccc32)cc1
1,751,241
436.46
436.464
3.4422
[ { "content": "What is the molar mass of the substance with SMILES 'CCCCOC(=O)c1ccc(NC(=O)C2CCC(=O)N2C2OC(=O)c3ccccc32)cc1'?", "role": "user" }, { "content": "436.46", "role": "assistant" } ]
Functional_Group_Identification
CC1CCN(C(=O)Nc2cccc(Cl)c2)CC1
707,662
{"halogen": 1, "phenyl": 1}
252.745
3.6038
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'CC1CCN(C(=O)Nc2cccc(Cl)c2)CC1'.", "role": "user" }, { "content": "{\"halogen\": 1, \"phenyl\": 1}", "role": "assistant" } ]
Stereochemistry_Analysis
COc1ccc2cc(CN(CC3CCCO3)S(=O)(=O)c3ccc(C)cc3)c(=O)[nH]c2c1
1,164,792
{"chiral_centers": 1, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 1, "chiral_center_details": [{"atom_index": 11, "configuration": "?"}], "stereogenic_double_bonds": 0, "max_stereoisomers": 2, "potentially_meso": false, "stereochemistry_complexity": "Medium"}
442.537
3.21502
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'COc1ccc2cc(CN(CC3CCCO3)S(=O)(=O)c3ccc(C)cc3)c(=O)[nH]c2c1'.", "role": "user" }, { "content": "{\"chiral_centers\": 1, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 1, \"chiral_center_details\": [{\"atom_index\": 11, \"configuration\": \"?\"}], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 2, \"potentially_meso\": false, \"stereochemistry_complexity\": \"Medium\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
CC1(C)C(Cl)C1(Cl)Cl
277,523
173.47
173.47
2.8075
[ { "content": "Calculate the exact molecular mass for the molecule represented by 'CC1(C)C(Cl)C1(Cl)Cl'.", "role": "user" }, { "content": "173.47", "role": "assistant" } ]
Stereochemistry_Analysis
Nc1ccc(Cl)c(N)c1
21,209
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
142.589
1.5044
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'Nc1ccc(Cl)c(N)c1'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Molecule_Visualization
CCOC(=O)c1ccc2nc(C)cc(Nc3cccc(C)c3)c2c1
731,027
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU1fsH8GdmWGRABGMRd9HcIATcA1QUAZdcEkzNJbWoXMofmWT5DTU1aVGzLDErl9JEUyMVhFEWgUwxtdw3FFQ2F1DWYWae3x9Hx5ERYpk7Zwae98s/nBHuOVf4zL333HPPI0JEIITwI+bdAUIaOwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJDwVFhYeP36cdy84oxASboqKioYPH+7r65ucnMy7LzxRCAkfpaWlo0aNSktLa968edu2bXl3hycKIeFALpcHBQUlJCS0atUqISGhffv2vHvEE4WQ6JtcLh83btyBAwccHBzi4+M7duzIu0ecUQiJXimVyilTpuzbt8/e3v7w4cPdunXj3SP+KIREf1gCo6KibGxsYmJiXFxcePfIIFAIiZ6oVKrp06dv3769WbNmcXFxPXv25N0jQ0EhJPqAiLNmzdq6daulpeUff/zRu3dv3j0yIBRCIjhEnDt3bmRkpFQq3bdvn4+PD+8eGRYKYSNSUAAREXD9+pOXa9fqo90PPvhg3bp15ubmu3btGjRokD6aNC5IGo0rVxAAAwKevLSzE7zRDz/8EADMzMz++OMPwRszTnQkbFxatIDCQtixQ0/NLVmyZMWKFaamplFRUSNHjtRTq8aGQti4iESwejWEhkJhoeBtrV69evHixRKJZPPmzaNHjxa8PaNFIWx0+vWDgABYtOjJO3v3Ql6ejltZu3ZtaGioWCzetGnTxIkTdbz1hsWEdwcIBxER4OICgwcDAFy5AmPHAgA4O4OfH3h5wZAh0KpVvbb/ww8/zJs3TyQSffvtt5MnT9ZBjxs23helRH+uXEEnp0d/X78eu3RBOzs8eRL9/dHSEgEe/RGJ0NUV587F337DO3dq3cpPP/0kFotFItG6det02/+GSoSIvD8HiD6oVJCRAT4+cPv2o5deXnDlCuTnAwBUVMCxY5CYCImJkJYGJSWPvkssBldXGDUqo2fP0wMGDGjevHn1rezcuXPixIlKpTIiImLBggWC7lHDwftTgOhDVBQOHIgZGbhs2ZM3//kHly7FP/9EufypL66owPR0XLkSR45Ea2sEwIEDI9hvi7Ozc0hISFRU1N27d7Vb+e2330xMTABgxYoVAu9Qg0IhbPiiolAiQQDctKnyP128iAAolaKfH4aHY3w8lpc/9QVlZZiUhKtWbff19W3SpIn6s1ssFnt6eoaGhkZHRxcUFCDigQMHzM3NAWDx4sX62rMGgkLYwB04gObmCIBLljzjX1NSsHt3FImeXBBaWeGwYRgRgUePYkXFU19cWlqamJgYHh4+cOBAzUBKJJKuXbuampoCwMKFC/WzXw0JXRM2ZHFxMHo0lJVBaCh8+WWVX5abC0lJjy4Iz59/8n7TpjB16q527TIGDRrk6ekpkUjU/6RQKE6fPi2TyWQyWUpKSllZmZOTU79+/Xbv3i3kDjVQvD8FiFBkMrSwQAB8991afFduLkZF4TvvYM+eKBJhz57+7PfEysrKz89v5cqVR44ckT99EVlSUvLaa68BwNtvv63jfWgc6EjYMKWlQUAAFBXB66/Dhg0gEtVlI9nZkJy8+9Ch2MTExMuXL6vft7GxGTBgwKBBg3x9fXv06CESiY4fP96nT5/27dtnZGTobB8aDQphA3T0KPj7w8OH8Npr8MMPINbFtKicnJwjR46wk89z586xN5s1a3b37l2JRKJSqZycnPLy8i5cuNClSxcdtNeY0IyZhubUKRgxAh4+hPHjYeNG3SQQAFq0aBEcHBwcHAwAWVlZCQkJiYmJTZo0YReKYrHY39//559/jomJoRDWGu/z4cYiOzu7qKhI6FZOnz7dp0/Ic88pX3658tim0H755RcA8Pf312urDQKFUB+ioqIsLCwAoEOHDmFhYfHx8aWlpTpv5ezZs/b29gAwc+bySvff9SA/P18ikZibm+vhs6aBoRAK7uzZs1ZWVpVOQKRS6ZAhQz755JOUlBS5LhJz6dKlli1bsmNRWVlZ/TdYB3379gWA/fv3c2ndeFEIhaXORo8ePc6cOXPw4MGwsLCePXuKNa7VpFKpl5cXO0LWLT83btxo164dAPj5+ZWUlOh8L2ooPDwcAObMmcOrA0aKQiggzWxUOv988OBBfHw8C6RI4waCVCr18/MLDw+Pj48vrzSFrAqZmZkdOnQAAC8vr4cPHwqzKzVy9OhRdsrNsQ/GiEIolGdm4/Tp09euXav0lXl5edHR0dqBtLS0/M9A5uTkdO3aFQD69ev34MEDYXfpvyiVSgcHBwC4dOkS354YFwqhIKrKxpAhQwDAyckpODg4MjJSO5C5ubnVBLLShJXc3Nzu3bsDgLu7+7179/S3e1WbNGkSAKxdu5Z3R4wJhVD3qsnGpEmTnnvuOc0RGmdn5xkzZmzZsiUrK6vSdm7fvr1t27aQkJDOnTtrfkuzZs1eeumlpUuXsvfd3Nzu1OHZW2Fs2bIFAIYNG8a7I8aEZszo2J07d3x9fc+cOePm5nb48OFKkWOuXbvGpj4fPnz47t276vednJy8vb39/PwCAgLYxaRabm5ucnJySkpKamrqiRMn2JvW1taOjo6pqanszoQhyM/Pb9Gihbm5+Z07d6RSKe/uGAnenwINSkFBQa9evQCgS5cuOTk5NfmWq1evRkZGBgcHV3po3dnZecqUKZGRkTdu3Kj0LVlZWVu2bGEH2/nz5wuwH/XC/gdiYmJ4d8RoUAh1prCwsE+fPgDw/PPP3759u7bfrlAozpw5wwJpa2v7zEBmZmaqv37fvn0A0K9fP53uhA7873//A4B3a/XsRuNGIdSN4uLiAQMGAEC7du2uX79ez60pFIpjx4599tlnw4cPb9q0qWYgXV1d2cBMcXFxkyZNxGJxXl6eLvZAZ1JTUwGgc+fOvDtiNCiEOlBSUuLr6wsAbdq00R7wrCeFQpGenr5mzZrg4GAbG5tevXqp/2no0KEAsG3bNt22WE8KhYJdCV+5coV3X4wDhbC+ysvLhw8fDgCtWrUS+teuoqJC84x01apVADBlyhRBG62DV155BQC++eYb3h0xDrQCd71UVFQEBQWx8utxcXFCl183MTFp06aN+uWwYcMAIDY2VqVSCdpubQUGBgJAbGws744YB7pFUXdKpfLVV1/dsWOHnZ1dQkKCq6ur/vvQsWPHa9eupaenG1Th25ycnJYtW0ql0jt37mguCUWeiY6EdaRUKqdOnbpjxw4bG5vY2FguCQQAf39/AIiJieHSelVatGjh7u5eXFx85MgR3n0xAhTCukDEt99+e9u2bdbW1gcPHuR4FGJnpIYWQjDgjhki3helxkelUr311lsAIJVKk5KS+HamqKjI3NxcIpEYzsw1hh0Du3XrxrsjRoCOhLW2YMGC9evXW1hY7Nu3j90b5MjS0tLb21upVMpkMr49qaR///7Nmzc/f/78tWvXePfF0FEIa2fs2LFffPGFmZnZrl272L1B7gxqKDIrK4v9RSKRDB48GAymY4aMQlgLISEhe/fuFYvFu3fvZvcGDYH6RgXyHujevXv3888//+OPP7KXLi4uAPDJJ59w7ZQRoBDWwrFjxwDA3d19xIgRvPvyhIuLS7t27XJyck6dOsWxG7///vuECRPKy8tv3rzJ3vn3338BoKCgQKlUcuyY4aMQ1sLAgQMBwNramr1cunRpjx49srOzuXYKACAgIAC4DkXGxcVNmDChoqIiNDT0448/BoDNmzfv3bsXAMaMGaNZxII8A++RIWNy+/ZtkUhkaWnJlmMaOXIkAPz000+8+4WsDIuPjw+X1mUyGVvQUf3kxM6dO1mhwvDwcC5dMi4Uwtrp0aMHABw6dAgR161bBwCvvPIK707hgwcPzMzMTExM7t+/r+emU1NT2YKOr7/+ukqlQsTdu3ezBC7TrEhKqkYhrJ2wsDB4/CgtG3y3tbWt0PNi188yaNAgANi5c6c+G/3zzz/Zk1avvfaaUqlExNjYWFYq9OOPP9ZnT4wahbB2EhMTAcDFxYW9ZKu8pKam8u0VIkZERADAzJkz9dbiyZMn2WoA48ePVygUiBgXF8dmis6bN09v3WgAKIS1U1FR0axZMwBgq068++67ALBo0SLe/cLTp08DgJOTEzsn1ENz7KHBcePGsROBI0eOWFpaAsDcuXP10IGGhEJYay+//DIAbNiwARHZnWjNB205Yk85nT59WuiGLly40KJFCwAYM2YMe8w/LS2NnZfOmDFDP58CDQmFsNY2bNgAAGPHjkXE0tJSqVQqFotruKyToGbOnAkAK1euFLQV7aIXf//9N1sUZ9q0aezKkNQKhbDWsrKyRCJR06ZN2arYbMLKli1bePcLd+3aBQCDBg0Srgnthf1PnTrFrgyDgoIMYYDKGFEI64I9PZiQkICIa9euBYCJEyfy7hQWFhaampqampoWFBQIsX3thf3/+ecfOzs7dl5ACawzCmFdvP/++wAQFhaGiFevXgWA5s2bsxFCvnx8fABg9+7dOt+y9sL+Fy9edHJyAoDAwEBexdgaBgphXRw6dAgA3Nzc2MtOnToBwNGjR/Xfk5ycHH9//8uXL7OXK1asYPfNdduK9sL+ly9fZleGQ4cOFaLgaaNCIayL8vJyNhjI1j6bM2cOlyla6qPT6NGj2TvR0dESiaRJkyY9e/bUVUng/Px8dvqtLnpx48aN9u3bA4C3tzfV5a0/CmEdjR49GgA2btyIiPv37weAPn366LMD9+7d8/Dw0MxGRkZG27ZtAUC74OGyZcvqVhJYe2H/rKwsZ2dnAHjxxRf5lkNsMCiEdfTdd9+xIUFELCkpsbCwEIvFubm5+mldMxvZ2dn4dDays7PVFUjrWRJ4+fLlmq3k5uZ269YNAPr27VtYWCjsTjYaFMI6yszMBABra2t2eGEPE/388896aFq76EU12cjPz39mwcMalgRWKpXh4eE3b95ExLy8PPacrru7+927d4XezcaDQlh37Pc+OTkZEVevXg0AkydPFrpR7aIXNc9GfUoC379/39PTEwBeeOEFQ1tUythRCOsuNDQUABYuXIiIFy5cAAA7OztBp4xoF72oczZyc3OjoqLeeeedmpQELigo6N27NwB07tyZnZcSHaIQ1l1cXBwAeHh4sJdsDfxjx44J1Fx5eTlbVkNd9EJX2ai+JPDKlStZK506dbp165budog8QiGsu7KyMisrK5FIxH41Z82aBQBLliwRoi25XP7SSy8BgIODw9mzZxGxqKiI3ZrXbTZycnLUR0h1Gm1sbFq3bq1Zi4ZURS6X1/aOMYWwXjRXuIiOjgaA/v3767wVhULB6hzZ2dn9+++/iFhcXMye4m3btm1GRobOW2RYSWC2mIA+n1Q0XgqFYvz48WZmZnv27Kn5d1EI64WtcDF+/HgUbDFshUIxadIkdjhKT09HxLKyMjZrvHXr1levXtVhW8+UnJwMAN27dxe6IWOnUqlef/11dhpfq6sSCmG9VFrhYtSoUYGBgZcuXdLV9lUq1RtvvMHuhfz111+IWF5ezg6/jo6O58+f11VD1aioqLCxsQGA+lcgbsBUKtWbb77JRrbYgHnNUQjrq0uXLiDMChfaRS/kcjmbqWNvb3/mzBmdt1iVcePGAcD69ev11qJxUalUs2fPZj8p9mxNrVAI60u4FS7mz58PABYWFocPH0ZEhUIxYcIEdl564sQJnTdXjY0bN2rOUCWVsOW/zMzMDhw4UIdvpxDWF5s46ujouHHjRh2Wy/7ggw/Yz3X//v2IqFQqJ0+ezK43jh8/rqtWaqjSgqtE04cffsh+Un/88UfdtkAhrBelUjlhwgRTU1P1/e4WLVoEBwdHRkbW53Txo48+Yj/X6OhoRFSpVCEhIXW73tAVNzc3AGDHZKK2ePFiAJBIJFFRUXXeCIWw7tTZkEql8+bNCwoKsre317zZ3a5du2nTpm3atKlWQxrsUX1TU1P2bK5KpWJ3IKVSaWJiomB78x8WLFgAAO+//z6vDhigVatWsQRu27atPtuhENZRVdm4evVqZGRkcHAwW/dBzcnJiR0h2XSzamRnZ7u5uf3yyy/sJfvtt7CwYMt+85KQkAAArq6uHPtgUL766isAEIvFW7dureemKIR1xFa4qD4b6kCyJTq1A1nVfXb1pM2FCxey89J9+/YJsRc1J5fLNRdcbeQ2btwoEolEIpFORowphHVRh2yoA8nWJlNzdnaeMmVKZGSk9ikrK29kamr6+++/63oP6mLs2LEtW/bbujWdd0c427Rpk1gsFolE69at08kGKYS1Vs9sKJXKM2fOVB/IM2fOzJgxg11vbN++Xee7UDc//lgKgGPH8u4HV1FRUazSW0REhK62SSGsnS+//FKH2VAoFMePH//8889HjBjBFq3RJBKJ1FeGhiArCwHQ2hprv0qG4Pbs2bNo0SI2sVY4v/32Gys4tXz5ch1ulkJYC2vWrGHX4kI8Qa9QKNLT09esWRMYGMiuNwxwzrSLCwIgvzHaZ2NjV+qziZCQkM2bN+v8mY+YmBhWcGrx4sW63TKFsKa+//57lo3IyEih2yotLdXPvNDamj8fAfCDD3j3Q8PevXvZ0cnCwoLVKlXr3r377Nmzd+7cmZeXV89WDh48yApOhYaG6qTbmowzhBcv4vbt+OuvqLup0tX78ccf2bX4t99+q58WDZNMhgDYowfvfjymzsasWbNQ42wiODiYjeVWOkJGRUXl5+fXthXtUsS6ZYQhfP99bN0a583Dd95BJycUvizZli1b2Jpln332mdBtGbjycmzaFEUivHmTd1cQZTIZS+Azs8ECuXLlypEjR1pbWz8zkDV56ExdinjmzJkCFZwythAeOoTNm6N6ZcGbN7FpUxSyRueuXbvY2c6nn34qXCtGZNQoBMAffuDcDe0y3Yi4c+fO5cuXp6amVlphtaKi4j8D+cw1srRLEQvB2EK4cCG++eZT70ybhsKsKIGIe/bsMTU1BYClS5cK1ITR+e47BMDgYJ59qCob7FlnqHZBR3Ug/fz82IGUEYvF3bt3Z4FkS/1rlyIWiLGF8NVXcdmyp975+GOcPh1LSlDXq0EfPHiQjYa99957ut2yUcvMRABs1ozbjYqTJ0+ycohTpkypdHSKjo6ePXs2K5uhZmVlNWzYsIiIiL/++qtS6ajS0tKEhITw8PABAwawnzUjkUjc3NxYzoVOIBpfCN99FytFYvZsDAvDbdtQIsGePfGddzAqCutdGyw+Pp7Kr1ela1cEwCNHODStXab7mXJzc6tZYbXSgo6MXC5XHyFZINu0adO7d+861A6oLWML4aZN6OKC6s8/hQI7dcIdO/DTT9HEBAEe/TE1RS8v/OgjjI/H4uLaNpKSksKuN+bMmUPFn7WFhqKpKW7YoO92tct010RVK6xaWVlVFcji4uL33nsPAEaOHCnAflRmbCEsK0NPT5w0Cf/8E1NTMSgI+/dH9on48CHGxGBYGPbt+1QgzczQ2xv/97/0xMSSkpL/bEFdfn369OmNvPhzQQFqHmwePkRW4uniRdQcxbh3D/XwSaVdprsONBd0fGYg09PT2Q9dn88xG08I1fObCwtxyRIcOhT9/XH58mdfChYVYXw8hoejnx+amSFAaZMmTZo0MTExUdcMe2Yg1eXXp06d2sgTiIguLqj5EG9wMH79NapUCIDqyTxKJQLggwfC9kS7THf9ZWdnR0VFhYSEaF5DikQidVUfttajTCbTSXPVMJIQ/v032trie+/V5SO3sBD37bu6dGmvXr3Y1FumSZMmAwcOXLx4cWJiIvu0S0tLYwmk4s9MNSF0dn50TaiHEGqX6Raiic2bN0+fPn3EiBHqN9kKI/PnzxeiRU3GEMKTJ9HWFgFwwgSs3zhVQUFBdHR0aGiop6enZs0wc3NzT09P9fkJW1SCVBPCX39FFxeUywUPoXaZbr1JTEwEABcXF6EbMvgQXriAjo4IgGPG6HZQ/OHDh6yIn+bNIktLSwCYO3euDhsyXi4u6OODY8c++tOq1ZMQlpZiQAB++umTEApx8q4u0+3h4cHu3elTRUUFm/sm9IKrhh3CS5fQyQkBMCAABbs+nj59OgCMHj06LCxMJpOxWRQCtWVcXFzwm28wLe3Rn8GDnwrhpUvYvDlev44AWFiIHTqglxeGhWF8vG5+VtpluvXv5ZdfBgChp+wbcAivX8d27RAA/fxQR9fizxQVFQUAvr6+iKhUKtliTZcvXxauRWNRzeko+4F8/DFOnIgAeOoUikRPBqQtLdHfH1eswLQ0rNvFtXaZbi6+//57NkYgaCuGGsLMTOzQAQHQywuLigRtqqCgwNTU1NTUtKCgABEnTpwIAGvXrhW0UaPwnyEsKcGOHR+djubn465dOGcOurg8FUgrKwwMxJUr8ehRZQ2Hu7RLEfOSlZUlEomaNm1aTTHj+jPIEN68+ehn27+/4IPfiIjo7e0NAKySzpYtWwBg2LBhemjXwA0ciCkpT16+8Qb+8AOqVGhr++SEc/9+tLWtfJ8oLw+jozEsDHv2fBLIF15IqUlJYO1SxHyxU+I6LG5fcwYXwuzs7Cw2Ub937/rPPquhZcuWAcCbb76JiHl5eWKx2MLCoiZ39sl/ysnBX3/Ft97C4OCvNad0Wltbjxw58osvvkhPT1dPztQuRcwdW1ZvwYIFwjVRuxC6uLhUmligW3l5ea6urtbm5tfHj0c9joadOHGC/eDZS3Y1Ehsbq7cONBJVlQS2sbF56aWXPv/884EDB4JGKWJDcPjwYTY4JFwTtQhhRkaG5n/cc889N3bs2K+++uqff/7RyQTL+/fvs+qw+r8WV6lUTk5OAMCK4C5atAgEe4yaMGwGWaUJK7a2tnZ2dhcuXODduyfkcjl7BFG4QsW1OxLevn2b/cc5OztrBtLOzm7kyJHsCFm3QHK/Fp82bRoAfPHFF4iYmpoKAJ07d9Z/NxonVhK4d+/eABAUFKR+PzMzU1eT1OqDlaPbuHGjQNuv+zXhrVu3WCDZlCI1e3v72gZSfS3eqVOnm5wWTti+fTsA+Pn5IaJCoWDPyxjOSVFjcPLkSQBo3bo1+7Vh9YlZUSq+1q9fDwDjxo0TaPu6GZhRB7J9+/aagXRwcPjPQBYXF6uvxYUrv/6f7t27J5FIzMzM2OzEnf/3f1e8vEqEX1iNqKlUKvacBFs+lC2ybAizlzIzM9lIkkDPFup+dPTq1aubN28OCQlh097VHB0dg4OD16xZoxnI8vJydfl17oed8KCgQ4MGFbKP3p9+QgDUy+NkRI3NXmILav3555+GM3uJXbgKVJdO2FsUFy5cWL9+/YQJE9izmGotW7Z89dVX33rrLS8vL3bAPHfunKA9qZGlSxEAZ81CRMzORpEILS0FnaxDKmGzlwYPHowaFwWGMHspNDQUABYuXCjExvV3n5BVRJkyZUqbNm3UaTQxMbGzs2NjkvwdO4YA2KHDo5ceHgiAcXFc+9S43L9/38TExNTUtLCwEB/PXvr666959wvj4+MBwN3dXYiN87lZf/bs2WXLlrVu3bp169ZsnopBUCrRwQEBkA2Rf/ghAqAAKy6TarCTo7179yLi5s2bAWD48OG8O4Xl5eVWVlYikejWrVs637gYeOjevftHH32UlZWVlZU1ZswYLn14BrEY/P0BAGJiAAACA5/8negLGyOIiYlhfxeLxQkJCaWlpXx7ZWZmxqb4x8XF6XzjfEJouNjClSx4/fuDjQ2cPw83bvDtVKPCQnjgwAEAsLe39/DwKC0tTU5O5t0vCAwMhMefDrpFIXyavz9IJJCUBMXFYGICfn4AALGxvLvViHh4eDg5OWVlZZ0/fx4eZzLWAH4ErCfx8fEKhUK3W6YQPs3ODnr1gvJySEoCoDNSDkQi0dChQ+HxMUe4409tdejQoUuXLvfv3//rr790u2UKoRbN4A0fDiIRyGRQXs63U42K5mVhv379mjdvfvHixatXr3LpTE5OTqWO6fywTCHUwi4L9+8HAHByghdegOJiSEvj26lGJSAgQCKRJCcnFxUVSSQSPz8/ADh48KD+e3L06NHOnTsvX76cvfT09AQAVitWhyiEWnr3BgcHyMiAy5cBHmdS12cgpBq2trZ9+vSRy+UJCQnw+IxU/5eF6enpw4YNe/jw4cWLFxERAK5duwYARUVF+fn5umxJ5zc9GoJJkxAAv/oKEfHmTeQ3o7XRWrJkCTwu/Zmdna23xbDVtIteJCQksFKhffv21W1bFMJnSU9HmQzLyvDGDdy1C3fsQAOYOdWoHDt2DAA6PJ695O7uDgDx8fH6aV276IW6OMKkSZN0/jg7hbBqn36Kjo741ls4Zw62akVTZ/RJqVQ6ODgAAHvAd+HChSBMvXht2kUv1MURpk2bJsSCEhTCKpw4gZaWT05Ec3PxueeQFrzQo8mTJwPA6tWrEZHdrO/evbvQjWoXvTh16hQrFRoUFCRQcQQKYRUiIvCVV556Z+5cOhjq088//wwAAQEBiFhRUWFjYwMCL4atXfTi/Pnzjo6OIPUwvtsAAATbSURBVHB5EhodrcKNG9C27VPvtG8P16/z6UyjFBAQIBaLk5KSSkpKTExMhgwZAkKOkebm5vr7+2dkZPTr1y8mJsbKyury5cuDBw/Ozc0NDAzcvn27iYmJQE1TCKtgZwf37z/1zr174ODAqTeNkZ2dXa9evcrKylhhFs07+DqXn58/ePDgCxcuuLu7HzhwoGnTpleuXPH19c3Ozh46dOiePXs0i2nrHIWwCu7ucOgQqGcJIkJsLHh4cO1To6M5Q2X48OEikUgmk5XrevbS/fv3AwICzp075+bmJpPJbG1ts7Kyhg4deuvWLW9v7z179miWDBKEQKe5Rq+iAl98EYOC8OhRTE/HGTPQ1RVpOWD9qrTChZubGwAc1lyav940i15kZ2cjYlZWVseOHQGgf//+ApVDrIRCWLWHD/GTT3DIEBw0CD/6SJ+LEROmUn2eTZs2ff311ywqOqG90GZubm63bt0AwNPTU2/F2CiExKAJV5+nuLiYLfjdtm1bNuial5fn4uICAD169Lh7967OW6wKhZAYtA0bNgBA165ddbtZ7aIX6gXgX3jhhfz8fN02Vz0KITFoZ8+eZYMX7dq1CwsLi4+Pr/8M0vLy8hEjRgCAo6Mjm5FTUFDA1v/u3Lmz/heApxASQzd48GDNoUSpVOrn57ds2bKUlJQ6rMYrl8tHjRoFAA4ODmyZv6KiIh8fHwDo1KmTEOs4/ScRIgo7/EpIvd24ceP06dNpaWkymezkyZMqlYq9L5VKPTw8vL29/fz8fHx8anI3b+vWrVOnTrWzs0tISHB1dS0pKRkxYkRiYmLbtm2TkpIqLSGvHxRCYmTy8/OPHj2ampoqk8n+/vtv9S+wVCp98cUXvby8vL29BwwYYGZmVtUWVqxYMWzYMA8PD7lcPmbMmJiYmNatWyclJVUqc6Q3FEJixKoKpKWlZf/+/asPpFwuHzdu3L59+xwcHBITE9mdCS4ohKSByMvLS0pKSklJSU1N1Q6kn5+fl5dX3759TU1NAUCpVE6cOHHnzp329vYJCQnszgQvFELSAGVnZyckJCQlJSUmJl66dEn9vo2NjY+Pj52d3aFDhzIzM21sbA4dOsRWjuGIQkgauNzc3OTkZJlMlpKScu7cOfX7YrE4LS2tb9++HPvGUAhJI3Lz5s39+/evWrVKLpcvXryYlWfmjkJICGf0KBMhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhLP/BxrNpjVlj7YrAAABznpUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJAAYikgbmBkY0gA0ozMEJqJiYNBA0gzM7FBaBY43wHCZ3PIANHMjEgMiAw7hGaGq4SZjKGQASzAxIjPTDQ9OA2DC3AzMDIwMjEwMSsws2gwMbMqsLJlMLGxJ7BzZDBxcCZwcmUwcXEzcPEk8PBmMPHyKfDxK/ALZDAJCCYICmUwCQknCIswCIsCpcQSxMQzmMRZE8Q4EkT5E5yYgeazsYqLcbCzsXFy8fCKcbAJCAoJi/KLazECncQAC9KEEwwHe2M37AdxTrJcPrDJ4T6YzTNj4wG/F1pgtihP8wGf8BYwe9vN7AN1zXIHQOz1ds4HbizXswWxlWpjD7xX2WcPYi9fLHVg7w9lBxD7qV7Zfq12HjBbd8dK2/zcQDA7/vQR+7u/LcFsLXtVB6VHdWC2m8dPey6P3WBzFmql2/97e9QOxLYQWmFvYNIOdgOXoqFDqPg2MLsu3tuhOdkc7J5t1lMcRK/6gdnFK7Y6XHjHCWZbdq5wuB9tBlb//etJh9yqXWAzW38VO2hpb9wHYoub8u733OsAtrfR98z+mduXgsXFAHWIdvrsg5dKAAACUHpUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VW24bMQz89yl0AQt8U/yM46AoithAm/YO/c/9UVJGsgogdNciLHmW4miG61Or6+f1x9/39nnR9XRqDf7ziYj2hwHg9NrqS7u8fPt+a89vT5ePlef779vbr0bSyPKZvL9in97urx8r2J7beXSQEQTtjJ3dh2qDDvM6nqVCWtcQZimki6DRBsnt3s7aVWJg5oRu5ga+QUrllA6hRFo5gTlQNkitnNxtKBq3M3Vxc7cN0iond1BwwPpdyAQ3QH8AJUvLlNglecOOzyhg7phsORp1NQLd0YkCQg9DU04ghrrCBpjHcqvlQcOxcScnhh1tLH2wK7uoZcYAjRg7YMmTpQ2MkQr0GKS6I4M8M4a44ijWxsi7c8QSJ8kARVRpPCyz74CaZNI4yJA1loh5QGNL22aRqZwJFVJS9rE7SSxxuKO7w5Q7NxeJHbLUkW5MNKL0JEbXLaGSR3tuPnDmxDwh2DHKTigkpW8VS1FHSmPukKWPJXckr6bhJIbb7qFJaCClNyolp+94JxDxw0WqqFHVudIYO81ptk+6Iw2Hj6TEZjvuL7frl7Z/vAgu99v1eBHUTUe356Tx0dJp0yZH31IOPZoTc2pHB+ak+dFnkmMc3SQ54ugZyYFra0gFxKUHcAZazC5zhRdXSwWUxb44gy4+xRls8aNUQF98JxVwLP6SChiLj6QCrX7BCoSLL2Su0GIAqXqIF6FrmjIugkqFzwLzpTghn3tTVZypDg6l7KpjzT/+DPL76R+yFS9Wi34DmwAAASx6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwdUDtuxTAMu0rHBHAE6y8j6JS97xDee4IevlRG0/yIfJ7Pc3x/zs17b/ndx3PuffxsxfN96Lll89ffcRVNqyXjYtLM8nFfQb5MtaE04wDk5LaKxzUpImMmMKO5XF7lVF0MSCnKIbiELCPrhaaDPhEjYdNfyOAQg8nKGwCbQ2wIecjsvEkrOFwB8fIECQYllbOGkqTouJlc0wKU1RqIi1d/r5K2ZVqWLh0TytYWa8pahmO0AuzmKCvU3QHZ1TY4PKwRE/E1biXOzO4EkcHYKFRkDRQRZRS5naDpeXCuIxKAYCfvvZIF64w7EMXSS2iYsLdxsXA2SbGIylvcnR1jQuhS1ROiKNaQlycaEeP8+wdYjWMNXIr3SwAAAABJRU5ErkJggg==</base64_image>
320.392
4.77194
[ { "content": "Provide information about Molecule_Visualization for the molecule with SMILES 'CCOC(=O)c1ccc2nc(C)cc(Nc3cccc(C)c3)c2c1'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU1fsH8GdmWGRABGMRd9HcIATcA1QUAZdcEkzNJbWoXMofmWT5DTU1aVGzLDErl9JEUyMVhFEWgUwxtdw3FFQ2F1DWYWae3x9Hx5ERYpk7Zwae98s/nBHuOVf4zL333HPPI0JEIITwI+bdAUIaOwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJDwVFhYeP36cdy84oxASboqKioYPH+7r65ucnMy7LzxRCAkfpaWlo0aNSktLa968edu2bXl3hycKIeFALpcHBQUlJCS0atUqISGhffv2vHvEE4WQ6JtcLh83btyBAwccHBzi4+M7duzIu0ecUQiJXimVyilTpuzbt8/e3v7w4cPdunXj3SP+KIREf1gCo6KibGxsYmJiXFxcePfIIFAIiZ6oVKrp06dv3769WbNmcXFxPXv25N0jQ0EhJPqAiLNmzdq6daulpeUff/zRu3dv3j0yIBRCIjhEnDt3bmRkpFQq3bdvn4+PD+8eGRYKYSNSUAAREXD9+pOXa9fqo90PPvhg3bp15ubmu3btGjRokD6aNC5IGo0rVxAAAwKevLSzE7zRDz/8EADMzMz++OMPwRszTnQkbFxatIDCQtixQ0/NLVmyZMWKFaamplFRUSNHjtRTq8aGQti4iESwejWEhkJhoeBtrV69evHixRKJZPPmzaNHjxa8PaNFIWx0+vWDgABYtOjJO3v3Ql6ejltZu3ZtaGioWCzetGnTxIkTdbz1hsWEdwcIBxER4OICgwcDAFy5AmPHAgA4O4OfH3h5wZAh0KpVvbb/ww8/zJs3TyQSffvtt5MnT9ZBjxs23helRH+uXEEnp0d/X78eu3RBOzs8eRL9/dHSEgEe/RGJ0NUV587F337DO3dq3cpPP/0kFotFItG6det02/+GSoSIvD8HiD6oVJCRAT4+cPv2o5deXnDlCuTnAwBUVMCxY5CYCImJkJYGJSWPvkssBldXGDUqo2fP0wMGDGjevHn1rezcuXPixIlKpTIiImLBggWC7lHDwftTgOhDVBQOHIgZGbhs2ZM3//kHly7FP/9EufypL66owPR0XLkSR45Ea2sEwIEDI9hvi7Ozc0hISFRU1N27d7Vb+e2330xMTABgxYoVAu9Qg0IhbPiiolAiQQDctKnyP128iAAolaKfH4aHY3w8lpc/9QVlZZiUhKtWbff19W3SpIn6s1ssFnt6eoaGhkZHRxcUFCDigQMHzM3NAWDx4sX62rMGgkLYwB04gObmCIBLljzjX1NSsHt3FImeXBBaWeGwYRgRgUePYkXFU19cWlqamJgYHh4+cOBAzUBKJJKuXbuampoCwMKFC/WzXw0JXRM2ZHFxMHo0lJVBaCh8+WWVX5abC0lJjy4Iz59/8n7TpjB16q527TIGDRrk6ekpkUjU/6RQKE6fPi2TyWQyWUpKSllZmZOTU79+/Xbv3i3kDjVQvD8FiFBkMrSwQAB8991afFduLkZF4TvvYM+eKBJhz57+7PfEysrKz89v5cqVR44ckT99EVlSUvLaa68BwNtvv63jfWgc6EjYMKWlQUAAFBXB66/Dhg0gEtVlI9nZkJy8+9Ch2MTExMuXL6vft7GxGTBgwKBBg3x9fXv06CESiY4fP96nT5/27dtnZGTobB8aDQphA3T0KPj7w8OH8Npr8MMPINbFtKicnJwjR46wk89z586xN5s1a3b37l2JRKJSqZycnPLy8i5cuNClSxcdtNeY0IyZhubUKRgxAh4+hPHjYeNG3SQQAFq0aBEcHBwcHAwAWVlZCQkJiYmJTZo0YReKYrHY39//559/jomJoRDWGu/z4cYiOzu7qKhI6FZOnz7dp0/Ic88pX3658tim0H755RcA8Pf312urDQKFUB+ioqIsLCwAoEOHDmFhYfHx8aWlpTpv5ezZs/b29gAwc+bySvff9SA/P18ikZibm+vhs6aBoRAK7uzZs1ZWVpVOQKRS6ZAhQz755JOUlBS5LhJz6dKlli1bsmNRWVlZ/TdYB3379gWA/fv3c2ndeFEIhaXORo8ePc6cOXPw4MGwsLCePXuKNa7VpFKpl5cXO0LWLT83btxo164dAPj5+ZWUlOh8L2ooPDwcAObMmcOrA0aKQiggzWxUOv988OBBfHw8C6RI4waCVCr18/MLDw+Pj48vrzSFrAqZmZkdOnQAAC8vr4cPHwqzKzVy9OhRdsrNsQ/GiEIolGdm4/Tp09euXav0lXl5edHR0dqBtLS0/M9A5uTkdO3aFQD69ev34MEDYXfpvyiVSgcHBwC4dOkS354YFwqhIKrKxpAhQwDAyckpODg4MjJSO5C5ubnVBLLShJXc3Nzu3bsDgLu7+7179/S3e1WbNGkSAKxdu5Z3R4wJhVD3qsnGpEmTnnvuOc0RGmdn5xkzZmzZsiUrK6vSdm7fvr1t27aQkJDOnTtrfkuzZs1eeumlpUuXsvfd3Nzu1OHZW2Fs2bIFAIYNG8a7I8aEZszo2J07d3x9fc+cOePm5nb48OFKkWOuXbvGpj4fPnz47t276vednJy8vb39/PwCAgLYxaRabm5ucnJySkpKamrqiRMn2JvW1taOjo6pqanszoQhyM/Pb9Gihbm5+Z07d6RSKe/uGAnenwINSkFBQa9evQCgS5cuOTk5NfmWq1evRkZGBgcHV3po3dnZecqUKZGRkTdu3Kj0LVlZWVu2bGEH2/nz5wuwH/XC/gdiYmJ4d8RoUAh1prCwsE+fPgDw/PPP3759u7bfrlAozpw5wwJpa2v7zEBmZmaqv37fvn0A0K9fP53uhA7873//A4B3a/XsRuNGIdSN4uLiAQMGAEC7du2uX79ez60pFIpjx4599tlnw4cPb9q0qWYgXV1d2cBMcXFxkyZNxGJxXl6eLvZAZ1JTUwGgc+fOvDtiNCiEOlBSUuLr6wsAbdq00R7wrCeFQpGenr5mzZrg4GAbG5tevXqp/2no0KEAsG3bNt22WE8KhYJdCV+5coV3X4wDhbC+ysvLhw8fDgCtWrUS+teuoqJC84x01apVADBlyhRBG62DV155BQC++eYb3h0xDrQCd71UVFQEBQWx8utxcXFCl183MTFp06aN+uWwYcMAIDY2VqVSCdpubQUGBgJAbGws744YB7pFUXdKpfLVV1/dsWOHnZ1dQkKCq6ur/vvQsWPHa9eupaenG1Th25ycnJYtW0ql0jt37mguCUWeiY6EdaRUKqdOnbpjxw4bG5vY2FguCQQAf39/AIiJieHSelVatGjh7u5eXFx85MgR3n0xAhTCukDEt99+e9u2bdbW1gcPHuR4FGJnpIYWQjDgjhki3helxkelUr311lsAIJVKk5KS+HamqKjI3NxcIpEYzsw1hh0Du3XrxrsjRoCOhLW2YMGC9evXW1hY7Nu3j90b5MjS0tLb21upVMpkMr49qaR///7Nmzc/f/78tWvXePfF0FEIa2fs2LFffPGFmZnZrl272L1B7gxqKDIrK4v9RSKRDB48GAymY4aMQlgLISEhe/fuFYvFu3fvZvcGDYH6RgXyHujevXv3888//+OPP7KXLi4uAPDJJ59w7ZQRoBDWwrFjxwDA3d19xIgRvPvyhIuLS7t27XJyck6dOsWxG7///vuECRPKy8tv3rzJ3vn3338BoKCgQKlUcuyY4aMQ1sLAgQMBwNramr1cunRpjx49srOzuXYKACAgIAC4DkXGxcVNmDChoqIiNDT0448/BoDNmzfv3bsXAMaMGaNZxII8A++RIWNy+/ZtkUhkaWnJlmMaOXIkAPz000+8+4WsDIuPjw+X1mUyGVvQUf3kxM6dO1mhwvDwcC5dMi4Uwtrp0aMHABw6dAgR161bBwCvvPIK707hgwcPzMzMTExM7t+/r+emU1NT2YKOr7/+ukqlQsTdu3ezBC7TrEhKqkYhrJ2wsDB4/CgtG3y3tbWt0PNi188yaNAgANi5c6c+G/3zzz/Zk1avvfaaUqlExNjYWFYq9OOPP9ZnT4wahbB2EhMTAcDFxYW9ZKu8pKam8u0VIkZERADAzJkz9dbiyZMn2WoA48ePVygUiBgXF8dmis6bN09v3WgAKIS1U1FR0axZMwBgq068++67ALBo0SLe/cLTp08DgJOTEzsn1ENz7KHBcePGsROBI0eOWFpaAsDcuXP10IGGhEJYay+//DIAbNiwARHZnWjNB205Yk85nT59WuiGLly40KJFCwAYM2YMe8w/LS2NnZfOmDFDP58CDQmFsNY2bNgAAGPHjkXE0tJSqVQqFotruKyToGbOnAkAK1euFLQV7aIXf//9N1sUZ9q0aezKkNQKhbDWsrKyRCJR06ZN2arYbMLKli1bePcLd+3aBQCDBg0Srgnthf1PnTrFrgyDgoIMYYDKGFEI64I9PZiQkICIa9euBYCJEyfy7hQWFhaampqampoWFBQIsX3thf3/+ecfOzs7dl5ACawzCmFdvP/++wAQFhaGiFevXgWA5s2bsxFCvnx8fABg9+7dOt+y9sL+Fy9edHJyAoDAwEBexdgaBgphXRw6dAgA3Nzc2MtOnToBwNGjR/Xfk5ycHH9//8uXL7OXK1asYPfNdduK9sL+ly9fZleGQ4cOFaLgaaNCIayL8vJyNhjI1j6bM2cOlyla6qPT6NGj2TvR0dESiaRJkyY9e/bUVUng/Px8dvqtLnpx48aN9u3bA4C3tzfV5a0/CmEdjR49GgA2btyIiPv37weAPn366LMD9+7d8/Dw0MxGRkZG27ZtAUC74OGyZcvqVhJYe2H/rKwsZ2dnAHjxxRf5lkNsMCiEdfTdd9+xIUFELCkpsbCwEIvFubm5+mldMxvZ2dn4dDays7PVFUjrWRJ4+fLlmq3k5uZ269YNAPr27VtYWCjsTjYaFMI6yszMBABra2t2eGEPE/388896aFq76EU12cjPz39mwcMalgRWKpXh4eE3b95ExLy8PPacrru7+927d4XezcaDQlh37Pc+OTkZEVevXg0AkydPFrpR7aIXNc9GfUoC379/39PTEwBeeOEFQ1tUythRCOsuNDQUABYuXIiIFy5cAAA7OztBp4xoF72oczZyc3OjoqLeeeedmpQELigo6N27NwB07tyZnZcSHaIQ1l1cXBwAeHh4sJdsDfxjx44J1Fx5eTlbVkNd9EJX2ai+JPDKlStZK506dbp165budog8QiGsu7KyMisrK5FIxH41Z82aBQBLliwRoi25XP7SSy8BgIODw9mzZxGxqKiI3ZrXbTZycnLUR0h1Gm1sbFq3bq1Zi4ZURS6X1/aOMYWwXjRXuIiOjgaA/v3767wVhULB6hzZ2dn9+++/iFhcXMye4m3btm1GRobOW2RYSWC2mIA+n1Q0XgqFYvz48WZmZnv27Kn5d1EI64WtcDF+/HgUbDFshUIxadIkdjhKT09HxLKyMjZrvHXr1levXtVhW8+UnJwMAN27dxe6IWOnUqlef/11dhpfq6sSCmG9VFrhYtSoUYGBgZcuXdLV9lUq1RtvvMHuhfz111+IWF5ezg6/jo6O58+f11VD1aioqLCxsQGA+lcgbsBUKtWbb77JRrbYgHnNUQjrq0uXLiDMChfaRS/kcjmbqWNvb3/mzBmdt1iVcePGAcD69ev11qJxUalUs2fPZj8p9mxNrVAI60u4FS7mz58PABYWFocPH0ZEhUIxYcIEdl564sQJnTdXjY0bN2rOUCWVsOW/zMzMDhw4UIdvpxDWF5s46ujouHHjRh2Wy/7ggw/Yz3X//v2IqFQqJ0+ezK43jh8/rqtWaqjSgqtE04cffsh+Un/88UfdtkAhrBelUjlhwgRTU1P1/e4WLVoEBwdHRkbW53Txo48+Yj/X6OhoRFSpVCEhIXW73tAVNzc3AGDHZKK2ePFiAJBIJFFRUXXeCIWw7tTZkEql8+bNCwoKsre317zZ3a5du2nTpm3atKlWQxrsUX1TU1P2bK5KpWJ3IKVSaWJiomB78x8WLFgAAO+//z6vDhigVatWsQRu27atPtuhENZRVdm4evVqZGRkcHAwW/dBzcnJiR0h2XSzamRnZ7u5uf3yyy/sJfvtt7CwYMt+85KQkAAArq6uHPtgUL766isAEIvFW7dureemKIR1xFa4qD4b6kCyJTq1A1nVfXb1pM2FCxey89J9+/YJsRc1J5fLNRdcbeQ2btwoEolEIpFORowphHVRh2yoA8nWJlNzdnaeMmVKZGSk9ikrK29kamr6+++/63oP6mLs2LEtW/bbujWdd0c427Rpk1gsFolE69at08kGKYS1Vs9sKJXKM2fOVB/IM2fOzJgxg11vbN++Xee7UDc//lgKgGPH8u4HV1FRUazSW0REhK62SSGsnS+//FKH2VAoFMePH//8889HjBjBFq3RJBKJ1FeGhiArCwHQ2hprv0qG4Pbs2bNo0SI2sVY4v/32Gys4tXz5ch1ulkJYC2vWrGHX4kI8Qa9QKNLT09esWRMYGMiuNwxwzrSLCwIgvzHaZ2NjV+qziZCQkM2bN+v8mY+YmBhWcGrx4sW63TKFsKa+//57lo3IyEih2yotLdXPvNDamj8fAfCDD3j3Q8PevXvZ0cnCwoLVKlXr3r377Nmzd+7cmZeXV89WDh48yApOhYaG6qTbmowzhBcv4vbt+OuvqLup0tX78ccf2bX4t99+q58WDZNMhgDYowfvfjymzsasWbNQ42wiODiYjeVWOkJGRUXl5+fXthXtUsS6ZYQhfP99bN0a583Dd95BJycUvizZli1b2Jpln332mdBtGbjycmzaFEUivHmTd1cQZTIZS+Azs8ECuXLlypEjR1pbWz8zkDV56ExdinjmzJkCFZwythAeOoTNm6N6ZcGbN7FpUxSyRueuXbvY2c6nn34qXCtGZNQoBMAffuDcDe0y3Yi4c+fO5cuXp6amVlphtaKi4j8D+cw1srRLEQvB2EK4cCG++eZT70ybhsKsKIGIe/bsMTU1BYClS5cK1ITR+e47BMDgYJ59qCob7FlnqHZBR3Ug/fz82IGUEYvF3bt3Z4FkS/1rlyIWiLGF8NVXcdmyp975+GOcPh1LSlDXq0EfPHiQjYa99957ut2yUcvMRABs1ozbjYqTJ0+ycohTpkypdHSKjo6ePXs2K5uhZmVlNWzYsIiIiL/++qtS6ajS0tKEhITw8PABAwawnzUjkUjc3NxYzoVOIBpfCN99FytFYvZsDAvDbdtQIsGePfGddzAqCutdGyw+Pp7Kr1ela1cEwCNHODStXab7mXJzc6tZYbXSgo6MXC5XHyFZINu0adO7d+861A6oLWML4aZN6OKC6s8/hQI7dcIdO/DTT9HEBAEe/TE1RS8v/OgjjI/H4uLaNpKSksKuN+bMmUPFn7WFhqKpKW7YoO92tct010RVK6xaWVlVFcji4uL33nsPAEaOHCnAflRmbCEsK0NPT5w0Cf/8E1NTMSgI+/dH9on48CHGxGBYGPbt+1QgzczQ2xv/97/0xMSSkpL/bEFdfn369OmNvPhzQQFqHmwePkRW4uniRdQcxbh3D/XwSaVdprsONBd0fGYg09PT2Q9dn88xG08I1fObCwtxyRIcOhT9/XH58mdfChYVYXw8hoejnx+amSFAaZMmTZo0MTExUdcMe2Yg1eXXp06d2sgTiIguLqj5EG9wMH79NapUCIDqyTxKJQLggwfC9kS7THf9ZWdnR0VFhYSEaF5DikQidVUfttajTCbTSXPVMJIQ/v032trie+/V5SO3sBD37bu6dGmvXr3Y1FumSZMmAwcOXLx4cWJiIvu0S0tLYwmk4s9MNSF0dn50TaiHEGqX6Raiic2bN0+fPn3EiBHqN9kKI/PnzxeiRU3GEMKTJ9HWFgFwwgSs3zhVQUFBdHR0aGiop6enZs0wc3NzT09P9fkJW1SCVBPCX39FFxeUywUPoXaZbr1JTEwEABcXF6EbMvgQXriAjo4IgGPG6HZQ/OHDh6yIn+bNIktLSwCYO3euDhsyXi4u6OODY8c++tOq1ZMQlpZiQAB++umTEApx8q4u0+3h4cHu3elTRUUFm/sm9IKrhh3CS5fQyQkBMCAABbs+nj59OgCMHj06LCxMJpOxWRQCtWVcXFzwm28wLe3Rn8GDnwrhpUvYvDlev44AWFiIHTqglxeGhWF8vG5+VtpluvXv5ZdfBgChp+wbcAivX8d27RAA/fxQR9fizxQVFQUAvr6+iKhUKtliTZcvXxauRWNRzeko+4F8/DFOnIgAeOoUikRPBqQtLdHfH1eswLQ0rNvFtXaZbi6+//57NkYgaCuGGsLMTOzQAQHQywuLigRtqqCgwNTU1NTUtKCgABEnTpwIAGvXrhW0UaPwnyEsKcGOHR+djubn465dOGcOurg8FUgrKwwMxJUr8ehRZQ2Hu7RLEfOSlZUlEomaNm1aTTHj+jPIEN68+ehn27+/4IPfiIjo7e0NAKySzpYtWwBg2LBhemjXwA0ciCkpT16+8Qb+8AOqVGhr++SEc/9+tLWtfJ8oLw+jozEsDHv2fBLIF15IqUlJYO1SxHyxU+I6LG5fcwYXwuzs7Cw2Ub937/rPPquhZcuWAcCbb76JiHl5eWKx2MLCoiZ39sl/ysnBX3/Ft97C4OCvNad0Wltbjxw58osvvkhPT1dPztQuRcwdW1ZvwYIFwjVRuxC6uLhUmligW3l5ea6urtbm5tfHj0c9joadOHGC/eDZS3Y1Ehsbq7cONBJVlQS2sbF56aWXPv/884EDB4JGKWJDcPjwYTY4JFwTtQhhRkaG5n/cc889N3bs2K+++uqff/7RyQTL+/fvs+qw+r8WV6lUTk5OAMCK4C5atAgEe4yaMGwGWaUJK7a2tnZ2dhcuXODduyfkcjl7BFG4QsW1OxLevn2b/cc5OztrBtLOzm7kyJHsCFm3QHK/Fp82bRoAfPHFF4iYmpoKAJ07d9Z/NxonVhK4d+/eABAUFKR+PzMzU1eT1OqDlaPbuHGjQNuv+zXhrVu3WCDZlCI1e3v72gZSfS3eqVOnm5wWTti+fTsA+Pn5IaJCoWDPyxjOSVFjcPLkSQBo3bo1+7Vh9YlZUSq+1q9fDwDjxo0TaPu6GZhRB7J9+/aagXRwcPjPQBYXF6uvxYUrv/6f7t27J5FIzMzM2OzEnf/3f1e8vEqEX1iNqKlUKvacBFs+lC2ybAizlzIzM9lIkkDPFup+dPTq1aubN28OCQlh097VHB0dg4OD16xZoxnI8vJydfl17oed8KCgQ4MGFbKP3p9+QgDUy+NkRI3NXmILav3555+GM3uJXbgKVJdO2FsUFy5cWL9+/YQJE9izmGotW7Z89dVX33rrLS8vL3bAPHfunKA9qZGlSxEAZ81CRMzORpEILS0FnaxDKmGzlwYPHowaFwWGMHspNDQUABYuXCjExvV3n5BVRJkyZUqbNm3UaTQxMbGzs2NjkvwdO4YA2KHDo5ceHgiAcXFc+9S43L9/38TExNTUtLCwEB/PXvr666959wvj4+MBwN3dXYiN87lZf/bs2WXLlrVu3bp169ZsnopBUCrRwQEBkA2Rf/ghAqAAKy6TarCTo7179yLi5s2bAWD48OG8O4Xl5eVWVlYikejWrVs637gYeOjevftHH32UlZWVlZU1ZswYLn14BrEY/P0BAGJiAAACA5/8negLGyOIiYlhfxeLxQkJCaWlpXx7ZWZmxqb4x8XF6XzjfEJouNjClSx4/fuDjQ2cPw83bvDtVKPCQnjgwAEAsLe39/DwKC0tTU5O5t0vCAwMhMefDrpFIXyavz9IJJCUBMXFYGICfn4AALGxvLvViHh4eDg5OWVlZZ0/fx4eZzLWAH4ErCfx8fEKhUK3W6YQPs3ODnr1gvJySEoCoDNSDkQi0dChQ+HxMUe4409tdejQoUuXLvfv3//rr790u2UKoRbN4A0fDiIRyGRQXs63U42K5mVhv379mjdvfvHixatXr3LpTE5OTqWO6fywTCHUwi4L9+8HAHByghdegOJiSEvj26lGJSAgQCKRJCcnFxUVSSQSPz8/ADh48KD+e3L06NHOnTsvX76cvfT09AQAVitWhyiEWnr3BgcHyMiAy5cBHmdS12cgpBq2trZ9+vSRy+UJCQnw+IxU/5eF6enpw4YNe/jw4cWLFxERAK5duwYARUVF+fn5umxJ5zc9GoJJkxAAv/oKEfHmTeQ3o7XRWrJkCTwu/Zmdna23xbDVtIteJCQksFKhffv21W1bFMJnSU9HmQzLyvDGDdy1C3fsQAOYOdWoHDt2DAA6PJ695O7uDgDx8fH6aV276IW6OMKkSZN0/jg7hbBqn36Kjo741ls4Zw62akVTZ/RJqVQ6ODgAAHvAd+HChSBMvXht2kUv1MURpk2bJsSCEhTCKpw4gZaWT05Ec3PxueeQFrzQo8mTJwPA6tWrEZHdrO/evbvQjWoXvTh16hQrFRoUFCRQcQQKYRUiIvCVV556Z+5cOhjq088//wwAAQEBiFhRUWFjYwMCL4atXfTi/Pnzjo6OIPUwvtsAAATbSURBVHB5EhodrcKNG9C27VPvtG8P16/z6UyjFBAQIBaLk5KSSkpKTExMhgwZAkKOkebm5vr7+2dkZPTr1y8mJsbKyury5cuDBw/Ozc0NDAzcvn27iYmJQE1TCKtgZwf37z/1zr174ODAqTeNkZ2dXa9evcrKylhhFs07+DqXn58/ePDgCxcuuLu7HzhwoGnTpleuXPH19c3Ozh46dOiePXs0i2nrHIWwCu7ucOgQqGcJIkJsLHh4cO1To6M5Q2X48OEikUgmk5XrevbS/fv3AwICzp075+bmJpPJbG1ts7Kyhg4deuvWLW9v7z179miWDBKEQKe5Rq+iAl98EYOC8OhRTE/HGTPQ1RVpOWD9qrTChZubGwAc1lyav940i15kZ2cjYlZWVseOHQGgf//+ApVDrIRCWLWHD/GTT3DIEBw0CD/6SJ+LEROmUn2eTZs2ff311ywqOqG90GZubm63bt0AwNPTU2/F2CiExKAJV5+nuLiYLfjdtm1bNuial5fn4uICAD169Lh7967OW6wKhZAYtA0bNgBA165ddbtZ7aIX6gXgX3jhhfz8fN02Vz0KITFoZ8+eZYMX7dq1CwsLi4+Pr/8M0vLy8hEjRgCAo6Mjm5FTUFDA1v/u3Lmz/heApxASQzd48GDNoUSpVOrn57ds2bKUlJQ6rMYrl8tHjRoFAA4ODmyZv6KiIh8fHwDo1KmTEOs4/ScRIgo7/EpIvd24ceP06dNpaWkymezkyZMqlYq9L5VKPTw8vL29/fz8fHx8anI3b+vWrVOnTrWzs0tISHB1dS0pKRkxYkRiYmLbtm2TkpIqLSGvHxRCYmTy8/OPHj2ampoqk8n+/vtv9S+wVCp98cUXvby8vL29BwwYYGZmVtUWVqxYMWzYMA8PD7lcPmbMmJiYmNatWyclJVUqc6Q3FEJixKoKpKWlZf/+/asPpFwuHzdu3L59+xwcHBITE9mdCS4ohKSByMvLS0pKSklJSU1N1Q6kn5+fl5dX3759TU1NAUCpVE6cOHHnzp329vYJCQnszgQvFELSAGVnZyckJCQlJSUmJl66dEn9vo2NjY+Pj52d3aFDhzIzM21sbA4dOsRWjuGIQkgauNzc3OTkZJlMlpKScu7cOfX7YrE4LS2tb9++HPvGUAhJI3Lz5s39+/evWrVKLpcvXryYlWfmjkJICGf0KBMhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhLP/BxrNpjVlj7YrAAABznpUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJAAYikgbmBkY0gA0ozMEJqJiYNBA0gzM7FBaBY43wHCZ3PIANHMjEgMiAw7hGaGq4SZjKGQASzAxIjPTDQ9OA2DC3AzMDIwMjEwMSsws2gwMbMqsLJlMLGxJ7BzZDBxcCZwcmUwcXEzcPEk8PBmMPHyKfDxK/ALZDAJCCYICmUwCQknCIswCIsCpcQSxMQzmMRZE8Q4EkT5E5yYgeazsYqLcbCzsXFy8fCKcbAJCAoJi/KLazECncQAC9KEEwwHe2M37AdxTrJcPrDJ4T6YzTNj4wG/F1pgtihP8wGf8BYwe9vN7AN1zXIHQOz1ds4HbizXswWxlWpjD7xX2WcPYi9fLHVg7w9lBxD7qV7Zfq12HjBbd8dK2/zcQDA7/vQR+7u/LcFsLXtVB6VHdWC2m8dPey6P3WBzFmql2/97e9QOxLYQWmFvYNIOdgOXoqFDqPg2MLsu3tuhOdkc7J5t1lMcRK/6gdnFK7Y6XHjHCWZbdq5wuB9tBlb//etJh9yqXWAzW38VO2hpb9wHYoub8u733OsAtrfR98z+mduXgsXFAHWIdvrsg5dKAAACUHpUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VW24bMQz89yl0AQt8U/yM46AoithAm/YO/c/9UVJGsgogdNciLHmW4miG61Or6+f1x9/39nnR9XRqDf7ziYj2hwHg9NrqS7u8fPt+a89vT5ePlef779vbr0bSyPKZvL9in97urx8r2J7beXSQEQTtjJ3dh2qDDvM6nqVCWtcQZimki6DRBsnt3s7aVWJg5oRu5ga+QUrllA6hRFo5gTlQNkitnNxtKBq3M3Vxc7cN0iond1BwwPpdyAQ3QH8AJUvLlNglecOOzyhg7phsORp1NQLd0YkCQg9DU04ghrrCBpjHcqvlQcOxcScnhh1tLH2wK7uoZcYAjRg7YMmTpQ2MkQr0GKS6I4M8M4a44ijWxsi7c8QSJ8kARVRpPCyz74CaZNI4yJA1loh5QGNL22aRqZwJFVJS9rE7SSxxuKO7w5Q7NxeJHbLUkW5MNKL0JEbXLaGSR3tuPnDmxDwh2DHKTigkpW8VS1FHSmPukKWPJXckr6bhJIbb7qFJaCClNyolp+94JxDxw0WqqFHVudIYO81ptk+6Iw2Hj6TEZjvuL7frl7Z/vAgu99v1eBHUTUe356Tx0dJp0yZH31IOPZoTc2pHB+ak+dFnkmMc3SQ54ugZyYFra0gFxKUHcAZazC5zhRdXSwWUxb44gy4+xRls8aNUQF98JxVwLP6SChiLj6QCrX7BCoSLL2Su0GIAqXqIF6FrmjIugkqFzwLzpTghn3tTVZypDg6l7KpjzT/+DPL76R+yFS9Wi34DmwAAASx6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwdUDtuxTAMu0rHBHAE6y8j6JS97xDee4IevlRG0/yIfJ7Pc3x/zs17b/ndx3PuffxsxfN96Lll89ffcRVNqyXjYtLM8nFfQb5MtaE04wDk5LaKxzUpImMmMKO5XF7lVF0MSCnKIbiELCPrhaaDPhEjYdNfyOAQg8nKGwCbQ2wIecjsvEkrOFwB8fIECQYllbOGkqTouJlc0wKU1RqIi1d/r5K2ZVqWLh0TytYWa8pahmO0AuzmKCvU3QHZ1TY4PKwRE/E1biXOzO4EkcHYKFRkDRQRZRS5naDpeXCuIxKAYCfvvZIF64w7EMXSS2iYsLdxsXA2SbGIylvcnR1jQuhS1ROiKNaQlycaEeP8+wdYjWMNXIr3SwAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Bioactivity_Prediction
CC(C)(O)C(N)=O
83,059
{"predicted_classes": ["enzyme_inhibitor"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 0, "enzyme_inhibitor": 1, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Medium", "drug_like_properties": {"molecular_weight": 103.12, "logp": -0.76, "hbd": 2, "hba": 2}, "structural_complexity": "Low"}
103.121
-0.7574
[ { "content": "What is the bioactivity prediction for the compound represented by 'CC(C)(O)C(N)=O'?", "role": "user" }, { "content": "{\"predicted_classes\": [\"enzyme_inhibitor\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 0, \"enzyme_inhibitor\": 1, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Medium\", \"drug_like_properties\": {\"molecular_weight\": 103.12, \"logp\": -0.76, \"hbd\": 2, \"hba\": 2}, \"structural_complexity\": \"Low\"}", "role": "assistant" } ]
Bioactivity_Prediction
Cc1cc2oc(-c3ccccc3)c(OCC(=O)Nc3ccc(Oc4ccccc4)cc3)c(=O)c2cc1C
1,650,480
{"predicted_classes": ["gpcr_ligand"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 3, "enzyme_inhibitor": 1, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Low", "drug_like_properties": {"molecular_weight": 491.54, "logp": 6.89, "hbd": 1, "hba": 5}, "structural_complexity": "High"}
491.543
6.88664
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'Cc1cc2oc(-c3ccccc3)c(OCC(=O)Nc3ccc(Oc4ccccc4)cc3)c(=O)c2cc1C'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"gpcr_ligand\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 3, \"enzyme_inhibitor\": 1, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Low\", \"drug_like_properties\": {\"molecular_weight\": 491.54, \"logp\": 6.89, \"hbd\": 1, \"hba\": 5}, \"structural_complexity\": \"High\"}", "role": "assistant" } ]
Stereochemistry_Analysis
CCCCC=CC(O)CC
316,603
{"chiral_centers": 1, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 1, "chiral_center_details": [{"atom_index": 6, "configuration": "?"}], "stereogenic_double_bonds": 1, "max_stereoisomers": 2, "potentially_meso": false, "stereochemistry_complexity": "Medium"}
142.242
2.5037
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'CCCCC=CC(O)CC'.", "role": "user" }, { "content": "{\"chiral_centers\": 1, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 1, \"chiral_center_details\": [{\"atom_index\": 6, \"configuration\": \"?\"}], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 2, \"potentially_meso\": false, \"stereochemistry_complexity\": \"Medium\"}", "role": "assistant" } ]
Hydrogen_Bond_Properties
Cc1c(C(=O)O)nnn1-c1ccc([N+](=O)[O-])cc1
1,990,461
{"donors": 1, "acceptors": 6}
248.198
1.18212
[ { "content": "How many hydrogen bond donors and acceptors are in the molecule with SMILES 'Cc1c(C(=O)O)nnn1-c1ccc([N+](=O)[O-])cc1'?", "role": "user" }, { "content": "{\"donors\": 1, \"acceptors\": 6}", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1ccc(-c2csc3ncnc(SCC(=O)Nc4ccc(C)cc4Br)c23)cc1
1,892,682
484.44
484.444
6.46844
[ { "content": "Calculate the exact molecular mass for the molecule represented by 'Cc1ccc(-c2csc3ncnc(SCC(=O)Nc4ccc(C)cc4Br)c23)cc1'.", "role": "user" }, { "content": "484.44", "role": "assistant" } ]
GHS_Hazard_Statement_Identification
O=C(NN=Cc1ccc(Br)s1)c1ccccc1I
1,381,174
["H301", "H350"]
435.084
3.8791
[ { "content": "Identify the GHS hazard codes associated with the compound represented by 'O=C(NN=Cc1ccc(Br)s1)c1ccccc1I'.", "role": "user" }, { "content": "[\"H301\", \"H350\"]", "role": "assistant" } ]
Synthetic_Accessibility
CCN(CC)C(=O)CSc1nnc(-n2nc(C)cc2C)c2ccccc12
648,440
{'sa_score': 8.1, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
369.494
3.39284
[ { "content": "Determine the synthetic accessibility of the chemical structure 'CCN(CC)C(=O)CSc1nnc(-n2nc(C)cc2C)c2ccccc12'.", "role": "user" }, { "content": "{'sa_score': 8.1, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Reactivity_Prediction
CCOc1cc[nH]c(=O)c1
817,729
{"charges": {"C": [{"atom_idx": 1, "charge": 0.085}, {"atom_idx": 3, "charge": 0.126}, {"atom_idx": 7, "charge": 0.251}], "O": [{"atom_idx": 2, "charge": -0.494}, {"atom_idx": 8, "charge": -0.269}], "N": [{"atom_idx": 6, "charge": -0.329}]}, "dipole": 1.39, "steric_hindrance": 2.0}
139.154
0.7736
[ { "content": "Provide information about Reactivity_Prediction for the molecule with SMILES 'CCOc1cc[nH]c(=O)c1'.", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 1, \"charge\": 0.085}, {\"atom_idx\": 3, \"charge\": 0.126}, {\"atom_idx\": 7, \"charge\": 0.251}], \"O\": [{\"atom_idx\": 2, \"charge\": -0.494}, {\"atom_idx\": 8, \"charge\": -0.269}], \"N\": [{\"atom_idx\": 6, \"charge\": -0.329}]}, \"dipole\": 1.39, \"steric_hindrance\": 2.0}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCc1ccccc1NC(=O)CN(c1ccccc1OC)S(=O)(=O)c1ccc(C)cc1
1,334,148
438.55
438.549
4.40002
[ { "content": "Calculate the exact molecular mass for the molecule represented by 'CCc1ccccc1NC(=O)CN(c1ccccc1OC)S(=O)(=O)c1ccc(C)cc1'.", "role": "user" }, { "content": "438.55", "role": "assistant" } ]
Stereochemistry_Analysis
CCOc1ccc(C=NNC(=O)Cc2csc(Nc3cccc(C(F)(F)F)c3)n2)cc1OC
996,613
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
478.496
5.0056
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'CCOc1ccc(C=NNC(=O)Cc2csc(Nc3cccc(C(F)(F)F)c3)n2)cc1OC'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCC(=O)N(CCC1(c2ccccc2)CCOC(C)(C)C1)Cc1ccc(OC)c(OC)c1
1,082,239
439.60
439.596
5.3595
[ { "content": "What is the molecular weight of the compound with SMILES 'CCC(=O)N(CCC1(c2ccccc2)CCOC(C)(C)C1)Cc1ccc(OC)c(OC)c1'?", "role": "user" }, { "content": "439.60", "role": "assistant" } ]
Molecular_Weight_Calculation
COc1cc(C=NNC(N)=S)cc(Br)c1OCc1ccccc1F
1,345,904
412.28
412.284
3.3429
[ { "content": "Provide the molecular weight for 'COc1cc(C=NNC(N)=S)cc(Br)c1OCc1ccccc1F'.", "role": "user" }, { "content": "412.28", "role": "assistant" } ]
Reactivity_Prediction
C=CC1CCNCC1
421,846
{"charges": {"C": [{"atom_idx": 0, "charge": -0.103}, {"atom_idx": 1, "charge": -0.089}], "N": [{"atom_idx": 5, "charge": -0.317}]}, "dipole": 1.11, "steric_hindrance": 1.25}
111.188
1.172
[ { "content": "What is the reactivity prediction for the compound represented by 'C=CC1CCNCC1'?", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 0, \"charge\": -0.103}, {\"atom_idx\": 1, \"charge\": -0.089}], \"N\": [{\"atom_idx\": 5, \"charge\": -0.317}]}, \"dipole\": 1.11, \"steric_hindrance\": 1.25}", "role": "assistant" } ]
Reactivity_Prediction
C=CCc1cc(C=C2NC(=O)NC2=O)cc(OCC)c1OCc1ccc(Cl)c(Cl)c1
1,334,071
{"charges": {"C": [{"atom_idx": 0, "charge": -0.103}, {"atom_idx": 1, "charge": -0.087}, {"atom_idx": 7, "charge": 0.109}, {"atom_idx": 9, "charge": 0.326}, {"atom_idx": 12, "charge": 0.275}, {"atom_idx": 15, "charge": 0.162}, {"atom_idx": 17, "charge": 0.086}, {"atom_idx": 19, "charge": 0.165}, {"atom_idx": 21, "charge": 0.114}, {"atom_idx": 23, "charge": -0.054}, {"atom_idx": 25, "charge": 0.059}, {"atom_idx": 27, "charge": 0.06}], "N": [{"atom_idx": 8, "charge": -0.303}, {"atom_idx": 11, "charge": -0.272}], "O": [{"atom_idx": 10, "charge": -0.248}, {"atom_idx": 13, "charge": -0.267}, {"atom_idx": 16, "charge": -0.49}, {"atom_idx": 20, "charge": -0.485}], "Cl": [{"atom_idx": 26, "charge": -0.083}, {"atom_idx": 28, "charge": -0.083}]}, "dipole": 4.46, "steric_hindrance": 3.33}
447.318
4.8799
[ { "content": "Provide information about Reactivity_Prediction for the molecule with SMILES 'C=CCc1cc(C=C2NC(=O)NC2=O)cc(OCC)c1OCc1ccc(Cl)c(Cl)c1'.", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 0, \"charge\": -0.103}, {\"atom_idx\": 1, \"charge\": -0.087}, {\"atom_idx\": 7, \"charge\": 0.109}, {\"atom_idx\": 9, \"charge\": 0.326}, {\"atom_idx\": 12, \"charge\": 0.275}, {\"atom_idx\": 15, \"charge\": 0.162}, {\"atom_idx\": 17, \"charge\": 0.086}, {\"atom_idx\": 19, \"charge\": 0.165}, {\"atom_idx\": 21, \"charge\": 0.114}, {\"atom_idx\": 23, \"charge\": -0.054}, {\"atom_idx\": 25, \"charge\": 0.059}, {\"atom_idx\": 27, \"charge\": 0.06}], \"N\": [{\"atom_idx\": 8, \"charge\": -0.303}, {\"atom_idx\": 11, \"charge\": -0.272}], \"O\": [{\"atom_idx\": 10, \"charge\": -0.248}, {\"atom_idx\": 13, \"charge\": -0.267}, {\"atom_idx\": 16, \"charge\": -0.49}, {\"atom_idx\": 20, \"charge\": -0.485}], \"Cl\": [{\"atom_idx\": 26, \"charge\": -0.083}, {\"atom_idx\": 28, \"charge\": -0.083}]}, \"dipole\": 4.46, \"steric_hindrance\": 3.33}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCCc1cc(=O)oc2c3c(c4c(c12)OC(C)(C)C=C4)OCC(C)C31OCOCO1
468,338
414.45
414.454
4.0894
[ { "content": "Provide the molecular weight for 'CCCc1cc(=O)oc2c3c(c4c(c12)OC(C)(C)C=C4)OCC(C)C31OCOCO1'.", "role": "user" }, { "content": "414.45", "role": "assistant" } ]
Stereochemistry_Analysis
Cc1cc(C)c(C(=O)Oc2ccc3c(=O)c(Oc4ccc(-c5ccccc5)cc4)c(C(F)(F)F)oc3c2)c(C)c1
1,679,030
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
544.525
8.41556
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'Cc1cc(C)c(C(=O)Oc2ccc3c(=O)c(Oc4ccc(-c5ccccc5)cc4)c(C(F)(F)F)oc3c2)c(C)c1'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Solubility_Prediction
CCCOC(=O)c1cccc(N2C(=O)C(Cl)=C(Nc3ccc(C(=O)OCC)cc3)C2=O)c1
1,700,034
{"log_s": -4.6, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 456.8820000000002, "logp": 3.87, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 2}}
456.882
3.8658
[ { "content": "Determine the solubility prediction of the chemical structure 'CCCOC(=O)c1cccc(N2C(=O)C(Cl)=C(Nc3ccc(C(=O)OCC)cc3)C2=O)c1'.", "role": "user" }, { "content": "{\"log_s\": -4.6, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 456.8820000000002, \"logp\": 3.87, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 2}}", "role": "assistant" } ]
Solubility_Prediction
CC(=O)OO[N+](=O)[O-]
16,782
{"log_s": 0.95, "solubility_mg_ml": 1.0866, "solubility_category": "Moderately soluble", "contributing_factors": {"molecular_weight": 121.048, "logp": -0.33, "oh_groups": 0, "nh_groups": 0, "cooh_groups": 0, "aromatic_rings": 0}}
121.048
-0.3272
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'CC(=O)OO[N+](=O)[O-]'.", "role": "user" }, { "content": "{\"log_s\": 0.95, \"solubility_mg_ml\": 1.0866, \"solubility_category\": \"Moderately soluble\", \"contributing_factors\": {\"molecular_weight\": 121.048, \"logp\": -0.33, \"oh_groups\": 0, \"nh_groups\": 0, \"cooh_groups\": 0, \"aromatic_rings\": 0}}", "role": "assistant" } ]
Molecular_Weight_Calculation
O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1
797,349
345.35
345.354
4.7018
[ { "content": "Determine the molecular weight (in g/mol) of the chemical with structure 'O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1'.", "role": "user" }, { "content": "345.35", "role": "assistant" } ]
Functional_Group_Identification
C=C(CC)OC(C)=O
82,680
{"ester": 1, "ether": 1}
114.144
1.4732
[ { "content": "What is the functional group identification for the compound represented by 'C=C(CC)OC(C)=O'?", "role": "user" }, { "content": "{\"ester\": 1, \"ether\": 1}", "role": "assistant" } ]
Solubility_Prediction
CCC(c1nnnn1Cc1ccc(F)cc1)N(Cc1ccccc1)Cc1cc2cc3c(cc2[nH]c1=O)OCCO3
1,464,882
{"log_s": -6.72, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 540.5990000000003, "logp": 4.63, "oh_groups": 0, "nh_groups": 0, "cooh_groups": 0, "aromatic_rings": 5}}
540.599
4.6267
[ { "content": "Determine the solubility prediction of the chemical structure 'CCC(c1nnnn1Cc1ccc(F)cc1)N(Cc1ccccc1)Cc1cc2cc3c(cc2[nH]c1=O)OCCO3'.", "role": "user" }, { "content": "{\"log_s\": -6.72, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 540.5990000000003, \"logp\": 4.63, \"oh_groups\": 0, \"nh_groups\": 0, \"cooh_groups\": 0, \"aromatic_rings\": 5}}", "role": "assistant" } ]
Bioactivity_Prediction
CC(C)(C)[N+]([O-])=Cc1ccncc1
153,055
{"predicted_classes": ["Unknown"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 0, "enzyme_inhibitor": 0, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Medium", "drug_like_properties": {"molecular_weight": 178.24, "logp": 1.81, "hbd": 0, "hba": 2}, "structural_complexity": "Low"}
178.235
1.8093
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'CC(C)(C)[N+]([O-])=Cc1ccncc1'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"Unknown\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 0, \"enzyme_inhibitor\": 0, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Medium\", \"drug_like_properties\": {\"molecular_weight\": 178.24, \"logp\": 1.81, \"hbd\": 0, \"hba\": 2}, \"structural_complexity\": \"Low\"}", "role": "assistant" } ]
Functional_Group_Identification
CCCCC=CC(O)CC
316,603
{"alcohol": 1}
142.242
2.5037
[ { "content": "Determine the functional group identification of the chemical structure 'CCCCC=CC(O)CC'.", "role": "user" }, { "content": "{\"alcohol\": 1}", "role": "assistant" } ]
Drug_Likeness_Assessment
CN1CCN(C2=Cc3ccc(Cl)cc3Nc3cc(Cl)ccc32)CC1
551,166
{"molecular_weight": 360.29, "logp": 4.8, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 3, "rotatable_bonds": 1, "topological_polar_surface_area": 18.51, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
360.288
4.7959
[ { "content": "What is the drug likeness assessment for the compound represented by 'CN1CCN(C2=Cc3ccc(Cl)cc3Nc3cc(Cl)ccc32)CC1'?", "role": "user" }, { "content": "{\"molecular_weight\": 360.29, \"logp\": 4.8, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 3, \"rotatable_bonds\": 1, \"topological_polar_surface_area\": 18.51, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Hydrogen_Bond_Properties
N#CC(C(N)=O)=C(S)S
23,762
{"donors": 3, "acceptors": 4}
160.223
0.06648
[ { "content": "Identify the number of H-bond donors and acceptors in the compound 'N#CC(C(N)=O)=C(S)S'.", "role": "user" }, { "content": "{\"donors\": 3, \"acceptors\": 4}", "role": "assistant" } ]
Hydrogen_Bond_Properties
O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1
797,349
{"donors": 1, "acceptors": 4}
345.354
4.7018
[ { "content": "Calculate the hydrogen bonding capacity (donors and acceptors) of the molecule 'O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1'.", "role": "user" }, { "content": "{\"donors\": 1, \"acceptors\": 4}", "role": "assistant" } ]
Hydrogen_Bond_Properties
CCCC1=NC(C)(C)CO1
293,662
{"donors": 0, "acceptors": 2}
141.214
1.9938
[ { "content": "How many hydrogen bond donors and acceptors are in the molecule with SMILES 'CCCC1=NC(C)(C)CO1'?", "role": "user" }, { "content": "{\"donors\": 0, \"acceptors\": 2}", "role": "assistant" } ]
Molecule_Visualization
COc1ccc(C(=O)CC(CC(=O)N(CCCl)CCCl)c2ccc(OC)cc2)cc1
319,751
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deUBU5foH8GeGAQEVUEFBQHAXU3BBMQ0XIhHDtVDSsFvG4FJ0uyWjZhftWs21uqH3pg5m/ZBuCuSClhsu3ExFATdSEJAdBMEFRhmGYeb9/fHqNJkhy5zzcpjn85fAMO+j8uU95z3nPK+IEAIIIXbErAtAyNRhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRK1HCElOTv70009ZFyJsIkII6xqQ8NTW1u7atWvTpk1Xr14Vi8V5eXl9+/ZlXZRQSVgXgATm4sWLmzdv/v777+vq6gDAzc0tPDzczs6OdV0ChjMhapaGhoakpKSYmJhjx44BgEgkev7556VS6Zw5cyQS/FXeJhhC9DTl5RATU5GY2Cc3V6PR2Nrazp8//5133hk6dCjryjoIDCH6EzodJCfD5s3w00+g1QLAhyEh7v7+r7zyirW1NeviOhQMocmrr4dbt8DZGczMHn6mpgbi42HjRrh2DQDAwgJmzQKpFPz9GZbZgeHRvGlbsQJ++QUGD4YLF+DDD2HaNPjrX2HnTlCpAADc3WHJEnjjDXBwYF1oR4YhNGH79kFuLpw5AyIR3L0LY8aAry+cPg1qNfj7g1QKc+YALrpwD/+JTdixYxASAiIRAEC3bjB5Mpw7BzEx4OwM/fuzLs6EYAhNmFIJnTv/9mGXLlBbC7NmsSvIROFtayZs8GC4cuW3Dy9dAg8PdtWYLpwJTVh4OPj6wsCBMHw4/PADdO4M3t6sazJFeInCtFVWwvbtUFoKXl7wxhtgbs66IFOEh6Om7c4duH4dRo6E8HBMICsYQtOWmQk7dsChQ6zrMGkYQtNWUAAAgE8hMYUhNG0YwnYAQ2jaaAj79WNdh0nDEJq2/HwAnAkZw0sUJkynA2traGiA+/cBn05iB2dCE1ZWBmo1ODpiAtnCEJowPBZtHzCEputeWZm2Vy9clWEOQ2i6vrx+XVJZ+aG7O+tCTB2G0HQVFBQAQD+cCVnDEJqu/Px8AMCmvcxhCE0XzoTtBF4nNFH19fXW1tYSiUSlUpnp+6whFnAmNFGFhYWEEDc3N0wgcxhCE4UnhO0HhtBE0RNCDGF7gCE0RRqN5siRIwDQs2dP1rUgXJgxMRUVFbGxsZs3by4uLnZyctJqtXv27JkwYQLrukwahtBUnDx5cvPmzUlJSRqNBgA8PDwAICsry9zcXC6Xv/vuuyLaBRjxj6AOrba2VqFQDB8+nP53m5mZBQUFJScn63Q6jUYTFRUlFosBYObMmXfv3mVdrInCEHZY2dnZMplMv4euk5OTTCYrLi7WvyA3N5cQsn///m7dugHAgAEDLl26xK5e04Uh7GjUanVCQoK/v7/+8HLChAkJCQkNDQ2GLzt58qREIpFKpWq1uqioaOzYsQBgaWkZHR3NqnKThSHsOMrLy+VyuaurK82ejY2NVCrNzMx84ou//vprc3NzGtHS0tL6+vqIiAj6jaGhoQ8ePOC5eFOGIewITp06FRwcbP6oe++QIUOio6OVSmXT35WWlubu7g4A9vb2hw8fJoTExcV17twZADw8PK5evcpL7QhDKGQ1NTUKhWLYsGE0exYWFsHBwXTRpZnvUF1dPW3aNAAQiUQymUyr1WZlZT3zzDMA0LVr1/j4eE7rRxSGUJCqq6snTZqkn/pcXV3Xr19fUVHRirfS6XRyuZzeQern51dRUaFUKkNCQug705NGo9ePDGEIBWnDhg00JOPGjUtISNBoNG18wxMnTjg6OgKAi4vL6dOnCSEKhcLCwgIAvL29CwoKjFA0+hMYQkGSyWQA4OPjY8T3LC0tpbfOSCQSuVyu0+nS09PpzaX29vaHDh0y4ljIEN47KkhqtRoAXnrppcbGxrS0tOrq6ra/p7Ozc0pKCj0zXLly5dy5c/v375+WlhYYGFhdXT19+vSVK1dqtdq2D4Qex/q3AGqNWbNmAUBiYmJOTg4AuLu7G/HNk5KS6CX+gQMHXr582fCkccqUKa0780RNwBAKkqenJwBkZGTQhyH8/PyM+/65ubleXl4AYGlpuW3bNkLIsWPH6CMXXbp0+fbbb407nInDw1FB0j8NyNGzuQMGDEhNTY2IiKivrw8LC1u0aNGzzz574cKFgQMH3r9/f9myZcYdzsRhCIWnurpaqVTa2tp269aNu2dzLS0tN27c+M0331hZWcXFxX3wwQfOzs4bN24EAOyIYVwYQuGhsx/tksZ1x7TXX389NTXV399/zZo1AFBfXw8AkydP5mg40yRhXQBqMcPZj4cuFZ6ensnJyYZDY5dE48KZUHgMk8BzvybsTMMFDKHw6JOgVCrv3LljbW3NW6sY7NHGBQyh8OiTcOPGDfoH3jpT4EzIBQyh8OiTwPMZGiGkqKgIMITGhiEUGK1WW1JSIhKJ3N3deT44rKioqKurs7e379q1Kz8jmggMocCUlpY2NDQ4OTlZWlryfHCIS6McwRAKjGESeA4hrspwBEMoMIZJ4HlqwlUZjmAIBUafBP0yiTtf+11jCDmCIRQYfRLoMomDgwNvyyR4TsgRDKHA6JPA/xkanhNyBEMoMPok8HxwqNFoysrKzMzM9H1NkbFgCIVEpVJVVlZaWFj07t27vLwceAxhUVGRVqt1cXGh3Z+QEeFTFEJC+6DZ2dmZmZlFRkYuWbKEt6YvuCrDHZwJhaSkpAQAqqqqfvjhBwCwsbGhe7nwAFdluIMhFJLZs2f36dOHEDJ//vwPP/yQz95nOBNyB0MoJLSfxZdffmlmZrZ+/Xp/f/+KigruhktPTz9//jz9My6NcgdDKDBisfivf/3rsWPHnJycUlJSvLy8jh8/btwh1Gp1YmLiCy+8MGbMmJUrV9JP4uEoh9g2e0OtVllZ6e/vDwASiSQqKkqr1bb9PW/cuLFixYoePXrQn40ePXpERkY2NjYSQugtAWVlZW0fBT0GQyhgjY2N+v2uZ8yYcefOnda9j1arTU5ODg4O1rdRGz16tEKhoLsUpqenP//88wAgEomMEnX0GAwhj3bvJvPnkzlzyFdfEeP9NB84cKB79+4A4Obmdu7cuRZ97927d6Ojo/Vnep06dQoODv7ll18IIUqlcuvWrbTLMDV//nxj1YwMYQj5EhtLAgNJaSm5c4eEh5PISCO+d1FRkY+PD7Rkv+v09HSpVGptbU0D1r9/f7lcXlVVRQi5fv26TCajwQaAXr16yWSyK1euGLFgZAhDyJfRo8n16w//rFKRXr2MOBkSQgz3u3711Vfv37//Zy9LSEgYP348faVYLPb3909ISGhsbNRqtfv37zfc7H706NGxsbGPbXaPjA5DyBcHB9LY+NuHQ4eSmzeNPsh3331H97seMmTIr7/+avilgoKCv/3tb/qL+w4ODitXrqQbD968eVMul/fp04d+qWvXrlKp9NKlS0YvDz0RhpAvHh5Ev5+RTkecnAg3M0xWVhbdQLtr1667du3Sf37fvn2Giy51dXWEkPT09NDQUP2Ov4MGDZLL5a1e4EGtgyHky+rVZPXqh3/+7jsyezZ3QymVyldeeYXmSr/fdWNj43vvvXfhwgVCSG1trUKh0C+6mJmZBQUFtWize2REGEK+PHhAwsLIc8+RyZPJ7NlcHIs+xnC/6/z8fPpJuuiiPyh1dHSUyWRFRUVcF4OaICKEtO4qP2qBoiLYswdGjIApU0ClAisrfobNyMgIDg4uKCjo0aNHeHj4mTNnUlJS6JcmT568bNmy2bNn649FETOsfwuYhoQEAvDwEHTsWGJvT/ha9qA7XQMAnf3oogteb2hX8HlCXhQUAADQGy/z86G6Gnr14mfkHj16/Pjjj/369SssLIyMjFyzZg227m1v8AZuXtAQ9u0LSiVUV4OVFW8hBACRSFRTUwMA7733Ht8JLCuDU6egtJTXQYUGZ0Je5OcDAPTt+1sa+drCBQBqamru3r3buXNnBwcH3gYFAFi5EtLS4Lnn4JdfYORI+PxzXkcXDgwhL/TZy8l5+Ace6R8F5G3zJgCAM2fg7FlISQGRCAiBKVPg1Cnw9eWvAOHAw1Hu6XRQXAwiEbi7/5ZGHrF5FPD0aZg+/eGELxLBiy/C6dO8FiAcGELulZWBWg2OjmBtzTCEfD8Ur9GAxOA4y8IC1GpeCxAODCH39CeE8PtlUr6wCaGnJ5w799uHqang5cVrAcKBIeSe4exnGEi+sGkPM3063LsHq1fDkSOwZg1UVcHMmbwWIBwYQs6l3b17zde3ks4DN28CAPC1hQvF5pyQEDh4EEaNgrQ08PKCw4dBjD9sT4b/Lpz798WLz5w6ddDevrKy0rymJmDoULC15W10wvvmTQ8NGwbu7uDtDYGBcPUq/O9/vI4uKBhCzumPBvPz8xt1ujuPHmbnx82bN1UqVc+ePbt06cLfqIRAYSGUlYG9PZw6BevWwd69/I0uNCYUwtra2i+++EJ/BzNv9OsiTA4L2azKlJVBfT306gVdujBZEBYWkwhheXn52rVrnZ2d33///SlTprz//vu8DV1fX19RUWFubu7i4sJkgYTNqoxh8FgsCAtLR75jRqfTHT16dPPmzQcPHqQd483NzTUazRdffFFaWrpt2zYebqQsLCzU6XR9+/Y1MzNjMimxWZWhi8D6G9YBZ8KmdMyZsKamJiYmZvjw4YGBgQcOHJBIJMHBwcnJyQ0NDXv37rWzs4uPj/f29s7MzOS6EsMMmNDhqOFMWFQEwPeCsLB0tBBmZGSEh4c7OzuHh4dfu3bN2dk5KiqqpKQkISHB399frVYHBQWdP3/e09MzJyfHx8dn+/btnNZjeDRoioejlZVw/z507w52drwWICysH2g0DtrJj7aFB4NOfhqNxvBlYWFhEydOLCsrU6lUYWFh9MWhoaG01TQX3nvvPQBYs2ZNdna2mZmZmZkZ7fjCG7qx7o0bN/gclPj6EgBy4gQ5e5YAkNGjeR1daAQfwtLS0qioKHt7e5ooW1tbqVR67dq1P77y1q1bvXv3BgBHR8eTJ08SQmJjY2n325EjR+bl5XFRnp+fHwCIRCKJRAIAdGMz3qjVapp8vnuHOjsTAFJQQL7/ngCQ4GBeRxcaoYaw6e0T/kxVVdXUqVMBwMzMjG6icvHixQEDBgCAjY1NYmKiscpTqVTffvvtmDFjHjvu6N27d319vbFGeaqcnBwAcHd3521EQoiuvp5IJMTcnGg05OOPCYBx2413PMILId0+Qb+8Ybh9QnPodDq5XE43UXnxxRdv375dU1MTHBxM56uIiIg2Tho3btyQyWT6mdnOzi4iIiIzM3Pjxo1WVlYAMGrUKN4ODo8cOQIAfn5+/AxHZWdnd7GwWDB+PCHkyOrVZydNKvu//+OzAMERUghTU1MHDBjQqVMn+vPdv3//zz777Pbt2614q+PHj/fq1QsAXF1dz549q9PpoqOjad8xX1/fVmwA1pyZ+cKFC/3796fHzLt3725F2S21ZcsWAFi8eDEPY+kdOnQIAPz9/cmjo/HDhw/zWYDgCCmE9CdYJBLpt09oy7uVlJQ8++yzdC6lm6icP3/ezc0NABwcHI4ePdrM92nRzFxTU/Pyyy8ba9Z9qsjISABYv349p6M85quvvgKAsLAwQghdlc3JyeGzAMERUgjpLgvffPONsd5Qo9HIZDIangULFiiVyj+eNDbx7U1sbNQEw1l34sSJ5eXlxvrrGNJqtQcOHHBxcQGASH5PyegNSZ988olGozE3NxeLxXyeBguRYEKoUqlEIpG5uXljYyPdR8FY9u7da2trCwCDBw/OzMz840njY69vYmOj5g/6888/06Xanj17JicnG/Gv89iWg5aWlmKx+MMPP2zjgUPzvfTSSwCwc+dOeonSxcWFn3GFSzAhzMrKAoABAwYQQhYvXmxpablz505jvfn169eHDx8OAFZWVtu3byd/OGmkL8vLy/vjoou+w3xL3bp164UXXmjmrNscf5yZP/30048//pjOupMnT77Jfe99QsioUaMA4Ny5c8ePH6ezPQ+DCppgQvjTTz8BwAsvvEAImTJlCgA0/7StOVQq1Ztvvqm/fF9XV2d40iiVSgMCAsSPHksdN27cjh072n6UZbjfdVBQUOsWmZ46M6ekpDg5OQGAs7Nz85eRW422+r5169a2bdsA4LXXXuN6RKETTAj/85//AIBUKiWE0OWT3Nxco4+iv3xPLyToTxrp7EcXXc6cOWPcQX/88Ue6LW6fPn1SU1Ob/425ubkymaxHjx5PnZkrKyvpvvMSiUQul3O3+9K9e/cAoHPnzoSQ1atXA8DatWs5GqvDEEwI6f1fn376qUajkUgk3J3uZ2Rk0KXObt260WsVvr6+ALBw4ULuNu4rLi4eN26c4VJtE/7sckjTp8oajUY/686cOZOjv8uFCxfoP924cePo5BwbG8vFQB2JYEI4d+5cAIiPj8/LywOO7/+iFxKWLl1KPxw7diwAcH0gZ7jf9cKFC5+433VlZaVcLtc3qrC0tAwNDaVbDjbT/v376eGim5vb+fPnjVc+IYTk5ubSVRk65dJewz///LNxR+l4BBPCESNGAMD58+eTk5MBYNKkSZwOp9Pp9BfxaPd4jq4lPGbPnj10qXbIkCGZmZn6z9NFF6tHe6oNGDBALpdXV1e3YoiioiIfHx+a4afOus3R2Ni4b9++gIAAfYfvIUOGjB49mn44c+bM2trato/SgQkmhHZ2dgBQXV0dExMDAK+//jo/4yqVSvrzytsuttnZ2XSptkuXLqtWrfrXv/5FfwHpF13279/fxmIMZ93Q0NAnzrrN0fTMnJSURP/XBg4cePny5bYU3LEJI4S3b98GgK5duxJCVq1aBQAfffQRP0NfuXIFADw8PPgZjrp///7ChQvBQK9evT744IPi4mIjjhIXF0fvf/Dw8Lh69WqLvreZM3Nubq6XlxfN57Zt24xXe4cijBCmp6cDgJeXFyFk/vz5ABAXF8fP0ElJSQAwffp0foYztHDhQolEYmtrGxcXx9FTiFlZWc888wz9Bbdr166nvl6lUsXGxrZoZlapVIazLnePbhJCiouLV6xYcerUKe6G4IIwQpiYmAgAs2fPJnwtk+h9+eWXALB8+XJ+hnvMvXv3uB5CqVSGhITQkEil0j9Le05Ojkwmo5dS6Mwsk8kKCgqaOco333xDp82QkP9y8eSmfma2srISiUT//ve/jT8GZ4QRwn/+858A8O677xJ+l0kIIfS3+Oeff87PcKwoFAoLCwsA8Pb2NowWvRwSFBSkX3RpzuWQJ7p8+fLzz79jbU1sbcmePcYp+/79+wqFwuvRLhcSicTuUR+NJUuWCOWeVWGEcMmSJQCwadMm/pdJZsyYAQB7jPVT046lp6fTO07t7e13795dVlYml8vpfRH6RZdLly61ZYjaWjJvHgEgIhGJiCBteYbkiTNzYWEh4aVhwmMadY0na0/uvLMzrz6PEDIrb1aLvl0YIQwICACAH3/8kf9lEnrKdPHiRd5GZKi6ujowMJD+WBteb9i0aZMRD4wVCmJhQQDImDGksLBl36vRkN27yYIFy/Xl+fr67ty587GjaMOGCT/88IOxKn8itU7te903rChsY+XGidcnXqm70u/Xfi16B2GEcNCgQQBw9erVffv28bxMQrvH3717l7cR2dLpdPPmzaM/4uPHj2/75ZAnSksj7u4EgNjbkyNHmvUtFRVELidubgSA+PoqnjozG7dhQhO2VW17o/AN+mct0RJCuA0hd/dtNUGr1Xbq1EkkEj148IDnZZKKigoA6N69Oz/DtR9nz57NysridIiqKjJt2sNDU5mMNPEMyc8/k5CQh5MnAPHwIJs31zVnZn7s0c1WNExojmXFy+Ju/26tnsMQ3r59293dvYkFNI4UFxcDgKOjI+F9meTs2bN0KYKf4UyNVkuioohYTDp1Ip9/TubMIfTBj9OnySefEKWSKBTEy+th9sRiEhREkpNJSyfmU6dO0Uc3W9Qw4anKG8o/Kv/oaM3R5cXLY2//7v7YloawBc1/T58+ffPmzZiYmEmTJtFg8MOwhzTPTazZ9JA3GWIxrF0Lhw6BQgESCWRkwNatAAA1NVBcDOPGQXg4XL4MTk7w979DcTEcOAD+/vDoZLC5nnvuucuXL0+dOrWqqiowMHDt2rU6na4tZWfUZSwqXOT2q9vfb/7981ufj7QeeVJ5si1v2IIQzpgx48yZM/369UtNTR01ahTt58MDwyTw3E+aTftqEzN1Krz2GgDA8uWgUEBZ2cPPh4TA6NEQGwtFRbBuHTg7t34Ie3v7w4cPy+VyQsi6devoQyQtfROlVrmlasvwrOHe2d5xd+IIkJftXl7Va1Vo99B8df6bRW9uq962vGR5jjqnxfW1dBa+d+/enDlzAEAkEslkMh6aJkRFRQHAmjVrCO/LJIsXLwaALVu28DOcKYuOJps2kcREEhJCDh4kS5Y0dZbYak9smPBU1+uvy0pl3S51gwyADHC84igrlRWpi/QvaNQ1pihT4m7Hpd5PJYQcrWnZQW9rVkcNz3d5aJqwYMECAKBdJ65evXrw4EFOhzOEHft4Q0NICAkIICtXkiVLuBroj132/kxjY+P+/fv9/f1HnB9B4zc6a3Ts7dgGnZEXWlt/ieLEiRP0l0rImDGEm7v1srOzIyIiOnXq1K1bt4ULF7a9C0tLYcc+3uhDmJND7Ow4DCH5fZe9uXPn/nGhtaysLCoqii7nAMCkqEnLipf9qvqVo3radJ2wvLw8yN+/zsODSCQkKqrF61Z/Qq1W79y5kz7PTo976fPgAQEBT20oaERcP8KPDO3cSfQ3kH/2GfnkE85HNOyyd+XKFfrJ9PT00NBQepRHvySXy7m+Mtfmi/UazcNlZgAycyZpW7nl5eVyuZxuJAQANjY2Uqk0MzPz5MmTjo6OAODi4nL69Om21twk/eNwdFXG1dWV0+GQ3v/+R7ZsIU/ay4cr2dnZw4YNAwArK6uJEycOHTqU/uCZm5vPmzcvJSWFnzKMdMfMgQOkWzcCQNzcSCuaJuh02uPH5wUH062LAMDT03Pr1q1KpVL/ktLS0gkTJgBnrYroQzr0VuCMjAxCyLFjxwA79vFo+XICQIzxrH8LqFSqRYsWAQC9f93JyUkmkxn3uc2nMt5ta0VFxMeHABBLyxb8Q9bUEIWCDBtGAOaOG2dhYUG31H1ixuihPL2jatasWcZaI7127dpbb71lY2ND8+/k5LR//35CyIYNGwDg1VdfNcoo6KkCAwkASUpiMPRbb701atSoXbt2PbahJT+Meu9ofT2JiHh4g0NoKGm6acKlS0QqJZ07P3y9q2tedHRFRcVTB0lKSqKtitrYNEGr1dK1L8OHdGJjYxsaGuhm9/RO/MmTJ7d6CNQiQ4YQAPLo7MyEcHAD944dpHNn0qMHKSoiDQ3k229JZCTZtInQNSi1miQkEH//h9kDIBMmkIQE0pLfQIWFhXTrP0tLy5iYmJYWePPmTblc3qdPH5q9rl27SqVSmmfaQ37w4MH0S2KxOD4+vqXvj1pBpyNWVgSAGJyCmApunqLIzCQnThCdjkydStauJampZMsWMmwYqa0lzz77MHt2duSdd0h2dutGaF3ThMfWvgYNGqRf+7p27VpERATtuQIAvXv3Xrp0qYk8wdQelJURAOLgwLoOFrh8lCklhUyb9tuHdD7csIF4eJDo6KccrDbPjh076EHjiBEjmmjIXVtbq1AoPD09acDMzMyCgoLomadarTbc7B4AJkyY8MfN7hHXfvmFABAfH9Z1sMBlCLduJatW/fbhrl1k6dIWHXY2x7Vr1+jKso2NTUJCwmNfzc7Olslk9BwSABwdHWUyWVFRESGEPjnu/OiWRHo55Ndfubogi5q2YwcBICEhrOtggcsQ/ve/JCLitw+//pqjvctra2tpC7bHHt/U6XT6fUWnTJmSmJhIF11oD3n95ZCRI0cqFIpW995ERrFuHQH43S9t08FlCAsLyZAhhHYE0unItGnNfYi6VfStisaMGVP4qGvCV199tXz5ctpU8969ewqFQn9BVn85hLuSUPP95S8EgLR8la0j4Li9xbZtZNQo8vbbxNeXrFjB7ViEpKWl0W7Q9vb2RwwCn5GRIZVK9Ysuzs7OUVFRt27d4roe1HyBgTMGDfJKSTHFRt0iQghwqq4ObtwAV1d41IuOU9XV1aGhoYcPHxaJRPPmzfPx8Tl48CC990UsFvv5+Uml0jlz5uiPRVE70adPn5KSkhs3bpjgI9Tch5B3Op3uH//4x7p16/R/te7du7/++utLliyhHbhQe6PRaGhrYJVKpb+AZDo64IQgFoujoqIsLS3Xr18vEok++uij8PBw/a4JqB0qLCzUarXu7u4mmEDokDOhXl1dnX4Dd9SeHT16NCAgwM/Pj25zb2pa0GNGcDCBQmHivXw6cgiRUBg21DNBGELEHoYQIcZMvL8rhhCxV1JSIhaLo6OjWRfCBoYQsefj46PT6eLj40NCQujudyYFQ4jYS0pK+v777+3s7OLj4729vTMzM1lXxCsMIWoXXnnllfPnz3t6eubk5IwdO/brr79mXRF/MISovRg4cOC5c+fCwsLq6+vDwsIWLVpUV1fHuig+dOQ7ZpBA7dixY+nSpXV1dSNHjkxMTKQPhXZgGELUHl26dCk4ODgvL8/Gxmb79u0vv/wy69ZIc5oAAAOWSURBVIo4hIejqD0aMWLEhQsXgoODa2tr582b984772g0GtZFcQVnQtSuxcTEvP322w0NDb6+vrt27dJv0tKRYAhRe5eWlhYcHFxUVOTg4PDdd99NnTqVdUVGhoejqL0bM2ZMeno63ZNr+vTpbd/vur3BmRAJAyFkw4YNq1ev1ul006dPj4uL6969O+uijANDiITkxIkTCxYsqKysdHV1TUhIGDduHOuKjAAPR5GQ+Pn5paenjx8/vqSkxNfX97XXXmNdkRFgCJHAuLi4nDx5MiIiorGxcceOHe+++y7ritoKQ4iEx8LCYuPGjVOmTAGAvLw81uW0FYYQCRXd4WfSpEmsC2krDCESqg7TFANDiISqwzTFwEsUSKhsbGyUSuXdu3fteNlhgTs4EyJBqqqqUiqVtra2Qk8gYAiRQNFj0Y7xqCGGEAlSR2rajSFEgtRhlkahQ+7KhExB3dg63y98hw4ZyroQI8CZEAlSap/UU5NPOT3nxLoQI8AQIkHKb8gHgL4WHeFwFEOIhEdLtCUNJSIQuVm4sa7FCDCESHhKNCUaoult3ttSbMm6FiPAECLhKVAXAEDfTh3hWBQwhEiIChoKAKCfheDvGqUwhEh4cCZEiLGOtDQKGEIkRHQm7NepgxyO4qNMSHhy1bk59Tm+XXwB4OyDswE2AawrahO8bQ0JSb2uflX5qrMPzopBPL7L+Dd7vPnlrS8xhAjxZ0Plhvu6+2cGnxGD+EjtEdblGAeeEyIh2Xtvb2SvSDGIASDAJsBMZMa6IiPAECIhqWqs6inpyboKI8MQIiFxtXDNV+ezrsLIMIRISN60fzOyLPJW4y0t0abXpbMuxzhwYQYJyeIei83A7C+Ff2kgDT6dfZY5LPO29mZdVFvhdUKEGMPDUYQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQY/8PXG8AgJGQUgwAAAIYelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkANieSBuYGRjSADSjMwcDBpAmpmJzQFMs7A5ZIBoZkYkBlQGopIFrgNsAhOUZmZE8FHVsUNoZlT1TEyCDAogF+ASJugeVHcwMmNTic7gZmBkYGRSYGLOYGJmSWBhzWBiZVNgY9dgYuNg4OBk4ORi4OJm4ObRYOLmVeDlY+DjZ+AXYOAVZBAUYhASZuAUYRARzWASFUsQE89gEpdQkJBkEJdKkJIGGiOTICObwSTLlCAtkuAECm42JlkZVhZmNlExcSlpEfEiRqAbGWDRoD1F4ODWGyv2gzhanL8PMB7iOwCW2H7uwJNTl8Hidi0nDhw31t4HYhsZzTkwzeuiHYjNo5ZzwH8jA1jNl0bhA/ns02xBbBMZ9gOPjhy3B7HN2vv2r5kaBlbzirnb7r5bG9icNba77Vltp4HF3zmZOZxhlwSz165wcuA6mAzWu9ih0cFY/yBYfMOktQ5ab/LA7DsbLzskKb6B2MvI4OicsQjM7pAuczh/0h7s/g86Cx3K5KvAbMFfsxyurVgDZj8xfGe35dIcsPkrr7yxv9T9DMwWucDkIF8R5ABiv3GLsn+U1gZmf3nXav/3/1Ywe9JsaQfXvBNgdoknx36zj+lgduEDy/0M+znA7NPdFQeE9/4Du+fj9BUHJKxVwPaKAQD1vJPIb8NPagAAArd6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VVtuGzEM/PcpdAEL4lPkZxIHRVHEBtq0dyjQz94fJeUmqxREVxYhaWcpiTOkTy2fr5cvP3+39wcvp1Nr4z8/d28/aIxxemk5aI/Pnz5f29Prw+PbytPt+/X1W4sRQXwT7SP24fX28rYC7amdvQ9SmNzO0AkcgNroYz3Ht9hu7Ty7MZt6O2NHGuJQICl9amdxE0qfKqzoBZLvSFQFDuTooBN8FEhJJHczAJzxnofNiQVQE0hdzQ0xXcrAObRAzkRip8E20uWYhFIBLW+OHQCGa4MuOtQroKdHCCDJgNzbKA5RhQiCpVjGCQKcSFREqUIEyRD0CKDhWN4nRauQGEgMgqaRrJv7nFMqJMWNqA8G4Xxv5qpcAbldG4c6HHhtLsNRKnVAEiSdMXxqbu5EWKoDkiHtGnsrpM9Q1NTy6sHQr2a5znMmFNX+cvUv1MIphSvhmAVZHjfySh/g66Ah+EmaSvFhMCvJRbhj+9BcuMSASicXhRIKi05WQeRgK7gEK4G42LQQZQQ0BgOAq2MiLTIHx56RUR3NxEogr61NUINL7hhvSyGhBOkQHpVEIgJqk70E6tqaCSjiktlJyVQBXBkUOiOkCXFIjUt5RQ/aHTlRI9rhHEhVrEL6PX8tNEyYnLsP4ErFWemSlRCFsCXpEnWklMfz9fKh6t3r4OPtejnqYDY8il1MGh0VjbMfZSubHLUpJk2PCgTR51FmMLodxQRi6kfJgOx7YYBlYCsAsAxuiY5pgLaEhrXCW+bCMrJlKCyjWybCMnPLuPtXtiUWLONbAkEa3BNlnRlhywdOg7gJn9MgbQrnNMiblCENyqZZSIO6iZMXZm4qzGlobFMbBwPom6g4De3a4fUH+b6wTmzbHVIzu0Jy/vYvG+PTH6kabw3ggzXPAAABanpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCVRSW7EMAz7So8zgEfQLhlFT7l3HpFrn9DHl3IDZDFDSSR1vW+57/txPb7ez+t6XOfjG+/r53ket87/9/W8b8UtH7+P1ya2lFovIZMtsj5fRe3egJTUODagJI/dMawMTzuQZoqvF5NkybCcukVsMTl3lQIyyt6twwrW4gSmZOwtoHGZRvrBBNcSiuTCWXC2mLK2VoUsJi2J/4GaqqNLyFOnO+hlhUYK7dWHFLuqYn0asUsExnXvnGkOz3s6YRxvBSfI1SWnbJvpxrykFFgdEuIoiGpihvBBNOF0WreH2yS10XpPI8QJITC+uZErhrUbgxNkO/I48QxVh1vYkB4fjXQGaBY5NtjBXkbaHT01HZoey0mhIqeGsYhYgYTHppKbWK3Zi/nkjAhMrQRdEu4OUpqQtRC3ZeZZULeFjam9WdAIQmEPgcFVYMWynr9/Y5V7MxQx8pQAAAAASUVORK5CYII=</base64_image>
452.378
4.7567
[ { "content": "Provide information about Molecule_Visualization for the molecule with SMILES 'COc1ccc(C(=O)CC(CC(=O)N(CCCl)CCCl)c2ccc(OC)cc2)cc1'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deUBU5foH8GeGAQEVUEFBQHAXU3BBMQ0XIhHDtVDSsFvG4FJ0uyWjZhftWs21uqH3pg5m/ZBuCuSClhsu3ExFATdSEJAdBMEFRhmGYeb9/fHqNJkhy5zzcpjn85fAMO+j8uU95z3nPK+IEAIIIXbErAtAyNRhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRK1HCElOTv70009ZFyJsIkII6xqQ8NTW1u7atWvTpk1Xr14Vi8V5eXl9+/ZlXZRQSVgXgATm4sWLmzdv/v777+vq6gDAzc0tPDzczs6OdV0ChjMhapaGhoakpKSYmJhjx44BgEgkev7556VS6Zw5cyQS/FXeJhhC9DTl5RATU5GY2Cc3V6PR2Nrazp8//5133hk6dCjryjoIDCH6EzodJCfD5s3w00+g1QLAhyEh7v7+r7zyirW1NeviOhQMocmrr4dbt8DZGczMHn6mpgbi42HjRrh2DQDAwgJmzQKpFPz9GZbZgeHRvGlbsQJ++QUGD4YLF+DDD2HaNPjrX2HnTlCpAADc3WHJEnjjDXBwYF1oR4YhNGH79kFuLpw5AyIR3L0LY8aAry+cPg1qNfj7g1QKc+YALrpwD/+JTdixYxASAiIRAEC3bjB5Mpw7BzEx4OwM/fuzLs6EYAhNmFIJnTv/9mGXLlBbC7NmsSvIROFtayZs8GC4cuW3Dy9dAg8PdtWYLpwJTVh4OPj6wsCBMHw4/PADdO4M3t6sazJFeInCtFVWwvbtUFoKXl7wxhtgbs66IFOEh6Om7c4duH4dRo6E8HBMICsYQtOWmQk7dsChQ6zrMGkYQtNWUAAAgE8hMYUhNG0YwnYAQ2jaaAj79WNdh0nDEJq2/HwAnAkZw0sUJkynA2traGiA+/cBn05iB2dCE1ZWBmo1ODpiAtnCEJowPBZtHzCEputeWZm2Vy9clWEOQ2i6vrx+XVJZ+aG7O+tCTB2G0HQVFBQAQD+cCVnDEJqu/Px8AMCmvcxhCE0XzoTtBF4nNFH19fXW1tYSiUSlUpnp+6whFnAmNFGFhYWEEDc3N0wgcxhCE4UnhO0HhtBE0RNCDGF7gCE0RRqN5siRIwDQs2dP1rUgXJgxMRUVFbGxsZs3by4uLnZyctJqtXv27JkwYQLrukwahtBUnDx5cvPmzUlJSRqNBgA8PDwAICsry9zcXC6Xv/vuuyLaBRjxj6AOrba2VqFQDB8+nP53m5mZBQUFJScn63Q6jUYTFRUlFosBYObMmXfv3mVdrInCEHZY2dnZMplMv4euk5OTTCYrLi7WvyA3N5cQsn///m7dugHAgAEDLl26xK5e04Uh7GjUanVCQoK/v7/+8HLChAkJCQkNDQ2GLzt58qREIpFKpWq1uqioaOzYsQBgaWkZHR3NqnKThSHsOMrLy+VyuaurK82ejY2NVCrNzMx84ou//vprc3NzGtHS0tL6+vqIiAj6jaGhoQ8ePOC5eFOGIewITp06FRwcbP6oe++QIUOio6OVSmXT35WWlubu7g4A9vb2hw8fJoTExcV17twZADw8PK5evcpL7QhDKGQ1NTUKhWLYsGE0exYWFsHBwXTRpZnvUF1dPW3aNAAQiUQymUyr1WZlZT3zzDMA0LVr1/j4eE7rRxSGUJCqq6snTZqkn/pcXV3Xr19fUVHRirfS6XRyuZzeQern51dRUaFUKkNCQug705NGo9ePDGEIBWnDhg00JOPGjUtISNBoNG18wxMnTjg6OgKAi4vL6dOnCSEKhcLCwgIAvL29CwoKjFA0+hMYQkGSyWQA4OPjY8T3LC0tpbfOSCQSuVyu0+nS09PpzaX29vaHDh0y4ljIEN47KkhqtRoAXnrppcbGxrS0tOrq6ra/p7Ozc0pKCj0zXLly5dy5c/v375+WlhYYGFhdXT19+vSVK1dqtdq2D4Qex/q3AGqNWbNmAUBiYmJOTg4AuLu7G/HNk5KS6CX+gQMHXr582fCkccqUKa0780RNwBAKkqenJwBkZGTQhyH8/PyM+/65ubleXl4AYGlpuW3bNkLIsWPH6CMXXbp0+fbbb407nInDw1FB0j8NyNGzuQMGDEhNTY2IiKivrw8LC1u0aNGzzz574cKFgQMH3r9/f9myZcYdzsRhCIWnurpaqVTa2tp269aNu2dzLS0tN27c+M0331hZWcXFxX3wwQfOzs4bN24EAOyIYVwYQuGhsx/tksZ1x7TXX389NTXV399/zZo1AFBfXw8AkydP5mg40yRhXQBqMcPZj4cuFZ6ensnJyYZDY5dE48KZUHgMk8BzvybsTMMFDKHw6JOgVCrv3LljbW3NW6sY7NHGBQyh8OiTcOPGDfoH3jpT4EzIBQyh8OiTwPMZGiGkqKgIMITGhiEUGK1WW1JSIhKJ3N3deT44rKioqKurs7e379q1Kz8jmggMocCUlpY2NDQ4OTlZWlryfHCIS6McwRAKjGESeA4hrspwBEMoMIZJ4HlqwlUZjmAIBUafBP0yiTtf+11jCDmCIRQYfRLoMomDgwNvyyR4TsgRDKHA6JPA/xkanhNyBEMoMPok8HxwqNFoysrKzMzM9H1NkbFgCIVEpVJVVlZaWFj07t27vLwceAxhUVGRVqt1cXGh3Z+QEeFTFEJC+6DZ2dmZmZlFRkYuWbKEt6YvuCrDHZwJhaSkpAQAqqqqfvjhBwCwsbGhe7nwAFdluIMhFJLZs2f36dOHEDJ//vwPP/yQz95nOBNyB0MoJLSfxZdffmlmZrZ+/Xp/f/+KigruhktPTz9//jz9My6NcgdDKDBisfivf/3rsWPHnJycUlJSvLy8jh8/btwh1Gp1YmLiCy+8MGbMmJUrV9JP4uEoh9g2e0OtVllZ6e/vDwASiSQqKkqr1bb9PW/cuLFixYoePXrQn40ePXpERkY2NjYSQugtAWVlZW0fBT0GQyhgjY2N+v2uZ8yYcefOnda9j1arTU5ODg4O1rdRGz16tEKhoLsUpqenP//88wAgEomMEnX0GAwhj3bvJvPnkzlzyFdfEeP9NB84cKB79+4A4Obmdu7cuRZ97927d6Ojo/Vnep06dQoODv7ll18IIUqlcuvWrbTLMDV//nxj1YwMYQj5EhtLAgNJaSm5c4eEh5PISCO+d1FRkY+PD7Rkv+v09HSpVGptbU0D1r9/f7lcXlVVRQi5fv26TCajwQaAXr16yWSyK1euGLFgZAhDyJfRo8n16w//rFKRXr2MOBkSQgz3u3711Vfv37//Zy9LSEgYP348faVYLPb3909ISGhsbNRqtfv37zfc7H706NGxsbGPbXaPjA5DyBcHB9LY+NuHQ4eSmzeNPsh3331H97seMmTIr7/+avilgoKCv/3tb/qL+w4ODitXrqQbD968eVMul/fp04d+qWvXrlKp9NKlS0YvDz0RhpAvHh5Ev5+RTkecnAg3M0xWVhbdQLtr1667du3Sf37fvn2Giy51dXWEkPT09NDQUP2Ov4MGDZLL5a1e4EGtgyHky+rVZPXqh3/+7jsyezZ3QymVyldeeYXmSr/fdWNj43vvvXfhwgVCSG1trUKh0C+6mJmZBQUFtWize2REGEK+PHhAwsLIc8+RyZPJ7NlcHIs+xnC/6/z8fPpJuuiiPyh1dHSUyWRFRUVcF4OaICKEtO4qP2qBoiLYswdGjIApU0ClAisrfobNyMgIDg4uKCjo0aNHeHj4mTNnUlJS6JcmT568bNmy2bNn649FETOsfwuYhoQEAvDwEHTsWGJvT/ha9qA7XQMAnf3oogteb2hX8HlCXhQUAADQGy/z86G6Gnr14mfkHj16/Pjjj/369SssLIyMjFyzZg227m1v8AZuXtAQ9u0LSiVUV4OVFW8hBACRSFRTUwMA7733Ht8JLCuDU6egtJTXQYUGZ0Je5OcDAPTt+1sa+drCBQBqamru3r3buXNnBwcH3gYFAFi5EtLS4Lnn4JdfYORI+PxzXkcXDgwhL/TZy8l5+Ace6R8F5G3zJgCAM2fg7FlISQGRCAiBKVPg1Cnw9eWvAOHAw1Hu6XRQXAwiEbi7/5ZGHrF5FPD0aZg+/eGELxLBiy/C6dO8FiAcGELulZWBWg2OjmBtzTCEfD8Ur9GAxOA4y8IC1GpeCxAODCH39CeE8PtlUr6wCaGnJ5w799uHqang5cVrAcKBIeSe4exnGEi+sGkPM3063LsHq1fDkSOwZg1UVcHMmbwWIBwYQs6l3b17zde3ks4DN28CAPC1hQvF5pyQEDh4EEaNgrQ08PKCw4dBjD9sT4b/Lpz798WLz5w6ddDevrKy0rymJmDoULC15W10wvvmTQ8NGwbu7uDtDYGBcPUq/O9/vI4uKBhCzumPBvPz8xt1ujuPHmbnx82bN1UqVc+ePbt06cLfqIRAYSGUlYG9PZw6BevWwd69/I0uNCYUwtra2i+++EJ/BzNv9OsiTA4L2azKlJVBfT306gVdujBZEBYWkwhheXn52rVrnZ2d33///SlTprz//vu8DV1fX19RUWFubu7i4sJkgYTNqoxh8FgsCAtLR75jRqfTHT16dPPmzQcPHqQd483NzTUazRdffFFaWrpt2zYebqQsLCzU6XR9+/Y1MzNjMimxWZWhi8D6G9YBZ8KmdMyZsKamJiYmZvjw4YGBgQcOHJBIJMHBwcnJyQ0NDXv37rWzs4uPj/f29s7MzOS6EsMMmNDhqOFMWFQEwPeCsLB0tBBmZGSEh4c7OzuHh4dfu3bN2dk5KiqqpKQkISHB399frVYHBQWdP3/e09MzJyfHx8dn+/btnNZjeDRoioejlZVw/z507w52drwWICysH2g0DtrJj7aFB4NOfhqNxvBlYWFhEydOLCsrU6lUYWFh9MWhoaG01TQX3nvvPQBYs2ZNdna2mZmZmZkZ7fjCG7qx7o0bN/gclPj6EgBy4gQ5e5YAkNGjeR1daAQfwtLS0qioKHt7e5ooW1tbqVR67dq1P77y1q1bvXv3BgBHR8eTJ08SQmJjY2n325EjR+bl5XFRnp+fHwCIRCKJRAIAdGMz3qjVapp8vnuHOjsTAFJQQL7/ngCQ4GBeRxcaoYaw6e0T/kxVVdXUqVMBwMzMjG6icvHixQEDBgCAjY1NYmKiscpTqVTffvvtmDFjHjvu6N27d319vbFGeaqcnBwAcHd3521EQoiuvp5IJMTcnGg05OOPCYBx2413PMILId0+Qb+8Ybh9QnPodDq5XE43UXnxxRdv375dU1MTHBxM56uIiIg2Tho3btyQyWT6mdnOzi4iIiIzM3Pjxo1WVlYAMGrUKN4ODo8cOQIAfn5+/AxHZWdnd7GwWDB+PCHkyOrVZydNKvu//+OzAMERUghTU1MHDBjQqVMn+vPdv3//zz777Pbt2614q+PHj/fq1QsAXF1dz549q9PpoqOjad8xX1/fVmwA1pyZ+cKFC/3796fHzLt3725F2S21ZcsWAFi8eDEPY+kdOnQIAPz9/cmjo/HDhw/zWYDgCCmE9CdYJBLpt09oy7uVlJQ8++yzdC6lm6icP3/ezc0NABwcHI4ePdrM92nRzFxTU/Pyyy8ba9Z9qsjISABYv349p6M85quvvgKAsLAwQghdlc3JyeGzAMERUgjpLgvffPONsd5Qo9HIZDIangULFiiVyj+eNDbx7U1sbNQEw1l34sSJ5eXlxvrrGNJqtQcOHHBxcQGASH5PyegNSZ988olGozE3NxeLxXyeBguRYEKoUqlEIpG5uXljYyPdR8FY9u7da2trCwCDBw/OzMz840njY69vYmOj5g/6888/06Xanj17JicnG/Gv89iWg5aWlmKx+MMPP2zjgUPzvfTSSwCwc+dOeonSxcWFn3GFSzAhzMrKAoABAwYQQhYvXmxpablz505jvfn169eHDx8OAFZWVtu3byd/OGmkL8vLy/vjoou+w3xL3bp164UXXmjmrNscf5yZP/30048//pjOupMnT77Jfe99QsioUaMA4Ny5c8ePH6ezPQ+DCppgQvjTTz8BwAsvvEAImTJlCgA0/7StOVQq1Ztvvqm/fF9XV2d40iiVSgMCAsSPHksdN27cjh072n6UZbjfdVBQUOsWmZ46M6ekpDg5OQGAs7Nz85eRW422+r5169a2bdsA4LXXXuN6RKETTAj/85//AIBUKiWE0OWT3Nxco4+iv3xPLyToTxrp7EcXXc6cOWPcQX/88Ue6LW6fPn1SU1Ob/425ubkymaxHjx5PnZkrKyvpvvMSiUQul3O3+9K9e/cAoHPnzoSQ1atXA8DatWs5GqvDEEwI6f1fn376qUajkUgk3J3uZ2Rk0KXObt260WsVvr6+ALBw4ULuNu4rLi4eN26c4VJtE/7sckjTp8oajUY/686cOZOjv8uFCxfoP924cePo5BwbG8vFQB2JYEI4d+5cAIiPj8/LywOO7/+iFxKWLl1KPxw7diwAcH0gZ7jf9cKFC5+433VlZaVcLtc3qrC0tAwNDaVbDjbT/v376eGim5vb+fPnjVc+IYTk5ubSVRk65dJewz///LNxR+l4BBPCESNGAMD58+eTk5MBYNKkSZwOp9Pp9BfxaPd4jq4lPGbPnj10qXbIkCGZmZn6z9NFF6tHe6oNGDBALpdXV1e3YoiioiIfHx+a4afOus3R2Ni4b9++gIAAfYfvIUOGjB49mn44c+bM2trato/SgQkmhHZ2dgBQXV0dExMDAK+//jo/4yqVSvrzytsuttnZ2XSptkuXLqtWrfrXv/5FfwHpF13279/fxmIMZ93Q0NAnzrrN0fTMnJSURP/XBg4cePny5bYU3LEJI4S3b98GgK5duxJCVq1aBQAfffQRP0NfuXIFADw8PPgZjrp///7ChQvBQK9evT744IPi4mIjjhIXF0fvf/Dw8Lh69WqLvreZM3Nubq6XlxfN57Zt24xXe4cijBCmp6cDgJeXFyFk/vz5ABAXF8fP0ElJSQAwffp0foYztHDhQolEYmtrGxcXx9FTiFlZWc888wz9Bbdr166nvl6lUsXGxrZoZlapVIazLnePbhJCiouLV6xYcerUKe6G4IIwQpiYmAgAs2fPJnwtk+h9+eWXALB8+XJ+hnvMvXv3uB5CqVSGhITQkEil0j9Le05Ojkwmo5dS6Mwsk8kKCgqaOco333xDp82QkP9y8eSmfma2srISiUT//ve/jT8GZ4QRwn/+858A8O677xJ+l0kIIfS3+Oeff87PcKwoFAoLCwsA8Pb2NowWvRwSFBSkX3RpzuWQJ7p8+fLzz79jbU1sbcmePcYp+/79+wqFwuvRLhcSicTuUR+NJUuWCOWeVWGEcMmSJQCwadMm/pdJZsyYAQB7jPVT046lp6fTO07t7e13795dVlYml8vpfRH6RZdLly61ZYjaWjJvHgEgIhGJiCBteYbkiTNzYWEh4aVhwmMadY0na0/uvLMzrz6PEDIrb1aLvl0YIQwICACAH3/8kf9lEnrKdPHiRd5GZKi6ujowMJD+WBteb9i0aZMRD4wVCmJhQQDImDGksLBl36vRkN27yYIFy/Xl+fr67ty587GjaMOGCT/88IOxKn8itU7te903rChsY+XGidcnXqm70u/Xfi16B2GEcNCgQQBw9erVffv28bxMQrvH3717l7cR2dLpdPPmzaM/4uPHj2/75ZAnSksj7u4EgNjbkyNHmvUtFRVELidubgSA+PoqnjozG7dhQhO2VW17o/AN+mct0RJCuA0hd/dtNUGr1Xbq1EkkEj148IDnZZKKigoA6N69Oz/DtR9nz57NysridIiqKjJt2sNDU5mMNPEMyc8/k5CQh5MnAPHwIJs31zVnZn7s0c1WNExojmXFy+Ju/26tnsMQ3r59293dvYkFNI4UFxcDgKOjI+F9meTs2bN0KYKf4UyNVkuioohYTDp1Ip9/TubMIfTBj9OnySefEKWSKBTEy+th9sRiEhREkpNJSyfmU6dO0Uc3W9Qw4anKG8o/Kv/oaM3R5cXLY2//7v7YloawBc1/T58+ffPmzZiYmEmTJtFg8MOwhzTPTazZ9JA3GWIxrF0Lhw6BQgESCWRkwNatAAA1NVBcDOPGQXg4XL4MTk7w979DcTEcOAD+/vDoZLC5nnvuucuXL0+dOrWqqiowMHDt2rU6na4tZWfUZSwqXOT2q9vfb/7981ufj7QeeVJ5si1v2IIQzpgx48yZM/369UtNTR01ahTt58MDwyTw3E+aTftqEzN1Krz2GgDA8uWgUEBZ2cPPh4TA6NEQGwtFRbBuHTg7t34Ie3v7w4cPy+VyQsi6devoQyQtfROlVrmlasvwrOHe2d5xd+IIkJftXl7Va1Vo99B8df6bRW9uq962vGR5jjqnxfW1dBa+d+/enDlzAEAkEslkMh6aJkRFRQHAmjVrCO/LJIsXLwaALVu28DOcKYuOJps2kcREEhJCDh4kS5Y0dZbYak9smPBU1+uvy0pl3S51gwyADHC84igrlRWpi/QvaNQ1pihT4m7Hpd5PJYQcrWnZQW9rVkcNz3d5aJqwYMECAKBdJ65evXrw4EFOhzOEHft4Q0NICAkIICtXkiVLuBroj132/kxjY+P+/fv9/f1HnB9B4zc6a3Ts7dgGnZEXWlt/ieLEiRP0l0rImDGEm7v1srOzIyIiOnXq1K1bt4ULF7a9C0tLYcc+3uhDmJND7Ow4DCH5fZe9uXPn/nGhtaysLCoqii7nAMCkqEnLipf9qvqVo3radJ2wvLw8yN+/zsODSCQkKqrF61Z/Qq1W79y5kz7PTo976fPgAQEBT20oaERcP8KPDO3cSfQ3kH/2GfnkE85HNOyyd+XKFfrJ9PT00NBQepRHvySXy7m+Mtfmi/UazcNlZgAycyZpW7nl5eVyuZxuJAQANjY2Uqk0MzPz5MmTjo6OAODi4nL69Om21twk/eNwdFXG1dWV0+GQ3v/+R7ZsIU/ay4cr2dnZw4YNAwArK6uJEycOHTqU/uCZm5vPmzcvJSWFnzKMdMfMgQOkWzcCQNzcSCuaJuh02uPH5wUH062LAMDT03Pr1q1KpVL/ktLS0gkTJgBnrYroQzr0VuCMjAxCyLFjxwA79vFo+XICQIzxrH8LqFSqRYsWAQC9f93JyUkmkxn3uc2nMt5ta0VFxMeHABBLyxb8Q9bUEIWCDBtGAOaOG2dhYUG31H1ixuihPL2jatasWcZaI7127dpbb71lY2ND8+/k5LR//35CyIYNGwDg1VdfNcoo6KkCAwkASUpiMPRbb701atSoXbt2PbahJT+Meu9ofT2JiHh4g0NoKGm6acKlS0QqJZ07P3y9q2tedHRFRcVTB0lKSqKtitrYNEGr1dK1L8OHdGJjYxsaGuhm9/RO/MmTJ7d6CNQiQ4YQAPLo7MyEcHAD944dpHNn0qMHKSoiDQ3k229JZCTZtInQNSi1miQkEH//h9kDIBMmkIQE0pLfQIWFhXTrP0tLy5iYmJYWePPmTblc3qdPH5q9rl27SqVSmmfaQ37w4MH0S2KxOD4+vqXvj1pBpyNWVgSAGJyCmApunqLIzCQnThCdjkydStauJampZMsWMmwYqa0lzz77MHt2duSdd0h2dutGaF3ThMfWvgYNGqRf+7p27VpERATtuQIAvXv3Xrp0qYk8wdQelJURAOLgwLoOFrh8lCklhUyb9tuHdD7csIF4eJDo6KccrDbPjh076EHjiBEjmmjIXVtbq1AoPD09acDMzMyCgoLomadarTbc7B4AJkyY8MfN7hHXfvmFABAfH9Z1sMBlCLduJatW/fbhrl1k6dIWHXY2x7Vr1+jKso2NTUJCwmNfzc7Olslk9BwSABwdHWUyWVFRESGEPjnu/OiWRHo55Ndfubogi5q2YwcBICEhrOtggcsQ/ve/JCLitw+//pqjvctra2tpC7bHHt/U6XT6fUWnTJmSmJhIF11oD3n95ZCRI0cqFIpW995ERrFuHQH43S9t08FlCAsLyZAhhHYE0unItGnNfYi6VfStisaMGVP4qGvCV199tXz5ctpU8969ewqFQn9BVn85hLuSUPP95S8EgLR8la0j4Li9xbZtZNQo8vbbxNeXrFjB7ViEpKWl0W7Q9vb2RwwCn5GRIZVK9Ysuzs7OUVFRt27d4roe1HyBgTMGDfJKSTHFRt0iQghwqq4ObtwAV1d41IuOU9XV1aGhoYcPHxaJRPPmzfPx8Tl48CC990UsFvv5+Uml0jlz5uiPRVE70adPn5KSkhs3bpjgI9Tch5B3Op3uH//4x7p16/R/te7du7/++utLliyhHbhQe6PRaGhrYJVKpb+AZDo64IQgFoujoqIsLS3Xr18vEok++uij8PBw/a4JqB0qLCzUarXu7u4mmEDokDOhXl1dnX4Dd9SeHT16NCAgwM/Pj25zb2pa0GNGcDCBQmHivXw6cgiRUBg21DNBGELEHoYQIcZMvL8rhhCxV1JSIhaLo6OjWRfCBoYQsefj46PT6eLj40NCQujudyYFQ4jYS0pK+v777+3s7OLj4729vTMzM1lXxCsMIWoXXnnllfPnz3t6eubk5IwdO/brr79mXRF/MISovRg4cOC5c+fCwsLq6+vDwsIWLVpUV1fHuig+dOQ7ZpBA7dixY+nSpXV1dSNHjkxMTKQPhXZgGELUHl26dCk4ODgvL8/Gxmb79u0vv/wy69ZIc5oAAAOWSURBVIo4hIejqD0aMWLEhQsXgoODa2tr582b984772g0GtZFcQVnQtSuxcTEvP322w0NDb6+vrt27dJv0tKRYAhRe5eWlhYcHFxUVOTg4PDdd99NnTqVdUVGhoejqL0bM2ZMeno63ZNr+vTpbd/vur3BmRAJAyFkw4YNq1ev1ul006dPj4uL6969O+uijANDiITkxIkTCxYsqKysdHV1TUhIGDduHOuKjAAPR5GQ+Pn5paenjx8/vqSkxNfX97XXXmNdkRFgCJHAuLi4nDx5MiIiorGxcceOHe+++y7ritoKQ4iEx8LCYuPGjVOmTAGAvLw81uW0FYYQCRXd4WfSpEmsC2krDCESqg7TFANDiISqwzTFwEsUSKhsbGyUSuXdu3fteNlhgTs4EyJBqqqqUiqVtra2Qk8gYAiRQNFj0Y7xqCGGEAlSR2rajSFEgtRhlkahQ+7KhExB3dg63y98hw4ZyroQI8CZEAlSap/UU5NPOT3nxLoQI8AQIkHKb8gHgL4WHeFwFEOIhEdLtCUNJSIQuVm4sa7FCDCESHhKNCUaoult3ttSbMm6FiPAECLhKVAXAEDfTh3hWBQwhEiIChoKAKCfheDvGqUwhEh4cCZEiLGOtDQKGEIkRHQm7NepgxyO4qNMSHhy1bk59Tm+XXwB4OyDswE2AawrahO8bQ0JSb2uflX5qrMPzopBPL7L+Dd7vPnlrS8xhAjxZ0Plhvu6+2cGnxGD+EjtEdblGAeeEyIh2Xtvb2SvSDGIASDAJsBMZMa6IiPAECIhqWqs6inpyboKI8MQIiFxtXDNV+ezrsLIMIRISN60fzOyLPJW4y0t0abXpbMuxzhwYQYJyeIei83A7C+Ff2kgDT6dfZY5LPO29mZdVFvhdUKEGMPDUYQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQY/8PXG8AgJGQUgwAAAIYelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkANieSBuYGRjSADSjMwcDBpAmpmJzQFMs7A5ZIBoZkYkBlQGopIFrgNsAhOUZmZE8FHVsUNoZlT1TEyCDAogF+ASJugeVHcwMmNTic7gZmBkYGRSYGLOYGJmSWBhzWBiZVNgY9dgYuNg4OBk4ORi4OJm4ObRYOLmVeDlY+DjZ+AXYOAVZBAUYhASZuAUYRARzWASFUsQE89gEpdQkJBkEJdKkJIGGiOTICObwSTLlCAtkuAECm42JlkZVhZmNlExcSlpEfEiRqAbGWDRoD1F4ODWGyv2gzhanL8PMB7iOwCW2H7uwJNTl8Hidi0nDhw31t4HYhsZzTkwzeuiHYjNo5ZzwH8jA1jNl0bhA/ns02xBbBMZ9gOPjhy3B7HN2vv2r5kaBlbzirnb7r5bG9icNba77Vltp4HF3zmZOZxhlwSz165wcuA6mAzWu9ih0cFY/yBYfMOktQ5ab/LA7DsbLzskKb6B2MvI4OicsQjM7pAuczh/0h7s/g86Cx3K5KvAbMFfsxyurVgDZj8xfGe35dIcsPkrr7yxv9T9DMwWucDkIF8R5ABiv3GLsn+U1gZmf3nXav/3/1Ywe9JsaQfXvBNgdoknx36zj+lgduEDy/0M+znA7NPdFQeE9/4Du+fj9BUHJKxVwPaKAQD1vJPIb8NPagAAArd6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VVtuGzEM/PcpdAEL4lPkZxIHRVHEBtq0dyjQz94fJeUmqxREVxYhaWcpiTOkTy2fr5cvP3+39wcvp1Nr4z8/d28/aIxxemk5aI/Pnz5f29Prw+PbytPt+/X1W4sRQXwT7SP24fX28rYC7amdvQ9SmNzO0AkcgNroYz3Ht9hu7Ty7MZt6O2NHGuJQICl9amdxE0qfKqzoBZLvSFQFDuTooBN8FEhJJHczAJzxnofNiQVQE0hdzQ0xXcrAObRAzkRip8E20uWYhFIBLW+OHQCGa4MuOtQroKdHCCDJgNzbKA5RhQiCpVjGCQKcSFREqUIEyRD0CKDhWN4nRauQGEgMgqaRrJv7nFMqJMWNqA8G4Xxv5qpcAbldG4c6HHhtLsNRKnVAEiSdMXxqbu5EWKoDkiHtGnsrpM9Q1NTy6sHQr2a5znMmFNX+cvUv1MIphSvhmAVZHjfySh/g66Ah+EmaSvFhMCvJRbhj+9BcuMSASicXhRIKi05WQeRgK7gEK4G42LQQZQQ0BgOAq2MiLTIHx56RUR3NxEogr61NUINL7hhvSyGhBOkQHpVEIgJqk70E6tqaCSjiktlJyVQBXBkUOiOkCXFIjUt5RQ/aHTlRI9rhHEhVrEL6PX8tNEyYnLsP4ErFWemSlRCFsCXpEnWklMfz9fKh6t3r4OPtejnqYDY8il1MGh0VjbMfZSubHLUpJk2PCgTR51FmMLodxQRi6kfJgOx7YYBlYCsAsAxuiY5pgLaEhrXCW+bCMrJlKCyjWybCMnPLuPtXtiUWLONbAkEa3BNlnRlhywdOg7gJn9MgbQrnNMiblCENyqZZSIO6iZMXZm4qzGlobFMbBwPom6g4De3a4fUH+b6wTmzbHVIzu0Jy/vYvG+PTH6kabw3ggzXPAAABanpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCVRSW7EMAz7So8zgEfQLhlFT7l3HpFrn9DHl3IDZDFDSSR1vW+57/txPb7ez+t6XOfjG+/r53ket87/9/W8b8UtH7+P1ya2lFovIZMtsj5fRe3egJTUODagJI/dMawMTzuQZoqvF5NkybCcukVsMTl3lQIyyt6twwrW4gSmZOwtoHGZRvrBBNcSiuTCWXC2mLK2VoUsJi2J/4GaqqNLyFOnO+hlhUYK7dWHFLuqYn0asUsExnXvnGkOz3s6YRxvBSfI1SWnbJvpxrykFFgdEuIoiGpihvBBNOF0WreH2yS10XpPI8QJITC+uZErhrUbgxNkO/I48QxVh1vYkB4fjXQGaBY5NtjBXkbaHT01HZoey0mhIqeGsYhYgYTHppKbWK3Zi/nkjAhMrQRdEu4OUpqQtRC3ZeZZULeFjam9WdAIQmEPgcFVYMWynr9/Y5V7MxQx8pQAAAAASUVORK5CYII=</base64_image>", "role": "assistant" } ]
Molecule_Visualization
Cc1cccc(NC(=O)c2cc(-c3cccs3)nc3ccccc23)c1C
1,216,875
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO2deVxU1fvHn9mYYRUMULZhEXEHETUVEU0yt7R+fsEl0SzF0qSy0nKjTItsETUXygU0y/SbfXOtMLUEMRsUhETZhBmQRdllYGaYOb8/jl5HQGWZuecOnvfLP2bO3Ln3Mw6fOeee85zn4SGEgEKhkINPWgCF8qRDTUihEIaakEIhDDUhhUIYakIKhTDUhBQKYagJKRTCUBNSKIShJqRQCENNSKEQhpqQQiEMNSGFQhhqQgqFMNSEFAphqAkpFMJQE1IohKEmpFAIQ01IoRCGmpBCIQw1IYVCGGpCCoUw1IQUCmGoCSkUwlATUiiEoSakUAhDTUihEIaakEIhDDUhhUIYakIKhTDUhBQKYagJKRTCUBNSKIShJqRQCENNSKEQhpqQQiEMNSGFQhhqQgqFMNSEFAphqAkpFMJQE1IohBGSFkB5Qvnqq6+2bt2KEHr++ef79Onj5ubm4eEhlUqtra1JS2MbHkKItAbKE8fx48cnT57c4ksSicTZ2dnLy8vLy8vJyYl5LJVKhcLO2WdQE1LYpqGhYdCgQZmZmd27d58yZYqLi0thYaFcLlcoFPn5+UqlssV3CYVCZ2dnqVTq7u4ulUrd3NyYxzY2Nix/BMNCTUhhm/nz5+/atatnz56JiYmOjo5NXq2srLx582ZxcXFeXl5eXh7zuKCgQKvVtnhCU+88qQkprPLjjz/OmDFDIpFcuHDBz8+v9W9Uq9WFhYUKhaKgoEAul+OeUy6XFxQU1NXVtfgWoVDo4OBQV1fXp0+fb775xtfX10AfwsBQE1LYIycnJyAgoKam5ttvv50/fz5u1Gg0SqWyS5cu7T5tfX0903M+rPP08vLKzc01wGcwAtSEFJZQqVTDhw+/fPlyWFjYjz/+yLTLZLIhQ4YYY0ipVqszMzMPHTq0fv16Ho9348YNd3d3A30aQ2ICI2ZK5+Ctt966fPmyt7f3t99+q99eVVVlaWlZV1eH+7Em7xIIBM7OzngCpsl8zGM7TzMzMz8/Pz8/v7///vvUqVO7du1au3atgT+VIaA9IYUNDh06FBYWJhaLk5OT/f39mx+gP6TUn5gxyHxMYmJiUFCQg4ODXC6XSCRG+YQdgJqQYnRyc3MDAgKqq6u3b9/+2muvtem9Go2mqKgIT8DoT8bI5fI7d+60+BaBQODk5DRw4MCjR48yjUOGDJHJZHFxcXPnzu3QhzEC1IQU46JSqQIDA1NSUkJDQw8ePGjAMz+s85TL5Y2Njf7+/pcuXWIOjouLmzdvXpNGjkBNSDEuS5Ys+frrr3v06JGSktKRKdDWgzvPurq6fv36MY0qlcrd3b20tDQxMTEwMJAFGa2HBnBTjMixY8e2bt0qEom+++47dhwIACKRyMPDQ9+BACAWiyMiIgBg8+bN7MhoPbQnpBgLuVzu7+9fUVGxefPmJUuWkJYDxcXFHh4eOp0uLy/Pzc2NtJz70J6QYhQ0Gs2MGTMqKiomT578xhtvkJYDAODk5DRt2rTGxsYdO3aQ1vIAtCekGIWlS5du3LhRKpVevny5a9eupOXc5cKFC8OHD7e3t5fL5ebm5qTl3IX2hBTDc/z48ZiYGJFIdODAAe44EACGDRs2dOjQ27dvf//996S13IeakGJgFArF3LlzEULR0dHDhw8nLacp+O40JiaGO2NAOhylGJLGxsbRo0cnJSVNnDjx2LFjPB6PtKKmaDQaT0/PoqKis2fPBgcHk5YDQHtCimFZuXJlUlKSq6trfHw8Bx0IACKRaMGCBcCltQraE1IMxsmTJydPnszn88+ePcu1BXF9ysrK3N3dNRpNdna2p6cnaTm0J6QYiKKiojlz5uh0uvXr13PZgQDg6OgYGhqq1Wo5slZBe0KKAdBqtePGjTt9+vSECROOHTvG53P9x/3SpUsBAQF2dnYKhcLS0pKsGK7/Z1FMgjVr1pw+fdrFxWXv3r3cdyAADBo0aPjw4ZWVlfv37yethZqQ0mHOnDnz2Wef8fn8vXv32tvbk5bTWiIjIwFg06ZNxAeD1ISUDlFaWvrSSy9ptdq1a9c+88wzpOW0gf/85z+urq5Xr149ffo0WSXUhJT2o9PpZs+eXVxcPGbMmPfff5+0nLYhFAoXLlwIAFu2bCGrhE7MUNrP4sWLt23b1q1bt8uXLzs5OZGW02Zu3bollUrVanVWVlaPHj1IyaA9IaWdxMTEbNu2jcfjfffdd6boQABwcHCYOXOmTqfbtm0bQRm0J6S0E09Pz/z8fD8/v9TUVP12hBA3Y2VaJDU11d/f38bGRqFQkEqnT3tCSjvBGez1s1+fOXNm5MiR27dvJyeqzQwcODAoKKimpua7774jpYGakNJONm3axOfz5XJ5SUkJbikvL09KSoqJidHpdGS1tQlmrYKUbGpCSjsZNmzYCy+8oFarY2NjccuLL77o4eGRnZ2dkJBAVlubwLKzsrJIyaYmpLQf3Ids27ZNpVIBgEAg4Mikf5sgLptOzFA6xMCBA9PS0vbt2zd79mwAqKysdHNzUyqVmZmZvXr1Iq2utVRWVrq6utbX1xORTXtCSodgNqrjp3Z2drNmzUIIkZ30byuM7K+//pr9q9OekNIhVCqVVCotKytLTk4eNmwYAPz7778DBgywsrJSKBSs5RptB+np6X379hUIBPjplStX/Pz8eDyeXC53dXVlUwntCSkdQiwWv/rqq6B3Q9WvX7/Ro0fX1tbGx8cTlfYocnNzg4KCxo4dyxS08PX1NTc3Rwixv+OempDSURYvXiwSiQ4dOlRYWIhb8ITNli1buLlWodFoZs+eXV1d7eDgYGVlhRt//vnn+vp6AOjfvz/bghCF0mHCwsIAYPXq1fipVqv18vICgOPHj5MV1iL4N8LLy6uqqgq3VFZW4jwXw4cPZ18PNSHFAJw7dw4AHBwc6uvrccvnn38OAM899xxZYc05evQoj8cTiUTJycm4RafTvfjiiwAwZMgQlUrFviRqQophGDx4MADExcXhp5WVlZaWljwe7+rVq2SF6SOXy5966im4t5cXg6d2bW1t8/LyiKiiJqQYhri4OADw9/dnWnA90MWLFxNUpY9arR4xYgQATJ48WafT4cZ//vlHLBYDwOHDh0kJoyakGIaGhoZu3boBQGJiIm75999/eTyehYVFeXk5WW2YpUuXAoCbm9vt27dxS01NjY+PDwBERkYSFEZNSDEYq1evBoCwsDCm5dlnnwWAL7/8kqAqzPHjx/GtYFJSEtM4a9YsAAgICGhoaCCojZqQYjBu3rxpZmYmFArlcjluOXLkCAB4eHg0NjYSFKZQKHAGqi+++IJp3Lp1KwBYW1tfv36doDZETUgxLDNnzgSAFStW4Kc6nQ6P93755RdSkjQaDU5GPHHiROZW8MqVK7g02v79+0kJY6AmpBiS5ORkALC3t1cqlbhl48aNABASEkJK0vLlywHA1dX11q1buKW2trZ3794AsGjRIlKq9KEm5Bg1NSgjA2VnI6Ljt44wdOhQANi5cyd+WlNTg9NGpKWlsS/m5MmTfD5fKBSeO3eOacQbPgYMGMD8UpCFmpAz3LqFQkORUIhEIgSAnnoKff45ujd8MiH27dsHAP3792fGfrhc9sKFC1lWUlxc3L17dwCIjo5mGvEWZCsrq8zMTJb1PAxqQm6gUqFBg9CAASg5GanVqLISffstEovRxx+TVtZm1Gq1i4sLAJw9exa3ZGVl8fl8CwsLZm2ABbRaLU5GPH78eK1WixvT09MtLCwAYN++fawpeSzUhNxg3z7E46HU1Acaly9HlpboXnyjCREVFQUA06ZNY1rGjx8PABs2bGBNw8qVKwGge/fuxcXFuOXOnTt9+vQBgAULFrAmozVQE3KD2bORn1/TxsxMBICOHSMhqEOUlpZKJBKBQMAEgp04cQIAcFVAFgScPn1aIBDw+fw//viDaZwzZw4eJ9fV1bGgofVQE3KD0aPRlClNG5VKxOOhHTtICOoo4eHhALBs2TL8VKfT4QnJn376ydiXLikpwcmIP9YbzO/evRsALC0tORXLiqEm5AZjx6IJE5o21tQgAHRvmtG0SElJAQA7O7s7d+7gFrxZdvTo0Ua9rlarxWE6Y8aMYSIEMjIy8K1gfHy8Ua/ePqgJucGCBahXr6aNly4hAHT6NAlBBmD48OEAEBsbi5/W1NTgbBepTW59DcqHH34IAN26dbt58yZuqa+v9/PzA4B58+YZ77odgZqQGxw5ggDQvenEuyxciBwc0L0deibHDz/8AAD9+vVj1irefPNNAFiyZImRrnj27Fl8K/j7778zjfPmzQMAHx+fmpoaI123g1ATcgOdDo0fj1xd0X//iwoL0dWr6MMPkUCA7m3PM0U0Gg3OmMTMjuTm5sbFxRkpWrq0tNTZ2RkAoqKimEb8QyCRSIza/XYQakLOoFSid95B9vYIAAGgAQPQf/979yWOzea1no8//hgApk6dauwLabXacePGAUBwcDBzK5iVlWVtbQ0Au3btMraAjkBNyD0qKh5w3bp1yNYW3dukZ1qUlZVJJBI+n5+bm2vUC61btw7n1ygqKsIt9fX1AwcOBIDp06cb9dIdh2Zb4x52dmBuDkw+2IYGqKoC1vPwGQQHB4cZM2awUADQx8fH1tb2u+++wyNSAHjzzTdTU1N79uz5zTffGPXSHYcm/+Uehw7BRx/B+vUwdSoAwM2b4OkJOh3k5YGbG2lxbeby5cuDBg2ytLQcPXq0u7u7m5ubm5ubu7u7u7u7k5OTUCg01IWqq6uZXMMHDx6cPn26RCI5f/68v7+/oS5hJAz2X0AxGDdvwr//wubNd03o7AzTpsEPP8COHbB+PWlxbSYrKwsA+Hz+8ePHm79qZ2fn5eXl5eXl5OTk7Oys/7itF2IcmJOTs2DBAgDYtGkT9x0ItCfkIrW14OoKNTWQlga+vgAAyckwYgTY24NcDubmpPW1gdzc3ICAgOrq6tWrVw8ZMiQ/P1+hUMjlcoVCkZ+fX1JS8rDswDY2NlKp1N3dXSqVurm5MY+dnZ0f3XmqVKoRI0ZcunQpLCzsxx9/NM7HMjDUhJwkMhK2bIGICLhX+g+efhouXoRdu+CVV4gqawOMH0JDQw8ePNj8AI1Gc+vWreLi4ry8vLy8vJs3b+LHOTk51dXVDzvtozvPxYsXb9u2zdvbOyUlhVT567ZCTchJsrOhd28Qi0GhgKeeAgD47jsID4f+/eHKFTCRivBLliz5+uuve/TokZKS0tbKMBUVFbjPLCgowD0nflxcXPyIztPe3j4vL08sFp8/f37QoEGG+BBsQE3IVSZOhJMn4bPPYNkyAACNBjw9oagIzp6F4GDS4h7P0aNHp06damZmlpSUFBAQYKjTPqzzzM3NraqqAgBHR8eAgAC8acNkILpAQnk4J08iACSVImbvT1QUAkB6m/Q4S0FBQdeuXQFgy5YtrF20oqJi79698GCGG5OAmpCr6HSod28EcD9uprQUSSRIIECEsrW3ErVajUO3n3/+eR3r6TlwhhuOh8g0gS7WcxUeDxYvBgBgCqk7OkJoKGi1sGMHQV2PZdmyZcnJyVKpNC4ujsf67SuuHLxx40ZkQvdZpH8FKA+nthZ16YIAkEx2tyUlBQEgOzt0b5Me1zh27BhOdH3+/HkiAppnuOE+tCfkMFZWdxckmJivQYNg+HCorIT9+wnqehgKhWLu3LkIoc8++wyPSNlHJBLNnz8f9CoHmwBkfwMaGxvZv20wJW7cQAIBEotRaendlh9+QAAlU6Zw7f+NSXQ9adIkstqaZ7jhOIR7whdffFEoFAqFQl9f37CwsPfff3/Tpk2HDh1KSUl5xHLtE4SHB0ycCCoV7Nx5t2XatMUjR3Y/cuT06dNElTVlxYoVSUlJbm5u8fHx7N8K6uPo6BgaGqrVandw++b5PgR/APBms0cgkUi8vLxCQkIiIiKio6Pj4+MTEhJyc3PJVhdhm4QEBKAaNEitVuMG1jbptZ4TJ07weDyhUJjIjS1XzTPccBlii/WFhYUDBw4sLy+fMGHCe++9JxKJmqzAZmVl1dbWtvhekUhkb2/fJGTJy8vL29u7rZEZJgBCe8PCFv7vf/H79+PS8Ldu3ZJKpWq1Oisrq0ePHqT1QWFhob+//+3btzds2PDee++RlnOXESNGJCcnx8bGRkREkNbyGMiYsLGxccyYMYmJiRMnTsTzaS0eVllZyYRE6IdH5OfnPyx2SSKRNDcn3jhjZmZmzM9kRHbs2PH6668HBgYmJibilldeeWXPnj1Lly798ssvyWrDW9pPnz49YcIEXAOQrB6GAwcOzJw5s1+/funp6dxR1TJE+t/mhXLaRENDQ3Z29h9//BEXF/fhhx+++uqrzz77bO/evc0fucPA1tb2+++/N/hnYYG6ujocgHLx4kXccvnyZQCwsbGprq4mq23FihUA4OLi0r6v0ngwGW5OnTpFWstjIGDCFgvl1NTUnDhxIiMjo7a2tiMnr6ioyMjISEhIiI2NXb58eXh4eEhICK4KAgB2dnYdlk+Gd999FwDmzJnDtAQFBQHA1q1bCarCia4FAoF+omvuwMGb5xZh24RMoZxPP/1Uv/3cuXNMl6U/HxMVFRUbG4vnYzqSQT07OxuPSVJSUjr8IQiQn58vEAjMzMyYygqHDh0CAB8fH1LrASUlJfirXL9+PREBj6W0tHTkyBkDB54zcoKbjsKqCVsslIO5cOHCuHHjHj2kFIlEHh4eQUFB4eHhK1as2LFjx/HjxzMyMlqZT3LRokXAvWIgrefFF18EgI8++gg/bWxs9PDwAIDffvuNfTFarTYkJAQeTHTNQV5+GQGgd94hreORsDoxs3r16nXr1nXr1i01NZUZIjbnYfMxBQUFWq22xbe0OB/j5eUllUqZjdg5OTm9evUSi8UKheIpvEnPpDhz5swzzzzj5OSUn5+PJ5mio6M/+OCDSZMmHTt2jGUxUVFRa9eufexXSZzLl2HQILC1BYUCrKxIq3kYrNmdKZTT7hvlhoaGnJyc06dPx8fHf/TRR/Pnzx83blyfPn0e0Xm6u7vrn2HixInwYMlI0wKnc2fKrFdUVFhYWPB4vGvXrrEp48yZM/irTEhIYPO67SMoCAEgovfOj4ElE7ZYKMeAtDgf4+XlFRQUpH/YyZMnAUAqlbJToMvgfPvttwAQEBDAtOA4yTfffJM1DaWlpfir/PDDD1m7aEc4eBABIB8f7lY9ZsOELRbKYYcmkxZMga7/Mpv0TAqlUokH0hcuXMAteBHM2tq6ipVaoi0muuY4jY3IwwMBIBL3zq2CDRPiQjmOjo5MoRyCfP311wAwatQo0kLayfvvvw8AL730kkajeeONN4YPH4537nzwwQcsrBniSX9HR0cm0bVJ8OmnCABNmkRax0Mw+sTMn3/+OXbsWITQr7/+ivtDsty5c8fV1bW6ulomkxkw9wlrFBUVeXp6AsDcuXP37NnTZKaqNRNU7eavv/4aO3asTqc7efIk7g9NhcpKcHWF+nrIzIRevUiraY5RLV5WVoYT0a1Zs8aoF2oTb7/9NgC88sorpIW0k9DQUADg8/l8Pt/Pz++5554bN25c3759cR3MFhEKhVKpdOTIkS+99NIHH3ywbdu2o0ePpqent34QW1ZWhrvcVatWGfXTGYn58xEAYvHeuQ0YsSfU6XQTJ0787bffgoOD//jjD4FAYKQLtZX8/Hxvb2+hUCiXyx0dHUnLaTPHjx9//vnnEUIrV67EhVAY6uvrmaUdA67uIISmTp169OjRoKCg06dPGzB3PWtkZICvL1hZQWEhcC4dqfH8vX79eniwUA53eP7554HDoR6PQKfTTZkyBQCCgoJaP8erUqny8vLOnj27d+/ejz/+OCIiYvz48X379rW0tHzYH4ZQKHRzcxs5cuSsWbNGjx6Nv8rCwkKjfjqjMno0AkCbN5PW0QxjmTA5OVkkEvH5/F9//dVIl+gICQkJAODs7Mxs0jMVoqOjAaBr164FBQUGOaFSqczNzcWrO1FRUREREXh1R3/kwufzbWxs9uzZo/9GlUrVJOyJ4xw+jACQtzfimmqjmLC8vNzd3R0AVqxYYYzzG4QBAwYAwIEDB0gLaQMXLlwQiUQ8Hu+XX34x9rXUanVeXt6ff/65d+9eXOhv9erVzKvbt293cnI6duyYsWUYkMZG5OmJANDx46SlPIjhTciMl4YNG8blfmb79u0AEBgYSFpIa6moqMDBosuXL2f50ji83sHBob6+Hrd8/vnnAPDcc8+xrKSDfPklmjwZ/fMPaR0PYngTbtiwAQDs7Ozy8/MNfnIDUldXhxe+mU16XEan002dOhUAnn76aSI/bYMHDwaAuLg4/LSystLKyorH4129epV9Me2mpATJZA/UQVYqkUyG7v22kMHAJvz777/NzMx4PN7//vc/w57ZGOBcDPqb9DjLF198gX/abty4QURAXFwcAPj7+zMtr7/+OgAsWrSIiJ72sWFD04WK1FQEgK5fJ6fJsCZkxkvvvfeeAU9rPJpv0uMmFy9exD9tP//8MykNDQ0N3bp1AwBmK/bVq1d5PJ6FhUV5eTkpVW1lwwZkbY1EovvplLlgQoOlPEQIvfLKK/n5+UOHDm2yeMVZ3N3dp0yZolaruVzWvKqqJiwsTK1Wv/322y+88AIpGWKxGGdMYpLq9unTJyQkRKlU4k7SVHB2hpdegtdeg4esm5LAUG7+6quvgOh4qX3g7J1OTk4qlYq0lpaZNk03alTMiBGBxBXevHnTzMwMBznglqNHjwKAh4eHqQRzb9iAevVCJSWoSxeEC0ZxoSc0jAn/+ecf4uOldtNkkx6n2LQJASBbW3TjBifWtmbOnAkAH3zwAX6q0+l8fHwAwCSmANA9EyKEPv8c2digwsLOYsLKykovLy8AeOuttzp+NvZpvkmPI8hkSCxGAOinn0hLuUdycjIAdO3ate7eDOPGjRsBAMfocx/GhGo16t8fvfRSZzHh008/DQCDBw8mPl5qH8036XGBmhrk44MAUGQkaSkPggsA7ty5Ez+tqanBpeHT0tLICmsNjAkRQn/9hfh8tH276Ztw9uzZACAUCnM5ntHqkTCb9EgLuc+sWQgA+foSXsJqzr59+wCgf//+zIbpN954AwAWLlxIVlhzvvoKNcmtp29ChNCcOahbN9M3Ic6vOmbMGP3G6upqdjZ6G4rCwkKRSCQSiTgSoLxtGwJAVlaI3dwxraJ5AcCsrCw+n29hYXH79m2y2vQ5cQLxeMjSEuknJW5iwtJSZGdH3oQdXaLw9/cHgPz8fKYlLi7O1dUVT5aaCi4uLi+88IJGo+HCWkV6OrzzDgBAbCwXd6CKRKIFCxYAwObNm3FLz549n3vuOaVSuWvXLqLS7lNUBHPmAEKwZg3Y299v794d+vW7/9TREb78EgICQCJhX6MeHTRxQUEB3kuanp6OW/766y94MM7QJOCI7Nrau5XqX3+doIrH0LwA4IkTJ4AzGbQaG9EzzyAANGHC/Q0TV64gLt3yP4ABJmaahy/hOMP4+PiOn5xNuCB79mwEgAYMQEolQRWPJzw8HACWLVuGnzIZtH7iwEzuypUIALm43B+I1taiXr2QSIS4maLRACa8fv16k/ClPXv2wINxhibB7t27AWDQoEGkBHzzzd1bwcxMUhJaS/MCgDiSJjg4mKgudPo0EggQn4/0q2PMmYMAUP/+D4RucwfDLNbjtD9ffPEFfsrEGXKkZGQrYWQnJSWxf/WMDGRhgQDQ3r3sX7w94Kr0sbGx+GltbS0uDpmamkpKUkkJcnJCAGjduvuNu3YhAGRpiTi738MwJsThS+7u7kz40qpVqwBg+vTpBjk/axCUXVKCQkLQ/PnsX7md/PDDDwDQt29fZq3irbfeAoBXX32ViB6tFoWEIAA0ZgxiouiYnzYu3xsZxoTNw5eKioqaxBlyk3379pWUlDBPi4qKRCKRQCA4fPiwQqEwRkhkQwOSyVCTpZD0dFRcjDQadO0aujfDdRe1Gp0/jzi44tO8AGBOTg6fzxeLxaWlpezriYpCAKhbN8Rkt1Uqka8vAkAcT6xnsADumJgYeDB8CccZcjnDxalTp/h8vqurq35RxF69erm5uTGzx3Z2dgEBAaGhoZGRkdHR0QcPHpTJZJWVle2+aG4uAkDu7ki/mrq3N/rkE4QQWrwYPf30A8eXlCAA9Pvv7b6gEWleAHDy5MkA8An+MCxy9uzdW0H9qZd58xAA6tuXo7eCDAYzYfPwpfPnzwOAvb29kpMzfUxNBabYGLo3pSQWiwcPHuzs7PyIMsu2trYDBgyYPHny6tUHoqPR/v0oMREpFOixfSc2oa0tWrnyfqOJmrCsrEwikfD5/JycHNzy+++/A4CLiwub2/9LS0vHjFndvXtjVNT9xh9+QABIIkHkblFbiyE39S5ZsgQAIiIimBYcZ7hr1y4DXsUgMOUxRo8ezYw5r1+/bm1tDXpJHNRqdVFRkUwmO3jwYHR0dGRkZGhoaEBAAJ6BwIwa9T0A0v9nZ4cCAlBoKIqMRNHR6OBBJJOhioq7l8YmjI5GZmb3pwpM1IQIoXnz5gHA0qVLmRacQevHH39kRwDzVT7//MvML2BWFrK2RgBo9252VHQIQ5oQhy+Zm5sz4UvN4ww5wtq1a+HBmgr19fV4T9PLL7/cmjPcvn370qVLv/zyy65dme++i8LC0PDhyNkZ8fmoiSeZf126oJdeumvC9HQ0YQIKCrpbKsh0TXj58mUAsLGxYSphbNu2DQBGjhzJjgC8g/zBrxINHIgA0IwZ7EjoKAbOMTNhwgQA+Oyzz/BTlUqFK0gycYZc4M8//8Tl9X7X+9N+9dVXAcDHx6eVdX8fhlqNioqQTIYOHkTR0SgyEoWGooAA1KULAkBhYfdNmJ2NJBKEO119E/L5yMLigX9cNiFCKCgoCAC23qsAWFdX17VrVwHFzroAABYdSURBVAD4x/hZzf766y+hUMjn8/XLFS9YgABQz56oY98kexjYhM0LAEZFRQHAtGnTDHuhdsPUVNDPonngwAEAkEgkRl3jun0b3bx534QIoVWrkKMjqqp6wIS+vujKlfv/zp7lugkPHjyIf7+Y8c4777wDAHPnzjXqdcvLy6VSKQCs1Lu9Pnw4xdISmZsjU9hZdRcDm7B5AcDmcYYE0el0OAH+qFGjmFvB7OxsPKXE7JEzKvomVCqRpydautSEh6MIocbGRpzgi+mOcAYtsVisv/xjWFosB5CVlWVjY+PlNWnPntpHv51TGD7vaPPwpSZxhgT55JNP4MGaCvX19XgjCGsL9PomRAgdPYrEYmRra8ImRAh9+umnADBJrwIgzknFxNMYnOblABoaGgYNGgQAYWFhRrqokTC8CZuHLzWPMyQCk0P+yJEjTOPChQsBwNvbm4UKm5gmJkQITZmCAEzbhBUVFRYWFjwe79q9HZBpaWnGy1TQYjmARYsWsfxVGgqj1KLA4Uv6BQCbxBmyT0VFBS6P8f777zON+GZGLBZfunSJNSWFhSggAN1bV0MIofx8NGQIwtVWoqNRkzup8nLk78/dbTgM8+fPB4A3jV8BsMVyAIcOHcJfZUqTvfSmgFFMeOPGDXxLwIQv4TjDfv36EVmraDGHfE5ODu6xt2/fzr6kzkd6ejqPx7O2tjZqUgXmrn7EiBHMV5mfn4/nY5kZWtPCWKXRmhQAbB5nyCa4eol+eYyGhgZcKzs0NJR9PZ0VHJth7FuyvXv3urm5Melt1Wr1sGHDAOA///mPUa9rPIxlQhy+pF8AsHmcITu0WB4D5ybq0aOHaeXC4TjLly8HAB6PZ29vP3PmzGXLlm3ZsuXIkSNpaWkVTMSQIdDP6xcZGYl38JhQNv4mGLFSb5PwJSbOkM28bJWVlZ6engDw7rvvMo1Hjhzh8XhisVjGVCSgGAKVSoU3ZLaIRCLx8vIKCQkJDw9fvnx5bGxsQkJCRkZGXQfCq48ePcrj8UQiUXJysgE/CMsYsWb9jh07Xn/99cDAwMTERNwyb968uLi4pUuXfvnll0a6qD4IoWnTpv38889Dhw49d+6cmZkZAMjlcn9//4qKis2bN+NgV4oBUavVMpmsoKBAq9UqFAq5XK5QKPLz8+VyeW1tbYtvEQgE3bt39/DwcHNzk0qlbm5u7u7uUqlUKpXa2dk94loKhcLf37+8vDwmJubNN980zgdiAyOaUKlUurm5VVRUXLx4cciQIQCQmprq7+9va2urUCisrKyMdF2GmJiYt99+29bW9tKlS7g/1Gg0wcHBycnJkydPxv2hsTVQGOrr64uLi/Py8vLy8m7evMk8lsvljY2NLb5FIpE4Ozt7eXk5OTnhB/ixp6enmZlZcHDw+fPnO8NXadR+9t1334UHw5eaxBkaD6Y8xuHDh5nGt99+GwCkUqnp3j90PjQaTX5+/rlz5/bt2/fJJ5+89tprkyZN6tevHw5jahGBQIA7SalUati7TSIY14TNw5eaxxkag6qqKlweQ3/Z6tixY/j+4fz588a7NMWAKJXK3NzchISE2NjYqKioiIiIkJAQLy8voVAIAJaWluxXDjcGxjUhuhe+tHbtWvy0eZyhMcCb+gcPHtzQ0IBb5HI5Ljjx1VdfGe+6FHbQaDQ49TCplWfDYnQTNi8A+Omnn/L5fP397Ibl66+/BgBra+vr95KbazSawMBAAJg4cWIn+M4oCCG1Wo1Xnv/Qz21omhjdhAghX19f0CsAWFFRkZWVZaRrpaWlmZubA8D333/PNC5btgwAXF1db+nXJaCYOKRWng0OGybEBR6GDRtm7AvV1tb26tULABYvXsw0njhxgs/nC4VC00qCSnksRFaejQEbJmStACDOd+Lv78/UkygsLLS3twe9zf6UzsTLL78MD2a4MUXYMCG6VwBwhpGTfmRmZgYGBjJj3cbGxmeeeQYAJkyYoNVyotw0xbDgDDe2trb6SStNDiMu1uuTl5fXs2dPS0tLjUajv+rKPJZKpXje2YCsXLnyk08+cXFxSU1NtdcvkEXpRIwaNercuXNbt27F+wlNEZZMuGrVqvXr11tYWCiVyhYPEIlEzs7OUqkUhyzhCCb8GKchbCtnzpx59tlnEUIJCQm4P6R0Sg4dOhQWFubj43Pt2jUTjZthw4TYDwDw+++/+/v764csMY9xtGGLb2dil1rfeZaWlvr7+xcXF69bt27lypVG/GwU0mi1Wm9v7/z8/N9++w0XJjI5jG7C0tLSgQMHlpSUPNoParX69u3bzc2ZnZ1dU1PzsHfZ2dl53YPxp6en5/Tp00+dOjVmzJiEhASBQGCcT0bhCtHR0R988MGkSZOOHTtGWkt7MK4JdTrdc88910E/3L59G8fjFxQU4Kh8/BiHwrX4FqFQ2LVr1ytXrjxiZw2l01BZWenq6lpfX5+ZmdmLgxXGH4eB50KasHbt2lOnTnXr1m3//v3t7pHs7e3t7e1xTjR9HtZ5Xr16VavVDhkyhDrwCcHOzm7WrFk7d+7cvn07LkxkWhixJ/zzzz9xkabffvstJCTESFdpTn5+vre3N67K5ujoyNp1KQTJyMjw9fW1srJSKBT6lUJMAr6RzltWVjZr1iytVrtmzRo2HQgAHh4eEydOVKlUO3fuZPO6FIL0799/9OjRtbW18fHxpLW0HWMsPmq1WjxPFRwcbIw6m48lISEBHsxwQ+n0HD58GAC8vb1NLjDDKCbEkbX6hXLYB2e4OXDgACkBFJZpbGzE+ROOHz9OWkvbMPxw9Ny5cx999BGfz9+3b5+zs7PBz99KcPwEzslPeRIQCAT4S8dbDU0Jw3q6xUI5RKirq8NR4xcvXiSrhMIalZWVlpaWPB7vKlN+1RQwZE+IEJo3b55cLg8KCvrwww8NeOZ2YGFh8corrwAA3uNLeRKwtbUNDw9HCG3dupW0lrZgQEM3L5RDFpzhxszMrLi4mLQWCkv8+++/PB7PwsLChBJAGawn/Pvvv1evXs3j8fbs2YNHpMRxd3efMmWKWq3Gu4opTwJ9+/YdO3asUqmMi4sjraXVGMTKLRbK4QLNM9xQOj1HjhwBAA8PDyLLY+3AACZkah4NHTqUg3/rfn5+oJfhhtLp0el0Pj4+AKBfvZDLGGA4unHjxl9++cXOzu7HH3/EqeY5Ba798tVXX5EWQmEJHo/32muvgQktUHXQxBcvXsSJrn/++WeD/CoYHNYy3FC4Q01NDU7gnZaWRlrL4+lQT1hVVTV9+nS1Wv3222/jJL8cxNzcfMGCBWBCv4uUDmNtbT1nzhwA2LZtG2ktj6dDuyimTZt2+PDhIUOGJCYmcnAgylBUVIQDmm7cuOHi4kJaDoUNsrOze/fuLZFImOTrnKX9PeHmzZsPHz5sa2vLzVtBfVxcXF544QWNRkPXKp4cevbsOW7cOKVSuXv3btJaHkf7RrFpaWkSiQQAfvrpJ4MOj43FX3/9BQAODg5MSlJKp+fEiRMA4O7urtFoSGt5FO0xIZPoesmSJQYXZDwGDx4MAPHx8aSFUFhCp9P17t2b+11Fe4ajCxcuvH79uq+v74YNGwzYJxsbHGK/adMm0kIoLMHj8fCX/vnnn9fX15OW81DaPDGzffv2RYsWWVlZyWQy00qqo1Kp3N3dS0tLk5KSRowYQVoOhQ0qKyvd3NwsLS0rKip8fHxGjhwZGBgYFBSEJ+q4Qpv6zStXruCaRyYagLJq1SoAmD59OmkhFJbYuHEjAFhYWDTJM+bm5jZjxoxNmzZdvHiRePqFNvSEd+7cGTJkyLVr115//XWTWH5pzs2bNz08PBBCN27cwNXtKJ2Y0tLS3r17V1VVHTt2LDg4ODU1NSkpKTExMTk5uby8nDlMJBL5+voGBgaOHDkyODiYQHKw1vsVF3z38/Mz6QnGGTNmAAf2HFNYYO7cuQAwZcqU5i/l5ubGx8dHRkYGBATw+Q/MjDg5OYWGhsbExMhkMnbS1bShJ6yqqoqMjFy1ahWOjjVRkpOTR4wYYW9vL5fL8dCa0ilJTk4ODAw0MzNLT0/v2bPnI46sqam5ePFiYmJiSkpKYmJiVVUV85KVlZWfnx++kwwMDOzatatRtLJgdK4xdOhQANi1axdpIRRjgbM/A8CaNWuYRp1OJ5fLH/3GxsbGjIyM2NjY8PDwvn37NjGLl5dXeHh4bGxsRkaGAeuus1SViVPs27dvzpw5/fv3T09PJ62FYhTwHL6bm1tmZqalpSVuvHr1ar9+/ZycnAICAnDnNnjwYBxz8jBKSkr++eeflJQUfDPZ0NDAvGRjYzN06NDAwMCAgIBRo0Z1KOOwodxsQqhUqu7duwPAn3/+SVoLxfCUl5fjcpRN1uh//fVXOzs7/T9+c3PzoKCgZcuW/e9//ystLX30aRsaGpKSkr744ov/+7//c3Jy0j+PUCi0s7MbMmTIH3/80Q7BT6IJEUJRUVEAMG3aNNJCKIZn4cKFABASEtLiq62Zkjl37txj1y2KioqOHDmyfPlyfOeJz9C7d+92CH4Sh6MAUFZWJpVKGxsbs7OzubVuS+kYly5dGjp0qEAgSEtLwzFrj6C2tvbvv//GUzJJSUmVlZXMS/pTMiNGjHj0Pozy8vJly5bt3r1bIpG0JzSnHcbtHMyePRu4lxSH0hF0Ot2wYcMAYNmyZW19L56SiY+Pj4iI6Nu3b5Oiv3hK5hHrFjdu3AAAW1vbdsh+QntCAEhJSRk8eLCdnZ1CoWDu3Skmze7du1999dXu3btfv34d76xvNyUlJcnJyefPn09OTk5JSdGfknnqqaeGDx8+bNiwwMDA0aNH40adTicWi7VarUqlEolEbbtYO4zbaZg6deqaNWuqq6tJC6EYgMbGyvfemyQQCAweU6nRaJh1C/2bF09PT/3D8GxfYWFhW8//5PaElE6GQvFmWdnmmpqw0aMPNBlMGpaCggLcQ9ra2q5du5Zp9/f3T01NlclkAQEBbTqhcSv1UijsUF//761b23k8wbBhK4zqQABwd3d3d3efOXNmk3bcE5aWlrb1hMYqEkqhsIlC8QZCGgeHxebmfqQ0YBOWlJS09Y3UhBSTp6Li+9ras0Kho7PzRwRldOvWDagJKU8gOt2dwsJlAODi8qlAYEtQCTYhHY5SnjiKi9dpNEUWFoPt7V8mq4QORylPIipVTmlpDABfKt1K/I+ZTsxQnkQUikiEVPb28y0th5LWQntCypNHVdXP1dUnBQI7F5d1pLUA0IkZypOGTldfWPgOALi4rBMKHUjLAQCws7MTi8XV1dVtjeGmJqSYJCUln6lUN8zNB9jbR5DWchcej9e+CVJqQorpgZC2puYkAE8q3c7jcSjqq30jUg59AAqllfB4gl69kmprT1lZBZLW8gDtmyClJqSYBKii4vuKigMaTbFI5GhjM8HRcYmNzXjSqprSvglSOhylmABlZZvz818xNx/Qvft71tbPqFS5pBW1DB2OUjot5eXx9vbzXFw+IS3kMdCJGUqnRadTqVS5CDWSFvIY6HCU0mlxcHi9puZUZuagsrLNjY3lj38DIdo3MUNNSDEBHB3f8PE5a2ExsKho5ZUrLmVlHC0y2b6ekKa3oJgSOp1SoXjz9u3d/fvniMWcy1VZW1trY2Njbm6uVCpb/y7aE1JMCT7fwslpJYBOpbpOWksLWFtbW1pa1tfX19bWtv5d1IQUE0CplCGkxY+rqo4B8MRijpYGa8eIlC5RULgOQpqcnBcQUkkkfXW6mvr6dGfnKLHYS6e709BwzcJiMGmBD9CtW7fc3NySkpJH12PTh5qQwnV4PNGAATfu3DmvVufxeCJLy2FisbdWW5WVNValyu3V65y5+QDSGu9De0JK54THE1lbBwMEMy0CQReJpK9SeSk7e3zv3hfMzNwIytOnHasU9J6QYqLwPDx2WVuP1Whu5uRM0GqrHvsGdmhH0Aw1IcVU4fHMevT4ydx8QH39v7m5LyKkYl+DTqc7evSo/i7edgxHqQkpJoxA0MXb+4SZmWtt7dn8/HkA7C1619TUfPPNN/369ZsyZcr+/fuZ9nbEcNN7QoppY2bm2qPHL9evB1dU/CAW92Qh/++1a9e2bNmyd+/eO3fuAECPHj2srKyYV3FPWFxc3IYzGqpyDYVCkKqqEykpQpkMysq2GekSWq02ISFh8uTJTK2LwMDAgwcPNjY26h+WnJwMAAKBoPVnpiakdBJu3dopk0FKiqCy8hfDnrmmpiY2NrZv377YexKJJDw8PD09vfmRMpnMw8MDAPh8vk6na+X5qQkpnYeiopUyGVy+bF1Xd8kgJ8zJyVm+fLmdnR22n7Ozc1RU1O3bt5scVl9fv3v37oEDBzIDzPHjxz+26j0DNSGlM6G7cWOuTAZpaU4qVX5HTnTu3LnQ0FCBQKA/8tRoNE0OKy4ujoqKcnC4m3PR0dFx0aJFly617SeAmpDSqdDpVNevj5XJ4NChsIqKira+vba2NjY2tl+/fthUYrE4PDw8LS2t+ZEymSw8PJypjD1o0KDY2FilUtkOzdSElM5GY2PVzp3TASA4OLihoaGV78rNzV2+fHnXrl2xqZycnKKiom7dutXkMJVKdfDgwREjRuDDBALB5MmTExISOiKYmpDSCSkqKpJKpQAQFham1WoffTAeeQqFd5frAgIC4uPjm488S0pKoqOjXVxc8GEODg7Lly8vKCjouFpqQkrnJCMjw9bWFgCWLVvW4gENDQ3x8fEDBgxgRp6hoaHJycnNj5TJZBERERKJBB85cODA2NjYuro6Q0mlJqR0Ws6cOSMWiwFg8+bNTV46e/YsM+fp4uKybt26srKyJsfgkWdISAg+jM/nd3zk2SLUhJTOzPfff8/j8fh8/uHDh/XbKysrLS0t8ciz+VpCaWlpdHS0m9vdnRldunSJjIzMz+/QdOsjoCakdHLWrl0LAObm5ufPn9dvVygUzQ++dOlSRESEubk5tl+vXr1iYmIMOPJsEWpCSudn0aJFAGBvb5+VldXiAVqt9siRI/ojz5CQkCNHjrQ+6qUjUBNSOj+NjY1TpkwBgB49epSWluq/VFlZGRMTg6dSAcDGxiYyMvLGjRtsyqMmpDwR1NXVPf300wAwdOhQPLy8fPlyRESEhYUFtp+Pj09MTMydO3fY10bzjlKeFIqLi0eMGJGfn9+zZ8+amhq8+Z3P50+aNCkyMnLs2LHM9giWoSakPEFkZmYyPaG5uXl4ePhbb73Vp08fsqqoCSlPFvHx8evXr/f399+8eTPeBU8cakIKhTA0xwyFQhhqQgqFMNSEFAphqAkpFMJQE1IohKEmpFAIQ01IoRCGmpBCIQw1IYVCGGpCCoUw1IQUCmGoCSkUwlATUiiEoSakUAhDTUihEIaakEIhDDUhhUIYakIKhTDUhBQKYagJKRTCUBNSKIShJqRQCENNSKEQhpqQQiEMNSGFQhhqQgqFMNSEFAphqAkpFMJQE1IohKEmpFAIQ01IoRCGmpBCIQw1IYVCGGpCCoUw1IQUCmGoCSkUwlATUiiEoSakUAhDTUihEIaakEIhzP8DNtOdbO9s3zIAAAHwelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkAJiWSBuYGRjSADSjMxsDhpAmpmFzSEDRDMzYmNAlLAzgAWYgHohAhwQmgmLGTABgoYLQJQwsUNo4tyDyxqon7gZGBkYmTKYmJgTmFkymFhYE1jZFNjYFdg5NJjYORU4uTKYuLgTuHkUeHgzmHj5Evj4M5j4BRK4BTOYBIUShIQzmIRFEkREM5hExRLExDOYWCUymCQkGSQYE8Q5EwR4EsSFEpxYgDaxMUqwsgC9z8UtKCTOycrLI8DPxyYsIiomLiTuxAh0CQMs2K98PH+A/bXoARCn03HzAYPnE/eD2Fa2xw586im2A7E/9Kw8UJOwwx7EfnGw+EDPt4Vgdtsp3wNyKs/2gtiyT+/sP2EweR+I/cw9ZH+kaxZYzXahbfv37hVyALG/i2vaVxTagsUPVC2wV3FQBtsVPlXfgUUkAMze2RPqkGHIA3ZPz8yZDn99FcHsQ+zzHDqLGsBs2cfJDlZ5k8Fs3Q4VB/c9cWD2m68ZDoWTj4Pd3PXPyWGV7SOwXfLxNQ4uYnZgN+xND3MIU+wGs3vk39lf2j0BzD6yp8zepCEEzFbzPW4/a/kPsN6+qc0HFAJXQNxmnHjge4gO2C4xABWOhb4liKcEAAACcHpUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VW24bMQz89yl0AQt8iY/Pxg6KoogNtGnv0P/eHyXlJKsAQnctQqudpUjOUD61un5cv//52z4uup5OrcF/fhHRfjMAnF5aTdrT89dvt3Z5/fL0vnK5/7q9/mykjSK/yfsz9svr/eV9BdulnbVLOBm0M3UWkpxBh3kd31IhR1dAG4nEjhyuvkHywyeGhEm+JzYX2gDl4ZLCZUjDLgIiYwMcBeTu4IYZcycdzLYB6gNIOMS1naEj5u6yQVq7VRJGwzK2RJKb+C5KL5/QnYKo3gcOJNwAo93LpRCJZO0zL3LeATOHSy6rwpgeTQCQd8CiJ9MdmcNMR9k0dolj0UPpiSVghovksKslFj3cmdVQinEMGKg7ZPEj3VJywYUcBOxbn2Mig13E2lk6lDi2qevcfSgYT2ROaB+ntdRwHwaZSpEqDrSVEXpyyV2riqVc9rB9kWJuDqKW6kjyNaW8AxJMYAgzFJNh6Tl2QHwUcwCkdiS7xxy3QJpMugKzJzCJD9puzVMboeyZV7rOmtOuPiTT48gCZVUwgyXFLXB2j1QrQGaTCmXMztwxTm/9M9At80nKNUh9B32+XT8dJI+j5el+ux5HS910nB+Sg49DQmocR0Hd42j4fGh6tDXmsKN3MYcfDUo54mhDzEdcu03KIC5tJWWQlvbBaXhpEymDsrSDlMGxyL4eU9SLvKUM2iJjmZ59kauUwVh0KWVoFaCUIVyUJmWIFklJGeJFO1KGZBGJZOVoLGLAMqQL5zJXPhYqYpKlgjQjtqU6FG+YWPWwsl/P739KOT/9A1lwSDr52is4AAABQHpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCVQOW7EMBD7SspdQB7MpTlgpNo+eYT7NGn38eE4qgSK4vW65MJ5fL0en9/PS3E9LgPya8+f+3Jdas9LXh/vxxHkXZrrUDJXz3Uem4Il9zqExLoGCpL2zsWkluV6s7TL9xJyZ3cgRsWVAkRj2z+isr3XwSSCn4MJpW7cgGml12gxlbaqQr9li8rNc1XoK3y0bJ1MEbxvUjqzAILTtkmKN8tAwFPxaP+WJVq812lkFsiFitJQWKdTNs4gW9lqkLZpczjxlJ5fO3hyOubIiQRyckHHyIvVhxOTBImsOsfeiD2ysUFGbhmg3UxQo5PlBmwz13LsndNeqIIxlyOL9l20w0pqgYp0N2XD2qHarjHr+AwKZ8xk4pMXqbZU1pSK1uj1fP8BUMFr6Kcgob4AAAAASUVORK5CYII=</base64_image>
358.466
5.83244
[ { "content": "Determine the molecule visualization of the chemical structure 'Cc1cccc(NC(=O)c2cc(-c3cccs3)nc3ccccc23)c1C'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO2deVxU1fvHn9mYYRUMULZhEXEHETUVEU0yt7R+fsEl0SzF0qSy0nKjTItsETUXygU0y/SbfXOtMLUEMRsUhETZhBmQRdllYGaYOb8/jl5HQGWZuecOnvfLP2bO3Ln3Mw6fOeee85zn4SGEgEKhkINPWgCF8qRDTUihEIaakEIhDDUhhUIYakIKhTDUhBQKYagJKRTCUBNSKIShJqRQCENNSKEQhpqQQiEMNSGFQhhqQgqFMNSEFAphqAkpFMJQE1IohKEmpFAIQ01IoRCGmpBCIQw1IYVCGGpCCoUw1IQUCmGoCSkUwlATUiiEoSakUAhDTUihEIaakEIhDDUhhUIYakIKhTDUhBQKYagJKRTCUBNSKIShJqRQCENNSKEQhpqQQiEMNSGFQhhqQgqFMNSEFAphqAkpFMJQE1IohBGSFkB5Qvnqq6+2bt2KEHr++ef79Onj5ubm4eEhlUqtra1JS2MbHkKItAbKE8fx48cnT57c4ksSicTZ2dnLy8vLy8vJyYl5LJVKhcLO2WdQE1LYpqGhYdCgQZmZmd27d58yZYqLi0thYaFcLlcoFPn5+UqlssV3CYVCZ2dnqVTq7u4ulUrd3NyYxzY2Nix/BMNCTUhhm/nz5+/atatnz56JiYmOjo5NXq2srLx582ZxcXFeXl5eXh7zuKCgQKvVtnhCU+88qQkprPLjjz/OmDFDIpFcuHDBz8+v9W9Uq9WFhYUKhaKgoEAul+OeUy6XFxQU1NXVtfgWoVDo4OBQV1fXp0+fb775xtfX10AfwsBQE1LYIycnJyAgoKam5ttvv50/fz5u1Gg0SqWyS5cu7T5tfX0903M+rPP08vLKzc01wGcwAtSEFJZQqVTDhw+/fPlyWFjYjz/+yLTLZLIhQ4YYY0ipVqszMzMPHTq0fv16Ho9348YNd3d3A30aQ2ICI2ZK5+Ctt966fPmyt7f3t99+q99eVVVlaWlZV1eH+7Em7xIIBM7OzngCpsl8zGM7TzMzMz8/Pz8/v7///vvUqVO7du1au3atgT+VIaA9IYUNDh06FBYWJhaLk5OT/f39mx+gP6TUn5gxyHxMYmJiUFCQg4ODXC6XSCRG+YQdgJqQYnRyc3MDAgKqq6u3b9/+2muvtem9Go2mqKgIT8DoT8bI5fI7d+60+BaBQODk5DRw4MCjR48yjUOGDJHJZHFxcXPnzu3QhzEC1IQU46JSqQIDA1NSUkJDQw8ePGjAMz+s85TL5Y2Njf7+/pcuXWIOjouLmzdvXpNGjkBNSDEuS5Ys+frrr3v06JGSktKRKdDWgzvPurq6fv36MY0qlcrd3b20tDQxMTEwMJAFGa2HBnBTjMixY8e2bt0qEom+++47dhwIACKRyMPDQ9+BACAWiyMiIgBg8+bN7MhoPbQnpBgLuVzu7+9fUVGxefPmJUuWkJYDxcXFHh4eOp0uLy/Pzc2NtJz70J6QYhQ0Gs2MGTMqKiomT578xhtvkJYDAODk5DRt2rTGxsYdO3aQ1vIAtCekGIWlS5du3LhRKpVevny5a9eupOXc5cKFC8OHD7e3t5fL5ebm5qTl3IX2hBTDc/z48ZiYGJFIdODAAe44EACGDRs2dOjQ27dvf//996S13IeakGJgFArF3LlzEULR0dHDhw8nLacp+O40JiaGO2NAOhylGJLGxsbRo0cnJSVNnDjx2LFjPB6PtKKmaDQaT0/PoqKis2fPBgcHk5YDQHtCimFZuXJlUlKSq6trfHw8Bx0IACKRaMGCBcCltQraE1IMxsmTJydPnszn88+ePcu1BXF9ysrK3N3dNRpNdna2p6cnaTm0J6QYiKKiojlz5uh0uvXr13PZgQDg6OgYGhqq1Wo5slZBe0KKAdBqtePGjTt9+vSECROOHTvG53P9x/3SpUsBAQF2dnYKhcLS0pKsGK7/Z1FMgjVr1pw+fdrFxWXv3r3cdyAADBo0aPjw4ZWVlfv37yethZqQ0mHOnDnz2Wef8fn8vXv32tvbk5bTWiIjIwFg06ZNxAeD1ISUDlFaWvrSSy9ptdq1a9c+88wzpOW0gf/85z+urq5Xr149ffo0WSXUhJT2o9PpZs+eXVxcPGbMmPfff5+0nLYhFAoXLlwIAFu2bCGrhE7MUNrP4sWLt23b1q1bt8uXLzs5OZGW02Zu3bollUrVanVWVlaPHj1IyaA9IaWdxMTEbNu2jcfjfffdd6boQABwcHCYOXOmTqfbtm0bQRm0J6S0E09Pz/z8fD8/v9TUVP12hBA3Y2VaJDU11d/f38bGRqFQkEqnT3tCSjvBGez1s1+fOXNm5MiR27dvJyeqzQwcODAoKKimpua7774jpYGakNJONm3axOfz5XJ5SUkJbikvL09KSoqJidHpdGS1tQlmrYKUbGpCSjsZNmzYCy+8oFarY2NjccuLL77o4eGRnZ2dkJBAVlubwLKzsrJIyaYmpLQf3Ids27ZNpVIBgEAg4Mikf5sgLptOzFA6xMCBA9PS0vbt2zd79mwAqKysdHNzUyqVmZmZvXr1Iq2utVRWVrq6utbX1xORTXtCSodgNqrjp3Z2drNmzUIIkZ30byuM7K+//pr9q9OekNIhVCqVVCotKytLTk4eNmwYAPz7778DBgywsrJSKBSs5RptB+np6X379hUIBPjplStX/Pz8eDyeXC53dXVlUwntCSkdQiwWv/rqq6B3Q9WvX7/Ro0fX1tbGx8cTlfYocnNzg4KCxo4dyxS08PX1NTc3Rwixv+OempDSURYvXiwSiQ4dOlRYWIhb8ITNli1buLlWodFoZs+eXV1d7eDgYGVlhRt//vnn+vp6AOjfvz/bghCF0mHCwsIAYPXq1fipVqv18vICgOPHj5MV1iL4N8LLy6uqqgq3VFZW4jwXw4cPZ18PNSHFAJw7dw4AHBwc6uvrccvnn38OAM899xxZYc05evQoj8cTiUTJycm4RafTvfjiiwAwZMgQlUrFviRqQophGDx4MADExcXhp5WVlZaWljwe7+rVq2SF6SOXy5966im4t5cXg6d2bW1t8/LyiKiiJqQYhri4OADw9/dnWnA90MWLFxNUpY9arR4xYgQATJ48WafT4cZ//vlHLBYDwOHDh0kJoyakGIaGhoZu3boBQGJiIm75999/eTyehYVFeXk5WW2YpUuXAoCbm9vt27dxS01NjY+PDwBERkYSFEZNSDEYq1evBoCwsDCm5dlnnwWAL7/8kqAqzPHjx/GtYFJSEtM4a9YsAAgICGhoaCCojZqQYjBu3rxpZmYmFArlcjluOXLkCAB4eHg0NjYSFKZQKHAGqi+++IJp3Lp1KwBYW1tfv36doDZETUgxLDNnzgSAFStW4Kc6nQ6P93755RdSkjQaDU5GPHHiROZW8MqVK7g02v79+0kJY6AmpBiS5ORkALC3t1cqlbhl48aNABASEkJK0vLlywHA1dX11q1buKW2trZ3794AsGjRIlKq9KEm5Bg1NSgjA2VnI6Ljt44wdOhQANi5cyd+WlNTg9NGpKWlsS/m5MmTfD5fKBSeO3eOacQbPgYMGMD8UpCFmpAz3LqFQkORUIhEIgSAnnoKff45ujd8MiH27dsHAP3792fGfrhc9sKFC1lWUlxc3L17dwCIjo5mGvEWZCsrq8zMTJb1PAxqQm6gUqFBg9CAASg5GanVqLISffstEovRxx+TVtZm1Gq1i4sLAJw9exa3ZGVl8fl8CwsLZm2ABbRaLU5GPH78eK1WixvT09MtLCwAYN++fawpeSzUhNxg3z7E46HU1Acaly9HlpboXnyjCREVFQUA06ZNY1rGjx8PABs2bGBNw8qVKwGge/fuxcXFuOXOnTt9+vQBgAULFrAmozVQE3KD2bORn1/TxsxMBICOHSMhqEOUlpZKJBKBQMAEgp04cQIAcFVAFgScPn1aIBDw+fw//viDaZwzZw4eJ9fV1bGgofVQE3KD0aPRlClNG5VKxOOhHTtICOoo4eHhALBs2TL8VKfT4QnJn376ydiXLikpwcmIP9YbzO/evRsALC0tORXLiqEm5AZjx6IJE5o21tQgAHRvmtG0SElJAQA7O7s7d+7gFrxZdvTo0Ua9rlarxWE6Y8aMYSIEMjIy8K1gfHy8Ua/ePqgJucGCBahXr6aNly4hAHT6NAlBBmD48OEAEBsbi5/W1NTgbBepTW59DcqHH34IAN26dbt58yZuqa+v9/PzA4B58+YZ77odgZqQGxw5ggDQvenEuyxciBwc0L0deibHDz/8AAD9+vVj1irefPNNAFiyZImRrnj27Fl8K/j7778zjfPmzQMAHx+fmpoaI123g1ATcgOdDo0fj1xd0X//iwoL0dWr6MMPkUCA7m3PM0U0Gg3OmMTMjuTm5sbFxRkpWrq0tNTZ2RkAoqKimEb8QyCRSIza/XYQakLOoFSid95B9vYIAAGgAQPQf/979yWOzea1no8//hgApk6dauwLabXacePGAUBwcDBzK5iVlWVtbQ0Au3btMraAjkBNyD0qKh5w3bp1yNYW3dukZ1qUlZVJJBI+n5+bm2vUC61btw7n1ygqKsIt9fX1AwcOBIDp06cb9dIdh2Zb4x52dmBuDkw+2IYGqKoC1vPwGQQHB4cZM2awUADQx8fH1tb2u+++wyNSAHjzzTdTU1N79uz5zTffGPXSHYcm/+Uehw7BRx/B+vUwdSoAwM2b4OkJOh3k5YGbG2lxbeby5cuDBg2ytLQcPXq0u7u7m5ubm5ubu7u7u7u7k5OTUCg01IWqq6uZXMMHDx6cPn26RCI5f/68v7+/oS5hJAz2X0AxGDdvwr//wubNd03o7AzTpsEPP8COHbB+PWlxbSYrKwsA+Hz+8ePHm79qZ2fn5eXl5eXl5OTk7Oys/7itF2IcmJOTs2DBAgDYtGkT9x0ItCfkIrW14OoKNTWQlga+vgAAyckwYgTY24NcDubmpPW1gdzc3ICAgOrq6tWrVw8ZMiQ/P1+hUMjlcoVCkZ+fX1JS8rDswDY2NlKp1N3dXSqVurm5MY+dnZ0f3XmqVKoRI0ZcunQpLCzsxx9/NM7HMjDUhJwkMhK2bIGICLhX+g+efhouXoRdu+CVV4gqawOMH0JDQw8ePNj8AI1Gc+vWreLi4ry8vLy8vJs3b+LHOTk51dXVDzvtozvPxYsXb9u2zdvbOyUlhVT567ZCTchJsrOhd28Qi0GhgKeeAgD47jsID4f+/eHKFTCRivBLliz5+uuve/TokZKS0tbKMBUVFbjPLCgowD0nflxcXPyIztPe3j4vL08sFp8/f37QoEGG+BBsQE3IVSZOhJMn4bPPYNkyAACNBjw9oagIzp6F4GDS4h7P0aNHp06damZmlpSUFBAQYKjTPqzzzM3NraqqAgBHR8eAgAC8acNkILpAQnk4J08iACSVImbvT1QUAkB6m/Q4S0FBQdeuXQFgy5YtrF20oqJi79698GCGG5OAmpCr6HSod28EcD9uprQUSSRIIECEsrW3ErVajUO3n3/+eR3r6TlwhhuOh8g0gS7WcxUeDxYvBgBgCqk7OkJoKGi1sGMHQV2PZdmyZcnJyVKpNC4ujsf67SuuHLxx40ZkQvdZpH8FKA+nthZ16YIAkEx2tyUlBQEgOzt0b5Me1zh27BhOdH3+/HkiAppnuOE+tCfkMFZWdxckmJivQYNg+HCorIT9+wnqehgKhWLu3LkIoc8++wyPSNlHJBLNnz8f9CoHmwBkfwMaGxvZv20wJW7cQAIBEotRaendlh9+QAAlU6Zw7f+NSXQ9adIkstqaZ7jhOIR7whdffFEoFAqFQl9f37CwsPfff3/Tpk2HDh1KSUl5xHLtE4SHB0ycCCoV7Nx5t2XatMUjR3Y/cuT06dNElTVlxYoVSUlJbm5u8fHx7N8K6uPo6BgaGqrVandw++b5PgR/APBms0cgkUi8vLxCQkIiIiKio6Pj4+MTEhJyc3PJVhdhm4QEBKAaNEitVuMG1jbptZ4TJ07weDyhUJjIjS1XzTPccBlii/WFhYUDBw4sLy+fMGHCe++9JxKJmqzAZmVl1dbWtvhekUhkb2/fJGTJy8vL29u7rZEZJgBCe8PCFv7vf/H79+PS8Ldu3ZJKpWq1Oisrq0ePHqT1QWFhob+//+3btzds2PDee++RlnOXESNGJCcnx8bGRkREkNbyGMiYsLGxccyYMYmJiRMnTsTzaS0eVllZyYRE6IdH5OfnPyx2SSKRNDcn3jhjZmZmzM9kRHbs2PH6668HBgYmJibilldeeWXPnj1Lly798ssvyWrDW9pPnz49YcIEXAOQrB6GAwcOzJw5s1+/funp6dxR1TJE+t/mhXLaRENDQ3Z29h9//BEXF/fhhx+++uqrzz77bO/evc0fucPA1tb2+++/N/hnYYG6ujocgHLx4kXccvnyZQCwsbGprq4mq23FihUA4OLi0r6v0ngwGW5OnTpFWstjIGDCFgvl1NTUnDhxIiMjo7a2tiMnr6ioyMjISEhIiI2NXb58eXh4eEhICK4KAgB2dnYdlk+Gd999FwDmzJnDtAQFBQHA1q1bCarCia4FAoF+omvuwMGb5xZh24RMoZxPP/1Uv/3cuXNMl6U/HxMVFRUbG4vnYzqSQT07OxuPSVJSUjr8IQiQn58vEAjMzMyYygqHDh0CAB8fH1LrASUlJfirXL9+PREBj6W0tHTkyBkDB54zcoKbjsKqCVsslIO5cOHCuHHjHj2kFIlEHh4eQUFB4eHhK1as2LFjx/HjxzMyMlqZT3LRokXAvWIgrefFF18EgI8++gg/bWxs9PDwAIDffvuNfTFarTYkJAQeTHTNQV5+GQGgd94hreORsDoxs3r16nXr1nXr1i01NZUZIjbnYfMxBQUFWq22xbe0OB/j5eUllUqZjdg5OTm9evUSi8UKheIpvEnPpDhz5swzzzzj5OSUn5+PJ5mio6M/+OCDSZMmHTt2jGUxUVFRa9eufexXSZzLl2HQILC1BYUCrKxIq3kYrNmdKZTT7hvlhoaGnJyc06dPx8fHf/TRR/Pnzx83blyfPn0e0Xm6u7vrn2HixInwYMlI0wKnc2fKrFdUVFhYWPB4vGvXrrEp48yZM/irTEhIYPO67SMoCAEgovfOj4ElE7ZYKMeAtDgf4+XlFRQUpH/YyZMnAUAqlbJToMvgfPvttwAQEBDAtOA4yTfffJM1DaWlpfir/PDDD1m7aEc4eBABIB8f7lY9ZsOELRbKYYcmkxZMga7/Mpv0TAqlUokH0hcuXMAteBHM2tq6ipVaoi0muuY4jY3IwwMBIBL3zq2CDRPiQjmOjo5MoRyCfP311wAwatQo0kLayfvvvw8AL730kkajeeONN4YPH4537nzwwQcsrBniSX9HR0cm0bVJ8OmnCABNmkRax0Mw+sTMn3/+OXbsWITQr7/+ivtDsty5c8fV1bW6ulomkxkw9wlrFBUVeXp6AsDcuXP37NnTZKaqNRNU7eavv/4aO3asTqc7efIk7g9NhcpKcHWF+nrIzIRevUiraY5RLV5WVoYT0a1Zs8aoF2oTb7/9NgC88sorpIW0k9DQUADg8/l8Pt/Pz++5554bN25c3759cR3MFhEKhVKpdOTIkS+99NIHH3ywbdu2o0ePpqent34QW1ZWhrvcVatWGfXTGYn58xEAYvHeuQ0YsSfU6XQTJ0787bffgoOD//jjD4FAYKQLtZX8/Hxvb2+hUCiXyx0dHUnLaTPHjx9//vnnEUIrV67EhVAY6uvrmaUdA67uIISmTp169OjRoKCg06dPGzB3PWtkZICvL1hZQWEhcC4dqfH8vX79eniwUA53eP7554HDoR6PQKfTTZkyBQCCgoJaP8erUqny8vLOnj27d+/ejz/+OCIiYvz48X379rW0tHzYH4ZQKHRzcxs5cuSsWbNGjx6Nv8rCwkKjfjqjMno0AkCbN5PW0QxjmTA5OVkkEvH5/F9//dVIl+gICQkJAODs7Mxs0jMVoqOjAaBr164FBQUGOaFSqczNzcWrO1FRUREREXh1R3/kwufzbWxs9uzZo/9GlUrVJOyJ4xw+jACQtzfimmqjmLC8vNzd3R0AVqxYYYzzG4QBAwYAwIEDB0gLaQMXLlwQiUQ8Hu+XX34x9rXUanVeXt6ff/65d+9eXOhv9erVzKvbt293cnI6duyYsWUYkMZG5OmJANDx46SlPIjhTciMl4YNG8blfmb79u0AEBgYSFpIa6moqMDBosuXL2f50ji83sHBob6+Hrd8/vnnAPDcc8+xrKSDfPklmjwZ/fMPaR0PYngTbtiwAQDs7Ozy8/MNfnIDUldXhxe+mU16XEan002dOhUAnn76aSI/bYMHDwaAuLg4/LSystLKyorH4129epV9Me2mpATJZA/UQVYqkUyG7v22kMHAJvz777/NzMx4PN7//vc/w57ZGOBcDPqb9DjLF198gX/abty4QURAXFwcAPj7+zMtr7/+OgAsWrSIiJ72sWFD04WK1FQEgK5fJ6fJsCZkxkvvvfeeAU9rPJpv0uMmFy9exD9tP//8MykNDQ0N3bp1AwBmK/bVq1d5PJ6FhUV5eTkpVW1lwwZkbY1EovvplLlgQoOlPEQIvfLKK/n5+UOHDm2yeMVZ3N3dp0yZolaruVzWvKqqJiwsTK1Wv/322y+88AIpGWKxGGdMYpLq9unTJyQkRKlU4k7SVHB2hpdegtdeg4esm5LAUG7+6quvgOh4qX3g7J1OTk4qlYq0lpaZNk03alTMiBGBxBXevHnTzMwMBznglqNHjwKAh4eHqQRzb9iAevVCJSWoSxeEC0ZxoSc0jAn/+ecf4uOldtNkkx6n2LQJASBbW3TjBifWtmbOnAkAH3zwAX6q0+l8fHwAwCSmANA9EyKEPv8c2digwsLOYsLKykovLy8AeOuttzp+NvZpvkmPI8hkSCxGAOinn0hLuUdycjIAdO3ate7eDOPGjRsBAMfocx/GhGo16t8fvfRSZzHh008/DQCDBw8mPl5qH8036XGBmhrk44MAUGQkaSkPggsA7ty5Ez+tqanBpeHT0tLICmsNjAkRQn/9hfh8tH276Ztw9uzZACAUCnM5ntHqkTCb9EgLuc+sWQgA+foSXsJqzr59+wCgf//+zIbpN954AwAWLlxIVlhzvvoKNcmtp29ChNCcOahbN9M3Ic6vOmbMGP3G6upqdjZ6G4rCwkKRSCQSiTgSoLxtGwJAVlaI3dwxraJ5AcCsrCw+n29hYXH79m2y2vQ5cQLxeMjSEuknJW5iwtJSZGdH3oQdXaLw9/cHgPz8fKYlLi7O1dUVT5aaCi4uLi+88IJGo+HCWkV6OrzzDgBAbCwXd6CKRKIFCxYAwObNm3FLz549n3vuOaVSuWvXLqLS7lNUBHPmAEKwZg3Y299v794d+vW7/9TREb78EgICQCJhX6MeHTRxQUEB3kuanp6OW/766y94MM7QJOCI7Nrau5XqX3+doIrH0LwA4IkTJ4AzGbQaG9EzzyAANGHC/Q0TV64gLt3yP4ABJmaahy/hOMP4+PiOn5xNuCB79mwEgAYMQEolQRWPJzw8HACWLVuGnzIZtH7iwEzuypUIALm43B+I1taiXr2QSIS4maLRACa8fv16k/ClPXv2wINxhibB7t27AWDQoEGkBHzzzd1bwcxMUhJaS/MCgDiSJjg4mKgudPo0EggQn4/0q2PMmYMAUP/+D4RucwfDLNbjtD9ffPEFfsrEGXKkZGQrYWQnJSWxf/WMDGRhgQDQ3r3sX7w94Kr0sbGx+GltbS0uDpmamkpKUkkJcnJCAGjduvuNu3YhAGRpiTi738MwJsThS+7u7kz40qpVqwBg+vTpBjk/axCUXVKCQkLQ/PnsX7md/PDDDwDQt29fZq3irbfeAoBXX32ViB6tFoWEIAA0ZgxiouiYnzYu3xsZxoTNw5eKioqaxBlyk3379pWUlDBPi4qKRCKRQCA4fPiwQqEwRkhkQwOSyVCTpZD0dFRcjDQadO0aujfDdRe1Gp0/jzi44tO8AGBOTg6fzxeLxaWlpezriYpCAKhbN8Rkt1Uqka8vAkAcT6xnsADumJgYeDB8CccZcjnDxalTp/h8vqurq35RxF69erm5uTGzx3Z2dgEBAaGhoZGRkdHR0QcPHpTJZJWVle2+aG4uAkDu7ki/mrq3N/rkE4QQWrwYPf30A8eXlCAA9Pvv7b6gEWleAHDy5MkA8An+MCxy9uzdW0H9qZd58xAA6tuXo7eCDAYzYfPwpfPnzwOAvb29kpMzfUxNBabYGLo3pSQWiwcPHuzs7PyIMsu2trYDBgyYPHny6tUHoqPR/v0oMREpFOixfSc2oa0tWrnyfqOJmrCsrEwikfD5/JycHNzy+++/A4CLiwub2/9LS0vHjFndvXtjVNT9xh9+QABIIkHkblFbiyE39S5ZsgQAIiIimBYcZ7hr1y4DXsUgMOUxRo8ezYw5r1+/bm1tDXpJHNRqdVFRkUwmO3jwYHR0dGRkZGhoaEBAAJ6BwIwa9T0A0v9nZ4cCAlBoKIqMRNHR6OBBJJOhioq7l8YmjI5GZmb3pwpM1IQIoXnz5gHA0qVLmRacQevHH39kRwDzVT7//MvML2BWFrK2RgBo9252VHQIQ5oQhy+Zm5sz4UvN4ww5wtq1a+HBmgr19fV4T9PLL7/cmjPcvn370qVLv/zyy65dme++i8LC0PDhyNkZ8fmoiSeZf126oJdeumvC9HQ0YQIKCrpbKsh0TXj58mUAsLGxYSphbNu2DQBGjhzJjgC8g/zBrxINHIgA0IwZ7EjoKAbOMTNhwgQA+Oyzz/BTlUqFK0gycYZc4M8//8Tl9X7X+9N+9dVXAcDHx6eVdX8fhlqNioqQTIYOHkTR0SgyEoWGooAA1KULAkBhYfdNmJ2NJBKEO119E/L5yMLigX9cNiFCKCgoCAC23qsAWFdX17VrVwHFzroAABYdSURBVAD4x/hZzf766y+hUMjn8/XLFS9YgABQz56oY98kexjYhM0LAEZFRQHAtGnTDHuhdsPUVNDPonngwAEAkEgkRl3jun0b3bx534QIoVWrkKMjqqp6wIS+vujKlfv/zp7lugkPHjyIf7+Y8c4777wDAHPnzjXqdcvLy6VSKQCs1Lu9Pnw4xdISmZsjU9hZdRcDm7B5AcDmcYYE0el0OAH+qFGjmFvB7OxsPKXE7JEzKvomVCqRpydautSEh6MIocbGRpzgi+mOcAYtsVisv/xjWFosB5CVlWVjY+PlNWnPntpHv51TGD7vaPPwpSZxhgT55JNP4MGaCvX19XgjCGsL9PomRAgdPYrEYmRra8ImRAh9+umnADBJrwIgzknFxNMYnOblABoaGgYNGgQAYWFhRrqokTC8CZuHLzWPMyQCk0P+yJEjTOPChQsBwNvbm4UKm5gmJkQITZmCAEzbhBUVFRYWFjwe79q9HZBpaWnGy1TQYjmARYsWsfxVGgqj1KLA4Uv6BQCbxBmyT0VFBS6P8f777zON+GZGLBZfunSJNSWFhSggAN1bV0MIofx8NGQIwtVWoqNRkzup8nLk78/dbTgM8+fPB4A3jV8BsMVyAIcOHcJfZUqTvfSmgFFMeOPGDXxLwIQv4TjDfv36EVmraDGHfE5ODu6xt2/fzr6kzkd6ejqPx7O2tjZqUgXmrn7EiBHMV5mfn4/nY5kZWtPCWKXRmhQAbB5nyCa4eol+eYyGhgZcKzs0NJR9PZ0VHJth7FuyvXv3urm5Melt1Wr1sGHDAOA///mPUa9rPIxlQhy+pF8AsHmcITu0WB4D5ybq0aOHaeXC4TjLly8HAB6PZ29vP3PmzGXLlm3ZsuXIkSNpaWkVTMSQIdDP6xcZGYl38JhQNv4mGLFSb5PwJSbOkM28bJWVlZ6engDw7rvvMo1Hjhzh8XhisVjGVCSgGAKVSoU3ZLaIRCLx8vIKCQkJDw9fvnx5bGxsQkJCRkZGXQfCq48ePcrj8UQiUXJysgE/CMsYsWb9jh07Xn/99cDAwMTERNwyb968uLi4pUuXfvnll0a6qD4IoWnTpv38889Dhw49d+6cmZkZAMjlcn9//4qKis2bN+NgV4oBUavVMpmsoKBAq9UqFAq5XK5QKPLz8+VyeW1tbYtvEQgE3bt39/DwcHNzk0qlbm5u7u7uUqlUKpXa2dk94loKhcLf37+8vDwmJubNN980zgdiAyOaUKlUurm5VVRUXLx4cciQIQCQmprq7+9va2urUCisrKyMdF2GmJiYt99+29bW9tKlS7g/1Gg0wcHBycnJkydPxv2hsTVQGOrr64uLi/Py8vLy8m7evMk8lsvljY2NLb5FIpE4Ozt7eXk5OTnhB/ixp6enmZlZcHDw+fPnO8NXadR+9t1334UHw5eaxBkaD6Y8xuHDh5nGt99+GwCkUqnp3j90PjQaTX5+/rlz5/bt2/fJJ5+89tprkyZN6tevHw5jahGBQIA7SalUati7TSIY14TNw5eaxxkag6qqKlweQ3/Z6tixY/j+4fz588a7NMWAKJXK3NzchISE2NjYqKioiIiIkJAQLy8voVAIAJaWluxXDjcGxjUhuhe+tHbtWvy0eZyhMcCb+gcPHtzQ0IBb5HI5Ljjx1VdfGe+6FHbQaDQ49TCplWfDYnQTNi8A+Omnn/L5fP397Ibl66+/BgBra+vr95KbazSawMBAAJg4cWIn+M4oCCG1Wo1Xnv/Qz21omhjdhAghX19f0CsAWFFRkZWVZaRrpaWlmZubA8D333/PNC5btgwAXF1db+nXJaCYOKRWng0OGybEBR6GDRtm7AvV1tb26tULABYvXsw0njhxgs/nC4VC00qCSnksRFaejQEbJmStACDOd+Lv78/UkygsLLS3twe9zf6UzsTLL78MD2a4MUXYMCG6VwBwhpGTfmRmZgYGBjJj3cbGxmeeeQYAJkyYoNVyotw0xbDgDDe2trb6SStNDiMu1uuTl5fXs2dPS0tLjUajv+rKPJZKpXje2YCsXLnyk08+cXFxSU1NtdcvkEXpRIwaNercuXNbt27F+wlNEZZMuGrVqvXr11tYWCiVyhYPEIlEzs7OUqkUhyzhCCb8GKchbCtnzpx59tlnEUIJCQm4P6R0Sg4dOhQWFubj43Pt2jUTjZthw4TYDwDw+++/+/v764csMY9xtGGLb2dil1rfeZaWlvr7+xcXF69bt27lypVG/GwU0mi1Wm9v7/z8/N9++w0XJjI5jG7C0tLSgQMHlpSUPNoParX69u3bzc2ZnZ1dU1PzsHfZ2dl53YPxp6en5/Tp00+dOjVmzJiEhASBQGCcT0bhCtHR0R988MGkSZOOHTtGWkt7MK4JdTrdc88910E/3L59G8fjFxQU4Kh8/BiHwrX4FqFQ2LVr1ytXrjxiZw2l01BZWenq6lpfX5+ZmdmLgxXGH4eB50KasHbt2lOnTnXr1m3//v3t7pHs7e3t7e1xTjR9HtZ5Xr16VavVDhkyhDrwCcHOzm7WrFk7d+7cvn07LkxkWhixJ/zzzz9xkabffvstJCTESFdpTn5+vre3N67K5ujoyNp1KQTJyMjw9fW1srJSKBT6lUJMAr6RzltWVjZr1iytVrtmzRo2HQgAHh4eEydOVKlUO3fuZPO6FIL0799/9OjRtbW18fHxpLW0HWMsPmq1WjxPFRwcbIw6m48lISEBHsxwQ+n0HD58GAC8vb1NLjDDKCbEkbX6hXLYB2e4OXDgACkBFJZpbGzE+ROOHz9OWkvbMPxw9Ny5cx999BGfz9+3b5+zs7PBz99KcPwEzslPeRIQCAT4S8dbDU0Jw3q6xUI5RKirq8NR4xcvXiSrhMIalZWVlpaWPB7vKlN+1RQwZE+IEJo3b55cLg8KCvrwww8NeOZ2YGFh8corrwAA3uNLeRKwtbUNDw9HCG3dupW0lrZgQEM3L5RDFpzhxszMrLi4mLQWCkv8+++/PB7PwsLChBJAGawn/Pvvv1evXs3j8fbs2YNHpMRxd3efMmWKWq3Gu4opTwJ9+/YdO3asUqmMi4sjraXVGMTKLRbK4QLNM9xQOj1HjhwBAA8PDyLLY+3AACZkah4NHTqUg3/rfn5+oJfhhtLp0el0Pj4+AKBfvZDLGGA4unHjxl9++cXOzu7HH3/EqeY5Ba798tVXX5EWQmEJHo/32muvgQktUHXQxBcvXsSJrn/++WeD/CoYHNYy3FC4Q01NDU7gnZaWRlrL4+lQT1hVVTV9+nS1Wv3222/jJL8cxNzcfMGCBWBCv4uUDmNtbT1nzhwA2LZtG2ktj6dDuyimTZt2+PDhIUOGJCYmcnAgylBUVIQDmm7cuOHi4kJaDoUNsrOze/fuLZFImOTrnKX9PeHmzZsPHz5sa2vLzVtBfVxcXF544QWNRkPXKp4cevbsOW7cOKVSuXv3btJaHkf7RrFpaWkSiQQAfvrpJ4MOj43FX3/9BQAODg5MSlJKp+fEiRMA4O7urtFoSGt5FO0xIZPoesmSJQYXZDwGDx4MAPHx8aSFUFhCp9P17t2b+11Fe4ajCxcuvH79uq+v74YNGwzYJxsbHGK/adMm0kIoLMHj8fCX/vnnn9fX15OW81DaPDGzffv2RYsWWVlZyWQy00qqo1Kp3N3dS0tLk5KSRowYQVoOhQ0qKyvd3NwsLS0rKip8fHxGjhwZGBgYFBSEJ+q4Qpv6zStXruCaRyYagLJq1SoAmD59OmkhFJbYuHEjAFhYWDTJM+bm5jZjxoxNmzZdvHiRePqFNvSEd+7cGTJkyLVr115//XWTWH5pzs2bNz08PBBCN27cwNXtKJ2Y0tLS3r17V1VVHTt2LDg4ODU1NSkpKTExMTk5uby8nDlMJBL5+voGBgaOHDkyODiYQHKw1vsVF3z38/Mz6QnGGTNmAAf2HFNYYO7cuQAwZcqU5i/l5ubGx8dHRkYGBATw+Q/MjDg5OYWGhsbExMhkMnbS1bShJ6yqqoqMjFy1ahWOjjVRkpOTR4wYYW9vL5fL8dCa0ilJTk4ODAw0MzNLT0/v2bPnI46sqam5ePFiYmJiSkpKYmJiVVUV85KVlZWfnx++kwwMDOzatatRtLJgdK4xdOhQANi1axdpIRRjgbM/A8CaNWuYRp1OJ5fLH/3GxsbGjIyM2NjY8PDwvn37NjGLl5dXeHh4bGxsRkaGAeuus1SViVPs27dvzpw5/fv3T09PJ62FYhTwHL6bm1tmZqalpSVuvHr1ar9+/ZycnAICAnDnNnjwYBxz8jBKSkr++eeflJQUfDPZ0NDAvGRjYzN06NDAwMCAgIBRo0Z1KOOwodxsQqhUqu7duwPAn3/+SVoLxfCUl5fjcpRN1uh//fVXOzs7/T9+c3PzoKCgZcuW/e9//ystLX30aRsaGpKSkr744ov/+7//c3Jy0j+PUCi0s7MbMmTIH3/80Q7BT6IJEUJRUVEAMG3aNNJCKIZn4cKFABASEtLiq62Zkjl37txj1y2KioqOHDmyfPlyfOeJz9C7d+92CH4Sh6MAUFZWJpVKGxsbs7OzubVuS+kYly5dGjp0qEAgSEtLwzFrj6C2tvbvv//GUzJJSUmVlZXMS/pTMiNGjHj0Pozy8vJly5bt3r1bIpG0JzSnHcbtHMyePRu4lxSH0hF0Ot2wYcMAYNmyZW19L56SiY+Pj4iI6Nu3b5Oiv3hK5hHrFjdu3AAAW1vbdsh+QntCAEhJSRk8eLCdnZ1CoWDu3Skmze7du1999dXu3btfv34d76xvNyUlJcnJyefPn09OTk5JSdGfknnqqaeGDx8+bNiwwMDA0aNH40adTicWi7VarUqlEolEbbtYO4zbaZg6deqaNWuqq6tJC6EYgMbGyvfemyQQCAweU6nRaJh1C/2bF09PT/3D8GxfYWFhW8//5PaElE6GQvFmWdnmmpqw0aMPNBlMGpaCggLcQ9ra2q5du5Zp9/f3T01NlclkAQEBbTqhcSv1UijsUF//761b23k8wbBhK4zqQABwd3d3d3efOXNmk3bcE5aWlrb1hMYqEkqhsIlC8QZCGgeHxebmfqQ0YBOWlJS09Y3UhBSTp6Li+9ras0Kho7PzRwRldOvWDagJKU8gOt2dwsJlAODi8qlAYEtQCTYhHY5SnjiKi9dpNEUWFoPt7V8mq4QORylPIipVTmlpDABfKt1K/I+ZTsxQnkQUikiEVPb28y0th5LWQntCypNHVdXP1dUnBQI7F5d1pLUA0IkZypOGTldfWPgOALi4rBMKHUjLAQCws7MTi8XV1dVtjeGmJqSYJCUln6lUN8zNB9jbR5DWchcej9e+CVJqQorpgZC2puYkAE8q3c7jcSjqq30jUg59AAqllfB4gl69kmprT1lZBZLW8gDtmyClJqSYBKii4vuKigMaTbFI5GhjM8HRcYmNzXjSqprSvglSOhylmABlZZvz818xNx/Qvft71tbPqFS5pBW1DB2OUjot5eXx9vbzXFw+IS3kMdCJGUqnRadTqVS5CDWSFvIY6HCU0mlxcHi9puZUZuagsrLNjY3lj38DIdo3MUNNSDEBHB3f8PE5a2ExsKho5ZUrLmVlHC0y2b6ekKa3oJgSOp1SoXjz9u3d/fvniMWcy1VZW1trY2Njbm6uVCpb/y7aE1JMCT7fwslpJYBOpbpOWksLWFtbW1pa1tfX19bWtv5d1IQUE0CplCGkxY+rqo4B8MRijpYGa8eIlC5RULgOQpqcnBcQUkkkfXW6mvr6dGfnKLHYS6e709BwzcJiMGmBD9CtW7fc3NySkpJH12PTh5qQwnV4PNGAATfu3DmvVufxeCJLy2FisbdWW5WVNValyu3V65y5+QDSGu9De0JK54THE1lbBwMEMy0CQReJpK9SeSk7e3zv3hfMzNwIytOnHasU9J6QYqLwPDx2WVuP1Whu5uRM0GqrHvsGdmhH0Aw1IcVU4fHMevT4ydx8QH39v7m5LyKkYl+DTqc7evSo/i7edgxHqQkpJoxA0MXb+4SZmWtt7dn8/HkA7C1619TUfPPNN/369ZsyZcr+/fuZ9nbEcNN7QoppY2bm2qPHL9evB1dU/CAW92Qh/++1a9e2bNmyd+/eO3fuAECPHj2srKyYV3FPWFxc3IYzGqpyDYVCkKqqEykpQpkMysq2GekSWq02ISFh8uTJTK2LwMDAgwcPNjY26h+WnJwMAAKBoPVnpiakdBJu3dopk0FKiqCy8hfDnrmmpiY2NrZv377YexKJJDw8PD09vfmRMpnMw8MDAPh8vk6na+X5qQkpnYeiopUyGVy+bF1Xd8kgJ8zJyVm+fLmdnR22n7Ozc1RU1O3bt5scVl9fv3v37oEDBzIDzPHjxz+26j0DNSGlM6G7cWOuTAZpaU4qVX5HTnTu3LnQ0FCBQKA/8tRoNE0OKy4ujoqKcnC4m3PR0dFx0aJFly617SeAmpDSqdDpVNevj5XJ4NChsIqKira+vba2NjY2tl+/fthUYrE4PDw8LS2t+ZEymSw8PJypjD1o0KDY2FilUtkOzdSElM5GY2PVzp3TASA4OLihoaGV78rNzV2+fHnXrl2xqZycnKKiom7dutXkMJVKdfDgwREjRuDDBALB5MmTExISOiKYmpDSCSkqKpJKpQAQFham1WoffTAeeQqFd5frAgIC4uPjm488S0pKoqOjXVxc8GEODg7Lly8vKCjouFpqQkrnJCMjw9bWFgCWLVvW4gENDQ3x8fEDBgxgRp6hoaHJycnNj5TJZBERERKJBB85cODA2NjYuro6Q0mlJqR0Ws6cOSMWiwFg8+bNTV46e/YsM+fp4uKybt26srKyJsfgkWdISAg+jM/nd3zk2SLUhJTOzPfff8/j8fh8/uHDh/XbKysrLS0t8ciz+VpCaWlpdHS0m9vdnRldunSJjIzMz+/QdOsjoCakdHLWrl0LAObm5ufPn9dvVygUzQ++dOlSRESEubk5tl+vXr1iYmIMOPJsEWpCSudn0aJFAGBvb5+VldXiAVqt9siRI/ojz5CQkCNHjrQ+6qUjUBNSOj+NjY1TpkwBgB49epSWluq/VFlZGRMTg6dSAcDGxiYyMvLGjRtsyqMmpDwR1NXVPf300wAwdOhQPLy8fPlyRESEhYUFtp+Pj09MTMydO3fY10bzjlKeFIqLi0eMGJGfn9+zZ8+amhq8+Z3P50+aNCkyMnLs2LHM9giWoSakPEFkZmYyPaG5uXl4ePhbb73Vp08fsqqoCSlPFvHx8evXr/f399+8eTPeBU8cakIKhTA0xwyFQhhqQgqFMNSEFAphqAkpFMJQE1IohKEmpFAIQ01IoRCGmpBCIQw1IYVCGGpCCoUw1IQUCmGoCSkUwlATUiiEoSakUAhDTUihEIaakEIhDDUhhUIYakIKhTDUhBQKYagJKRTCUBNSKIShJqRQCENNSKEQhpqQQiEMNSGFQhhqQgqFMNSEFAphqAkpFMJQE1IohKEmpFAIQ01IoRCGmpBCIQw1IYVCGGpCCoUw1IQUCmGoCSkUwlATUiiEoSakUAhDTUihEIaakEIhzP8DNtOdbO9s3zIAAAHwelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkAJiWSBuYGRjSADSjMxsDhpAmpmFzSEDRDMzYmNAlLAzgAWYgHohAhwQmgmLGTABgoYLQJQwsUNo4tyDyxqon7gZGBkYmTKYmJgTmFkymFhYE1jZFNjYFdg5NJjYORU4uTKYuLgTuHkUeHgzmHj5Evj4M5j4BRK4BTOYBIUShIQzmIRFEkREM5hExRLExDOYWCUymCQkGSQYE8Q5EwR4EsSFEpxYgDaxMUqwsgC9z8UtKCTOycrLI8DPxyYsIiomLiTuxAh0CQMs2K98PH+A/bXoARCn03HzAYPnE/eD2Fa2xw586im2A7E/9Kw8UJOwwx7EfnGw+EDPt4Vgdtsp3wNyKs/2gtiyT+/sP2EweR+I/cw9ZH+kaxZYzXahbfv37hVyALG/i2vaVxTagsUPVC2wV3FQBtsVPlXfgUUkAMze2RPqkGHIA3ZPz8yZDn99FcHsQ+zzHDqLGsBs2cfJDlZ5k8Fs3Q4VB/c9cWD2m68ZDoWTj4Pd3PXPyWGV7SOwXfLxNQ4uYnZgN+xND3MIU+wGs3vk39lf2j0BzD6yp8zepCEEzFbzPW4/a/kPsN6+qc0HFAJXQNxmnHjge4gO2C4xABWOhb4liKcEAAACcHpUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VW24bMQz89yl0AQt8iY/Pxg6KoogNtGnv0P/eHyXlJKsAQnctQqudpUjOUD61un5cv//52z4uup5OrcF/fhHRfjMAnF5aTdrT89dvt3Z5/fL0vnK5/7q9/mykjSK/yfsz9svr/eV9BdulnbVLOBm0M3UWkpxBh3kd31IhR1dAG4nEjhyuvkHywyeGhEm+JzYX2gDl4ZLCZUjDLgIiYwMcBeTu4IYZcycdzLYB6gNIOMS1naEj5u6yQVq7VRJGwzK2RJKb+C5KL5/QnYKo3gcOJNwAo93LpRCJZO0zL3LeATOHSy6rwpgeTQCQd8CiJ9MdmcNMR9k0dolj0UPpiSVghovksKslFj3cmdVQinEMGKg7ZPEj3VJywYUcBOxbn2Mig13E2lk6lDi2qevcfSgYT2ROaB+ntdRwHwaZSpEqDrSVEXpyyV2riqVc9rB9kWJuDqKW6kjyNaW8AxJMYAgzFJNh6Tl2QHwUcwCkdiS7xxy3QJpMugKzJzCJD9puzVMboeyZV7rOmtOuPiTT48gCZVUwgyXFLXB2j1QrQGaTCmXMztwxTm/9M9At80nKNUh9B32+XT8dJI+j5el+ux5HS910nB+Sg49DQmocR0Hd42j4fGh6tDXmsKN3MYcfDUo54mhDzEdcu03KIC5tJWWQlvbBaXhpEymDsrSDlMGxyL4eU9SLvKUM2iJjmZ59kauUwVh0KWVoFaCUIVyUJmWIFklJGeJFO1KGZBGJZOVoLGLAMqQL5zJXPhYqYpKlgjQjtqU6FG+YWPWwsl/P739KOT/9A1lwSDr52is4AAABQHpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCVQOW7EMBD7SspdQB7MpTlgpNo+eYT7NGn38eE4qgSK4vW65MJ5fL0en9/PS3E9LgPya8+f+3Jdas9LXh/vxxHkXZrrUDJXz3Uem4Il9zqExLoGCpL2zsWkluV6s7TL9xJyZ3cgRsWVAkRj2z+isr3XwSSCn4MJpW7cgGml12gxlbaqQr9li8rNc1XoK3y0bJ1MEbxvUjqzAILTtkmKN8tAwFPxaP+WJVq812lkFsiFitJQWKdTNs4gW9lqkLZpczjxlJ5fO3hyOubIiQRyckHHyIvVhxOTBImsOsfeiD2ysUFGbhmg3UxQo5PlBmwz13LsndNeqIIxlyOL9l20w0pqgYp0N2XD2qHarjHr+AwKZ8xk4pMXqbZU1pSK1uj1fP8BUMFr6Kcgob4AAAAASUVORK5CYII=</base64_image>", "role": "assistant" } ]
Synthetic_Accessibility
CCC(C)NCC(=O)O
42,811
{'sa_score': 9.5, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
131.175
0.4591
[ { "content": "Provide information about Synthetic_Accessibility for the molecule with SMILES 'CCC(C)NCC(=O)O'.", "role": "user" }, { "content": "{'sa_score': 9.5, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Bioactivity_Prediction
C1=NCCc2ccccc21
76,705
{"predicted_classes": ["Unknown"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 0, "enzyme_inhibitor": 0, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Medium", "drug_like_properties": {"molecular_weight": 131.18, "logp": 1.66, "hbd": 0, "hba": 1}, "structural_complexity": "Medium"}
131.178
1.6616
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'C1=NCCc2ccccc21'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"Unknown\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 0, \"enzyme_inhibitor\": 0, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Medium\", \"drug_like_properties\": {\"molecular_weight\": 131.18, \"logp\": 1.66, \"hbd\": 0, \"hba\": 1}, \"structural_complexity\": \"Medium\"}", "role": "assistant" } ]
Solubility_Prediction
CCOc1ccc(-c2[nH]nc3c2C(c2ccc(OCC)c(OC)c2)C(C#N)=C(N)O3)cc1OC
1,624,498
{"log_s": -4.98, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 462.50600000000026, "logp": 4.11, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 3}}
462.506
4.10948
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'CCOc1ccc(-c2[nH]nc3c2C(c2ccc(OCC)c(OC)c2)C(C#N)=C(N)O3)cc1OC'.", "role": "user" }, { "content": "{\"log_s\": -4.98, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 462.50600000000026, \"logp\": 4.11, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 3}}", "role": "assistant" } ]
Molecule_Visualization
CCCCc1ccc(N2C(=O)C(Cl)=C(Nc3cccc(C(=O)Nc4ccc(OCc5ccccc5)cc4)c3)C2=O)cc1
1,693,385
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAf3ElEQVR4nO3de1hU1foH8HcuDHcVFbmIwFBAAipKkKCS0giamJrQMZOyJLqK/fIp7KSCpUdT86hpZV5K00xMLcEkKQ2JNEPTxExMB9EkBAFJ7sys3x/L5mAqzuwhlyPfz9Nznh4Oa+81tL+z9177XWvLGGMEAOLIRXcAoL1DCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCCVqYA3LypYtKF2gbdCuvrhadHfAgilFd8BSzSqZ9ajTo14qL22DtrSpVHR3wIIhhBKVNZf1su1FRB4qD9F9AcuGy1GJbGQ2Vboq0b2AO4GMMSa6DxbpXNO5dy68o5ApRncc/VvDb+M7jxfdI7BUCKFE47Xjq3RVizwW3WNzj+i+gGVDCCVy/tm5vLm8OKi4h6qH6L6AZcM9oRTFjcXlzeVdlF2QQDAfQijF4brDRNTXtq/ojsCdACGU4nDtYSIKtgsW3RG4EyCEUlT8UhGsCw6xChHdEbgTYGBGCh8fH61WW1BQEBgYKLovYPEQQpNVVVV17tzZxsamurpaqUTJEZirfRxDej0tX06XLpGnJz3+uJkbO3LkCGMsKCgICYQ20T7uCbduJS8vmj6dysro8GEzN3b48GEi6tsXQ6PQNtpHCH/9lfr1IyIKCaHjx2nuXBo5kk6elLCl4uLiVatWEZGHB+q2oW20jxD26UPffUdElJdHPj70zjuUmUmBgZScTGVlRm7j1KlTU6ZM8fPzKygosLe3X7NmTUlJyT/YZ2g32kcIY2OptpZmz6bAQNq4kRwcaMgQ0uvpnXfo7rvpP/+pr61tpXV+fv7YsWP9/PyWLl2q0+n+9a9/qdXqoqKi6Ojoixcv3rIPAXcs1q40NDBfX0bEiFh4ONNoGNEfoaHu7u4rVqxobm7+26/n5ubGxsbKZDIiUqlUCQkJhYWFRUVFkZGRAQEBRBQcHFxZWSnko8Ado52FkDFWV8cWLGBOToyIyeX6oUOf1Wj491FQUNCOHTsYY3q9fvv27eHh4fznjo6OycnJv//+O9/A2LFjicjX1/fuu+8mooiIiMuXLwv9SGDZ2l8IuYoKlpLCbGx+HTRIpVJFRUV5enryyAUGBvr7+/N/d3Z2Tk1NraioaNm0qqqKD40GBAT06NGDiIYOHVpfXy/qo4Cla68h5IqK0p57Ti6XE5GTk9OQIUP4lScReXl5vfPOO7W1tddtd+HChXvuuYeI+vbt6+LiQkRjxoxpamq6xd2HO0P7DiFjjLGDBw9q/roilcvlCoVixYoVjY2Nrbc6e/ast7c3EfXv39/JyYmIHn/8cZ1OZ+ROU1OZTseOHWNHj7JNmxhj7MIF9s03Zn4UsEjtY3S0Vf369cvOzs7Ozu7Zs6der7/rrruSkpKsrKxab+Xh4ZGdne3q6rp///5evXo5ODisW7duypQpN91dZSWVl1NuLq1cSWfPUnEx5eYSEV26RD//3CYfCCwMakf/p6amxtHRUaVS1dbW8mvUmzp69OjgwYMrKiqGDh2am5tbX18/c+bMWbNmEVFtba1Wq9VqtWVlrgUF92q1pNVSURFVVdGUKaRUklxOQUHUtSstWUKRkVRRQT160Esv/cMfEm5Dok/Ftxd+g3fu3Dnjm+zbt8/BwYGIHnzwQV5N6ufnx7fD3XvvDP5MhP/j4MAmT2ZTp7LycnbffWzHDvbii4wxdvIk++9//6nPBbczlCBfxdvbu7S0VKvVdu/e3cgm/fv3/+KLL2JjYzUajaura3p6emFhIRFZW1t7eXmp1epevTrFx5O3N6nVpFZT165EROvWUZcu9Mor1K0bdehAROToSH8NykI7I/pb4Pby9NMvBQcPSU/PM7Xh2bNnL1++7ObmRkRvvPHGuXPn9Hr9TVs1NLD772dWVmzfPkndhTsCzoRX6dr1v4cP0/HjJjf08PCYNWtWSUlJWFjY9OnTDY86WqdSUb9+lJNDjzxChw5dOUmKtGgR1dZSTQ29/jo5OIjuTXuB0dGrqNVEREVFJje8cOHCokWLiGjevHlGJpCbP58GDqSzZ2ncONLpTN5vWzp6lBQKmj6dxo+nVauEdqV9QQivwkOo1ZrcMC0trbq6etSoUUOGDDGpoVJJGzdS1670zTe0aFG1yTtuQ+fPk5cXEZGXF50/L7In7QxCeBVpISwsLFy1apVCoZgzZ46EnXp40Pr1NHDg53PnqrOzsyVsoW3060dZWVRXRxs2kIlfJWAOhPAqnp6kUNC5c9TUZEKradOmNTU1JSYmSl73KSaGoqJ+qqysmDBhwu+//25ME8bYsWPHzrfVKWv5cvrwQ5o4kd59l/z8aPjwttksGAEP66/S2EhLlpC3N0VGkrMzGfPEfv/+/REREXZ2didPnuSjo9Lo9frhw4fv2rUrPDw8JyenZclOZWXl6dOnz58/X1JScvovJ06caGhosLOzKygoMHeaf1MTeXvT+fM0bBi5uNCsWVeuS+HWED08e3s5dowFBbGaGjZzJquqMqrJgAEDiCg1NdX8vZeWlvLnkxqNZsqUKQ899FDv3r0dHR1v9N+O1wYMHz7c+JrV6/vkE0bE/P2ZlRVTKpkptQpgPpwJr/LLL7RxIymVpNdTZCT98AMFB1NwMLm7X//3t2zZEhcX161bt5MnT3bgD93Nk5eXp9ForK2tL126ZPihjY2Nu7u7z9V8fX2zsrJeeOGF8vLyN998c/r06dL3OnAg5eXRyJGUkUHx8ZSebv4HAePhOeHfeXtTWRn99BM1NNBbb135YbduFBxMUVE/eXmdCA4O9vX1VSgUzc3NM2bMIKK0tLQ2SSARlZaW1tfXOzo6zp8/38fHR61We3t7d+7c+drfXLZs2ZQpU2JiYnbt2pWamnrfffcNHTpUyi5//pny8qhjRzp4kIjohRfM+gBGq6urO3ToUM+ePa/76doX0afi20VzM5s2je3ezVatYvX1zN+fZWSwl15igwezTp2ulH3277+A/9Hs7e379+/Ph2FsbGzacGZ9VFQUEY0bNy4tLe2PP/5o5TePHj1qZ2dHRA899BARdevWzaSSV4Pj06cze3s2fDgjYgEBzIhCH1NVVFTk5+enp6fPmzcvKSlJo9H4+PjI5XKZTKZWqzEPEyFkjLGGBhYXx4hYSAirq2OMsdraq45GrZZt28bmzl05atQor2sGLVatWtUm3fjll19kMpmDgwPfRVZWVuu/v2HDBv4twFfiCA8Pv+k0yL+pqqqyt7f37NhxS1xcg1rNli83o/tXfPzxx4mJiU899dSQIUPUavWNlkhWqVT8/0pJSTF/pxYNIWQ1NWzYMEbEOnViecYVjVZUVAwePJiIfHx8iOiuu+66dpEoCSZPnkxEw4YN49s0Zrhl0qRJRKRWq/nA7KuvvmrSHhcvXszTS0QdO3SovXRJat+v2Ldv37UFQ05OToGBgYMGDYqOjo6Jibn//vt79+49evToffv2WVlZyWSybdu2mblfi3ZHhXDNmjVvvPFGlZHDmowxxv78k0VFMSLWrRv76ScT9nX48GGZTGZvb89zmJ6ebnJ3/96TPzt27GiIxKJFi4xpVVdX169fPyKKjIxUqVQymWzr1q1G7lGv1/PVdHjsX+RTqszzyiuvEFH37t2feOKJBx54ICQkxN3d/bp1fJ6enoyx+fPn85SeOnXK/L3fSmfOnMnKymqTtYXunBCmpqYqFAqZTKZQKAYMGDBv3rxjx4613qSioiIqakzPnjVubqygwOQ9Dh8+nIhGjhxJRH369DFm2kQr3nvvPSIKDQ2Vy+W2trYXL140suHJkyd5ekeNGkVEnTp1MvKA3rVrFxF5eHjwUaWjR4+a0X3GGKuvr3d2diaiAwcOPPXUU4a8WVlZ+fj4REVFTZo0afbs2evXr8/LyyspKWGM6fX6hx9+mP8Bb7Sij1h1dXWnTp3Kzs5esWJFSkpKfHx8SEiIYRxu8ODB5u/iTgihXq9/9dVXiUgul3t6era8CbnnnnteeeWVnJycay8Xf//9d752aGjoiKIiKfvdu3cvEXXu3NnTw+O/4eE1X31lzqfo3bs3ET344INElJiYaFLbL774QiaTWVlZ3X///a0c0Dqdrri4eO/evWvXrk1LS+N3nvb29kQUFRVlTue5Dz/8kIjCwsIYY99+++2aNWv27Nmj1WpbH3qprKzkVxPPP/+8+X0wU2Nj4/Tp0xMTE+Pi4u69994uXbpc94aWiDp06MCXX9i4caOZO7X4EOr1er6yi5WV1aZNm1atWuXt7R0TExMTE9NyeruTk1N8fPzatWv5+oVarZavGhoQEGBYUFSC6MGDPxo06FJ8PCNikZGSt5OTk0NELi4ufLw+Pz/f1C289NJL/DqQLz/11FNP7d+//9NPP507d25SUlJ0dLSvr69Kpbr2YOJH0qeffiq58wahoaFE9NFHH5na8PDhw7a2tkS0bt0687thjmsft1pbW3t7e4eHh48YMeLhhx8eNWqURqMJDg5OS0t79913icjBweGm11yts+wQNjc3T5w4kf+l+M39hAkTDH++Tp06RUVFjRgxws/Pz/BDpVIZHh7Ov+HCwsKMv+q7Lv2OHYyIubuzLl0YEfvuO2nbeeSRR4goNjaWiCIiIiRsobGxkd9MxsfHq1SqGz23dHNzCw8PHz9+/Ouvv75y5cqPP/7Y3d2diKZOnSqt5wY//PADEXXp0qWOjy+biF+Nm39Am2ngwIFEFB4ePmrUqMjIyMDAwBv9JceOHcsYe/zxx4koMDDQnMdUFhzChoYGfjthb2+fnZ3Nf6jT6fLz81NTU0NCQgzjAQqFIigoKDY2dtCgQfxs4Obm1qdPn0tmDwYyxljfvoyIxcZe+V/TnT9/3srKSqlU9urVi4g2bNggrSPFxcXPPfdcZWWls7OzlZVVQEDA2LFjp06dumzZsh07dhw7duy616j79u3jIzpbtmyRtl+OH46mDs9euwV/f//q6mqjGmRmspQU9u9/M6l/sb8pKCggIkdHx+rq6qCgIEPebGxsfHx8NBpNUlLSvHnz0tPT8/Pz+cFz+fJlflPz6KOPSt6vpYbw8uXL0dHR/Dpz3w0Whzh9+vTSpUuHDh3a8jIsPj4+Li6OiJKTk9umK7zw0tubOTgwmYwdOmTqBtLS0oiIT0R0dnY2c8Bt69atROTr62v8QNHChQv5X1KrLZW207KyMhsbG7lcfvr0aWlbYMYc0DU1rKCAZWSwpUvZzp1s0qQrPzf8i3mSkpIMB8aWLVs2b96cn59fXl7eeqtff/2V1/d+8MEH0vZrkSGsrKyMiIggIhcXF/7e3NbV1NRs3749KSnJzc1t4cKFX3/9NRGFhoa2TW+am6+8ZGbECEbEZswwqXVdXR1fO5iPbf773/82szsPPPAAES1ZssT4Jnq9/pFHEoYM+blPHyZthHLevHn8clpK4xZOnDjBD+g5c+ZkZ2d/8MEHr7322rhx45JHjmQuLqzlqnUTJrBnnrnSzPAvZuB1CzKZ7Pjx46a23bhxIz9hHjx4UMKuLS+EpaWlwcHBROTl5VVYWGhSW51OV1dXd/nyZX75Z+xlz02tWMGI2KRJbPduU5vyWbwKhaKoqGjz5s3SSs8MCgsLZTKZnZ3d396fcVPV1czfnxGxZ581eac6nU6tVhPRzp07TW7cQmNjY2Nj4/r16/k1YcsbsC62tkwmY9bWzN+fxcSwZ59l69ezWbPYF1+w7GxmxjWwAa9b0Gg00po/88wzRHTXXXeZ9Jias7AQnjt3jl+s+/v7FxcXS95OWFgYERnuJM1VX8/y81leHps6lb3+Olu92vimzc3N/BpswIABphadXYvX3Dwj6cxw5AiztWVEbO1a0xpu376djC7xacXq1avd3d0XLFjAv0ciIyOffPLJWbNmrVu3Ljc3V3fu3HXqWnNz2e7drLGRpaayX36RvGtD3YLk2p36+vqQkBAiGjlypKlPjC0phGfPnuVPpYODg0tLJd69cC+//DK10STA/0lMvHKUPP00M+VwvHjxIn9kZ+YQpaHmxphL9OviZ3R7e2bSCGVMTAwRvf3229J2asAP4hEjRhDRxIkTTWj5n/8wIhYYyKQOUfK6hR49ephTTV5UVMSfMBlZ7WRgSSE8ePCgUqlUKpWnT5/OyMgwZ2xz27Zt1EZPqP/HcP5JTmYmDq7s37/f/CFKPso/aNAgyVtgjCUksOBg9ttvN/m1+vr6X3/9defOnW+88YahxOfHH3+UXDb0/fffE1HXrl27du1KRAcOHDCh8eXLLCCAETGpQ5T8hnzOnDnSmhtkZGTIZDKlUpmRkWF8K0sKIWOMP9TiD4W3b98ueTtlZWX8mqehoaHNOrdwIduyhe3fzyRVfvAVEzt16vTbTRNwA7zmRtpj9+pqtmABY4xt385272YaDbtwgR04wDIzWVER27OHrVnDZs5kCQnsySfTu3fv3rIc1MfHx9XVdc6cOXK5/K233pLW+ccee4z+elLar18/k9ufOMEcHRkRW7HC1KZnzpxRKBQqlar1uWM3VV1drdfrk5OT+X/HmpoaIxtaWAjj4+MN/6nMeSTFGOMvGPzhhx/aqm+MMZaby3bsYJKCrdfr+TuAe/fuLaGKktfcuLq6SvtaqapiL7/MysvZunUsO5s9+SSbOpXt3cumT79qSJKIhYVl0F/loA888MATTzzh6upKRA8++KBcLlcqlTk5Oabu/cKFCzY2NgqFgn+PSKi5YYyx9esZ0ZGgoMMmPiV67bXXiOixxx6TstMWEhMT/fz8pk2bxsftjW9oYSFcunQpEfEp5OHh4eZs6umnnyaihQsXtlXfzFddXc2HB4wfWdHpdDyxvOZm5syZ0nZdVcWGD2fvvceefZZlZ7OXX2arVrE5c9iyZax7dzZwIEtIYDNmsDVrWE7O5aKiopa1uEeOHOFFZ/zL0cXF5fz58ybtnS8VGRkZSWbU3DDGcmfMsLW1NWmIsqGhgZc3fv/999J2ylVWVvInHPzO9v333ze+rYWF8NChQ0SkVqsVCoWVlZXxZ/xrrV27lohGjx7dht0z35EjR/h8+WvPBi3npycnJ/Nyfjs7u2nTppWUlPCHLmfPnpW236oq9vrrjDG2bduVEOp0bOhQ9tlnRjX/4IMPeOkSL50bMmSI8RMsm5ubeb0r/2415wLH+CHKsrKyAwcOpKenjxs3jv6aBPOd1KpDxtjbb7/Nh7gNNTfGt7WwEDY3N/MBQF7htWfPHsmbOn36NB8JMHMKUptbuXIlP6ALCgoYY/Hx8YGBgTyZ15WYmJiYmEhEcXFxknfa2HhlOmVxMSspYfysUFjIjC+AeeKJJ/iDCn51OsPoogU+SKZWq82vuWGMFRUV8cJgPlpbX19/7UQkfggZeHh4REREjBkzRi6XS3vUqdfreX0yHyg2tRjLwkLIGOMzUPlcvjfffFPaRvj1El+u8xczni/9Q3hVup+f36VLl3r27MmPFScnJ39//7CwMI1GM3z4cI1GExYW5u3trVQq+SxK46fz/hNqa2v79OnDT4MKhUIul3/55ZfGNOTvKufTMs2vuWGMff755/wP0qlTpxt9c3Xs2DE4OHjMmDETJ05suVRP586dtVqtqXvcuXMnD7O0mhvLC+Hs2bMNIYyOjpawhQ0bNtjY2Hz22Wf8uf/kyZPbvJNmqq2tNVQFjRkzJiIiwtfX19ra+rrHk1wu79ixY3R0tLmrj5rtxIkTfM6B8Qe0ocSHPyk1s+bGYPLkyXz1ZJVKdW3t9d8mr3366adEZG1tzWdj3nfffaYObvGbYf49IqHmxvJCyIcBeX4cHBxMfbr67rvv8hl0Dz/8MB/NW8DH5m8zhYWF1tbWCoWiZd6cnJxCQkLi4+NTUlIWL17MDylzbozb3KZNm1oe0GFhYa0f0F999VX37t35VZz5NTcGTU1NX375pfEPe5577jki6tGjh6enJxH93//9n/H7KioqUigU1tbWfIaqhJobywthfX09v3ng07FNKpnl7y2TyWQ8gdRGC6v8QzZv3jxs2LAlS5ZkZGQUFBTcVmFrxfPPP88PaH61P3v27NZ/v7y8nI+mmF9zI1l9ff29995LRAMHDuRzbjZv3mxkW76qAx9VklZzY3khZH+tPM8/9uLFi41sxSv9ZTIZv1iSyWS31fOJO4ZhevGAAQMmTJhgGCdsaGi4doyELxInl8utrKzMnGBtpjNnzvARHX54ODo6GnNrV19f361bNyLiZ35pNTcWGcKUlBT666mUMacyvV7PV39QKBS8QEmhUKxcufIWdLV90mq1fH5WUFDQ+PHjIyIiWnlVjr29vbOzs/Gjqf+czMxMXnTGv9979ep106uPjz76iIgCAwOVSqXkmhuLDGFmZiYRhYSE8BW7Wtfc3MxX/rK2tua5ValUmzZtugX9bM8+++wzPmxrCBsvstFoNAkJCSkpKStWrMjOzj516tRt9YiIX1u6uLjwG7ybrri1fPlyJycnflxJrrmxyBBu2rTJwcHB1ta2a9eufPmmG1VINDQ08Hn09vb2fCa+YTUa+KctXbo0Li5u7dq1OTk5xcXFwgdvjdHU1MQLd0JDQ3kZ0FetLqKn0+kOHjzIJ0/kGbl09DUs761MmzZtSkhIaGpq6tKly8WLF/kP+XDcyJEjY2NjefkFl5SUtHLlSicnpz59+nz77bf29vaff/45fzAFcF2lpaV9+/YtKSkZNWpU//79U1JS+PmcvyWSM7wr8vjx47W1tTKZzNXVVfoLW6VlV5R169YZXmCg1+tPnTq1ePFijUbT8pWaPj4+ycnJ2dnZTU1NZ86cCQkJ4eMEraxGA9DS119/zesNBg4cGBsbGxgYyFdnvS43N7fu3bubswS7JZ0Jly9fnpycrNfrU1JS+FCnwcWLF3fu3JmRkfHVV18Z3uzn7OwcGRl56NAhrVbr5ua2a9eulktoAbTixRdffO+99/R6veEn131LpJ+fXytvcTWSxYTwrbfemjZtmkwmW7RoER/qvC6dTrdv377MzMzt27cfP36ciORyuYuLS05Ojq+v7y3sL1i25ubm1NTU8vLyYcOGqdVqtVr9t4rTttRmp3DjfPjhh7179540aVJ+fr6Rw2J6vX7q1KlEpFAoVpuyfMvx48cTExOjo6N//PFHqf0F+Mfd0hDu2bPHzs7OMGzt7OyckJCQnp7eyryP5uZmPvFPpVIZX8QAYEFuXQgzMjJsbGyIKCwsLCkpiRfpcba2trGxse+///7fFvxramriqzLb2dm1VWkvwO3mFoXwk08+4QOYzz//vOF5UUFBwbx58zQaTcv3KAUEBKSkpOTm5tbW1o4ePZqIOnbsmJube2v6CXDr3YoQvv/++7xa+kYvRv7jjz9Wr149ZswYBwcHQxp5aJ2dnaWtagxgKUwLoYQFiAwTF+bPn3/TX25qasrNzU1JSfHz81MqlR06dBD7jh6AW8CERxSMMU9PTxcXl9jY2JEjR/br1++6r0FuyfBcYfHixXwpOOPt3btXrVb36NHDpFYAlsf4vBYWFvKRFc7Ly+uFF1640Wu7W05ckLiCHUD7YNrD+rq6ury8vIyMjK1bt547d47/0M7OLioqitdt8sV5dTpdUlLSmjVrrK2tP/nkE/4WQQC4LokVM4yxgwcPZmRkZGZm/vTTT3wjcrk8NDQ0Ojp69+7deXl59vb227Zt41OzAOBG2qBs7cKFC1lZWZmZmVlZWX/++ScRyeVyR0fHrKys/v37t0UnAe5kbVk7Wltb+8033yxZsuTMmTNz587lE/kAoHUWU8ANcKeSi+4AQHuHEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCPb/aFRtRfSa9GYAAALWelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJydkm1IU1EYx+892+62rnObm5tOr569OO8kS4ggCt29IyH9EJFQSCuuQXRJAukFsQzDD5kYmBGYaakpGME+pJVC5M6Kyl5G9KGwSKksBCUsyaCM6t5nCDGhogOH/+95znOe8z+HMzcamaSUYVEmohKjQJmrlHmcZihJUVqTUISWqcArqtEygqyqhv4NEit6ClTpkIgNCUVLsZXC6glLoZ6C/Yj+U+ekI5Jb/1OPZDd/v89/QfKtl1WwFE3RiEIapYrS6mSkYyRGLyO9ARuM2LiCR0YWsykUa+KRKRWnmrHZIiOLVbKmySjNJtns2J7OI7sDO5zYmSGjjEwp0yUjVxbOyqayOYrLkVFOrpSLZYTdktujLHklr09GtjwZmfzYn88jPS/xARkFtJLfgPPMks8peTgppFMsMtoAr2d0OqPBb2IZizXNlmdmMjJdXp+TycnFbg/nRMq/oamlv6O5sCdW0yMQNQh1b44NFYSBPweKY4vlLuA1K/2xkmdrgd/fsMfY2emoypVBV2xb+NqoyuxDQ+z6lsKgymfPTZGBi/UlKn+NEFJa0Qf5xvg98uJ1kaDyxMxHMjO3Czi+r5M8n68Ermk6Q2Z9XcBvFg6RHs4OfGU0nQyGMTCyDEd3mC5Dz9aTFAnF226p/LjvVHRyrBe8nSi4XzJS3gx8tL02+PJYN/hxcJyw7iYFe/u5kPCo6RNwtGK78KqrKFFf2il4xJ9wryfSiLC1fhzy1d+nhcIfUeDB+m/CZPADnJufki7WXjpfrPLTDq/4lm6Fmu69G8Qj+v3AZQtl4lS7Ht7QeadK7L36BfLrNdXiu1QW+PThsLi6zA9+bg9sFMc6ZsDzzqoJIWW8OZG/GxHiQ7uBD8ari4+3EOC6xjbS39IAvDBfR1j7MPiPNI0Tt9AJ/TcdWCQPGszgwfEL4jHZ6eAy4IAAAAO2elRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVZbjuQ2DPzvU+gCY4gvUfzcmVksFsF2A8kkdwiwn7k/UlRjZC9CpLtN2HJZLrHIUt9afn5//+3vf9r+8Pvt1lr/n19EtL+k93770fKkvX799v3e3j6+vH6OvD3+vH/80ZSbDjyD76/YLx+PH58j1N7aC+kh1qdIe5Gj9/Dg1nGSn/NhXlA+gmROSqhqpz4KqCwoHZPZQeOFD6U+uYLqgvZDpnlQQqcSaS+gltA4OHQYJsX0RHNUyPFEDu2AthfMbszDC6Qnch6mIZz3h3snKYAzgX4QsbjhPusYkOK/wGj39jKOzolsdLAbEloAqeeU4wDQ5mh8+BBnrZDUHvly4zkc2T0UWkXFkpZIekwbPj2R3VSrhWORbz8TirR3KI9nPKxUk5ZGAjXduoOokEqfFdJy8QBI+GAgrduwErkkogMTkQ+kSYijnnNJxBjHopeY3YnKCqX5nLTHdI084yGhJTQAzaqbEWM942xlSrkvZAwnS+GFKLNQALOXUOmopRzG2hk1XQEZcqLRRLoFlj7niBooSKccMlRRIFj5mDFrkilRys4slEiNCeErZHaRodZoIl1Y+AhkvkSmRI5CDxuytIL31HP6QqI+HGvD25GiWSMnlh7IoemzHd1QIhUw9YEtMOP+ejsRmqOCpuOhRQ4n9pj5+kBDRQlNiWBhA2mamlWVDlLPmp0EYyTqyE8SCHaO0u3kCR1z8lwETIVqaOpEcji6s2ddDmTXqkyJPamiK57FoTa5TJWkTgO2PAkPZSWPqF3Zl/RoOYks0DnNrATOVfLd3EYWqHXlskAlnnZj6uQJiIDlVyRh6I/0kIAfYb3Lkt28hNLTF30MG8vn4ZC1nspPV0afwbZTT1Ymr/L59f7+y8b33ApfH/f3cyvML5/bHS6anFsa4dBz2yIcdm5NuGjj3H8Uh5+bjOKY51ZCOOLcMCiP677AGYgu/k9rZJOjZJdh84Of8xrZFCk5ZtgsYc+0wiZKyRSBNldKsgi06cImNANtxjBPzcBXk6QMvDlzZi/DmdCVUfw2Z86kIvDmDB/TDLw5c6YWgTdnTs4IvDnDfygDb86cOUbgzZkzzQhy9Q1tyxQu9qAZZHOGC2gGOetAckTQyZee1gyyOcvijO13c5bkjCCbs2SeOXvt0nVLL9mc0V6cQa9tpKgd3ZQ1KWfYlPNvX4bNRlfpxllwugjPSxloEgajUwhdhO2Srmyga7vk9ee/Tpzf/gUAPP9qfyBq9QAAAd96VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwlkjtuJDEMRK+y4QzQI/D/wcBR5+NDKPURfPgtyuhEeC2KVUXe931v3ns/PnI/vr6f9+P+eX7dj8/WPfjAz7Y5f9/bB25/7m3Prc9b8Hdv/vf7eLEtdarrpYuos6/3i2U1aw8yI+ZBvEokr5csYyodREvLa1AZswH1krbw64XbzBUHhZGhELddJBKsllurXrQik3gey8UsWkBiET0qYpGw2MVL0rsOAfC+ZGVoyilzKbwJoaU6VbbKAy5AyM0P8WzSC3+yfcwovCROspRNh+CknQHi5DG6eZkSF7orS//dIRjXcULJ3HJCWNSVx7GENkKYVKo7BlGOXKCOZHe4U2YnZIAYkQGAk5QDIH1VCvSrClQDaBiuoF1UV6PbeBM5CqzLDd0cUXDJNIuG0OudSLD9tLfuUZRjF3GhDN1ryhpCHFMZKw7LyBLjFEEoqGNO5P7GzJOlpq7FqxEmNiME/xDGzHeI4USnrCX1gKg6Ih3hjhXWlVnTLSDN7bwzocKHlxCeCWxc8QybMiZun/x1Eqpyhx+kSJ4ejTtOJvE3WkuerenGevqZbZ+5n31LfGdvMuIvEixQ9VkcpH7WWUw4r+fvf9OhrobBSMfsAAAAAElFTkSuQmCC</base64_image>
580.084
7.2962
[ { "content": "Determine the molecule visualization of the chemical structure 'CCCCc1ccc(N2C(=O)C(Cl)=C(Nc3cccc(C(=O)Nc4ccc(OCc5ccccc5)cc4)c3)C2=O)cc1'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAf3ElEQVR4nO3de1hU1foH8HcuDHcVFbmIwFBAAipKkKCS0giamJrQMZOyJLqK/fIp7KSCpUdT86hpZV5K00xMLcEkKQ2JNEPTxExMB9EkBAFJ7sys3x/L5mAqzuwhlyPfz9Nznh4Oa+81tL+z9177XWvLGGMEAOLIRXcAoL1DCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCAEEQwgBBEMIAQRDCCVqYA3LypYtKF2gbdCuvrhadHfAgilFd8BSzSqZ9ajTo14qL22DtrSpVHR3wIIhhBKVNZf1su1FRB4qD9F9AcuGy1GJbGQ2Vboq0b2AO4GMMSa6DxbpXNO5dy68o5ApRncc/VvDb+M7jxfdI7BUCKFE47Xjq3RVizwW3WNzj+i+gGVDCCVy/tm5vLm8OKi4h6qH6L6AZcM9oRTFjcXlzeVdlF2QQDAfQijF4brDRNTXtq/ojsCdACGU4nDtYSIKtgsW3RG4EyCEUlT8UhGsCw6xChHdEbgTYGBGCh8fH61WW1BQEBgYKLovYPEQQpNVVVV17tzZxsamurpaqUTJEZirfRxDej0tX06XLpGnJz3+uJkbO3LkCGMsKCgICYQ20T7uCbduJS8vmj6dysro8GEzN3b48GEi6tsXQ6PQNtpHCH/9lfr1IyIKCaHjx2nuXBo5kk6elLCl4uLiVatWEZGHB+q2oW20jxD26UPffUdElJdHPj70zjuUmUmBgZScTGVlRm7j1KlTU6ZM8fPzKygosLe3X7NmTUlJyT/YZ2g32kcIY2OptpZmz6bAQNq4kRwcaMgQ0uvpnXfo7rvpP/+pr61tpXV+fv7YsWP9/PyWLl2q0+n+9a9/qdXqoqKi6Ojoixcv3rIPAXcs1q40NDBfX0bEiFh4ONNoGNEfoaHu7u4rVqxobm7+26/n5ubGxsbKZDIiUqlUCQkJhYWFRUVFkZGRAQEBRBQcHFxZWSnko8Ado52FkDFWV8cWLGBOToyIyeX6oUOf1Wj491FQUNCOHTsYY3q9fvv27eHh4fznjo6OycnJv//+O9/A2LFjicjX1/fuu+8mooiIiMuXLwv9SGDZ2l8IuYoKlpLCbGx+HTRIpVJFRUV5enryyAUGBvr7+/N/d3Z2Tk1NraioaNm0qqqKD40GBAT06NGDiIYOHVpfXy/qo4Cla68h5IqK0p57Ti6XE5GTk9OQIUP4lScReXl5vfPOO7W1tddtd+HChXvuuYeI+vbt6+LiQkRjxoxpamq6xd2HO0P7DiFjjLGDBw9q/roilcvlCoVixYoVjY2Nrbc6e/ast7c3EfXv39/JyYmIHn/8cZ1OZ+ROU1OZTseOHWNHj7JNmxhj7MIF9s03Zn4UsEjtY3S0Vf369cvOzs7Ozu7Zs6der7/rrruSkpKsrKxab+Xh4ZGdne3q6rp///5evXo5ODisW7duypQpN91dZSWVl1NuLq1cSWfPUnEx5eYSEV26RD//3CYfCCwMakf/p6amxtHRUaVS1dbW8mvUmzp69OjgwYMrKiqGDh2am5tbX18/c+bMWbNmEVFtba1Wq9VqtWVlrgUF92q1pNVSURFVVdGUKaRUklxOQUHUtSstWUKRkVRRQT160Esv/cMfEm5Dok/Ftxd+g3fu3Dnjm+zbt8/BwYGIHnzwQV5N6ufnx7fD3XvvDP5MhP/j4MAmT2ZTp7LycnbffWzHDvbii4wxdvIk++9//6nPBbczlCBfxdvbu7S0VKvVdu/e3cgm/fv3/+KLL2JjYzUajaura3p6emFhIRFZW1t7eXmp1epevTrFx5O3N6nVpFZT165EROvWUZcu9Mor1K0bdehAROToSH8NykI7I/pb4Pby9NMvBQcPSU/PM7Xh2bNnL1++7ObmRkRvvPHGuXPn9Hr9TVs1NLD772dWVmzfPkndhTsCzoRX6dr1v4cP0/HjJjf08PCYNWtWSUlJWFjY9OnTDY86WqdSUb9+lJNDjzxChw5dOUmKtGgR1dZSTQ29/jo5OIjuTXuB0dGrqNVEREVFJje8cOHCokWLiGjevHlGJpCbP58GDqSzZ2ncONLpTN5vWzp6lBQKmj6dxo+nVauEdqV9QQivwkOo1ZrcMC0trbq6etSoUUOGDDGpoVJJGzdS1670zTe0aFG1yTtuQ+fPk5cXEZGXF50/L7In7QxCeBVpISwsLFy1apVCoZgzZ46EnXp40Pr1NHDg53PnqrOzsyVsoW3060dZWVRXRxs2kIlfJWAOhPAqnp6kUNC5c9TUZEKradOmNTU1JSYmSl73KSaGoqJ+qqysmDBhwu+//25ME8bYsWPHzrfVKWv5cvrwQ5o4kd59l/z8aPjwttksGAEP66/S2EhLlpC3N0VGkrMzGfPEfv/+/REREXZ2didPnuSjo9Lo9frhw4fv2rUrPDw8JyenZclOZWXl6dOnz58/X1JScvovJ06caGhosLOzKygoMHeaf1MTeXvT+fM0bBi5uNCsWVeuS+HWED08e3s5dowFBbGaGjZzJquqMqrJgAEDiCg1NdX8vZeWlvLnkxqNZsqUKQ899FDv3r0dHR1v9N+O1wYMHz7c+JrV6/vkE0bE/P2ZlRVTKpkptQpgPpwJr/LLL7RxIymVpNdTZCT98AMFB1NwMLm7X//3t2zZEhcX161bt5MnT3bgD93Nk5eXp9ForK2tL126ZPihjY2Nu7u7z9V8fX2zsrJeeOGF8vLyN998c/r06dL3OnAg5eXRyJGUkUHx8ZSebv4HAePhOeHfeXtTWRn99BM1NNBbb135YbduFBxMUVE/eXmdCA4O9vX1VSgUzc3NM2bMIKK0tLQ2SSARlZaW1tfXOzo6zp8/38fHR61We3t7d+7c+drfXLZs2ZQpU2JiYnbt2pWamnrfffcNHTpUyi5//pny8qhjRzp4kIjohRfM+gBGq6urO3ToUM+ePa/76doX0afi20VzM5s2je3ezVatYvX1zN+fZWSwl15igwezTp2ulH3277+A/9Hs7e379+/Ph2FsbGzacGZ9VFQUEY0bNy4tLe2PP/5o5TePHj1qZ2dHRA899BARdevWzaSSV4Pj06cze3s2fDgjYgEBzIhCH1NVVFTk5+enp6fPmzcvKSlJo9H4+PjI5XKZTKZWqzEPEyFkjLGGBhYXx4hYSAirq2OMsdraq45GrZZt28bmzl05atQor2sGLVatWtUm3fjll19kMpmDgwPfRVZWVuu/v2HDBv4twFfiCA8Pv+k0yL+pqqqyt7f37NhxS1xcg1rNli83o/tXfPzxx4mJiU899dSQIUPUavWNlkhWqVT8/0pJSTF/pxYNIWQ1NWzYMEbEOnViecYVjVZUVAwePJiIfHx8iOiuu+66dpEoCSZPnkxEw4YN49s0Zrhl0qRJRKRWq/nA7KuvvmrSHhcvXszTS0QdO3SovXRJat+v2Ldv37UFQ05OToGBgYMGDYqOjo6Jibn//vt79+49evToffv2WVlZyWSybdu2mblfi3ZHhXDNmjVvvPFGlZHDmowxxv78k0VFMSLWrRv76ScT9nX48GGZTGZvb89zmJ6ebnJ3/96TPzt27GiIxKJFi4xpVVdX169fPyKKjIxUqVQymWzr1q1G7lGv1/PVdHjsX+RTqszzyiuvEFH37t2feOKJBx54ICQkxN3d/bp1fJ6enoyx+fPn85SeOnXK/L3fSmfOnMnKymqTtYXunBCmpqYqFAqZTKZQKAYMGDBv3rxjx4613qSioiIqakzPnjVubqygwOQ9Dh8+nIhGjhxJRH369DFm2kQr3nvvPSIKDQ2Vy+W2trYXL140suHJkyd5ekeNGkVEnTp1MvKA3rVrFxF5eHjwUaWjR4+a0X3GGKuvr3d2diaiAwcOPPXUU4a8WVlZ+fj4REVFTZo0afbs2evXr8/LyyspKWGM6fX6hx9+mP8Bb7Sij1h1dXWnTp3Kzs5esWJFSkpKfHx8SEiIYRxu8ODB5u/iTgihXq9/9dVXiUgul3t6era8CbnnnnteeeWVnJycay8Xf//9d752aGjoiKIiKfvdu3cvEXXu3NnTw+O/4eE1X31lzqfo3bs3ET344INElJiYaFLbL774QiaTWVlZ3X///a0c0Dqdrri4eO/evWvXrk1LS+N3nvb29kQUFRVlTue5Dz/8kIjCwsIYY99+++2aNWv27Nmj1WpbH3qprKzkVxPPP/+8+X0wU2Nj4/Tp0xMTE+Pi4u69994uXbpc94aWiDp06MCXX9i4caOZO7X4EOr1er6yi5WV1aZNm1atWuXt7R0TExMTE9NyeruTk1N8fPzatWv5+oVarZavGhoQEGBYUFSC6MGDPxo06FJ8PCNikZGSt5OTk0NELi4ufLw+Pz/f1C289NJL/DqQLz/11FNP7d+//9NPP507d25SUlJ0dLSvr69Kpbr2YOJH0qeffiq58wahoaFE9NFHH5na8PDhw7a2tkS0bt0687thjmsft1pbW3t7e4eHh48YMeLhhx8eNWqURqMJDg5OS0t79913icjBweGm11yts+wQNjc3T5w4kf+l+M39hAkTDH++Tp06RUVFjRgxws/Pz/BDpVIZHh7Ov+HCwsKMv+q7Lv2OHYyIubuzLl0YEfvuO2nbeeSRR4goNjaWiCIiIiRsobGxkd9MxsfHq1SqGz23dHNzCw8PHz9+/Ouvv75y5cqPP/7Y3d2diKZOnSqt5wY//PADEXXp0qWOjy+biF+Nm39Am2ngwIFEFB4ePmrUqMjIyMDAwBv9JceOHcsYe/zxx4koMDDQnMdUFhzChoYGfjthb2+fnZ3Nf6jT6fLz81NTU0NCQgzjAQqFIigoKDY2dtCgQfxs4Obm1qdPn0tmDwYyxljfvoyIxcZe+V/TnT9/3srKSqlU9urVi4g2bNggrSPFxcXPPfdcZWWls7OzlZVVQEDA2LFjp06dumzZsh07dhw7duy616j79u3jIzpbtmyRtl+OH46mDs9euwV/f//q6mqjGmRmspQU9u9/M6l/sb8pKCggIkdHx+rq6qCgIEPebGxsfHx8NBpNUlLSvHnz0tPT8/Pz+cFz+fJlflPz6KOPSt6vpYbw8uXL0dHR/Dpz3w0Whzh9+vTSpUuHDh3a8jIsPj4+Li6OiJKTk9umK7zw0tubOTgwmYwdOmTqBtLS0oiIT0R0dnY2c8Bt69atROTr62v8QNHChQv5X1KrLZW207KyMhsbG7lcfvr0aWlbYMYc0DU1rKCAZWSwpUvZzp1s0qQrPzf8i3mSkpIMB8aWLVs2b96cn59fXl7eeqtff/2V1/d+8MEH0vZrkSGsrKyMiIggIhcXF/7e3NbV1NRs3749KSnJzc1t4cKFX3/9NRGFhoa2TW+am6+8ZGbECEbEZswwqXVdXR1fO5iPbf773/82szsPPPAAES1ZssT4Jnq9/pFHEoYM+blPHyZthHLevHn8clpK4xZOnDjBD+g5c+ZkZ2d/8MEHr7322rhx45JHjmQuLqzlqnUTJrBnnrnSzPAvZuB1CzKZ7Pjx46a23bhxIz9hHjx4UMKuLS+EpaWlwcHBROTl5VVYWGhSW51OV1dXd/nyZX75Z+xlz02tWMGI2KRJbPduU5vyWbwKhaKoqGjz5s3SSs8MCgsLZTKZnZ3d396fcVPV1czfnxGxZ581eac6nU6tVhPRzp07TW7cQmNjY2Nj4/r16/k1YcsbsC62tkwmY9bWzN+fxcSwZ59l69ezWbPYF1+w7GxmxjWwAa9b0Gg00po/88wzRHTXXXeZ9Jias7AQnjt3jl+s+/v7FxcXS95OWFgYERnuJM1VX8/y81leHps6lb3+Olu92vimzc3N/BpswIABphadXYvX3Dwj6cxw5AiztWVEbO1a0xpu376djC7xacXq1avd3d0XLFjAv0ciIyOffPLJWbNmrVu3Ljc3V3fu3HXqWnNz2e7drLGRpaayX36RvGtD3YLk2p36+vqQkBAiGjlypKlPjC0phGfPnuVPpYODg0tLJd69cC+//DK10STA/0lMvHKUPP00M+VwvHjxIn9kZ+YQpaHmxphL9OviZ3R7e2bSCGVMTAwRvf3229J2asAP4hEjRhDRxIkTTWj5n/8wIhYYyKQOUfK6hR49ephTTV5UVMSfMBlZ7WRgSSE8ePCgUqlUKpWnT5/OyMgwZ2xz27Zt1EZPqP/HcP5JTmYmDq7s37/f/CFKPso/aNAgyVtgjCUksOBg9ttvN/m1+vr6X3/9defOnW+88YahxOfHH3+UXDb0/fffE1HXrl27du1KRAcOHDCh8eXLLCCAETGpQ5T8hnzOnDnSmhtkZGTIZDKlUpmRkWF8K0sKIWOMP9TiD4W3b98ueTtlZWX8mqehoaHNOrdwIduyhe3fzyRVfvAVEzt16vTbTRNwA7zmRtpj9+pqtmABY4xt385272YaDbtwgR04wDIzWVER27OHrVnDZs5kCQnsySfTu3fv3rIc1MfHx9XVdc6cOXK5/K233pLW+ccee4z+elLar18/k9ufOMEcHRkRW7HC1KZnzpxRKBQqlar1uWM3VV1drdfrk5OT+X/HmpoaIxtaWAjj4+MN/6nMeSTFGOMvGPzhhx/aqm+MMZaby3bsYJKCrdfr+TuAe/fuLaGKktfcuLq6SvtaqapiL7/MysvZunUsO5s9+SSbOpXt3cumT79qSJKIhYVl0F/loA888MATTzzh6upKRA8++KBcLlcqlTk5Oabu/cKFCzY2NgqFgn+PSKi5YYyx9esZ0ZGgoMMmPiV67bXXiOixxx6TstMWEhMT/fz8pk2bxsftjW9oYSFcunQpEfEp5OHh4eZs6umnnyaihQsXtlXfzFddXc2HB4wfWdHpdDyxvOZm5syZ0nZdVcWGD2fvvceefZZlZ7OXX2arVrE5c9iyZax7dzZwIEtIYDNmsDVrWE7O5aKiopa1uEeOHOFFZ/zL0cXF5fz58ybtnS8VGRkZSWbU3DDGcmfMsLW1NWmIsqGhgZc3fv/999J2ylVWVvInHPzO9v333ze+rYWF8NChQ0SkVqsVCoWVlZXxZ/xrrV27lohGjx7dht0z35EjR/h8+WvPBi3npycnJ/Nyfjs7u2nTppWUlPCHLmfPnpW236oq9vrrjDG2bduVEOp0bOhQ9tlnRjX/4IMPeOkSL50bMmSI8RMsm5ubeb0r/2415wLH+CHKsrKyAwcOpKenjxs3jv6aBPOd1KpDxtjbb7/Nh7gNNTfGt7WwEDY3N/MBQF7htWfPHsmbOn36NB8JMHMKUptbuXIlP6ALCgoYY/Hx8YGBgTyZ15WYmJiYmEhEcXFxknfa2HhlOmVxMSspYfysUFjIjC+AeeKJJ/iDCn51OsPoogU+SKZWq82vuWGMFRUV8cJgPlpbX19/7UQkfggZeHh4REREjBkzRi6XS3vUqdfreX0yHyg2tRjLwkLIGOMzUPlcvjfffFPaRvj1El+u8xczni/9Q3hVup+f36VLl3r27MmPFScnJ39//7CwMI1GM3z4cI1GExYW5u3trVQq+SxK46fz/hNqa2v79OnDT4MKhUIul3/55ZfGNOTvKufTMs2vuWGMff755/wP0qlTpxt9c3Xs2DE4OHjMmDETJ05suVRP586dtVqtqXvcuXMnD7O0mhvLC+Hs2bMNIYyOjpawhQ0bNtjY2Hz22Wf8uf/kyZPbvJNmqq2tNVQFjRkzJiIiwtfX19ra+rrHk1wu79ixY3R0tLmrj5rtxIkTfM6B8Qe0ocSHPyk1s+bGYPLkyXz1ZJVKdW3t9d8mr3366adEZG1tzWdj3nfffaYObvGbYf49IqHmxvJCyIcBeX4cHBxMfbr67rvv8hl0Dz/8MB/NW8DH5m8zhYWF1tbWCoWiZd6cnJxCQkLi4+NTUlIWL17MDylzbozb3KZNm1oe0GFhYa0f0F999VX37t35VZz5NTcGTU1NX375pfEPe5577jki6tGjh6enJxH93//9n/H7KioqUigU1tbWfIaqhJobywthfX09v3ng07FNKpnl7y2TyWQ8gdRGC6v8QzZv3jxs2LAlS5ZkZGQUFBTcVmFrxfPPP88PaH61P3v27NZ/v7y8nI+mmF9zI1l9ff29995LRAMHDuRzbjZv3mxkW76qAx9VklZzY3khZH+tPM8/9uLFi41sxSv9ZTIZv1iSyWS31fOJO4ZhevGAAQMmTJhgGCdsaGi4doyELxInl8utrKzMnGBtpjNnzvARHX54ODo6GnNrV19f361bNyLiZ35pNTcWGcKUlBT666mUMacyvV7PV39QKBS8QEmhUKxcufIWdLV90mq1fH5WUFDQ+PHjIyIiWnlVjr29vbOzs/Gjqf+czMxMXnTGv9979ep106uPjz76iIgCAwOVSqXkmhuLDGFmZiYRhYSE8BW7Wtfc3MxX/rK2tua5ValUmzZtugX9bM8+++wzPmxrCBsvstFoNAkJCSkpKStWrMjOzj516tRt9YiIX1u6uLjwG7ybrri1fPlyJycnflxJrrmxyBBu2rTJwcHB1ta2a9eufPmmG1VINDQ08Hn09vb2fCa+YTUa+KctXbo0Li5u7dq1OTk5xcXFwgdvjdHU1MQLd0JDQ3kZ0FetLqKn0+kOHjzIJ0/kGbl09DUs761MmzZtSkhIaGpq6tKly8WLF/kP+XDcyJEjY2NjefkFl5SUtHLlSicnpz59+nz77bf29vaff/45fzAFcF2lpaV9+/YtKSkZNWpU//79U1JS+PmcvyWSM7wr8vjx47W1tTKZzNXVVfoLW6VlV5R169YZXmCg1+tPnTq1ePFijUbT8pWaPj4+ycnJ2dnZTU1NZ86cCQkJ4eMEraxGA9DS119/zesNBg4cGBsbGxgYyFdnvS43N7fu3bubswS7JZ0Jly9fnpycrNfrU1JS+FCnwcWLF3fu3JmRkfHVV18Z3uzn7OwcGRl56NAhrVbr5ua2a9eulktoAbTixRdffO+99/R6veEn131LpJ+fXytvcTWSxYTwrbfemjZtmkwmW7RoER/qvC6dTrdv377MzMzt27cfP36ciORyuYuLS05Ojq+v7y3sL1i25ubm1NTU8vLyYcOGqdVqtVr9t4rTttRmp3DjfPjhh7179540aVJ+fr6Rw2J6vX7q1KlEpFAoVpuyfMvx48cTExOjo6N//PFHqf0F+Mfd0hDu2bPHzs7OMGzt7OyckJCQnp7eyryP5uZmPvFPpVIZX8QAYEFuXQgzMjJsbGyIKCwsLCkpiRfpcba2trGxse+///7fFvxramriqzLb2dm1VWkvwO3mFoXwk08+4QOYzz//vOF5UUFBwbx58zQaTcv3KAUEBKSkpOTm5tbW1o4ePZqIOnbsmJube2v6CXDr3YoQvv/++7xa+kYvRv7jjz9Wr149ZswYBwcHQxp5aJ2dnaWtagxgKUwLoYQFiAwTF+bPn3/TX25qasrNzU1JSfHz81MqlR06dBD7jh6AW8CERxSMMU9PTxcXl9jY2JEjR/br1++6r0FuyfBcYfHixXwpOOPt3btXrVb36NHDpFYAlsf4vBYWFvKRFc7Ly+uFF1640Wu7W05ckLiCHUD7YNrD+rq6ury8vIyMjK1bt547d47/0M7OLioqitdt8sV5dTpdUlLSmjVrrK2tP/nkE/4WQQC4LokVM4yxgwcPZmRkZGZm/vTTT3wjcrk8NDQ0Ojp69+7deXl59vb227Zt41OzAOBG2qBs7cKFC1lZWZmZmVlZWX/++ScRyeVyR0fHrKys/v37t0UnAe5kbVk7Wltb+8033yxZsuTMmTNz587lE/kAoHUWU8ANcKeSi+4AQHuHEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCIYQAgiGEAIIhhACCPb/aFRtRfSa9GYAAALWelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJydkm1IU1EYx+892+62rnObm5tOr569OO8kS4ggCt29IyH9EJFQSCuuQXRJAukFsQzDD5kYmBGYaakpGME+pJVC5M6Kyl5G9KGwSKksBCUsyaCM6t5nCDGhogOH/+95znOe8z+HMzcamaSUYVEmohKjQJmrlHmcZihJUVqTUISWqcArqtEygqyqhv4NEit6ClTpkIgNCUVLsZXC6glLoZ6C/Yj+U+ekI5Jb/1OPZDd/v89/QfKtl1WwFE3RiEIapYrS6mSkYyRGLyO9ARuM2LiCR0YWsykUa+KRKRWnmrHZIiOLVbKmySjNJtns2J7OI7sDO5zYmSGjjEwp0yUjVxbOyqayOYrLkVFOrpSLZYTdktujLHklr09GtjwZmfzYn88jPS/xARkFtJLfgPPMks8peTgppFMsMtoAr2d0OqPBb2IZizXNlmdmMjJdXp+TycnFbg/nRMq/oamlv6O5sCdW0yMQNQh1b44NFYSBPweKY4vlLuA1K/2xkmdrgd/fsMfY2emoypVBV2xb+NqoyuxDQ+z6lsKgymfPTZGBi/UlKn+NEFJa0Qf5xvg98uJ1kaDyxMxHMjO3Czi+r5M8n68Ermk6Q2Z9XcBvFg6RHs4OfGU0nQyGMTCyDEd3mC5Dz9aTFAnF226p/LjvVHRyrBe8nSi4XzJS3gx8tL02+PJYN/hxcJyw7iYFe/u5kPCo6RNwtGK78KqrKFFf2il4xJ9wryfSiLC1fhzy1d+nhcIfUeDB+m/CZPADnJufki7WXjpfrPLTDq/4lm6Fmu69G8Qj+v3AZQtl4lS7Ht7QeadK7L36BfLrNdXiu1QW+PThsLi6zA9+bg9sFMc6ZsDzzqoJIWW8OZG/GxHiQ7uBD8ari4+3EOC6xjbS39IAvDBfR1j7MPiPNI0Tt9AJ/TcdWCQPGszgwfEL4jHZ6eAy4IAAAAO2elRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVZbjuQ2DPzvU+gCY4gvUfzcmVksFsF2A8kkdwiwn7k/UlRjZC9CpLtN2HJZLrHIUt9afn5//+3vf9r+8Pvt1lr/n19EtL+k93770fKkvX799v3e3j6+vH6OvD3+vH/80ZSbDjyD76/YLx+PH58j1N7aC+kh1qdIe5Gj9/Dg1nGSn/NhXlA+gmROSqhqpz4KqCwoHZPZQeOFD6U+uYLqgvZDpnlQQqcSaS+gltA4OHQYJsX0RHNUyPFEDu2AthfMbszDC6Qnch6mIZz3h3snKYAzgX4QsbjhPusYkOK/wGj39jKOzolsdLAbEloAqeeU4wDQ5mh8+BBnrZDUHvly4zkc2T0UWkXFkpZIekwbPj2R3VSrhWORbz8TirR3KI9nPKxUk5ZGAjXduoOokEqfFdJy8QBI+GAgrduwErkkogMTkQ+kSYijnnNJxBjHopeY3YnKCqX5nLTHdI084yGhJTQAzaqbEWM942xlSrkvZAwnS+GFKLNQALOXUOmopRzG2hk1XQEZcqLRRLoFlj7niBooSKccMlRRIFj5mDFrkilRys4slEiNCeErZHaRodZoIl1Y+AhkvkSmRI5CDxuytIL31HP6QqI+HGvD25GiWSMnlh7IoemzHd1QIhUw9YEtMOP+ejsRmqOCpuOhRQ4n9pj5+kBDRQlNiWBhA2mamlWVDlLPmp0EYyTqyE8SCHaO0u3kCR1z8lwETIVqaOpEcji6s2ddDmTXqkyJPamiK57FoTa5TJWkTgO2PAkPZSWPqF3Zl/RoOYks0DnNrATOVfLd3EYWqHXlskAlnnZj6uQJiIDlVyRh6I/0kIAfYb3Lkt28hNLTF30MG8vn4ZC1nspPV0afwbZTT1Ymr/L59f7+y8b33ApfH/f3cyvML5/bHS6anFsa4dBz2yIcdm5NuGjj3H8Uh5+bjOKY51ZCOOLcMCiP677AGYgu/k9rZJOjZJdh84Of8xrZFCk5ZtgsYc+0wiZKyRSBNldKsgi06cImNANtxjBPzcBXk6QMvDlzZi/DmdCVUfw2Z86kIvDmDB/TDLw5c6YWgTdnTs4IvDnDfygDb86cOUbgzZkzzQhy9Q1tyxQu9qAZZHOGC2gGOetAckTQyZee1gyyOcvijO13c5bkjCCbs2SeOXvt0nVLL9mc0V6cQa9tpKgd3ZQ1KWfYlPNvX4bNRlfpxllwugjPSxloEgajUwhdhO2Srmyga7vk9ee/Tpzf/gUAPP9qfyBq9QAAAd96VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwlkjtuJDEMRK+y4QzQI/D/wcBR5+NDKPURfPgtyuhEeC2KVUXe931v3ns/PnI/vr6f9+P+eX7dj8/WPfjAz7Y5f9/bB25/7m3Prc9b8Hdv/vf7eLEtdarrpYuos6/3i2U1aw8yI+ZBvEokr5csYyodREvLa1AZswH1krbw64XbzBUHhZGhELddJBKsllurXrQik3gey8UsWkBiET0qYpGw2MVL0rsOAfC+ZGVoyilzKbwJoaU6VbbKAy5AyM0P8WzSC3+yfcwovCROspRNh+CknQHi5DG6eZkSF7orS//dIRjXcULJ3HJCWNSVx7GENkKYVKo7BlGOXKCOZHe4U2YnZIAYkQGAk5QDIH1VCvSrClQDaBiuoF1UV6PbeBM5CqzLDd0cUXDJNIuG0OudSLD9tLfuUZRjF3GhDN1ryhpCHFMZKw7LyBLjFEEoqGNO5P7GzJOlpq7FqxEmNiME/xDGzHeI4USnrCX1gKg6Ih3hjhXWlVnTLSDN7bwzocKHlxCeCWxc8QybMiZun/x1Eqpyhx+kSJ4ejTtOJvE3WkuerenGevqZbZ+5n31LfGdvMuIvEixQ9VkcpH7WWUw4r+fvf9OhrobBSMfsAAAAAElFTkSuQmCC</base64_image>", "role": "assistant" } ]
Bioactivity_Prediction
O=C(NC(Nc1ccccc1F)C(Cl)(Cl)Cl)c1cccs1
1,100,407
{"predicted_classes": ["gpcr_ligand", "enzyme_inhibitor"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 1, "enzyme_inhibitor": 1, "ion_channel_modulator": 0}, "bioactivity_likelihood": "High", "drug_like_properties": {"molecular_weight": 367.66, "logp": 4.43, "hbd": 2, "hba": 3}, "structural_complexity": "Medium"}
367.66
4.4254
[ { "content": "What is the bioactivity prediction for the compound represented by 'O=C(NC(Nc1ccccc1F)C(Cl)(Cl)Cl)c1cccs1'?", "role": "user" }, { "content": "{\"predicted_classes\": [\"gpcr_ligand\", \"enzyme_inhibitor\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 1, \"enzyme_inhibitor\": 1, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"High\", \"drug_like_properties\": {\"molecular_weight\": 367.66, \"logp\": 4.43, \"hbd\": 2, \"hba\": 3}, \"structural_complexity\": \"Medium\"}", "role": "assistant" } ]
IUPAC_Name_Generation
O=C(NN=Cc1ccc(Br)s1)c1ccccc1I
1,381,174
N-[(5-bromothiophen-2-yl)methylideneamino]-2-iodobenzamide
435.084
3.8791
[ { "content": "What does IUPAC call the chemical with structure 'O=C(NN=Cc1ccc(Br)s1)c1ccccc1I'?", "role": "user" }, { "content": "N-[(5-bromothiophen-2-yl)methylideneamino]-2-iodobenzamide", "role": "assistant" } ]
Drug_Likeness_Assessment
CCOc1ccc(N=C2C(=O)N(CN3CCN(c4ccccc4)CC3)c3ccccc32)cc1
1,042,314
{"molecular_weight": 440.55, "logp": 4.33, "hydrogen_bond_donors": 0, "hydrogen_bond_acceptors": 5, "rotatable_bonds": 6, "topological_polar_surface_area": 48.38, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
440.547
4.3324
[ { "content": "What is the drug likeness assessment for the compound represented by 'CCOc1ccc(N=C2C(=O)N(CN3CCN(c4ccccc4)CC3)c3ccccc32)cc1'?", "role": "user" }, { "content": "{\"molecular_weight\": 440.55, \"logp\": 4.33, \"hydrogen_bond_donors\": 0, \"hydrogen_bond_acceptors\": 5, \"rotatable_bonds\": 6, \"topological_polar_surface_area\": 48.38, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Functional_Group_Identification
O=C(O)CN(CC(=O)O)CC(=O)Nc1ccc(Br)cc1
450,142
{"alcohol": 2, "carboxylic_acid": 2, "amine": 1, "amide": 1, "halogen": 1, "phenyl": 1}
345.149
0.8588
[ { "content": "What is the functional group identification for the compound represented by 'O=C(O)CN(CC(=O)O)CC(=O)Nc1ccc(Br)cc1'?", "role": "user" }, { "content": "{\"alcohol\": 2, \"carboxylic_acid\": 2, \"amine\": 1, \"amide\": 1, \"halogen\": 1, \"phenyl\": 1}", "role": "assistant" } ]
Solubility_Prediction
COC(=O)c1cc(N)c(Cl)s1
770,013
{"log_s": -0.7, "solubility_mg_ml": 0.0381, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 191.639, "logp": 1.77, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 1}}
191.639
1.7703
[ { "content": "What is the solubility prediction for the compound represented by 'COC(=O)c1cc(N)c(Cl)s1'?", "role": "user" }, { "content": "{\"log_s\": -0.7, \"solubility_mg_ml\": 0.0381, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 191.639, \"logp\": 1.77, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 1}}", "role": "assistant" } ]
Functional_Group_Identification
O=P(OCC(CCl)(CBr)CBr)(OC(CCl)CCl)OC(CCl)CCl
47,815
{"halogen": 7}
582.308
5.8517
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'O=P(OCC(CCl)(CBr)CBr)(OC(CCl)CCl)OC(CCl)CCl'.", "role": "user" }, { "content": "{\"halogen\": 7}", "role": "assistant" } ]
GHS_Hazard_Statement_Identification
COc1ccc(C(=O)CC(CC(=O)N(CCCl)CCCl)c2ccc(OC)cc2)cc1
319,751
["H301", "H350", "H410"]
452.378
4.7567
[ { "content": "List all GHS hazard statements (H-codes) that apply to the chemical 'COc1ccc(C(=O)CC(CC(=O)N(CCCl)CCCl)c2ccc(OC)cc2)cc1'.", "role": "user" }, { "content": "[\"H301\", \"H350\", \"H410\"]", "role": "assistant" } ]
Stereochemistry_Analysis
COc1cccc(N2CCN(C(c3ccccc3)c3nnnn3Cc3cccs3)CC2)c1
1,447,784
{"chiral_centers": 1, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 1, "chiral_center_details": [{"atom_index": 11, "configuration": "?"}], "stereogenic_double_bonds": 0, "max_stereoisomers": 2, "potentially_meso": false, "stereochemistry_complexity": "Medium"}
446.58
3.7031
[ { "content": "Determine the stereochemistry analysis of the chemical structure 'COc1cccc(N2CCN(C(c3ccccc3)c3nnnn3Cc3cccs3)CC2)c1'.", "role": "user" }, { "content": "{\"chiral_centers\": 1, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 1, \"chiral_center_details\": [{\"atom_index\": 11, \"configuration\": \"?\"}], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 2, \"potentially_meso\": false, \"stereochemistry_complexity\": \"Medium\"}", "role": "assistant" } ]
Stereochemistry_Analysis
Cc1ccc(C)c2[nH]c(=O)c(CN(Cc3ccco3)Cc3nnnn3Cc3ccco3)cc12
1,463,982
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
444.495
3.56814
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'Cc1ccc(C)c2[nH]c(=O)c(CN(Cc3ccco3)Cc3nnnn3Cc3ccco3)cc12'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Drug_Likeness_Assessment
COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1
1,196,382
{"molecular_weight": 414.29, "logp": 4.85, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 5, "rotatable_bonds": 7, "topological_polar_surface_area": 84.67, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
414.289
4.8482
[ { "content": "What is the drug likeness assessment for the compound represented by 'COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1'?", "role": "user" }, { "content": "{\"molecular_weight\": 414.29, \"logp\": 4.85, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 5, \"rotatable_bonds\": 7, \"topological_polar_surface_area\": 84.67, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]