task
stringclasses
14 values
smiles
stringclasses
929 values
cid
int64
4.09k
1.99M
answer
stringlengths
5
24.8k
molecular_weight
float64
102
600
logp
float64
-6.97
13.1
messages
listlengths
2
2
Molecule_Visualization
CCc1ccc(NC(=O)COc2ccc3c(=O)c(Oc4ccc(-c5ccccc5)cc4)c(C(F)(F)F)oc3c2)cc1
1,704,787
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVyU1f4H8O8My8CAiLuQogKhQphKCgrXNMkyAXGhrpqWJZoYmMsNN0Jxo9Sr4lUzswtlbmUamgZ6S3PBUjP5obhBSAiYKCoMsszM+f1xbO5cVJjlwYPweb/8wxfwnDkD83me56yPjDFGACCOXHQFABo7hBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDBL0RWAJ4yWsRV5ebZyuYuNTUiLFqKr0xAghGAcLVGVVvuP9u1FV6ThwO0oGC1DpUq4du1kSYnoijQQuBKC0Z6xs4t66inRtWg4cCUEEAwhBOOcLytrYWWVoVKJrkjDgdtRMM7h27eTCgu1RM/Y2YmuSwOBKyEYJ720lIi6IYHSQQjBCGrGMsvKZEReCKF0EEIwwqWysnKttoONjaMlGjKSQQjBCGdVKiLqZm8vuiINCkIIRrh45w4ReeNeVFIyxpjoOoAAeRUV2ffuEdEz9vbNDb637NChA3N0PPjddx7t2tVl7RoXXAkbqR9v3y7XaptZWVnLZAYekp+fn5ubW5Kb6+7sXKd1a2wQwsYrr6Li9/Jya5lsy/Xr6SpVZW33RMeOHSMiPz8/uRwfGymhj6vx6qxUtlMorpSX/zMvj4gsZDIPW9tn7e27KpU9mjRxtrau9vNpaWlE1KdPHwF1bdAQwsbLSaHoYGOTU14+rGXLsypVzr17mWVlmWVlRORoYZE5ZEjPnj0DAgL8/f179+5tbW19/PhxIurbt6/oijc06JhppK5VVDSzslLq3ViWajTpKlVGaelZlaqssDCxXz/dt+zs7Hx8fI4dO6bVarOysjp16iSiyg0WQggPl52dffTo0WPHjh09ejQzM5MxplQqy8rKiMjJyYlfIQMCAnr06IEmopkQQqjdjRs33n///cTERCcnpzt37vAocl169w7cvNnb3r6bnZ23nZ2dhQX/ekFl5T2NhohcbW3FVPrJgTYh1K5Vq1Z37twhovj4+DFjxly4cIFfIU+fPu0SGJh2927a3btEJCdytbXtZm/f097+pzt3Apo2JaJOtraGjoE0VrgSgkGcnJwKCwsvX77s7u6u//UbZWXpFRVnVaqM0tLMsrIqxojIy87ORaEY1qqVvVzuoVQKqvITAyGE2mVnZ7u5ubVs2fLPP/+UPXpwv5KxCypVukrlYGn5y927Lzdv7mBhgYmmtcLtKNRONzhRQwKJyFom62Zvz1P3W0kJvx2FWqFfC2pnwjD9S82b11l1GhqEEGrHQ2jUML2vg0OdVaehQZsQaqFSqRwdHWUy2e3bt5XoZakDuBJCLX7++We1Wt29e3cksI4ghFAL3iuDedt1ByGEWmDxRF1DmxBqwhhr3bp1UVHR1atXXVxcRFenYcKVEGpy8eLFoqIiZ2dnJLDuIIRQE94g9Pf3F12RhgwhhEf6888/k5KSiKh3796i69KQoU0I1f3+++/Jycl79+49dOiQWq1u2bKlu7t7ampqkyZNRFetYUIIgYiIGKNTp04dPvxmYuK5c+f412xsbHx9fdPT04uLi/v06bN3797mmIxWBxDCxketJt1GoxoNpaXRV1/RN99QXp7K09P+/PlmzZoFBgYGBQWFhoZaW1tv27Zt0aJFWVlZnp6eKSkp7bDjqNQQwsZEraZ336W2bSk3l6Ki6JNPaOtWun37/nddXCg09NDQoQH9+llaWhKRVqsdMWJEcnLywoULt2/fnp6e3rFjx5SUFA8PD5HvosFBCBuT5GS6e5def53KyigigqqqaMsW8vSk4GAKCiJ/f3pgpVJCQsK0adO0Wu3UqVNPnjx5/PjxNm3a7N+/v0ePHibWYds2ysggKyuaPp3QyOQYNB4bN7Iffrj//9Gj2YULLCur1oM+//xzfmEMDw9/6aWXiMje3v7AgQOmVODMGTZ3LmOMnT/PZswwpYSGCEMUjYmfH+3bR0R05gx16kSdO5Ora60HjR079ptvvrG1td24caOjo2NYWFhpaWlQUNA333xjxEvn5NCOHXT6NA0YQETUtSsVFJj2JhoehLAxeeYZ6teP5s6lAwdo3jzDjwsODt6/f3/Tpk23b99+69atiIiIioqKV1999bPPPqvlyHPn6MMPKSCAXF1p9GhycKCcHCKi0lJSKEx/Iw2M6EsxPEY3bzInJzZqlGlHnz59unXr1kTUu3fvDz74gIhkMtmyZcuq/Zharf7hhx/+WLCAdezIiO7/c3Bgr73GsrLYtGls1iwWHs7On2enT7ODB81+V088hLAx2buXEbF+/UwuICsry83NjYg8PT0XLlzIt/2Njo7WarVlZWXJyckTJ05s27YtEW0KCGBErFUrNnYsS05m5eXVy8rLY61bM4WCff21WW/qyYcQNiZz5zIiFh1tThn5+fndunUjoo4dO3700Ue8z+bpp5+21dvkt2vXrqvmz2cnTjCt9pEFabVs5kxGxCws2IYN5lTpSYcQNiYDBjAitnu3mcUUFRX5+vryHO7atcvW1rZFixZyudzHxyc2NvbcuXNGlBUfz4iYTMZiY02uT35+fkZGhsmHC4cQNhpqNbO3Z0SssND8wkpKSgYPHvztt98WFhYSkVKpzMvLM7Gs9euZXM6ILsXFaWu4cj6Azy8PCgqSy+VyuXzx4sUmVkA0hLDROH2aETF3d2lL3blzJxG9+OKLZpWya9dv3t6OTZu+/vrrVVVVNf/suXPnFi9e3KtXL90mqLxpKpfL16xZY1Y1BMHmv43F0f/7v2t9+vTv0aONpMVKs/lFaOifSmXV8OGbN28uKSnZtm2bjY2N/ve1Wu2ZM2f27NmzY8eOzMxM/kVbW9uBAwcGBwcPHTr0iy++eP/99yMjI/Py8uLj482qzOMn+iwAj8mYMWOIaP369dIWyzcj3b9/v/lF/fLLLy1btiSi559//vbt24yxe/fuHThwICoqytnZWfeJbdGixdixY3fs2FFSUsIPTExMdHV1XbZsGe8lioiI0Gg05tfnsUEIGwv+ZM+zZ89KWGZ5ebmNjY1MJrt165YkBWZkZDz11FNE9PTTTwcHB9vrPcfCzc1txowZR44cUavV+odUVVXxNcfOzs5r1qzhnbSjRo2qrKyUpEqPAULYKPDukyZNmlT7BJuJ34t6eXlJWGZOTo6LiwsfbCQiT0/P2NjYU6dO1XBISUnJiy++SETNmjX717/+5eDgQEQDBw7UXSrrOYSwUeDzPAMDA6UtdsWKFUQUHh4ubbETJkwgouDg4NzcXAMPKS8vHzlyJBEplcqEhATdzJ6ioiJp61YXMHe0UTDhYRKGFyv5lqRnzpwhosGDB2/atOmXX34x5BCFQrFt27bw8PCysrKZM2fOnTvXzc3tl19+6devX15enrTVk57oswDUrYKCgg0bNvArw5YtW6QtnLffLly4IGGZZWVlVlZWlpaWM2bMIKLZs2cbfqxWq42OjiYimUy2YMECb29vIurYseOlS5ckrKHkEMKGKSsra9WqVYGBgZZ/7WRhZWXl5ub2+++/S/USOTk5RNSiRQujRthrdejQISLq2bNn//79iSg5OdnYElatWsWHEKdOncov/m3atDlz5oyElZTWkxfC/Pz8WbNm9e3bNykpSaoyp0+v/p8nkUajOXHixKxZs7p06aK707G1tR06dGhCQsJzzz1HRG3btv3tt98kebktW7YQ0ZAhQyQpTWfJkiVEFBERYW9vL5PJ/vzzTxMKSUpK4mefiRMn8oXIjo6OmzZtkraqUnliQshP7f7+/nx6BBFZWlru3LlTksLfeKP6f54garX6yJEjUVFR/OaQa968eVhY2JIlS2bPnu3j4/PZZ5/pdyEePXrU/NeNjIwkokWLFplflL7g4GBeLBF5eHiYXM7OnTsVCgURjR49esSIEfxe4OrVqxJWVSr1OoQajeb48ePR0dGdO3fWfbyUSmVISIinpyfPoSTXw9BQNmcOmzOH9e9vfmGPSUFBwa5du8aOHdtU76nUHTp0ePvtt+fPnx8eHu7k5KT7+ujRo9n/diHu27fPzArwS+sPuv0ypKDValu1akVE8+fPJ6I3zDsp/vjjjw4ODpMnT75x4wYRyeVyPgegvqmPIayqqnroqZ3Pk7h79y5j7OOPP46NjaVHrCs11hN3Jdy6dauFhYXul+Pp6Tl9+vT4+PgHMzlx4sTk5GTdyLVarQ4PDycia2vrrVu3mlwB3n0ik8mys7Mlek+MMXbx4kXehBs9ejQRffzxx+YXqNFoUlJSiKhPnz6SVFJy9SiEJSUlycnJtX6MGGPr1q0jIm9v78WLF+vWlZrz0suXV/9PPRcSEsI7ReLi4hYuXDho0CBra2vdL61Hjx4LFix4VNtPvwtx5cqVJrz6jRs3+CQ4fscoYWdPYmIiEQ0fPrxjx45ElJ6eLkmx/Hw9o75uLVVfQhgSEqJr7PHOsbi4uEfNscrPz9f1Pi9fvtzKyoqI3nzzzVon4D/KjBnsp58YY2zhQpPfwWPl5+dHRKmpqR999BH/jVlYWPj7+8fHx1+8eNGQEnRdiIafv3JycjZs2BAUFMR/4by3g4icnJykmg03adIkIuJ7Zzg4OEg1v2fQoEFE9HV9XcJfL0JYWFjIE9inT5/4+HhDRnVu3brFx4jbtGmzevVqPmMwNDT03r17JlQgPJyNG8cqKtiECSYc/biVl5crFArewrl06dLw4cOTkpJu3rxpbDm6LsQpU6bUMOP59OnTMTExfDU9Z21tzQM8ceJEXWfPsWPHzHtbjDHGz62LFy8m85dH/UWj0fB7K9NXPNaxehHC/fv3E5Gvr29xcbHhR5WWlup6nz/++GP+mIQXXniBNxoNceUKW76crVvHJk1iaWksPv7JCOHRo0f53bj5RX377bd80dDo0aP1b/h5j2t0dPTTTz+ty56dnV1QUFBSUtLt27d37dqlOzA0NJR/97R5uzbduXPHwsJCoVBMnTqViGLNWGuvLz09nbdrJCmtLtSLEPLbj2nTpikUCg8Pj4qKCgMP5BvvEZFCoVi1ahVf8NKrV68bN27UcFRGBouNZT4+9/cB69iRTZrEGGPvvceGDmUaDTP1rvYxWbZsGRFN4pU2G+9CJKIhQ4YUFRXxzZr4DBuuVatWY8eOTU5OrvZ3+c9//sOf0xQUFDR+/PgJXl5aR0dmRmdPamoqEfn5+fER9u+//97sN8cYYxs2bCCiUabuMfcY1IsQBgYG6m5CunXrZtSxarWaNyQsLCw+/PBDd3d3IuratWu1ub+VlZUHDhyYOnW2i8t/t+Fr1oyNGcO++orxsa6iIvbWW2zaNBYczMrKJHx/Ehs+fDgRJSYmSlXgyZMn+cCAbnoNEXl5ec2dO/fkyZM1TIhJS0vjNyDz//73Sr5rk1zO1q41rRp8WGLq1KnSLo968803iSghIUGS0uqC+BBqNBp+Jp43bx4RvfPOOyYUwhdTy2Sy2NjYZ599lt9+XLhwQaVS8R5X3oVARN7ed9u3ZxMnsuRk9uAVNzeXNW/OiFj//uzOHQneXV3gF3yp5kMWFBRUVVX9+uuv1tbWTZo04Zs1nT9/3sDDMzIy/t6rl6Z1a+bjwxYtYjKZyRu68T/cJ598MmHChNDQUBNKeCj++JqaF0OJJT6Ev/32GxG5uroOGzaMiEwefE9ISOC9O1OnTuV9Nk2aNNHfJcHb2zsmJubXX3Nrnup4/jxr144RsZ492fXrptWlDmVnZxNRy5YtpZqx+fzzz9vZ2a1Zs4aIfHx8TCkiJ4d5eDAi5urKli1jlpaMiE2Zwoxc3s7nqY0cOVLCdfFFRUUymczW1rY+r/EVH8L169cT0ZgxY/g6TnNO8ImJifyGKjk5uUuXLu3bt9ftw5eZmWl4OfofqitXTKxMVlbWpk2bSktLTTz+Eb788ksiCg4OlqS0yspKpVIpk8nmzJlDRFFRUSYWdP0669mTETEnJ/bPfzKFgtnaMoMvp9zs2bP5n8+c0aZqkpOTiej555+XpLQ6Ij6E48aNo7+mKZl/gv/222/nzZvHGPvb3/5GZizeuX6d9ejBiNjgwclGbaR59epVPphmaWlpZWXVvXt3adeVvvvuu0S0ZMkSSUrjq/W6dOkyZMgQIjJnDg0rKWEvvni/qb16NfvuOxPK0HX2BAcHl0nRLp89ezYZuR7q8RMfQt6VwifshoSESFKm7gRvwuiZzu3bbOzYNIVC0aJFixMnTtT8w2fPnl2wYEHPnj31B9P4BOJu3brl5+ebXI1q+EscOnRIktJWrVpFROPHj+c7LOXk5JhV3L17bOhQJpOxzZuZSsUiItjcuWzSJKNu6x/c7skElZWVfMTY5PVQj5MRIVSr1RMmTDh58qSEL3/jxg2ZTGZnZzd58mQiWrp0qSTF/vzzz7yP1MxyysvL+QR8Ozu7BzcU02g0fDCt2vxyPphWXFysP7NHkn6U0tJSS0tLS0tLqXZPee2114goLi6OiJydnSUosaqKpaQwxti6dezHHxlj7OLF+88kNNj58+f5Q7l79ux53ZgA6/fDrV+/vqqqypz1UI+NESFcvXo17+2QcOL87t27+Qg7f/Lr4cOHJSmWn+Dfeust84tSq9Vvv/02v7Jt27aN6e3Dp9uMiN9I88G08v998on+zB7z15X+8MMPpnefPIyLiwsRLVy4kIhGjhwpVbGMMTZnDuPX1cpKE+bF5+Tk8F5NV1fXK7W1y/nuAYMHD1boPW5t8uTJhw8fJvPWQz0eRoSwqqpq/Pjx/OP41VdfSfLyfCbx+++/z1tQKpVKkmL5CX7jxo2SlKbVavnaOblc3qFDB6VSqftLd+7cOTo6Oi0trYYOvZKSEj4Q+uWgQezIEXNqwodSIyMjzSlE59q1a0Tk6OjIN1ZasWKFJMXet3Mn4yOZqanMpI2xr1+/zk/Nj5qb+uDuAbwf7h//+Ed8fHxQUJC1tbWLi0u7du3q+XZPxrUJtVrt9OnTicjCwuKTTz4x/+V59wn/bD333HPmF8i1b9+eiIx7MkmNDh48yN81/2O7urrWug+fvvLy8m1RUczCgimVbO9ek6vBu0+2bNlSWlq6dOlSM+c379ixg4hefvllLy8vIkpLSzOntOq0WrZ6NZs1iy1d+pABWcPozl/6c1MzMjJmzZrVtWtX3amQ7x6wZMmSmJgYPz8/3UoACwsLPj7s7e0tYbNccqZ0zOhGxuPj4815bcn6x/+X7gQv4XATv2EbMGCApaWlif09ajWbNOn+k8CM3GdB9+QTpVJpZWWVnJzMW6omT1jnpk2bxnsO5XK5QqEof/ARgvXAg81y3iyiB3YP0GXSxsYmKChow4YNBQUFkjfL64KJvaPr1q3j55uoqCiTBxV0/eN8RwOp9gLbvn07P8FLUhr3yiuv6Lpwzerv0T0JzICVi5cyM5cuXerr61vtyScODg7r1683vwuRr4fityH+/v6mFfIY6DfLt2/ffvXq1aioqNWrV0dGRj64o0dSUlK1GfzSNsvrgulDFFu2bOHrysaNG2fs0Ooff/yxdu1ab29vCwuLgIAAlUp1+PBhqW7c33vvPSJasGCBJKUxxrRaLZ8hydeGvv3222YVt2LF/bldqakP+a5Gw06dYrGxzNNzdv/+utstfmr/448/eLOcT1g3rQuR062H4s3ymTNnmvWm6piuHSSXyzt16sTnOXKdOnV67733fvzxxxpuzvUX3PzEV47WJ2aNEx48eJAPrYaEhBgytJqRkVHtoVb8YQMLJV1Ly59feeDAAakKPH/+PBE5OzvzFRuffvqpuSUmJrJ33mEaDUtMZPPmsaQkVlnJ9u1jEyeytm11E8xP+/mNHz9+9+7d+r9b/Wb50qVLDe9CrIavh+rWrRtfECjVlll1av78+XK5nH94PD09o6Ojjxw5YuCNmP6CG3Pe7N27dyVvXpo7WP/zzz/z+6L+/fvfediUZ41Gc+rUqdjY2GotaX5qT0hIMGRdqeHu3btnbW0t7ZY+n376KRGFhYVJ3N+zdSv7978ZY2zjRrZ1K3N0vB+/Dh1YVBQ7cIA9erqjrlk+b968mrsQH4W3rMLDw/mC1/rcb6Fv3bp1kyZNMvaMw+kvuDF2+8OioqKkpKSwsDBLS0ulUinJU6h0JJgxc+7cOX5f5OPjoxsVNfChVoyx3bt3P3RdqWmOHDlCRM8++6yZ5egrnjkzo1+/gx9+OMDFRcr+nnffZXy1TlERi4piMTEsLo4ZHKS1a9fyJuLkyZMf7EI0xJUrV7777jt+R2dC9Z9QuvPXcgOa5VlZWStWrOjXr5/+tlq8WS7haLk009Z+//13vgTbzc1t9uzZI0eO1H+olbu7+8yZMx98qJWO/rpSE4YKS0tLv/7663Xr1jHG+J4rpq2HeiRPT0bEFi9mRJXSLbFhCxYwflE9e5aZ9KhnXbN8zJgxfJHhQ2f2PNT169c3btzo4uIik8n8/PxMePUnl27BzaP218nIyIiNjfXx8dG1mxQKRWBg4KpVqy5fvvzGG2/wr0g1Wi7Z3NGCgoJu3brpKk2GPdRK59SpU3xdqa+vr4E9NLo7BB74pk2bVlRUmLke6iGKi5lczmxsWGQkI2JxcZKVXFjIxo1jixaxN94wedGUrlkeHBzMV6/qZvY8VHZ2drUBbplMJvEw/ZPgiy++4Oevd955h9/a1Lyjh66ptXTp0gEDBvBp9FKNlks5gTs3N/fZZ59t3779mjVr/vjjD2MPz8zM5LOovLy8atiT5/Lly8uWLQsICNCNycrl8oCAgA8++GDVqlX8tiEjI8O8t6Jn3z5GxAICWO/ejIhJ199zn9lrnfSb5fzD4eDgUG2DD92pXffxsrGxCQwMXLlypbSPDX2C7Nmzh+8P5u/vP2rUqGbNmul+Oe3atZsyZcqBAweqtY+Ki4v5XEVfX1++J4v5o+WsPqyi0Hft2jU+tNqpU6fLly/rf+tRH6OYmJi4uDjdqV0mkzVp0kTKpyXHxDAiNn06s7ZmFhb1c729frM8JiYmJSWF6W2Pz/uTuGbNmvHBtIf2ojU2hw8ftrOz021V7urqGhUVVXOPa3Z2tm4LlUWLFpk/Ws7qWwgZYzdv3uRDq23btuVDq9euXeOfMI5vxR0fHz9z5ky+GT5na2sbHBwcGxtr7nqcagYOZERsyRJGxCTt75GWrlnu7u7+wQcfjB49WrejBxG5uLhERkYePHhQqsWyDcbAgQOJaNSoUYb3uBYUFOi2UFmxYoXJo+U69S6EjLHS0lK+W6ujo+ORI0cYY506dXJxcQkPD4+Pj58yZYp+JnWndsN3OjSCWs0cHBgRmzePEbHJk6V/Cek8tFlu1GBaI8RvLzdv3rxhwwbDtxIvLi729/fnl4Q1a9YYNVr+oPoYQsZYRUVFWFgYESmVys8++ywxMVF/syZ+an9we3zpabXswgW2bRtbv5498wz74os6fC0p5ObmPvPMM87OzsuXL8/KyhJdnfruypUrRNS6deuxY8cS0Vpj9olTqVSDBw8mInt7+zVr1tQ8Wl6zehpC9tcaYt7M02Wve/fusbGxv/7662OqxI0bLCKCzZ7NIiPr9S6IYJLPP/+ciIYOHerm5kZExs4sraqq4j3SCoVi5cqVD46WG6j+hpAxptVqBw0aJJfLvby8Vq5cKeGDRww1bx7jz4JOTWUbNjzuV4c6xvdz4Htt2tnZmdCo02q1fDGKhYVFfHw8b5Z7eHjUuh+KvnodQk5kP964cfe3487JYXPmCKsG1I3u3bvTX+tIBg4caHI5+rMIeZ9NixYtDF9l9t8HIdVb+lPmH7fu3en4cSKiI0dIbxMnaABUKlVGRoaVlVVRURER8T5500RHR69du1Ymk2k0Gj5nq6ysTH/P25o9ASEUKSKCDh+mefPo+nUaNkx0bUBKJ06cUKvVPXr0OHnyJJkXQiKKiIg4duzY4sWLc3NziYg/QNJAlrX/SGOmUFBMjOhKQJ04fvw4Efn6+m7atIlPoDWzQF5CWloaGRlpXAmhkeJpadOmTVlZWZcuXfi6bamKRQgBasH+2py2qqqKiPjD2MxXXFx88eJFGxsb3uVjIIQQGqMLFy7cunXL2dk5MzOTzG4Q6qSlpWm12l69ellbWxt+FEIIjRFvEAYEBPD/SBhCMv66ihBCY8TT4unpmZeX5+jo2KVLF0mKNS3S6B2FxiglJYWIunTp8sorrzRt2lS3NtUcGo2G7+LJtxozHEIIjc7t27evXbsmk8kKCwv5LjuSSE9PLy0tdXd3139IiSFwOwqNTtOmTV966SXG2PTp0xMSEqQq1oTBCQ4hhEZHJpPt37+fx2/q1KmzZs2SpFiEEMA4kZGRSUlJVlZWH374YUREhFarNa0cvpcK/dUrY8KQo4wfD9A47d2799VXX713796wYcO2bt2q/4TDmpWXlx89enTPnj1fffXVli1bPD0927Rp06RJk+Li4mqblNYKHTPQqAUFBX3//fchISG7du165ZVXdu/ezfeqeJRbt2599913u3fvTklJUalU/Is//fTT5cuXib4djq8AAALzSURBVMjX19fYBBKuhABElJGR8dJLL+Xn5/fq1Wvfvn18rwp9ubm533///Z49e1JTUysrK/kXPT09g4KCmjdvfu7cuW3btlVVVQ0ePHjfvn3GvjpCCEBElJ2dPWjQoKysLE9Pz5SUFL5Xxblz53bu3Ll79+4zZ87wH7O2tu7fv3+/fv00Gs2hQ4f4vvJEJJPJnJyc9uzZ09P4dacIIcB9BQUFL7/8cnp6eocOHVJTUz08PKZMmbJu3ToiUiqVL7zwQt++fSsqKg4ePHj8+HEeHAsLCz8/v7CwsBEjRuhvAmgUhBDgv4qLi4OCgo4fP96mTZv9+/eXlJR8+eWXHh4ehYWFycnJly5d4j/GMxkWFjZ06FD+WCtzIIQA/0OlUg0fPjw1NVWpVHp5eWVnZ9+8eZN/y8nJKSQkJDQ09IUXXjBqnUTNEEKA6iorK0eMGLFv3z4+eOjq6hoUFBQWFta3b19JZplWgxACPIRarZ4xY0ZhYWFcXFznzp3r9LUQQgDBMG0NQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEECw/wc7zP/iMTsVrgAAAsN6VFh0cmRraXRQS0wgcmRraXQgMjAyNS4wMy4zAAB4nJWSXUhTYRjH3/NuO2fu023u030cc3MrKLzJksi9C4kwhZVGlLLe8MJDEbKi7CIjhboRSi+UNDAiJoFoYFRQuu3Qt3SVWUGgWV2MREQqrSDtnGcaFYH4wsP/9z7n+fifw5lNDkwg6eRKgVH2rJdioxTnGBZRSRlFVjFmSUhShZIlgqwK5g/IPuEQJLDUmk2os4pXRvy+rzpqRf/tWPuE/1WsCZbHIF5SZQ4I87eoyeqmlkGLGMRghBUCViipUiVgFcuzHM+pQ5jLQTkapNHyWp2AdXqqNwjYYKTG3BA2mqjJzJstvCVPwHlWarUJ2Gbn7Q4BO5zU6RKwK5/mu6Wkh3q8Ajb5BOzjEV+A+HWIL0Q+P/UHaKBIWhekwZCAQ5gWaWnAQL0W6rbTHSrJHotDQZVSwer0hkCRljWafP6Agc2z2jxeC+twuvLddvs8I70vWvlXFitiYv+ALiVfHH2VIj77FHhkeLPYU30JeNfpYjGzcLNM5pmLTvFhtCIsM/eJE6PzDUmZ9zPv07N1h6Gm7W4y7V7YDb0nybN0R19uWubxj+3p7vJbUG8uqU3v/TYINVUFS6nxK0eBS7/Up2xfF4CbrmnCg6NJ4MeZWPjqzolhmXsPWUjJo1ewq+TzATIy7YCaeDxEpvAceGvUtpKEzUpk3rYvQTzsDcjved5Dbte6wIPHliTXj3dC71hmmpxq3woc7eYiDY0TwG9rcKT5XSX4F79bIpofF4DdHzZEJmNx4I5gccR6xwLc3+qNLJUnst8wPk+GzGWwdy44Rs4XTwEP3X8Q5jpLwdvByZlwprcNuIXRkaoT94AdW0bLXgS7gJsu15BFawtwn/7J9rElN/CRrmPJwrpmmJn4+TJVzWmBz2zSi7HoG/Dw2u4X60fU4M32C4Uh0YTNCR9oAAADonpUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1WW27kNhD89yl4ARPsBx/9ubZ3gyDYMZA4ucP+5/5IFSemZoFOJKshyaVmsasf81R4/P7224+/yzn07emplPY/fxFR/rLW2tP3wpvy8vWXX2/l9ePLy+eb1/c/bx9/FJfiHd/g/Bn75eP9++cbKa/lWayuMGurPLfaPbriu9r2cX2sG6p1Ruu94bb2McwzqG2oVOurz0WoSEyLBOr/QpuGDfoyt7FWguxERu105Pg/eGhkqw8CV/XwYZ1bUh1dR4Kc5VaeZ21Dx6BL1daWJMBFl71GD2yeLmeMfD9R3svzqLpCBDvXqqPJyBaXRqdeu84wp1PrTcwyqNCrVdcuszOeNkb0FHqXqUaYtu01tJnPDLplatC+uW+vYVNGCqVMzA1hIIF0xGG0DNk3cs3G+MB70/kfm6JOWo0AxtwlfKbAid1j86372C6ZAvmO1nY5TEK9SF1Lo6UsKZNDeFsxSAKZ1DKPSpF6hYKj06OJjpUCWUlel01H4YGkwKFna6tul+FNUMusjTH7yLJOKdCsNlXm9jm1RfcMSX2Q8tNDt89pc860ivtGindIzZzSJto0Q1KfqOrLmXNeVVbTFDmBlFbHQiJtp3OKS5b0SoVY7i1GD9aHtRkrqyRshOtHG9GEe1KU1Mg6A3se4jRRPWt3Btc8k4wiDeTPQsVDzdkRrhRIjdDgsORgfqwIiJABbQNXh/AB/Q255ylHL9/gSBbXhPwLPSkVCC3rG9tgsA/D4wi1NDtsAGhIXcgymMxmYalH1g9ex0SFgYN3E8myyNa9IShah1ASCJNnu8W9y2AARMjuDJZ3Tm/3brwU2uxRMBDMtHX5fRhh/d4XCg/JIZgJPUuOr7e3n+bYfbK9vN/ersnGU6/phYdi14RyXtcU4tmvUYOHMq6BIrjmNTUE17pmg+KKawAIHuWxzcs28tDNZZtDDk3baeTwExKEkUNRyBBGDkshTRg5RFFySiOHK3qn7zeHLnqkbHMYCynD6GPXcxo9nJH8TqNXQMkZRg9ntCuh0cNZyRlGD2clZxg9nFGITqOHs5IzjB7O6BpOo4czmoNzLXtsAl52jT9Uu3OndjgbswDGrjwgZxg7nFGo9zeHM4rq/uZwNnKmn8PZyBnGDmcjZxg7nI2c8eVjbfg2hzJ/s9Ecfs4o48MrV9zufq88cEYZm7308x3leFCC9fJYHXz+/M2I+6d/ALAZ8w52rWiuAAAB2HpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCVSy43jUAxrZY8JYAtPfwnBnALMcVPEK2AbmOKXehP4ENOURFJ6vzfvvR9/34+vz/P92YI33fOyH59t8+3evufnz70N8Pvx/cTz/fwHpgDkPz+Pm5WqVa97kVu7+PW6WSh7+XUzeYQeiEm9YiDmTvuFlrRdi9Q0qgA1eac2INRLT2GRtYVNf5FwCWBJKyTiGmitYkBO7d08tOyYHq87SKpZrltIYnECMnLJPmrVF0P361Yyca6RphFnKFO3yrBaltpULthcZsdUa063ccyjCJDBbwxUuWY6+EsSAzBBSOc/5Bq3JRCMXI62ExoMzwChUG65mKoE6g0e0Qe1yAEOnTgiHN+VJQ6hNO0Ew74mUWRgS07EkaMmSVP4jElZ7eAgzrQJgCk1Mwdh80SZkiyk9WoSqxFnJFxo+OJFUcuGksk2CHa3OidaXdk9Vb0gC32ledJJSgRcs0uT4zpgtkJhIb3HI84D5ITJ6s5pS+WFGsMmlH1S4QL5cios/2SuPWcGSrRoTJYKmQxgqcIZKFCGoNHWXJnP8kRhbg6rq6Py7Bin2QO56e8RFaZonRUHFJ1LQKl7jVHWQKjPn/+4HqotNmr+lwAAAABJRU5ErkJggg==</base64_image>
559.54
7.851
[ { "content": "Determine the molecule visualization of the chemical structure 'CCc1ccc(NC(=O)COc2ccc3c(=O)c(Oc4ccc(-c5ccccc5)cc4)c(C(F)(F)F)oc3c2)cc1'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVyU1f4H8O8My8CAiLuQogKhQphKCgrXNMkyAXGhrpqWJZoYmMsNN0Jxo9Sr4lUzswtlbmUamgZ6S3PBUjP5obhBSAiYKCoMsszM+f1xbO5cVJjlwYPweb/8wxfwnDkD83me56yPjDFGACCOXHQFABo7hBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDBL0RWAJ4yWsRV5ebZyuYuNTUiLFqKr0xAghGAcLVGVVvuP9u1FV6ThwO0oGC1DpUq4du1kSYnoijQQuBKC0Z6xs4t66inRtWg4cCUEEAwhBOOcLytrYWWVoVKJrkjDgdtRMM7h27eTCgu1RM/Y2YmuSwOBKyEYJ720lIi6IYHSQQjBCGrGMsvKZEReCKF0EEIwwqWysnKttoONjaMlGjKSQQjBCGdVKiLqZm8vuiINCkIIRrh45w4ReeNeVFIyxpjoOoAAeRUV2ffuEdEz9vbNDb637NChA3N0PPjddx7t2tVl7RoXXAkbqR9v3y7XaptZWVnLZAYekp+fn5ubW5Kb6+7sXKd1a2wQwsYrr6Li9/Jya5lsy/Xr6SpVZW33RMeOHSMiPz8/uRwfGymhj6vx6qxUtlMorpSX/zMvj4gsZDIPW9tn7e27KpU9mjRxtrau9vNpaWlE1KdPHwF1bdAQwsbLSaHoYGOTU14+rGXLsypVzr17mWVlmWVlRORoYZE5ZEjPnj0DAgL8/f179+5tbW19/PhxIurbt6/oijc06JhppK5VVDSzslLq3ViWajTpKlVGaelZlaqssDCxXz/dt+zs7Hx8fI4dO6bVarOysjp16iSiyg0WQggPl52dffTo0WPHjh09ejQzM5MxplQqy8rKiMjJyYlfIQMCAnr06IEmopkQQqjdjRs33n///cTERCcnpzt37vAocl169w7cvNnb3r6bnZ23nZ2dhQX/ekFl5T2NhohcbW3FVPrJgTYh1K5Vq1Z37twhovj4+DFjxly4cIFfIU+fPu0SGJh2927a3btEJCdytbXtZm/f097+pzt3Apo2JaJOtraGjoE0VrgSgkGcnJwKCwsvX77s7u6u//UbZWXpFRVnVaqM0tLMsrIqxojIy87ORaEY1qqVvVzuoVQKqvITAyGE2mVnZ7u5ubVs2fLPP/+UPXpwv5KxCypVukrlYGn5y927Lzdv7mBhgYmmtcLtKNRONzhRQwKJyFom62Zvz1P3W0kJvx2FWqFfC2pnwjD9S82b11l1GhqEEGrHQ2jUML2vg0OdVaehQZsQaqFSqRwdHWUy2e3bt5XoZakDuBJCLX7++We1Wt29e3cksI4ghFAL3iuDedt1ByGEWmDxRF1DmxBqwhhr3bp1UVHR1atXXVxcRFenYcKVEGpy8eLFoqIiZ2dnJLDuIIRQE94g9Pf3F12RhgwhhEf6888/k5KSiKh3796i69KQoU0I1f3+++/Jycl79+49dOiQWq1u2bKlu7t7ampqkyZNRFetYUIIgYiIGKNTp04dPvxmYuK5c+f412xsbHx9fdPT04uLi/v06bN3797mmIxWBxDCxketJt1GoxoNpaXRV1/RN99QXp7K09P+/PlmzZoFBgYGBQWFhoZaW1tv27Zt0aJFWVlZnp6eKSkp7bDjqNQQwsZEraZ336W2bSk3l6Ki6JNPaOtWun37/nddXCg09NDQoQH9+llaWhKRVqsdMWJEcnLywoULt2/fnp6e3rFjx5SUFA8PD5HvosFBCBuT5GS6e5def53KyigigqqqaMsW8vSk4GAKCiJ/f3pgpVJCQsK0adO0Wu3UqVNPnjx5/PjxNm3a7N+/v0ePHibWYds2ysggKyuaPp3QyOQYNB4bN7Iffrj//9Gj2YULLCur1oM+//xzfmEMDw9/6aWXiMje3v7AgQOmVODMGTZ3LmOMnT/PZswwpYSGCEMUjYmfH+3bR0R05gx16kSdO5Ora60HjR079ptvvrG1td24caOjo2NYWFhpaWlQUNA333xjxEvn5NCOHXT6NA0YQETUtSsVFJj2JhoehLAxeeYZ6teP5s6lAwdo3jzDjwsODt6/f3/Tpk23b99+69atiIiIioqKV1999bPPPqvlyHPn6MMPKSCAXF1p9GhycKCcHCKi0lJSKEx/Iw2M6EsxPEY3bzInJzZqlGlHnz59unXr1kTUu3fvDz74gIhkMtmyZcuq/Zharf7hhx/+WLCAdezIiO7/c3Bgr73GsrLYtGls1iwWHs7On2enT7ODB81+V088hLAx2buXEbF+/UwuICsry83NjYg8PT0XLlzIt/2Njo7WarVlZWXJyckTJ05s27YtEW0KCGBErFUrNnYsS05m5eXVy8rLY61bM4WCff21WW/qyYcQNiZz5zIiFh1tThn5+fndunUjoo4dO3700Ue8z+bpp5+21dvkt2vXrqvmz2cnTjCt9pEFabVs5kxGxCws2IYN5lTpSYcQNiYDBjAitnu3mcUUFRX5+vryHO7atcvW1rZFixZyudzHxyc2NvbcuXNGlBUfz4iYTMZiY02uT35+fkZGhsmHC4cQNhpqNbO3Z0SssND8wkpKSgYPHvztt98WFhYSkVKpzMvLM7Gs9euZXM6ILsXFaWu4cj6Azy8PCgqSy+VyuXzx4sUmVkA0hLDROH2aETF3d2lL3blzJxG9+OKLZpWya9dv3t6OTZu+/vrrVVVVNf/suXPnFi9e3KtXL90mqLxpKpfL16xZY1Y1BMHmv43F0f/7v2t9+vTv0aONpMVKs/lFaOifSmXV8OGbN28uKSnZtm2bjY2N/ve1Wu2ZM2f27NmzY8eOzMxM/kVbW9uBAwcGBwcPHTr0iy++eP/99yMjI/Py8uLj482qzOMn+iwAj8mYMWOIaP369dIWyzcj3b9/v/lF/fLLLy1btiSi559//vbt24yxe/fuHThwICoqytnZWfeJbdGixdixY3fs2FFSUsIPTExMdHV1XbZsGe8lioiI0Gg05tfnsUEIGwv+ZM+zZ89KWGZ5ebmNjY1MJrt165YkBWZkZDz11FNE9PTTTwcHB9vrPcfCzc1txowZR44cUavV+odUVVXxNcfOzs5r1qzhnbSjRo2qrKyUpEqPAULYKPDukyZNmlT7BJuJ34t6eXlJWGZOTo6LiwsfbCQiT0/P2NjYU6dO1XBISUnJiy++SETNmjX717/+5eDgQEQDBw7UXSrrOYSwUeDzPAMDA6UtdsWKFUQUHh4ubbETJkwgouDg4NzcXAMPKS8vHzlyJBEplcqEhATdzJ6ioiJp61YXMHe0UTDhYRKGFyv5lqRnzpwhosGDB2/atOmXX34x5BCFQrFt27bw8PCysrKZM2fOnTvXzc3tl19+6devX15enrTVk57oswDUrYKCgg0bNvArw5YtW6QtnLffLly4IGGZZWVlVlZWlpaWM2bMIKLZs2cbfqxWq42OjiYimUy2YMECb29vIurYseOlS5ckrKHkEMKGKSsra9WqVYGBgZZ/7WRhZWXl5ub2+++/S/USOTk5RNSiRQujRthrdejQISLq2bNn//79iSg5OdnYElatWsWHEKdOncov/m3atDlz5oyElZTWkxfC/Pz8WbNm9e3bNykpSaoyp0+v/p8nkUajOXHixKxZs7p06aK707G1tR06dGhCQsJzzz1HRG3btv3tt98kebktW7YQ0ZAhQyQpTWfJkiVEFBERYW9vL5PJ/vzzTxMKSUpK4mefiRMn8oXIjo6OmzZtkraqUnliQshP7f7+/nx6BBFZWlru3LlTksLfeKP6f54garX6yJEjUVFR/OaQa968eVhY2JIlS2bPnu3j4/PZZ5/pdyEePXrU/NeNjIwkokWLFplflL7g4GBeLBF5eHiYXM7OnTsVCgURjR49esSIEfxe4OrVqxJWVSr1OoQajeb48ePR0dGdO3fWfbyUSmVISIinpyfPoSTXw9BQNmcOmzOH9e9vfmGPSUFBwa5du8aOHdtU76nUHTp0ePvtt+fPnx8eHu7k5KT7+ujRo9n/diHu27fPzArwS+sPuv0ypKDValu1akVE8+fPJ6I3zDsp/vjjjw4ODpMnT75x4wYRyeVyPgegvqmPIayqqnroqZ3Pk7h79y5j7OOPP46NjaVHrCs11hN3Jdy6dauFhYXul+Pp6Tl9+vT4+PgHMzlx4sTk5GTdyLVarQ4PDycia2vrrVu3mlwB3n0ik8mys7Mlek+MMXbx4kXehBs9ejQRffzxx+YXqNFoUlJSiKhPnz6SVFJy9SiEJSUlycnJtX6MGGPr1q0jIm9v78WLF+vWlZrz0suXV/9PPRcSEsI7ReLi4hYuXDho0CBra2vdL61Hjx4LFix4VNtPvwtx5cqVJrz6jRs3+CQ4fscoYWdPYmIiEQ0fPrxjx45ElJ6eLkmx/Hw9o75uLVVfQhgSEqJr7PHOsbi4uEfNscrPz9f1Pi9fvtzKyoqI3nzzzVon4D/KjBnsp58YY2zhQpPfwWPl5+dHRKmpqR999BH/jVlYWPj7+8fHx1+8eNGQEnRdiIafv3JycjZs2BAUFMR/4by3g4icnJykmg03adIkIuJ7Zzg4OEg1v2fQoEFE9HV9XcJfL0JYWFjIE9inT5/4+HhDRnVu3brFx4jbtGmzevVqPmMwNDT03r17JlQgPJyNG8cqKtiECSYc/biVl5crFArewrl06dLw4cOTkpJu3rxpbDm6LsQpU6bUMOP59OnTMTExfDU9Z21tzQM8ceJEXWfPsWPHzHtbjDHGz62LFy8m85dH/UWj0fB7K9NXPNaxehHC/fv3E5Gvr29xcbHhR5WWlup6nz/++GP+mIQXXniBNxoNceUKW76crVvHJk1iaWksPv7JCOHRo0f53bj5RX377bd80dDo0aP1b/h5j2t0dPTTTz+ty56dnV1QUFBSUtLt27d37dqlOzA0NJR/97R5uzbduXPHwsJCoVBMnTqViGLNWGuvLz09nbdrJCmtLtSLEPLbj2nTpikUCg8Pj4qKCgMP5BvvEZFCoVi1ahVf8NKrV68bN27UcFRGBouNZT4+9/cB69iRTZrEGGPvvceGDmUaDTP1rvYxWbZsGRFN4pU2G+9CJKIhQ4YUFRXxzZr4DBuuVatWY8eOTU5OrvZ3+c9//sOf0xQUFDR+/PgJXl5aR0dmRmdPamoqEfn5+fER9u+//97sN8cYYxs2bCCiUabuMfcY1IsQBgYG6m5CunXrZtSxarWaNyQsLCw+/PBDd3d3IuratWu1ub+VlZUHDhyYOnW2i8t/t+Fr1oyNGcO++orxsa6iIvbWW2zaNBYczMrKJHx/Ehs+fDgRJSYmSlXgyZMn+cCAbnoNEXl5ec2dO/fkyZM1TIhJS0vjNyDz//73Sr5rk1zO1q41rRp8WGLq1KnSLo968803iSghIUGS0uqC+BBqNBp+Jp43bx4RvfPOOyYUwhdTy2Sy2NjYZ599lt9+XLhwQaVS8R5X3oVARN7ed9u3ZxMnsuRk9uAVNzeXNW/OiFj//uzOHQneXV3gF3yp5kMWFBRUVVX9+uuv1tbWTZo04Zs1nT9/3sDDMzIy/t6rl6Z1a+bjwxYtYjKZyRu68T/cJ598MmHChNDQUBNKeCj++JqaF0OJJT6Ev/32GxG5uroOGzaMiEwefE9ISOC9O1OnTuV9Nk2aNNHfJcHb2zsmJubXX3Nrnup4/jxr144RsZ492fXrptWlDmVnZxNRy5YtpZqx+fzzz9vZ2a1Zs4aIfHx8TCkiJ4d5eDAi5urKli1jlpaMiE2Zwoxc3s7nqY0cOVLCdfFFRUUymczW1rY+r/EVH8L169cT0ZgxY/g6TnNO8ImJifyGKjk5uUuXLu3bt9ftw5eZmWl4OfofqitXTKxMVlbWpk2bSktLTTz+Eb788ksiCg4OlqS0yspKpVIpk8nmzJlDRFFRUSYWdP0669mTETEnJ/bPfzKFgtnaMoMvp9zs2bP5n8+c0aZqkpOTiej555+XpLQ6Ij6E48aNo7+mKZl/gv/222/nzZvHGPvb3/5GZizeuX6d9ejBiNjgwclGbaR59epVPphmaWlpZWXVvXt3adeVvvvuu0S0ZMkSSUrjq/W6dOkyZMgQIjJnDg0rKWEvvni/qb16NfvuOxPK0HX2BAcHl0nRLp89ezYZuR7q8RMfQt6VwifshoSESFKm7gRvwuiZzu3bbOzYNIVC0aJFixMnTtT8w2fPnl2wYEHPnj31B9P4BOJu3brl5+ebXI1q+EscOnRIktJWrVpFROPHj+c7LOXk5JhV3L17bOhQJpOxzZuZSsUiItjcuWzSJKNu6x/c7skElZWVfMTY5PVQj5MRIVSr1RMmTDh58qSEL3/jxg2ZTGZnZzd58mQiWrp0qSTF/vzzz7yP1MxyysvL+QR8Ozu7BzcU02g0fDCt2vxyPphWXFysP7NHkn6U0tJSS0tLS0tLqXZPee2114goLi6OiJydnSUosaqKpaQwxti6dezHHxlj7OLF+88kNNj58+f5Q7l79ux53ZgA6/fDrV+/vqqqypz1UI+NESFcvXo17+2QcOL87t27+Qg7f/Lr4cOHJSmWn+Dfeust84tSq9Vvv/02v7Jt27aN6e3Dp9uMiN9I88G08v998on+zB7z15X+8MMPpnefPIyLiwsRLVy4kIhGjhwpVbGMMTZnDuPX1cpKE+bF5+Tk8F5NV1fXK7W1y/nuAYMHD1boPW5t8uTJhw8fJvPWQz0eRoSwqqpq/Pjx/OP41VdfSfLyfCbx+++/z1tQKpVKkmL5CX7jxo2SlKbVavnaOblc3qFDB6VSqftLd+7cOTo6Oi0trYYOvZKSEj4Q+uWgQezIEXNqwodSIyMjzSlE59q1a0Tk6OjIN1ZasWKFJMXet3Mn4yOZqanMpI2xr1+/zk/Nj5qb+uDuAbwf7h//+Ed8fHxQUJC1tbWLi0u7du3q+XZPxrUJtVrt9OnTicjCwuKTTz4x/+V59wn/bD333HPmF8i1b9+eiIx7MkmNDh48yN81/2O7urrWug+fvvLy8m1RUczCgimVbO9ek6vBu0+2bNlSWlq6dOlSM+c379ixg4hefvllLy8vIkpLSzOntOq0WrZ6NZs1iy1d+pABWcPozl/6c1MzMjJmzZrVtWtX3amQ7x6wZMmSmJgYPz8/3UoACwsLPj7s7e0tYbNccqZ0zOhGxuPj4815bcn6x/+X7gQv4XATv2EbMGCApaWlif09ajWbNOn+k8CM3GdB9+QTpVJpZWWVnJzMW6omT1jnpk2bxnsO5XK5QqEof/ARgvXAg81y3iyiB3YP0GXSxsYmKChow4YNBQUFkjfL64KJvaPr1q3j55uoqCiTBxV0/eN8RwOp9gLbvn07P8FLUhr3yiuv6Lpwzerv0T0JzICVi5cyM5cuXerr61vtyScODg7r1683vwuRr4fityH+/v6mFfIY6DfLt2/ffvXq1aioqNWrV0dGRj64o0dSUlK1GfzSNsvrgulDFFu2bOHrysaNG2fs0Ooff/yxdu1ab29vCwuLgIAAlUp1+PBhqW7c33vvPSJasGCBJKUxxrRaLZ8hydeGvv3222YVt2LF/bldqakP+a5Gw06dYrGxzNNzdv/+utstfmr/448/eLOcT1g3rQuR062H4s3ymTNnmvWm6piuHSSXyzt16sTnOXKdOnV67733fvzxxxpuzvUX3PzEV47WJ2aNEx48eJAPrYaEhBgytJqRkVHtoVb8YQMLJV1Ly59feeDAAakKPH/+PBE5OzvzFRuffvqpuSUmJrJ33mEaDUtMZPPmsaQkVlnJ9u1jEyeytm11E8xP+/mNHz9+9+7d+r9b/Wb50qVLDe9CrIavh+rWrRtfECjVlll1av78+XK5nH94PD09o6Ojjxw5YuCNmP6CG3Pe7N27dyVvXpo7WP/zzz/z+6L+/fvfediUZ41Gc+rUqdjY2GotaX5qT0hIMGRdqeHu3btnbW0t7ZY+n376KRGFhYVJ3N+zdSv7978ZY2zjRrZ1K3N0vB+/Dh1YVBQ7cIA9erqjrlk+b968mrsQH4W3rMLDw/mC1/rcb6Fv3bp1kyZNMvaMw+kvuDF2+8OioqKkpKSwsDBLS0ulUinJU6h0JJgxc+7cOX5f5OPjoxsVNfChVoyx3bt3P3RdqWmOHDlCRM8++6yZ5egrnjkzo1+/gx9+OMDFRcr+nnffZXy1TlERi4piMTEsLo4ZHKS1a9fyJuLkyZMf7EI0xJUrV7777jt+R2dC9Z9QuvPXcgOa5VlZWStWrOjXr5/+tlq8WS7haLk009Z+//13vgTbzc1t9uzZI0eO1H+olbu7+8yZMx98qJWO/rpSE4YKS0tLv/7663Xr1jHG+J4rpq2HeiRPT0bEFi9mRJXSLbFhCxYwflE9e5aZ9KhnXbN8zJgxfJHhQ2f2PNT169c3btzo4uIik8n8/PxMePUnl27BzaP218nIyIiNjfXx8dG1mxQKRWBg4KpVqy5fvvzGG2/wr0g1Wi7Z3NGCgoJu3brpKk2GPdRK59SpU3xdqa+vr4E9NLo7BB74pk2bVlRUmLke6iGKi5lczmxsWGQkI2JxcZKVXFjIxo1jixaxN94wedGUrlkeHBzMV6/qZvY8VHZ2drUBbplMJvEw/ZPgiy++4Oevd955h9/a1Lyjh66ptXTp0gEDBvBp9FKNlks5gTs3N/fZZ59t3779mjVr/vjjD2MPz8zM5LOovLy8atiT5/Lly8uWLQsICNCNycrl8oCAgA8++GDVqlX8tiEjI8O8t6Jn3z5GxAICWO/ejIhJ199zn9lrnfSb5fzD4eDgUG2DD92pXffxsrGxCQwMXLlypbSPDX2C7Nmzh+8P5u/vP2rUqGbNmul+Oe3atZsyZcqBAweqtY+Ki4v5XEVfX1++J4v5o+WsPqyi0Hft2jU+tNqpU6fLly/rf+tRH6OYmJi4uDjdqV0mkzVp0kTKpyXHxDAiNn06s7ZmFhb1c729frM8JiYmJSWF6W2Pz/uTuGbNmvHBtIf2ojU2hw8ftrOz021V7urqGhUVVXOPa3Z2tm4LlUWLFpk/Ws7qWwgZYzdv3uRDq23btuVDq9euXeOfMI5vxR0fHz9z5ky+GT5na2sbHBwcGxtr7nqcagYOZERsyRJGxCTt75GWrlnu7u7+wQcfjB49WrejBxG5uLhERkYePHhQqsWyDcbAgQOJaNSoUYb3uBYUFOi2UFmxYoXJo+U69S6EjLHS0lK+W6ujo+ORI0cYY506dXJxcQkPD4+Pj58yZYp+JnWndsN3OjSCWs0cHBgRmzePEbHJk6V/Cek8tFlu1GBaI8RvLzdv3rxhwwbDtxIvLi729/fnl4Q1a9YYNVr+oPoYQsZYRUVFWFgYESmVys8++ywxMVF/syZ+an9we3zpabXswgW2bRtbv5498wz74os6fC0p5ObmPvPMM87OzsuXL8/KyhJdnfruypUrRNS6deuxY8cS0Vpj9olTqVSDBw8mInt7+zVr1tQ8Wl6zehpC9tcaYt7M02Wve/fusbGxv/7662OqxI0bLCKCzZ7NIiPr9S6IYJLPP/+ciIYOHerm5kZExs4sraqq4j3SCoVi5cqVD46WG6j+hpAxptVqBw0aJJfLvby8Vq5cKeGDRww1bx7jz4JOTWUbNjzuV4c6xvdz4Htt2tnZmdCo02q1fDGKhYVFfHw8b5Z7eHjUuh+KvnodQk5kP964cfe3487JYXPmCKsG1I3u3bvTX+tIBg4caHI5+rMIeZ9NixYtDF9l9t8HIdVb+lPmH7fu3en4cSKiI0dIbxMnaABUKlVGRoaVlVVRURER8T5500RHR69du1Ymk2k0Gj5nq6ysTH/P25o9ASEUKSKCDh+mefPo+nUaNkx0bUBKJ06cUKvVPXr0OHnyJJkXQiKKiIg4duzY4sWLc3NziYg/QNJAlrX/SGOmUFBMjOhKQJ04fvw4Efn6+m7atIlPoDWzQF5CWloaGRlpXAmhkeJpadOmTVlZWZcuXfi6bamKRQgBasH+2py2qqqKiPjD2MxXXFx88eJFGxsb3uVjIIQQGqMLFy7cunXL2dk5MzOTzG4Q6qSlpWm12l69ellbWxt+FEIIjRFvEAYEBPD/SBhCMv66ihBCY8TT4unpmZeX5+jo2KVLF0mKNS3S6B2FxiglJYWIunTp8sorrzRt2lS3NtUcGo2G7+LJtxozHEIIjc7t27evXbsmk8kKCwv5LjuSSE9PLy0tdXd3139IiSFwOwqNTtOmTV966SXG2PTp0xMSEqQq1oTBCQ4hhEZHJpPt37+fx2/q1KmzZs2SpFiEEMA4kZGRSUlJVlZWH374YUREhFarNa0cvpcK/dUrY8KQo4wfD9A47d2799VXX713796wYcO2bt2q/4TDmpWXlx89enTPnj1fffXVli1bPD0927Rp06RJk+Li4mqblNYKHTPQqAUFBX3//fchISG7du165ZVXdu/ezfeqeJRbt2599913u3fvTklJUalU/Is//fTT5cuXib4djq8AAALzSURBVMjX19fYBBKuhABElJGR8dJLL+Xn5/fq1Wvfvn18rwp9ubm533///Z49e1JTUysrK/kXPT09g4KCmjdvfu7cuW3btlVVVQ0ePHjfvn3GvjpCCEBElJ2dPWjQoKysLE9Pz5SUFL5Xxblz53bu3Ll79+4zZ87wH7O2tu7fv3+/fv00Gs2hQ4f4vvJEJJPJnJyc9uzZ09P4dacIIcB9BQUFL7/8cnp6eocOHVJTUz08PKZMmbJu3ToiUiqVL7zwQt++fSsqKg4ePHj8+HEeHAsLCz8/v7CwsBEjRuhvAmgUhBDgv4qLi4OCgo4fP96mTZv9+/eXlJR8+eWXHh4ehYWFycnJly5d4j/GMxkWFjZ06FD+WCtzIIQA/0OlUg0fPjw1NVWpVHp5eWVnZ9+8eZN/y8nJKSQkJDQ09IUXXjBqnUTNEEKA6iorK0eMGLFv3z4+eOjq6hoUFBQWFta3b19JZplWgxACPIRarZ4xY0ZhYWFcXFznzp3r9LUQQgDBMG0NQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEEAwhBBAMIQQQDCEEECw/wc7zP/iMTsVrgAAAsN6VFh0cmRraXRQS0wgcmRraXQgMjAyNS4wMy4zAAB4nJWSXUhTYRjH3/NuO2fu023u030cc3MrKLzJksi9C4kwhZVGlLLe8MJDEbKi7CIjhboRSi+UNDAiJoFoYFRQuu3Qt3SVWUGgWV2MREQqrSDtnGcaFYH4wsP/9z7n+fifw5lNDkwg6eRKgVH2rJdioxTnGBZRSRlFVjFmSUhShZIlgqwK5g/IPuEQJLDUmk2os4pXRvy+rzpqRf/tWPuE/1WsCZbHIF5SZQ4I87eoyeqmlkGLGMRghBUCViipUiVgFcuzHM+pQ5jLQTkapNHyWp2AdXqqNwjYYKTG3BA2mqjJzJstvCVPwHlWarUJ2Gbn7Q4BO5zU6RKwK5/mu6Wkh3q8Ajb5BOzjEV+A+HWIL0Q+P/UHaKBIWhekwZCAQ5gWaWnAQL0W6rbTHSrJHotDQZVSwer0hkCRljWafP6Agc2z2jxeC+twuvLddvs8I70vWvlXFitiYv+ALiVfHH2VIj77FHhkeLPYU30JeNfpYjGzcLNM5pmLTvFhtCIsM/eJE6PzDUmZ9zPv07N1h6Gm7W4y7V7YDb0nybN0R19uWubxj+3p7vJbUG8uqU3v/TYINVUFS6nxK0eBS7/Up2xfF4CbrmnCg6NJ4MeZWPjqzolhmXsPWUjJo1ewq+TzATIy7YCaeDxEpvAceGvUtpKEzUpk3rYvQTzsDcjved5Dbte6wIPHliTXj3dC71hmmpxq3woc7eYiDY0TwG9rcKT5XSX4F79bIpofF4DdHzZEJmNx4I5gccR6xwLc3+qNLJUnst8wPk+GzGWwdy44Rs4XTwEP3X8Q5jpLwdvByZlwprcNuIXRkaoT94AdW0bLXgS7gJsu15BFawtwn/7J9rElN/CRrmPJwrpmmJn4+TJVzWmBz2zSi7HoG/Dw2u4X60fU4M32C4Uh0YTNCR9oAAADonpUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1WW27kNhD89yl4ARPsBx/9ubZ3gyDYMZA4ucP+5/5IFSemZoFOJKshyaVmsasf81R4/P7224+/yzn07emplPY/fxFR/rLW2tP3wpvy8vWXX2/l9ePLy+eb1/c/bx9/FJfiHd/g/Bn75eP9++cbKa/lWayuMGurPLfaPbriu9r2cX2sG6p1Ruu94bb2McwzqG2oVOurz0WoSEyLBOr/QpuGDfoyt7FWguxERu105Pg/eGhkqw8CV/XwYZ1bUh1dR4Kc5VaeZ21Dx6BL1daWJMBFl71GD2yeLmeMfD9R3svzqLpCBDvXqqPJyBaXRqdeu84wp1PrTcwyqNCrVdcuszOeNkb0FHqXqUaYtu01tJnPDLplatC+uW+vYVNGCqVMzA1hIIF0xGG0DNk3cs3G+MB70/kfm6JOWo0AxtwlfKbAid1j86372C6ZAvmO1nY5TEK9SF1Lo6UsKZNDeFsxSAKZ1DKPSpF6hYKj06OJjpUCWUlel01H4YGkwKFna6tul+FNUMusjTH7yLJOKdCsNlXm9jm1RfcMSX2Q8tNDt89pc860ivtGindIzZzSJto0Q1KfqOrLmXNeVVbTFDmBlFbHQiJtp3OKS5b0SoVY7i1GD9aHtRkrqyRshOtHG9GEe1KU1Mg6A3se4jRRPWt3Btc8k4wiDeTPQsVDzdkRrhRIjdDgsORgfqwIiJABbQNXh/AB/Q255ylHL9/gSBbXhPwLPSkVCC3rG9tgsA/D4wi1NDtsAGhIXcgymMxmYalH1g9ex0SFgYN3E8myyNa9IShah1ASCJNnu8W9y2AARMjuDJZ3Tm/3brwU2uxRMBDMtHX5fRhh/d4XCg/JIZgJPUuOr7e3n+bYfbK9vN/ersnGU6/phYdi14RyXtcU4tmvUYOHMq6BIrjmNTUE17pmg+KKawAIHuWxzcs28tDNZZtDDk3baeTwExKEkUNRyBBGDkshTRg5RFFySiOHK3qn7zeHLnqkbHMYCynD6GPXcxo9nJH8TqNXQMkZRg9ntCuh0cNZyRlGD2clZxg9nFGITqOHs5IzjB7O6BpOo4czmoNzLXtsAl52jT9Uu3OndjgbswDGrjwgZxg7nFGo9zeHM4rq/uZwNnKmn8PZyBnGDmcjZxg7nI2c8eVjbfg2hzJ/s9Ecfs4o48MrV9zufq88cEYZm7308x3leFCC9fJYHXz+/M2I+6d/ALAZ8w52rWiuAAAB2HpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCVSy43jUAxrZY8JYAtPfwnBnALMcVPEK2AbmOKXehP4ENOURFJ6vzfvvR9/34+vz/P92YI33fOyH59t8+3evufnz70N8Pvx/cTz/fwHpgDkPz+Pm5WqVa97kVu7+PW6WSh7+XUzeYQeiEm9YiDmTvuFlrRdi9Q0qgA1eac2INRLT2GRtYVNf5FwCWBJKyTiGmitYkBO7d08tOyYHq87SKpZrltIYnECMnLJPmrVF0P361Yyca6RphFnKFO3yrBaltpULthcZsdUa063ccyjCJDBbwxUuWY6+EsSAzBBSOc/5Bq3JRCMXI62ExoMzwChUG65mKoE6g0e0Qe1yAEOnTgiHN+VJQ6hNO0Ew74mUWRgS07EkaMmSVP4jElZ7eAgzrQJgCk1Mwdh80SZkiyk9WoSqxFnJFxo+OJFUcuGksk2CHa3OidaXdk9Vb0gC32ledJJSgRcs0uT4zpgtkJhIb3HI84D5ITJ6s5pS+WFGsMmlH1S4QL5cios/2SuPWcGSrRoTJYKmQxgqcIZKFCGoNHWXJnP8kRhbg6rq6Py7Bin2QO56e8RFaZonRUHFJ1LQKl7jVHWQKjPn/+4HqotNmr+lwAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Synthetic_Accessibility
CCCOC(=O)c1cccc(N2C(=O)C(Cl)=C(Nc3ccc(C(=O)OCC)cc3)C2=O)c1
1,700,034
{'sa_score': 8.05, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
456.882
3.8658
[ { "content": "Provide information about Synthetic_Accessibility for the molecule with SMILES 'CCCOC(=O)c1cccc(N2C(=O)C(Cl)=C(Nc3ccc(C(=O)OCC)cc3)C2=O)c1'.", "role": "user" }, { "content": "{'sa_score': 8.05, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Stereochemistry_Analysis
O=C(NN=Cc1ccc(Br)s1)c1ccccc1I
1,381,174
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
435.084
3.8791
[ { "content": "Determine the stereochemistry analysis of the chemical structure 'O=C(NN=Cc1ccc(Br)s1)c1ccccc1I'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1ccnc(NS(=O)(=O)c2ccc(NC(=O)c3cc(=O)c4cc(Cl)ccc4o3)cc2)n1
33,861
470.89
470.894
3.59792
[ { "content": "What is the molar mass of the substance with SMILES 'Cc1ccnc(NS(=O)(=O)c2ccc(NC(=O)c3cc(=O)c4cc(Cl)ccc4o3)cc2)n1'?", "role": "user" }, { "content": "470.89", "role": "assistant" } ]
Molecule_Visualization
N#Cc1ccc[nH]c1=O
577,543
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd1hTZ/sH8G8CSABlJiA4CmjdiqMVZ7VaR4e2avW1DkBwb6mjfetqXShucdQqrta+LVZrLf6qOOpotVKtRQsuhqJEIWEGSYBwfn8cSilmMJI8Cdyfy4uLHG5ybmq/PodzzvMcAcdxIISwI2TdACF1HYWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMWvWDRBDePIEx4/j0iVIpVAo4OoKb2/0748hQ2Bvz7o5ooeA4zjWPZAaKCzE4sXYtg1KpYavenpi7VqMH2/ytkgVUAgtmVKJoUMREwMAnp744AN06gQHB8jl+PlnHDkClQoAli/HsmVsOyU6UAgt2dy52LIFAAICsGMHHBz+9dUHDzB0KBISIBDghx/wzjtMeiR6UQgt1t27aN0aHIeBA/HTTxAINNSkpaFdO2RlwdcX9+9DSOfhzBH9rVisnTvB/wO6YYPmBALw8sLChQCQlISffjJdb6QqKIQWi/9VsEMHtGunq6zsrAxfT8wPhdAyKRS4cwcAXn1VT2WjRmjcGABiY43eFakWCqFlSk9HSQkANGmiv/illwDg6VPjtkSqi0JomfLySj9p0EB/MV+Tm2vEfkgNUAgtk0hU+onGa/QV8DV064y5ohBaJheX0k8yM/UXy2QA4OxsxH5IDVAILZNEArEYAG7d0lOpUuHuXQB6TqISdiiElkkgQPfuAPDLL1AodFXGxKCoCAB69DBFY6TqKIQWi78AmJ+PL77QVbZ5MwDY2WHUKFN0RaqOQmix3nsPrVoBwLJluH5dc83mzTh7FgAmTSo9fCXmh0JosWxscPAgbG2Rl4d+/bBlC3Jy/vnqw4eYPBmhoQDQsiVWr2bVJtGLbuC2cGfPYvjw0muANjZ4+WXUr4+MDCQnlxZ07IiTJ+HpybBHohuNhBYiJwdTpuDZs4rb+/fH3buYPh1iMYqKEB+Pa9dKE9iiBTZvxm+/UQLNHI2EFmLCBOzfj7feQnS05oKSEsTH4/Fj5OVBIoGPT+ndasTsUQgtwfHjeO892Nvjxg20bMm6G2JgdDhq9mQyTJkCAGFhlMBaiUJo9qZNw7Nn6N8fM2eyboUYBYXQvO3fjyNH4OSEyEit0+fLX5kgFohCaMYePy690LdtG5o21Vzz6BGaNcOSJaXTC4kFohCaK47DxInIysK772pdOLSkBEFBkMtx6xYt4mS56G/OXG3dilOnIJHg88911Zw/r6eGmD26RGGW7txB584oKMCRIxgxQk/Nd99h+HDT9kcMiUZC81NcjKAgFBQgOFhrAouLERiIggKEhFACLR2F0PysWoXffkPjxtiwQWvNypW4dg3e3ti40YSdEaOgw1Ez88cf8PeHWo0zZ/D669WvIZaDRkJzolIhIABFRZgzR2u6ymrmzqUE1g40EpqT0FBs2oRWrXDjBuzsdNW0bo3r17XWEItCITQbly+jb18IBPjlF3TtqrWmTx8Ihfj1V/1rbxMLQYej5kGhQFAQ1GosXqw1gXxNSQkWL6YE1iY0EpqHkBBERqJzZ1y9Chub6tcQC0QhNAMnTmDoUNja4vp1tG2rq0Ykwu+/a60hlokOR1mTyTB5MgCEhWlNV2VqiMWikZC1UaMQFYXevfHzz1pvwq5MDbFYFEKmDh1CQAAcHREXp3VJmMrUEEtG/6wyk/b4cfHKlQCwebPWdD15gjlzAGDLFkpgbUUhZIPjuKDg4FYZGYnTp2PCBG1FpVMKhw5FUJBJ+yMmRCFkY/v27TExMTlWVvWXLtVaFBGBn36CWIzdu03YGjE1+p2QgcTExI4dOyoUiqioqPfff19bETp2hEKBqChoqyG1Ao2EplZcXDxu3DiFQhEYGKg1gcXFGDcOCgUCAymBtR6F0NTCwsKuXr3aqFGjTZs26SjC1ato1Ag6akhtQSE0qZs3b65YsUIgEOzdu9el7JHXL9ScOH8ednY4cABaakhtQiE0HZVKFRAQUFhYOGvWrEGDBmmrGT9+/NBz5zbPmYP+/U3cIWGDI6ayYMECAC1btszPz69JDallDHx2tLAQ/PXnN97Aa69pLfvsMxQXo0cPDB5cumXXLqSkAMCYMejQQcO35OdjxQoAGD5c61wfc/bLL7/06dNHIBBcvnzZ39+/2jWkFjJspnNzOYADuJUrdZXVq8cB3Ny5/2zp3bv0Gzt04IqKNHxLRkZpweefG7ZlU1AoFM2bNwewZMkSvTVLly41ZW+EObP7nTAuDjt2sG7C0ObNm/fgwYNOnTotXrxYb80nn3xiyt4Ic+YVQn6q6pIlePKEdSuGc/r06T179tja2h44cKBevXrVriG1lXmFcPBgNG2K3FzMm8e6FQPJzs4OCQnhOG7VqlXt27evdg2pxcwrhHZ2WL4cAKKicPIk42YMYurUqY8fP+7Zs+fcuXNrUkNqMfMKIYDAwNKTn9OnIz+fdTc18/XXX3/zzTcODg779++3srLSWHP48GG9NaR2M7sQCoXYvBkCAR4+xOrVrLupgbS0tJkzZwLYvHkzf9pTY82sWbMAbNmyRVsNqfWsjfS+0dFIT9f6VbVa1/d2745x43DoENavx9ixaNPG4N0ZHcdxkyZNyszMHDRoUEhIiLaaiRMn8jXBwcEm7pCYD2OF8MoVXLlS/W8PD8eJE8jOxpQpuHhRw4Oi797F1atwc4NYDDc3uLvDyakm/RrYrl27Tp48KRaL9+/fL9DymOtdu3b93//9n+4aUhcYK4S9eqFbN61f3bRJz2Do4YGVKzFzJi5fxsGDCAysWHD6NGbPrrhRJIKXFzw94eJS+qfCSxcXeHpqffa7oSQlJS1atAjA9u3bGzZsWO0aUkcYK4SDB0PHNeetW/WEEMC0aTh4ENeuYdEiDBtW8astWiAgAHI5ZDLIZMjIQG4ulEokJSEpSdfbikSlg6dEAonkn7FULIa7e6GbW4JYLHZzcxOJRJX7QSsqKSmZMGFCXl7e2LFjR40apbtm3Lhx2mpI3WGsENacUIjt2+Hvj2fPsGYNPvzwX18dNAgvzkPIykJaGrKy/vkjlWrY8vgxHj/WsMfmze89eNCR/1wkErn8zcvLy9PT06UcfotYLH7xwvq6desuXrzo5eW1detWbT/a2rVrL1682KhRoy1btlT5vwupdcw3hABeeQUTJ2L3bmzapPWRteXxB5y6FRRAJoNcjvT00k/KPtrYlNjbd5DJZHK5XKlUSqVSqVSqb48uEonEzc2NHz8BfPnllwKBYPLkyQkJCfXr17ezs2vRokX5b/nrr78+++wzgUDwxRdfuLq66v+pSG1n1iEEsGYNjh1DRoaug9sqsbNDkyZo0kTjFzsAf/KfFRQUZP1NKpWmpaVllcNvkclk/MsX32j58uXL+dsOABcXl6SkJGdnZwAqlWrMmDFKpXLGjBlvvvmmYX4kYuHMPYSurggLQ0gITp826X7t7Ozs7Oy8vLx0l8nlcn7kLPuYnp7Ofy6Xy5OTk6VSaVZW1vTp0w8fPgxg2bJlcXFxvr6+YWFhJvk5iAUw9xACmDABBw/iwgXWfWji5ubGH4VqExoaumnTpqioqMjIyD/++GP9+vVCoXD//v3169c3WZPEzJndHTMvEggQEWGpzwJbt26dra1tcXHx+vXrAwMD1Wr1xx9/3Lt3b9Z9ETNiASEE0K4dZsxg3US1WFtbL1u2DMDGjRvv37/fsWPHpTpW+yV1koGXtygpwZ07AODuDrFYa9mdOygpgZsbPDxKt6SlQamEg8M/WypQqUonGYrFcHQ0YMtGV1RU1KxZs9TUVBsbm+vXr9NkJVIB+xW4c3MtLFTVEBERMWvWLG9v76SkJLpDjVTA+HBUoUDnzpgyBc+fs23EuCZOnOjp6ZmSknLmzBnWvRCzwziEH36IxERcuwZrCzhNW30ikWj27NkA1qxZw7oXYnZYHo7GxGDQINSrh9hY1PpflHJzc729vbOysi5fvtyzZ0/W7RAzwmwkzM5GcDA4DitX1v4EAnB0dOTn+NJlelIBs5Fw9Gh88w169sSFC6gjqzrI5XJvb2+FQnH9+vXOnTuzboeYCzYj4f/+h2++gYMD9u+vKwkE4ObmNmnSJADh4eGseyFmhMFImJaGDh0gl2P3bkyaZOKdMyaVSn19fYuKiuLj4yvMriB1lqlHQo7DpEmQyzFwICZONPHO2fP09AwICFCr1evWrWPdCzEXph4Jd+3CtGlwcUFcHBo3NuWezUVSUlLLli0FAsH9+/dfeukl1u0Q9kw6EiYnY+FCANi1q44mEICvr++oUaOKioo2btzIuhdiFkw3EpaUoF8/XLiAMWPw1Vem2aeZio+Pb9++vUgkSk5Odnd3Z90OYcx0I2F4OC5cgJcXtm0z2T7NVJs2bYYMGfL8+XNaY4bAZCNhfDy6dIFKheho0KoOAK5du+bv7+/o6Pjw4UN+5QtSZ5liJCwqQkAAlEpMnUoJLNW1a9f+/fvn5ubuqH1PYyRVZIqR8JNPsHo1fH1x8yYaNDD23izGuXPn+vfv7+bmlpKSQqtd1GVGHwmvXMHatRAKsW8fJfBf+vXr16NHD7lcvnfvXta9EJaMG8LnzxEUBLUaixbhtdeMuiuLxK+Ev379+sLCQta9EGaMG8IFC3DvHtq0Aa2rotGQIUM6der0+PHjQ4cOse6FMGPE3wnPnMHAgbCxwbVr8PMz0k4s3tdffz1mzJhmzZrduXPHunZPbSZaGGskzMlBSAg4Dp9+SgnUZdSoUS+//HJiYuKRI0dY90LYMFYIZ8zAo0fo3h0LFhhpD7WElZXVggULAKxZs4b5oluECaOE8Lvvjj98eN/BAQcP1qHpgtUWFBTUtGnTuLi46Oho1r0QBgwfwqdPn06dOvHy5RYREWfpMeyVYWNjM2/ePAArV65k3QthwPAnZkaMGHH06NEBAwacOnWK1tispOfPn3t7e2dkZJw7d+71119n3Q4xKQOPhHv27Dl69Kizs/PevXspgZVnb29PayLWWYYcCVNSUvz8/HJzcw8fPvzBBx8Y6m3riJycHG9v7+zs7F9//bV79+6s2yGmY7CRkH8Oe25u7rBhwyiB1eDk5DRt2jQAtPJFXWOwkXDDhg3z5893d3e/desWTVStnvT0dB8fn4KCgri4uHbt2rFuh5iIYUbChISEJUuWAIiMjKQEVpu7u3tISAjHcWvXrmXdCzEdA4yExcXFPXr0iI2NnTRp0u7duw3SVp2VmpravHlztVqdkJDw8ssvs26HmIIBRsIVK1bExsb6+Phs2LCh5u9WxzVp0mTcuHFqtZr+Y9YdNR0Jb9y40a1bN7Vafe7cuT59+hiqrbosMTGxZcuW1tbWiYmJjRo1Yt0OMboajYRKpTIgIKCoqOjDDz+kBBpKs2bNRowYoVKpaE3EOqJGI+GcOXO2bt3aunXrGzduiEQiA7ZVx/3555+dOnWyt7dPTk6WSCSs2yHGVf2R8Ny5cxEREdbW1gcOHKAEGpafn99bb72Vn58fERHBuhdidNUcCXNycvz8/B4+fLhixYrFixcbvC1y9erV7t27Ozk5PXz40MnJiXU7xIiqORLOmTPn4cOHXbp04VdJIQbXrVu3Pn365OTkfP7556x7IcZVnZHw+PHj7733nr29/Y0bN1q2bGmMtgiA06dPDxo0yMPDIzk52c7OjnU7xFiqPBLKZLIpU6YACAsLowQa1cCBA1999dVnz55FRkay7oUYUZVHwpEjRx45cqR///4xMTE0WcnYjh49OmLEiCZNmjx48KBevXqs2yFGUbWRcP/+/UeOHHFycoqMjKQEmsCwYcPatWuXmpr69ddfs+6FGEsVQvj777/PnTsXwLZt25o2bWq0lsg/BALBwoULAaxZs6akpIR1O8QoKns4ynFc06ZNHz9+3KtXr0uXLhm7LVJGrVa3atXqwYMHUVFR77//Put2iOFVdiRUKpWZmZkAevfuraMsLy8vNTXVAH2Rv1lZWYWGhgJYtWoVrYlYK1U2hHZ2dj169ACg47LV2bNnvb29Z86caZjWyN+Cg4O9vLxu3rx56tQp1r0Qw6vC74T79u0TCASZmZnfffedxoKOHTuqVKoTJ07cunXLQO0RALC1teXXRPzss89Y90IMrwohbNy48YgRIwBoe3qJm5sbPzE8LCzMMN2Rv02bNk0sFl+5coV+Ia+FuKqQyWQODg4CgSAuLk5jQWpqar169aysrO7du1eldyZ6LVu2DMCbb77JuhFDio2NTU5OzsvLY90IS1W+WM9PXxo7duyXX36psWDixIl79+6dPHky3fRoWJmZmd7e3nl5ebGxsa+88grrdgygsLBQJBLx/wfa2tq6urq6lOPl5eXp6Vl+S6NGjZydnVl3bXhVDuHjx4+bNWumYxEUfmK4UCh88OABXU40rIULF4aHh7///vtRUVGsezGA7OzsAQMGZGRkyGSy/Pz8ynyLg4ODm5ubRCKRSCRubm5isZj/KJFIxGJx2UsbGxtjN29A1bmBOyQkJDIyUsdYN3r06G+++WbevHk0N9ywnj175uPjo1Kp4uLi2rZty7odQ+KvgWWVI5VK09LSym958uRJTk6O3rdq3/7y/fs9XVzg4gIvL3h6gv+8whZ3d5jJ8yCrE0K9i6DExcV17NjRzs4uJSWFJoYb1vTp03fu3BkUFLRv3z7WvTCgUCjkcnl6erpMJpPL5WUf09PTy17Wr3/hwYMWet9KIIBYDDe3fz5KJJBI/rXF3R2Ojkb/oao5qZcf60JDQ7UtCjZkyJAff/xxyZIldFa9SpKTk8ePH799+3Y/LY9WffToUfPmzTmOW7hwYYsWLcoOyTw8PBxN8P+LhcjORkYGZDLIZJDLIZNVfMl/rAwbG4jFWLoUU6caq9tqhlDvIii//fZbt27dnJycUlJSauUv08ZQUlLSt2/fS5cuBQQEHDhwQFuNj48PgEePHr34VRcXlwonM148veHl5WXcH8NyFBRAKkVaGrKy/vlTYcuzZygpwa5dmDLFWG1Uf6Gnd955Jzo6WsdY169fv/Pnz69Zs+ajjz6qQYd1yLp16xYtWuTl5XXr1i1XV1eNNeHh4QsXLnR1dR09ejR/bCaTyfjjsby8vMrsxc7OTuPJDLFY7O7uXja02traGvSHs1SFhZDJ0KABFAosXw4A9vZYtw4aT/2cPInjxwGgSlcGqh/CsrFO2yIoMTExAwcOdHd3T0lJoYnhesXHx3fp0kWlUv34449vvfWW7pro6Og333zzxYKsrKwKJzMqnN6QSqVZWVmV6UckEukeTj09PSUSiWWdh6yJhAS0aVP6+dq1WLhQQ82qVeBXXKpSqqp/esjf379v374///zzrl27NK40M2DAgO7du1+5cmXv3r10Q6luRUVFgYGBSqVy2rRp2hJYVFQUEBDA12hMIAA+Ibr3VVBQoPskpFQqffLkiVKplEqlUqlU97uVZbVCUMu/9PDwsKpdj03/9FOMHAkfH8O8W43WHdW7CMr3338/bNgwmhiu1yeffLJ69WofH58///yzQYMGOmp8fX1v3ryprcaAcnNz+St45c9DvnhasjKzHK2srMoOel1cXO7du+fq6ioWixs3btyiRYtu3brxB8Ym+KFqomwkFImgVGLIEPzwQ8Wa6o2ENV0Gv2vXrrGxsRERETNmzHjxqxzHdejQ4fbt25GRkRMmTKjJjmqxq1ev9urVi+O48+fPv/baaxprrly50rt3b901TPDjqsbhtGxLenq6Wq2uzLtVOLFkVjfNlIVw/nysXw8AR49i2LB/1bAJ4bFjx4YPH65jrPvyyy/Hjx/fvHnzO3fu1LJjEoN4/vx5p06d7t2799FHH2l7VnZZzccff7x69WoTd1hzxcXFZSNnamrqyZMn09PTMzMz8/PzbW1tRSIRf5VPoVBU5t3s7e3500j8+Fl2Jom/jcbdvaWLi6ebGwx+4FUWwpgYhIXh7Fk0aYL4eNSv/08NmxCWjXX79u0LCgp6saBsYvi33347cuTImuyrVpo5c+b27dvbtGlz/fp1bQuZz5gxY8eOHbpragGD3DTTp8+GCxdCAYhEGu6SqclNM+VD6OUFPz8UFyM0FOWvlLMJIYBDhw4FBAS0bNkyPj5eKNQwN+rzzz+fOnWqn5/fH3/8QctDlXfmzJmBAwfa2Nhcu3ZN29X5ytTUKfn5+TKZTNvvqxJJ6OXLQ+VyFBXpfyuB4F/3x/A3zfCflG13dwd/7r98CN94A7NmISICVlaIjUWnTqVvWL0QVm0qk0bFxcXNmzcHEBUVpbFAqVTyd7dFR0fXfHe1RnZ2Nn+D+5o1a2pSQzTKyuLu3eN+/ZU7cYLbt49bv55btIgLDubefZfr2ZNr1YoTizmBgAP0/3n7bY7juPj40pcxMRzHcXI5J5FwAOfvz6nVpTtdubK0pkoMEEKO43bu3AnAz8+vpKREY8H69esBdOvWzSC7qx3GjRsHoHv37sXFxdpqxo4dq7eGVJtazaWnc/Hx3KVL3LFj3J493KpVXGgoFxDAvf025+/PNWvGOTpygYEc90IIOY7bu7d0y86dpVtYhlCpVPI3Q508eVJjgUKhEIvFAC5cuGCQPVq6Y8eOAbC3t797967eGpohbQ5eDGFJCdezJwdwzs5cejrHsQ0hx3Hh4eH8v9naCj799FMAgwYNMtQeLVd6erq7uzuAHTt21KSGmNKLIeQ47tYtzsaGA7gpUziOeQjLxrqLFy9qLMjOzubvbouNjTXUTi3U8OHDAbzxxhvajt7LagYMGKCjhpiSxhByHDd3LgdwQiH3+++sQ8hx3PLlywEMHjxYWwG/mPSIESMMuFOLs2fPHgDOzs6PHj3SVvPFF1/orbF0MTExGzduPHDgQHR09NWrVxMTE3Nzc1k3pYu2EObkcF5eHMD171/NEBrgEkUZvYug8BPDlUplXFxcu3btDLVfC5KSkuLn55ebm/vVV1+NGTNGd83hw4c/+OADE3doMvzs5Be3652N5eXlpff+WGOocImivP/9D/xfVM+e+OUXwGQ3cL/I1dV16tSp4eHha9eu1bgIioeHR3Bw8Pbt28PDw7XNl6vFSkpKJkyYkJubO2zYMG0JLF9TixMIYMCAAba2thWu8ikUCv6ivO7vtbe352+UKT/3SiwWe3m1dXLqU3ahz2R3K48ejT17cPZsaQKrypAjISqxCEpqamrz5s3VavXdu3ebNWtmwF2bvw0bNsyfP9/d3f3WrVv8SZfq1dRiKpVKLpfrvmkmLS0tOztb47d37z7yypVvy15W5qYZiUTzzMAX6RgJAdy/j/btoVKVvjT1HTMV8PdYBQYG7t+/X2NBUFDQgQMHpk+fvn37dsPu2pwlJCR06dKloKDgxx9/fPvtt6tdQwDk5+fL5fKMjIyMjIzyUzpsbTvevDm5bPWKytw0A1S8RabCSjMSCZo3B/SFEMB//4uym38Zh5BfBAXAvXv3vL29Xyy4c+dO27ZtbWxskpKS6shSC8XFxT169IiNjZ00adLu3bt119CSrYZSUKB5xYryWzIyUFys600kEqSnA5UIYUEB2rZFcjJg+tvWXhQQEABgxowZ2gr4R3wtWLDAGHs3Q0uXLgXg4+Oj4wTgkiVL9NYQgyspqXjTzOrVXGgoFxjIvf02160bN3BgaWVxMZeZyWVmcoWFWt8tP7+0pkqMEsKEhAShUCgSiZ48eaKxgL+T28HBISMjwxgNmJXr16/b2NgIhcKff/65JjWktjJKCDmO4x8ds3DhQm0FgwcPBrB8+XIjNWAmCgoK+BNU8+fP11tTdw4NSHnGCmHZWCeTyTQW/PrrrwBcXV1r99HX7NmzAbRu3fr58+e6a9q0aVNQUGDK3oiZMFYIOY4bNGgQgE8//VRbAf/Q3/DwcOP1wNbZs2eFQqG1tfW1a9d01AgEAmtra7qbr84yYggvXLige6w7efIkgIYNG+oYJSxXdnb2Sy+9BGDFihU6avjpgitXrjRlb8SsGDGEHMf16tULwPr167UVdOnSBcDOsvlYtUhgYCCALl26FGo/m1aZGlLrGTeE0dHR/Fin7bcd/u42Hx+foqIio3ZiYsePHwdgb29/584dbTXff/+93hpSFxg3hNzfY92uXbs0flWtVvMnBg8ePGjsTkwmIyPDw8MDwNatW7XVpKen8zXbtm0zZW/EDBk9hN9++y0AX19fbWMd/4iv1q1bq8tW6rBw/K0I/fv31zEVkL+Eo7uG1BFGD6FarW7Tpg2AQ4cOaSwoLCzk7247evSosZsxAf7fFP4RHTWpIXWH0UPIcVxkZKTusS4iIgJAp06dLH1YSE1N5ae66Ti6rkwNqVNMEcLCwkL+ZP2xY8c0FhQUFHh6egI4deqUCfoxkpKSEv7S6LvvvqutRq1W9+vXT3cNqWtMEUKO47Zt2wbg1Vdf1VYQFhYGoG/fvqbpxxg2b94MQCKRPH36VFvNpk2b9NaQusZEISwb606fPq2xIDc3lz9Iu3TpkmlaMqyEhAT+uVRHjhzRW/Pdd9+Zsjdi5kwUQo7j+KedvP7669oK+Pk+b/PLHVuUoqIif39/AMHBwTpqunbtqruG1E2mC2FOTg4/1l2+fFljgVwur1+/PoDr16+brCuD4JdUbdy4cVZWlrYafik63TWkbjJdCDmOW7x4MYB33tQX3PsAAARzSURBVHlHW0FoaCiAUaNGmbKrGrpx40a9evWEQuG5c+d01PDTBXXUkDrLpCGUyWS6xzqpVCoSiYRCoaXcyaVUKtu3bw9g3rx5Omr49R1DQ0NN2RuxFCYNIcdx8+bNAzB69GhtBVOmTAEwffp0U3ZVbfzQ3apVKx0TQfgfWXcNqctMHcK0tDSRSGRlZaXtQSiJiYmbNm1SKBQmbqwaLl26ZGVlZW1t/dtvv9WkhtRxpg4hx3GTJk0CEBISYvpdG5BCoeDXTV22bJm2mry8PL6m1q/iQWqCQQgTExOtra1tbGxSUlJMv3dDCQkJAdC5c2cdUwGDg4P11hDCIIQcx/GLwM+ZM4fJ3mvuxIkTAEQiUXx8vLaaH374AYCtre3t27dN2RuxOGxC+NdffwmFQnt7+2fPnjFpoIaePn06dOjQTZs2aSvIyMho2LAhAB01hPDYhJDjuKFDhwL473//y6qBmtMx52PkyJEAevfuXWsmSRLjMfwy+JV07do1f39/W1vbe/fu8Ysd1RqHDh0KCAhwdHSMi4vjp48QooOQ1Y67du3q5uamUqkmTpzIqgdjePLkyZw5cwBs2bKFEkgqw4q/p5EJoVAYExOTnJzcoEEDmUwmEAicnZ2FQmb/LtQcx3H/+c9/bt++PXTo0LVr17Juh1gGZoejPEdHx7y8vPJbRCLRiw9nrbDFw8PDysqKVc86REREzJo1SywW37p1iz8xQ4hejEN4/vz52bNnP3r0SKVSCYVClUpVUlKi97usra3LP59VIpGIxeKyl25ubu7u7mKxmL9P1WQSExM7duyoUCiioqL4tZ4IqQzGIXxRQUGBxuezlt+Snp6uVqv1vpWtra2rq6uOp5+7uLg0btzYycmp5m2rVKpXXnnl9u3bOp6OSohGZhfCSiooKKgQ1Bdzyy8hofet+ANgbUHlX4rF4no6n4A+YMCAM2fOODo6pqSk8NMmCakka9YNVJOdnZ2vr6+vr6+OGqVSyT9IOT09XSaTlT1UuWwL/1KpVEqlUqlUqnuPzs7O/HFv2UGvs7NzUlJSw4YNc3Jyzpw5A+Cjjz6iBJKqstSR0ID4A2Btwym/RSaTFel7AnqHDh3+/PNP0/RMahMKYWVlZmZWGE4TExPPnj2bl5eXn5/fokWLn376SSwWs26TWB4KISGMWfCVcUJqBwohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWHs/wFM7lv+wmG7UQAAAOR6VFh0cmRraXRQS0wgcmRraXQgMjAyNS4wMy4zAAB4nHu/b+09BiAQAGImBgjghOIGRnYGDZA4MxuEZmFzANHMQDoDRDMzYjLYHSxADEZmmFoOsF5mJm4GRg1mRiYFJuYMJmaWBBbWDCZWtgQ29gR2Dg0mdqYEJ0agMjYmdjZWFmbxMiCbkQHmHp8HsQ4Jk/j3gzgJYX/su6wf7wOxl2z4bBcStBzMNmXbv2+GzAmwmqPa7/d7K+0Es5W/KByY83/vXhB7gtXV/VwZk+xB7INNevv25DaD2Xt26do/uCXgAGKLAQAtdzHRxtPr5wAAASp6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9kktqw0AMhvc+hS6QQa95aBnboZQSG9q0d+g+96dSgzsJMR1ZMBp9lqV/PECs9/nt+wp/i+dhAMB/HjODL0HE4QyxgfH08rrAdDmO28m0fi6XDzA3DHskj5f1vJ0QLCBJS2mU4YApF2xcARP+rv4qwwSUrJK0EqCqNNIdUBz0dM2Wa4DCpUX+CVQHI18FTeFA/m3xYIfMQVJqpWWW2KkWybZDliA5ZVJDiupoXHdrVh/cK5WSW3YZEvk8u222W5tUUZkcRC7VJXgGDVY/jaQQcGKfZrfH0zI/XMHtUsZ1mfuliDt36T0A6QJreJcxLHetPIDSBVH32qdW99ZnY3frE6iHct/ofVsRb3+Z74cfUNiESVL66HIAAACgelRYdFNNSUxFUyByZGtpdCAyMDI1LjAzLjMAAHicJY07DgIxDAWvgkQDkjeK/7YiKhoqOACiSs8J9vA4Szca+Y2f5/vEOef7+/hMvL1O+4WbmAXC1ptaD3IY2NKRcykRDhQYRa6pvhyTBYwFzj0FNqwlcw2LwkJpKRFjK0VNUY5WT3Kn/5mZhgI2rP7RQu9CWKaTea6H5mGMQI0qbnDdf0MjJ4fYYPO0AAAAAElFTkSuQmCC</base64_image>
120.111
0.24658
[ { "content": "Determine the molecule visualization of the chemical structure 'N#Cc1ccc[nH]c1=O'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd1hTZ/sH8G8CSABlJiA4CmjdiqMVZ7VaR4e2avW1DkBwb6mjfetqXShucdQqrta+LVZrLf6qOOpotVKtRQsuhqJEIWEGSYBwfn8cSilmMJI8Cdyfy4uLHG5ybmq/PodzzvMcAcdxIISwI2TdACF1HYWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMWvWDRBDePIEx4/j0iVIpVAo4OoKb2/0748hQ2Bvz7o5ooeA4zjWPZAaKCzE4sXYtg1KpYavenpi7VqMH2/ytkgVUAgtmVKJoUMREwMAnp744AN06gQHB8jl+PlnHDkClQoAli/HsmVsOyU6UAgt2dy52LIFAAICsGMHHBz+9dUHDzB0KBISIBDghx/wzjtMeiR6UQgt1t27aN0aHIeBA/HTTxAINNSkpaFdO2RlwdcX9+9DSOfhzBH9rVisnTvB/wO6YYPmBALw8sLChQCQlISffjJdb6QqKIQWi/9VsEMHtGunq6zsrAxfT8wPhdAyKRS4cwcAXn1VT2WjRmjcGABiY43eFakWCqFlSk9HSQkANGmiv/illwDg6VPjtkSqi0JomfLySj9p0EB/MV+Tm2vEfkgNUAgtk0hU+onGa/QV8DV064y5ohBaJheX0k8yM/UXy2QA4OxsxH5IDVAILZNEArEYAG7d0lOpUuHuXQB6TqISdiiElkkgQPfuAPDLL1AodFXGxKCoCAB69DBFY6TqKIQWi78AmJ+PL77QVbZ5MwDY2WHUKFN0RaqOQmix3nsPrVoBwLJluH5dc83mzTh7FgAmTSo9fCXmh0JosWxscPAgbG2Rl4d+/bBlC3Jy/vnqw4eYPBmhoQDQsiVWr2bVJtGLbuC2cGfPYvjw0muANjZ4+WXUr4+MDCQnlxZ07IiTJ+HpybBHohuNhBYiJwdTpuDZs4rb+/fH3buYPh1iMYqKEB+Pa9dKE9iiBTZvxm+/UQLNHI2EFmLCBOzfj7feQnS05oKSEsTH4/Fj5OVBIoGPT+ndasTsUQgtwfHjeO892Nvjxg20bMm6G2JgdDhq9mQyTJkCAGFhlMBaiUJo9qZNw7Nn6N8fM2eyboUYBYXQvO3fjyNH4OSEyEit0+fLX5kgFohCaMYePy690LdtG5o21Vzz6BGaNcOSJaXTC4kFohCaK47DxInIysK772pdOLSkBEFBkMtx6xYt4mS56G/OXG3dilOnIJHg88911Zw/r6eGmD26RGGW7txB584oKMCRIxgxQk/Nd99h+HDT9kcMiUZC81NcjKAgFBQgOFhrAouLERiIggKEhFACLR2F0PysWoXffkPjxtiwQWvNypW4dg3e3ti40YSdEaOgw1Ez88cf8PeHWo0zZ/D669WvIZaDRkJzolIhIABFRZgzR2u6ymrmzqUE1g40EpqT0FBs2oRWrXDjBuzsdNW0bo3r17XWEItCITQbly+jb18IBPjlF3TtqrWmTx8Ihfj1V/1rbxMLQYej5kGhQFAQ1GosXqw1gXxNSQkWL6YE1iY0EpqHkBBERqJzZ1y9Chub6tcQC0QhNAMnTmDoUNja4vp1tG2rq0Ykwu+/a60hlokOR1mTyTB5MgCEhWlNV2VqiMWikZC1UaMQFYXevfHzz1pvwq5MDbFYFEKmDh1CQAAcHREXp3VJmMrUEEtG/6wyk/b4cfHKlQCwebPWdD15gjlzAGDLFkpgbUUhZIPjuKDg4FYZGYnTp2PCBG1FpVMKhw5FUJBJ+yMmRCFkY/v27TExMTlWVvWXLtVaFBGBn36CWIzdu03YGjE1+p2QgcTExI4dOyoUiqioqPfff19bETp2hEKBqChoqyG1Ao2EplZcXDxu3DiFQhEYGKg1gcXFGDcOCgUCAymBtR6F0NTCwsKuXr3aqFGjTZs26SjC1ato1Ag6akhtQSE0qZs3b65YsUIgEOzdu9el7JHXL9ScOH8ednY4cABaakhtQiE0HZVKFRAQUFhYOGvWrEGDBmmrGT9+/NBz5zbPmYP+/U3cIWGDI6ayYMECAC1btszPz69JDallDHx2tLAQ/PXnN97Aa69pLfvsMxQXo0cPDB5cumXXLqSkAMCYMejQQcO35OdjxQoAGD5c61wfc/bLL7/06dNHIBBcvnzZ39+/2jWkFjJspnNzOYADuJUrdZXVq8cB3Ny5/2zp3bv0Gzt04IqKNHxLRkZpweefG7ZlU1AoFM2bNwewZMkSvTVLly41ZW+EObP7nTAuDjt2sG7C0ObNm/fgwYNOnTotXrxYb80nn3xiyt4Ic+YVQn6q6pIlePKEdSuGc/r06T179tja2h44cKBevXrVriG1lXmFcPBgNG2K3FzMm8e6FQPJzs4OCQnhOG7VqlXt27evdg2pxcwrhHZ2WL4cAKKicPIk42YMYurUqY8fP+7Zs+fcuXNrUkNqMfMKIYDAwNKTn9OnIz+fdTc18/XXX3/zzTcODg779++3srLSWHP48GG9NaR2M7sQCoXYvBkCAR4+xOrVrLupgbS0tJkzZwLYvHkzf9pTY82sWbMAbNmyRVsNqfWsjfS+0dFIT9f6VbVa1/d2745x43DoENavx9ixaNPG4N0ZHcdxkyZNyszMHDRoUEhIiLaaiRMn8jXBwcEm7pCYD2OF8MoVXLlS/W8PD8eJE8jOxpQpuHhRw4Oi797F1atwc4NYDDc3uLvDyakm/RrYrl27Tp48KRaL9+/fL9DymOtdu3b93//9n+4aUhcYK4S9eqFbN61f3bRJz2Do4YGVKzFzJi5fxsGDCAysWHD6NGbPrrhRJIKXFzw94eJS+qfCSxcXeHpqffa7oSQlJS1atAjA9u3bGzZsWO0aUkcYK4SDB0PHNeetW/WEEMC0aTh4ENeuYdEiDBtW8astWiAgAHI5ZDLIZMjIQG4ulEokJSEpSdfbikSlg6dEAonkn7FULIa7e6GbW4JYLHZzcxOJRJX7QSsqKSmZMGFCXl7e2LFjR40apbtm3Lhx2mpI3WGsENacUIjt2+Hvj2fPsGYNPvzwX18dNAgvzkPIykJaGrKy/vkjlWrY8vgxHj/WsMfmze89eNCR/1wkErn8zcvLy9PT06UcfotYLH7xwvq6desuXrzo5eW1detWbT/a2rVrL1682KhRoy1btlT5vwupdcw3hABeeQUTJ2L3bmzapPWRteXxB5y6FRRAJoNcjvT00k/KPtrYlNjbd5DJZHK5XKlUSqVSqVSqb48uEonEzc2NHz8BfPnllwKBYPLkyQkJCfXr17ezs2vRokX5b/nrr78+++wzgUDwxRdfuLq66v+pSG1n1iEEsGYNjh1DRoaug9sqsbNDkyZo0kTjFzsAf/KfFRQUZP1NKpWmpaVllcNvkclk/MsX32j58uXL+dsOABcXl6SkJGdnZwAqlWrMmDFKpXLGjBlvvvmmYX4kYuHMPYSurggLQ0gITp826X7t7Ozs7Oy8vLx0l8nlcn7kLPuYnp7Ofy6Xy5OTk6VSaVZW1vTp0w8fPgxg2bJlcXFxvr6+YWFhJvk5iAUw9xACmDABBw/iwgXWfWji5ubGH4VqExoaumnTpqioqMjIyD/++GP9+vVCoXD//v3169c3WZPEzJndHTMvEggQEWGpzwJbt26dra1tcXHx+vXrAwMD1Wr1xx9/3Lt3b9Z9ETNiASEE0K4dZsxg3US1WFtbL1u2DMDGjRvv37/fsWPHpTpW+yV1koGXtygpwZ07AODuDrFYa9mdOygpgZsbPDxKt6SlQamEg8M/WypQqUonGYrFcHQ0YMtGV1RU1KxZs9TUVBsbm+vXr9NkJVIB+xW4c3MtLFTVEBERMWvWLG9v76SkJLpDjVTA+HBUoUDnzpgyBc+fs23EuCZOnOjp6ZmSknLmzBnWvRCzwziEH36IxERcuwZrCzhNW30ikWj27NkA1qxZw7oXYnZYHo7GxGDQINSrh9hY1PpflHJzc729vbOysi5fvtyzZ0/W7RAzwmwkzM5GcDA4DitX1v4EAnB0dOTn+NJlelIBs5Fw9Gh88w169sSFC6gjqzrI5XJvb2+FQnH9+vXOnTuzboeYCzYj4f/+h2++gYMD9u+vKwkE4ObmNmnSJADh4eGseyFmhMFImJaGDh0gl2P3bkyaZOKdMyaVSn19fYuKiuLj4yvMriB1lqlHQo7DpEmQyzFwICZONPHO2fP09AwICFCr1evWrWPdCzEXph4Jd+3CtGlwcUFcHBo3NuWezUVSUlLLli0FAsH9+/dfeukl1u0Q9kw6EiYnY+FCANi1q44mEICvr++oUaOKioo2btzIuhdiFkw3EpaUoF8/XLiAMWPw1Vem2aeZio+Pb9++vUgkSk5Odnd3Z90OYcx0I2F4OC5cgJcXtm0z2T7NVJs2bYYMGfL8+XNaY4bAZCNhfDy6dIFKheho0KoOAK5du+bv7+/o6Pjw4UN+5QtSZ5liJCwqQkAAlEpMnUoJLNW1a9f+/fvn5ubuqH1PYyRVZIqR8JNPsHo1fH1x8yYaNDD23izGuXPn+vfv7+bmlpKSQqtd1GVGHwmvXMHatRAKsW8fJfBf+vXr16NHD7lcvnfvXta9EJaMG8LnzxEUBLUaixbhtdeMuiuLxK+Ev379+sLCQta9EGaMG8IFC3DvHtq0Aa2rotGQIUM6der0+PHjQ4cOse6FMGPE3wnPnMHAgbCxwbVr8PMz0k4s3tdffz1mzJhmzZrduXPHunZPbSZaGGskzMlBSAg4Dp9+SgnUZdSoUS+//HJiYuKRI0dY90LYMFYIZ8zAo0fo3h0LFhhpD7WElZXVggULAKxZs4b5oluECaOE8Lvvjj98eN/BAQcP1qHpgtUWFBTUtGnTuLi46Oho1r0QBgwfwqdPn06dOvHy5RYREWfpMeyVYWNjM2/ePAArV65k3QthwPAnZkaMGHH06NEBAwacOnWK1tispOfPn3t7e2dkZJw7d+71119n3Q4xKQOPhHv27Dl69Kizs/PevXspgZVnb29PayLWWYYcCVNSUvz8/HJzcw8fPvzBBx8Y6m3riJycHG9v7+zs7F9//bV79+6s2yGmY7CRkH8Oe25u7rBhwyiB1eDk5DRt2jQAtPJFXWOwkXDDhg3z5893d3e/desWTVStnvT0dB8fn4KCgri4uHbt2rFuh5iIYUbChISEJUuWAIiMjKQEVpu7u3tISAjHcWvXrmXdCzEdA4yExcXFPXr0iI2NnTRp0u7duw3SVp2VmpravHlztVqdkJDw8ssvs26HmIIBRsIVK1bExsb6+Phs2LCh5u9WxzVp0mTcuHFqtZr+Y9YdNR0Jb9y40a1bN7Vafe7cuT59+hiqrbosMTGxZcuW1tbWiYmJjRo1Yt0OMboajYRKpTIgIKCoqOjDDz+kBBpKs2bNRowYoVKpaE3EOqJGI+GcOXO2bt3aunXrGzduiEQiA7ZVx/3555+dOnWyt7dPTk6WSCSs2yHGVf2R8Ny5cxEREdbW1gcOHKAEGpafn99bb72Vn58fERHBuhdidNUcCXNycvz8/B4+fLhixYrFixcbvC1y9erV7t27Ozk5PXz40MnJiXU7xIiqORLOmTPn4cOHXbp04VdJIQbXrVu3Pn365OTkfP7556x7IcZVnZHw+PHj7733nr29/Y0bN1q2bGmMtgiA06dPDxo0yMPDIzk52c7OjnU7xFiqPBLKZLIpU6YACAsLowQa1cCBA1999dVnz55FRkay7oUYUZVHwpEjRx45cqR///4xMTE0WcnYjh49OmLEiCZNmjx48KBevXqs2yFGUbWRcP/+/UeOHHFycoqMjKQEmsCwYcPatWuXmpr69ddfs+6FGEsVQvj777/PnTsXwLZt25o2bWq0lsg/BALBwoULAaxZs6akpIR1O8QoKns4ynFc06ZNHz9+3KtXr0uXLhm7LVJGrVa3atXqwYMHUVFR77//Put2iOFVdiRUKpWZmZkAevfuraMsLy8vNTXVAH2Rv1lZWYWGhgJYtWoVrYlYK1U2hHZ2dj169ACg47LV2bNnvb29Z86caZjWyN+Cg4O9vLxu3rx56tQp1r0Qw6vC74T79u0TCASZmZnfffedxoKOHTuqVKoTJ07cunXLQO0RALC1teXXRPzss89Y90IMrwohbNy48YgRIwBoe3qJm5sbPzE8LCzMMN2Rv02bNk0sFl+5coV+Ia+FuKqQyWQODg4CgSAuLk5jQWpqar169aysrO7du1eldyZ6LVu2DMCbb77JuhFDio2NTU5OzsvLY90IS1W+WM9PXxo7duyXX36psWDixIl79+6dPHky3fRoWJmZmd7e3nl5ebGxsa+88grrdgygsLBQJBLx/wfa2tq6urq6lOPl5eXp6Vl+S6NGjZydnVl3bXhVDuHjx4+bNWumYxEUfmK4UCh88OABXU40rIULF4aHh7///vtRUVGsezGA7OzsAQMGZGRkyGSy/Pz8ynyLg4ODm5ubRCKRSCRubm5isZj/KJFIxGJx2UsbGxtjN29A1bmBOyQkJDIyUsdYN3r06G+++WbevHk0N9ywnj175uPjo1Kp4uLi2rZty7odQ+KvgWWVI5VK09LSym958uRJTk6O3rdq3/7y/fs9XVzg4gIvL3h6gv+8whZ3d5jJ8yCrE0K9i6DExcV17NjRzs4uJSWFJoYb1vTp03fu3BkUFLRv3z7WvTCgUCjkcnl6erpMJpPL5WUf09PTy17Wr3/hwYMWet9KIIBYDDe3fz5KJJBI/rXF3R2Ojkb/oao5qZcf60JDQ7UtCjZkyJAff/xxyZIldFa9SpKTk8ePH799+3Y/LY9WffToUfPmzTmOW7hwYYsWLcoOyTw8PBxN8P+LhcjORkYGZDLIZJDLIZNVfMl/rAwbG4jFWLoUU6caq9tqhlDvIii//fZbt27dnJycUlJSauUv08ZQUlLSt2/fS5cuBQQEHDhwQFuNj48PgEePHr34VRcXlwonM148veHl5WXcH8NyFBRAKkVaGrKy/vlTYcuzZygpwa5dmDLFWG1Uf6Gnd955Jzo6WsdY169fv/Pnz69Zs+ajjz6qQYd1yLp16xYtWuTl5XXr1i1XV1eNNeHh4QsXLnR1dR09ejR/bCaTyfjjsby8vMrsxc7OTuPJDLFY7O7uXja02traGvSHs1SFhZDJ0KABFAosXw4A9vZYtw4aT/2cPInjxwGgSlcGqh/CsrFO2yIoMTExAwcOdHd3T0lJoYnhesXHx3fp0kWlUv34449vvfWW7pro6Og333zzxYKsrKwKJzMqnN6QSqVZWVmV6UckEukeTj09PSUSiWWdh6yJhAS0aVP6+dq1WLhQQ82qVeBXXKpSqqp/esjf379v374///zzrl27NK40M2DAgO7du1+5cmXv3r10Q6luRUVFgYGBSqVy2rRp2hJYVFQUEBDA12hMIAA+Ibr3VVBQoPskpFQqffLkiVKplEqlUqlU97uVZbVCUMu/9PDwsKpdj03/9FOMHAkfH8O8W43WHdW7CMr3338/bNgwmhiu1yeffLJ69WofH58///yzQYMGOmp8fX1v3ryprcaAcnNz+St45c9DvnhasjKzHK2srMoOel1cXO7du+fq6ioWixs3btyiRYtu3brxB8Ym+KFqomwkFImgVGLIEPzwQ8Wa6o2ENV0Gv2vXrrGxsRERETNmzHjxqxzHdejQ4fbt25GRkRMmTKjJjmqxq1ev9urVi+O48+fPv/baaxprrly50rt3b901TPDjqsbhtGxLenq6Wq2uzLtVOLFkVjfNlIVw/nysXw8AR49i2LB/1bAJ4bFjx4YPH65jrPvyyy/Hjx/fvHnzO3fu1LJjEoN4/vx5p06d7t2799FHH2l7VnZZzccff7x69WoTd1hzxcXFZSNnamrqyZMn09PTMzMz8/PzbW1tRSIRf5VPoVBU5t3s7e3500j8+Fl2Jom/jcbdvaWLi6ebGwx+4FUWwpgYhIXh7Fk0aYL4eNSv/08NmxCWjXX79u0LCgp6saBsYvi33347cuTImuyrVpo5c+b27dvbtGlz/fp1bQuZz5gxY8eOHbpragGD3DTTp8+GCxdCAYhEGu6SqclNM+VD6OUFPz8UFyM0FOWvlLMJIYBDhw4FBAS0bNkyPj5eKNQwN+rzzz+fOnWqn5/fH3/8QctDlXfmzJmBAwfa2Nhcu3ZN29X5ytTUKfn5+TKZTNvvqxJJ6OXLQ+VyFBXpfyuB4F/3x/A3zfCflG13dwd/7r98CN94A7NmISICVlaIjUWnTqVvWL0QVm0qk0bFxcXNmzcHEBUVpbFAqVTyd7dFR0fXfHe1RnZ2Nn+D+5o1a2pSQzTKyuLu3eN+/ZU7cYLbt49bv55btIgLDubefZfr2ZNr1YoTizmBgAP0/3n7bY7juPj40pcxMRzHcXI5J5FwAOfvz6nVpTtdubK0pkoMEEKO43bu3AnAz8+vpKREY8H69esBdOvWzSC7qx3GjRsHoHv37sXFxdpqxo4dq7eGVJtazaWnc/Hx3KVL3LFj3J493KpVXGgoFxDAvf025+/PNWvGOTpygYEc90IIOY7bu7d0y86dpVtYhlCpVPI3Q508eVJjgUKhEIvFAC5cuGCQPVq6Y8eOAbC3t797967eGpohbQ5eDGFJCdezJwdwzs5cejrHsQ0hx3Hh4eH8v9naCj799FMAgwYNMtQeLVd6erq7uzuAHTt21KSGmNKLIeQ47tYtzsaGA7gpUziOeQjLxrqLFy9qLMjOzubvbouNjTXUTi3U8OHDAbzxxhvajt7LagYMGKCjhpiSxhByHDd3LgdwQiH3+++sQ8hx3PLlywEMHjxYWwG/mPSIESMMuFOLs2fPHgDOzs6PHj3SVvPFF1/orbF0MTExGzduPHDgQHR09NWrVxMTE3Nzc1k3pYu2EObkcF5eHMD171/NEBrgEkUZvYug8BPDlUplXFxcu3btDLVfC5KSkuLn55ebm/vVV1+NGTNGd83hw4c/+OADE3doMvzs5Be3652N5eXlpff+WGOocImivP/9D/xfVM+e+OUXwGQ3cL/I1dV16tSp4eHha9eu1bgIioeHR3Bw8Pbt28PDw7XNl6vFSkpKJkyYkJubO2zYMG0JLF9TixMIYMCAAba2thWu8ikUCv6ivO7vtbe352+UKT/3SiwWe3m1dXLqU3ahz2R3K48ejT17cPZsaQKrypAjISqxCEpqamrz5s3VavXdu3ebNWtmwF2bvw0bNsyfP9/d3f3WrVv8SZfq1dRiKpVKLpfrvmkmLS0tOztb47d37z7yypVvy15W5qYZiUTzzMAX6RgJAdy/j/btoVKVvjT1HTMV8PdYBQYG7t+/X2NBUFDQgQMHpk+fvn37dsPu2pwlJCR06dKloKDgxx9/fPvtt6tdQwDk5+fL5fKMjIyMjIzyUzpsbTvevDm5bPWKytw0A1S8RabCSjMSCZo3B/SFEMB//4uym38Zh5BfBAXAvXv3vL29Xyy4c+dO27ZtbWxskpKS6shSC8XFxT169IiNjZ00adLu3bt119CSrYZSUKB5xYryWzIyUFys600kEqSnA5UIYUEB2rZFcjJg+tvWXhQQEABgxowZ2gr4R3wtWLDAGHs3Q0uXLgXg4+Oj4wTgkiVL9NYQgyspqXjTzOrVXGgoFxjIvf02160bN3BgaWVxMZeZyWVmcoWFWt8tP7+0pkqMEsKEhAShUCgSiZ48eaKxgL+T28HBISMjwxgNmJXr16/b2NgIhcKff/65JjWktjJKCDmO4x8ds3DhQm0FgwcPBrB8+XIjNWAmCgoK+BNU8+fP11tTdw4NSHnGCmHZWCeTyTQW/PrrrwBcXV1r99HX7NmzAbRu3fr58+e6a9q0aVNQUGDK3oiZMFYIOY4bNGgQgE8//VRbAf/Q3/DwcOP1wNbZs2eFQqG1tfW1a9d01AgEAmtra7qbr84yYggvXLige6w7efIkgIYNG+oYJSxXdnb2Sy+9BGDFihU6avjpgitXrjRlb8SsGDGEHMf16tULwPr167UVdOnSBcDOsvlYtUhgYCCALl26FGo/m1aZGlLrGTeE0dHR/Fin7bcd/u42Hx+foqIio3ZiYsePHwdgb29/584dbTXff/+93hpSFxg3hNzfY92uXbs0flWtVvMnBg8ePGjsTkwmIyPDw8MDwNatW7XVpKen8zXbtm0zZW/EDBk9hN9++y0AX19fbWMd/4iv1q1bq8tW6rBw/K0I/fv31zEVkL+Eo7uG1BFGD6FarW7Tpg2AQ4cOaSwoLCzk7247evSosZsxAf7fFP4RHTWpIXWH0UPIcVxkZKTusS4iIgJAp06dLH1YSE1N5ae66Ti6rkwNqVNMEcLCwkL+ZP2xY8c0FhQUFHh6egI4deqUCfoxkpKSEv7S6LvvvqutRq1W9+vXT3cNqWtMEUKO47Zt2wbg1Vdf1VYQFhYGoG/fvqbpxxg2b94MQCKRPH36VFvNpk2b9NaQusZEISwb606fPq2xIDc3lz9Iu3TpkmlaMqyEhAT+uVRHjhzRW/Pdd9+Zsjdi5kwUQo7j+KedvP7669oK+Pk+b/PLHVuUoqIif39/AMHBwTpqunbtqruG1E2mC2FOTg4/1l2+fFljgVwur1+/PoDr16+brCuD4JdUbdy4cVZWlrYafik63TWkbjJdCDmOW7x4MYB33tQX3PsAAARzSURBVHlHW0FoaCiAUaNGmbKrGrpx40a9evWEQuG5c+d01PDTBXXUkDrLpCGUyWS6xzqpVCoSiYRCoaXcyaVUKtu3bw9g3rx5Omr49R1DQ0NN2RuxFCYNIcdx8+bNAzB69GhtBVOmTAEwffp0U3ZVbfzQ3apVKx0TQfgfWXcNqctMHcK0tDSRSGRlZaXtQSiJiYmbNm1SKBQmbqwaLl26ZGVlZW1t/dtvv9WkhtRxpg4hx3GTJk0CEBISYvpdG5BCoeDXTV22bJm2mry8PL6m1q/iQWqCQQgTExOtra1tbGxSUlJMv3dDCQkJAdC5c2cdUwGDg4P11hDCIIQcx/GLwM+ZM4fJ3mvuxIkTAEQiUXx8vLaaH374AYCtre3t27dN2RuxOGxC+NdffwmFQnt7+2fPnjFpoIaePn06dOjQTZs2aSvIyMho2LAhAB01hPDYhJDjuKFDhwL473//y6qBmtMx52PkyJEAevfuXWsmSRLjMfwy+JV07do1f39/W1vbe/fu8Ysd1RqHDh0KCAhwdHSMi4vjp48QooOQ1Y67du3q5uamUqkmTpzIqgdjePLkyZw5cwBs2bKFEkgqw4q/p5EJoVAYExOTnJzcoEEDmUwmEAicnZ2FQmb/LtQcx3H/+c9/bt++PXTo0LVr17Juh1gGZoejPEdHx7y8vPJbRCLRiw9nrbDFw8PDysqKVc86REREzJo1SywW37p1iz8xQ4hejEN4/vz52bNnP3r0SKVSCYVClUpVUlKi97usra3LP59VIpGIxeKyl25ubu7u7mKxmL9P1WQSExM7duyoUCiioqL4tZ4IqQzGIXxRQUGBxuezlt+Snp6uVqv1vpWtra2rq6uOp5+7uLg0btzYycmp5m2rVKpXXnnl9u3bOp6OSohGZhfCSiooKKgQ1Bdzyy8hofet+ANgbUHlX4rF4no6n4A+YMCAM2fOODo6pqSk8NMmCakka9YNVJOdnZ2vr6+vr6+OGqVSyT9IOT09XSaTlT1UuWwL/1KpVEqlUqlUqnuPzs7O/HFv2UGvs7NzUlJSw4YNc3Jyzpw5A+Cjjz6iBJKqstSR0ID4A2Btwym/RSaTFel7AnqHDh3+/PNP0/RMahMKYWVlZmZWGE4TExPPnj2bl5eXn5/fokWLn376SSwWs26TWB4KISGMWfCVcUJqBwohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWHs/wFM7lv+wmG7UQAAAOR6VFh0cmRraXRQS0wgcmRraXQgMjAyNS4wMy4zAAB4nHu/b+09BiAQAGImBgjghOIGRnYGDZA4MxuEZmFzANHMQDoDRDMzYjLYHSxADEZmmFoOsF5mJm4GRg1mRiYFJuYMJmaWBBbWDCZWtgQ29gR2Dg0mdqYEJ0agMjYmdjZWFmbxMiCbkQHmHp8HsQ4Jk/j3gzgJYX/su6wf7wOxl2z4bBcStBzMNmXbv2+GzAmwmqPa7/d7K+0Es5W/KByY83/vXhB7gtXV/VwZk+xB7INNevv25DaD2Xt26do/uCXgAGKLAQAtdzHRxtPr5wAAASp6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9kktqw0AMhvc+hS6QQa95aBnboZQSG9q0d+g+96dSgzsJMR1ZMBp9lqV/PECs9/nt+wp/i+dhAMB/HjODL0HE4QyxgfH08rrAdDmO28m0fi6XDzA3DHskj5f1vJ0QLCBJS2mU4YApF2xcARP+rv4qwwSUrJK0EqCqNNIdUBz0dM2Wa4DCpUX+CVQHI18FTeFA/m3xYIfMQVJqpWWW2KkWybZDliA5ZVJDiupoXHdrVh/cK5WSW3YZEvk8u222W5tUUZkcRC7VJXgGDVY/jaQQcGKfZrfH0zI/XMHtUsZ1mfuliDt36T0A6QJreJcxLHetPIDSBVH32qdW99ZnY3frE6iHct/ofVsRb3+Z74cfUNiESVL66HIAAACgelRYdFNNSUxFUyByZGtpdCAyMDI1LjAzLjMAAHicJY07DgIxDAWvgkQDkjeK/7YiKhoqOACiSs8J9vA4Szca+Y2f5/vEOef7+/hMvL1O+4WbmAXC1ptaD3IY2NKRcykRDhQYRa6pvhyTBYwFzj0FNqwlcw2LwkJpKRFjK0VNUY5WT3Kn/5mZhgI2rP7RQu9CWKaTea6H5mGMQI0qbnDdf0MjJ4fYYPO0AAAAAElFTkSuQmCC</base64_image>", "role": "assistant" } ]
Molecular_Weight_Calculation
CCc1cc2c(-c3ccccc3)cc(=O)oc2c2c1OCN(Cc1ccc(OC)cc1)C2
1,763,449
427.50
427.5
5.3831
[ { "content": "What is the molar mass of the substance with SMILES 'CCc1cc2c(-c3ccccc3)cc(=O)oc2c2c1OCN(Cc1ccc(OC)cc1)C2'?", "role": "user" }, { "content": "427.50", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1ccc(N(CC(=O)Nc2c(C)cc(C)cc2C)S(=O)(=O)c2ccccc2)cc1
1,317,827
422.55
422.55
4.75428
[ { "content": "What is the molar mass of the substance with SMILES 'Cc1ccc(N(CC(=O)Nc2c(C)cc(C)cc2C)S(=O)(=O)c2ccccc2)cc1'?", "role": "user" }, { "content": "422.55", "role": "assistant" } ]
Bioactivity_Prediction
N#Cc1ccc[nH]c1=O
577,543
{"predicted_classes": ["Unknown"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 0, "enzyme_inhibitor": 0, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Medium", "drug_like_properties": {"molecular_weight": 120.11, "logp": 0.25, "hbd": 1, "hba": 2}, "structural_complexity": "Low"}
120.111
0.24658
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'N#Cc1ccc[nH]c1=O'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"Unknown\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 0, \"enzyme_inhibitor\": 0, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Medium\", \"drug_like_properties\": {\"molecular_weight\": 120.11, \"logp\": 0.25, \"hbd\": 1, \"hba\": 2}, \"structural_complexity\": \"Low\"}", "role": "assistant" } ]
Solubility_Prediction
CN(Cc1cnc2nc(N)nc(N)c2n1)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)c(Cl)c1
456,143
{"log_s": -0.65, "solubility_mg_ml": 0.1095, "solubility_category": "Slightly soluble", "contributing_factors": {"molecular_weight": 488.8920000000003, "logp": 0.92, "oh_groups": 2, "nh_groups": 3, "cooh_groups": 2, "aromatic_rings": 3}}
488.892
0.9218
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'CN(Cc1cnc2nc(N)nc(N)c2n1)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)c(Cl)c1'.", "role": "user" }, { "content": "{\"log_s\": -0.65, \"solubility_mg_ml\": 0.1095, \"solubility_category\": \"Slightly soluble\", \"contributing_factors\": {\"molecular_weight\": 488.8920000000003, \"logp\": 0.92, \"oh_groups\": 2, \"nh_groups\": 3, \"cooh_groups\": 2, \"aromatic_rings\": 3}}", "role": "assistant" } ]
Synthetic_Accessibility
CCCCS(=O)(=O)Cl
75,430
{'sa_score': 9.75, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
156.634
1.3551
[ { "content": "Provide information about Synthetic_Accessibility for the molecule with SMILES 'CCCCS(=O)(=O)Cl'.", "role": "user" }, { "content": "{'sa_score': 9.75, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Synthetic_Accessibility
[O-][I+](O)(O)(O)(O)O
25,289
{'sa_score': 9.65, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
227.938
-6.97
[ { "content": "What is the synthetic accessibility for the compound represented by '[O-][I+](O)(O)(O)(O)O'?", "role": "user" }, { "content": "{'sa_score': 9.65, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Stereochemistry_Analysis
CC[N+](C)(C)CCCOCCC[N+](C)(C)CC.[Br-].[Br-]
46,895
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
406.247
-4.0162
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'CC[N+](C)(C)CCCOCCC[N+](C)(C)CC.[Br-].[Br-]'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Functional_Group_Identification
CSc1ncc(-c2ccc[n+](CC(=O)C3CC3)c2)cc1C#N
1,608,195
{"ketone": 1, "nitrile": 1, "sulfide": 2}
310.402
2.60878
[ { "content": "What is the functional group identification for the compound represented by 'CSc1ncc(-c2ccc[n+](CC(=O)C3CC3)c2)cc1C#N'?", "role": "user" }, { "content": "{\"ketone\": 1, \"nitrile\": 1, \"sulfide\": 2}", "role": "assistant" } ]
Molecule_Visualization
Cc1ccc(-c2nnc(SCC(=O)NN=Cc3c(Cl)cccc3Cl)n2C2CCCCC2)cc1
1,846,342
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deViUVfsH8Htm2IVXcMNhEcE1JFxQQslyo1zAFbR8xdTEXTRfy9fUUNOiTMUV0dRwy1x6CxVNjVRSfiq4giYKIjgyiICCwDDDzP3749BECgjMM3MI7s/V1YVcwzlnlO8853nOJkJEIITwI+bdAEIaOgohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGIXyFkBCYObPs6zlz4M4drq0h9RGF8BVycuDMGfjtNwCAx49BqeTdIFLvUAhfbdky+OQTKCnh3Q5STxnxbkDdpVLB8+cAAFIpvPcefPMN7waReopCWIH8fNi5E9asgXfeAVNTAIDgYOjdG0xMeLeM1EcUwr9JTYV162DnTigoAAC4cgW8vAAAjI3hm2/grbf4to7UT3RPWCYhAcaPhw4dYP16KCgAb2+IioL4eBg7Ftq0AQB48004eBAaNYJRoyAlhXdzST0iQkTebeBJo4FjxyA0FC5cAAAwMYExY2D+fHB3r/j1s2bBpk3Qti2cPw8tWhiypaTearghLCiAHTtg7Vp48AAAoHFj+OAD+PhjcHCo+PVJSZCYCH5+MGAAxMWBhwf89htYWRmyyaSewgbg3Xdxz56/vr5/HxcsQBsbBEAAbNsWw8KwsLCqEjIz0cYGjY3x2DHMzsYOHRAA+/VDhcIAzechJQX37cNffqm/77AOaRD3hJmZsGkT5OYCADx8CNu2wVdfQV4eeHvDgQPwxx8wZw5YWFRVQsuWMHMmqFTg7w/JyXD8OLRsCTExMGECaDSGeRMG9MMPMGUKqFRw8SL06wdFRbwbVN/x/hQwhM6d8aefcPJkRMROnVAmwwkT8OrVmhWi0eCHHyIANm2Kt2/jjRtobY0AOHOmPprMVfv2mJdX9vXSpbh+PdfW1H8N4koIAMOGQWZm2dMXOzvYuRO6dKlZCSIRRETAyJGQkwM+PmBtDYcOgYkJbNoEW7de10eb+cjNhUaNwNq67I9vvAGJiVwbVP81lBACwLp18N//6tR7lEhg927o1QsePgQ/P+jeXRMZCX37Lpk2revevXuFaylXFhZ/638+f05Pn/StAYWwTRvo3x+ysnQqxMICoqPB3R2srdcPHz5g+HCFv78UESdOnHjixAlB2vnsWfT9+++npY0vKroiSIE1Y2YGDg5lfQaNBnbvhkGDODSjQeHdHzaEHTvKviguxvXr8fFjvHwZnzypfYHp6Xn29vYAEBAQoFarP/nkEwCwsLC4cOGCjk1VKuVJSa8rlZkKxT2l8pGOpdVYejqWluL9+zhkCPr64ttv46pVhm5Dw9MgQoiIajX26oWtWmFpKfr7IwB+/71OBSYmJtrY2ADAtGnTNBrNxIkTAaBZs2Z//PFHrZpXWFx8p7DwslIpv3HDSaFI0alxtda1Kzo7Y1ISImJpKZ82NDwNZe6oWAwpKZCVBVlZYG8PACCT6VRgp06doqOj+/fvv2XLFkdHx4iICLlcfvz48cGDB58/f75ly5YvvB4Rs7KyHj16ZG8vF4sfqFSZSmWGSpWpUj1UKmVq9VMAMDa2dXeXOzisun9/nERi5eT0rYmJo06trJHffoOrV6FFC3BxgXnzQCyG+fPhpTdCBNdQQggA9vaQlQUyWVkIHz3StUAvL6/9+/ePHDly8eLFtra2hw4d8vHxuXDhQp8+febNm/fs2bOHDx/KZLLMzMyMjAy5XK5SqQAgLq6rsfHVF4oSiUxNTOyMjR0ANDY2ATY2AU+e7Hj0KKR16x26trL61q4FAJg1C/LzITwclEqYNs1wtTdgDSuEV678FUIdr4SMn5/fhg0bpk+fPnfu3KFDh/7888+dO3fOycmZOnXqyy9u3ry5VCpVq72kUg9jY3sTE3tjYzsTE0djY6mRUXP2mtLSXKXyvplZJ7U618ioiQBNrKa7d+HYMTAzgylTYPNmUChgxAho29ZwDWjAGlAI7ewAAGQy6NSp7AtBTJs27dmzZ15eXs2bN8/Pz1epVE+ePHn77be7devm6OgolUodHBzs7Ozs7e1N2drEKiGW5ObuLym5Z2bWQSr9TKMpVqnkpqbOwrS1CmvXgkYDH3wA1tawZQsAwEcf6b1SwvC+KTWc5csRABcuxORkBEBnZ+Gr+PjjjwGgZ8+eGo1G99JKStKSktwSE19Tq6uc2Kq7nBxs1AhFIrx1C7duRQD08NBvjaScBjROqO2Fau8JhV1AkpKSsn79erFYvG7dOpFIpHuBRka2AGKF4nZGxlzdS6tKeDgUFsKgQdCxI4SFAQDMm6ffGgV1W3E7S6Xb+C9XDTGEFhbg5fWsW7f0nJxCAcufN29eSUnJhAkTevToIUiBYrGZs/M+sdj8yZNtubnfC1JmBVSqv/qfJ07ArVtgbw8BAfqqTgj56vwp6VMG3B3gc9fnyLMje3L3XC66zLtRtdcQQwgABQXecXFOMtk9oQqPiYmJioqysrJasWKFUGUCgLl5JweHbwAgPX2GUpkmYMlaJw4duuXsrOnRA/r3L3tAGhwMxsb6qEsoH8s+7mjW8XS70z+3+bmZUTPezdFVgwqhokeP5ebmHwAAm+8iE+jhjFqtnjt3LgAsWrRIKpUKUqZW8+YzrK2Hq9VPU1PHIKqELRwAPl21qlNs7J4ZMx7dvq25cQMsLSEoSPBahHUi/8Ts5rMBwEJs0bNRT97N0VUDCqGNjdmtW19fvbqroKBA2BBGRGy7efNmmzZtWBQF17r1DhMTp8LCS5mZnwtbckxMzNWrV1u0aDH6vfeWrF7dOC/vxPz5YGMjbC2CU6HKWFSnr9U10oBCCADsMiWTyQQMYW4urF4d9NZbB1avXludQYhakEhsnJ13iUQSufyL+/d/F7DktWvXAsDs2bPz8/P37dtXVFrabtw4AcvXkxZGLR4oH5T/ztPSp8NShiUUJfBqki4a0DghADg4ONy7d0/YEIaEQGqqpHXrgGHDdC+sUpaWb1lbL5s79+iVK+9dv369adOmupeZnJwcHR1tbm4+bdq0DRs2KBSKkSNHtmF7y9Vti6WLx6WNW2i7sBRKNagBgKj8qKhnUX8o/kh4LcFSbMm7gTXTsK6E2uwJFcLbtyEiAiSSsgf7etW69cKCAjOZTDZ+/HgUYnRl7dq1Go1m/PjxVlZWERERAPDRP2SA3t/af6Pjxnsl9zKUGZ0tOvs19ltht6KrRdfkkuTZGbN5t67meA9UGhRbc/TFF18kJCQAgLu7u44FvvuuQXe4yMjIaNKkCQBs2LBBx6JycnIaNWokEolu3brFEti9e3dBGslLsiLZ6poVJMCenD2vfnVd0rBCuG7dOgCYOXNmTk5OYGDgypUrdSntp58QAG1sMDtbqAa+2uHDhwHA1NT0ak03yfm7zz//HACGDBmi0WhcXV0B4HsdF3fVAduyt0ECWF61vKO4w7stNdCwQnjo0CEAGDZsmO5FlZRg+/YIwGEbpClTpgCAq6trYdX7NJaTm5sbHx8fFRUVEREREhISFBRkYWEBABKJ5I033gAABwcHpVKp12Ybxvup70MCdL/dvURTwrst1dWwQnju3DkAaNmy5Q8//JCWlqZLUV99hQD42mto+F/d4uJid3d3AJgyZYr2m0VFRSkpKbGxsQcOHAgLC1uwYEFAQIC3t7eLi4uRUaWP37TT61bVlxX0T0ufOt90hgT4r+y/vNtSXQ1oB+7nz58PGzbs8uXLBey0FwBra+vu3bt7e3t7eHj07NmzWbPqzr3QaKBrV7hxA375Bd55R28trtzNmzc9PT0VCkXz5s2bNm2akZFRWFjpFDyxWGxra2tvb29nZ+fg4CCVStnyjmbNmh0/fnzx4sUSiSQhIaFz586GfAv6c6nw0pvJb6pRfaLtCZ9/+fBuzqs1lBDK5fLBgwdfvXrV1tbW398/LS3t0qVL2dnZ2heIRKL27dv7+e1ycvL09IQuXSo4CO3WLWjVCiwtAQCuXIE7d+D99w34Hv5uxYoVK1asKPnz7FIzMzM7OzupVPrC/11cXBwdHY0rn4Y2YsSIn376ydPT8/fff6/iZf8sK+UrV8hX9L/Yf8eIHS3q/pkhvC/FhpCSktKuXTsAaNOmzd27d7Xfl8lkUVFRISEhAwYMYPdIdnYP2N74Rkbo6oqBgRgRgYmJqFYjIr7+Ok6dWvazrq483snf7dy58+uvv05MTHz69GmtC8nNzXVycgKAxYsXC9g2vtSoHvPJGAAYPHiwIMvK9Kr+h/Dy5cvss7BHjx6PHz+u7GUqlerKlatbtuDEiejmhhJJ2UkV7D9ra1y9Gjt3Rn9/ZDuq1YUQCuXcuXMSiUQsFp8+fZp3WwTz8OFDdn+xZs0a3m15hXoewtOnT//rX/8CAB8fn/z8/Or/YEEBxsZiWBgGBqKrKwLg1q3YuTOmpOAbb6BKVa9CiIghISEAYG9vn23I8RY9O3bsmEgkMjY2vnjxIu+2VKU+h3D37t3sJmf8+PE6Pn+XyTAvDzt3RkRcvhzXrq1vISwtLe3duzcAzJp1vM5332pg1qxZANC2bdsafQQbWL0NYVhYmFgsBoDg4GCh7gpYCBUK9PREJydBiqxD0tPT+/e/D4A6z8apQxQKRZcuXQBgwoQJupQjl8tjY2NXrlwZFxcnVNu0OIcwPDy8b9++S5cuff78uVBlajQaNj1NJBIJO/zFQoiIJ0+itbWABdcVP/6IAGhqWuMjq+qypKQk9tRtz56qprMpFAqZTBYfH68daA0MDBwwYICrq2ujRo20DzKNjIxiYmKEbSHPEG7fvl07WGxmZubr6xsZGanLgz5ELCkpGTt2LACYmJgIPg/r2bOyLzQaPHSoXv2mak2bhgDo6vqKU1P/WdjkWEtLy/Pnz1+9evXIkSNs5tCkSZMGDRrk5ub2ylUpTZs2dXV1ZXc33bp1E3Z2EbcQhoaGsgQ6ODj06NGDdR0BwNTUdPDgwdu3b39S88MiCgoKBg4cyP66f/nlF300m1mzBgFwxAj91cBNcTG6uyMAlpuNUx+MHDmy6t23TExMpFKph4eHr6/vlClTQkJCIiIiTp06lZiY+OzPT9/Hjx87OzsDwCeffCJg2ziEUKPRsK0BRSLRN998w76ZnZ0dGRnp6+urHS+WSCTe3t5hYWEymaw6xcrlcg8PDwBo2bLllStX9PkOMCsLzcxQLMZyg471R2IimpsLcFxHnbJmzRrW4XJzcxs4cODEiRM/++yzLVu2HDly5MqVK3K5XPtKlUr18OHDuLi4H3/8cd26daxf2rdv3xMnTiDixYsXjY2NRSLR0aNHhWqboUNYUlLy/vvvsyve/v372Tc/+uijxYsXs2UBOTk5LI0mf85YEYvF3t7eoaGhdyv/lU9NTWXD8S4uLlW8TECTJiEAzp5tgKo42LSpbHT0/n1dizp2DH/8sezrgwcxPV3XAmtBo9G89tprAKD9lavFVFvteCNbgNKiRYvMzExBmmfQEBYUFLz77rusu3jy5EntN83Nzdn7dHJyCg4Ojo2N1Wg0eXl5Bw4cCAwMtLT8a6G0q6trSEjICycfxcfH29raAkD37t2zsrIM815u3kSRCC0sdDpirS4bMQIB8NNPdS1n/nxs2RIfPEBEnDQJ/+//dG9ajR05coT9dqlUKkTs2LFjFf1SsVgslUq7d+8+dOjQGTNmfP755999993JkycfPSo7qU6tVvfv3x8A3n33XUEevBsuhJmZmd26dWPdxfJr4UpLS0+fPj19+vTy+5Q5OjrOmTPn3LlzarW6qKgoKioqMDCQDbuXT2N8fPyvv/7Kvt+/f38DjwW98w4CYGioIevUr5SUvxaFXLuGGzdiWhpqe2opKVhUVOMy58/HZctw+HBEfiHs168fAGjvfXr27GlmZubi4uLt7R0QEBAcHBwaGhoZGXnq1KmUlJTqPHTRTsdZvXq17s0zUAgrm71Znlqtjo+PDwkJaVvuHJJmzZoFBgZGRUUplcqioqL//e9/gYGB1toT1QFYr1X34fhaOH4cAdDeHkv+MSvXXqFfP8zIKPt6xAi8eROnT8euXVGlQkQcPRpv3qzgp4qKMCUFT53CyEgMDcXgYAwIQG9vdHHB0aNx/nw8eRLHj8eff+YTwhs3bohEIisrK+2D96JafJa8JDo6mk3H+T+d35IhQljN2ZvlJSYmhoSElO82NGnShKVRoVCUlpbGxsYGBwdbW1s3a9asd+/evCbpsgeJVY4//ZNUGMJRo5DdDY0ejbGxuHYt/uc/OHYs9u6NbdqgmdnfJtm+8F+vXmUhzMrCbt1w7FgOIRw/fjwAfPTRR4KXPHv2bBBiOo7eQ1jr2ZvMtWvXlixZwvZfYBo3bjxu3Ljo6GhE3L9/PwAMGTJEDw2vlm+/RQAcNUr4WRRc9OuHwcG4aBEuWoQdOpSF8Lff0MMD09Nx9Gg8fbqCpJmZoYsLentjQAAuWIBhYXjgAMbGYkoKqlRlIUTETZvQwsLQIZTL5WZmZhKJJCVF+MOPtdNxPvjgA13K0W8IBZy9mZKSEhYW5u3tzUZ72NtOS0sDgKZNm/K6EhYXY69eAwHgzJkzXBogrH798PhxTEjAhATs27cshOfP46lTGBCAo0fjtWs4ezaGhuKuXRgTg7dv4ytnOq1dWxa80lIcPhxv3ixbF2YYixYtAoCAgAA9lZ+cnMweHO7evbvWhegxhPqYvYmIKSkpX3/99blz59gf2eMcfXzOVRNbfyDIvjXcVdgdPX8eEXHMGHR2rviesEYiI7FLFzTME7TCwkL2+OQCW36mH1u3bmUP/O/cqeXuUnoJof5mb75s6NChwHWnsMePH5ubm4tEotu3b/Nqg1CqCGFmJjZurFMIlUpUKNDNDQFw8mQBWvtKmzdvZk8i9F0RG/ru3r17Sa2e0QkfQr3O3nwZOwVJH7fd1Td58mQAmGmw7Uf1Jjf3r75iXh6qVFhYWPZoFBELCrC0tJYlX7yI7dphTAwmJaGFBQLgvn0CNLgK2gH6AwcO6LcmxLy8vNatWwPAggULavHjAocwMzPTx8cH9D97U+vkyZMA0KtXLwPUVZk//vhDLBZbWFjUYr5rA/HppwiAjo6Yk4Ph4QiAjRtjaqoea4yKiio/QK9vbDqbWCzWzkKpPiFDmJOTw4YipFKpjlvTVt/Tp0/FYrGZmRnfbTMHDRoEAF988QXHNtRlKhX26vXXrPcxYxAAPT31uGFk3759hRpMr6ZaT2cTMoQpKSlsFEGv98EvY8OJCQkJhqz0BeyCbGdnV7u7goYgPR2bNEEADA/HvDx0ckIA1NPmUtevX39hgN4AtNPZBg4cWKMnkQJ3R9m6rNu3b1+8ePHf//73V199JWz5FWKjsZs3bzZAXZXRaDQdOnQAAA8PDzZDPzw8PCoqKiEhITMzs+5v+GUYBw+WjSteu4bnzqFEgmIxxsQI/5cTGBgIAPPmzRO85Kppp7ONHDmy+j8lcAhHjRoFAJGRkb/88gsAeHt7C1t+hTZu3Ag671+go8LCQicnJ3ZaS4VsbGxeWKsWFRUVHx+fl5fHsdmG9+GHfy0aDgnBbt1Oubt7CLu7lEwmMzEx0dMAfWUuXLigVqsRceHCheypZPUPKRA4hF999RV7TpiXl2ewW7XLly+zKd36rqgK7AFp+/btDx8+zFZtf/jhh4MHD3799ddfubF348aNXV1dfXx8Bg4c6Ofnd+3aNY5vRN+eP8eOHREAZ8woVak0b731FgD4+fkJ2FlgMRg9erRQBb5ScnKyWCx2c3MrLS2dP38+ADg4OFT/xwUO4ZkzZ+DPQ7ZY90zf62sRUalUspE6XlcVds6MmZnZ9evXK3yBdv8SdiRL+f1LrKysXshkjf79/olu3sS2bVPd3Lx++OGHjIwMdguzXqCDdQoLC1mB+tiRqTIzZswAgKCgIIVCwVbVnT17tvo/LnAInz9/bmRkZGxsXFRUxPrl4eHhwlZRIS8vLwDgsndteno664XW+p1mZ2ffuHHj2LFjc+fOZXOMKgtzvbFhw0YAaNKkSXp6ulCHvTGbNm0y8JBVbm4uO+kxKSmJzZ7x8PCoUQnCD9a//vrr7HNow4YNADBx4kTBq3jZnDlzuIwQqFQqb29vABgh0IYzbJ/MyYaZUcKPRqMZNmwYAPTu3bu0tHTq1KkA0K5du4KCghoV8ujRI9a/2Lx585IlSyZMmMA+ENkAvVwuDwkJ0fdTsZUrVwLAoEGDNBoNOy1r7969NSpB+BCyu6OwsLBLly4BQKdOnQSv4mV79+4FgOFs6agBLVmyhHUghRqmT01NlUgkpqamQm2dUGfl5ua2atUKAJYtW6Y97C0oKOiFlxUXF1e4E6GLi0uFx9eYmppKJJJ9+/ap1Wo3Nzcot5ZXH5RKpYODAwCcPHkyOjoaAOzt7Wv6HET4ELIr8tixY0tKSkxNTcVisXazKv25e/cuAEilUn1XVJ72CIdff/1VwGKHDx8OACEhIQKWWTedPXuW/QXGxMQkJiayXU7c3NwmTJjwzjvvdOrUqfzq7Qo1b97c3d19yJAhQUFBS5cu3bZtG7s9a9y4cWpqqoDrbiuza9cu1maNRsPmitViWE74EF6/fh0A2rZti4jsFFhhf0crpNFo2O14uqE2EtJ+kAuelrNnz7JfL0EWgNdxbKkR60qsXbv25cdUL+xEqN2HIjExsbLlqWPGjAEAT09PpVIZHBwMAG3atNHTlaBr164AsGPHjps3b4pEokaNGuXk5NS0EOFDWFpaamlpKRKJsrOz2V/Bl19+KXgtL2M7jh46dMgAdeGf16s333xTH1MTPT09AWDbtm2Cl1zXqFSqnj17AoC/vz8iLl68uE+fPuHh4UePHr1+/Xo192F4QV5eHjvsbdGiRQqFguVk/PjxQrcdY2JiAKBFixbFxcWTJk0CgODg4FqUo5elTGzwJzo6es+ePQI+tKiQ9rabresTdlfWyrDpAdbW1vd13xKwIuwWt0OHDmpDLoDlJD09vUOHDgJu44l/P+wtOTmZXWB1WXdbIT8/PwBYvnx5VlaWmZmZWCy+d+9eLcrRSwjZ3r5Lly5NTk7W663ao0ePPD09T506hYhHjx4FAHd3dz3VpaW9e9HfQi2VSsX6umwXj3qvtNZLpCpX/rC3bdu2gW7rbl/GBuhNTU3lcvlnn32my8VGLyE8ePAg/HlIKrtVy9CuFRXOrVu32G8qmxwXHh4OABKJRB//olra53hT9LxNPJt75OPjo9da6jG1Ws0WUrDBA7bu1sPDQ6gZ9tOnT2e/BtoBeu1uDzWllxA+ePAA/tz6hd2qHT58WNgqLl68yKaDeXl5ZWdnnzlzpnHjxmysSaFQCFtXedOmTQMAV1fX6s8MrJ1nz56xDbLq9yw2vSo/Hefp06cCHiORk5OjHaBnp83UdIC+PH3tMWNnZwcA9+7dY1fq2q04rkxUVBQ77Gro0KFsM1LWPxw8eLBel678+OOPINzcjldij7UMM9uhvir/T3bp0iWhjpFg+zmwvh7bCnCfDjsF6CuEbD7Evn372K1anz59hCr5u+++Y6O0EyZMUKlU27dvZ4cHzJo1S6+PMbQfqxsMdYimduBeuwE7qQXWeWnXrl1+fj4Lj47HSGgH6E+dOnXs2LHaDdCXp68Qsrk8c+fOffLkiUgksrS0FORWTXugGru0hoaGAoBIJNL30Lb2BoN9+Om1rvJGjhwJAEuWLDFYjfWP9jZ+8uTJghwjERkZqR2gHzBgAAB8/fXXurRQXyE8deoUAPTs2RMRXVxcAOCmbtvlaTSaefPmsUcv4eHh2gmHEolk69atArW6UqxnyB616buu8mJjYwGgSZMmAp5k3ABpH2jv27dPu+621tPZ2MDjzp072QC9lZWVjst39BVC7dYvJSUlR44cOXv2bHFxca1LUygUbBqEqanpgQMHFAqFv78/AFhYWAg7vlQh1uUQiUSCn5NcHWzW0ZYtWwxfdX3CVlfoPp3t+fPngYGBrVq1UigUEydOBIA5c+bo2DY9bv7LNpyLj4/XsZyCggI2K8/a2vrs2bO5ublvvvkmuz78/vvvgjS1aqzTa2pqaoC6Xvb9998DQPv27RvCwL1elZ/Oxo6RqPV0NoVCwQboJRJJ7Qboy9NXCFUqVceOHZs2bWpra6s9crAW5WRmZrLt/qVS6bVr12QyGevfOzk5GWyz3fz8fDaTmMt6Re3AvQGu+fWbdjrb4sWLi4uLO3fuPHr06NqFsLi4mE2XGTVqlO4N00sICwsLfX19AaBRo0bambjljxysZjn37t1jx6S99tprDx48SEpKcnR0BIBOnTrpY/S/Cmw3O14nz6xatQoA+vfvz6X2+qT8dLZX3shVcZqvRCJhv9W7du3SvVXChzA3N5etc23SpElsbOzLRw42bdpUe+RgFeVcunSpefPmrP+QnZ0dFxfHRgjefvttQ+5jx2gHZ2/dumXgqrHcwP3BgyikYpIAAAbHSURBVAcNX3s9U346Gzue/sKFC4cPHy5/PH3Hjh3ZQHRlxGKxWCweOHCgIE0SOIRpaWlsF9DWrVu/cKj1y0cO2tjYaI8cfLmooKAgAPDz8yssLPzpp5/Y063hw4fzWuDDhpumTp3KpXZ7e3s2QMKl9vqktLS0d+/eAGBpack2E6mMhYVFhw4d+vTpExgYuGDBgnXr1h0+fPjChQsZGRnCLp0RMoSJiYmsu+jm5lZFd5Gl0cPDo/y79fX1jYyMLL+7gVKpDAsLU6lUO3bsYMPxM2fO5Phw4s6dO2Kx2Nzc3MCjFIiYmJjIDiReuXKlgauul3bs2MGmzrArgaur64ABA1jStFtRymQygw0ICxZCbXexT58+1ewuvnDkIACYm5uzNGpvlw02HF8d7EZ3+fLlhqyUPUIAnU+iJFps3sXSpUsNc0zFKwkTQu3szREjRtRiPDAlJWXVqlVeXl7aNJqZmfXp04ddV42MjLZv3y5IO3X066+/wp+LOA1WKZutX9NNkEhluOyQXzUBQijg7M2MjIyIiAhfX19WILsDrlNPI7TbGRimuqNHj4pEIoNNGW8IeO2QXwVdQ6in7qJcLg8KCvL29t6zZ4+Axequ/LxBfdf18OFDYTfGJVx2yH+l2ofQwLM364jyW9zptSK1Wt2vXz/4c02qXutqOAy/Q3511DKEBp69Wad88cUXLBt6rWXZsmUAYGtrK5fL9VpRw8Flh/zqqE0IDT97s07Jzc1l28klJSXpqQrtsa9s+xwiCMPvkF9NNQ4hl9mbdc3MmTOhou2iBaE9AP3TTz/VR/kNkxrVA+cNBIMcYV9TNQshx9mbdUr5nbYEL/y9994DgB49evA9ALyeiXoaBQngc9mnjowNlleDEMbGxtrY2NRoOL4eY/t3LF26VNhi2a5BbNmbsCU3cH2S+0ACrMlaw7shFahBCC9fvmxpaclx9madwk5iFHbgPikpic0brumxPqRqCYUJkABW16yeltbFi0fNuqM3btygpaVabLP6b7/9VpDSFAoFWzk5adIkQQokWuPuj4ME+M/D//BuSMX0uLK+3mOb/Hfq1EmQcTx2MmHbtm0rO+eE1I5MKTO5YiK5IkktqaM9fBEiVrGag1RBpVLZ2dk9efLEzc0tKCjI3t5eKpW2atXK1ta2wqPzqhAdHe3r62tiYhIXF8dmxhGhLHy0MFQeOsZmzH7n/bzbUjEKoU5Gjx7N9vx/gY2NjVQqtbOzY/93cXHR/lEqlWrnqTMymaxLly7sbLC5c+caqu0NQpGmqFViq5zSnLgOcV6NvHg3p2IUQp3k5+evWbMmLS3N0tIyIyMjMzNTJpNlZWWp1erKfsTc3JxdMx0dHaVSqZGR0c6dOx8/fjxw4EC2C5gh21/vbczeODtjtrel9+/tf+fdlkpRCPUiLy/v0aNHmZmZqamp7Ivy/3/59UZGRhkZGS1btjR8U+uZuMK4U/mnLCWW45qM25O753Lh5Z+f/by79e5R1qN4N61SFEJDKywsTE9PZ9dMmUx27ty5x48fL1y4cNSouvtb8k9xMO/gxuyNK+xW5KpzE4sTxSB2NnUeYDXARmIjEUl4t65SFEJSf7xx5429rfe2NS3bVexL+ZfOps7v2bzHt1WvVNVGN4T8s8iUsjambXi3osYohKT+aCxpnFeax7sVNUYhJPWHv43/CvkKBERAuUrOuznVRfeEpP5QonKlfOWF5xeMRcb+Nv5GIiM7Y7sBVgN4t+sVKISEcEbdUUI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGf/D8Oj+lqR67c/AAACY3pUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCFAEYhUgbmBkY0gA0ozMbA4aQJqZhc0hA0QzMyIxYDIQmh1CM8NomLgAgwLIBoiBTEAaIswBoZnYGcDmMTGyM0D1MeCwQBBsECM2l6DpgKqEuwRsNTMjwgkEaAyDuRkYGRiZMpiYmBOYWTKYWFgVWNkymNjYE9g5Mpg4OBk4uRi4uBm4eTSYuHkVePkU+Pg1mPgFFAQEM5gEhRgEhROERTKYREQTRMUymMTEGTgkEiQkGSSlGKSkGaRlGGRkGWTlGFjkE+QVMpgUGBMkWBPkJBnEBBKcWIDWszEqyLMwM7GysUpwsLMJCouIigmwSUnLyMpJik9jBHqTARZ5HbG8B/meqh4AcbYLfj/g4XZ6P4jN0cFw8PPW73tB7G1pdw+8EEiyB7GZ968/UM163Q7EXiXac8DIdRtYfJPsxAPms60cwHq7vQ4cXpsIZst5ch0QiJYCs1mctPcrZKuA2be0o+zedq4F691mdsueb9VBMHuXgoiDY7cFWM2sPlWHd2UzwXbNaW5yKPr+Esy23jvP4e0cR7A7uyrPOayOkQSzNTe/cljx6zmYXWVw3aFvszfYX3vMeR3bb10Gi4v8FHP03zFxH4jtcofDsW5PLtheyz8PHWxqXMHsWYeOOhRy/QOz7ztZHeDI6AOzgw2EDxx41AzW+2y694EfoXvAZka1qhyIuG0KtqtUrGu/wF17MLvEymvf9ZgnYDXnbvjtr/9wGax39YGlB7o428DiLFknD6x3YwarFwMAuIqjgtDpIpUAAAMTelRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVZLbt1IDNy/U/QFXoPfJnsxi9hOjGCQZ2DimTsMMMu5P1KUYEkGGpHchKyupopkkXi3VtdfL3/++387Lnm53Vqj3/zNOds/SkS3H60e2tPX1++P9vz+5enjzfPb34/3n0216cAZ3J+xX97ffny84fbc7tlTXdXbXbpPYfJGnbbrPCuFjB5Ck6XduXsmpSyQuvskVbhqd+qMM64LpBVy9MkZmdjPVApaAL2A3m0KjcC+8ZzDFsBRQOsaMcwadxOdGQtgtEcBXS3Dm4CDh6w4ZgG187BAOrW7DFFeAGd9WgCkYIVHY0aCFkAk5WelZYycMYD0MUmXyCoPdWElT0Sj7hGrlHNVh3uQxXQ8OE7QEqjtDV9UNpuBB2TcoKgF0BA3qOVIqX2ZM3SlC3YArVOkj9o3RDPGCli1sT4HOb6I+MOH0iqTHEAOeBJFyoHEgbUuOIGMrmqKfYgyGWdW9WaU5z84DbEBCVVFUxD8SulooYaekMEU5XS4M61CkqrP7Kaeu9IlbdAqnSKbT/dSJvan5PAVT9EtIhpCWo4i2GQJtD0giIyoaj7x7bmMpyp0L4lXSwLJLO6rdMrYNYxiJ/xXQB6ey4CqRlsWmW1Ulgyyj+X3c/fqQQMx4SmNodAVdGsiLjVtGQXpGTlW8deg24bLDANDHIo0ypVX5R2aFBgb9WSs01ZcVfZJw4HW3LyipXipZ9V9esnENJLiSo6WXyXr6+Pl09Td5/DT2+PlnMN1yzlsDUvPiWq1zrFZt5/DkbHGOQINK85BZ1h5jjPDmufQ4lrX2cSb4csM4s0c5DBspAwf/FBL3t4cFDE+eDMHS8wJKVNj4NvrH6e3UUiYgzEXZRg+SKPNeTMHb7Sz1Ru5dq2VkYM5utPKyJnWLa+gfzCXYg4jB3Op3E40zaV9uIwcGZaiDCMHZXQDl5GDshRlGDkoS+UaRq8S5rbp86JUFBYqvOjRyuiphU0MempFi7BcBKBFWPlCWEsTFepBuBR51V/9//EbAs+3X6YpmJaTvHr9AAABiXpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCWSOW7lQAxErzKhPiA1uC8wHCn3BHMEpcY/gQ/vYo8StR7ZRbKo++HneY7rkff7Of7d9/H59/X19Xk/+hz39wvBR/F+yy33PALEf36Oq1apq56XLG9hPj+uXCnUfF68vIoKqBapChAtRswVLFZzZZ+0qpQSxJe14ETLuDsMyJZm4sTLRLs3cbXKU3DdU0B0cVjaqcslZKQFhJKRY8w1PdGKqM4A8miCNC1hJS9Iq3uiPq8kQ0Nom6EiS9kcF9Cez6dXlKI56c4htijLd7vQjBjSQTFTpocSCgdiojbIu2fKXKqmOe4UTwg5KRYgGKQEJT5gqgRvB8N9TO1l6rUNlLKgniR3zUL5lgrf0hSC2VA+2SRHmmfAxpXevjRjESDM4r4JpinZup5e/d/PYvapbsmaO82TsAYcytjHUZ7ppyOIdlZuk7nToIFglu3NY7uUWOZUMNY224vm7NwewHHO/TdIY+sjR5i4z9fPL156h/6fZbFYAAAAAElFTkSuQmCC</base64_image>
502.471
6.30792
[ { "content": "Determine the molecule visualization of the chemical structure 'Cc1ccc(-c2nnc(SCC(=O)NN=Cc3c(Cl)cccc3Cl)n2C2CCCCC2)cc1'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deViUVfsH8Htm2IVXcMNhEcE1JFxQQslyo1zAFbR8xdTEXTRfy9fUUNOiTMUV0dRwy1x6CxVNjVRSfiq4giYKIjgyiICCwDDDzP3749BECgjMM3MI7s/V1YVcwzlnlO8853nOJkJEIITwI+bdAEIaOgohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGIXyFkBCYObPs6zlz4M4drq0h9RGF8BVycuDMGfjtNwCAx49BqeTdIFLvUAhfbdky+OQTKCnh3Q5STxnxbkDdpVLB8+cAAFIpvPcefPMN7waReopCWIH8fNi5E9asgXfeAVNTAIDgYOjdG0xMeLeM1EcUwr9JTYV162DnTigoAAC4cgW8vAAAjI3hm2/grbf4to7UT3RPWCYhAcaPhw4dYP16KCgAb2+IioL4eBg7Ftq0AQB48004eBAaNYJRoyAlhXdzST0iQkTebeBJo4FjxyA0FC5cAAAwMYExY2D+fHB3r/j1s2bBpk3Qti2cPw8tWhiypaTearghLCiAHTtg7Vp48AAAoHFj+OAD+PhjcHCo+PVJSZCYCH5+MGAAxMWBhwf89htYWRmyyaSewgbg3Xdxz56/vr5/HxcsQBsbBEAAbNsWw8KwsLCqEjIz0cYGjY3x2DHMzsYOHRAA+/VDhcIAzechJQX37cNffqm/77AOaRD3hJmZsGkT5OYCADx8CNu2wVdfQV4eeHvDgQPwxx8wZw5YWFRVQsuWMHMmqFTg7w/JyXD8OLRsCTExMGECaDSGeRMG9MMPMGUKqFRw8SL06wdFRbwbVN/x/hQwhM6d8aefcPJkRMROnVAmwwkT8OrVmhWi0eCHHyIANm2Kt2/jjRtobY0AOHOmPprMVfv2mJdX9vXSpbh+PdfW1H8N4koIAMOGQWZm2dMXOzvYuRO6dKlZCSIRRETAyJGQkwM+PmBtDYcOgYkJbNoEW7de10eb+cjNhUaNwNq67I9vvAGJiVwbVP81lBACwLp18N//6tR7lEhg927o1QsePgQ/P+jeXRMZCX37Lpk2revevXuFaylXFhZ/638+f05Pn/StAYWwTRvo3x+ysnQqxMICoqPB3R2srdcPHz5g+HCFv78UESdOnHjixAlB2vnsWfT9+++npY0vKroiSIE1Y2YGDg5lfQaNBnbvhkGDODSjQeHdHzaEHTvKviguxvXr8fFjvHwZnzypfYHp6Xn29vYAEBAQoFarP/nkEwCwsLC4cOGCjk1VKuVJSa8rlZkKxT2l8pGOpdVYejqWluL9+zhkCPr64ttv46pVhm5Dw9MgQoiIajX26oWtWmFpKfr7IwB+/71OBSYmJtrY2ADAtGnTNBrNxIkTAaBZs2Z//PFHrZpXWFx8p7DwslIpv3HDSaFI0alxtda1Kzo7Y1ISImJpKZ82NDwNZe6oWAwpKZCVBVlZYG8PACCT6VRgp06doqOj+/fvv2XLFkdHx4iICLlcfvz48cGDB58/f75ly5YvvB4Rs7KyHj16ZG8vF4sfqFSZSmWGSpWpUj1UKmVq9VMAMDa2dXeXOzisun9/nERi5eT0rYmJo06trJHffoOrV6FFC3BxgXnzQCyG+fPhpTdCBNdQQggA9vaQlQUyWVkIHz3StUAvL6/9+/ePHDly8eLFtra2hw4d8vHxuXDhQp8+febNm/fs2bOHDx/KZLLMzMyMjAy5XK5SqQAgLq6rsfHVF4oSiUxNTOyMjR0ANDY2ATY2AU+e7Hj0KKR16x26trL61q4FAJg1C/LzITwclEqYNs1wtTdgDSuEV678FUIdr4SMn5/fhg0bpk+fPnfu3KFDh/7888+dO3fOycmZOnXqyy9u3ry5VCpVq72kUg9jY3sTE3tjYzsTE0djY6mRUXP2mtLSXKXyvplZJ7U618ioiQBNrKa7d+HYMTAzgylTYPNmUChgxAho29ZwDWjAGlAI7ewAAGQy6NSp7AtBTJs27dmzZ15eXs2bN8/Pz1epVE+ePHn77be7devm6OgolUodHBzs7Ozs7e1N2drEKiGW5ObuLym5Z2bWQSr9TKMpVqnkpqbOwrS1CmvXgkYDH3wA1tawZQsAwEcf6b1SwvC+KTWc5csRABcuxORkBEBnZ+Gr+PjjjwGgZ8+eGo1G99JKStKSktwSE19Tq6uc2Kq7nBxs1AhFIrx1C7duRQD08NBvjaScBjROqO2Fau8JhV1AkpKSsn79erFYvG7dOpFIpHuBRka2AGKF4nZGxlzdS6tKeDgUFsKgQdCxI4SFAQDMm6ffGgV1W3E7S6Xb+C9XDTGEFhbg5fWsW7f0nJxCAcufN29eSUnJhAkTevToIUiBYrGZs/M+sdj8yZNtubnfC1JmBVSqv/qfJ07ArVtgbw8BAfqqTgj56vwp6VMG3B3gc9fnyLMje3L3XC66zLtRtdcQQwgABQXecXFOMtk9oQqPiYmJioqysrJasWKFUGUCgLl5JweHbwAgPX2GUpkmYMlaJw4duuXsrOnRA/r3L3tAGhwMxsb6qEsoH8s+7mjW8XS70z+3+bmZUTPezdFVgwqhokeP5ebmHwAAm+8iE+jhjFqtnjt3LgAsWrRIKpUKUqZW8+YzrK2Hq9VPU1PHIKqELRwAPl21qlNs7J4ZMx7dvq25cQMsLSEoSPBahHUi/8Ts5rMBwEJs0bNRT97N0VUDCqGNjdmtW19fvbqroKBA2BBGRGy7efNmmzZtWBQF17r1DhMTp8LCS5mZnwtbckxMzNWrV1u0aDH6vfeWrF7dOC/vxPz5YGMjbC2CU6HKWFSnr9U10oBCCADsMiWTyQQMYW4urF4d9NZbB1avXludQYhakEhsnJ13iUQSufyL+/d/F7DktWvXAsDs2bPz8/P37dtXVFrabtw4AcvXkxZGLR4oH5T/ztPSp8NShiUUJfBqki4a0DghADg4ONy7d0/YEIaEQGqqpHXrgGHDdC+sUpaWb1lbL5s79+iVK+9dv369adOmupeZnJwcHR1tbm4+bdq0DRs2KBSKkSNHtmF7y9Vti6WLx6WNW2i7sBRKNagBgKj8qKhnUX8o/kh4LcFSbMm7gTXTsK6E2uwJFcLbtyEiAiSSsgf7etW69cKCAjOZTDZ+/HgUYnRl7dq1Go1m/PjxVlZWERERAPDRP2SA3t/af6Pjxnsl9zKUGZ0tOvs19ltht6KrRdfkkuTZGbN5t67meA9UGhRbc/TFF18kJCQAgLu7u44FvvuuQXe4yMjIaNKkCQBs2LBBx6JycnIaNWokEolu3brFEti9e3dBGslLsiLZ6poVJMCenD2vfnVd0rBCuG7dOgCYOXNmTk5OYGDgypUrdSntp58QAG1sMDtbqAa+2uHDhwHA1NT0ak03yfm7zz//HACGDBmi0WhcXV0B4HsdF3fVAduyt0ECWF61vKO4w7stNdCwQnjo0CEAGDZsmO5FlZRg+/YIwGEbpClTpgCAq6trYdX7NJaTm5sbHx8fFRUVEREREhISFBRkYWEBABKJ5I033gAABwcHpVKp12Ybxvup70MCdL/dvURTwrst1dWwQnju3DkAaNmy5Q8//JCWlqZLUV99hQD42mto+F/d4uJid3d3AJgyZYr2m0VFRSkpKbGxsQcOHAgLC1uwYEFAQIC3t7eLi4uRUaWP37TT61bVlxX0T0ufOt90hgT4r+y/vNtSXQ1oB+7nz58PGzbs8uXLBey0FwBra+vu3bt7e3t7eHj07NmzWbPqzr3QaKBrV7hxA375Bd55R28trtzNmzc9PT0VCkXz5s2bNm2akZFRWFjpFDyxWGxra2tvb29nZ+fg4CCVStnyjmbNmh0/fnzx4sUSiSQhIaFz586GfAv6c6nw0pvJb6pRfaLtCZ9/+fBuzqs1lBDK5fLBgwdfvXrV1tbW398/LS3t0qVL2dnZ2heIRKL27dv7+e1ycvL09IQuXSo4CO3WLWjVCiwtAQCuXIE7d+D99w34Hv5uxYoVK1asKPnz7FIzMzM7OzupVPrC/11cXBwdHY0rn4Y2YsSIn376ydPT8/fff6/iZf8sK+UrV8hX9L/Yf8eIHS3q/pkhvC/FhpCSktKuXTsAaNOmzd27d7Xfl8lkUVFRISEhAwYMYPdIdnYP2N74Rkbo6oqBgRgRgYmJqFYjIr7+Ok6dWvazrq483snf7dy58+uvv05MTHz69GmtC8nNzXVycgKAxYsXC9g2vtSoHvPJGAAYPHiwIMvK9Kr+h/Dy5cvss7BHjx6PHz+u7GUqlerKlatbtuDEiejmhhJJ2UkV7D9ra1y9Gjt3Rn9/ZDuq1YUQCuXcuXMSiUQsFp8+fZp3WwTz8OFDdn+xZs0a3m15hXoewtOnT//rX/8CAB8fn/z8/Or/YEEBxsZiWBgGBqKrKwLg1q3YuTOmpOAbb6BKVa9CiIghISEAYG9vn23I8RY9O3bsmEgkMjY2vnjxIu+2VKU+h3D37t3sJmf8+PE6Pn+XyTAvDzt3RkRcvhzXrq1vISwtLe3duzcAzJp1vM5332pg1qxZANC2bdsafQQbWL0NYVhYmFgsBoDg4GCh7gpYCBUK9PREJydBiqxD0tPT+/e/D4A6z8apQxQKRZcuXQBgwoQJupQjl8tjY2NXrlwZFxcnVNu0OIcwPDy8b9++S5cuff78uVBlajQaNj1NJBIJO/zFQoiIJ0+itbWABdcVP/6IAGhqWuMjq+qypKQk9tRtz56qprMpFAqZTBYfH68daA0MDBwwYICrq2ujRo20DzKNjIxiYmKEbSHPEG7fvl07WGxmZubr6xsZGanLgz5ELCkpGTt2LACYmJgIPg/r2bOyLzQaPHSoXv2mak2bhgDo6vqKU1P/WdjkWEtLy/Pnz1+9evXIkSNs5tCkSZMGDRrk5ub2ylUpTZs2dXV1ZXc33bp1E3Z2EbcQhoaGsgQ6ODj06NGDdR0BwNTUdPDgwdu3b39S88MiCgoKBg4cyP66f/nlF300m1mzBgFwxAj91cBNcTG6uyMAlpuNUx+MHDmy6t23TExMpFKph4eHr6/vlClTQkJCIiIiTp06lZiY+OzPT9/Hjx87OzsDwCeffCJg2ziEUKPRsK0BRSLRN998w76ZnZ0dGRnp6+urHS+WSCTe3t5hYWEymaw6xcrlcg8PDwBo2bLllStX9PkOMCsLzcxQLMZyg471R2IimpsLcFxHnbJmzRrW4XJzcxs4cODEiRM/++yzLVu2HDly5MqVK3K5XPtKlUr18OHDuLi4H3/8cd26daxf2rdv3xMnTiDixYsXjY2NRSLR0aNHhWqboUNYUlLy/vvvsyve/v372Tc/+uijxYsXs2UBOTk5LI0mf85YEYvF3t7eoaGhdyv/lU9NTWXD8S4uLlW8TECTJiEAzp5tgKo42LSpbHT0/n1dizp2DH/8sezrgwcxPV3XAmtBo9G89tprAKD9lavFVFvteCNbgNKiRYvMzExBmmfQEBYUFLz77rusu3jy5EntN83Nzdn7dHJyCg4Ojo2N1Wg0eXl5Bw4cCAwMtLT8a6G0q6trSEjICycfxcfH29raAkD37t2zsrIM815u3kSRCC0sdDpirS4bMQIB8NNPdS1n/nxs2RIfPEBEnDQJ/+//dG9ajR05coT9dqlUKkTs2LFjFf1SsVgslUq7d+8+dOjQGTNmfP755999993JkycfPSo7qU6tVvfv3x8A3n33XUEevBsuhJmZmd26dWPdxfJr4UpLS0+fPj19+vTy+5Q5OjrOmTPn3LlzarW6qKgoKioqMDCQDbuXT2N8fPyvv/7Kvt+/f38DjwW98w4CYGioIevUr5SUvxaFXLuGGzdiWhpqe2opKVhUVOMy58/HZctw+HBEfiHs168fAGjvfXr27GlmZubi4uLt7R0QEBAcHBwaGhoZGXnq1KmUlJTqPHTRTsdZvXq17s0zUAgrm71Znlqtjo+PDwkJaVvuHJJmzZoFBgZGRUUplcqioqL//e9/gYGB1toT1QFYr1X34fhaOH4cAdDeHkv+MSvXXqFfP8zIKPt6xAi8eROnT8euXVGlQkQcPRpv3qzgp4qKMCUFT53CyEgMDcXgYAwIQG9vdHHB0aNx/nw8eRLHj8eff+YTwhs3bohEIisrK+2D96JafJa8JDo6mk3H+T+d35IhQljN2ZvlJSYmhoSElO82NGnShKVRoVCUlpbGxsYGBwdbW1s3a9asd+/evCbpsgeJVY4//ZNUGMJRo5DdDY0ejbGxuHYt/uc/OHYs9u6NbdqgmdnfJtm+8F+vXmUhzMrCbt1w7FgOIRw/fjwAfPTRR4KXPHv2bBBiOo7eQ1jr2ZvMtWvXlixZwvZfYBo3bjxu3Ljo6GhE3L9/PwAMGTJEDw2vlm+/RQAcNUr4WRRc9OuHwcG4aBEuWoQdOpSF8Lff0MMD09Nx9Gg8fbqCpJmZoYsLentjQAAuWIBhYXjgAMbGYkoKqlRlIUTETZvQwsLQIZTL5WZmZhKJJCVF+MOPtdNxPvjgA13K0W8IBZy9mZKSEhYW5u3tzUZ72NtOS0sDgKZNm/K6EhYXY69eAwHgzJkzXBogrH798PhxTEjAhATs27cshOfP46lTGBCAo0fjtWs4ezaGhuKuXRgTg7dv4ytnOq1dWxa80lIcPhxv3ixbF2YYixYtAoCAgAA9lZ+cnMweHO7evbvWhegxhPqYvYmIKSkpX3/99blz59gf2eMcfXzOVRNbfyDIvjXcVdgdPX8eEXHMGHR2rviesEYiI7FLFzTME7TCwkL2+OQCW36mH1u3bmUP/O/cqeXuUnoJof5mb75s6NChwHWnsMePH5ubm4tEotu3b/Nqg1CqCGFmJjZurFMIlUpUKNDNDQFw8mQBWvtKmzdvZk8i9F0RG/ru3r17Sa2e0QkfQr3O3nwZOwVJH7fd1Td58mQAmGmw7Uf1Jjf3r75iXh6qVFhYWPZoFBELCrC0tJYlX7yI7dphTAwmJaGFBQLgvn0CNLgK2gH6AwcO6LcmxLy8vNatWwPAggULavHjAocwMzPTx8cH9D97U+vkyZMA0KtXLwPUVZk//vhDLBZbWFjUYr5rA/HppwiAjo6Yk4Ph4QiAjRtjaqoea4yKiio/QK9vbDqbWCzWzkKpPiFDmJOTw4YipFKpjlvTVt/Tp0/FYrGZmRnfbTMHDRoEAF988QXHNtRlKhX26vXXrPcxYxAAPT31uGFk3759hRpMr6ZaT2cTMoQpKSlsFEGv98EvY8OJCQkJhqz0BeyCbGdnV7u7goYgPR2bNEEADA/HvDx0ckIA1NPmUtevX39hgN4AtNPZBg4cWKMnkQJ3R9m6rNu3b1+8ePHf//73V199JWz5FWKjsZs3bzZAXZXRaDQdOnQAAA8PDzZDPzw8PCoqKiEhITMzs+5v+GUYBw+WjSteu4bnzqFEgmIxxsQI/5cTGBgIAPPmzRO85Kppp7ONHDmy+j8lcAhHjRoFAJGRkb/88gsAeHt7C1t+hTZu3Ag671+go8LCQicnJ3ZaS4VsbGxeWKsWFRUVHx+fl5fHsdmG9+GHfy0aDgnBbt1Oubt7CLu7lEwmMzEx0dMAfWUuXLigVqsRceHCheypZPUPKRA4hF999RV7TpiXl2ewW7XLly+zKd36rqgK7AFp+/btDx8+zFZtf/jhh4MHD3799ddfubF348aNXV1dfXx8Bg4c6Ofnd+3aNY5vRN+eP8eOHREAZ8woVak0b731FgD4+fkJ2FlgMRg9erRQBb5ScnKyWCx2c3MrLS2dP38+ADg4OFT/xwUO4ZkzZ+DPQ7ZY90zf62sRUalUspE6XlcVds6MmZnZ9evXK3yBdv8SdiRL+f1LrKysXshkjf79/olu3sS2bVPd3Lx++OGHjIwMdguzXqCDdQoLC1mB+tiRqTIzZswAgKCgIIVCwVbVnT17tvo/LnAInz9/bmRkZGxsXFRUxPrl4eHhwlZRIS8vLwDgsndteno664XW+p1mZ2ffuHHj2LFjc+fOZXOMKgtzvbFhw0YAaNKkSXp6ulCHvTGbNm0y8JBVbm4uO+kxKSmJzZ7x8PCoUQnCD9a//vrr7HNow4YNADBx4kTBq3jZnDlzuIwQqFQqb29vABgh0IYzbJ/MyYaZUcKPRqMZNmwYAPTu3bu0tHTq1KkA0K5du4KCghoV8ujRI9a/2Lx585IlSyZMmMA+ENkAvVwuDwkJ0fdTsZUrVwLAoEGDNBoNOy1r7969NSpB+BCyu6OwsLBLly4BQKdOnQSv4mV79+4FgOFs6agBLVmyhHUghRqmT01NlUgkpqamQm2dUGfl5ua2atUKAJYtW6Y97C0oKOiFlxUXF1e4E6GLi0uFx9eYmppKJJJ9+/ap1Wo3Nzcot5ZXH5RKpYODAwCcPHkyOjoaAOzt7Wv6HET4ELIr8tixY0tKSkxNTcVisXazKv25e/cuAEilUn1XVJ72CIdff/1VwGKHDx8OACEhIQKWWTedPXuW/QXGxMQkJiayXU7c3NwmTJjwzjvvdOrUqfzq7Qo1b97c3d19yJAhQUFBS5cu3bZtG7s9a9y4cWpqqoDrbiuza9cu1maNRsPmitViWE74EF6/fh0A2rZti4jsFFhhf0crpNFo2O14uqE2EtJ+kAuelrNnz7JfL0EWgNdxbKkR60qsXbv25cdUL+xEqN2HIjExsbLlqWPGjAEAT09PpVIZHBwMAG3atNHTlaBr164AsGPHjps3b4pEokaNGuXk5NS0EOFDWFpaamlpKRKJsrOz2V/Bl19+KXgtL2M7jh46dMgAdeGf16s333xTH1MTPT09AWDbtm2Cl1zXqFSqnj17AoC/vz8iLl68uE+fPuHh4UePHr1+/Xo192F4QV5eHjvsbdGiRQqFguVk/PjxQrcdY2JiAKBFixbFxcWTJk0CgODg4FqUo5elTGzwJzo6es+ePQI+tKiQ9rabresTdlfWyrDpAdbW1vd13xKwIuwWt0OHDmpDLoDlJD09vUOHDgJu44l/P+wtOTmZXWB1WXdbIT8/PwBYvnx5VlaWmZmZWCy+d+9eLcrRSwjZ3r5Lly5NTk7W663ao0ePPD09T506hYhHjx4FAHd3dz3VpaW9e9HfQi2VSsX6umwXj3qvtNZLpCpX/rC3bdu2gW7rbl/GBuhNTU3lcvlnn32my8VGLyE8ePAg/HlIKrtVy9CuFRXOrVu32G8qmxwXHh4OABKJRB//olra53hT9LxNPJt75OPjo9da6jG1Ws0WUrDBA7bu1sPDQ6gZ9tOnT2e/BtoBeu1uDzWllxA+ePAA/tz6hd2qHT58WNgqLl68yKaDeXl5ZWdnnzlzpnHjxmysSaFQCFtXedOmTQMAV1fX6s8MrJ1nz56xDbLq9yw2vSo/Hefp06cCHiORk5OjHaBnp83UdIC+PH3tMWNnZwcA9+7dY1fq2q04rkxUVBQ77Gro0KFsM1LWPxw8eLBel678+OOPINzcjldij7UMM9uhvir/T3bp0iWhjpFg+zmwvh7bCnCfDjsF6CuEbD7Evn372K1anz59hCr5u+++Y6O0EyZMUKlU27dvZ4cHzJo1S6+PMbQfqxsMdYimduBeuwE7qQXWeWnXrl1+fj4Lj47HSGgH6E+dOnXs2LHaDdCXp68Qsrk8c+fOffLkiUgksrS0FORWTXugGru0hoaGAoBIJNL30Lb2BoN9+Om1rvJGjhwJAEuWLDFYjfWP9jZ+8uTJghwjERkZqR2gHzBgAAB8/fXXurRQXyE8deoUAPTs2RMRXVxcAOCmbtvlaTSaefPmsUcv4eHh2gmHEolk69atArW6UqxnyB616buu8mJjYwGgSZMmAp5k3ABpH2jv27dPu+621tPZ2MDjzp072QC9lZWVjst39BVC7dYvJSUlR44cOXv2bHFxca1LUygUbBqEqanpgQMHFAqFv78/AFhYWAg7vlQh1uUQiUSCn5NcHWzW0ZYtWwxfdX3CVlfoPp3t+fPngYGBrVq1UigUEydOBIA5c+bo2DY9bv7LNpyLj4/XsZyCggI2K8/a2vrs2bO5ublvvvkmuz78/vvvgjS1aqzTa2pqaoC6Xvb9998DQPv27RvCwL1elZ/Oxo6RqPV0NoVCwQboJRJJ7Qboy9NXCFUqVceOHZs2bWpra6s9crAW5WRmZrLt/qVS6bVr12QyGevfOzk5GWyz3fz8fDaTmMt6Re3AvQGu+fWbdjrb4sWLi4uLO3fuPHr06NqFsLi4mE2XGTVqlO4N00sICwsLfX19AaBRo0bambjljxysZjn37t1jx6S99tprDx48SEpKcnR0BIBOnTrpY/S/Cmw3O14nz6xatQoA+vfvz6X2+qT8dLZX3shVcZqvRCJhv9W7du3SvVXChzA3N5etc23SpElsbOzLRw42bdpUe+RgFeVcunSpefPmrP+QnZ0dFxfHRgjefvttQ+5jx2gHZ2/dumXgqrHcwP3BgyikYpIAAAbHSURBVAcNX3s9U346Gzue/sKFC4cPHy5/PH3Hjh3ZQHRlxGKxWCweOHCgIE0SOIRpaWlsF9DWrVu/cKj1y0cO2tjYaI8cfLmooKAgAPDz8yssLPzpp5/Y063hw4fzWuDDhpumTp3KpXZ7e3s2QMKl9vqktLS0d+/eAGBpack2E6mMhYVFhw4d+vTpExgYuGDBgnXr1h0+fPjChQsZGRnCLp0RMoSJiYmsu+jm5lZFd5Gl0cPDo/y79fX1jYyMLL+7gVKpDAsLU6lUO3bsYMPxM2fO5Phw4s6dO2Kx2Nzc3MCjFIiYmJjIDiReuXKlgauul3bs2MGmzrArgaur64ABA1jStFtRymQygw0ICxZCbXexT58+1ewuvnDkIACYm5uzNGpvlw02HF8d7EZ3+fLlhqyUPUIAnU+iJFps3sXSpUsNc0zFKwkTQu3szREjRtRiPDAlJWXVqlVeXl7aNJqZmfXp04ddV42MjLZv3y5IO3X066+/wp+LOA1WKZutX9NNkEhluOyQXzUBQijg7M2MjIyIiAhfX19WILsDrlNPI7TbGRimuqNHj4pEIoNNGW8IeO2QXwVdQ6in7qJcLg8KCvL29t6zZ4+Axequ/LxBfdf18OFDYTfGJVx2yH+l2ofQwLM364jyW9zptSK1Wt2vXz/4c02qXutqOAy/Q3511DKEBp69Wad88cUXLBt6rWXZsmUAYGtrK5fL9VpRw8Flh/zqqE0IDT97s07Jzc1l28klJSXpqQrtsa9s+xwiCMPvkF9NNQ4hl9mbdc3MmTOhou2iBaE9AP3TTz/VR/kNkxrVA+cNBIMcYV9TNQshx9mbdUr5nbYEL/y9994DgB49evA9ALyeiXoaBQngc9mnjowNlleDEMbGxtrY2NRoOL4eY/t3LF26VNhi2a5BbNmbsCU3cH2S+0ACrMlaw7shFahBCC9fvmxpaclx9madwk5iFHbgPikpic0brumxPqRqCYUJkABW16yeltbFi0fNuqM3btygpaVabLP6b7/9VpDSFAoFWzk5adIkQQokWuPuj4ME+M/D//BuSMX0uLK+3mOb/Hfq1EmQcTx2MmHbtm0rO+eE1I5MKTO5YiK5IkktqaM9fBEiVrGag1RBpVLZ2dk9efLEzc0tKCjI3t5eKpW2atXK1ta2wqPzqhAdHe3r62tiYhIXF8dmxhGhLHy0MFQeOsZmzH7n/bzbUjEKoU5Gjx7N9vx/gY2NjVQqtbOzY/93cXHR/lEqlWrnqTMymaxLly7sbLC5c+caqu0NQpGmqFViq5zSnLgOcV6NvHg3p2IUQp3k5+evWbMmLS3N0tIyIyMjMzNTJpNlZWWp1erKfsTc3JxdMx0dHaVSqZGR0c6dOx8/fjxw4EC2C5gh21/vbczeODtjtrel9+/tf+fdlkpRCPUiLy/v0aNHmZmZqamp7Ivy/3/59UZGRhkZGS1btjR8U+uZuMK4U/mnLCWW45qM25O753Lh5Z+f/by79e5R1qN4N61SFEJDKywsTE9PZ9dMmUx27ty5x48fL1y4cNSouvtb8k9xMO/gxuyNK+xW5KpzE4sTxSB2NnUeYDXARmIjEUl4t65SFEJSf7xx5429rfe2NS3bVexL+ZfOps7v2bzHt1WvVNVGN4T8s8iUsjambXi3osYohKT+aCxpnFeax7sVNUYhJPWHv43/CvkKBERAuUrOuznVRfeEpP5QonKlfOWF5xeMRcb+Nv5GIiM7Y7sBVgN4t+sVKISEcEbdUUI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGf/D8Oj+lqR67c/AAACY3pUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCFAEYhUgbmBkY0gA0ozMbA4aQJqZhc0hA0QzMyIxYDIQmh1CM8NomLgAgwLIBoiBTEAaIswBoZnYGcDmMTGyM0D1MeCwQBBsECM2l6DpgKqEuwRsNTMjwgkEaAyDuRkYGRiZMpiYmBOYWTKYWFgVWNkymNjYE9g5Mpg4OBk4uRi4uBm4eTSYuHkVePkU+Pg1mPgFFAQEM5gEhRgEhROERTKYREQTRMUymMTEGTgkEiQkGSSlGKSkGaRlGGRkGWTlGFjkE+QVMpgUGBMkWBPkJBnEBBKcWIDWszEqyLMwM7GysUpwsLMJCouIigmwSUnLyMpJik9jBHqTARZ5HbG8B/meqh4AcbYLfj/g4XZ6P4jN0cFw8PPW73tB7G1pdw+8EEiyB7GZ968/UM163Q7EXiXac8DIdRtYfJPsxAPms60cwHq7vQ4cXpsIZst5ch0QiJYCs1mctPcrZKuA2be0o+zedq4F691mdsueb9VBMHuXgoiDY7cFWM2sPlWHd2UzwXbNaW5yKPr+Esy23jvP4e0cR7A7uyrPOayOkQSzNTe/cljx6zmYXWVw3aFvszfYX3vMeR3bb10Gi4v8FHP03zFxH4jtcofDsW5PLtheyz8PHWxqXMHsWYeOOhRy/QOz7ztZHeDI6AOzgw2EDxx41AzW+2y694EfoXvAZka1qhyIuG0KtqtUrGu/wF17MLvEymvf9ZgnYDXnbvjtr/9wGax39YGlB7o428DiLFknD6x3YwarFwMAuIqjgtDpIpUAAAMTelRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVZLbt1IDNy/U/QFXoPfJnsxi9hOjGCQZ2DimTsMMMu5P1KUYEkGGpHchKyupopkkXi3VtdfL3/++387Lnm53Vqj3/zNOds/SkS3H60e2tPX1++P9vz+5enjzfPb34/3n0216cAZ3J+xX97ffny84fbc7tlTXdXbXbpPYfJGnbbrPCuFjB5Ck6XduXsmpSyQuvskVbhqd+qMM64LpBVy9MkZmdjPVApaAL2A3m0KjcC+8ZzDFsBRQOsaMcwadxOdGQtgtEcBXS3Dm4CDh6w4ZgG187BAOrW7DFFeAGd9WgCkYIVHY0aCFkAk5WelZYycMYD0MUmXyCoPdWElT0Sj7hGrlHNVh3uQxXQ8OE7QEqjtDV9UNpuBB2TcoKgF0BA3qOVIqX2ZM3SlC3YArVOkj9o3RDPGCli1sT4HOb6I+MOH0iqTHEAOeBJFyoHEgbUuOIGMrmqKfYgyGWdW9WaU5z84DbEBCVVFUxD8SulooYaekMEU5XS4M61CkqrP7Kaeu9IlbdAqnSKbT/dSJvan5PAVT9EtIhpCWo4i2GQJtD0giIyoaj7x7bmMpyp0L4lXSwLJLO6rdMrYNYxiJ/xXQB6ey4CqRlsWmW1Ulgyyj+X3c/fqQQMx4SmNodAVdGsiLjVtGQXpGTlW8deg24bLDANDHIo0ypVX5R2aFBgb9WSs01ZcVfZJw4HW3LyipXipZ9V9esnENJLiSo6WXyXr6+Pl09Td5/DT2+PlnMN1yzlsDUvPiWq1zrFZt5/DkbHGOQINK85BZ1h5jjPDmufQ4lrX2cSb4csM4s0c5DBspAwf/FBL3t4cFDE+eDMHS8wJKVNj4NvrH6e3UUiYgzEXZRg+SKPNeTMHb7Sz1Ru5dq2VkYM5utPKyJnWLa+gfzCXYg4jB3Op3E40zaV9uIwcGZaiDCMHZXQDl5GDshRlGDkoS+UaRq8S5rbp86JUFBYqvOjRyuiphU0MempFi7BcBKBFWPlCWEsTFepBuBR51V/9//EbAs+3X6YpmJaTvHr9AAABiXpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCWSOW7lQAxErzKhPiA1uC8wHCn3BHMEpcY/gQ/vYo8StR7ZRbKo++HneY7rkff7Of7d9/H59/X19Xk/+hz39wvBR/F+yy33PALEf36Oq1apq56XLG9hPj+uXCnUfF68vIoKqBapChAtRswVLFZzZZ+0qpQSxJe14ETLuDsMyJZm4sTLRLs3cbXKU3DdU0B0cVjaqcslZKQFhJKRY8w1PdGKqM4A8miCNC1hJS9Iq3uiPq8kQ0Nom6EiS9kcF9Cez6dXlKI56c4htijLd7vQjBjSQTFTpocSCgdiojbIu2fKXKqmOe4UTwg5KRYgGKQEJT5gqgRvB8N9TO1l6rUNlLKgniR3zUL5lgrf0hSC2VA+2SRHmmfAxpXevjRjESDM4r4JpinZup5e/d/PYvapbsmaO82TsAYcytjHUZ7ppyOIdlZuk7nToIFglu3NY7uUWOZUMNY224vm7NwewHHO/TdIY+sjR5i4z9fPL156h/6fZbFYAAAAAElFTkSuQmCC</base64_image>", "role": "assistant" } ]
Molecular_Weight_Calculation
NS(=O)(=O)c1cc(C(=O)Nc2nc(-c3ccccc3)cs2)c(Cl)cc1Cl
1,017,916
428.32
428.322
4.0166
[ { "content": "What is the molar mass of the substance with SMILES 'NS(=O)(=O)c1cc(C(=O)Nc2nc(-c3ccccc3)cs2)c(Cl)cc1Cl'?", "role": "user" }, { "content": "428.32", "role": "assistant" } ]
Hydrogen_Bond_Properties
[H]N=C(N=C(N)N)N(C)C
4,091
{"donors": 3, "acceptors": 1}
129.167
-1.24383
[ { "content": "How many hydrogen bond donors and acceptors are in the molecule with SMILES '[H]N=C(N=C(N)N)N(C)C'?", "role": "user" }, { "content": "{\"donors\": 3, \"acceptors\": 1}", "role": "assistant" } ]
Molecule_Visualization
COc1cc(C(=O)N(CCCN2CCOCC2)c2nc(-c3ccccc3)cs2)cc(OC)c1OC
1,139,512
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd1xUx9oH8GeLdARsoVgRxIK9ITZUbLmx5BrsRuM1aMq1JLlZE2PIjfc1m8RE1BhDYoxEbGCKihVibFjiWhEFQQEBUXqRvrvP+8fgiqhkgXN2luX5/pGPFM88a/gxZ2fmzEgQEQgh/Eh5F0BIY0chJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGIayLP/74Izw8nHcVxETIeRfQYNy7dy8qKioyMvLQoUMpKSkAMHr06KNHj/KuizR4EkTkXYPxSkxMPH78+PHjx//8808WPEYul6vVagBYs2bNu+++y69AYgoohNXperyIiIjExETd51u2bDlw4MAhQ4b4+vr27t37m2++WbZsGSJu2LDhrbfe4lgwaegohAAA6enpp0+fjoyMjIyMvHPnju7ztra2AwcO9PX1ZcGTSp94C71ly5YFCxYAwKZNmxYuXGjooompaLwh1AXv9OnTN27c0H3+ecFLSkpi96UxMTEXLlyQSCQAsGHDhsWLF0skkh9++OFf//oXn1dCGrjGFcLLly9HR0dHRUXpGbzn9ZDXr1/v1q0b+3NgYOCyZctkMtm2bdtmzJhhyJdDTEMjGh0dNWrUsWPHdB86ODgMHTp0xIgRPj4+PXr0eDp4NQS1S5cuus8vXbq0oKAgICBgzpw5crncz8/PYK+ImAhsHHRjm56enl9//fWlS5c0Go3uq+np6aGhof7+/l27dq36j2Nra+vr66tUKlUqVdXvf9qKFSsAwMzMbP/+/eK/GmJSGksI9+zZAwBdunTRfab+watGoVAAgLm5+cGDB0V4BcRkNZbb0UOHDgHA3Llz2YeDBw8+c+aM7qv29vbDhg3z8fHx8fHp2bNntVFQPX322WcPHz7cuHHjK6+8cuDAAR8fHyEKJ6avsYSQLW0ZP348+9DFxcXGxsbLy8vX13fw4MEDBw5s0qRJPZuQSCQbNmxQq9VBQUEvvfTSoUOHhg4dWt+6SSPQKEZHr1271rNnTycnp7S0NDa1kJ2dbW9vL5PJBG9Lq9XOnTs3JCTEzs4uMjKyX79+gjdBTEyjWMDN7kVffPFFlkAAaN68uRgJBACpVLp169YZM2bk5+ePHj360qVLYrRCTEkjCqHuXlRsMpksODh40qRJeXl548aNqzrPQcjTTP92tLCwsHnz5oiYmZlpb29vsHbLy8unTJkSHh7+wgsvHD9+vHPnzgZrmjQspt8TRkZGVlRUeHt7GzKBAGBmZrZnz57x48c/ePBg9OjRVdeCE1KV6YeQ3YuOGzfO8E2bm5vv2bPHx8cnNTXVx8cnOTnZ8DUQ42f6ITxy5AgY8A1hNVZWVuHh4UOHDr17966vr290dDSXMogxM/H3hNevX+/evbujo+O9e/d0Q6OGl5eXN3LkyMuXL1taWt65c8fR0ZFXJcQImXhPqBsX5ZhAALC3tw8LC5NIJCUlJZGRkRwrIUaosYSQS+spKSljxowJCgoCADs7OwCQSqVc3p0SY2bKIXz48OGZM2dkMtmoUaO4FHD48OGIiAj2pvTIkSOIOHr06BYtWnAphhgtUw5hZGRkWVnZoEGDmjVrxqWAqv0w3z6ZGDNTDiHfn/uKigr2DPHYsWO1Wm1ERATHYogxM+UQ8p2ciIqKys/P9/T0bNu2rUqlysjI6NChQ6dOnbgUQ4yZyYYwJiYmOTnZ0dGxV69eXAp4+l70xRdf5FIJMXImG0LdQhlekxP0hpDoycRDyOvnPjU19fr16zY2Nt7e3jk5OSqVytzcfPjw4VyKIUbONENYVFQUFRUlk8l8fX25FHD48GFE9PX1NTc3P3LkiEajGT58uI2NDZdiiJEzzRCyyQkvLy/jmZygOXryPKYZwm+++QYAdN3gwYMHv/rqK4O1rlar//jjD3g0OVFtextCqjHNjZ7YTmpsSCYtLW3KlCmlpaVNmjRZvHixAVpnkxPdunVr166dSqV68OBB+/bt6aFe8jwm2BOq1WpnZ2cA2LRpU0pKiouLy6ZNm6RS6dKlSzdt2mSAAg4fPgw0Lkr0x3PTU9Hcv3+/e/fuAODm5paWloaIP/zwg0QikUgk33//vdit9+zZEwAiIyMRcdCgQQCwb98+sRslDZdphhAR8/Ly+vfvDwCdOnVKT09HxMDAQACQyWQhISHitcseXLS2ti4tLc3JyZHJZGZmZoWFheK1SBo6kw0hIubm5vbp0wcAunfvnpWVhYhr1qxhOdy1a5dIjf74448AMHHiRETcuXMnAPj6+orUVmOWl5fHuwTBmOB7Qh17e/vDhw9369YtOjra19c3Jyfn3XffXblypUajmTNnzv79+8VolBbKGMCuXbvatWt34sQJ3oUIhPdvAdHdv3+fjUx6eXkVFBQg4vLlywHAzMzswIEDwrZVUVHB9nS7ffu2Vqt1cnICgBs3bgjbSmNWUVGxdOlS9qP77rvv8i5HGKYfQkRMSUlxdXUFAG9vb/b27L333gMAS0vLY8eOCdjQyZMn4dHZTyqVCgDatGkj4PUbuYyMjJEjRwKAXC5XKpW8yxFMowghIiYnJ7dv3x4ARo0aVVxcrNVq33jjDQCwsrI6ceKEUK188MEHAPDOO+8g4qpVqwBg0aJFQl28kTt9+jSbeXJxcTlz5gzvcoTUWEKIiPHx8ez/4pgxY0pLS7Va7euvvw4ATZs2PX/+vCBNTJkyBQCOHj2KiN7e3gCwd+9eQa7cyAUFBZmZmQHAsGHD2Fi3KWlEIUTE2NhYtt3g5MmTy8vL1Wr1zJkzAcDe3l6lUgnSRGJiYllZWU5OjlwuNzMzY+9CSZ2VlJTMnz+fvQn09/cvLy/nXZHwGlcIEfHq1avNmzcHgClTplRUVKjV6mnTpgFAixYtoqOjhWpl165d7NZXqAs2UgkJN1580cba2sbGJjQ0lHc1Yml0IUTEy5cvs6crpk6dqlary8vLJ0yYAACtWrWKiYmp58WTk5ODg4Pd3d0B4L///a8gBTdS4eHo4IAA4ZMn1///izFrjCFExLNnz9ra2gLAvHnzNBpNWVkZ23vCxcUlISGhtle7d+9eaGiov79/165ddXM/NjY23bt3z83NFaN+E6fVolKJUikC4IQJaOr/ho00hIgYFRXFnrJdsGCBVqstKipip8x7e3vr89dTUlJ+/vnn+fPnd+zYseq8a7NmzSZNmrRq1So3N7eqk5NEX/n5OHkyAqBMhgEBqNHwLkh0jTeEiBgZGWlhYQEAS5YsQcTCwsJp06bV0BOmp6c/3eOxTs/X11epVKpUKs2jH5qnJyfJ37tyBTt2RABs3hyPHOFdjYE06hAi4pEjR8zNzWtYfnH//v3Q0NDFixf37du36p5RuuCdOnXqeUN21SYnxXwdJiEkBK2sEAD79MHERN7VGE5jDyEi/vbbb02aNKk6jlKf4FVTbXJSzNfRACUnY3Z25Z8PH0YABMDXX8dG9g9FIURE3L17t0wmY+/o2D2kTtOmTV966aUvv/zywoULarW6DhevNjkpePEN0t696OqKY8eitzf27o3x8ajV4vTpuHkz78o4oBBWev/993XBs7a2rm2PV7Nqk5P1v2DDlpmJjo6om3XYuBGHD+dZD28mfkhorfz4448nTpyYOHHi5MmT5XKBd9+5cuXKqFGjcnJypk6dumPHDtbxNlLbt8Nvv8GePZUfajTQsiXcvAkvvMC1LG4ohIZz7ty5MWPGFBYWzps378cff5RKTflhzpp8/jmkp0Ng4OPPeHrC1q3Qrx+/mnhqrD8HPHh5eR0+fNjGxmbr1q0LFy5svL/+HB0hM/OJz2RkgJMTp2r4oxAalLe39++//25hYbF58+Zly5bxLoeTESPgjz8gK6vywwMHwMUFnJ251sQT3Y5ycPTo0YkTJ5aVlb377rts25tGZ/16WLcOpkyB/Hw4eBD27IGBA3nXxA2FkI/ff/996tSpFRUVn3766cqVK3mXw8O9e3D1KlhZQd++0LhP6aDbUT4mT568c+dOuVz+8ccfK5VK3uXw4OwMUiksXw6rV/MuhTMKITdTpkzZsmWLVCr94IMPBLkpLSwsvHz5clhY2Geffebr6+vk5DR79uz6X1ZEajWcOwcXL/KugzO6HeXsp59+WrBgASJu3LiRbXujj7KysoSEhBs3btypIjExsdr/TblcfuXKlW7duolQuBBu3QIPD3B1hdu3eZfCE4WQv82bN/v7+wNAUFAQ2/amqvz8/IRH4uPj2X8zMjKevo6lpaXbI61atfr999+joqJmzJixY8cOQ7yMOqioACsrQITiYjAz410NNxRCo7Bu3bqlS5fKZLJPP/3U1dWVJY1FLrPalBoAAFhZWblV4e7u7ubm5uLiUnW5eWpqqpubm1qtjomJ8fDwMOCrqY2OHeHOHYiLg06deJfCDYXQWKxevXrFihXNmjXLycmp+nlzc3MXFxdXV9euXbt269bN1dXV1dW1ffv21RbcaLXalJQUltv27duzM0kXLVoUFBT06quvBgcHG/TF6G/cODhyBMLD4R//4F0KNxRCI9KyZcusrKxx48b16tWLdW5ubm7Oz5rFzs3NjYmJqfqeMDY2tqioiH11+vTp7BiMu3fvuru7azSamzdvsm1vjM7bb8PGjRAYCEuW8C6FG9M8JLQhysvLy87OtrKyOnDggK6X02g0iYmJuneD7A937twpLy9/+gouLi4sukOHDmWfadu27axZs3766afPP/988+bNhnsx+nNzAwBISOBdB0/UExqLU6dODRs2rH///n/99RcABAcHf/bZZ4mJiU/nTSKR6PJWlZWV1dOXvX37dufOnSUSSVxcXIcOHQzxSmolPBwmTICxY+HwYd6lcEM9obGIjo4GAHa2KQCo1eq4uDgAcHBwqPaG0MPDw0bvJSYdO3acPn16SEjIF198YZiDimuH3SQ37p6QHuo1FmyScO3atezDzMzM6OjokpKS+l/51q1b7KzS5OTk+l9NYGVlhT16JAwd2pj3HKCe0FiwntDT05N92KJFixYtWghyZXd39/nzZ/Xtm1xe/i2AkS2RMzPrUViYeO3araQknkNHubmwejWcOwdyOQwZAh98AM+6txcJLVszFtevX4cqt6PCWr9e0a/fqcLCdRUV98S4fn2w7MXHx/MsYupUkEph717YvRvS0sDf35CNUwiNQkpKSl5eXosWLV4QZ4sHC4uu9vaTtdrSBw++FuP69cF2SU7g+LZQpYK7d+Gzz6BZM2jVCr79Fo4ehZQUg7VPITQKrBvs0aOHeE04Oa0EkGRmfqdWP2PJG0f8QxgbCz16gG7xg4UFdO4McXEGa59CaBSqDY2Kwcqql53dP7TaogcP1orXSh2wEPK8HTU3h2rzQGVlYG4Ot25BcbEB2qcQGoXUVL/Bg7cNGDBT1FacnT8BkGRkfKNWZ/3tNxsMe0/Isyfs2RMuXoSyssoPs7Ph9m3o2hVmzQInJ1i4EK5cEbV9CqFROHWqQ1TU7I4dB4jaipVV36ZNx2i1DzMyNojaUK24urrKZLKkpKSKigpDtx0TAxcuQKdOMGYMzJwJZ8/CqVPg5weLFkGTJmBmBgUF8P330Ls3eHtDcDCUlIhRBa2Y4U+tBltbKCuD/HywtRW3raKis7Gx3jKZXffuSTKZvbiN6a1Dhw5JSUnx8fHs1tRAdu+GBQvAzg4uXoTmzSE4GM6eBZkMfHxg+nRgz6PExsLWrbB5M2RnAwDY2cG0afDmm9Czp5CV8J6oJHjjBgJghw4Gai4ubqRKBffurTJQe3oYPXo0ABw8eNBA7VVUoEKBEgkC4KxZWFT0N99fVIRbtuDAgZWnZQDgkCHXQkMFWUqBiHQ7yt/16wAAYg7KPMHJaSUAFBdfNlB7emAHY23YsCE1NVX0xjIzYdw4+PxzkMlAqYSQkL+fl7eygtdeg3Pn4MYNUCigWTPtmTMTli1zdHRcuHAhG1SrF0GiTOpj5UoEwBUrDNdiUdFFRNRoCktKYioqsgzX8FO0Wq1SqZRKpeysDqlU6uvrGxoaKtaJHRcuYNu2CIAuLnjmTB0vUliYum1bvyr7hQ8bNmz79u11PnWLQsjfyy8jAO7cadBGc3J2X7vWPiHhnzdvDigoOGbQth/Jz8+fPHkyAMhksnnz5vn5+Zk92uSiXbt2q1atSktLE7K9oCA0M0MAHDoU09Prf72YmBiFQuHg4MBqtre39/f3j46Oru11KIT8ubkhAF6/btBGY2K6FRZGGbTJJ125coWdNN68efMjjw7lzcnJCQwM1J1ArusY63YonU5xcXHFv/5V+XbunXdQ0G62oKDgu+++69OnD6tZIpGMGDEiPj5e/ytQCDkrKkKpFJs0wbIyg7Z78+bAu3eXaDR8zvHevn07e/qxT58+d+7cYZ+8e/cuC5tWq42IiPDz82OHtwKAi4uLQqG4e/duHdpKTk7u37//t4MHo40N7tol5Mt4kkql8vf3t7GxsbKyys3N1f8vUgg5++svBMDu3Q3dbmnp7YSEf1650iw5+Q2NRphRPn1UVFQoFAoWrTlz5lQ9Rbxv375OTk4KhSLx0VnZ6enpSqVSd2yrTCarbcd44MABdrvo4eGRc+OG4C/nafn5+ceO1e72nkLI2Z9/Yrdu+OqrfFpXq3Nu3RqTlrbSMM2lpaV5e3sDgLm5eVBQUNUvZWVldXq04ZpMJpswYUJ4eDgLm0ajqdYxduzYUalUPnjwoIa2dEM+ADBhwoRadU0GRiHkJjQUMzIq/5yQgJcvG6hdrfaJx2fT0z9PTn7DAO2ePHnSyckJAFq3bn3u3Llnfg+7o7O0tGRhc3Z2VigUSUlJj0pNVyqVuk06zMzM/Pz8IiIitFpttevk5+e//PLLLM8BAQEajUbc11Y/FEJuAHD69Mo/b9qES5YYotG8vAPR0W6lpQk3b3olJfknJ7957VrroqILYrcbFBTE+jEfH5/79+/X/M05OTlBQUG6jcOrzVvoOkbdacru7u5KpTLj0a+0Zw75GDMKITc2NjhsGLIfkqohfOcdnDMHH70tElJOzp6LF83YchmN5mFh4an8/CNqdY7wLVVRWFg4bdo0Nmy4ePHiWk0AqlSqOXPm6OYtqg3PpKSkBAQEtG7dmn3V3Nx85syZH3/8sbW1NQD07t1bN+Rj5CiE3NjY4MWL2KkTFhc/DmFuLlpbIwBaWuJ772GWcBPpOTm7Ll6Uq1SQkvIfwS76d27dusWez7K1tQ0LC6vbRe7fv69UKnXzFtWGZ6p1jGzSf8GCBUKtKTMACiE3NjaIiG+8gStXPtETJiaivz9KpQiANjaoUGB+fn3bys7ezhKYmqqo77X0tn//fnt7ezYyGRMTU8+rPT0807p1a4VCkZKSwr4hKSmJTf17eXnVu3aDohByw0KYk4Nt2+Ly5bhkCcbGYmRk5Vejo9HPr3J6uUULVCqxzr/ZMzODVCqpSgX37v1XmNL/TtWRyUmTJuXl5Ql48Xv37v3vf/9r37591eGZhIQERDx37hybexSwOQOgEHLDQoiIW7eitTUuWYKTJiEADh6Mp05Vfun4cRw0qDKKXbtqfv55e20H+jIyvlWpJCqV5P79rwUt/7mysrLGjBkDAHK5XKlUPj10KYiqHaNcLmcL3NgxHk2bNhWjRfFQCLnRhVCrRR8fXLIElUp0cEAAlEhwyhS8ebPyGyIisFcv9PE5BQBdunQJDQ3V8yf7/v0vVCpQqSQPHqwT50VUd+nSJTaF0LJly0hdty6m1NTU3bt36z5s1qwZANQ8hWhsKITcVJ09LimpfKitoACVSrS1RQCUStHPD2/fRkTUaHD79l90U2SDBg06fvx4zdffuPGLkyftVCppZuaP4r2KqlavXs2m+Pr166eb3DOwAQMGAEBUFM9lsbVFITRGGRmoUKC5OQKgmRn6+yObWisvLw8KCmJT3gDg6+urUqmeeYXly5cDgJdXj8zMEMPUPGnSJFbVm2++WWbghbBVzJo1CwC2bt3Kq4A6oBAar4QEnDmzcpjU1hYDA6MLCgoQsbCwcNWqVXZ2dmzybdq0aVW7Ha1Wu2zZMvaWLCTEQAlERDYQOnHiRIO1+EwBAQEA8NFHH/Eto1YohMbu+nX080N7e62DQ8fmzZsrlUo2A5adna1QKCwtLWUy2Y1HS5O1Wu2///1vNmb466+/GrJONh+4ZcsWRCwqKrp69WpmZqYhC2C2bdsGANN1a5EaAgphw3DmzJ0hQ4boHnj96aef2FR1SkrKtm3b2PdoNJr58+eztSN79+41cIWs+/3iiy8Qce7cuQCwefNmA9eAiGfPnmVvSg3fdJ3RHjMNw6BBHU6dOhUREdG7d+/k5OTXXnvN09MzLCzMxcVl9uzZAMASuGXLFisrq/Dw8IkTJxq4wqobaXPcVNsoTraoLd6/BUjtaLXa0NBQ3daAAwYMiIyMLC8vf+WVVwDA2tq6tg+zCeXIkSMAMHLkSERkh3W/8sorXCphDxDq1nMbPwphg1ReXr5x40bdMCk7Rsbe3v55jwgZwO3btwGgTZs2iHjhwgUA6NmzJ5dK+vfvDwBn6ryPk8HR7WiD1KRJkzfffDMhIUGpVNrZ2ZmZmdnY2Bw5cmTgwIG8SmrXrp2ZmVlqampJSYluZ3vksbU0/8MtaolC2IBZWVkpFIr9+/enpKS0adOGzVPzIpPJOnTogIh37tyxs7Nr2bJlUVHR/fv3DV8J+xXAeuYGwdAhfPjwoUKhCAgIKC0tNXDTpqpPnz4SieTOnTtarZZvJVW7II5jM9QT1iQtLc3X13f9+vWffvpp27Ztly9fnpSUZMgCTJK1tbWjo2NZWZkhtq+uUdXzlTiOUvI/8LCWDBfCP//8s0+fPufPn7ewsLC1tc3MzPz888/d3NzYlj4ajcZglZge/qeLAcCTP/3sGVzqCfVhoBB+//33Y8eOzcjIGDFiRFxcXEFBAdvSx8zMLDw8fMKECaxjTE5ONkw9JsZIfuyqhpDj74WWLVs6ODjk5eVlZRnRMYw1EXv4tbCw0M/PDwAkEolCoai2Y2Rubm4NW/oQPa1evRoA3nvvPb5lsLGQtm3bIuJff/0FAL179+ZSCTso4uzZs1xary1xQxgXF+fp6QkATZs2/eWXX2r4zmp73bEtfZKTk0Utz2SEhYUBwOTJk/mWoVarzczMpFJpcXFxbm4uANjY2Ij0UG/Npk+fDgC6BX1GTsQQ7tu3j63079y58w39Nj+udhRBHXZcbpwuX74MAJ6enrwLQbaBL9tRhu25lC7E0Su1tXLlSgAICAgwfNN1IM57Qo0GPvlE/fXX+fn5M2bMUKlUXbp00efvOTg4LFmyJD4+nu1cIJVKIyMjp06d2q5du+XLl6ekpIhSbcPn5uYmkUhu375tVLMUHN8Wst/j3N8k60v4XGdk4KhRbNe+3777rj5XYnvd1ecogsbDyclJKpXevSvoWWK1t2TJEgBYs2YNIrKV5T/99JPhy4iKigKAAQMGGL7pOhC6J7x0CQYMgD/+gJYtITx88sKF9bnYCy+8oFAonu4YO3fuvHr16hs3bghVtQkYNOhskybF8fHOfMvg+CzF6dOnp06dWlFRAUYzXKwvIRMdHIyWlpUbhgl7vCMiIqalpa1atapdu3a64pcYZu/4hmD+fATAJw9Z4eDQoUMAMGrUKEQMCQkBgKlTpxqg3XXr1rH9SL/55hv2maZNmwJArc4J5EWgEJaW4uuvV27N5+8v6ll7bK87Dw8PmUz2wgsviNdQw/J//4cA+B/Dba79bKzfa9euHSKeP38exN8FtKSkZN68efBom/3y8nJEDAoKMjMza9Wqlbm5+fMOjTEeQoTw7l0cMAAB0MICt2wR4IJ6KC8vl8vlMpmM455CRiU0FAHw5Zc5l6GbpSgpKWG7gNra2orXXHx8vG6b/dDQUEQsLi5mz/UDQKdOndgGxADQpUuXwMDAnBxxD96omzqFMC0NL1xA3bbKXl4IgG5uePWqgJX9LTZgExcXZ8hGjdalSwiARjBJgWxQlE1KiboLaHh4OHt+t1OnTtevX8dHh/ICgI2Nza5duxAxNTVVqVS2bduWRdE4O8ZahjA3F4cPR29vnDsX3d1x2TJExOhonDoVDX4II9vmOTw83MDtGqfCQpRI0NISuR/F9+KLLwIA2+SGPd94/vx5YZuous3+xIkT2Tb7Bw8eZJl3d3e/du1a1e+vqKj49ddfx44dq+sYPT09z2zZYvgf2meqZQjfeQfffrvyz0VF2LMnHjggeE16euuttwAgMDCQVwHGxtERAfDR+SjcLF68GAC++uorRLx7924R29VYONnZ2WPHjgUAmUzGttmvmsmXXnqphkN5WcfYpk0biUSS0LYtWlignx9GRAhbYW3VMoSuro83Z0fE9evR31/YgvT39ddfA8Dbul8Kjd6QIQiAf/7JuYz169cDwKJFi8S4+OXLl9nbkBYtWkRERGCVQ3nZ4mR9zuooLy8/8fvvOHo0SiSVo4k9euDGjSjowTX6q2UILS2f6MHDwvCll4QtSH/79+8HgHHjxvEqwNi89hoC4Pffcy5j0aJFdnZ2lpaW/v7+0dHRAl5527ZtVlZWANC3b1+23/HVq1frdShvQgIqFNiqVWUUn+4Y79zBoKs/63YAAA40SURBVCBcvRr370fRlojUMoQdO2LVVaDr1uHChcIWpL+bN28CgJubG68CjM3//ocA+P773Ap4+PDhjBkzWKfE3npJJJIRI0bs3LmznoPYpaWl7C4XAPz9/dnVduzYIcyhvGVluGsXjhz5uGPs3Rujo/HkSXR2xi+/xG3bcOJEHD8exRnOqf17wsWLK/9cUoK9euHhw4LXpKeysjKZTCaXy9nUEImMxOnTcccOPq1XnS0ICwtjj8XY2Niw5Dg4OPj7+7MxzNpKTU318vICAAsLix9++AERKyoqFAoFu/KcOXOKi4uFeQ23bqFCgS1boqUl5uRgv3548ODjrw4YgPv2CdPQk2o/Ojp4MI4YgYsWYZcuuHSpGDXpj50UeevWLb5lGIOTJ/GLLx5/+MUXBh35080WeHh4VE1afn5+UFBQ7969dYuc+vbtGxwcrH/HeOLECUdHRwBo06bNX3/9hYgPHjwYMWIEm28QZViutBTPnsXSUjQzw6rPtQYE4IcfCt9cXeYJtVq8fRtPnkQj2Fx1xoyFXl7/PHr05t9/q6lbswblcty1q/JDNzc0zMOYz5wteBrrGNndIzxaFcz2RKzhyoGBgWwx2ogRI9hk46lTp9huq61btxb3md2cHLSyeuIzX36J4owC1nXFzPjx2Lw58nhUrKo33kAAXL+ebxVGYc0anDsXXV0rR/gME8KsrKxqswU1fz/rGHv27MmiqNtI4ZlvKC5duiSTySQSycqVK9mYZ1BQEMvk8OHD77PD4kTVrBnevfv4w/nzUZz5sLqGkK2S0R3rzMlXXyHA43epjdmaNRgQgCtXVv6yNkAIL1++zA4t1c0W6K9ax+jo6KhQKG6z81CrWLdu3b59+xCxuLi46gJRA+1+8tFHOHUqlpYiIkZFoZMTZmWJ0U5dQzh7NgIgj0fFqtq7FwFw/Hi+VRgFFsLiYnRzQ5WqMoQJCSKN5z1jtqAO8vLygoKCevToUXPHWG3IR4jy9VNaikuWoKcndu2KQ4aI1+XUNYSffIIAuGKFoMXU2o0bCIDu7nyrMAoshIi4bx8OHYpubhgXhw4O6O6OSqWQ79+fOVtQT6xjZKkGACcnJ4VCkZiYiIj79+9nx49WG/IxqKwsfM6JyIKoawhDQhAADfKoWA1KS1EmQ7kcG/MkxZ49GB7+OISIOHEiSqV46BC6uDyehZ41C0+erG9bVWcLBD9+MCsr66uvvvLw8NB1jLpY+vn5FRYWCtucvioqsEkTlEqxpESkFuoawvPnEQBFflRMH+3aIQA2hEc3hVdRgf/5D0okaG+PGzagbi+RxETs3x/T01GjwYgI9PNDubwyjR4eqFRi3Y7QfXq2QCSsY5TL5SyBb7/9NueHHtzdEQD126ysDuoawpycypPUefP1RQA8dIh3HQaXmVn52uVyVCr/5puTknDFCnRyetwxvvoqnjtXoGdbVWcLxo0bl52dXd/q9RAbG/vOO+/89ttvBmjrb4wfjwAizdRjvR7qbdYMAVCcR8X0t2gRAuCGDXyrQI1G88knnyxfvryGJfwCUqmwfXsEwFatUP9DQdXqyo5RJmNrs97r3LmzUqnMqnHQr+btmxuFf/8bAfCrr0S6fD1COHAgAuDp08IVUxdr1iAA8t1rpqCgoGvXruzeydra2t/fv9rzbMLSbeUzZAjeu1eXK9y5gwEBJU5OlbtCWVlZvfbaa888YDQuLo7tj960adNff/21vqU3UOvWIQC++aZIl69HCGfNQgDculW4YuqCzVK8+CK3AqKjo9mz5DKZTLdUUiKRDB8+fMeOHaVslkkgJSW4YMHjrXzqORylVqvZNnYymYyV3aVLF6VSqbvb3Lt3b223bzZNBw4gAI4eLdLl6x7C5C+/DB48OFK0PlpPGRn422/Ia/Xozp072Yxzr1692CKsaguX7e3thXqiJzGxsE8fBEBra4FXaSckJLz//vutWrXSdeavvvpq//792cMQEydOfPjwoZDtNTi3biEAdugg0uXrHsJt27YBwLRp0wSsprYOHkQPj8dLi+bMQTEH7Z5QdSH/7Nmzqz0/XlBQ8PTC5aCgoDqv9z927Jijo2O/fofc3FCkW92ysrLQ0NA2bdrAk/aJNiDRYLBZCplMpG0E6x7Cc+fOsZ8tAauprbAwdHJC3Tkovr4CTIXpIyMjY+TIkfos5H/mEz3sqAY9abXaVatWsRXSM2bME/vh708++YTdf7q6ug4fPhwAvv76a3GbbBA6dkQAjI0V49p1DyE7/K1p06YCVlNbYWE4dy4OHYp79yIaKoSnT59mC/ldXFz0XMjPFi736tVL946xhoXL1f7iP//5T6jN3g31xHbsZTc469atA4A3RRuQaEjGjkUA3L9fjGvXa99RtrlVBr9nmsLCcN48vHwZXV3x4UNDhJDtKgsAw4YNq8N5Q898oufphcvMzZs32UE6zZs3P2yoh6er7th74MABABgt2oBEA3L2v/9dO2jQr99+K8bF6xXCAQMGAEBUVJRQ1dQWCyEiLl6MK1ZUhnDzZjx2TPiFyyUlJa+99ho8udNz3bCFyzU/0SPY3g21xHbsZTc4t27dAoAOog1INCBr164FgLfeekuMi9crhDNnzgSA4OBgoaqplfLyxyHMz8cOHbBzZzxyBG1tK1d1C7hwOT4+ni32t7GxYTs9C6LawmX2RE9UVFQNQz4GoNuxt6KiokmTJlKpVNiJloYoPDwcAMaOHSvGxesVwo8//hgAVq5cKVQ1eqqoQIUCJ0zA0NDKECLi9u2V69c++QRbt35i4fKJE/Vq7sCBA9V2ehZWdnb22rVrqx3haG5u/l39DparM3aDc/r0aURke5nFijMg0YDExsYCgKurqxgXr1cIf/75ZwCYPn26UNXoIyWl8oliCwv87bcnNh/+5pvKrW+fXrjcqVNdFi7ruXeDUFQq1fDhw6VSqaOj4zPXrxjGrFmzAGDr1q2IOG7cOADYL86ARANSVlYm3tkn9Qrh2bNnAaBfv35CVfO3Tpyo3Ge6TRvUZ2/15GRcuRKdnR93jP/5T8Jp/ZbaZWdnsx9BmUwWEBBgsIX8GRkZmXV7zEEgAQEBAPDRRx8h4ttvvw0Aa9eu5ViPkRDv7JN6hfDBgwfsZ/TDDz8UbNu55wsKwiZNEABHjKjdunFdxyiTYY8ebwGAh4dHzQuXq+70fPToUQGqbzjYMgx2gxMYGCjegETDws4+OSDCuQ/1PRqNvYkHADs7O39//6viHMxUWIhTpyIASiSoUNR9K+TERM2HH37IHooDAEtLy3nz5p05c6bat4WEhLDBkj59+rDnuxsVtgzDq39/RLx4+HDYsGHX+G3xbDzEO/ukviF88ODBggUL2HlUzNChQ0NCQkqEeww5Lg49PSufXtyzR4ALPr1wmT3Rk52dXVJSIsqusg1KaVZWedu22Lw5ImJcHAKgOAMSDYt4Z58Idlx2TEyMQqFgo4jwaOFy/Z/o+f33w05OWnbynuCrtBMSEhQKRdWFy+bm5gBgYWGxxVCnnRopBwcEwIwMLC9HuVy8ZZMNiHhnnwh6Zv2jhct9+vTRdYx1XrisVqsDAgKkUmn//l/OmIHireNnC5d9fX0lEolEIpHL5RyXHxiL/v0RANmNuqsrAmCjP4w1NjbW2dl55syZgl9Z4BDqPPOJHv0n2bKyskaPHg0Acrlc+bebNwgkKipqxYoVhlyeYrxmzEAAZMswxoxBAKTDWEUjVgiZuj3Rc/HiRXbIRMuWLf/44w9RKyTP9vHHCIAff4yI+NZbCCDS5tMExQ6hjv5HEQQHB1taWgLA4MGD09LSDFMeqe7nnxEAZ8xARFy7FgFEOoaBoMFCyFR7oqfawuXS0tLXX3+dfUmoXWVJHZ05gwDYvz8i4v79CIB0GKtoJIgIBnfmzJnvv/8+NDS0pKQEABwdHd3d3fPy8qKjoy0sLL799lv2vALhJjMTWrUCe3vIzYXYWOjSBTp2hIQE3mWZJj4hZPLz83fv3r1x48Zr164BgFwud3Z2/uWXX/r168erJPJYs2aQmwuZmdC0KbDnPIqLwcyMd1kmSMqxbd0im23btvXs2XPQoEEXL16kBBqLjh0BABISwMwM2rYFjQaSk3nXZJrkvAsAAJg9e/bs2bN5V0Ge5OYGKhUkJICXF0yZArm5IOX5K9uE8bwdJUbtxg1Qq6FjR7h/H7RacHWFR6v8iLCMoickxqhrVzh9Gjw9oWdPkErh4kX48Ufw9eVdlgminpA8R3k5dO0KP/wAI0YAAJw7B35+EBcHjzbjIEKhu3zyHFevgrV1ZQIBwMsL2raF8+e51mSaKITkOe7dg0cPXlZydoa0NE7VmDIKIXkOZ2d48OCJz6Sng4sLp2pMGYWQPEePHpCf//j+8+pVSEqCAQO41mSaaHSUPIe5OfzwA/j5wahRIJPB0aPw3XfwaAk+ERCNjpIaFRdDTAxoNNC9OyVQJBRCQjij94SEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEs/8Hq+IjQLLMP+sAAAJzelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIUAZiNSBuYGRjSADSjMwcDBpAmpmJzQFMs7A5ZIBoZka4AEQBC0whO4RmhhjAxIROszMogOTRhTnAwhiqYbawO0BNhTsDwzkkMAQcYJ5C8wzct1Df4xLnZmBkYGRSYGLOYGJmSWBhVWBl02BiZVdg52Dg4GTg5GLg4mbg5mHg4WXg5WPg42fgF2BgF1QQFMpgEhJOEBZREBHNYBIVSxATz2ASl0iQkMxgEpbKYJKSTmCRyWCSkU2QlVOQk2eQVchgUlBUUFRiUGBKEOBmkBZMkBRJcGIBOoGNSUFWhoWZjYeXj1+Am1VIUFpKmE1UTFxCUkR8HSPQiQywGG04fd/BuNTzAIhjxnnTQenKlf0gdkLDGofnRr1g9pWdbQ4/LzOC1fxJNHHYxrYHLH5q5UX7B7aSYPGvm97YM3tWgNkTjWvs2m69AqupUM/ff2K5AVi867bIAe3rPGD2woyEAxsEPcBs9b1zDgg7qoDZhfWLDzzI7gLrdee4cMBrKiuYffnc1wPr7XeC2R087w/8WmUNVr+p+dCBGdXxYPaXFfy2zIKb94HYNfpL99fEbrEDsfM1WvZvtnplD2LHP2Q5MInfygHEvqBydX+MYTeY3R+ve6Bi1Vow+5pt6wGmXwvB7KDUSQfuL0gHs2v/Jh5Ytk4JzI7Y/tzu/UImMHtnYp+99BpDsPnpd9Uctj5utgGx67KKHIw4C8HiL5+mOOT7SoPVN1jOcPjSHgZmi+5b6lDVexjszoUtpx0yI5aD1Zfz/nCIybMHs8UA/cyvjfFiqUAAAAMpelRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVZbbtwwDPzfU+gCa4gPkdJnkg2KosgGaNLeof+9PzqUG9kB2K5jYq0dS0NyOMilxOf77duv32V9+Ha5lFL/8zfGKD+l1np5KfGlPD5/+XovT+8Pjx8rT68/7u9vRVqRjndwfcY+vL++fKxQeSq2jSFtcLnKRurueGur83O8yuUVQO8sruVKmxk7awIU7Ng2GdWcAkhViCwBKoC6MVXq2JG3yr2ZJMAGIG8dsD53VOujtQRoAIKZ+BhzRxmqlROgIxnaug4miqy7D20Zx17uWGU1HjWO7qKAJsCBo691G6I0LM52q6yUIKkGFOS4DazjG9dqkiVO0R3Qa/i922wPW+01gzKYXnXro9cxd21m6lnyFB26NjRmSPXIqnZS8gwaPboaCKBLFAk2JhyQQRtqevXNsNeYuyqOT4tK0SdA1dHyyXUIQyQZ1HcC1XvzWQEdhCuDdkCxLK26BFUBD0mRI2pFG3raKCokjdkzpjx7hQIJK0SK/vMYqZiZ9q5WN4Y2kVJ1rlmnmPc9zRqhqTp5eiZnln1Pr9C7Y6iUvbYsI5590o2m9oGsRm4psu3I5tqtF9ksypkpmu2v+ARCcWTUIG1KM/JZeW3cMPKogRJJumUvbygiEUsLudlQVDYDjjnyhhrujkBGaTHD7ZCEd1Qwfh9KTTMlC0GeSMatYdQYpTSrmeKEpy158wqdSGijamaIshsdhXUER+k0UrmhFGGdcFiki/QxdDHNCTB64ziaTKN8/i8vfr7fPpn4buuPr/fbYetx8WHeeChyWLTGfRhxXO2wW8Jth6kybj+sk/DYD4Mk3OOwQYr7bHY0A508jWZY5CjYRVj84FA0w6III6IZFksKmhEWUcwlzbC4kk92tNjCIzQCLcLosUbg88xTBF6UMdsagY96cqwwJvQ0qxqBF2WOoiLwoozZi0dM1mnGdJ61KGOWNAIvzhyc8dKizEEZQc5TQGWK/CR3iiCLsgTlKduTgCmCLMoSVUaQRVmCcmDWwiyyn9onk/G5yhKMkdpRwRDsWZ7x/PEfC75f/gBbpavCbgjvugAAAZt6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwlUjuO5TAMu8qWeYBj6C8LwVTpJ4dIv822c/ilPK96YESKpHw/L7/vcR9fz+f7uO/7W+77uW/5vPL3Pc5X3/7p5/0H6D2e+/Pyc//5OWJWqdc4dbJlrnHFzCWa4+QZISnj8qlFsREmZSA2hYnXOGWSLI9xyVy8bPWMxSofF+iaVT2jZdbAshLuVSvLQKIpFlJNWmpZ4zpplhpXNC2DBLwWEN9CQhQKRKfjz69rCYLr0+aqRXvKIywBOeyWcsvTYoPvM0CE84E9Ltzz15kzFvt2bimxEUvkaq1SgUITKZev3mjFJW2e1ClVWkytUluMpxQ5D0AukrEhUkE1CCnVzG4tA5sgT13wrtq5hm2htUeSFmrwaZIUOyCHLgAUnLkBT1s5dAbD0m8tygxZR4XcFs3FsxEyZu0bMIsG7EUZbPXhgjo14nBQFZYrXkCmAypj7yohnOEKHZOIvn86GsJqpCTvJ8I4aVN0cXUTgU9VhtRKu5oEh8MwknhoCPn5+Q98bo4/80Ng3gAAAABJRU5ErkJggg==</base64_image>
497.617
4.205
[ { "content": "Provide information about Molecule_Visualization for the molecule with SMILES 'COc1cc(C(=O)N(CCCN2CCOCC2)c2nc(-c3ccccc3)cs2)cc(OC)c1OC'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd1xUx9oH8GeLdARsoVgRxIK9ITZUbLmx5BrsRuM1aMq1JLlZE2PIjfc1m8RE1BhDYoxEbGCKihVibFjiWhEFQQEBUXqRvrvP+8fgiqhkgXN2luX5/pGPFM88a/gxZ2fmzEgQEQgh/Eh5F0BIY0chJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGIayLP/74Izw8nHcVxETIeRfQYNy7dy8qKioyMvLQoUMpKSkAMHr06KNHj/KuizR4EkTkXYPxSkxMPH78+PHjx//8808WPEYul6vVagBYs2bNu+++y69AYgoohNXperyIiIjExETd51u2bDlw4MAhQ4b4+vr27t37m2++WbZsGSJu2LDhrbfe4lgwaegohAAA6enpp0+fjoyMjIyMvHPnju7ztra2AwcO9PX1ZcGTSp94C71ly5YFCxYAwKZNmxYuXGjooompaLwh1AXv9OnTN27c0H3+ecFLSkpi96UxMTEXLlyQSCQAsGHDhsWLF0skkh9++OFf//oXn1dCGrjGFcLLly9HR0dHRUXpGbzn9ZDXr1/v1q0b+3NgYOCyZctkMtm2bdtmzJhhyJdDTEMjGh0dNWrUsWPHdB86ODgMHTp0xIgRPj4+PXr0eDp4NQS1S5cuus8vXbq0oKAgICBgzpw5crncz8/PYK+ImAhsHHRjm56enl9//fWlS5c0Go3uq+np6aGhof7+/l27dq36j2Nra+vr66tUKlUqVdXvf9qKFSsAwMzMbP/+/eK/GmJSGksI9+zZAwBdunTRfab+watGoVAAgLm5+cGDB0V4BcRkNZbb0UOHDgHA3Llz2YeDBw8+c+aM7qv29vbDhg3z8fHx8fHp2bNntVFQPX322WcPHz7cuHHjK6+8cuDAAR8fHyEKJ6avsYSQLW0ZP348+9DFxcXGxsbLy8vX13fw4MEDBw5s0qRJPZuQSCQbNmxQq9VBQUEvvfTSoUOHhg4dWt+6SSPQKEZHr1271rNnTycnp7S0NDa1kJ2dbW9vL5PJBG9Lq9XOnTs3JCTEzs4uMjKyX79+gjdBTEyjWMDN7kVffPFFlkAAaN68uRgJBACpVLp169YZM2bk5+ePHj360qVLYrRCTEkjCqHuXlRsMpksODh40qRJeXl548aNqzrPQcjTTP92tLCwsHnz5oiYmZlpb29vsHbLy8unTJkSHh7+wgsvHD9+vHPnzgZrmjQspt8TRkZGVlRUeHt7GzKBAGBmZrZnz57x48c/ePBg9OjRVdeCE1KV6YeQ3YuOGzfO8E2bm5vv2bPHx8cnNTXVx8cnOTnZ8DUQ42f6ITxy5AgY8A1hNVZWVuHh4UOHDr17966vr290dDSXMogxM/H3hNevX+/evbujo+O9e/d0Q6OGl5eXN3LkyMuXL1taWt65c8fR0ZFXJcQImXhPqBsX5ZhAALC3tw8LC5NIJCUlJZGRkRwrIUaosYSQS+spKSljxowJCgoCADs7OwCQSqVc3p0SY2bKIXz48OGZM2dkMtmoUaO4FHD48OGIiAj2pvTIkSOIOHr06BYtWnAphhgtUw5hZGRkWVnZoEGDmjVrxqWAqv0w3z6ZGDNTDiHfn/uKigr2DPHYsWO1Wm1ERATHYogxM+UQ8p2ciIqKys/P9/T0bNu2rUqlysjI6NChQ6dOnbgUQ4yZyYYwJiYmOTnZ0dGxV69eXAp4+l70xRdf5FIJMXImG0LdQhlekxP0hpDoycRDyOvnPjU19fr16zY2Nt7e3jk5OSqVytzcfPjw4VyKIUbONENYVFQUFRUlk8l8fX25FHD48GFE9PX1NTc3P3LkiEajGT58uI2NDZdiiJEzzRCyyQkvLy/jmZygOXryPKYZwm+++QYAdN3gwYMHv/rqK4O1rlar//jjD3g0OVFtextCqjHNjZ7YTmpsSCYtLW3KlCmlpaVNmjRZvHixAVpnkxPdunVr166dSqV68OBB+/bt6aFe8jwm2BOq1WpnZ2cA2LRpU0pKiouLy6ZNm6RS6dKlSzdt2mSAAg4fPgw0Lkr0x3PTU9Hcv3+/e/fuAODm5paWloaIP/zwg0QikUgk33//vdit9+zZEwAiIyMRcdCgQQCwb98+sRslDZdphhAR8/Ly+vfvDwCdOnVKT09HxMDAQACQyWQhISHitcseXLS2ti4tLc3JyZHJZGZmZoWFheK1SBo6kw0hIubm5vbp0wcAunfvnpWVhYhr1qxhOdy1a5dIjf74448AMHHiRETcuXMnAPj6+orUVmOWl5fHuwTBmOB7Qh17e/vDhw9369YtOjra19c3Jyfn3XffXblypUajmTNnzv79+8VolBbKGMCuXbvatWt34sQJ3oUIhPdvAdHdv3+fjUx6eXkVFBQg4vLlywHAzMzswIEDwrZVUVHB9nS7ffu2Vqt1cnICgBs3bgjbSmNWUVGxdOlS9qP77rvv8i5HGKYfQkRMSUlxdXUFAG9vb/b27L333gMAS0vLY8eOCdjQyZMn4dHZTyqVCgDatGkj4PUbuYyMjJEjRwKAXC5XKpW8yxFMowghIiYnJ7dv3x4ARo0aVVxcrNVq33jjDQCwsrI6ceKEUK188MEHAPDOO+8g4qpVqwBg0aJFQl28kTt9+jSbeXJxcTlz5gzvcoTUWEKIiPHx8ez/4pgxY0pLS7Va7euvvw4ATZs2PX/+vCBNTJkyBQCOHj2KiN7e3gCwd+9eQa7cyAUFBZmZmQHAsGHD2Fi3KWlEIUTE2NhYtt3g5MmTy8vL1Wr1zJkzAcDe3l6lUgnSRGJiYllZWU5OjlwuNzMzY+9CSZ2VlJTMnz+fvQn09/cvLy/nXZHwGlcIEfHq1avNmzcHgClTplRUVKjV6mnTpgFAixYtoqOjhWpl165d7NZXqAs2UgkJN1580cba2sbGJjQ0lHc1Yml0IUTEy5cvs6crpk6dqlary8vLJ0yYAACtWrWKiYmp58WTk5ODg4Pd3d0B4L///a8gBTdS4eHo4IAA4ZMn1///izFrjCFExLNnz9ra2gLAvHnzNBpNWVkZ23vCxcUlISGhtle7d+9eaGiov79/165ddXM/NjY23bt3z83NFaN+E6fVolKJUikC4IQJaOr/ho00hIgYFRXFnrJdsGCBVqstKipip8x7e3vr89dTUlJ+/vnn+fPnd+zYseq8a7NmzSZNmrRq1So3N7eqk5NEX/n5OHkyAqBMhgEBqNHwLkh0jTeEiBgZGWlhYQEAS5YsQcTCwsJp06bV0BOmp6c/3eOxTs/X11epVKpUKs2jH5qnJyfJ37tyBTt2RABs3hyPHOFdjYE06hAi4pEjR8zNzWtYfnH//v3Q0NDFixf37du36p5RuuCdOnXqeUN21SYnxXwdJiEkBK2sEAD79MHERN7VGE5jDyEi/vbbb02aNKk6jlKf4FVTbXJSzNfRACUnY3Z25Z8PH0YABMDXX8dG9g9FIURE3L17t0wmY+/o2D2kTtOmTV966aUvv/zywoULarW6DhevNjkpePEN0t696OqKY8eitzf27o3x8ajV4vTpuHkz78o4oBBWev/993XBs7a2rm2PV7Nqk5P1v2DDlpmJjo6om3XYuBGHD+dZD28mfkhorfz4448nTpyYOHHi5MmT5XKBd9+5cuXKqFGjcnJypk6dumPHDtbxNlLbt8Nvv8GePZUfajTQsiXcvAkvvMC1LG4ohIZz7ty5MWPGFBYWzps378cff5RKTflhzpp8/jmkp0Ng4OPPeHrC1q3Qrx+/mnhqrD8HPHh5eR0+fNjGxmbr1q0LFy5svL/+HB0hM/OJz2RkgJMTp2r4oxAalLe39++//25hYbF58+Zly5bxLoeTESPgjz8gK6vywwMHwMUFnJ251sQT3Y5ycPTo0YkTJ5aVlb377rts25tGZ/16WLcOpkyB/Hw4eBD27IGBA3nXxA2FkI/ff/996tSpFRUVn3766cqVK3mXw8O9e3D1KlhZQd++0LhP6aDbUT4mT568c+dOuVz+8ccfK5VK3uXw4OwMUiksXw6rV/MuhTMKITdTpkzZsmWLVCr94IMPBLkpLSwsvHz5clhY2Geffebr6+vk5DR79uz6X1ZEajWcOwcXL/KugzO6HeXsp59+WrBgASJu3LiRbXujj7KysoSEhBs3btypIjExsdr/TblcfuXKlW7duolQuBBu3QIPD3B1hdu3eZfCE4WQv82bN/v7+wNAUFAQ2/amqvz8/IRH4uPj2X8zMjKevo6lpaXbI61atfr999+joqJmzJixY8cOQ7yMOqioACsrQITiYjAz410NNxRCo7Bu3bqlS5fKZLJPP/3U1dWVJY1FLrPalBoAAFhZWblV4e7u7ubm5uLiUnW5eWpqqpubm1qtjomJ8fDwMOCrqY2OHeHOHYiLg06deJfCDYXQWKxevXrFihXNmjXLycmp+nlzc3MXFxdXV9euXbt269bN1dXV1dW1ffv21RbcaLXalJQUltv27duzM0kXLVoUFBT06quvBgcHG/TF6G/cODhyBMLD4R//4F0KNxRCI9KyZcusrKxx48b16tWLdW5ubm7Oz5rFzs3NjYmJqfqeMDY2tqioiH11+vTp7BiMu3fvuru7azSamzdvsm1vjM7bb8PGjRAYCEuW8C6FG9M8JLQhysvLy87OtrKyOnDggK6X02g0iYmJuneD7A937twpLy9/+gouLi4sukOHDmWfadu27axZs3766afPP/988+bNhnsx+nNzAwBISOBdB0/UExqLU6dODRs2rH///n/99RcABAcHf/bZZ4mJiU/nTSKR6PJWlZWV1dOXvX37dufOnSUSSVxcXIcOHQzxSmolPBwmTICxY+HwYd6lcEM9obGIjo4GAHa2KQCo1eq4uDgAcHBwqPaG0MPDw0bvJSYdO3acPn16SEjIF198YZiDimuH3SQ37p6QHuo1FmyScO3atezDzMzM6OjokpKS+l/51q1b7KzS5OTk+l9NYGVlhT16JAwd2pj3HKCe0FiwntDT05N92KJFixYtWghyZXd39/nzZ/Xtm1xe/i2AkS2RMzPrUViYeO3araQknkNHubmwejWcOwdyOQwZAh98AM+6txcJLVszFtevX4cqt6PCWr9e0a/fqcLCdRUV98S4fn2w7MXHx/MsYupUkEph717YvRvS0sDf35CNUwiNQkpKSl5eXosWLV4QZ4sHC4uu9vaTtdrSBw++FuP69cF2SU7g+LZQpYK7d+Gzz6BZM2jVCr79Fo4ehZQUg7VPITQKrBvs0aOHeE04Oa0EkGRmfqdWP2PJG0f8QxgbCz16gG7xg4UFdO4McXEGa59CaBSqDY2Kwcqql53dP7TaogcP1orXSh2wEPK8HTU3h2rzQGVlYG4Ot25BcbEB2qcQGoXUVL/Bg7cNGDBT1FacnT8BkGRkfKNWZ/3tNxsMe0/Isyfs2RMuXoSyssoPs7Ph9m3o2hVmzQInJ1i4EK5cEbV9CqFROHWqQ1TU7I4dB4jaipVV36ZNx2i1DzMyNojaUK24urrKZLKkpKSKigpDtx0TAxcuQKdOMGYMzJwJZ8/CqVPg5weLFkGTJmBmBgUF8P330Ls3eHtDcDCUlIhRBa2Y4U+tBltbKCuD/HywtRW3raKis7Gx3jKZXffuSTKZvbiN6a1Dhw5JSUnx8fHs1tRAdu+GBQvAzg4uXoTmzSE4GM6eBZkMfHxg+nRgz6PExsLWrbB5M2RnAwDY2cG0afDmm9Czp5CV8J6oJHjjBgJghw4Gai4ubqRKBffurTJQe3oYPXo0ABw8eNBA7VVUoEKBEgkC4KxZWFT0N99fVIRbtuDAgZWnZQDgkCHXQkMFWUqBiHQ7yt/16wAAYg7KPMHJaSUAFBdfNlB7emAHY23YsCE1NVX0xjIzYdw4+PxzkMlAqYSQkL+fl7eygtdeg3Pn4MYNUCigWTPtmTMTli1zdHRcuHAhG1SrF0GiTOpj5UoEwBUrDNdiUdFFRNRoCktKYioqsgzX8FO0Wq1SqZRKpeysDqlU6uvrGxoaKtaJHRcuYNu2CIAuLnjmTB0vUliYum1bvyr7hQ8bNmz79u11PnWLQsjfyy8jAO7cadBGc3J2X7vWPiHhnzdvDigoOGbQth/Jz8+fPHkyAMhksnnz5vn5+Zk92uSiXbt2q1atSktLE7K9oCA0M0MAHDoU09Prf72YmBiFQuHg4MBqtre39/f3j46Oru11KIT8ubkhAF6/btBGY2K6FRZGGbTJJ125coWdNN68efMjjw7lzcnJCQwM1J1ArusY63YonU5xcXHFv/5V+XbunXdQ0G62oKDgu+++69OnD6tZIpGMGDEiPj5e/ytQCDkrKkKpFJs0wbIyg7Z78+bAu3eXaDR8zvHevn07e/qxT58+d+7cYZ+8e/cuC5tWq42IiPDz82OHtwKAi4uLQqG4e/duHdpKTk7u37//t4MHo40N7tol5Mt4kkql8vf3t7GxsbKyys3N1f8vUgg5++svBMDu3Q3dbmnp7YSEf1650iw5+Q2NRphRPn1UVFQoFAoWrTlz5lQ9Rbxv375OTk4KhSLx0VnZ6enpSqVSd2yrTCarbcd44MABdrvo4eGRc+OG4C/nafn5+ceO1e72nkLI2Z9/Yrdu+OqrfFpXq3Nu3RqTlrbSMM2lpaV5e3sDgLm5eVBQUNUvZWVldXq04ZpMJpswYUJ4eDgLm0ajqdYxduzYUalUPnjwoIa2dEM+ADBhwoRadU0GRiHkJjQUMzIq/5yQgJcvG6hdrfaJx2fT0z9PTn7DAO2ePHnSyckJAFq3bn3u3Llnfg+7o7O0tGRhc3Z2VigUSUlJj0pNVyqVuk06zMzM/Pz8IiIitFpttevk5+e//PLLLM8BAQEajUbc11Y/FEJuAHD69Mo/b9qES5YYotG8vAPR0W6lpQk3b3olJfknJ7957VrroqILYrcbFBTE+jEfH5/79+/X/M05OTlBQUG6jcOrzVvoOkbdacru7u5KpTLj0a+0Zw75GDMKITc2NjhsGLIfkqohfOcdnDMHH70tElJOzp6LF83YchmN5mFh4an8/CNqdY7wLVVRWFg4bdo0Nmy4ePHiWk0AqlSqOXPm6OYtqg3PpKSkBAQEtG7dmn3V3Nx85syZH3/8sbW1NQD07t1bN+Rj5CiE3NjY4MWL2KkTFhc/DmFuLlpbIwBaWuJ772GWcBPpOTm7Ll6Uq1SQkvIfwS76d27dusWez7K1tQ0LC6vbRe7fv69UKnXzFtWGZ6p1jGzSf8GCBUKtKTMACiE3NjaIiG+8gStXPtETJiaivz9KpQiANjaoUGB+fn3bys7ezhKYmqqo77X0tn//fnt7ezYyGRMTU8+rPT0807p1a4VCkZKSwr4hKSmJTf17eXnVu3aDohByw0KYk4Nt2+Ly5bhkCcbGYmRk5Vejo9HPr3J6uUULVCqxzr/ZMzODVCqpSgX37v1XmNL/TtWRyUmTJuXl5Ql48Xv37v3vf/9r37591eGZhIQERDx37hybexSwOQOgEHLDQoiIW7eitTUuWYKTJiEADh6Mp05Vfun4cRw0qDKKXbtqfv55e20H+jIyvlWpJCqV5P79rwUt/7mysrLGjBkDAHK5XKlUPj10KYiqHaNcLmcL3NgxHk2bNhWjRfFQCLnRhVCrRR8fXLIElUp0cEAAlEhwyhS8ebPyGyIisFcv9PE5BQBdunQJDQ3V8yf7/v0vVCpQqSQPHqwT50VUd+nSJTaF0LJly0hdty6m1NTU3bt36z5s1qwZANQ8hWhsKITcVJ09LimpfKitoACVSrS1RQCUStHPD2/fRkTUaHD79l90U2SDBg06fvx4zdffuPGLkyftVCppZuaP4r2KqlavXs2m+Pr166eb3DOwAQMGAEBUFM9lsbVFITRGGRmoUKC5OQKgmRn6+yObWisvLw8KCmJT3gDg6+urUqmeeYXly5cDgJdXj8zMEMPUPGnSJFbVm2++WWbghbBVzJo1CwC2bt3Kq4A6oBAar4QEnDmzcpjU1hYDA6MLCgoQsbCwcNWqVXZ2dmzybdq0aVW7Ha1Wu2zZMvaWLCTEQAlERDYQOnHiRIO1+EwBAQEA8NFHH/Eto1YohMbu+nX080N7e62DQ8fmzZsrlUo2A5adna1QKCwtLWUy2Y1HS5O1Wu2///1vNmb466+/GrJONh+4ZcsWRCwqKrp69WpmZqYhC2C2bdsGANN1a5EaAgphw3DmzJ0hQ4boHnj96aef2FR1SkrKtm3b2PdoNJr58+eztSN79+41cIWs+/3iiy8Qce7cuQCwefNmA9eAiGfPnmVvSg3fdJ3RHjMNw6BBHU6dOhUREdG7d+/k5OTXXnvN09MzLCzMxcVl9uzZAMASuGXLFisrq/Dw8IkTJxq4wqobaXPcVNsoTraoLd6/BUjtaLXa0NBQ3daAAwYMiIyMLC8vf+WVVwDA2tq6tg+zCeXIkSMAMHLkSERkh3W/8sorXCphDxDq1nMbPwphg1ReXr5x40bdMCk7Rsbe3v55jwgZwO3btwGgTZs2iHjhwgUA6NmzJ5dK+vfvDwBn6ryPk8HR7WiD1KRJkzfffDMhIUGpVNrZ2ZmZmdnY2Bw5cmTgwIG8SmrXrp2ZmVlqampJSYluZ3vksbU0/8MtaolC2IBZWVkpFIr9+/enpKS0adOGzVPzIpPJOnTogIh37tyxs7Nr2bJlUVHR/fv3DV8J+xXAeuYGwdAhfPjwoUKhCAgIKC0tNXDTpqpPnz4SieTOnTtarZZvJVW7II5jM9QT1iQtLc3X13f9+vWffvpp27Ztly9fnpSUZMgCTJK1tbWjo2NZWZkhtq+uUdXzlTiOUvI/8LCWDBfCP//8s0+fPufPn7ewsLC1tc3MzPz888/d3NzYlj4ajcZglZge/qeLAcCTP/3sGVzqCfVhoBB+//33Y8eOzcjIGDFiRFxcXEFBAdvSx8zMLDw8fMKECaxjTE5ONkw9JsZIfuyqhpDj74WWLVs6ODjk5eVlZRnRMYw1EXv4tbCw0M/PDwAkEolCoai2Y2Rubm4NW/oQPa1evRoA3nvvPb5lsLGQtm3bIuJff/0FAL179+ZSCTso4uzZs1xary1xQxgXF+fp6QkATZs2/eWXX2r4zmp73bEtfZKTk0Utz2SEhYUBwOTJk/mWoVarzczMpFJpcXFxbm4uANjY2Ij0UG/Npk+fDgC6BX1GTsQQ7tu3j63079y58w39Nj+udhRBHXZcbpwuX74MAJ6enrwLQbaBL9tRhu25lC7E0Su1tXLlSgAICAgwfNN1IM57Qo0GPvlE/fXX+fn5M2bMUKlUXbp00efvOTg4LFmyJD4+nu1cIJVKIyMjp06d2q5du+XLl6ekpIhSbcPn5uYmkUhu375tVLMUHN8Wst/j3N8k60v4XGdk4KhRbNe+3777rj5XYnvd1ecogsbDyclJKpXevSvoWWK1t2TJEgBYs2YNIrKV5T/99JPhy4iKigKAAQMGGL7pOhC6J7x0CQYMgD/+gJYtITx88sKF9bnYCy+8oFAonu4YO3fuvHr16hs3bghVtQkYNOhskybF8fHOfMvg+CzF6dOnp06dWlFRAUYzXKwvIRMdHIyWlpUbhgl7vCMiIqalpa1atapdu3a64pcYZu/4hmD+fATAJw9Z4eDQoUMAMGrUKEQMCQkBgKlTpxqg3XXr1rH9SL/55hv2maZNmwJArc4J5EWgEJaW4uuvV27N5+8v6ll7bK87Dw8PmUz2wgsviNdQw/J//4cA+B/Dba79bKzfa9euHSKeP38exN8FtKSkZN68efBom/3y8nJEDAoKMjMza9Wqlbm5+fMOjTEeQoTw7l0cMAAB0MICt2wR4IJ6KC8vl8vlMpmM455CRiU0FAHw5Zc5l6GbpSgpKWG7gNra2orXXHx8vG6b/dDQUEQsLi5mz/UDQKdOndgGxADQpUuXwMDAnBxxD96omzqFMC0NL1xA3bbKXl4IgG5uePWqgJX9LTZgExcXZ8hGjdalSwiARjBJgWxQlE1KiboLaHh4OHt+t1OnTtevX8dHh/ICgI2Nza5duxAxNTVVqVS2bduWRdE4O8ZahjA3F4cPR29vnDsX3d1x2TJExOhonDoVDX4II9vmOTw83MDtGqfCQpRI0NISuR/F9+KLLwIA2+SGPd94/vx5YZuous3+xIkT2Tb7Bw8eZJl3d3e/du1a1e+vqKj49ddfx44dq+sYPT09z2zZYvgf2meqZQjfeQfffrvyz0VF2LMnHjggeE16euuttwAgMDCQVwHGxtERAfDR+SjcLF68GAC++uorRLx7924R29VYONnZ2WPHjgUAmUzGttmvmsmXXnqphkN5WcfYpk0biUSS0LYtWlignx9GRAhbYW3VMoSuro83Z0fE9evR31/YgvT39ddfA8Dbul8Kjd6QIQiAf/7JuYz169cDwKJFi8S4+OXLl9nbkBYtWkRERGCVQ3nZ4mR9zuooLy8/8fvvOHo0SiSVo4k9euDGjSjowTX6q2UILS2f6MHDwvCll4QtSH/79+8HgHHjxvEqwNi89hoC4Pffcy5j0aJFdnZ2lpaW/v7+0dHRAl5527ZtVlZWANC3b1+23/HVq1frdShvQgIqFNiqVWUUn+4Y79zBoKs/63YAAA40SURBVCBcvRr370fRlojUMoQdO2LVVaDr1uHChcIWpL+bN28CgJubG68CjM3//ocA+P773Ap4+PDhjBkzWKfE3npJJJIRI0bs3LmznoPYpaWl7C4XAPz9/dnVduzYIcyhvGVluGsXjhz5uGPs3Rujo/HkSXR2xi+/xG3bcOJEHD8exRnOqf17wsWLK/9cUoK9euHhw4LXpKeysjKZTCaXy9nUEImMxOnTcccOPq1XnS0ICwtjj8XY2Niw5Dg4OPj7+7MxzNpKTU318vICAAsLix9++AERKyoqFAoFu/KcOXOKi4uFeQ23bqFCgS1boqUl5uRgv3548ODjrw4YgPv2CdPQk2o/Ojp4MI4YgYsWYZcuuHSpGDXpj50UeevWLb5lGIOTJ/GLLx5/+MUXBh35080WeHh4VE1afn5+UFBQ7969dYuc+vbtGxwcrH/HeOLECUdHRwBo06bNX3/9hYgPHjwYMWIEm28QZViutBTPnsXSUjQzw6rPtQYE4IcfCt9cXeYJtVq8fRtPnkQj2Fx1xoyFXl7/PHr05t9/q6lbswblcty1q/JDNzc0zMOYz5wteBrrGNndIzxaFcz2RKzhyoGBgWwx2ogRI9hk46lTp9huq61btxb3md2cHLSyeuIzX36J4owC1nXFzPjx2Lw58nhUrKo33kAAXL+ebxVGYc0anDsXXV0rR/gME8KsrKxqswU1fz/rGHv27MmiqNtI4ZlvKC5duiSTySQSycqVK9mYZ1BQEMvk8OHD77PD4kTVrBnevfv4w/nzUZz5sLqGkK2S0R3rzMlXXyHA43epjdmaNRgQgCtXVv6yNkAIL1++zA4t1c0W6K9ax+jo6KhQKG6z81CrWLdu3b59+xCxuLi46gJRA+1+8tFHOHUqlpYiIkZFoZMTZmWJ0U5dQzh7NgIgj0fFqtq7FwFw/Hi+VRgFFsLiYnRzQ5WqMoQJCSKN5z1jtqAO8vLygoKCevToUXPHWG3IR4jy9VNaikuWoKcndu2KQ4aI1+XUNYSffIIAuGKFoMXU2o0bCIDu7nyrMAoshIi4bx8OHYpubhgXhw4O6O6OSqWQ79+fOVtQT6xjZKkGACcnJ4VCkZiYiIj79+9nx49WG/IxqKwsfM6JyIKoawhDQhAADfKoWA1KS1EmQ7kcG/MkxZ49GB7+OISIOHEiSqV46BC6uDyehZ41C0+erG9bVWcLBD9+MCsr66uvvvLw8NB1jLpY+vn5FRYWCtucvioqsEkTlEqxpESkFuoawvPnEQBFflRMH+3aIQA2hEc3hVdRgf/5D0okaG+PGzagbi+RxETs3x/T01GjwYgI9PNDubwyjR4eqFRi3Y7QfXq2QCSsY5TL5SyBb7/9NueHHtzdEQD126ysDuoawpycypPUefP1RQA8dIh3HQaXmVn52uVyVCr/5puTknDFCnRyetwxvvoqnjtXoGdbVWcLxo0bl52dXd/q9RAbG/vOO+/89ttvBmjrb4wfjwAizdRjvR7qbdYMAVCcR8X0t2gRAuCGDXyrQI1G88knnyxfvryGJfwCUqmwfXsEwFatUP9DQdXqyo5RJmNrs97r3LmzUqnMqnHQr+btmxuFf/8bAfCrr0S6fD1COHAgAuDp08IVUxdr1iAA8t1rpqCgoGvXruzeydra2t/fv9rzbMLSbeUzZAjeu1eXK9y5gwEBJU5OlbtCWVlZvfbaa888YDQuLo7tj960adNff/21vqU3UOvWIQC++aZIl69HCGfNQgDculW4YuqCzVK8+CK3AqKjo9mz5DKZTLdUUiKRDB8+fMeOHaVslkkgJSW4YMHjrXzqORylVqvZNnYymYyV3aVLF6VSqbvb3Lt3b223bzZNBw4gAI4eLdLl6x7C5C+/DB48OFK0PlpPGRn422/Ia/Xozp072Yxzr1692CKsaguX7e3thXqiJzGxsE8fBEBra4FXaSckJLz//vutWrXSdeavvvpq//792cMQEydOfPjwoZDtNTi3biEAdugg0uXrHsJt27YBwLRp0wSsprYOHkQPj8dLi+bMQTEH7Z5QdSH/7Nmzqz0/XlBQ8PTC5aCgoDqv9z927Jijo2O/fofc3FCkW92ysrLQ0NA2bdrAk/aJNiDRYLBZCplMpG0E6x7Cc+fOsZ8tAauprbAwdHJC3Tkovr4CTIXpIyMjY+TIkfos5H/mEz3sqAY9abXaVatWsRXSM2bME/vh708++YTdf7q6ug4fPhwAvv76a3GbbBA6dkQAjI0V49p1DyE7/K1p06YCVlNbYWE4dy4OHYp79yIaKoSnT59mC/ldXFz0XMjPFi736tVL946xhoXL1f7iP//5T6jN3g31xHbsZTc469atA4A3RRuQaEjGjkUA3L9fjGvXa99RtrlVBr9nmsLCcN48vHwZXV3x4UNDhJDtKgsAw4YNq8N5Q898oufphcvMzZs32UE6zZs3P2yoh6er7th74MABABgt2oBEA3L2v/9dO2jQr99+K8bF6xXCAQMGAEBUVJRQ1dQWCyEiLl6MK1ZUhnDzZjx2TPiFyyUlJa+99ho8udNz3bCFyzU/0SPY3g21xHbsZTc4t27dAoAOog1INCBr164FgLfeekuMi9crhDNnzgSA4OBgoaqplfLyxyHMz8cOHbBzZzxyBG1tK1d1C7hwOT4+ni32t7GxYTs9C6LawmX2RE9UVFQNQz4GoNuxt6KiokmTJlKpVNiJloYoPDwcAMaOHSvGxesVwo8//hgAVq5cKVQ1eqqoQIUCJ0zA0NDKECLi9u2V69c++QRbt35i4fKJE/Vq7sCBA9V2ehZWdnb22rVrqx3haG5u/l39DparM3aDc/r0aURke5nFijMg0YDExsYCgKurqxgXr1cIf/75ZwCYPn26UNXoIyWl8oliCwv87bcnNh/+5pvKrW+fXrjcqVNdFi7ruXeDUFQq1fDhw6VSqaOj4zPXrxjGrFmzAGDr1q2IOG7cOADYL86ARANSVlYm3tkn9Qrh2bNnAaBfv35CVfO3Tpyo3Ge6TRvUZ2/15GRcuRKdnR93jP/5T8Jp/ZbaZWdnsx9BmUwWEBBgsIX8GRkZmXV7zEEgAQEBAPDRRx8h4ttvvw0Aa9eu5ViPkRDv7JN6hfDBgwfsZ/TDDz8UbNu55wsKwiZNEABHjKjdunFdxyiTYY8ebwGAh4dHzQuXq+70fPToUQGqbzjYMgx2gxMYGCjegETDws4+OSDCuQ/1PRqNvYkHADs7O39//6viHMxUWIhTpyIASiSoUNR9K+TERM2HH37IHooDAEtLy3nz5p05c6bat4WEhLDBkj59+rDnuxsVtgzDq39/RLx4+HDYsGHX+G3xbDzEO/ukviF88ODBggUL2HlUzNChQ0NCQkqEeww5Lg49PSufXtyzR4ALPr1wmT3Rk52dXVJSIsqusg1KaVZWedu22Lw5ImJcHAKgOAMSDYt4Z58Idlx2TEyMQqFgo4jwaOFy/Z/o+f33w05OWnbynuCrtBMSEhQKRdWFy+bm5gBgYWGxxVCnnRopBwcEwIwMLC9HuVy8ZZMNiHhnnwh6Zv2jhct9+vTRdYx1XrisVqsDAgKkUmn//l/OmIHireNnC5d9fX0lEolEIpHL5RyXHxiL/v0RANmNuqsrAmCjP4w1NjbW2dl55syZgl9Z4BDqPPOJHv0n2bKyskaPHg0Acrlc+bebNwgkKipqxYoVhlyeYrxmzEAAZMswxoxBAKTDWEUjVgiZuj3Rc/HiRXbIRMuWLf/44w9RKyTP9vHHCIAff4yI+NZbCCDS5tMExQ6hjv5HEQQHB1taWgLA4MGD09LSDFMeqe7nnxEAZ8xARFy7FgFEOoaBoMFCyFR7oqfawuXS0tLXX3+dfUmoXWVJHZ05gwDYvz8i4v79CIB0GKtoJIgIBnfmzJnvv/8+NDS0pKQEABwdHd3d3fPy8qKjoy0sLL799lv2vALhJjMTWrUCe3vIzYXYWOjSBTp2hIQE3mWZJj4hZPLz83fv3r1x48Zr164BgFwud3Z2/uWXX/r168erJPJYs2aQmwuZmdC0KbDnPIqLwcyMd1kmSMqxbd0im23btvXs2XPQoEEXL16kBBqLjh0BABISwMwM2rYFjQaSk3nXZJrkvAsAAJg9e/bs2bN5V0Ge5OYGKhUkJICXF0yZArm5IOX5K9uE8bwdJUbtxg1Qq6FjR7h/H7RacHWFR6v8iLCMoickxqhrVzh9Gjw9oWdPkErh4kX48Ufw9eVdlgminpA8R3k5dO0KP/wAI0YAAJw7B35+EBcHjzbjIEKhu3zyHFevgrV1ZQIBwMsL2raF8+e51mSaKITkOe7dg0cPXlZydoa0NE7VmDIKIXkOZ2d48OCJz6Sng4sLp2pMGYWQPEePHpCf//j+8+pVSEqCAQO41mSaaHSUPIe5OfzwA/j5wahRIJPB0aPw3XfwaAk+ERCNjpIaFRdDTAxoNNC9OyVQJBRCQjij94SEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEs/8Hq+IjQLLMP+sAAAJzelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIUAZiNSBuYGRjSADSjMwcDBpAmpmJzQFMs7A5ZIBoZka4AEQBC0whO4RmhhjAxIROszMogOTRhTnAwhiqYbawO0BNhTsDwzkkMAQcYJ5C8wzct1Df4xLnZmBkYGRSYGLOYGJmSWBhVWBl02BiZVdg52Dg4GTg5GLg4mbg5mHg4WXg5WPg42fgF2BgF1QQFMpgEhJOEBZREBHNYBIVSxATz2ASl0iQkMxgEpbKYJKSTmCRyWCSkU2QlVOQk2eQVchgUlBUUFRiUGBKEOBmkBZMkBRJcGIBOoGNSUFWhoWZjYeXj1+Am1VIUFpKmE1UTFxCUkR8HSPQiQywGG04fd/BuNTzAIhjxnnTQenKlf0gdkLDGofnRr1g9pWdbQ4/LzOC1fxJNHHYxrYHLH5q5UX7B7aSYPGvm97YM3tWgNkTjWvs2m69AqupUM/ff2K5AVi867bIAe3rPGD2woyEAxsEPcBs9b1zDgg7qoDZhfWLDzzI7gLrdee4cMBrKiuYffnc1wPr7XeC2R087w/8WmUNVr+p+dCBGdXxYPaXFfy2zIKb94HYNfpL99fEbrEDsfM1WvZvtnplD2LHP2Q5MInfygHEvqBydX+MYTeY3R+ve6Bi1Vow+5pt6wGmXwvB7KDUSQfuL0gHs2v/Jh5Ytk4JzI7Y/tzu/UImMHtnYp+99BpDsPnpd9Uctj5utgGx67KKHIw4C8HiL5+mOOT7SoPVN1jOcPjSHgZmi+5b6lDVexjszoUtpx0yI5aD1Zfz/nCIybMHs8UA/cyvjfFiqUAAAAMpelRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVZbbtwwDPzfU+gCa4gPkdJnkg2KosgGaNLeof+9PzqUG9kB2K5jYq0dS0NyOMilxOf77duv32V9+Ha5lFL/8zfGKD+l1np5KfGlPD5/+XovT+8Pjx8rT68/7u9vRVqRjndwfcY+vL++fKxQeSq2jSFtcLnKRurueGur83O8yuUVQO8sruVKmxk7awIU7Ng2GdWcAkhViCwBKoC6MVXq2JG3yr2ZJMAGIG8dsD53VOujtQRoAIKZ+BhzRxmqlROgIxnaug4miqy7D20Zx17uWGU1HjWO7qKAJsCBo691G6I0LM52q6yUIKkGFOS4DazjG9dqkiVO0R3Qa/i922wPW+01gzKYXnXro9cxd21m6lnyFB26NjRmSPXIqnZS8gwaPboaCKBLFAk2JhyQQRtqevXNsNeYuyqOT4tK0SdA1dHyyXUIQyQZ1HcC1XvzWQEdhCuDdkCxLK26BFUBD0mRI2pFG3raKCokjdkzpjx7hQIJK0SK/vMYqZiZ9q5WN4Y2kVJ1rlmnmPc9zRqhqTp5eiZnln1Pr9C7Y6iUvbYsI5590o2m9oGsRm4psu3I5tqtF9ksypkpmu2v+ARCcWTUIG1KM/JZeW3cMPKogRJJumUvbygiEUsLudlQVDYDjjnyhhrujkBGaTHD7ZCEd1Qwfh9KTTMlC0GeSMatYdQYpTSrmeKEpy158wqdSGijamaIshsdhXUER+k0UrmhFGGdcFiki/QxdDHNCTB64ziaTKN8/i8vfr7fPpn4buuPr/fbYetx8WHeeChyWLTGfRhxXO2wW8Jth6kybj+sk/DYD4Mk3OOwQYr7bHY0A508jWZY5CjYRVj84FA0w6III6IZFksKmhEWUcwlzbC4kk92tNjCIzQCLcLosUbg88xTBF6UMdsagY96cqwwJvQ0qxqBF2WOoiLwoozZi0dM1mnGdJ61KGOWNAIvzhyc8dKizEEZQc5TQGWK/CR3iiCLsgTlKduTgCmCLMoSVUaQRVmCcmDWwiyyn9onk/G5yhKMkdpRwRDsWZ7x/PEfC75f/gBbpavCbgjvugAAAZt6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwlUjuO5TAMu8qWeYBj6C8LwVTpJ4dIv822c/ilPK96YESKpHw/L7/vcR9fz+f7uO/7W+77uW/5vPL3Pc5X3/7p5/0H6D2e+/Pyc//5OWJWqdc4dbJlrnHFzCWa4+QZISnj8qlFsREmZSA2hYnXOGWSLI9xyVy8bPWMxSofF+iaVT2jZdbAshLuVSvLQKIpFlJNWmpZ4zpplhpXNC2DBLwWEN9CQhQKRKfjz69rCYLr0+aqRXvKIywBOeyWcsvTYoPvM0CE84E9Ltzz15kzFvt2bimxEUvkaq1SgUITKZev3mjFJW2e1ClVWkytUluMpxQ5D0AukrEhUkE1CCnVzG4tA5sgT13wrtq5hm2htUeSFmrwaZIUOyCHLgAUnLkBT1s5dAbD0m8tygxZR4XcFs3FsxEyZu0bMIsG7EUZbPXhgjo14nBQFZYrXkCmAypj7yohnOEKHZOIvn86GsJqpCTvJ8I4aVN0cXUTgU9VhtRKu5oEh8MwknhoCPn5+Q98bo4/80Ng3gAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Synthetic_Accessibility
CCC(C)(O)C1=CC=CC1
114,436
{'sa_score': 9.2, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
138.21
2.0337
[ { "content": "Provide information about Synthetic_Accessibility for the molecule with SMILES 'CCC(C)(O)C1=CC=CC1'.", "role": "user" }, { "content": "{'sa_score': 9.2, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Molecular_Weight_Calculation
COc1ccc(-c2nc3ccc(N=Cc4cc(Cl)cc(Cl)c4O)cc3o2)cc1
1,512,960
413.26
413.26
6.2664
[ { "content": "What is the molar mass of the substance with SMILES 'COc1ccc(-c2nc3ccc(N=Cc4cc(Cl)cc(Cl)c4O)cc3o2)cc1'?", "role": "user" }, { "content": "413.26", "role": "assistant" } ]
Functional_Group_Identification
Fc1ccc2cc[nH]c2c1
351,278
{"halogen": 1, "phenyl": 1}
135.141
2.307
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'Fc1ccc2cc[nH]c2c1'.", "role": "user" }, { "content": "{\"halogen\": 1, \"phenyl\": 1}", "role": "assistant" } ]
Functional_Group_Identification
Cc1ccc(NC(=O)COC(=O)CCCN2C(=O)c3ccccc3C2=O)cc1
1,662,486
{"ester": 1, "ether": 1, "amide": 3, "phenyl": 2}
380.4
2.55312
[ { "content": "Determine the functional group identification of the chemical structure 'Cc1ccc(NC(=O)COC(=O)CCCN2C(=O)c3ccccc3C2=O)cc1'.", "role": "user" }, { "content": "{\"ester\": 1, \"ether\": 1, \"amide\": 3, \"phenyl\": 2}", "role": "assistant" } ]
Drug_Likeness_Assessment
O=c1ccc2ccncc2[nH]1
589,676
{"molecular_weight": 146.15, "logp": 0.92, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 2, "rotatable_bonds": 0, "topological_polar_surface_area": 45.75, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
146.149
0.9231
[ { "content": "What is the drug likeness assessment for the compound represented by 'O=c1ccc2ccncc2[nH]1'?", "role": "user" }, { "content": "{\"molecular_weight\": 146.15, \"logp\": 0.92, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 2, \"rotatable_bonds\": 0, \"topological_polar_surface_area\": 45.75, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
COC(=O)c1ccccc1NC(=S)N(Cc1ccc2c(c1)OCO2)Cc1cc2cc(OC)c(OC)cc2[nH]c1=O
1,149,954
561.62
561.616
4.4598
[ { "content": "Provide the molecular weight for 'COC(=O)c1ccccc1NC(=S)N(Cc1ccc2c(c1)OCO2)Cc1cc2cc(OC)c(OC)cc2[nH]c1=O'.", "role": "user" }, { "content": "561.62", "role": "assistant" } ]
Functional_Group_Identification
Cc1ccc(C(O)=C2C(=O)C(=O)N(c3nc(C)c(C)s3)C2c2ccc(F)cc2)cc1
1,547,476
{"alcohol": 1, "ketone": 1, "amide": 1, "sulfide": 2, "halogen": 1, "phenyl": 2}
422.481
4.83376
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'Cc1ccc(C(O)=C2C(=O)C(=O)N(c3nc(C)c(C)s3)C2c2ccc(F)cc2)cc1'.", "role": "user" }, { "content": "{\"alcohol\": 1, \"ketone\": 1, \"amide\": 1, \"sulfide\": 2, \"halogen\": 1, \"phenyl\": 2}", "role": "assistant" } ]
Functional_Group_Identification
CCOc1cc(C2C3=C(CC(C)(C)CC3=O)NC3=C2C(=O)CC(C)(C)C3)cc(Cl)c1O
1,340,584
{"alcohol": 1, "ketone": 2, "ether": 1, "amine": 1, "halogen": 1, "phenyl": 1}
443.971
5.4175
[ { "content": "Determine the functional group identification of the chemical structure 'CCOc1cc(C2C3=C(CC(C)(C)CC3=O)NC3=C2C(=O)CC(C)(C)C3)cc(Cl)c1O'.", "role": "user" }, { "content": "{\"alcohol\": 1, \"ketone\": 2, \"ether\": 1, \"amine\": 1, \"halogen\": 1, \"phenyl\": 1}", "role": "assistant" } ]
Stereochemistry_Analysis
CCOC(=O)CC(=O)c1ccc2c(Cl)nn(C)c2c1
1,214,803
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
280.711
2.3626
[ { "content": "Determine the stereochemistry analysis of the chemical structure 'CCOC(=O)CC(=O)c1ccc2c(Cl)nn(C)c2c1'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Functional_Group_Identification
CCOC(=O)C1=C(CSc2ccc(C)cc2)OC(N)=C(C#N)C1c1cccc(Cl)c1Cl
1,935,416
{"ester": 1, "ether": 2, "amine": 1, "nitrile": 1, "sulfide": 2, "halogen": 2, "phenyl": 2}
475.397
5.719
[ { "content": "Determine the functional group identification of the chemical structure 'CCOC(=O)C1=C(CSc2ccc(C)cc2)OC(N)=C(C#N)C1c1cccc(Cl)c1Cl'.", "role": "user" }, { "content": "{\"ester\": 1, \"ether\": 2, \"amine\": 1, \"nitrile\": 1, \"sulfide\": 2, \"halogen\": 2, \"phenyl\": 2}", "role": "assistant" } ]
Solubility_Prediction
Cc1ccc(NC(=O)COC(=O)CCCN2C(=O)c3ccccc3C2=O)cc1
1,662,486
{"log_s": -3.18, "solubility_mg_ml": 0.0003, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 380.4000000000001, "logp": 2.55, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 2}}
380.4
2.55312
[ { "content": "Determine the solubility prediction of the chemical structure 'Cc1ccc(NC(=O)COC(=O)CCCN2C(=O)c3ccccc3C2=O)cc1'.", "role": "user" }, { "content": "{\"log_s\": -3.18, \"solubility_mg_ml\": 0.0003, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 380.4000000000001, \"logp\": 2.55, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 2}}", "role": "assistant" } ]
Functional_Group_Identification
FC(F)(F)C1(C(F)(F)F)[NH2+]C2C(Cl)CC1C2Br
1,824,892
{"halogen": 8}
347.504
2.1862
[ { "content": "What is the functional group identification for the compound represented by 'FC(F)(F)C1(C(F)(F)F)[NH2+]C2C(Cl)CC1C2Br'?", "role": "user" }, { "content": "{\"halogen\": 8}", "role": "assistant" } ]
Reactivity_Prediction
CSc1ccc(CN2CCN(S(=O)(=O)c3ccccc3[N+](=O)[O-])CC2)cc1
1,342,548
{"charges": {"S": [{"atom_idx": 1, "charge": -0.13}, {"atom_idx": 11, "charge": 0.249}], "C": [{"atom_idx": 4, "charge": -0.057}, {"atom_idx": 14, "charge": 0.16}, {"atom_idx": 16, "charge": -0.06}, {"atom_idx": 17, "charge": -0.055}, {"atom_idx": 19, "charge": 0.289}, {"atom_idx": 25, "charge": -0.057}], "N": [{"atom_idx": 7, "charge": -0.296}, {"atom_idx": 10, "charge": -0.195}, {"atom_idx": 20, "charge": 0.064}], "O": [{"atom_idx": 12, "charge": -0.207}, {"atom_idx": 13, "charge": -0.207}, {"atom_idx": 21, "charge": -0.258}, {"atom_idx": 22, "charge": -0.258}]}, "dipole": 4.07, "steric_hindrance": 2.96}
407.517
2.8232
[ { "content": "Determine the reactivity prediction of the chemical structure 'CSc1ccc(CN2CCN(S(=O)(=O)c3ccccc3[N+](=O)[O-])CC2)cc1'.", "role": "user" }, { "content": "{\"charges\": {\"S\": [{\"atom_idx\": 1, \"charge\": -0.13}, {\"atom_idx\": 11, \"charge\": 0.249}], \"C\": [{\"atom_idx\": 4, \"charge\": -0.057}, {\"atom_idx\": 14, \"charge\": 0.16}, {\"atom_idx\": 16, \"charge\": -0.06}, {\"atom_idx\": 17, \"charge\": -0.055}, {\"atom_idx\": 19, \"charge\": 0.289}, {\"atom_idx\": 25, \"charge\": -0.057}], \"N\": [{\"atom_idx\": 7, \"charge\": -0.296}, {\"atom_idx\": 10, \"charge\": -0.195}, {\"atom_idx\": 20, \"charge\": 0.064}], \"O\": [{\"atom_idx\": 12, \"charge\": -0.207}, {\"atom_idx\": 13, \"charge\": -0.207}, {\"atom_idx\": 21, \"charge\": -0.258}, {\"atom_idx\": 22, \"charge\": -0.258}]}, \"dipole\": 4.07, \"steric_hindrance\": 2.96}", "role": "assistant" } ]
Drug_Likeness_Assessment
O=[N+]([O-])c1ccc(C(O)C(CO)NC(=S)Nc2ccccc2)cc1
915,188
{"molecular_weight": 347.4, "logp": 1.98, "hydrogen_bond_donors": 4, "hydrogen_bond_acceptors": 5, "rotatable_bonds": 6, "topological_polar_surface_area": 107.66, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
347.396
1.9757
[ { "content": "Provide information about Drug_Likeness_Assessment for the molecule with SMILES 'O=[N+]([O-])c1ccc(C(O)C(CO)NC(=S)Nc2ccccc2)cc1'.", "role": "user" }, { "content": "{\"molecular_weight\": 347.4, \"logp\": 1.98, \"hydrogen_bond_donors\": 4, \"hydrogen_bond_acceptors\": 5, \"rotatable_bonds\": 6, \"topological_polar_surface_area\": 107.66, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
COc1ccc(C(=O)N(C)c2nc3c(s2)CCCC3)cc1
1,485,670
302.40
302.399
3.3071
[ { "content": "What is the molecular weight of the compound with SMILES 'COc1ccc(C(=O)N(C)c2nc3c(s2)CCCC3)cc1'?", "role": "user" }, { "content": "302.40", "role": "assistant" } ]
Synthetic_Accessibility
CCOC(=O)Cn1nnnc1C(C(C)C)N(Cc1ccccc1)Cc1cc2cc(C)ccc2[nH]c1=O
1,438,078
{'sa_score': 7.25, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
488.592
3.78562
[ { "content": "Provide information about Synthetic_Accessibility for the molecule with SMILES 'CCOC(=O)Cn1nnnc1C(C(C)C)N(Cc1ccccc1)Cc1cc2cc(C)ccc2[nH]c1=O'.", "role": "user" }, { "content": "{'sa_score': 7.25, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Solubility_Prediction
COc1ccc(C(=O)CC2(O)C(=O)N(Cc3ccccc3C)c3ccccc32)c(OC)c1
1,216,213
{"log_s": -4.42, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 431.48800000000017, "logp": 4.02, "oh_groups": 1, "nh_groups": 0, "cooh_groups": 0, "aromatic_rings": 3}}
431.488
4.01962
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'COc1ccc(C(=O)CC2(O)C(=O)N(Cc3ccccc3C)c3ccccc32)c(OC)c1'.", "role": "user" }, { "content": "{\"log_s\": -4.42, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 431.48800000000017, \"logp\": 4.02, \"oh_groups\": 1, \"nh_groups\": 0, \"cooh_groups\": 0, \"aromatic_rings\": 3}}", "role": "assistant" } ]
Stereochemistry_Analysis
COC(=O)c1ccccc1NC(=S)N(Cc1ccc2c(c1)OCO2)Cc1cc2cc(OC)c(OC)cc2[nH]c1=O
1,149,954
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
561.616
4.4598
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'COC(=O)c1ccccc1NC(=S)N(Cc1ccc2c(c1)OCO2)Cc1cc2cc(OC)c(OC)cc2[nH]c1=O'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
IUPAC_Name_Generation
CCCc1cc(=O)oc2cc(C)cc(OC(=O)CCCNS(=O)(=O)c3ccc(C)cc3)c12
1,752,430
(7-methyl-2-oxo-4-propylchromen-5-yl) 4-[(4-methylphenyl)sulfonylamino]butanoate
457.548
4.02644
[ { "content": "Give the IUPAC-compliant name for the molecule 'CCCc1cc(=O)oc2cc(C)cc(OC(=O)CCCNS(=O)(=O)c3ccc(C)cc3)c12'.", "role": "user" }, { "content": "(7-methyl-2-oxo-4-propylchromen-5-yl) 4-[(4-methylphenyl)sulfonylamino]butanoate", "role": "assistant" } ]
Reactivity_Prediction
CCC(C)(O)C1=CC=CC1
114,436
{"charges": {"C": [{"atom_idx": 0, "charge": -0.062}, {"atom_idx": 2, "charge": 0.083}, {"atom_idx": 6, "charge": -0.06}, {"atom_idx": 7, "charge": -0.066}, {"atom_idx": 8, "charge": -0.08}], "O": [{"atom_idx": 4, "charge": -0.386}]}, "dipole": 1.38, "steric_hindrance": 2.0}
138.21
2.0337
[ { "content": "Provide information about Reactivity_Prediction for the molecule with SMILES 'CCC(C)(O)C1=CC=CC1'.", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 0, \"charge\": -0.062}, {\"atom_idx\": 2, \"charge\": 0.083}, {\"atom_idx\": 6, \"charge\": -0.06}, {\"atom_idx\": 7, \"charge\": -0.066}, {\"atom_idx\": 8, \"charge\": -0.08}], \"O\": [{\"atom_idx\": 4, \"charge\": -0.386}]}, \"dipole\": 1.38, \"steric_hindrance\": 2.0}", "role": "assistant" } ]
Stereochemistry_Analysis
C=CC1CCNCC1
421,846
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
111.188
1.172
[ { "content": "What is the stereochemistry analysis for the compound represented by 'C=CC1CCNCC1'?", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
IUPAC_Name_Generation
COc1ccc(CN(Cc2ccc(F)cc2)Cc2nc(C(=O)Nc3ccccc3F)cs2)cc1
1,032,400
N-(2-fluorophenyl)-2-[[(4-fluorophenyl)methyl-[(4-methoxyphenyl)methyl]amino]methyl]-1,3-thiazole-4-carboxamide
479.552
5.8846
[ { "content": "Give the IUPAC-compliant name for the molecule 'COc1ccc(CN(Cc2ccc(F)cc2)Cc2nc(C(=O)Nc3ccccc3F)cs2)cc1'.", "role": "user" }, { "content": "N-(2-fluorophenyl)-2-[[(4-fluorophenyl)methyl-[(4-methoxyphenyl)methyl]amino]methyl]-1,3-thiazole-4-carboxamide", "role": "assistant" } ]
Molecule_Visualization
Cc1cc(I)ccc1NCN1C(=O)c2ccc([N+](=O)[O-])cc2C1=O
1,070,737
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1xUZf4H8M/MMFwGFCEURJFEDa/gdc0ldTU0M8su4u7mEqU1ZSq1qY2uFZaXBjcNtfXXZOqaadvUdjE1C5W8kgp4Fw3xBuQFQbkzDDPf3x8PjYSuKczMM8H3/fJ1XjPjcJ4vl8+c85znnPMoiAiMMXmUsgtgrKnjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxC1lRdvYojR1BaKrsOuMkugDGnq67GCy/g4EF07479+zF2LBISJJbDIWRNz4cf4to17NsHpRKVlYiKQlQUoqNllcO7o6zp2bgREyZAqQQAT0/ExWHjRonlcAhZ05Ofj7vuuv60ZUtcviyvGg4ha4LatcO5c9efnjmDu++WVgyHkDVFcXFYuBDFxQCQl4eVK/G3v0kshw/MsKbnoYdw9Cjuuw+enqiuxltvoUsXieUoiEhi84xJUF2NkhKo1fDyQmEhzp9H27YIDJRVDu+ONmpWq+wKXNLWrfD3xxNPQKXCu++ib1+sXCmxHA5hY1RejhdfRM+e+MMfMGgQDh2SXZCL8fICgMpKAPD0BICKConlcJ+wMXr9dahUOHAACgV27sSjj+L48Zq/PIZfB088FoGUhEPYGK1Zg+PHoVAAwMCB6NIFKSkYOVJ2WS6j9pZQPJa6JeTd0UbHZEJpKQICrr8SGoqcHHkFuZ7aW8LagZSEQ9joeHjAwwMlJddfuXQJrVvLK8j11N4FdYE+YZMIYVFRUWFhoewqnOjhh7F8ec3jc+ewbx8GDpRakIu5cXeU+4Q3lZ+f/9VXX2k0Gh8fn6qqqrKyMtuyvLzcZDKJZUVFRWVlZe1lnacVFRUAVCrVF1988cgjj8j+tpwiMRGPPIItW+Dvj7Q0GAzw85NdkysRwauqAlDl5asICTOrfTXyynHdwfpOnTqdOnXKjisMDQ09ffq0UtkkNv4AkJuL4mJ06oQrV/DOO6iowLJlsmtyCRYL3NygUqG6Gtu24f77MXQotm6VVo+Lbgm//vrrU6dOKRSKzp07d+rUycPDQ6PR2JZeXl6enp5iaXtgW9Z5s0ajycvL69mz57lz51asWPHcc8/J/uacaMMGTJgAAIsXQ6XCnDm/unqgqVKpoFbDbIbZ7ApdQoBcj9Vq7dOnD4BXX33VXus0Go0A/Pz8Ll26ZK91uroHHySA/vUvIqLhwwkgg0F2Ta6iWTMCqKiIMjIIoF69ZBbjivtmn376aXp6enBwcEKDbzpgtVqXLVuWmpoaExMzatSoq1evTp061S5F/g6MGwcAa9cCqLlKYM0amfW4EtvhGN4S3oTZbO7cuTOA5cuXE9Hzzz8/ZcqU/Pz8+q1t2bJlAHr06FFVVXX27Flvb28AycnJdi3ZVZWV1XzgnzxJpaXk40MKBWVnyy7LJbRrRwCdPUtnzhBAd98tsxiXC6GIzT333GM2mzMzM93c3NRq9alTp+q3tsrKyvDwcACJiYlEpNfrAXTs2LGiosKuVbuqp54igGbPJiIaN44AmjNHdk0u4Z57CKATJ+jCBQIoMFBmMa4VwvLy8jZt2gD4/PPPiWj06NEAJk2a1JB1pqSkKBQKjUaTnZ1tNpsjIyMBvPHGG3Yq2bV9/z0B1KEDWa20eTMB1KmT7JpcQmQkAXTwIF29SgD5+sosxrVCOG/ePAD9+vWzWq179+5VKBTe3t4XLlxo4GrHjRsHYMSIEUT0448/KpVKd3f348eP26Nk12axUNu2BFBqKlVXU1AQAbRvn+yy5Ovfv+anUllJfn4UHCyzGBcKYWFhoZ+fH4AtW7YQ0ZAhQwC8/vrrDV9zfn5+QEAAgM8++4yItFotgEGDBlmt1oav3NVNm0YAib2Jv/+dAJoyRXZN8mVnU3r69acHDtQ8yM0ls9nZxbhQCKdNmwbggQceIKINGzYACAgIKCoqssvKDQYDgKCgoKtXr167dq1169YA/v3vf9tl5S7t4EECyN+fTCZKTyeAWrakqirZZUm2eDF5eNCJEzVPbbuj8+ZRfQ8C1p+rhDA3N1ej0SgUirS0NIvF0rNnTwCLFi2y1/qtVmtUVBSAyZMnE9HHH38M4K677rp8+bK9mnBdEREE0NdfE1HxsGGb//Sn7d9+K7smyRYvpsGDKTq65qkI4Sef0PDhNGsWHT3q1GJcJYTjx48H8Je//IWI1qxZAyA0NLSystKOTRw9elStViuVytTUVCKKjo4GMH78eDs24aIWLLC0apXx8stE9PbbbwP485//LLsmyRYvpjffpNGjae1aolpbwqVLqbDQ2cW4RAhPnDghhiKysrJMJlOHDh0ctK+o0+kAREREmM3mrKwsT09PhUKxdetWuzfkUgrz8jzVak9Pz6tXr+bm5iqVSk9Pz2vXrsmui06dOnX+/HkpTYsQnj5N7dvTtWt8dJToscceAzBx4kQiWrx4MYDOnTubHdBBLi8vDwsLs+3ovvXWW2JM0r6bXBd0//33285/+NOf/gRg5cqVEuupqqp65plnlEqlUqkcO3ZsoRO3PiYTXb5cE0IimjOHpk4lX1+qrqZFi0jKR5P8EIqhCC8vr9zc3JKSksDAQABff/21g5rbvHkzAI1Gc+bMGZPJ1KVLFwBz5851UHMuYtWqVQAGDx5MRCtWrAAwZMgQWcVs3769a9eutU/b8vf3X7BgQXl5uaOb3rmTunWj4cOvh7Cyknr0IF9fWrWq5gCWXk9OPpVDfgiHDh0KYNasWUQ0e/ZsAP3793fo4EFMTAyARx99lIi2b9+uUCg8PDxO2I6UNUYlJSXe3t4KheL06dNFRUVeXl5KpdL5u4KFhYXx8fHiarKOHTt++umn33//vdhKA2jTpo3BYHDEHhARXblC48eTQkEAde5MS5fSkiU1/5WcTJGRtG8fDRpEAAHUrh2tWkXV1Y4o5CYkh3DTpk0A/Pz8CgsL8/PzmzdvDiAlJcWhjV64cKFFixYAvvrqKyJ6+umnAQwbNswuKy8tpYyM608zM6migi5doosXr7947JjzfsE2f/3rXwHMmzePiMaOHQtAr9c7swCj0diqVSsAarVap9PV7gIkJyeL62YAhIeHG41G+34KG43UsiUB5O5OOh3dovORnEy9etVEsUsXMhrJCWPJMkNotVp79+4N4J133iGi+Ph4AKNGjXJC0++99x6AkJCQkpKSK1eutGzZEsC6desavuY9ewig//635mm/fnTyJM2b96tzNoODJRyC27hxo+hsE9E333wDoGvXrs5pOisra9iwYSJjgwcPzszMJKLz58/PqfVDsVqtRqOxU6dO4m39+vWzywGzrCwaNqwmVIMHU2bmb3+JxUJr1lD79jVflR2bQDt2NLySW5AZwrVr14qdkPLy8rNnz3p4eCiVygO2kxccyWKxDBgwAMArr7xCRCtXrgQQGBjY8CMEe/ZQ374UHk7FxUSuFEKz2RwUFAQgLS2tvLxc9L0zam+1HaCqqkqv13t4eIiOn8FgsFqtZrN50aJFPj4+AP7zn//Ueb/BYGj9y22poqOj09LS6ts06fXk4VHT0zMY7mybZjLRkiX0yn17a3Zho6PJYT8raSGsqqoSQxErVqwgotjYWACxsbFOK+DQoUNqtVqlUqWnp1utVtE1feGFF+q8zWKxFBYWXrlyJTs7OysrKz29Yv9+Sk6m5GQyGsloJIOBDAZKTCS9nt56i/bsoUceoblz6eWXiWqFcPJkOny45l+rVhJCSEQvvfSS6AyL+w8AeOqppxzX3A8//CCOeykUitjYWHE9WkZGRr9+/UTGRo0addN+aVlZmV6vF10GhUIRExPz008/3VHTW7ZsGTNmG0AKBWm1Dfhpl5aSXk++vgSQUkkxMVTfC3pu4c5C+MWgYns1LHYIw8PDzWbz4cOHxUnV2c692u2VV16xHTM8fvy4Wq12c3Nr165daGion5+fr6/vjZdfdu5cJvZSbvqvWbOaEFZWUpcudODA9RD26kVxcTX/NBo5Idy/fz8ANze32jfaCQwMjI2NNRqN9jpDkIgKCgq0Wq1CoRAjQGLHsrS0VKfTqVQqAO3bt9+0adNvrkSn03l5eYlupFar/fnnn3+z6UuXLv3tb38DoFZrRoy4tmuXPb6fK1dIpyNPTwJIrSatlsRFBSUl9PXX9OGHlJrakNXfWQjXdmnQ76m0tLSwsDAnJ+fIkSOij/7ll18S0UMPPQTgpZdeasjK66GkpCQuLk4kv7q6uk2bNgG175kLiE9iPz8/f3//sLCwDh06jB5d0KcPRUdTdDSNGUMxMfTcc6TV0vTppNNRYmJNCIlo82YaPNiFdkcF0fsNCgpKTEzUarVt27a1fadubm5RUVF6vb7ee4BEZLVaV69eLX6MXl5eCQkJJpOJiNavXx8SEiJaiY+PLykpuc0V5uTkaLVaNzc3MbCk0+muXr16R03bzZkzFBtLSiUBNG8enTtH3brR9Om0bBkNH07PPktEdO4cbdpEv/X5Uscdh7D8kvXkWtNRQ+WRZZUZCyrS3674cVZ56ozyHVPKfphYtuWp0u+fLP3PpPQ+ffqEh4eHhYW1atXKz8/P3d29zh+3v79/x44drVarxWKZOXNmYGCg3Lu/iG5hSEhIZmbmmTNnCgsL/9cv+9ZsISSiMWPIw8OFQnjw4EG1Wq1QKL777jvbi0ePHtXr9dHR0Wq12vbbad++vVarNRqNxcV3sO9z8uRJsVcPYOjQoSdPniSi3Nzcxx9/XLwYFRV15MiRelSemZkZExMjNq3+/v56vb7OoGLtpkeOHHn69Ol6tHJbDh+m2FgqLaVnnrk+ymG1Up8+lJJCeXm0fTtt335Hq7zjEF5Oq17d7tqt/300+uiNO3Lik8zPzy84ODgkJESpVHp7e9u6BHIvda+oqGjXrh2Ajz/+uIGrysig556reZyTQ+HhdPo0LVlCSUnX39O7t4QzM0wmU0REBID4+PibvqGgoMBoNGq12ta1btft5eUVHR2t1+tvfflleXl5QkKC6GcGBQWtXr2aiMxmc1JSkjgA06JFi6SkJIvF0pBvYe/eveICNwBt27YVg4qiafEpb2vaGcLDf9U/fO01mj+/fmu64xCW5lpSZ5Tvn1OR/nbF4SWVR5ZVnlhtOrnWdPqrqrMbqnJTzD/vNJ/PKExLS8vMzMzOzr548WJhYeGN54XVHjGXbuHChQB69OjRwL+SG1VV0bx5tGePfddaHzNnzgQQFhb2m7uCFoslLS1Nr9dHRUXV7j2GhYVptdr169fX+W1u27ZN3ENEqVTGxsYWFBQQUVpamm3oLyYmxo67OZs2bRK3RxAliVsxKJXKyZMnO/WE2JAQys29/nTePHrttfqtyal9wtrqjJhLVFxcLDqov3mooB4WLSKAIiIkX8GXlpYmriDZcYdDXvn5+UajMTY21q/WPbw1Gk10dHRSUlJaWpo4rA0gMjJSXJ5y9epV22kxHTp02Lx5s92/HTGo2LFjR3d3d09Pz4iIiNSGHRqpj+hoqn1F2J//TGvW1G9N0kJIREuXLsUvI+Z2XO2dmjVrFoCBAwc6YuWVlRQeTgAtWOCI1d9mDZXdunVDw+7jajabd+zYMWPGDNtWCIA4gOzj47Nw4UJxutn69evFpkmcFuPQXobJZBLHTuvXe2+oTZsoIoKOHyeTidato44d633K6Z2F8Mphe55tZRsxnzp1qh1Xe0cuXbrUrFkzALt373ZQEykppFCQRkOOO1hwawkJKwF07drVXpHIzc394IMP7rvvPgCtW7cWHfvs7OwHHnhAhHPgwIHHjh2zS1s3unTpUnZ2tjitQhwLlXZl9uef06OP0r33klbbkN+u5HNHbSPmjj5143958cUXndA1ffJJAujBBx3ayM3t2EFqNQ0Z8uP+/fvtu+bdu3cDGDBggHgqrpAKCAhYtWqVQ8+/F8OAH330ERGJYQ9ZFyXai/yrKP7+978D6NevX7XTT2o+ffq0u7u7SqU66uD7GVy8SH5+BNDnnzu0nbpKS6ljRwLIEXd4zMjIANDrlzvIHzx4cPz48fW+TfPtE7OJfPDBB0QkzjUVYyG/X/Jvgz937ty77757//794l5MzvSPf/yjqqoqLi5OdJkcJzAQb78NAFOmoKjIoU39yvTpOHUKkZGYNcv+K/f09ARQ8csd5CMjI1esWHHj2Q4ObVf0CSulzi7YcPJDqNFo/vWvfwGYOXNmXl6e09o9fPiw0Wj09PRs+IwXt+O55/DHP+LCBbzxhhNaA4CtW/H++3B3x0cf4YZzJexAhMH5AagdvDofBL9T8kMIYOTIkaNHjy4uLhYnczrHq6++arVaJ02aJIbpHU2pxPvvQ63GihWVBw6cc3RzxcUYPx5EmD0bEREOaULWVoi3hI6ydOlSHx8fo9Eo7jjqaDt27Pjuu+98fX3FELZz9OiB2bNPBAT0ePbZxy0Wi0PbevllnD+PPn0wbZqjmpC1FRLtmkwmiTXYl6uEMCQk5M033wQwefLksrIyRzc3Y8YMANOnT7/LuZNmvvxyO5XKmpGRIS4icZANG7BqFTw8sHo1ap0Qame8JbQXVwkhgJdeeql3797nzp0TM1I4zn//+9/U1NRWrVqJa/mdydYBfv3113Nzcx3RRFkZtFoAmD8fDj3eJC7CNplMVqvVgc3cgPuEDqRSqQwGg0ql+uc//3no0CEHtWKxWN544w0As2fPFsP0TjZixIgxY8aUlJQ46CPA2xv/938YMwYvv+yI1f+KOGPbyRsi3hI6Vt++fV944YXq6urnn3/eQZ+vq1atOn78ePv27SeIydxlWLp0aYsWLb788sv169c3fG0WC/r2RXJyzdPERLi747PPoHT871ZKBhrfltBNdgF1zZ8//6uvvtq7d++KFSvEsOytFRUVWa3W4uJii8VSe1lSUlJdXS2WgwYNErP/VlZWihv+zp8//8ZLHJ0mKCjorbfeio+PnzJlytChQ8XFPvVGhBMnMHUq9u6FlxdyctCmjb0q/Q1SMtD4toQuF8LmzZu/++67Y8eO1el0o0ePFtc37N27V0zkIiJXe3k761y+fLkI4ZIlS3JyciIjI8U9/ySaNGnSunXrfvzxx9mzZ7/zzjv1WIPJhPJymExo0QLNmmH0aMyfjzlz7F7prUjJQO3xSd4SOkpMTMyoUaM2bNgwdepUMTlMSUlJWlraTd/crFkzNze3G5c+Pj5qtVos77nnHgDXrl1bsGABgAULFiidsK92S0ql0mAw9OnTJykp6dq1a506dSorK6uqqhLL8vJyk8kklsHB7x07Fl5RgcpKiKV4YHP8OADMmIFevTBunFO/CykZuHF3lLeEDvHee++lpKR8/PHHcXFx0dHRffr02bdvn1KpbN68uUqlqr28/XUmJiYWFBQMGjRo+PDhjqv89kVERDz55JNGo1Hcl/5/GTSoMj39Jq+7u8PbG+7uIAIAb2/o9Zg8GeHhjin3ZqRkgHdHnSQ0NPS1116bOXPm008/ffToUT8/v8jIyLKyMrPZXFpaWlBQUFpaauvy2ZZ1uoXFxcW2vdbCwsI9e/YoFAqxMXQRSUlJlZWV3t7erVq10mg0Hh4eYunl5eXp6SmWPj4BajU8PeHlVbP08IBGc30l1dU1Dx5/HCtWIDkZAwY4qX4+MGMXLhpCAFOnTl20aFFeXp6/vz+JT/uGCQwMLCkpad++fcNXZS9+fn6ffvqpHVe4ZAm6d7fj+n4DH5ixC9cNoVqtTkxMnDBhgkjgjR2/OvulzZs3VyqVvr6+YqlQKFq0aFF7OWfOnB07dkybNu2jjz6S/c3Zk0qFDz6oedyhA7ZsQdu2SEtDt27w8nJs07wltAvXDSGAZ5555uGHH7ZYLOKe7Q3UqVOnbt26rVmz5qmnnhLT9DYOCgUefvj606gorF2L8ePx5JNYtcqxTfOW0C5ca7D+RgEBAXZJIH7pZwJ48cUXf++/tluLjIRajX//+/oW0kF4iMIuXD2E9jVt2rTIyMisrCy9Xi+7Fgfq3h0ffggA8fHYv9+BDfEQhV00rRC6ubkZDAalUvn2229nZmbKLseB/vIXTJ4MkwlPPIH8fEe1UmdL6Jw0qlSqmTNnzpgxw2q18u7o71L//v0nTJhQVVUlJmCSXY4DLVqEgQORk4O//hUOunqxzpYwLi4uKipq586dDmmslvnz58+dO1epVBYWFgLIyspydIsO1eRCCCAxMbFVq1Y7duwQp+M0Vmo1jEa0bo2tWzF7tkOaqL03WFBQkJKSsmfPnsGDBz/xxBNO2NH46aefxM3yxBwVv2Ny7zMli4jfXXfdJe2Wlc6SkkJubqRQ0Bdf2HO1FRUVn332WdeuXQF07979zJkzRFRSUqLX68UFYkqlMiYmxkETs5SXl8+cOVPMYOPm5rbENjHL71MTDSERiVGK8ePHyy7E4RITSaWqHjHijVMNnuDSarVu37792WefFVMYABBzrbm7u8fHx4tPtMuXL+t0OnGpobu7u1arte98W3WmvnDCTRYdremGMCsry9PTU6FQbNu2TXYtjmW10sSJbwLo2bNnnRnFbl9mZmZCQoKYXFno2rWrXq9PT0/XarXiJF5vb2+dTidmZTl79qxWqxUnyvv4+Oh0ujuaZe2mLly4cOPUF41A0w0hEYm72oSHh984aVQjU1JSImauHjdu3B19YUFBgcFgiIqKsmWvbdu28fHxBw4cqP22Y8eOiWm2xE6+Xq8Xt9w/cuSI7fWWLVvq9fr6/ajFBKD+/v4ANBpNQkJCldwZduyqSYfQZDKJP825c+fKrsXhTpw4IXpr77///m++uaKiYv369TExMbaZQ319fWNjY5OTk29xi/vU1NTBgweL97dr185gMIi7qu/atUtMXAEgNDTUYDDc0RR0hw4duvfee8WXjxo16uzZs7f/tb8LTTqERLR9+3aFQuHh4XHixAnZtTjcJ598AkCtVv+v2W8sFsvOnTu1Wm3z5s3FH71KpYqOjl69enVpaelttpKcnNyzZ0/bLqvRaLS93qNHD/F69+7dba/fQllZmW0C0ODgYOdNAOpcTT2ERPT0008DGD58uOxCnGHKlCkAQkJC6hwWPnbsWEJCQu1LTMQFx/U7pmKxWIxGY1hYmFjVvffe+8MPP9hev/vuu8XrYlDxf63km2++CQ0NxS/T3De8S+myOIR05coVcYhv3bp1smtxuKqqKjFp9qBBg6qrq/Py8pKSkmp3+dq1a6fT6ewyxYrJZDIYDLZTf6Ojow8ePEhE5eXliYmJYtZRhULx/PPP1/nCvLw82wGYXr167du3r+HFuDIOIRHRypUrAQQGBopZ7xq3hx56SPx9azQa220+/P39J06cuHv3brvPaiYGD8X+rRg8zM7OJqLi4mIxqPjuu+/a3myxWAwGg+i7+vr6JiUlOX+uLufjEBIRWa3WoUOHAhDnsjViZrNZDPF5e3uL+CmVytWrV5tMJoe2m5+fX2fw8OLFi0SUm5trO16akZHxhz/8wXYA5vc+6+Dt4xDWOHnypLiltOOm7HUFKSkpALp167Z8+fJRo0aJvUSntX7u3DnboKIYPCwqKiKi0tJSnU4nXm/fvv3GjRudVpIr4BBeJ6427N69e2Mag6rj1VdfBTB9+nQiEv2uhQsXOrmGAwcOjBgxwjZ42LNnTzEjiJjmvqyszMn1SMchvK6iokLM/LpgwQLZtThK9+7dAWzbts1isYh7umZmZkqpZPfu3QMHDrQdEBowYMCRI0ekVCIdh/BXkpOTR4wY0fBzLF3T+fPnATRv3txkMu3du1fs+0msx2q16nS6rl27xsXFmc1miZXI5dL3mHG+6OjoxnT7mTo2btwIYNiwYe7u7ps2bQIwcuRIifUoFAq9Xt+473JwO5ri9YRN1rfffgvgwQcfrPOYyaWgRn11ObMxmUwBAQFlZWU5OTnu7u5BQUHu7u4FBQWa2jcSZjLwlrCpSN+1q7S0NDIysk2bNt9++63Vah0yZAgn0BVwn7Cp+OOGDebg4DNPPglg2/ffg/dFXQbvjjYZ4eH46Sfs2oV776W2ba8GB1cZjUG1LtJlsvCWsGk4cwY//QQ/P/Tvj9RUxcWL/r6+4AS6Bu4TNg0bNgDAAw/AzQ3ffgsAUgcnWG0cwqZBBE90Ajdtuv6YuQDuEzYBFRUICEBlJX7+GVYr2rSBRoOCAnh4yK6MAbwlbBK2bUN5Ofr2RWAgNm0CEe6/nxPoOjiETUDtfdHaj5lr4N3RJqBjR2RnY+9e9OqFli1RVISzZxEaKrssVoO3hI1dZiays9GyJfr2xa5dKCpC9+6cQJfC44SNnbs7Jk5E8+ZQKnlwwjVxCBu7Dh2wbFnN3Gg9emDoUIwaJbsm9ivcJ2zUCgsxeTIyM+HmBj8/LFuGjh1l18Tq4j5hozZpErp1w4ED2L8fL76Ixx931HShrAF4S9h4mUwICEBhIX6ZTwK9e+PDD4bRJZIAAAIlSURBVNG7t9SyWF28JWy8LlxAy5bXEwggNBQ5OfIKYjfHIWy8AgNRUACr9forly4hOFheQezmOISNl5cX+vfHunU1Tw8cwOXLiIiQWhO7Ce4TNmpZWXjsMXToAC8vHDmC5cvxxz/KronVxSFsAs6fh8mEsDCoVLJLYTfBIWRMMu4TMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJPt/XYGBn/XK7fkAAAHZelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkABiKSBuYGRjSADSjMxsDhpAmpmFzSEDRDMzwgRMGRRACpDE0RSwM4AFmKBGMTGxM4AlmNkgNAsHhGbCYgW6UQpaYMfAtXCABf5jUYpuODcDIwMjUwYTE3MCMwsDM2sGEytbAht7BhM7hwIHJwMnFwMXtwI3jwYTN68CL18GEx9/Ar9ABpOAoIKgkAaToLCCgEiCiGgGk6iYgpi4BhM7Y4IYl4Iob4ITM9B4NkZ2NlZmJlZuLjFRXjY+fgERUV5xLUagUxlgAWq0IPlA3neGAyDOBe3uAycu2+4HsRVUdx/YX+cFZt9ouHIgVey7HYgtYst0sOzAXTDb4fHeA7wKz+1B7A8vew90lr4FswtkMg8oPBQBsy9qch4Q71EEsw8/WbP/Vq0K2MxHzBJ2jy+Jg9nJrzvsW/Mfg9mfPNXt93zyBbtn9m45hzsyi8DiVzOKHWwn/wGzV5QucohXmQ5mez1Y4NDIvBjsno6FJx326/eB7dLkOeFQz6XuAGKr/vjsUP70HFhNpHCug6N5M1jN3QnSDuLOeWDxnvBa+1myamDx8pSvdgFnmcF6xQClE3Wi7lQ+6AAAAlZ6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VUuO2zAM3ecUukAE/kUtupgkg+mgmARo096h+94fJWUk1hRC7YiJ5EdKfI90DiWv75dvv/+U50WXw6EU+M+n915+MQAcPkr+KKfXt/drOd9fTo+V8+3n9f6jkBSy8In7M/blfvt4rGA5lyNXVTOlcqQKqAhUoMK4dl9KpFSWDt3LEWqTgPICyYnU6uLkNJDh0m2BlERaNYFGHs/DQ/sqpJb3cvSK3DtiApkR+gJo296dAxnZVYfIbLV129IRFoeWQFWUVUTfGDIhttxaHdVgAezlmgSiMLYWzy2OKLIAImRIrKzQGJOgCK6iKyhGUIiYLjqoDHrAVvJg6oMVrJtzRm/NXHCF5HLL4ylLo0yNsHVZZYSpD4UqQLEcMSmqBFZsogaSg22mNnbvjUlWSmIqpBXidDaQGPz3tkK2DRkRWwrD6OzLzT1IshpNEbkHB4jgPHNUzl/fvuAT3iN/q6TJaqRnCICruAQBbNVIYBAZX9Dl37jHZ2DCQUIDCY1Si9iCVgVAtPHK0DAzJyZrvgJmK0Ht3m0ATdx9VaSxTWoqrWfLRRdrKLrK6fV6+dT/2xvhdLte9jdC3rS3fXBUeO9tybE3MMbQvU0lbtubMSal7S0nMXxvLIzR9/bBHHOX4DA4NQMOQ1PRUxrkqbhxrMhUxJIGdSrWnEYpTkUpabBNxYfD+FRllAb7VEg4lueKkfSiuSYkDdEkfk5D20llGkYmOSW42X00fXjigvLENOeZys465vzxrxC/D38Bto8xgj/LYxwAAAE0elRYdFNNSUxFUyByZGtpdCAyMDI1LjAzLjMAAHicHZA7jgJBDESvsiFoZyz/2xYiItoEDoCI5hocfssT+rmqutyPQ47j8nc9jkOej6c8LvfX9VCMl/fz9zPT+7V/sNeH3F8/38tuFJEZ267EErLddifzlm1nWg5iQEHlpXWy5u4ES0rnZRsTVtEjKxJrWIHMhPt0toFtQsWR64x385IhERIghiS1hC1KYrKVxE0KJJHjDiRkMc+hAtThMDJU5aHDUIBTt5sQZyeaCq2V5aPKMF9QGamsBlJUZh2N4nTcbGhnuob0MoUkiGHPIVJcJ9BlUwnFDJtbkjH3wiEiXDZAA402pRRG/m1RqrPPf7DzvGy0GJfBw9DqWcUY5ZjUNFdN365OWXO8V1UP8tVaimSOdtmu33/ZNmTgZjRMkAAAAABJRU5ErkJggg==</base64_image>
437.193
3.17342
[ { "content": "Provide information about Molecule_Visualization for the molecule with SMILES 'Cc1cc(I)ccc1NCN1C(=O)c2ccc([N+](=O)[O-])cc2C1=O'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1xUZf4H8M/MMFwGFCEURJFEDa/gdc0ldTU0M8su4u7mEqU1ZSq1qY2uFZaXBjcNtfXXZOqaadvUdjE1C5W8kgp4Fw3xBuQFQbkzDDPf3x8PjYSuKczMM8H3/fJ1XjPjcJ4vl8+c85znnPMoiAiMMXmUsgtgrKnjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxC1lRdvYojR1BaKrsOuMkugDGnq67GCy/g4EF07479+zF2LBISJJbDIWRNz4cf4to17NsHpRKVlYiKQlQUoqNllcO7o6zp2bgREyZAqQQAT0/ExWHjRonlcAhZ05Ofj7vuuv60ZUtcviyvGg4ha4LatcO5c9efnjmDu++WVgyHkDVFcXFYuBDFxQCQl4eVK/G3v0kshw/MsKbnoYdw9Cjuuw+enqiuxltvoUsXieUoiEhi84xJUF2NkhKo1fDyQmEhzp9H27YIDJRVDu+ONmpWq+wKXNLWrfD3xxNPQKXCu++ib1+sXCmxHA5hY1RejhdfRM+e+MMfMGgQDh2SXZCL8fICgMpKAPD0BICKConlcJ+wMXr9dahUOHAACgV27sSjj+L48Zq/PIZfB088FoGUhEPYGK1Zg+PHoVAAwMCB6NIFKSkYOVJ2WS6j9pZQPJa6JeTd0UbHZEJpKQICrr8SGoqcHHkFuZ7aW8LagZSEQ9joeHjAwwMlJddfuXQJrVvLK8j11N4FdYE+YZMIYVFRUWFhoewqnOjhh7F8ec3jc+ewbx8GDpRakIu5cXeU+4Q3lZ+f/9VXX2k0Gh8fn6qqqrKyMtuyvLzcZDKJZUVFRWVlZe1lnacVFRUAVCrVF1988cgjj8j+tpwiMRGPPIItW+Dvj7Q0GAzw85NdkysRwauqAlDl5asICTOrfTXyynHdwfpOnTqdOnXKjisMDQ09ffq0UtkkNv4AkJuL4mJ06oQrV/DOO6iowLJlsmtyCRYL3NygUqG6Gtu24f77MXQotm6VVo+Lbgm//vrrU6dOKRSKzp07d+rUycPDQ6PR2JZeXl6enp5iaXtgW9Z5s0ajycvL69mz57lz51asWPHcc8/J/uacaMMGTJgAAIsXQ6XCnDm/unqgqVKpoFbDbIbZ7ApdQoBcj9Vq7dOnD4BXX33VXus0Go0A/Pz8Ll26ZK91uroHHySA/vUvIqLhwwkgg0F2Ta6iWTMCqKiIMjIIoF69ZBbjivtmn376aXp6enBwcEKDbzpgtVqXLVuWmpoaExMzatSoq1evTp061S5F/g6MGwcAa9cCqLlKYM0amfW4EtvhGN4S3oTZbO7cuTOA5cuXE9Hzzz8/ZcqU/Pz8+q1t2bJlAHr06FFVVXX27Flvb28AycnJdi3ZVZWV1XzgnzxJpaXk40MKBWVnyy7LJbRrRwCdPUtnzhBAd98tsxiXC6GIzT333GM2mzMzM93c3NRq9alTp+q3tsrKyvDwcACJiYlEpNfrAXTs2LGiosKuVbuqp54igGbPJiIaN44AmjNHdk0u4Z57CKATJ+jCBQIoMFBmMa4VwvLy8jZt2gD4/PPPiWj06NEAJk2a1JB1pqSkKBQKjUaTnZ1tNpsjIyMBvPHGG3Yq2bV9/z0B1KEDWa20eTMB1KmT7JpcQmQkAXTwIF29SgD5+sosxrVCOG/ePAD9+vWzWq179+5VKBTe3t4XLlxo4GrHjRsHYMSIEUT0448/KpVKd3f348eP26Nk12axUNu2BFBqKlVXU1AQAbRvn+yy5Ovfv+anUllJfn4UHCyzGBcKYWFhoZ+fH4AtW7YQ0ZAhQwC8/vrrDV9zfn5+QEAAgM8++4yItFotgEGDBlmt1oav3NVNm0YAib2Jv/+dAJoyRXZN8mVnU3r69acHDtQ8yM0ls9nZxbhQCKdNmwbggQceIKINGzYACAgIKCoqssvKDQYDgKCgoKtXr167dq1169YA/v3vf9tl5S7t4EECyN+fTCZKTyeAWrakqirZZUm2eDF5eNCJEzVPbbuj8+ZRfQ8C1p+rhDA3N1ej0SgUirS0NIvF0rNnTwCLFi2y1/qtVmtUVBSAyZMnE9HHH38M4K677rp8+bK9mnBdEREE0NdfE1HxsGGb//Sn7d9+K7smyRYvpsGDKTq65qkI4Sef0PDhNGsWHT3q1GJcJYTjx48H8Je//IWI1qxZAyA0NLSystKOTRw9elStViuVytTUVCKKjo4GMH78eDs24aIWLLC0apXx8stE9PbbbwP485//LLsmyRYvpjffpNGjae1aolpbwqVLqbDQ2cW4RAhPnDghhiKysrJMJlOHDh0ctK+o0+kAREREmM3mrKwsT09PhUKxdetWuzfkUgrz8jzVak9Pz6tXr+bm5iqVSk9Pz2vXrsmui06dOnX+/HkpTYsQnj5N7dvTtWt8dJToscceAzBx4kQiWrx4MYDOnTubHdBBLi8vDwsLs+3ovvXWW2JM0r6bXBd0//33285/+NOf/gRg5cqVEuupqqp65plnlEqlUqkcO3ZsoRO3PiYTXb5cE0IimjOHpk4lX1+qrqZFi0jKR5P8EIqhCC8vr9zc3JKSksDAQABff/21g5rbvHkzAI1Gc+bMGZPJ1KVLFwBz5851UHMuYtWqVQAGDx5MRCtWrAAwZMgQWcVs3769a9eutU/b8vf3X7BgQXl5uaOb3rmTunWj4cOvh7Cyknr0IF9fWrWq5gCWXk9OPpVDfgiHDh0KYNasWUQ0e/ZsAP3793fo4EFMTAyARx99lIi2b9+uUCg8PDxO2I6UNUYlJSXe3t4KheL06dNFRUVeXl5KpdL5u4KFhYXx8fHiarKOHTt++umn33//vdhKA2jTpo3BYHDEHhARXblC48eTQkEAde5MS5fSkiU1/5WcTJGRtG8fDRpEAAHUrh2tWkXV1Y4o5CYkh3DTpk0A/Pz8CgsL8/PzmzdvDiAlJcWhjV64cKFFixYAvvrqKyJ6+umnAQwbNswuKy8tpYyM608zM6migi5doosXr7947JjzfsE2f/3rXwHMmzePiMaOHQtAr9c7swCj0diqVSsAarVap9PV7gIkJyeL62YAhIeHG41G+34KG43UsiUB5O5OOh3dovORnEy9etVEsUsXMhrJCWPJMkNotVp79+4N4J133iGi+Ph4AKNGjXJC0++99x6AkJCQkpKSK1eutGzZEsC6desavuY9ewig//635mm/fnTyJM2b96tzNoODJRyC27hxo+hsE9E333wDoGvXrs5pOisra9iwYSJjgwcPzszMJKLz58/PqfVDsVqtRqOxU6dO4m39+vWzywGzrCwaNqwmVIMHU2bmb3+JxUJr1lD79jVflR2bQDt2NLySW5AZwrVr14qdkPLy8rNnz3p4eCiVygO2kxccyWKxDBgwAMArr7xCRCtXrgQQGBjY8CMEe/ZQ374UHk7FxUSuFEKz2RwUFAQgLS2tvLxc9L0zam+1HaCqqkqv13t4eIiOn8FgsFqtZrN50aJFPj4+AP7zn//Ueb/BYGj9y22poqOj09LS6ts06fXk4VHT0zMY7mybZjLRkiX0yn17a3Zho6PJYT8raSGsqqoSQxErVqwgotjYWACxsbFOK+DQoUNqtVqlUqWnp1utVtE1feGFF+q8zWKxFBYWXrlyJTs7OysrKz29Yv9+Sk6m5GQyGsloJIOBDAZKTCS9nt56i/bsoUceoblz6eWXiWqFcPJkOny45l+rVhJCSEQvvfSS6AyL+w8AeOqppxzX3A8//CCOeykUitjYWHE9WkZGRr9+/UTGRo0addN+aVlZmV6vF10GhUIRExPz008/3VHTW7ZsGTNmG0AKBWm1Dfhpl5aSXk++vgSQUkkxMVTfC3pu4c5C+MWgYns1LHYIw8PDzWbz4cOHxUnV2c692u2VV16xHTM8fvy4Wq12c3Nr165daGion5+fr6/vjZdfdu5cJvZSbvqvWbOaEFZWUpcudODA9RD26kVxcTX/NBo5Idy/fz8ANze32jfaCQwMjI2NNRqN9jpDkIgKCgq0Wq1CoRAjQGLHsrS0VKfTqVQqAO3bt9+0adNvrkSn03l5eYlupFar/fnnn3+z6UuXLv3tb38DoFZrRoy4tmuXPb6fK1dIpyNPTwJIrSatlsRFBSUl9PXX9OGHlJrakNXfWQjXdmnQ76m0tLSwsDAnJ+fIkSOij/7ll18S0UMPPQTgpZdeasjK66GkpCQuLk4kv7q6uk2bNgG175kLiE9iPz8/f3//sLCwDh06jB5d0KcPRUdTdDSNGUMxMfTcc6TV0vTppNNRYmJNCIlo82YaPNiFdkcF0fsNCgpKTEzUarVt27a1fadubm5RUVF6vb7ee4BEZLVaV69eLX6MXl5eCQkJJpOJiNavXx8SEiJaiY+PLykpuc0V5uTkaLVaNzc3MbCk0+muXr16R03bzZkzFBtLSiUBNG8enTtH3brR9Om0bBkNH07PPktEdO4cbdpEv/X5Uscdh7D8kvXkWtNRQ+WRZZUZCyrS3674cVZ56ozyHVPKfphYtuWp0u+fLP3PpPQ+ffqEh4eHhYW1atXKz8/P3d29zh+3v79/x44drVarxWKZOXNmYGCg3Lu/iG5hSEhIZmbmmTNnCgsL/9cv+9ZsISSiMWPIw8OFQnjw4EG1Wq1QKL777jvbi0ePHtXr9dHR0Wq12vbbad++vVarNRqNxcV3sO9z8uRJsVcPYOjQoSdPniSi3Nzcxx9/XLwYFRV15MiRelSemZkZExMjNq3+/v56vb7OoGLtpkeOHHn69Ol6tHJbDh+m2FgqLaVnnrk+ymG1Up8+lJJCeXm0fTtt335Hq7zjEF5Oq17d7tqt/300+uiNO3Lik8zPzy84ODgkJESpVHp7e9u6BHIvda+oqGjXrh2Ajz/+uIGrysig556reZyTQ+HhdPo0LVlCSUnX39O7t4QzM0wmU0REBID4+PibvqGgoMBoNGq12ta1btft5eUVHR2t1+tvfflleXl5QkKC6GcGBQWtXr2aiMxmc1JSkjgA06JFi6SkJIvF0pBvYe/eveICNwBt27YVg4qiafEpb2vaGcLDf9U/fO01mj+/fmu64xCW5lpSZ5Tvn1OR/nbF4SWVR5ZVnlhtOrnWdPqrqrMbqnJTzD/vNJ/PKExLS8vMzMzOzr548WJhYeGN54XVHjGXbuHChQB69OjRwL+SG1VV0bx5tGePfddaHzNnzgQQFhb2m7uCFoslLS1Nr9dHRUXV7j2GhYVptdr169fX+W1u27ZN3ENEqVTGxsYWFBQQUVpamm3oLyYmxo67OZs2bRK3RxAliVsxKJXKyZMnO/WE2JAQys29/nTePHrttfqtyal9wtrqjJhLVFxcLDqov3mooB4WLSKAIiIkX8GXlpYmriDZcYdDXvn5+UajMTY21q/WPbw1Gk10dHRSUlJaWpo4rA0gMjJSXJ5y9epV22kxHTp02Lx5s92/HTGo2LFjR3d3d09Pz4iIiNSGHRqpj+hoqn1F2J//TGvW1G9N0kJIREuXLsUvI+Z2XO2dmjVrFoCBAwc6YuWVlRQeTgAtWOCI1d9mDZXdunVDw+7jajabd+zYMWPGDNtWCIA4gOzj47Nw4UJxutn69evFpkmcFuPQXobJZBLHTuvXe2+oTZsoIoKOHyeTidato44d633K6Z2F8Mphe55tZRsxnzp1qh1Xe0cuXbrUrFkzALt373ZQEykppFCQRkOOO1hwawkJKwF07drVXpHIzc394IMP7rvvPgCtW7cWHfvs7OwHHnhAhHPgwIHHjh2zS1s3unTpUnZ2tjitQhwLlXZl9uef06OP0r33klbbkN+u5HNHbSPmjj5143958cUXndA1ffJJAujBBx3ayM3t2EFqNQ0Z8uP+/fvtu+bdu3cDGDBggHgqrpAKCAhYtWqVQ8+/F8OAH330ERGJYQ9ZFyXai/yrKP7+978D6NevX7XTT2o+ffq0u7u7SqU66uD7GVy8SH5+BNDnnzu0nbpKS6ljRwLIEXd4zMjIANDrlzvIHzx4cPz48fW+TfPtE7OJfPDBB0QkzjUVYyG/X/Jvgz937ty77757//794l5MzvSPf/yjqqoqLi5OdJkcJzAQb78NAFOmoKjIoU39yvTpOHUKkZGYNcv+K/f09ARQ8csd5CMjI1esWHHj2Q4ObVf0CSulzi7YcPJDqNFo/vWvfwGYOXNmXl6e09o9fPiw0Wj09PRs+IwXt+O55/DHP+LCBbzxhhNaA4CtW/H++3B3x0cf4YZzJexAhMH5AagdvDofBL9T8kMIYOTIkaNHjy4uLhYnczrHq6++arVaJ02aJIbpHU2pxPvvQ63GihWVBw6cc3RzxcUYPx5EmD0bEREOaULWVoi3hI6ydOlSHx8fo9Eo7jjqaDt27Pjuu+98fX3FELZz9OiB2bNPBAT0ePbZxy0Wi0PbevllnD+PPn0wbZqjmpC1FRLtmkwmiTXYl6uEMCQk5M033wQwefLksrIyRzc3Y8YMANOnT7/LuZNmvvxyO5XKmpGRIS4icZANG7BqFTw8sHo1ap0Qame8JbQXVwkhgJdeeql3797nzp0TM1I4zn//+9/U1NRWrVqJa/mdydYBfv3113Nzcx3RRFkZtFoAmD8fDj3eJC7CNplMVqvVgc3cgPuEDqRSqQwGg0ql+uc//3no0CEHtWKxWN544w0As2fPFsP0TjZixIgxY8aUlJQ46CPA2xv/938YMwYvv+yI1f+KOGPbyRsi3hI6Vt++fV944YXq6urnn3/eQZ+vq1atOn78ePv27SeIydxlWLp0aYsWLb788sv169c3fG0WC/r2RXJyzdPERLi747PPoHT871ZKBhrfltBNdgF1zZ8//6uvvtq7d++KFSvEsOytFRUVWa3W4uJii8VSe1lSUlJdXS2WgwYNErP/VlZWihv+zp8//8ZLHJ0mKCjorbfeio+PnzJlytChQ8XFPvVGhBMnMHUq9u6FlxdyctCmjb0q/Q1SMtD4toQuF8LmzZu/++67Y8eO1el0o0ePFtc37N27V0zkIiJXe3k761y+fLkI4ZIlS3JyciIjI8U9/ySaNGnSunXrfvzxx9mzZ7/zzjv1WIPJhPJymExo0QLNmmH0aMyfjzlz7F7prUjJQO3xSd4SOkpMTMyoUaM2bNgwdepUMTlMSUlJWlraTd/crFkzNze3G5c+Pj5qtVos77nnHgDXrl1bsGABgAULFiidsK92S0ql0mAw9OnTJykp6dq1a506dSorK6uqqhLL8vJyk8kklsHB7x07Fl5RgcpKiKV4YHP8OADMmIFevTBunFO/CykZuHF3lLeEDvHee++lpKR8/PHHcXFx0dHRffr02bdvn1KpbN68uUqlqr28/XUmJiYWFBQMGjRo+PDhjqv89kVERDz55JNGo1Hcl/5/GTSoMj39Jq+7u8PbG+7uIAIAb2/o9Zg8GeHhjin3ZqRkgHdHnSQ0NPS1116bOXPm008/ffToUT8/v8jIyLKyMrPZXFpaWlBQUFpaauvy2ZZ1uoXFxcW2vdbCwsI9e/YoFAqxMXQRSUlJlZWV3t7erVq10mg0Hh4eYunl5eXp6SmWPj4BajU8PeHlVbP08IBGc30l1dU1Dx5/HCtWIDkZAwY4qX4+MGMXLhpCAFOnTl20aFFeXp6/vz+JT/uGCQwMLCkpad++fcNXZS9+fn6ffvqpHVe4ZAm6d7fj+n4DH5ixC9cNoVqtTkxMnDBhgkjgjR2/OvulzZs3VyqVvr6+YqlQKFq0aFF7OWfOnB07dkybNu2jjz6S/c3Zk0qFDz6oedyhA7ZsQdu2SEtDt27w8nJs07wltAvXDSGAZ5555uGHH7ZYLOKe7Q3UqVOnbt26rVmz5qmnnhLT9DYOCgUefvj606gorF2L8ePx5JNYtcqxTfOW0C5ca7D+RgEBAXZJIH7pZwJ48cUXf++/tluLjIRajX//+/oW0kF4iMIuXD2E9jVt2rTIyMisrCy9Xi+7Fgfq3h0ffggA8fHYv9+BDfEQhV00rRC6ubkZDAalUvn2229nZmbKLseB/vIXTJ4MkwlPPIH8fEe1UmdL6Jw0qlSqmTNnzpgxw2q18u7o71L//v0nTJhQVVUlJmCSXY4DLVqEgQORk4O//hUOunqxzpYwLi4uKipq586dDmmslvnz58+dO1epVBYWFgLIyspydIsO1eRCCCAxMbFVq1Y7duwQp+M0Vmo1jEa0bo2tWzF7tkOaqL03WFBQkJKSsmfPnsGDBz/xxBNO2NH46aefxM3yxBwVv2Ny7zMli4jfXXfdJe2Wlc6SkkJubqRQ0Bdf2HO1FRUVn332WdeuXQF07979zJkzRFRSUqLX68UFYkqlMiYmxkETs5SXl8+cOVPMYOPm5rbENjHL71MTDSERiVGK8ePHyy7E4RITSaWqHjHijVMNnuDSarVu37792WefFVMYABBzrbm7u8fHx4tPtMuXL+t0OnGpobu7u1arte98W3WmvnDCTRYdremGMCsry9PTU6FQbNu2TXYtjmW10sSJbwLo2bNnnRnFbl9mZmZCQoKYXFno2rWrXq9PT0/XarXiJF5vb2+dTidmZTl79qxWqxUnyvv4+Oh0ujuaZe2mLly4cOPUF41A0w0hEYm72oSHh984aVQjU1JSImauHjdu3B19YUFBgcFgiIqKsmWvbdu28fHxBw4cqP22Y8eOiWm2xE6+Xq8Xt9w/cuSI7fWWLVvq9fr6/ajFBKD+/v4ANBpNQkJCldwZduyqSYfQZDKJP825c+fKrsXhTpw4IXpr77///m++uaKiYv369TExMbaZQ319fWNjY5OTk29xi/vU1NTBgweL97dr185gMIi7qu/atUtMXAEgNDTUYDDc0RR0hw4duvfee8WXjxo16uzZs7f/tb8LTTqERLR9+3aFQuHh4XHixAnZtTjcJ598AkCtVv+v2W8sFsvOnTu1Wm3z5s3FH71KpYqOjl69enVpaelttpKcnNyzZ0/bLqvRaLS93qNHD/F69+7dba/fQllZmW0C0ODgYOdNAOpcTT2ERPT0008DGD58uOxCnGHKlCkAQkJC6hwWPnbsWEJCQu1LTMQFx/U7pmKxWIxGY1hYmFjVvffe+8MPP9hev/vuu8XrYlDxf63km2++CQ0NxS/T3De8S+myOIR05coVcYhv3bp1smtxuKqqKjFp9qBBg6qrq/Py8pKSkmp3+dq1a6fT6ewyxYrJZDIYDLZTf6Ojow8ePEhE5eXliYmJYtZRhULx/PPP1/nCvLw82wGYXr167du3r+HFuDIOIRHRypUrAQQGBopZ7xq3hx56SPx9azQa220+/P39J06cuHv3brvPaiYGD8X+rRg8zM7OJqLi4mIxqPjuu+/a3myxWAwGg+i7+vr6JiUlOX+uLufjEBIRWa3WoUOHAhDnsjViZrNZDPF5e3uL+CmVytWrV5tMJoe2m5+fX2fw8OLFi0SUm5trO16akZHxhz/8wXYA5vc+6+Dt4xDWOHnypLiltOOm7HUFKSkpALp167Z8+fJRo0aJvUSntX7u3DnboKIYPCwqKiKi0tJSnU4nXm/fvv3GjRudVpIr4BBeJ6427N69e2Mag6rj1VdfBTB9+nQiEv2uhQsXOrmGAwcOjBgxwjZ42LNnTzEjiJjmvqyszMn1SMchvK6iokLM/LpgwQLZtThK9+7dAWzbts1isYh7umZmZkqpZPfu3QMHDrQdEBowYMCRI0ekVCIdh/BXkpOTR4wY0fBzLF3T+fPnATRv3txkMu3du1fs+0msx2q16nS6rl27xsXFmc1miZXI5dL3mHG+6OjoxnT7mTo2btwIYNiwYe7u7ps2bQIwcuRIifUoFAq9Xt+473JwO5ri9YRN1rfffgvgwQcfrPOYyaWgRn11ObMxmUwBAQFlZWU5OTnu7u5BQUHu7u4FBQWa2jcSZjLwlrCpSN+1q7S0NDIysk2bNt9++63Vah0yZAgn0BVwn7Cp+OOGDebg4DNPPglg2/ffg/dFXQbvjjYZ4eH46Sfs2oV776W2ba8GB1cZjUG1LtJlsvCWsGk4cwY//QQ/P/Tvj9RUxcWL/r6+4AS6Bu4TNg0bNgDAAw/AzQ3ffgsAUgcnWG0cwqZBBE90Ajdtuv6YuQDuEzYBFRUICEBlJX7+GVYr2rSBRoOCAnh4yK6MAbwlbBK2bUN5Ofr2RWAgNm0CEe6/nxPoOjiETUDtfdHaj5lr4N3RJqBjR2RnY+9e9OqFli1RVISzZxEaKrssVoO3hI1dZiays9GyJfr2xa5dKCpC9+6cQJfC44SNnbs7Jk5E8+ZQKnlwwjVxCBu7Dh2wbFnN3Gg9emDoUIwaJbsm9ivcJ2zUCgsxeTIyM+HmBj8/LFuGjh1l18Tq4j5hozZpErp1w4ED2L8fL76Ixx931HShrAF4S9h4mUwICEBhIX6ZTwK9e+PDD4bRJZIAAAIlSURBVNG7t9SyWF28JWy8LlxAy5bXEwggNBQ5OfIKYjfHIWy8AgNRUACr9forly4hOFheQezmOISNl5cX+vfHunU1Tw8cwOXLiIiQWhO7Ce4TNmpZWXjsMXToAC8vHDmC5cvxxz/KronVxSFsAs6fh8mEsDCoVLJLYTfBIWRMMu4TMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJOMQMiYZh5AxyTiEjEnGIWRMMg4hY5JxCBmTjEPImGQcQsYk4xAyJhmHkDHJOISMScYhZEwyDiFjknEIGZOMQ8iYZBxCxiTjEDImGYeQMck4hIxJxiFkTDIOIWOScQgZk4xDyJhkHELGJPt/XYGBn/XK7fkAAAHZelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkABiKSBuYGRjSADSjMxsDhpAmpmFzSEDRDMzwgRMGRRACpDE0RSwM4AFmKBGMTGxM4AlmNkgNAsHhGbCYgW6UQpaYMfAtXCABf5jUYpuODcDIwMjUwYTE3MCMwsDM2sGEytbAht7BhM7hwIHJwMnFwMXtwI3jwYTN68CL18GEx9/Ar9ABpOAoIKgkAaToLCCgEiCiGgGk6iYgpi4BhM7Y4IYl4Iob4ITM9B4NkZ2NlZmJlZuLjFRXjY+fgERUV5xLUagUxlgAWq0IPlA3neGAyDOBe3uAycu2+4HsRVUdx/YX+cFZt9ouHIgVey7HYgtYst0sOzAXTDb4fHeA7wKz+1B7A8vew90lr4FswtkMg8oPBQBsy9qch4Q71EEsw8/WbP/Vq0K2MxHzBJ2jy+Jg9nJrzvsW/Mfg9mfPNXt93zyBbtn9m45hzsyi8DiVzOKHWwn/wGzV5QucohXmQ5mez1Y4NDIvBjsno6FJx326/eB7dLkOeFQz6XuAGKr/vjsUP70HFhNpHCug6N5M1jN3QnSDuLOeWDxnvBa+1myamDx8pSvdgFnmcF6xQClE3Wi7lQ+6AAAAlZ6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VUuO2zAM3ecUukAE/kUtupgkg+mgmARo096h+94fJWUk1hRC7YiJ5EdKfI90DiWv75dvv/+U50WXw6EU+M+n915+MQAcPkr+KKfXt/drOd9fTo+V8+3n9f6jkBSy8In7M/blfvt4rGA5lyNXVTOlcqQKqAhUoMK4dl9KpFSWDt3LEWqTgPICyYnU6uLkNJDh0m2BlERaNYFGHs/DQ/sqpJb3cvSK3DtiApkR+gJo296dAxnZVYfIbLV129IRFoeWQFWUVUTfGDIhttxaHdVgAezlmgSiMLYWzy2OKLIAImRIrKzQGJOgCK6iKyhGUIiYLjqoDHrAVvJg6oMVrJtzRm/NXHCF5HLL4ylLo0yNsHVZZYSpD4UqQLEcMSmqBFZsogaSg22mNnbvjUlWSmIqpBXidDaQGPz3tkK2DRkRWwrD6OzLzT1IshpNEbkHB4jgPHNUzl/fvuAT3iN/q6TJaqRnCICruAQBbNVIYBAZX9Dl37jHZ2DCQUIDCY1Si9iCVgVAtPHK0DAzJyZrvgJmK0Ht3m0ATdx9VaSxTWoqrWfLRRdrKLrK6fV6+dT/2xvhdLte9jdC3rS3fXBUeO9tybE3MMbQvU0lbtubMSal7S0nMXxvLIzR9/bBHHOX4DA4NQMOQ1PRUxrkqbhxrMhUxJIGdSrWnEYpTkUpabBNxYfD+FRllAb7VEg4lueKkfSiuSYkDdEkfk5D20llGkYmOSW42X00fXjigvLENOeZys465vzxrxC/D38Bto8xgj/LYxwAAAE0elRYdFNNSUxFUyByZGtpdCAyMDI1LjAzLjMAAHicHZA7jgJBDESvsiFoZyz/2xYiItoEDoCI5hocfssT+rmqutyPQ47j8nc9jkOej6c8LvfX9VCMl/fz9zPT+7V/sNeH3F8/38tuFJEZ267EErLddifzlm1nWg5iQEHlpXWy5u4ES0rnZRsTVtEjKxJrWIHMhPt0toFtQsWR64x385IhERIghiS1hC1KYrKVxE0KJJHjDiRkMc+hAtThMDJU5aHDUIBTt5sQZyeaCq2V5aPKMF9QGamsBlJUZh2N4nTcbGhnuob0MoUkiGHPIVJcJ9BlUwnFDJtbkjH3wiEiXDZAA402pRRG/m1RqrPPf7DzvGy0GJfBw9DqWcUY5ZjUNFdN365OWXO8V1UP8tVaimSOdtmu33/ZNmTgZjRMkAAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Solubility_Prediction
N#CCCCCCC(=O)O
79,713
{"log_s": 1.02, "solubility_mg_ml": 1.4639, "solubility_category": "Moderately soluble", "contributing_factors": {"molecular_weight": 141.17000000000002, "logp": 1.55, "oh_groups": 1, "nh_groups": 0, "cooh_groups": 1, "aromatic_rings": 0}}
141.17
1.54508
[ { "content": "What is the solubility prediction for the compound represented by 'N#CCCCCCC(=O)O'?", "role": "user" }, { "content": "{\"log_s\": 1.02, \"solubility_mg_ml\": 1.4639, \"solubility_category\": \"Moderately soluble\", \"contributing_factors\": {\"molecular_weight\": 141.17000000000002, \"logp\": 1.55, \"oh_groups\": 1, \"nh_groups\": 0, \"cooh_groups\": 1, \"aromatic_rings\": 0}}", "role": "assistant" } ]
Functional_Group_Identification
CC1=CC(C)(C)NC(=O)C1S(=O)(=O)c1ccc(C)cc1
1,492,582
{"amide": 1, "sulfone": 1, "phenyl": 1}
293.388
1.99202
[ { "content": "Determine the functional group identification of the chemical structure 'CC1=CC(C)(C)NC(=O)C1S(=O)(=O)c1ccc(C)cc1'.", "role": "user" }, { "content": "{\"amide\": 1, \"sulfone\": 1, \"phenyl\": 1}", "role": "assistant" } ]
IUPAC_Name_Generation
COc1ccc(N2NC(C(C)=O)=C3C(=O)N(c4ccc(Br)cc4)C(=O)C32)cc1
1,842,727
(6aR)-3-acetyl-5-(4-bromophenyl)-1-(4-methoxyphenyl)-2,6a-dihydropyrrolo[3,4-c]pyrazole-4,6-dione
442.269
2.5674
[ { "content": "What is the IUPAC name for the molecule with SMILES 'COc1ccc(N2NC(C(C)=O)=C3C(=O)N(c4ccc(Br)cc4)C(=O)C32)cc1'?", "role": "user" }, { "content": "(6aR)-3-acetyl-5-(4-bromophenyl)-1-(4-methoxyphenyl)-2,6a-dihydropyrrolo[3,4-c]pyrazole-4,6-dione", "role": "assistant" } ]
Stereochemistry_Analysis
CON=C1CC2C(CCC3(C)C(OC(C)=O)CCC23)c2ccc(OC(C)=O)cc21
632,127
{"chiral_centers": 5, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 5, "chiral_center_details": [{"atom_index": 5, "configuration": "?"}, {"atom_index": 6, "configuration": "?"}, {"atom_index": 9, "configuration": "?"}, {"atom_index": 11, "configuration": "?"}, {"atom_index": 18, "configuration": "?"}], "stereogenic_double_bonds": 1, "max_stereoisomers": 32, "potentially_meso": true, "stereochemistry_complexity": "High"}
399.487
4.2077
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'CON=C1CC2C(CCC3(C)C(OC(C)=O)CCC23)c2ccc(OC(C)=O)cc21'.", "role": "user" }, { "content": "{\"chiral_centers\": 5, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 5, \"chiral_center_details\": [{\"atom_index\": 5, \"configuration\": \"?\"}, {\"atom_index\": 6, \"configuration\": \"?\"}, {\"atom_index\": 9, \"configuration\": \"?\"}, {\"atom_index\": 11, \"configuration\": \"?\"}, {\"atom_index\": 18, \"configuration\": \"?\"}], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 32, \"potentially_meso\": true, \"stereochemistry_complexity\": \"High\"}", "role": "assistant" } ]
GHS_Hazard_Statement_Identification
COc1cccc(NC(=O)Cc2ccc(F)cc2)c1
798,578
["H301", "H350"]
259.28
3.0155
[ { "content": "List all GHS hazard statements (H-codes) that apply to the chemical 'COc1cccc(NC(=O)Cc2ccc(F)cc2)c1'.", "role": "user" }, { "content": "[\"H301\", \"H350\"]", "role": "assistant" } ]
Hydrogen_Bond_Properties
COc1cc(Br)c(Br)c(C=Nc2ccc3c(c2)OCCO3)c1O
1,513,713
{"donors": 1, "acceptors": 5}
443.091
4.4476
[ { "content": "How many hydrogen bond donors and acceptors are in the molecule with SMILES 'COc1cc(Br)c(Br)c(C=Nc2ccc3c(c2)OCCO3)c1O'?", "role": "user" }, { "content": "{\"donors\": 1, \"acceptors\": 5}", "role": "assistant" } ]
Functional_Group_Identification
COc1cc(Nc2nc(C)cc(C)n2)cc(OC)c1OC
124,689
{"ether": 3, "amine": 1, "phenyl": 1}
289.335
2.86284
[ { "content": "What is the functional group identification for the compound represented by 'COc1cc(Nc2nc(C)cc(C)n2)cc(OC)c1OC'?", "role": "user" }, { "content": "{\"ether\": 3, \"amine\": 1, \"phenyl\": 1}", "role": "assistant" } ]
Synthetic_Accessibility
CC1=CC(C)(C)NC(=O)C1S(=O)(=O)c1ccc(C)cc1
1,492,582
{'sa_score': 8.4, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
293.388
1.99202
[ { "content": "What is the synthetic accessibility for the compound represented by 'CC1=CC(C)(C)NC(=O)C1S(=O)(=O)c1ccc(C)cc1'?", "role": "user" }, { "content": "{'sa_score': 8.4, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Stereochemistry_Analysis
Cc1ccc(C=CC(=O)Nc2ccc(Cl)c(Cl)c2)cc1
917,667
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
306.192
4.95372
[ { "content": "Determine the stereochemistry analysis of the chemical structure 'Cc1ccc(C=CC(=O)Nc2ccc(Cl)c(Cl)c2)cc1'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Reactivity_Prediction
CCC(C)(O)C1=CC=CC1
114,436
{"charges": {"C": [{"atom_idx": 0, "charge": -0.062}, {"atom_idx": 2, "charge": 0.083}, {"atom_idx": 6, "charge": -0.06}, {"atom_idx": 7, "charge": -0.066}, {"atom_idx": 8, "charge": -0.08}], "O": [{"atom_idx": 4, "charge": -0.386}]}, "dipole": 1.38, "steric_hindrance": 2.0}
138.21
2.0337
[ { "content": "Determine the reactivity prediction of the chemical structure 'CCC(C)(O)C1=CC=CC1'.", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 0, \"charge\": -0.062}, {\"atom_idx\": 2, \"charge\": 0.083}, {\"atom_idx\": 6, \"charge\": -0.06}, {\"atom_idx\": 7, \"charge\": -0.066}, {\"atom_idx\": 8, \"charge\": -0.08}], \"O\": [{\"atom_idx\": 4, \"charge\": -0.386}]}, \"dipole\": 1.38, \"steric_hindrance\": 2.0}", "role": "assistant" } ]
Molecule_Visualization
COc1ccc(C=CC(C)=NOC(=O)c2cccc([N+](=O)[O-])c2)cc1
770,278
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAfm0lEQVR4nO3deVzUdf4H8NcMCCiCK+QBmhkqJoHKYWuL2mqkgZhaXpTa4eZmKZ3eppauYZli2Wq7aovlRR55VRpZBqaZOBiIJ5oHomjoiMo9798fXxr5eXLMzGfA1/PhHxwzn8+b8fGa+R6fQyciICJ19KoLILrbMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhDXKhx9+GBIS8scff6guhCqAIaxREhISkpOTV61apboQqgCGsEaJiooCsHz5ctWFUAXoRER1DWQxubm5jRo1KigoOH78eNOmTVWXQ+XCT8Iaxc3NrWfPniaTKT4+XnUtVF4MYU3DI9Jqh4ejNU1+fn7jxo2NRuPBgwd9fX1Vl0N3xk/CmsbFxaVPnz4AVq5cqboWKheGsAbSjkiXLVumuhAqFx6O1kDFxcVNmzY9e/ZsSkpKu3btVJdDd8BPwhrI0dHxqaeeAi/PVBMMYc1kvkbKIx37xxDWTKGhoc2bNz9x4sSOHTtU10J3wBDWTDqdrn///uARaXXACzM1lsFgCAoKatCgwenTpx0dHVWXQ7fET8IaKzAw0M/P79y5c1u3blVdC90OQ1iTDRgwADwitXs8HK3Jjhw50qpVK3d39zNnztSuXVt1OXRz/CSssfbs2ZOXlxcUFHTp0qVvv/1WdTl0SwxhzXTixInIyMhOnTo98sgj4BGpfXOYOnWq6hoqbOrUqWPHjj127JiTk5OHh4ezs7PqiuxLbm7uY489lpGR0bFjx+nTp8+bN+/w4cPZ2dnnz5/X6/Wenp56Pd987Uj1Oyf85JNPRo4cWfYnXl5ewX8KCQnx8vJSVZs9KCoqioyM3LJlS5s2bbZv375u3boXXnjB3d3daDRqD6hVq1arVq3Mr1hgYKCrq6vamu9y1SyESUlJYWFhBQUFvr6+oaGhqampaWlp+fn5ZR/j7e0dGBjYvn37wMDAwMBAHx8fVdUqMWLEiAULFjRo0GDHjh2nTp3q0aNHQUHByJEjmzRpYjAYDAbDkSNHyv6nOzg4+Pr6aq9V+/btg4KCPDw8FNZ/F6pOIczIyHj44YfPnTv36quvxsbGaj8sLi4+ePBgenr6vn37kpOTd+7cef78+bLPcnd3DwgICA4OfvDBB/38/Dp06FCDD19nzJgxceLE2rVrb926tV69eqGhoRcuXBgzZszMmTPNj8nNzT106JD2cmmuexfTjiy0lys4ONjPz0+n05l/azKZeDRrYVJNnD9/Xpsn3rNnz+Li4tjY2DNnztz0kRkZGatWrZo4cWJERIS3t/d1f6+Li0tAQIC/v//mzZtt/CdY2/LlK3Q6nV6vX7t2bXZ2dosWLQD069evpKTkNs8qKChITk5euHDhyJEjQ0ND69ate90rVr9+fU9Pz/nz54vIhAkTvL29jx49aqu/6a5QPUKYl5f3t7/9DUBQUNDly5fnzp0L4IEHHigsLLzjc3NychITE2NjY4cMGeLn52d+F69bt64NKreZxETx97/q7d0xNjb26tWrHTt2BNChQ4crV65UtKnMzMz169dPmTIlMjKycePG2svl4OBw4cKFp59+GsCMGTOs8SfctapBCE0m0zPPPAOgSZMmJ0+e3Lhxo4ODg06nW7JkSSVaMxqNy5Yt045Id+7cafFqlTh0SDw9BZDRo/NKSkr69u0L4P7777/VwUKFpKWleXp6Avjyyy83bNgAICAgoOrNklk1COHYsWMBuLu77927Nzk5WbuUN3369Kq0+eqrrwJ44403LFWkQufPi6+vABIRIUVFMnp0YUjIJA8PjwMHDliqi1mzZgHo379/YWGhFsjU1FRLNU72HsKFCxcCqFWr1pYtW06dOqUtaPv8889XrrWEhITw8PBFixbt3LkTgLe3d3FxsWULtrGCAunaVQAJCpLcXPn4YwGkTh1JSjpkwV4yMzP1er2Li4vRaHzxxRcBTJw40YLt3+XsOoRbt251cnICMH/+fKPR2LZtWwB///vfCwoKKtdgXFyc1oKItGzZEsCPP/5o0ZJtymSSwYMFkCZN5ORJ2bRJHB1Fp5NKHaffQZcuXQB8/vnn2pwMHx8fk8lk+W7uSvYbwn379v3lL3/R3nQLCwsfe+wxAH5+fhcuXKh0m5cuXapdu7Zerz916tSECRMA/POf/7RgzeWvQ9avl5Ur5dSpqjQzfrwA4uYmKSmSnCx16wog775rqSr/n/nz5wOIiIgoKSlp0qQJgF9++cUqPd197DSEp0+fbtasGYABAwaYTKaXXnoJQOPGjX///fcqtqytgDR79uz09HQAHh4elf5craSsLOnQQebOlcWLpWNHqexH8YED4ugotWrJ5s1y6pQ0bSqAREWJlT6fzp07V6tWLUdHx7Nnz7722msAXnvtNav0dPexxxBeuXLloYceAtCpU6e8vLzp06cDqF279o4dO6reuLZtWIcOHUTE398fwKZNm6rebAWMGSNxcaVfHzggnTpVuqVvv5XPPpNLl6RdOwHkkUckP98yNd5UeHg4gAULFvzyyy8AvLy8bHZGnZqaOmvWrOTkZNt0Z2N2F8Li4uLevXtrZx3Z2dkrV64034C2SPt5eXn16tUDcOjQoX/9618ABg8ebJGWyysiQvbtu/Zt8+aSnS0ffyxJSZKbW4n2nn1WAPHzkyocp5fLkiVLADzyyCMi0qpVKwBbt261bpciIrJ3717t0oB2kTw0NDQ6OvrTTz9NTEzMt+q7jq3YXQhHjRoFwNPT8+DBg4mJiS4uLgDmzp1rwS6GDh0KYNq0aRkZGTqdztXV9fLlyxZs/w4GDRLz/cmiImnZUtavF0AA0evF11cGDpSYGNm8OT/beNMGjh+XrKzSr48ckaNHJTxcjh2zeuHmM+qTJ09OnDgRwIsvvmjtTo1GY0BAAABHR8cGDRpcN5qndu3aHTp0GD58+IIFC3bu3Hn16lVr12MN9hXC2bNnayPLkpKSjhw5or3oFr928s0332gDbkTkr3/9K4D4+HjLdnE7S5bIiy+WnrotWiQvvyy7dsk//iHBweLsXJpGQIDRgd95eUlYmERHS1ycpKWVPmnECAkIEG2wUN++cvCg7Wrv168fgA8//FA7o65fv75Vz6gLCwu7d+8OoE2bNtnZ2XLr8U/mYT0+Pj6RkZFTpkxZv3792bNnrVebBdlRCOfMmaMNhfniiy/MI0UjIiIsfuJRVFTUsGFDAHv37tUGgvft29eyXdxOSYlMmiRhYRIeLkOGyMWL135VWCgpKfLZZxIdLV26BN93rkwkBZC//EWGDZMRIyQqSmJiRGwewtWrVwMICQkREe2O0YYNG6zX3YgRIwDcc889hw8fFpGvvvoqOjr6s88+S0lJ0UYsGo3Gbdu2xcbGPvvss+3atatVq9Z1H5XNmzfv06fPpEmTJk2adPr0aeuVWhX2EkKDwaC9q73zzjt5eXmhoaHaSNHcSp0m3ZH2vztu3LisrCwHBwdnZ+eq3Pkor9hYmT+/Qs/IzJT162XKFImMFB8fAWTwYBkxQn76SR56SI4ds3UIzWfUBw8efO+99wA8/fTTVuprxowZ112QGzZsmDldtWrV8vPzGzJkSGxs7HfffffHH3+ISGFhYVpaWlxcXHR09I2D0Zs1a2alUqvIXkL4/fffA9Dr9UVFRRcvXuzatWuzZs2s99b1008/af8rJpOpW7duAD777DMr9VVqzRrR60Wnk5SUSreRlSXHjsmIEfLzz7Jtm/Tta+sQisizzz6rvVceP37cemfU8fHxer1er9evXr3a/MOdO3fGxMQMHDiwdevW1x2I6vX61q1bDxo0aObMmVu2bNGOXUtKSvbv3798+fJnnnlGm421Z88ei5dadfYSQhG5//77AXzzzTciUlBQcMyalxpMJtN9990H4Oeff/7vf/8LoHv37tbrTnbvFldXAeS996remBZCERk6VJo0sXUItTWjtDPqhx9+GMCKFSss28Uvv/xSp04dAHPmzLnVY3Jzc5OSkubNmzds2LCgoCDz5VOzpk2b9urVa/LkyQaDQUSee+45AG+//bZlS7UIOwrhu+++C2Do0KG26e6tt94CMGrUqJycHGdnZwcHB4vMObiJY8ekUSMBZNgwi7RnDuHZs1K/vq1DWFRU1KhRIwAGg+Gjjz4C0Lt3bwu2n5GRoZ2xDx8+vEJVaQeiY8eOjYyM1EaZaxYvXiwiCQkJAFq0aGGHo+3sKIRHjhzR6XRubm62udCcnJwMoGHDhkVFRb169QIwb948y3djNEpAgADStavYeGiO1bz88ssAxowZc/bsWUdHRycnJ+2UrOrOnz/funVrAOHh4UVFRZVux2QyHT58OD4+fvz48YcOHRKRkpISbYb3r7/+apFSLciOQigiISEhAFatWmWb7tq0aQPgu+++0za1DQ0NtXAHhYUSFmajW+k2lJiYCODee+81mUxhYWEAFi1aVPVmCwoKunbtCiAwMNAaF+Sio6Nhl/PX7CuEH374IYCnnnrKNt1NmTIFwAsvvHDlypW6devqdDoLnoiaTKa148ebdDrx9pYTJyzVrD0wmUzNmzcHkJSUlJCQsGrVqqofvJhMpsGDBwPw9vY+efKkReq8jrZLnB3OX7OvEGZmZjo4OLi4uFwse/fMag4cOADA3d09Ly9v0KBBAGbOnGmpxrVT3Je6dZOaOOJx9OjRsOiIGW1Si5ubW0oVrh7fkX3OX7OvEIqItmJ0nHmIs5X169dv8uTJRqNx3bp1ABo1ahQbG7tt2zaj8eZDxsppxYoVOp3OwcHhq6++slSpduXHH38EoNPpoqKiyt49r5zFixcDcHR0tPbqW+PHj4eq+Wu3ZnchXLBgAYDHH3/cxv3OmDHDycnJwcHBfFXNy8vLPAAqIyOj/E399NNP2ho2H330kfUKVu66lezK3j1PTEws/0ndDz/8oN1g+Pe//23VgkXkt99+g5L5a7dld+uO5uTkeHl5mUymzMxM7VK1DaxatWrgwIH48/jKYDCkpaXl5eWVfUzjxo0Dy/Dx8Sm7GqeZeXHU119/XRsKW1NlZ2cvWrQIwN69e7U1hU0mk/m3er3e19fXvARzYGDgPffcc2Mj6enpoaGhFy9eHDdunDYEx9oCAgLS0tI2bdoUERFhg+7KRfW7wE1or44N3hc1u3bt0m4Nz5o1y/zD4uLitLS0+Ph4beW/G8fvu7m5hYaGDh8+XHvjz8vLE5Hz589rc3y0xVFtU7+dyM3N3b17t3nI2I07sXl5eYWFhUVHR8fFxaWlpZlMpqysLG3IRP/+/W+/OKoFadNTbT1/7bbsMYSff/45gM6dO9ugr6NHj2qft//4xz/u+MjVq1e//fbbkZGR2voOZTk7O2s7AWrf7tq1ywbF27PCwkKDwbB48eJRo0Z16tTJzc3tulfMw8NDu+kfGhqqvYXZhjZ/zc3NrRIrslqJPYbw8uXLrq6uOp2u6otZ3N4ff/xR6VvDFy5cMM+p0e43AtDpdNqg4fHjx1up5uqr7JrC2qY9jRs3dnd318Z5FhQUWOnOxI20dRtsOn/ttuwxhCLSv39/AB988IH1uigsLNSGbvv7+1f9jkjnzp21MP/vf/8DcN9999nh8Ci7curUKe2AIikpKSkpycPD49FHH7VN13PmzIGN56/dlp2GcM2aNQCCgoKs1L7JZBoyZAgAb2/vE5a4k/7pp58C6NGjh3louEVWxKnZxowZA+CVV14xGo0uLi56vT4zM9MG/Z4+fdp289fKwU5DmJ+fr613mJ6ebo32J02apF1c0YbYV11OTo6Tk5Ojo+OZM2fefPNNANHR0RZpuQYzGAwAGjRoUFRU1KdPH1h6HZPb0MbHWX3+WvnYaQjlz7knU6dOtXjLy5Yt0+6kr1+/3oLN9uzZE8Ann3yye/du7YTnbrtAWgl+fn4ANm/evHLlSgAdO3a0Tb//+c9/YO35a+VmvyHcvHkzgNatW2vfxsTElL17Xun5vj/++KN2J93icya++OILAJ06dRIRbW2OhIQEy3ZR87zzzjsAnnvuOW34LgBtJQtr045crDh/rSLsN4TFxcXaJWxtNrS2MdN1950iIiImTJjw5ZdfaneK79hmenp6/fr1AYwZM8biBZsv6h47dmzy5MkAhlloAmENduTIEQDu7u5Xr17V/otttu9aZGSkNd6LK8F+Qygir7zyCoBXX31VKnv3vKxz585p43fvuG9mpQ0YMADA+++/n56ertfpxoaG1pg5hNYTHBwMYM2aNRs3boSV910zmUzTpk3TPv2WLl0KoG3bthUak2gNdh3CFStWaEuvmw9E4+PjtcEWIpKRkbF69epJkyb17NnzpnfPg4OD16xZozVVxX0zy2nt2rUAxvbqJSJ53boJIOvWWamvGsOW+65pRyj+/v7FxcW7du1ydXXVRhGoXVPYfkNo/uC6cfmQBg0adO/efezYsStWrDhw4ID2sVb27rl5RUrthqzF9828lfz8/Ktt2wogBw7IzJkCyKBB1uuuZii779rw4cNhtX3Xli9frl2QW7dunXmbvebNm9+4p7qzs3NISEjquHHy73/Lzz/LrVayOnxYli6VzZureLxjpyG8btXDsoMttBPFsurWrRscHGwev69NML106VJiYqK27IK2gYll9828peefF0CmTpUTJ0Snkzp1Kre4/V1F23dtyZIlP/zwA6yz79q2bdvMF+Ryc3Pbt28PoHPnztqH3k3fwbMaNry25KuXl0RGypQpsn69aO/jy5ZJWJgsWSLTpkloqFRhWrM9hvC6/bFvfICWyZiYGO0lu242g6OjozanJiYmZuXKldqOTrVq1bLRtcotWwQQ7aJuaKgAsmyZLfqtzrR918LDw62075r5gtxbb71VXFz8xBNPAGjRooU2Yu5Gly5d2p6YKB99JM8/L4GB4uQk1y3D/MMP0rr1tYWbJ0+u6IqyZdljCMeNG4c/98cuz+MvXrxofhsLDg6+8fBVe5e1dtmliotL11bbs0fmzRNAevWyUdfVVtl9115//XVYdN8183nNU089VVJSMnLkSACenp7aAlDlUlQkaWkSFyfR0RIWJp6ecviwBAZee8CGDfLKK5Wu0O5CqE1R0/bHrlwLV65c2bFjx/z584cPH96kSRNHR8d+/fpZtsg7GDlSABk9WrKzS/cQPH/epgVUQ9q+a/Pnz9+1axcst+/a1atXtcVRQ0JCLl++rF0EcnFx2b59e+UbNZmkoEAeeODaT5YtkyoM2bevEG7detrJyQXAwoULLdVmUVGRrcdSb98ugNx7r5SUyGOPCSD//a9NC6iGtH3XunTpIpbbd62kpOTJJ580X5DbsGGDttnJ0qVLLVBxjx6lG7wWFUmPHpKUVOmW7CiEv/0m7u7SseOpSZOmqa6lakwmad5cAElMlMWLBZBu3VTXZO/K7rumjeyt+ipSb7zxBoB69eqlpqb++uuvrq6usOBaXidOSJ8+Eh4u3bpJ1Sag20sIT5+WZs0EkP79xVZzrK1p7FgB5OWX5cIFcXWV8HDhONI70fZdmzVr1v79+1Hlfde00aHaBbljx45pF9WtMoYpJ0cWLZIqTIa0ixBeuSIPPSSAdOokNpxjbU0Gg+h00qePiMilS6qrqR60fdeCg4Plz33XNm7cWLmmvv76a0dHR51OFxcXZzQatX3Re/ToUZVVvW/p6acFKN2qrlIqGMKSEvnoI3nySRk4UCy0Ol1JifTuLYD4+Eg12dSxfE6elMJCmTxZIiLk8cdl7lzhNN/bKrvv2qZNmzZv3ly5azOpqalaO1OnTi0sLHz00UcBPPjgg9aaPbhunQDSrl2lG6hgCN95R958UwoKJDtbOneWpCRJTZWYGKnCme6oUQKIp6etNzaxhXffFW3wR1GRDB4sNrtNUm1p+66NGzeu0i1kZmbee++9AAYNGlRSUqI16OXldfz4cQvW+f8UFIiHhwCSlla5BioYwlatrh0vfvONVPnUec4cAcTJSap8JcwutW0r5kWEU1LkiSeUVlMNxMXFAdDr9UOGDFm8ePGePXsqtKbwpUuX2rVrp11lzc/P17Y5qFOnjmVv/d/EsGECSGX3XatgCO+779rXe/dKr16yeLGEhclbb8nSpbJvX0UvP6xZI66u8vnnFaui2rj//muHoCdPSqdOSqupBvLy8swr1l03/qnsjry3cuHCha5du7Zp0yYnJ8c8UtQWi6AnJAggLVpU7oyjgiEsu7vQ6tUyalTpUEnzvzp1pGNHeemlFYsu79p1k6ssU6Zc25pBmzSflSUWneBuT7p1k/37S7/etMlS+xPWbJmZmR988MHMmTOjoqIeeOCBG3fk9fX1HTBgQExMzLfffnv2hqsIBQUFmZmZ5pGiH3/8sS2KLikRb28BpFL7rlUwhJ9+KlFRcvSo/PqrBAdLerpkZcmGDTJtmjz5ZOmu6oDJzV2vMwHi6CgBATJ0qMyeLT/8IBcvir+/PPJI6eelv7+IyMKFEhkpX35ZieLtXkKCdOkiCQmyYYOEhIh11sup2QoKCspuQ3/jmsL169fXZiFpawqXlJQYDAZtpOibb75pu0KjowWQSu27VvFl8DdtwjffoG5dDB0KP7/rf3vxIlJSLhw4++rPA1NSsH8/iouv/XLiRGzahEGD4OyM115DQABSUwFg2jS8/XbFqqg20tPx9ddwdkbv3mjWTHU11V5RUdH+/fsNBoPBYEhJSUlJSTEajWUfULduXW2+aN++fVetWnXdB6kV7dyJhx+Wli3l4MGKdmrdvSjy85GaCoOh9N+ECZgyBTt3olMnfPUVHn+8NIRGI+rVs14VVJOdPn06+U/p6elHjx4FUL9+/aNHj2oL9tmIyLK+fd/6/vvlGzdqO4tV6Lk21b69iMiWLfLMM6WHo0QWlJ6eHhcXd+O5og1Uet81W+/KFBgIgwEAoqLw8884ftyWnRNZUWpqatu2bT08PLKysm46n+5WbHXE/KfHHiv9YtYshIfjt9+QnGzjEoisIiAgwN/fPycnJyEhoUJPtHUI338fADIyUFKCLl3Qrh0mTrRxCUTWom26vnz58go9y9YhBDB7Nlq2xOzZCA+HkxO+/x5nz9q+CiLLi4qK0ul069atu3r1avmfpSCEXboAwMqVcHdH9+4oLsbq1bavgsjyfHx8OnTokJubu2nTpvI/S0EIQ0Lg64szZ7BtGwYNAoAKfnoT2a+oqChU8IhUQQgBDBwIAMuXo08fuLpi+3b8/ruSQogsbMCAAV26dNG2fC8nW9+i0Bw4gDZtUL8+srIwdCji4/H++xg92vaFEKmnJoQA2rfH3r1Yvx71dRdrzXqvrfPB2pu/UlIJkVrKQrh8bnbjrxYE+eXXmzMVXl7IycG+fTcZjEpU06k5JwQQ1Te/67ap9f43F4WF6N0bAOLjVRVDpJCyEKJZM3TsiKtXsXEjoqIAYOlSZcUQqaMuhEBp9pYvR7duaNQIR45gzx6V9RCpoDSEAwfC0RHffgujEf37A7xjSHcjpSFs2BB//zsKC7F2LaKioNcjM1NlPUQqKA0h/jwi3b0bDz+M48exbJnieohsTtktilK5uTh9Gs2bIyYGu3ejTh288krp6FKiu4PqEGqGD4efH6KjcfYsIiPx+ee8YUh3DzsIocmEli2RkQFtw90lS3DoEKZPV1wVka2oPicEkJsLNzeYt7xu3BjZ2UoLIrIpOwhhvXrIzUVBQem3hw7Bx0dpQUQ2ZQeHowDeew+//47Ro3H8ON54A999h4YNVddEZCP2EUIAa9di2zZ4eOCFF9C0qepqiGzHbkJIdLeyg3NCorsbQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpNj/ARDCwdqhlcmwAAAB13pUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJAEYikgbmBkY0gA0ozMHAwaQJqZic0BTLOwOWSAaGZGJAZUhgEmgGDAZCBmsUP4CDOh8sTYgWYZu4IW2Ei4Xg6wwH/seqAMbgZGBkYmBSbmDCZmlgQW1gwmVjYFNnYNJnYOBQ5OBg4uDSYubgVuHgUeXg0mHj4FPv4MJn6BBAHBDCZBoQQhYQVhEQ0mYVEFITGgTvEEcYkMJgmmBDG+BCdQ+LExSYizsjCz8QsIConxiZsxAt3HAAvX5neijobaggdAnA08fI7TfkbuB7FlvrxxuHJdEMxunHTWYb7JLTDbLneewz7lbWD29JV9Dl3qp3aD2Ms57B2eS/XagdiRjfIOAQtu2IPYy3Kb7A03/gGzhfax2aewRjqA2D+eydj+uBAGFr+ydvv+2Mp+MFtxltSB16vT94DYS1W/7X+nsR1s1/InFQdU2TrB5v827TmgMPs6WL1t9O4DjGt+g9k399w6MP1YCJht9PPUgalvRMF6z0a9OsBgfwfMVpt+64D3GQ+wfzkO8ByU09sBFn9/efaBcL44MNuIe51DX90EsDmlBncdIm9HgNliAFYKf0e3Qq97AAACa3pUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VS27cMAzdzyl0AQviV+Qii2QmTYsiM0Cb9A7d9/4oKSOx0gi1LUKSnyia71E+lbx+XL7//lPeL7ycTqW0/zzuXn5Ra+30XLJTHh6fvl3L+eX+4W3mfHu9vvwsKAU11sT9EXv/cnt+m4FyLl6pt05QNqyohgql1TauYymWW7Fq3Zr3srVqAqyyAFJ47JUb94g0gKLe8/0nIAdQKyMDcdmg9lhCq60lgFxdmpEkkBFddQHUAWQxbJhbt6agvgD2AGJ1Y28Ur7GL+MqhDRw7Yo9UVXUkxwXOAwe1gXmH6HhnkL7AQZAT04JKZIUqeXPhFRDKNafJqGVgRg64ihCSl8wJsUdoUAGb+SqLkMQEwxGayqCwAQOvmAHencbnNuTdfXNaflGSs1E1M5cMELUrrnQByc7GlQzEPLNpzLiMNOnZJCTG4TbzqQq23D0J2jTSIyI08gQgy919RxKjw65LE+Wl0lvkfuuVkMR2ZWLTThO0nL8+3cH7Ash0ZRTBJmQ2gDovhYeDLqvd1Yz2zJq3/q/v7XBOe9pMXWOjrDzt3FZawKwoSY8BGVKIzkquKKP0QlIwSti4Z1V/Bj5eLx9Oi/38eLhdL8f5kTcep0QMCh1nAWc7Kj5vOeo6BkWP6oVo/ahRjBYEf3m6w6MgIZofdQfZ5vrCnICPq2BEGQ9OZQPD0FQeOQztT1UAY0YmsXMa0EnUnAb6JF5OAzaJlNOAT2KENDhrDoeZRQVjBift8FhFkzY4UoY8KYDToExU5/CgBDNinL8qSZ4pzfHb7yT6p7/7Xz065dZVUgAAAT16VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwtkTluw0AMRa+S0kbGBPcFgiv19gGCVLpGDh9yklJP5F845/ui67pu5/M8b+f9+Xqft+f7fvE19Ov1+T2fX+/Hd7P7ddHHz61AAkPWg4E92deRkJG0HghppG7rCFDUHGJesQ4HZaXeIQjUXj4UyjB1iDLPjIJa8uwgOnmNMkOl1kLgMKsNtJhjEfSA1DoIkLIGVCj1RFuyi+QSkMKyISgp6Nw6KUUjPLaiVb1HjNlCXUfJ3HcAUlKkPdY2yDumYGkjgczsLB3Kw7kNHgqSZCPmqcpNrE+hOaTcaeS9vc1sZyAy20iUa1e2NNcxDBAWy30pRo//zSnSziShgxKiPPMvVhbtDOnlWyw9FLukzc+M3THT5xm6PcVk0MC+2v3nFwM8aiPhMdvqAAAAAElFTkSuQmCC</base64_image>
340.335
3.8495
[ { "content": "What is the molecule visualization for the compound represented by 'COc1ccc(C=CC(C)=NOC(=O)c2cccc([N+](=O)[O-])c2)cc1'?", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAfm0lEQVR4nO3deVzUdf4H8NcMCCiCK+QBmhkqJoHKYWuL2mqkgZhaXpTa4eZmKZ3eppauYZli2Wq7aovlRR55VRpZBqaZOBiIJ5oHomjoiMo9798fXxr5eXLMzGfA1/PhHxwzn8+b8fGa+R6fQyciICJ19KoLILrbMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhESKMYREijGERIoxhDXKhx9+GBIS8scff6guhCqAIaxREhISkpOTV61apboQqgCGsEaJiooCsHz5ctWFUAXoRER1DWQxubm5jRo1KigoOH78eNOmTVWXQ+XCT8Iaxc3NrWfPniaTKT4+XnUtVF4MYU3DI9Jqh4ejNU1+fn7jxo2NRuPBgwd9fX1Vl0N3xk/CmsbFxaVPnz4AVq5cqboWKheGsAbSjkiXLVumuhAqFx6O1kDFxcVNmzY9e/ZsSkpKu3btVJdDd8BPwhrI0dHxqaeeAi/PVBMMYc1kvkbKIx37xxDWTKGhoc2bNz9x4sSOHTtU10J3wBDWTDqdrn///uARaXXACzM1lsFgCAoKatCgwenTpx0dHVWXQ7fET8IaKzAw0M/P79y5c1u3blVdC90OQ1iTDRgwADwitXs8HK3Jjhw50qpVK3d39zNnztSuXVt1OXRz/CSssfbs2ZOXlxcUFHTp0qVvv/1WdTl0SwxhzXTixInIyMhOnTo98sgj4BGpfXOYOnWq6hoqbOrUqWPHjj127JiTk5OHh4ezs7PqiuxLbm7uY489lpGR0bFjx+nTp8+bN+/w4cPZ2dnnz5/X6/Wenp56Pd987Uj1Oyf85JNPRo4cWfYnXl5ewX8KCQnx8vJSVZs9KCoqioyM3LJlS5s2bbZv375u3boXXnjB3d3daDRqD6hVq1arVq3Mr1hgYKCrq6vamu9y1SyESUlJYWFhBQUFvr6+oaGhqampaWlp+fn5ZR/j7e0dGBjYvn37wMDAwMBAHx8fVdUqMWLEiAULFjRo0GDHjh2nTp3q0aNHQUHByJEjmzRpYjAYDAbDkSNHyv6nOzg4+Pr6aq9V+/btg4KCPDw8FNZ/F6pOIczIyHj44YfPnTv36quvxsbGaj8sLi4+ePBgenr6vn37kpOTd+7cef78+bLPcnd3DwgICA4OfvDBB/38/Dp06FCDD19nzJgxceLE2rVrb926tV69eqGhoRcuXBgzZszMmTPNj8nNzT106JD2cmmuexfTjiy0lys4ONjPz0+n05l/azKZeDRrYVJNnD9/Xpsn3rNnz+Li4tjY2DNnztz0kRkZGatWrZo4cWJERIS3t/d1f6+Li0tAQIC/v//mzZtt/CdY2/LlK3Q6nV6vX7t2bXZ2dosWLQD069evpKTkNs8qKChITk5euHDhyJEjQ0ND69ate90rVr9+fU9Pz/nz54vIhAkTvL29jx49aqu/6a5QPUKYl5f3t7/9DUBQUNDly5fnzp0L4IEHHigsLLzjc3NychITE2NjY4cMGeLn52d+F69bt64NKreZxETx97/q7d0xNjb26tWrHTt2BNChQ4crV65UtKnMzMz169dPmTIlMjKycePG2svl4OBw4cKFp59+GsCMGTOs8SfctapBCE0m0zPPPAOgSZMmJ0+e3Lhxo4ODg06nW7JkSSVaMxqNy5Yt045Id+7cafFqlTh0SDw9BZDRo/NKSkr69u0L4P7777/VwUKFpKWleXp6Avjyyy83bNgAICAgoOrNklk1COHYsWMBuLu77927Nzk5WbuUN3369Kq0+eqrrwJ44403LFWkQufPi6+vABIRIUVFMnp0YUjIJA8PjwMHDliqi1mzZgHo379/YWGhFsjU1FRLNU72HsKFCxcCqFWr1pYtW06dOqUtaPv8889XrrWEhITw8PBFixbt3LkTgLe3d3FxsWULtrGCAunaVQAJCpLcXPn4YwGkTh1JSjpkwV4yMzP1er2Li4vRaHzxxRcBTJw40YLt3+XsOoRbt251cnICMH/+fKPR2LZtWwB///vfCwoKKtdgXFyc1oKItGzZEsCPP/5o0ZJtymSSwYMFkCZN5ORJ2bRJHB1Fp5NKHaffQZcuXQB8/vnn2pwMHx8fk8lk+W7uSvYbwn379v3lL3/R3nQLCwsfe+wxAH5+fhcuXKh0m5cuXapdu7Zerz916tSECRMA/POf/7RgzeWvQ9avl5Ur5dSpqjQzfrwA4uYmKSmSnCx16wog775rqSr/n/nz5wOIiIgoKSlp0qQJgF9++cUqPd197DSEp0+fbtasGYABAwaYTKaXXnoJQOPGjX///fcqtqytgDR79uz09HQAHh4elf5craSsLOnQQebOlcWLpWNHqexH8YED4ugotWrJ5s1y6pQ0bSqAREWJlT6fzp07V6tWLUdHx7Nnz7722msAXnvtNav0dPexxxBeuXLloYceAtCpU6e8vLzp06cDqF279o4dO6reuLZtWIcOHUTE398fwKZNm6rebAWMGSNxcaVfHzggnTpVuqVvv5XPPpNLl6RdOwHkkUckP98yNd5UeHg4gAULFvzyyy8AvLy8bHZGnZqaOmvWrOTkZNt0Z2N2F8Li4uLevXtrZx3Z2dkrV64034C2SPt5eXn16tUDcOjQoX/9618ABg8ebJGWyysiQvbtu/Zt8+aSnS0ffyxJSZKbW4n2nn1WAPHzkyocp5fLkiVLADzyyCMi0qpVKwBbt261bpciIrJ3717t0oB2kTw0NDQ6OvrTTz9NTEzMt+q7jq3YXQhHjRoFwNPT8+DBg4mJiS4uLgDmzp1rwS6GDh0KYNq0aRkZGTqdztXV9fLlyxZs/w4GDRLz/cmiImnZUtavF0AA0evF11cGDpSYGNm8OT/beNMGjh+XrKzSr48ckaNHJTxcjh2zeuHmM+qTJ09OnDgRwIsvvmjtTo1GY0BAAABHR8cGDRpcN5qndu3aHTp0GD58+IIFC3bu3Hn16lVr12MN9hXC2bNnayPLkpKSjhw5or3oFr928s0332gDbkTkr3/9K4D4+HjLdnE7S5bIiy+WnrotWiQvvyy7dsk//iHBweLsXJpGQIDRgd95eUlYmERHS1ycpKWVPmnECAkIEG2wUN++cvCg7Wrv168fgA8//FA7o65fv75Vz6gLCwu7d+8OoE2bNtnZ2XLr8U/mYT0+Pj6RkZFTpkxZv3792bNnrVebBdlRCOfMmaMNhfniiy/MI0UjIiIsfuJRVFTUsGFDAHv37tUGgvft29eyXdxOSYlMmiRhYRIeLkOGyMWL135VWCgpKfLZZxIdLV26BN93rkwkBZC//EWGDZMRIyQqSmJiRGwewtWrVwMICQkREe2O0YYNG6zX3YgRIwDcc889hw8fFpGvvvoqOjr6s88+S0lJ0UYsGo3Gbdu2xcbGPvvss+3atatVq9Z1H5XNmzfv06fPpEmTJk2adPr0aeuVWhX2EkKDwaC9q73zzjt5eXmhoaHaSNHcSp0m3ZH2vztu3LisrCwHBwdnZ+eq3Pkor9hYmT+/Qs/IzJT162XKFImMFB8fAWTwYBkxQn76SR56SI4ds3UIzWfUBw8efO+99wA8/fTTVuprxowZ112QGzZsmDldtWrV8vPzGzJkSGxs7HfffffHH3+ISGFhYVpaWlxcXHR09I2D0Zs1a2alUqvIXkL4/fffA9Dr9UVFRRcvXuzatWuzZs2s99b1008/af8rJpOpW7duAD777DMr9VVqzRrR60Wnk5SUSreRlSXHjsmIEfLzz7Jtm/Tta+sQisizzz6rvVceP37cemfU8fHxer1er9evXr3a/MOdO3fGxMQMHDiwdevW1x2I6vX61q1bDxo0aObMmVu2bNGOXUtKSvbv3798+fJnnnlGm421Z88ei5dadfYSQhG5//77AXzzzTciUlBQcMyalxpMJtN9990H4Oeff/7vf/8LoHv37tbrTnbvFldXAeS996remBZCERk6VJo0sXUItTWjtDPqhx9+GMCKFSss28Uvv/xSp04dAHPmzLnVY3Jzc5OSkubNmzds2LCgoCDz5VOzpk2b9urVa/LkyQaDQUSee+45AG+//bZlS7UIOwrhu+++C2Do0KG26e6tt94CMGrUqJycHGdnZwcHB4vMObiJY8ekUSMBZNgwi7RnDuHZs1K/vq1DWFRU1KhRIwAGg+Gjjz4C0Lt3bwu2n5GRoZ2xDx8+vEJVaQeiY8eOjYyM1EaZaxYvXiwiCQkJAFq0aGGHo+3sKIRHjhzR6XRubm62udCcnJwMoGHDhkVFRb169QIwb948y3djNEpAgADStavYeGiO1bz88ssAxowZc/bsWUdHRycnJ+2UrOrOnz/funVrAOHh4UVFRZVux2QyHT58OD4+fvz48YcOHRKRkpISbYb3r7/+apFSLciOQigiISEhAFatWmWb7tq0aQPgu+++0za1DQ0NtXAHhYUSFmajW+k2lJiYCODee+81mUxhYWEAFi1aVPVmCwoKunbtCiAwMNAaF+Sio6Nhl/PX7CuEH374IYCnnnrKNt1NmTIFwAsvvHDlypW6devqdDoLnoiaTKa148ebdDrx9pYTJyzVrD0wmUzNmzcHkJSUlJCQsGrVqqofvJhMpsGDBwPw9vY+efKkReq8jrZLnB3OX7OvEGZmZjo4OLi4uFwse/fMag4cOADA3d09Ly9v0KBBAGbOnGmpxrVT3Je6dZOaOOJx9OjRsOiIGW1Si5ubW0oVrh7fkX3OX7OvEIqItmJ0nHmIs5X169dv8uTJRqNx3bp1ABo1ahQbG7tt2zaj8eZDxsppxYoVOp3OwcHhq6++slSpduXHH38EoNPpoqKiyt49r5zFixcDcHR0tPbqW+PHj4eq+Wu3ZnchXLBgAYDHH3/cxv3OmDHDycnJwcHBfFXNy8vLPAAqIyOj/E399NNP2ho2H330kfUKVu66lezK3j1PTEws/0ndDz/8oN1g+Pe//23VgkXkt99+g5L5a7dld+uO5uTkeHl5mUymzMxM7VK1DaxatWrgwIH48/jKYDCkpaXl5eWVfUzjxo0Dy/Dx8Sm7GqeZeXHU119/XRsKW1NlZ2cvWrQIwN69e7U1hU0mk/m3er3e19fXvARzYGDgPffcc2Mj6enpoaGhFy9eHDdunDYEx9oCAgLS0tI2bdoUERFhg+7KRfW7wE1or44N3hc1u3bt0m4Nz5o1y/zD4uLitLS0+Ph4beW/G8fvu7m5hYaGDh8+XHvjz8vLE5Hz589rc3y0xVFtU7+dyM3N3b17t3nI2I07sXl5eYWFhUVHR8fFxaWlpZlMpqysLG3IRP/+/W+/OKoFadNTbT1/7bbsMYSff/45gM6dO9ugr6NHj2qft//4xz/u+MjVq1e//fbbkZGR2voOZTk7O2s7AWrf7tq1ywbF27PCwkKDwbB48eJRo0Z16tTJzc3tulfMw8NDu+kfGhqqvYXZhjZ/zc3NrRIrslqJPYbw8uXLrq6uOp2u6otZ3N4ff/xR6VvDFy5cMM+p0e43AtDpdNqg4fHjx1up5uqr7JrC2qY9jRs3dnd318Z5FhQUWOnOxI20dRtsOn/ttuwxhCLSv39/AB988IH1uigsLNSGbvv7+1f9jkjnzp21MP/vf/8DcN9999nh8Ci7curUKe2AIikpKSkpycPD49FHH7VN13PmzIGN56/dlp2GcM2aNQCCgoKs1L7JZBoyZAgAb2/vE5a4k/7pp58C6NGjh3louEVWxKnZxowZA+CVV14xGo0uLi56vT4zM9MG/Z4+fdp289fKwU5DmJ+fr613mJ6ebo32J02apF1c0YbYV11OTo6Tk5Ojo+OZM2fefPNNANHR0RZpuQYzGAwAGjRoUFRU1KdPH1h6HZPb0MbHWX3+WvnYaQjlz7knU6dOtXjLy5Yt0+6kr1+/3oLN9uzZE8Ann3yye/du7YTnbrtAWgl+fn4ANm/evHLlSgAdO3a0Tb//+c9/YO35a+VmvyHcvHkzgNatW2vfxsTElL17Xun5vj/++KN2J93icya++OILAJ06dRIRbW2OhIQEy3ZR87zzzjsAnnvuOW34LgBtJQtr045crDh/rSLsN4TFxcXaJWxtNrS2MdN1950iIiImTJjw5ZdfaneK79hmenp6/fr1AYwZM8biBZsv6h47dmzy5MkAhlloAmENduTIEQDu7u5Xr17V/otttu9aZGSkNd6LK8F+Qygir7zyCoBXX31VKnv3vKxz585p43fvuG9mpQ0YMADA+++/n56ertfpxoaG1pg5hNYTHBwMYM2aNRs3boSV910zmUzTpk3TPv2WLl0KoG3bthUak2gNdh3CFStWaEuvmw9E4+PjtcEWIpKRkbF69epJkyb17NnzpnfPg4OD16xZozVVxX0zy2nt2rUAxvbqJSJ53boJIOvWWamvGsOW+65pRyj+/v7FxcW7du1ydXXVRhGoXVPYfkNo/uC6cfmQBg0adO/efezYsStWrDhw4ID2sVb27rl5RUrthqzF9828lfz8/Ktt2wogBw7IzJkCyKBB1uuuZii779rw4cNhtX3Xli9frl2QW7dunXmbvebNm9+4p7qzs3NISEjquHHy73/Lzz/LrVayOnxYli6VzZureLxjpyG8btXDsoMttBPFsurWrRscHGwev69NML106VJiYqK27IK2gYll9828peefF0CmTpUTJ0Snkzp1Kre4/V1F23dtyZIlP/zwA6yz79q2bdvMF+Ryc3Pbt28PoHPnztqH3k3fwbMaNry25KuXl0RGypQpsn69aO/jy5ZJWJgsWSLTpkloqFRhWrM9hvC6/bFvfICWyZiYGO0lu242g6OjozanJiYmZuXKldqOTrVq1bLRtcotWwQQ7aJuaKgAsmyZLfqtzrR918LDw62075r5gtxbb71VXFz8xBNPAGjRooU2Yu5Gly5d2p6YKB99JM8/L4GB4uQk1y3D/MMP0rr1tYWbJ0+u6IqyZdljCMeNG4c/98cuz+MvXrxofhsLDg6+8fBVe5e1dtmliotL11bbs0fmzRNAevWyUdfVVtl9115//XVYdN8183nNU089VVJSMnLkSACenp7aAlDlUlQkaWkSFyfR0RIWJp6ecviwBAZee8CGDfLKK5Wu0O5CqE1R0/bHrlwLV65c2bFjx/z584cPH96kSRNHR8d+/fpZtsg7GDlSABk9WrKzS/cQPH/epgVUQ9q+a/Pnz9+1axcst+/a1atXtcVRQ0JCLl++rF0EcnFx2b59e+UbNZmkoEAeeODaT5YtkyoM2bevEG7detrJyQXAwoULLdVmUVGRrcdSb98ugNx7r5SUyGOPCSD//a9NC6iGtH3XunTpIpbbd62kpOTJJ580X5DbsGGDttnJ0qVLLVBxjx6lG7wWFUmPHpKUVOmW7CiEv/0m7u7SseOpSZOmqa6lakwmad5cAElMlMWLBZBu3VTXZO/K7rumjeyt+ipSb7zxBoB69eqlpqb++uuvrq6usOBaXidOSJ8+Eh4u3bpJ1Sag20sIT5+WZs0EkP79xVZzrK1p7FgB5OWX5cIFcXWV8HDhONI70fZdmzVr1v79+1Hlfde00aHaBbljx45pF9WtMoYpJ0cWLZIqTIa0ixBeuSIPPSSAdOokNpxjbU0Gg+h00qePiMilS6qrqR60fdeCg4Plz33XNm7cWLmmvv76a0dHR51OFxcXZzQatX3Re/ToUZVVvW/p6acFKN2qrlIqGMKSEvnoI3nySRk4UCy0Ol1JifTuLYD4+Eg12dSxfE6elMJCmTxZIiLk8cdl7lzhNN/bKrvv2qZNmzZv3ly5azOpqalaO1OnTi0sLHz00UcBPPjgg9aaPbhunQDSrl2lG6hgCN95R958UwoKJDtbOneWpCRJTZWYGKnCme6oUQKIp6etNzaxhXffFW3wR1GRDB4sNrtNUm1p+66NGzeu0i1kZmbee++9AAYNGlRSUqI16OXldfz4cQvW+f8UFIiHhwCSlla5BioYwlatrh0vfvONVPnUec4cAcTJSap8JcwutW0r5kWEU1LkiSeUVlMNxMXFAdDr9UOGDFm8ePGePXsqtKbwpUuX2rVrp11lzc/P17Y5qFOnjmVv/d/EsGECSGX3XatgCO+779rXe/dKr16yeLGEhclbb8nSpbJvX0UvP6xZI66u8vnnFaui2rj//muHoCdPSqdOSqupBvLy8swr1l03/qnsjry3cuHCha5du7Zp0yYnJ8c8UtQWi6AnJAggLVpU7oyjgiEsu7vQ6tUyalTpUEnzvzp1pGNHeemlFYsu79p1k6ssU6Zc25pBmzSflSUWneBuT7p1k/37S7/etMlS+xPWbJmZmR988MHMmTOjoqIeeOCBG3fk9fX1HTBgQExMzLfffnv2hqsIBQUFmZmZ5pGiH3/8sS2KLikRb28BpFL7rlUwhJ9+KlFRcvSo/PqrBAdLerpkZcmGDTJtmjz5ZOmu6oDJzV2vMwHi6CgBATJ0qMyeLT/8IBcvir+/PPJI6eelv7+IyMKFEhkpX35ZieLtXkKCdOkiCQmyYYOEhIh11sup2QoKCspuQ3/jmsL169fXZiFpawqXlJQYDAZtpOibb75pu0KjowWQSu27VvFl8DdtwjffoG5dDB0KP7/rf3vxIlJSLhw4++rPA1NSsH8/iouv/XLiRGzahEGD4OyM115DQABSUwFg2jS8/XbFqqg20tPx9ddwdkbv3mjWTHU11V5RUdH+/fsNBoPBYEhJSUlJSTEajWUfULduXW2+aN++fVetWnXdB6kV7dyJhx+Wli3l4MGKdmrdvSjy85GaCoOh9N+ECZgyBTt3olMnfPUVHn+8NIRGI+rVs14VVJOdPn06+U/p6elHjx4FUL9+/aNHj2oL9tmIyLK+fd/6/vvlGzdqO4tV6Lk21b69iMiWLfLMM6WHo0QWlJ6eHhcXd+O5og1Uet81W+/KFBgIgwEAoqLw8884ftyWnRNZUWpqatu2bT08PLKysm46n+5WbHXE/KfHHiv9YtYshIfjt9+QnGzjEoisIiAgwN/fPycnJyEhoUJPtHUI338fADIyUFKCLl3Qrh0mTrRxCUTWom26vnz58go9y9YhBDB7Nlq2xOzZCA+HkxO+/x5nz9q+CiLLi4qK0ul069atu3r1avmfpSCEXboAwMqVcHdH9+4oLsbq1bavgsjyfHx8OnTokJubu2nTpvI/S0EIQ0Lg64szZ7BtGwYNAoAKfnoT2a+oqChU8IhUQQgBDBwIAMuXo08fuLpi+3b8/ruSQogsbMCAAV26dNG2fC8nW9+i0Bw4gDZtUL8+srIwdCji4/H++xg92vaFEKmnJoQA2rfH3r1Yvx71dRdrzXqvrfPB2pu/UlIJkVrKQrh8bnbjrxYE+eXXmzMVXl7IycG+fTcZjEpU06k5JwQQ1Te/67ap9f43F4WF6N0bAOLjVRVDpJCyEKJZM3TsiKtXsXEjoqIAYOlSZcUQqaMuhEBp9pYvR7duaNQIR45gzx6V9RCpoDSEAwfC0RHffgujEf37A7xjSHcjpSFs2BB//zsKC7F2LaKioNcjM1NlPUQqKA0h/jwi3b0bDz+M48exbJnieohsTtktilK5uTh9Gs2bIyYGu3ejTh288krp6FKiu4PqEGqGD4efH6KjcfYsIiPx+ee8YUh3DzsIocmEli2RkQFtw90lS3DoEKZPV1wVka2oPicEkJsLNzeYt7xu3BjZ2UoLIrIpOwhhvXrIzUVBQem3hw7Bx0dpQUQ2ZQeHowDeew+//47Ro3H8ON54A999h4YNVddEZCP2EUIAa9di2zZ4eOCFF9C0qepqiGzHbkJIdLeyg3NCorsbQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpBhDSKQYQ0ikGENIpNj/ARDCwdqhlcmwAAAB13pUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJAEYikgbmBkY0gA0ozMHAwaQJqZic0BTLOwOWSAaGZGJAZUhgEmgGDAZCBmsUP4CDOh8sTYgWYZu4IW2Ei4Xg6wwH/seqAMbgZGBkYmBSbmDCZmlgQW1gwmVjYFNnYNJnYOBQ5OBg4uDSYubgVuHgUeXg0mHj4FPv4MJn6BBAHBDCZBoQQhYQVhEQ0mYVEFITGgTvEEcYkMJgmmBDG+BCdQ+LExSYizsjCz8QsIConxiZsxAt3HAAvX5neijobaggdAnA08fI7TfkbuB7FlvrxxuHJdEMxunHTWYb7JLTDbLneewz7lbWD29JV9Dl3qp3aD2Ms57B2eS/XagdiRjfIOAQtu2IPYy3Kb7A03/gGzhfax2aewRjqA2D+eydj+uBAGFr+ydvv+2Mp+MFtxltSB16vT94DYS1W/7X+nsR1s1/InFQdU2TrB5v827TmgMPs6WL1t9O4DjGt+g9k399w6MP1YCJht9PPUgalvRMF6z0a9OsBgfwfMVpt+64D3GQ+wfzkO8ByU09sBFn9/efaBcL44MNuIe51DX90EsDmlBncdIm9HgNliAFYKf0e3Qq97AAACa3pUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VS27cMAzdzyl0AQviV+Qii2QmTYsiM0Cb9A7d9/4oKSOx0gi1LUKSnyia71E+lbx+XL7//lPeL7ycTqW0/zzuXn5Ra+30XLJTHh6fvl3L+eX+4W3mfHu9vvwsKAU11sT9EXv/cnt+m4FyLl6pt05QNqyohgql1TauYymWW7Fq3Zr3srVqAqyyAFJ47JUb94g0gKLe8/0nIAdQKyMDcdmg9lhCq60lgFxdmpEkkBFddQHUAWQxbJhbt6agvgD2AGJ1Y28Ur7GL+MqhDRw7Yo9UVXUkxwXOAwe1gXmH6HhnkL7AQZAT04JKZIUqeXPhFRDKNafJqGVgRg64ihCSl8wJsUdoUAGb+SqLkMQEwxGayqCwAQOvmAHencbnNuTdfXNaflGSs1E1M5cMELUrrnQByc7GlQzEPLNpzLiMNOnZJCTG4TbzqQq23D0J2jTSIyI08gQgy919RxKjw65LE+Wl0lvkfuuVkMR2ZWLTThO0nL8+3cH7Ash0ZRTBJmQ2gDovhYeDLqvd1Yz2zJq3/q/v7XBOe9pMXWOjrDzt3FZawKwoSY8BGVKIzkquKKP0QlIwSti4Z1V/Bj5eLx9Oi/38eLhdL8f5kTcep0QMCh1nAWc7Kj5vOeo6BkWP6oVo/ahRjBYEf3m6w6MgIZofdQfZ5vrCnICPq2BEGQ9OZQPD0FQeOQztT1UAY0YmsXMa0EnUnAb6JF5OAzaJlNOAT2KENDhrDoeZRQVjBift8FhFkzY4UoY8KYDToExU5/CgBDNinL8qSZ4pzfHb7yT6p7/7Xz065dZVUgAAAT16VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwtkTluw0AMRa+S0kbGBPcFgiv19gGCVLpGDh9yklJP5F845/ui67pu5/M8b+f9+Xqft+f7fvE19Ov1+T2fX+/Hd7P7ddHHz61AAkPWg4E92deRkJG0HghppG7rCFDUHGJesQ4HZaXeIQjUXj4UyjB1iDLPjIJa8uwgOnmNMkOl1kLgMKsNtJhjEfSA1DoIkLIGVCj1RFuyi+QSkMKyISgp6Nw6KUUjPLaiVb1HjNlCXUfJ3HcAUlKkPdY2yDumYGkjgczsLB3Kw7kNHgqSZCPmqcpNrE+hOaTcaeS9vc1sZyAy20iUa1e2NNcxDBAWy30pRo//zSnSziShgxKiPPMvVhbtDOnlWyw9FLukzc+M3THT5xm6PcVk0MC+2v3nFwM8aiPhMdvqAAAAAElFTkSuQmCC</base64_image>", "role": "assistant" } ]
Drug_Likeness_Assessment
Cc1cc(I)ccc1NCN1C(=O)c2ccc([N+](=O)[O-])cc2C1=O
1,070,737
{"molecular_weight": 437.19, "logp": 3.17, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 5, "rotatable_bonds": 4, "topological_polar_surface_area": 92.55, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
437.193
3.17342
[ { "content": "What is the drug likeness assessment for the compound represented by 'Cc1cc(I)ccc1NCN1C(=O)c2ccc([N+](=O)[O-])cc2C1=O'?", "role": "user" }, { "content": "{\"molecular_weight\": 437.19, \"logp\": 3.17, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 5, \"rotatable_bonds\": 4, \"topological_polar_surface_area\": 92.55, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
GHS_Pictogram_Identification
Cc1cc(OCC(=O)Nc2nc(-c3ccc(Br)cc3)cs2)ccc1[N+](=O)[O-]
1,406,869
["GHS01", "GHS03", "GHS06", "GHS08", "GHS09"]
448.298
4.80672
[ { "content": "List all appropriate GHS hazard pictograms for the molecule represented by 'Cc1cc(OCC(=O)Nc2nc(-c3ccc(Br)cc3)cs2)ccc1[N+](=O)[O-]'.", "role": "user" }, { "content": "[\"GHS01\", \"GHS03\", \"GHS06\", \"GHS08\", \"GHS09\"]", "role": "assistant" } ]
Drug_Likeness_Assessment
Cc1cc(C)cc(Oc2c(C(F)(F)F)oc3cc(OCC(=O)Nc4cccc5ccccc45)ccc3c2=O)c1
1,681,320
{"molecular_weight": 533.5, "logp": 7.39, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 5, "rotatable_bonds": 6, "topological_polar_surface_area": 77.77, "lipinski_violations": ["MW>500", "LogP>5"], "violation_count": 2, "drug_like": false, "assessment": "Not drug-like"}
533.502
7.39164
[ { "content": "Determine the drug likeness assessment of the chemical structure 'Cc1cc(C)cc(Oc2c(C(F)(F)F)oc3cc(OCC(=O)Nc4cccc5ccccc45)ccc3c2=O)c1'.", "role": "user" }, { "content": "{\"molecular_weight\": 533.5, \"logp\": 7.39, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 5, \"rotatable_bonds\": 6, \"topological_polar_surface_area\": 77.77, \"lipinski_violations\": [\"MW>500\", \"LogP>5\"], \"violation_count\": 2, \"drug_like\": false, \"assessment\": \"Not drug-like\"}", "role": "assistant" } ]
Reactivity_Prediction
COc1ccc(C(=O)N(C)c2nc3c(s2)CCCC3)cc1
1,485,670
{"charges": {"C": [{"atom_idx": 0, "charge": 0.078}, {"atom_idx": 2, "charge": 0.118}, {"atom_idx": 6, "charge": 0.259}, {"atom_idx": 10, "charge": 0.192}, {"atom_idx": 12, "charge": 0.057}], "O": [{"atom_idx": 1, "charge": -0.497}, {"atom_idx": 7, "charge": -0.269}], "N": [{"atom_idx": 8, "charge": -0.287}, {"atom_idx": 11, "charge": -0.225}], "S": [{"atom_idx": 14, "charge": -0.101}]}, "dipole": 3.02, "steric_hindrance": 3.33}
302.399
3.3071
[ { "content": "What is the reactivity prediction for the compound represented by 'COc1ccc(C(=O)N(C)c2nc3c(s2)CCCC3)cc1'?", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 0, \"charge\": 0.078}, {\"atom_idx\": 2, \"charge\": 0.118}, {\"atom_idx\": 6, \"charge\": 0.259}, {\"atom_idx\": 10, \"charge\": 0.192}, {\"atom_idx\": 12, \"charge\": 0.057}], \"O\": [{\"atom_idx\": 1, \"charge\": -0.497}, {\"atom_idx\": 7, \"charge\": -0.269}], \"N\": [{\"atom_idx\": 8, \"charge\": -0.287}, {\"atom_idx\": 11, \"charge\": -0.225}], \"S\": [{\"atom_idx\": 14, \"charge\": -0.101}]}, \"dipole\": 3.02, \"steric_hindrance\": 3.33}", "role": "assistant" } ]
IUPAC_Name_Generation
O=C(NC(Nc1ccccc1F)C(Cl)(Cl)Cl)c1cccs1
1,100,407
N-[(1R)-2,2,2-trichloro-1-(2-fluoroanilino)ethyl]thiophene-2-carboxamide
367.66
4.4254
[ { "content": "Generate the IUPAC nomenclature for the chemical with structure 'O=C(NC(Nc1ccccc1F)C(Cl)(Cl)Cl)c1cccs1'.", "role": "user" }, { "content": "N-[(1R)-2,2,2-trichloro-1-(2-fluoroanilino)ethyl]thiophene-2-carboxamide", "role": "assistant" } ]
Solubility_Prediction
COC(=O)c1ccc(NC(=O)CSc2nnc(-c3ccccc3)n2-c2ccccc2)cc1
1,310,629
{"log_s": -5.17, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 444.5160000000001, "logp": 4.45, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 4}}
444.516
4.4517
[ { "content": "What is the solubility prediction for the compound represented by 'COC(=O)c1ccc(NC(=O)CSc2nnc(-c3ccccc3)n2-c2ccccc2)cc1'?", "role": "user" }, { "content": "{\"log_s\": -5.17, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 444.5160000000001, \"logp\": 4.45, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 4}}", "role": "assistant" } ]
Drug_Likeness_Assessment
O=C(Nc1cccc2ncccc12)c1ccc(Cl)c(Cl)c1
952,465
{"molecular_weight": 317.18, "logp": 4.79, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 2, "rotatable_bonds": 2, "topological_polar_surface_area": 41.99, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
317.175
4.7939
[ { "content": "What is the drug likeness assessment for the compound represented by 'O=C(Nc1cccc2ncccc12)c1ccc(Cl)c(Cl)c1'?", "role": "user" }, { "content": "{\"molecular_weight\": 317.18, \"logp\": 4.79, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 2, \"rotatable_bonds\": 2, \"topological_polar_surface_area\": 41.99, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Stereochemistry_Analysis
O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1
797,349
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
345.354
4.7018
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Stereochemistry_Analysis
Cc1ccc(C)c(N=C2SC(=Cc3cn(Cc4ccccc4C#N)c4ccccc34)C(=O)N2C)c1
1,814,965
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 2, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
476.605
6.41192
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'Cc1ccc(C)c(N=C2SC(=Cc3cn(Cc4ccccc4C#N)c4ccccc34)C(=O)N2C)c1'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 2, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Functional_Group_Identification
Nc1c(Cl)cncc1Cl
89,888
{"amine": 1, "halogen": 2}
163.007
1.9706
[ { "content": "Determine the functional group identification of the chemical structure 'Nc1c(Cl)cncc1Cl'.", "role": "user" }, { "content": "{\"amine\": 1, \"halogen\": 2}", "role": "assistant" } ]
Bioactivity_Prediction
O=C(NC(Nc1ccccc1F)C(Cl)(Cl)Cl)c1cccs1
1,100,407
{"predicted_classes": ["gpcr_ligand", "enzyme_inhibitor"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 1, "enzyme_inhibitor": 1, "ion_channel_modulator": 0}, "bioactivity_likelihood": "High", "drug_like_properties": {"molecular_weight": 367.66, "logp": 4.43, "hbd": 2, "hba": 3}, "structural_complexity": "Medium"}
367.66
4.4254
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'O=C(NC(Nc1ccccc1F)C(Cl)(Cl)Cl)c1cccs1'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"gpcr_ligand\", \"enzyme_inhibitor\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 1, \"enzyme_inhibitor\": 1, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"High\", \"drug_like_properties\": {\"molecular_weight\": 367.66, \"logp\": 4.43, \"hbd\": 2, \"hba\": 3}, \"structural_complexity\": \"Medium\"}", "role": "assistant" } ]
Reactivity_Prediction
CCOC(=O)c1ccc2nc(C)cc(Nc3cccc(C)c3)c2c1
731,027
{"charges": {"C": [{"atom_idx": 1, "charge": 0.089}, {"atom_idx": 3, "charge": 0.338}, {"atom_idx": 5, "charge": 0.06}, {"atom_idx": 8, "charge": 0.073}, {"atom_idx": 17, "charge": -0.06}, {"atom_idx": 18, "charge": -0.059}], "O": [{"atom_idx": 2, "charge": -0.462}, {"atom_idx": 4, "charge": -0.246}], "N": [{"atom_idx": 9, "charge": -0.253}, {"atom_idx": 14, "charge": -0.355}]}, "dipole": 3.2, "steric_hindrance": 3.33}
320.392
4.77194
[ { "content": "What is the reactivity prediction for the compound represented by 'CCOC(=O)c1ccc2nc(C)cc(Nc3cccc(C)c3)c2c1'?", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 1, \"charge\": 0.089}, {\"atom_idx\": 3, \"charge\": 0.338}, {\"atom_idx\": 5, \"charge\": 0.06}, {\"atom_idx\": 8, \"charge\": 0.073}, {\"atom_idx\": 17, \"charge\": -0.06}, {\"atom_idx\": 18, \"charge\": -0.059}], \"O\": [{\"atom_idx\": 2, \"charge\": -0.462}, {\"atom_idx\": 4, \"charge\": -0.246}], \"N\": [{\"atom_idx\": 9, \"charge\": -0.253}, {\"atom_idx\": 14, \"charge\": -0.355}]}, \"dipole\": 3.2, \"steric_hindrance\": 3.33}", "role": "assistant" } ]
Synthetic_Accessibility
COc1cc(Nc2nc(C)cc(C)n2)cc(OC)c1OC
124,689
{'sa_score': 8.6, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
289.335
2.86284
[ { "content": "Provide information about Synthetic_Accessibility for the molecule with SMILES 'COc1cc(Nc2nc(C)cc(C)n2)cc(OC)c1OC'.", "role": "user" }, { "content": "{'sa_score': 8.6, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCCc1cc(=O)oc2cc(C)cc(OC(=O)CCCNS(=O)(=O)c3ccc(C)cc3)c12
1,752,430
457.55
457.548
4.02644
[ { "content": "Determine the molecular weight (in g/mol) of the chemical with structure 'CCCc1cc(=O)oc2cc(C)cc(OC(=O)CCCNS(=O)(=O)c3ccc(C)cc3)c12'.", "role": "user" }, { "content": "457.55", "role": "assistant" } ]
GHS_Pictogram_Identification
CCCCCCCCS(=O)(=O)c1ccc2c(c1)C(=O)c1nc3c(OC)cccc3c(=O)n1-2
505,806
["GHS08", "GHS09"]
454.548
4.0729
[ { "content": "Identify the GHS pictograms that apply to the compound with SMILES 'CCCCCCCCS(=O)(=O)c1ccc2c(c1)C(=O)c1nc3c(OC)cccc3c(=O)n1-2'.", "role": "user" }, { "content": "[\"GHS08\", \"GHS09\"]", "role": "assistant" } ]
Solubility_Prediction
C=CCC(CC=C)(CC=C)C(=O)CC
278,956
{"log_s": -1.76, "solubility_mg_ml": 0.0033, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 192.30199999999994, "logp": 3.68, "oh_groups": 0, "nh_groups": 0, "cooh_groups": 0, "aromatic_rings": 0}}
192.302
3.6802
[ { "content": "What is the solubility prediction for the compound represented by 'C=CCC(CC=C)(CC=C)C(=O)CC'?", "role": "user" }, { "content": "{\"log_s\": -1.76, \"solubility_mg_ml\": 0.0033, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 192.30199999999994, \"logp\": 3.68, \"oh_groups\": 0, \"nh_groups\": 0, \"cooh_groups\": 0, \"aromatic_rings\": 0}}", "role": "assistant" } ]
Reactivity_Prediction
CCOc1cc(C2C3=C(CC(C)(C)CC3=O)NC3=C2C(=O)CC(C)(C)C3)cc(Cl)c1O
1,340,584
{"charges": {"C": [{"atom_idx": 1, "charge": 0.086}, {"atom_idx": 3, "charge": 0.162}, {"atom_idx": 11, "charge": -0.059}, {"atom_idx": 12, "charge": -0.059}, {"atom_idx": 14, "charge": 0.162}, {"atom_idx": 19, "charge": 0.162}, {"atom_idx": 23, "charge": -0.059}, {"atom_idx": 24, "charge": -0.059}, {"atom_idx": 27, "charge": 0.087}, {"atom_idx": 29, "charge": 0.176}], "O": [{"atom_idx": 2, "charge": -0.49}, {"atom_idx": 15, "charge": -0.294}, {"atom_idx": 20, "charge": -0.294}, {"atom_idx": 30, "charge": -0.503}], "N": [{"atom_idx": 16, "charge": -0.362}], "Cl": [{"atom_idx": 28, "charge": -0.08}]}, "dipole": 4.43, "steric_hindrance": 4.19}
443.971
5.4175
[ { "content": "Determine the reactivity prediction of the chemical structure 'CCOc1cc(C2C3=C(CC(C)(C)CC3=O)NC3=C2C(=O)CC(C)(C)C3)cc(Cl)c1O'.", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 1, \"charge\": 0.086}, {\"atom_idx\": 3, \"charge\": 0.162}, {\"atom_idx\": 11, \"charge\": -0.059}, {\"atom_idx\": 12, \"charge\": -0.059}, {\"atom_idx\": 14, \"charge\": 0.162}, {\"atom_idx\": 19, \"charge\": 0.162}, {\"atom_idx\": 23, \"charge\": -0.059}, {\"atom_idx\": 24, \"charge\": -0.059}, {\"atom_idx\": 27, \"charge\": 0.087}, {\"atom_idx\": 29, \"charge\": 0.176}], \"O\": [{\"atom_idx\": 2, \"charge\": -0.49}, {\"atom_idx\": 15, \"charge\": -0.294}, {\"atom_idx\": 20, \"charge\": -0.294}, {\"atom_idx\": 30, \"charge\": -0.503}], \"N\": [{\"atom_idx\": 16, \"charge\": -0.362}], \"Cl\": [{\"atom_idx\": 28, \"charge\": -0.08}]}, \"dipole\": 4.43, \"steric_hindrance\": 4.19}", "role": "assistant" } ]
IUPAC_Name_Generation
Cc1cc(I)ccc1NCN1C(=O)c2ccc([N+](=O)[O-])cc2C1=O
1,070,737
2-[(4-iodo-2-methylanilino)methyl]-5-nitroisoindole-1,3-dione
437.193
3.17342
[ { "content": "Convert this SMILES representation 'Cc1cc(I)ccc1NCN1C(=O)c2ccc([N+](=O)[O-])cc2C1=O' to its proper IUPAC name.", "role": "user" }, { "content": "2-[(4-iodo-2-methylanilino)methyl]-5-nitroisoindole-1,3-dione", "role": "assistant" } ]
Molecular_Weight_Calculation
CCC(c1nnnn1Cc1ccccc1)N(Cc1ccc2c(c1)OCO2)Cc1cc2ccc(OC)cc2[nH]c1=O
1,464,800
538.61
538.608
4.4537
[ { "content": "What is the molar mass of the substance with SMILES 'CCC(c1nnnn1Cc1ccccc1)N(Cc1ccc2c(c1)OCO2)Cc1cc2ccc(OC)cc2[nH]c1=O'?", "role": "user" }, { "content": "538.61", "role": "assistant" } ]
Molecular_Weight_Calculation
FC(F)(F)S(F)(F)F
550,050
158.07
158.066
2.9643
[ { "content": "What is the molecular weight of the compound with SMILES 'FC(F)(F)S(F)(F)F'?", "role": "user" }, { "content": "158.07", "role": "assistant" } ]
Solubility_Prediction
O=S(=O)(c1ccccc1)c1nc(-c2ccco2)oc1NCc1ccc(F)cc1
1,034,460
{"log_s": -4.74, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 398.4150000000001, "logp": 4.52, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 4}}
398.415
4.5186
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'O=S(=O)(c1ccccc1)c1nc(-c2ccco2)oc1NCc1ccc(F)cc1'.", "role": "user" }, { "content": "{\"log_s\": -4.74, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 398.4150000000001, \"logp\": 4.52, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 4}}", "role": "assistant" } ]
Functional_Group_Identification
CCOCC(O)CC#N
533,654
{"alcohol": 1, "ether": 1, "nitrile": 1}
129.159
0.29748
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'CCOCC(O)CC#N'.", "role": "user" }, { "content": "{\"alcohol\": 1, \"ether\": 1, \"nitrile\": 1}", "role": "assistant" } ]
Drug_Likeness_Assessment
C=C(Br)COC(C)C(C)=O
536,812
{"molecular_weight": 207.07, "logp": 1.89, "hydrogen_bond_donors": 0, "hydrogen_bond_acceptors": 2, "rotatable_bonds": 4, "topological_polar_surface_area": 26.3, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
207.067
1.8891
[ { "content": "Provide information about Drug_Likeness_Assessment for the molecule with SMILES 'C=C(Br)COC(C)C(C)=O'.", "role": "user" }, { "content": "{\"molecular_weight\": 207.07, \"logp\": 1.89, \"hydrogen_bond_donors\": 0, \"hydrogen_bond_acceptors\": 2, \"rotatable_bonds\": 4, \"topological_polar_surface_area\": 26.3, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Bioactivity_Prediction
CC(=O)OO[N+](=O)[O-]
16,782
{"predicted_classes": ["enzyme_inhibitor"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 0, "enzyme_inhibitor": 1, "ion_channel_modulator": 0}, "bioactivity_likelihood": "Medium", "drug_like_properties": {"molecular_weight": 121.05, "logp": -0.33, "hbd": 0, "hba": 5}, "structural_complexity": "Low"}
121.048
-0.3272
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'CC(=O)OO[N+](=O)[O-]'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"enzyme_inhibitor\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 0, \"enzyme_inhibitor\": 1, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"Medium\", \"drug_like_properties\": {\"molecular_weight\": 121.05, \"logp\": -0.33, \"hbd\": 0, \"hba\": 5}, \"structural_complexity\": \"Low\"}", "role": "assistant" } ]
Stereochemistry_Analysis
CCc1ccc(N2C(=O)C(Nc3ccc(OC)cc3OC)=C(Sc3ccc(Cl)cc3)C2=O)cc1
1,655,226
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
495
5.9088
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'CCc1ccc(N2C(=O)C(Nc3ccc(OC)cc3OC)=C(Sc3ccc(Cl)cc3)C2=O)cc1'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Molecule_Visualization
COc1ccc(C(=O)CC(CC(=O)N(CCCl)CCCl)c2ccc(OC)cc2)cc1
319,751
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deUBU5foH8GeGAQEVUEFBQHAXU3BBMQ0XIhHDtVDSsFvG4FJ0uyWjZhftWs21uqH3pg5m/ZBuCuSClhsu3ExFATdSEJAdBMEFRhmGYeb9/fHqNJkhy5zzcpjn85fAMO+j8uU95z3nPK+IEAIIIXbErAtAyNRhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRK1HCElOTv70009ZFyJsIkII6xqQ8NTW1u7atWvTpk1Xr14Vi8V5eXl9+/ZlXZRQSVgXgATm4sWLmzdv/v777+vq6gDAzc0tPDzczs6OdV0ChjMhapaGhoakpKSYmJhjx44BgEgkev7556VS6Zw5cyQS/FXeJhhC9DTl5RATU5GY2Cc3V6PR2Nrazp8//5133hk6dCjryjoIDCH6EzodJCfD5s3w00+g1QLAhyEh7v7+r7zyirW1NeviOhQMocmrr4dbt8DZGczMHn6mpgbi42HjRrh2DQDAwgJmzQKpFPz9GZbZgeHRvGlbsQJ++QUGD4YLF+DDD2HaNPjrX2HnTlCpAADc3WHJEnjjDXBwYF1oR4YhNGH79kFuLpw5AyIR3L0LY8aAry+cPg1qNfj7g1QKc+YALrpwD/+JTdixYxASAiIRAEC3bjB5Mpw7BzEx4OwM/fuzLs6EYAhNmFIJnTv/9mGXLlBbC7NmsSvIROFtayZs8GC4cuW3Dy9dAg8PdtWYLpwJTVh4OPj6wsCBMHw4/PADdO4M3t6sazJFeInCtFVWwvbtUFoKXl7wxhtgbs66IFOEh6Om7c4duH4dRo6E8HBMICsYQtOWmQk7dsChQ6zrMGkYQtNWUAAAgE8hMYUhNG0YwnYAQ2jaaAj79WNdh0nDEJq2/HwAnAkZw0sUJkynA2traGiA+/cBn05iB2dCE1ZWBmo1ODpiAtnCEJowPBZtHzCEputeWZm2Vy9clWEOQ2i6vrx+XVJZ+aG7O+tCTB2G0HQVFBQAQD+cCVnDEJqu/Px8AMCmvcxhCE0XzoTtBF4nNFH19fXW1tYSiUSlUpnp+6whFnAmNFGFhYWEEDc3N0wgcxhCE4UnhO0HhtBE0RNCDGF7gCE0RRqN5siRIwDQs2dP1rUgXJgxMRUVFbGxsZs3by4uLnZyctJqtXv27JkwYQLrukwahtBUnDx5cvPmzUlJSRqNBgA8PDwAICsry9zcXC6Xv/vuuyLaBRjxj6AOrba2VqFQDB8+nP53m5mZBQUFJScn63Q6jUYTFRUlFosBYObMmXfv3mVdrInCEHZY2dnZMplMv4euk5OTTCYrLi7WvyA3N5cQsn///m7dugHAgAEDLl26xK5e04Uh7GjUanVCQoK/v7/+8HLChAkJCQkNDQ2GLzt58qREIpFKpWq1uqioaOzYsQBgaWkZHR3NqnKThSHsOMrLy+VyuaurK82ejY2NVCrNzMx84ou//vprc3NzGtHS0tL6+vqIiAj6jaGhoQ8ePOC5eFOGIewITp06FRwcbP6oe++QIUOio6OVSmXT35WWlubu7g4A9vb2hw8fJoTExcV17twZADw8PK5evcpL7QhDKGQ1NTUKhWLYsGE0exYWFsHBwXTRpZnvUF1dPW3aNAAQiUQymUyr1WZlZT3zzDMA0LVr1/j4eE7rRxSGUJCqq6snTZqkn/pcXV3Xr19fUVHRirfS6XRyuZzeQern51dRUaFUKkNCQug705NGo9ePDGEIBWnDhg00JOPGjUtISNBoNG18wxMnTjg6OgKAi4vL6dOnCSEKhcLCwgIAvL29CwoKjFA0+hMYQkGSyWQA4OPjY8T3LC0tpbfOSCQSuVyu0+nS09PpzaX29vaHDh0y4ljIEN47KkhqtRoAXnrppcbGxrS0tOrq6ra/p7Ozc0pKCj0zXLly5dy5c/v375+WlhYYGFhdXT19+vSVK1dqtdq2D4Qex/q3AGqNWbNmAUBiYmJOTg4AuLu7G/HNk5KS6CX+gQMHXr582fCkccqUKa0780RNwBAKkqenJwBkZGTQhyH8/PyM+/65ubleXl4AYGlpuW3bNkLIsWPH6CMXXbp0+fbbb407nInDw1FB0j8NyNGzuQMGDEhNTY2IiKivrw8LC1u0aNGzzz574cKFgQMH3r9/f9myZcYdzsRhCIWnurpaqVTa2tp269aNu2dzLS0tN27c+M0331hZWcXFxX3wwQfOzs4bN24EAOyIYVwYQuGhsx/tksZ1x7TXX389NTXV399/zZo1AFBfXw8AkydP5mg40yRhXQBqMcPZj4cuFZ6ensnJyYZDY5dE48KZUHgMk8BzvybsTMMFDKHw6JOgVCrv3LljbW3NW6sY7NHGBQyh8OiTcOPGDfoH3jpT4EzIBQyh8OiTwPMZGiGkqKgIMITGhiEUGK1WW1JSIhKJ3N3deT44rKioqKurs7e379q1Kz8jmggMocCUlpY2NDQ4OTlZWlryfHCIS6McwRAKjGESeA4hrspwBEMoMIZJ4HlqwlUZjmAIBUafBP0yiTtf+11jCDmCIRQYfRLoMomDgwNvyyR4TsgRDKHA6JPA/xkanhNyBEMoMPok8HxwqNFoysrKzMzM9H1NkbFgCIVEpVJVVlZaWFj07t27vLwceAxhUVGRVqt1cXGh3Z+QEeFTFEJC+6DZ2dmZmZlFRkYuWbKEt6YvuCrDHZwJhaSkpAQAqqqqfvjhBwCwsbGhe7nwAFdluIMhFJLZs2f36dOHEDJ//vwPP/yQz95nOBNyB0MoJLSfxZdffmlmZrZ+/Xp/f/+KigruhktPTz9//jz9My6NcgdDKDBisfivf/3rsWPHnJycUlJSvLy8jh8/btwh1Gp1YmLiCy+8MGbMmJUrV9JP4uEoh9g2e0OtVllZ6e/vDwASiSQqKkqr1bb9PW/cuLFixYoePXrQn40ePXpERkY2NjYSQugtAWVlZW0fBT0GQyhgjY2N+v2uZ8yYcefOnda9j1arTU5ODg4O1rdRGz16tEKhoLsUpqenP//88wAgEomMEnX0GAwhj3bvJvPnkzlzyFdfEeP9NB84cKB79+4A4Obmdu7cuRZ97927d6Ojo/Vnep06dQoODv7ll18IIUqlcuvWrbTLMDV//nxj1YwMYQj5EhtLAgNJaSm5c4eEh5PISCO+d1FRkY+PD7Rkv+v09HSpVGptbU0D1r9/f7lcXlVVRQi5fv26TCajwQaAXr16yWSyK1euGLFgZAhDyJfRo8n16w//rFKRXr2MOBkSQgz3u3711Vfv37//Zy9LSEgYP348faVYLPb3909ISGhsbNRqtfv37zfc7H706NGxsbGPbXaPjA5DyBcHB9LY+NuHQ4eSmzeNPsh3331H97seMmTIr7/+avilgoKCv/3tb/qL+w4ODitXrqQbD968eVMul/fp04d+qWvXrlKp9NKlS0YvDz0RhpAvHh5Ev5+RTkecnAg3M0xWVhbdQLtr1667du3Sf37fvn2Giy51dXWEkPT09NDQUP2Ov4MGDZLL5a1e4EGtgyHky+rVZPXqh3/+7jsyezZ3QymVyldeeYXmSr/fdWNj43vvvXfhwgVCSG1trUKh0C+6mJmZBQUFtWize2REGEK+PHhAwsLIc8+RyZPJ7NlcHIs+xnC/6/z8fPpJuuiiPyh1dHSUyWRFRUVcF4OaICKEtO4qP2qBoiLYswdGjIApU0ClAisrfobNyMgIDg4uKCjo0aNHeHj4mTNnUlJS6JcmT568bNmy2bNn649FETOsfwuYhoQEAvDwEHTsWGJvT/ha9qA7XQMAnf3oogteb2hX8HlCXhQUAADQGy/z86G6Gnr14mfkHj16/Pjjj/369SssLIyMjFyzZg227m1v8AZuXtAQ9u0LSiVUV4OVFW8hBACRSFRTUwMA7733Ht8JLCuDU6egtJTXQYUGZ0Je5OcDAPTt+1sa+drCBQBqamru3r3buXNnBwcH3gYFAFi5EtLS4Lnn4JdfYORI+PxzXkcXDgwhL/TZy8l5+Ace6R8F5G3zJgCAM2fg7FlISQGRCAiBKVPg1Cnw9eWvAOHAw1Hu6XRQXAwiEbi7/5ZGHrF5FPD0aZg+/eGELxLBiy/C6dO8FiAcGELulZWBWg2OjmBtzTCEfD8Ur9GAxOA4y8IC1GpeCxAODCH39CeE8PtlUr6wCaGnJ5w799uHqang5cVrAcKBIeSe4exnGEi+sGkPM3063LsHq1fDkSOwZg1UVcHMmbwWIBwYQs6l3b17zde3ks4DN28CAPC1hQvF5pyQEDh4EEaNgrQ08PKCw4dBjD9sT4b/Lpz798WLz5w6ddDevrKy0rymJmDoULC15W10wvvmTQ8NGwbu7uDtDYGBcPUq/O9/vI4uKBhCzumPBvPz8xt1ujuPHmbnx82bN1UqVc+ePbt06cLfqIRAYSGUlYG9PZw6BevWwd69/I0uNCYUwtra2i+++EJ/BzNv9OsiTA4L2azKlJVBfT306gVdujBZEBYWkwhheXn52rVrnZ2d33///SlTprz//vu8DV1fX19RUWFubu7i4sJkgYTNqoxh8FgsCAtLR75jRqfTHT16dPPmzQcPHqQd483NzTUazRdffFFaWrpt2zYebqQsLCzU6XR9+/Y1MzNjMimxWZWhi8D6G9YBZ8KmdMyZsKamJiYmZvjw4YGBgQcOHJBIJMHBwcnJyQ0NDXv37rWzs4uPj/f29s7MzOS6EsMMmNDhqOFMWFQEwPeCsLB0tBBmZGSEh4c7OzuHh4dfu3bN2dk5KiqqpKQkISHB399frVYHBQWdP3/e09MzJyfHx8dn+/btnNZjeDRoioejlZVw/z507w52drwWICysH2g0DtrJj7aFB4NOfhqNxvBlYWFhEydOLCsrU6lUYWFh9MWhoaG01TQX3nvvPQBYs2ZNdna2mZmZmZkZ7fjCG7qx7o0bN/gclPj6EgBy4gQ5e5YAkNGjeR1daAQfwtLS0qioKHt7e5ooW1tbqVR67dq1P77y1q1bvXv3BgBHR8eTJ08SQmJjY2n325EjR+bl5XFRnp+fHwCIRCKJRAIAdGMz3qjVapp8vnuHOjsTAFJQQL7/ngCQ4GBeRxcaoYaw6e0T/kxVVdXUqVMBwMzMjG6icvHixQEDBgCAjY1NYmKiscpTqVTffvvtmDFjHjvu6N27d319vbFGeaqcnBwAcHd3521EQoiuvp5IJMTcnGg05OOPCYBx2413PMILId0+Qb+8Ybh9QnPodDq5XE43UXnxxRdv375dU1MTHBxM56uIiIg2Tho3btyQyWT6mdnOzi4iIiIzM3Pjxo1WVlYAMGrUKN4ODo8cOQIAfn5+/AxHZWdnd7GwWDB+PCHkyOrVZydNKvu//+OzAMERUghTU1MHDBjQqVMn+vPdv3//zz777Pbt2614q+PHj/fq1QsAXF1dz549q9PpoqOjad8xX1/fVmwA1pyZ+cKFC/3796fHzLt3725F2S21ZcsWAFi8eDEPY+kdOnQIAPz9/cmjo/HDhw/zWYDgCCmE9CdYJBLpt09oy7uVlJQ8++yzdC6lm6icP3/ezc0NABwcHI4ePdrM92nRzFxTU/Pyyy8ba9Z9qsjISABYv349p6M85quvvgKAsLAwQghdlc3JyeGzAMERUgjpLgvffPONsd5Qo9HIZDIangULFiiVyj+eNDbx7U1sbNQEw1l34sSJ5eXlxvrrGNJqtQcOHHBxcQGASH5PyegNSZ988olGozE3NxeLxXyeBguRYEKoUqlEIpG5uXljYyPdR8FY9u7da2trCwCDBw/OzMz840njY69vYmOj5g/6888/06Xanj17JicnG/Gv89iWg5aWlmKx+MMPP2zjgUPzvfTSSwCwc+dOeonSxcWFn3GFSzAhzMrKAoABAwYQQhYvXmxpablz505jvfn169eHDx8OAFZWVtu3byd/OGmkL8vLy/vjoou+w3xL3bp164UXXmjmrNscf5yZP/30048//pjOupMnT77Jfe99QsioUaMA4Ny5c8ePH6ezPQ+DCppgQvjTTz8BwAsvvEAImTJlCgA0/7StOVQq1Ztvvqm/fF9XV2d40iiVSgMCAsSPHksdN27cjh072n6UZbjfdVBQUOsWmZ46M6ekpDg5OQGAs7Nz85eRW422+r5169a2bdsA4LXXXuN6RKETTAj/85//AIBUKiWE0OWT3Nxco4+iv3xPLyToTxrp7EcXXc6cOWPcQX/88Ue6LW6fPn1SU1Ob/425ubkymaxHjx5PnZkrKyvpvvMSiUQul3O3+9K9e/cAoHPnzoSQ1atXA8DatWs5GqvDEEwI6f1fn376qUajkUgk3J3uZ2Rk0KXObt260WsVvr6+ALBw4ULuNu4rLi4eN26c4VJtE/7sckjTp8oajUY/686cOZOjv8uFCxfoP924cePo5BwbG8vFQB2JYEI4d+5cAIiPj8/LywOO7/+iFxKWLl1KPxw7diwAcH0gZ7jf9cKFC5+433VlZaVcLtc3qrC0tAwNDaVbDjbT/v376eGim5vb+fPnjVc+IYTk5ubSVRk65dJewz///LNxR+l4BBPCESNGAMD58+eTk5MBYNKkSZwOp9Pp9BfxaPd4jq4lPGbPnj10qXbIkCGZmZn6z9NFF6tHe6oNGDBALpdXV1e3YoiioiIfHx+a4afOus3R2Ni4b9++gIAAfYfvIUOGjB49mn44c+bM2trato/SgQkmhHZ2dgBQXV0dExMDAK+//jo/4yqVSvrzytsuttnZ2XSptkuXLqtWrfrXv/5FfwHpF13279/fxmIMZ93Q0NAnzrrN0fTMnJSURP/XBg4cePny5bYU3LEJI4S3b98GgK5duxJCVq1aBQAfffQRP0NfuXIFADw8PPgZjrp///7ChQvBQK9evT744IPi4mIjjhIXF0fvf/Dw8Lh69WqLvreZM3Nubq6XlxfN57Zt24xXe4cijBCmp6cDgJeXFyFk/vz5ABAXF8fP0ElJSQAwffp0foYztHDhQolEYmtrGxcXx9FTiFlZWc888wz9Bbdr166nvl6lUsXGxrZoZlapVIazLnePbhJCiouLV6xYcerUKe6G4IIwQpiYmAgAs2fPJnwtk+h9+eWXALB8+XJ+hnvMvXv3uB5CqVSGhITQkEil0j9Le05Ojkwmo5dS6Mwsk8kKCgqaOco333xDp82QkP9y8eSmfma2srISiUT//ve/jT8GZ4QRwn/+858A8O677xJ+l0kIIfS3+Oeff87PcKwoFAoLCwsA8Pb2NowWvRwSFBSkX3RpzuWQJ7p8+fLzz79jbU1sbcmePcYp+/79+wqFwuvRLhcSicTuUR+NJUuWCOWeVWGEcMmSJQCwadMm/pdJZsyYAQB7jPVT046lp6fTO07t7e13795dVlYml8vpfRH6RZdLly61ZYjaWjJvHgEgIhGJiCBteYbkiTNzYWEh4aVhwmMadY0na0/uvLMzrz6PEDIrb1aLvl0YIQwICACAH3/8kf9lEnrKdPHiRd5GZKi6ujowMJD+WBteb9i0aZMRD4wVCmJhQQDImDGksLBl36vRkN27yYIFy/Xl+fr67ty587GjaMOGCT/88IOxKn8itU7te903rChsY+XGidcnXqm70u/Xfi16B2GEcNCgQQBw9erVffv28bxMQrvH3717l7cR2dLpdPPmzaM/4uPHj2/75ZAnSksj7u4EgNjbkyNHmvUtFRVELidubgSA+PoqnjozG7dhQhO2VW17o/AN+mct0RJCuA0hd/dtNUGr1Xbq1EkkEj148IDnZZKKigoA6N69Oz/DtR9nz57NysridIiqKjJt2sNDU5mMNPEMyc8/k5CQh5MnAPHwIJs31zVnZn7s0c1WNExojmXFy+Ju/26tnsMQ3r59293dvYkFNI4UFxcDgKOjI+F9meTs2bN0KYKf4UyNVkuioohYTDp1Ip9/TubMIfTBj9OnySefEKWSKBTEy+th9sRiEhREkpNJSyfmU6dO0Uc3W9Qw4anKG8o/Kv/oaM3R5cXLY2//7v7YloawBc1/T58+ffPmzZiYmEmTJtFg8MOwhzTPTazZ9JA3GWIxrF0Lhw6BQgESCWRkwNatAAA1NVBcDOPGQXg4XL4MTk7w979DcTEcOAD+/vDoZLC5nnvuucuXL0+dOrWqqiowMHDt2rU6na4tZWfUZSwqXOT2q9vfb/7981ufj7QeeVJ5si1v2IIQzpgx48yZM/369UtNTR01ahTt58MDwyTw3E+aTftqEzN1Krz2GgDA8uWgUEBZ2cPPh4TA6NEQGwtFRbBuHTg7t34Ie3v7w4cPy+VyQsi6devoQyQtfROlVrmlasvwrOHe2d5xd+IIkJftXl7Va1Vo99B8df6bRW9uq962vGR5jjqnxfW1dBa+d+/enDlzAEAkEslkMh6aJkRFRQHAmjVrCO/LJIsXLwaALVu28DOcKYuOJps2kcREEhJCDh4kS5Y0dZbYak9smPBU1+uvy0pl3S51gwyADHC84igrlRWpi/QvaNQ1pihT4m7Hpd5PJYQcrWnZQW9rVkcNz3d5aJqwYMECAKBdJ65evXrw4EFOhzOEHft4Q0NICAkIICtXkiVLuBroj132/kxjY+P+/fv9/f1HnB9B4zc6a3Ts7dgGnZEXWlt/ieLEiRP0l0rImDGEm7v1srOzIyIiOnXq1K1bt4ULF7a9C0tLYcc+3uhDmJND7Ow4DCH5fZe9uXPn/nGhtaysLCoqii7nAMCkqEnLipf9qvqVo3radJ2wvLw8yN+/zsODSCQkKqrF61Z/Qq1W79y5kz7PTo976fPgAQEBT20oaERcP8KPDO3cSfQ3kH/2GfnkE85HNOyyd+XKFfrJ9PT00NBQepRHvySXy7m+Mtfmi/UazcNlZgAycyZpW7nl5eVyuZxuJAQANjY2Uqk0MzPz5MmTjo6OAODi4nL69Om21twk/eNwdFXG1dWV0+GQ3v/+R7ZsIU/ay4cr2dnZw4YNAwArK6uJEycOHTqU/uCZm5vPmzcvJSWFnzKMdMfMgQOkWzcCQNzcSCuaJuh02uPH5wUH062LAMDT03Pr1q1KpVL/ktLS0gkTJgBnrYroQzr0VuCMjAxCyLFjxwA79vFo+XICQIzxrH8LqFSqRYsWAQC9f93JyUkmkxn3uc2nMt5ta0VFxMeHABBLyxb8Q9bUEIWCDBtGAOaOG2dhYUG31H1ixuihPL2jatasWcZaI7127dpbb71lY2ND8+/k5LR//35CyIYNGwDg1VdfNcoo6KkCAwkASUpiMPRbb701atSoXbt2PbahJT+Meu9ofT2JiHh4g0NoKGm6acKlS0QqJZ07P3y9q2tedHRFRcVTB0lKSqKtitrYNEGr1dK1L8OHdGJjYxsaGuhm9/RO/MmTJ7d6CNQiQ4YQAPLo7MyEcHAD944dpHNn0qMHKSoiDQ3k229JZCTZtInQNSi1miQkEH//h9kDIBMmkIQE0pLfQIWFhXTrP0tLy5iYmJYWePPmTblc3qdPH5q9rl27SqVSmmfaQ37w4MH0S2KxOD4+vqXvj1pBpyNWVgSAGJyCmApunqLIzCQnThCdjkydStauJampZMsWMmwYqa0lzz77MHt2duSdd0h2dutGaF3ThMfWvgYNGqRf+7p27VpERATtuQIAvXv3Xrp0qYk8wdQelJURAOLgwLoOFrh8lCklhUyb9tuHdD7csIF4eJDo6KccrDbPjh076EHjiBEjmmjIXVtbq1AoPD09acDMzMyCgoLomadarTbc7B4AJkyY8MfN7hHXfvmFABAfH9Z1sMBlCLduJatW/fbhrl1k6dIWHXY2x7Vr1+jKso2NTUJCwmNfzc7Olslk9BwSABwdHWUyWVFRESGEPjnu/OiWRHo55Ndfubogi5q2YwcBICEhrOtggcsQ/ve/JCLitw+//pqjvctra2tpC7bHHt/U6XT6fUWnTJmSmJhIF11oD3n95ZCRI0cqFIpW995ERrFuHQH43S9t08FlCAsLyZAhhHYE0unItGnNfYi6VfStisaMGVP4qGvCV199tXz5ctpU8969ewqFQn9BVn85hLuSUPP95S8EgLR8la0j4Li9xbZtZNQo8vbbxNeXrFjB7ViEpKWl0W7Q9vb2RwwCn5GRIZVK9Ysuzs7OUVFRt27d4roe1HyBgTMGDfJKSTHFRt0iQghwqq4ObtwAV1d41IuOU9XV1aGhoYcPHxaJRPPmzfPx8Tl48CC990UsFvv5+Uml0jlz5uiPRVE70adPn5KSkhs3bpjgI9Tch5B3Op3uH//4x7p16/R/te7du7/++utLliyhHbhQe6PRaGhrYJVKpb+AZDo64IQgFoujoqIsLS3Xr18vEok++uij8PBw/a4JqB0qLCzUarXu7u4mmEDokDOhXl1dnX4Dd9SeHT16NCAgwM/Pj25zb2pa0GNGcDCBQmHivXw6cgiRUBg21DNBGELEHoYQIcZMvL8rhhCxV1JSIhaLo6OjWRfCBoYQsefj46PT6eLj40NCQujudyYFQ4jYS0pK+v777+3s7OLj4729vTMzM1lXxCsMIWoXXnnllfPnz3t6eubk5IwdO/brr79mXRF/MISovRg4cOC5c+fCwsLq6+vDwsIWLVpUV1fHuig+dOQ7ZpBA7dixY+nSpXV1dSNHjkxMTKQPhXZgGELUHl26dCk4ODgvL8/Gxmb79u0vv/wy69ZIc5oAAAOWSURBVIo4hIejqD0aMWLEhQsXgoODa2tr582b984772g0GtZFcQVnQtSuxcTEvP322w0NDb6+vrt27dJv0tKRYAhRe5eWlhYcHFxUVOTg4PDdd99NnTqVdUVGhoejqL0bM2ZMeno63ZNr+vTpbd/vur3BmRAJAyFkw4YNq1ev1ul006dPj4uL6969O+uijANDiITkxIkTCxYsqKysdHV1TUhIGDduHOuKjAAPR5GQ+Pn5paenjx8/vqSkxNfX97XXXmNdkRFgCJHAuLi4nDx5MiIiorGxcceOHe+++y7ritoKQ4iEx8LCYuPGjVOmTAGAvLw81uW0FYYQCRXd4WfSpEmsC2krDCESqg7TFANDiISqwzTFwEsUSKhsbGyUSuXdu3fteNlhgTs4EyJBqqqqUiqVtra2Qk8gYAiRQNFj0Y7xqCGGEAlSR2rajSFEgtRhlkahQ+7KhExB3dg63y98hw4ZyroQI8CZEAlSap/UU5NPOT3nxLoQI8AQIkHKb8gHgL4WHeFwFEOIhEdLtCUNJSIQuVm4sa7FCDCESHhKNCUaoult3ttSbMm6FiPAECLhKVAXAEDfTh3hWBQwhEiIChoKAKCfheDvGqUwhEh4cCZEiLGOtDQKGEIkRHQm7NepgxyO4qNMSHhy1bk59Tm+XXwB4OyDswE2AawrahO8bQ0JSb2uflX5qrMPzopBPL7L+Dd7vPnlrS8xhAjxZ0Plhvu6+2cGnxGD+EjtEdblGAeeEyIh2Xtvb2SvSDGIASDAJsBMZMa6IiPAECIhqWqs6inpyboKI8MQIiFxtXDNV+ezrsLIMIRISN60fzOyLPJW4y0t0abXpbMuxzhwYQYJyeIei83A7C+Ff2kgDT6dfZY5LPO29mZdVFvhdUKEGMPDUYQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQY/8PXG8AgJGQUgwAAAIYelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkANieSBuYGRjSADSjMwcDBpAmpmJzQFMs7A5ZIBoZkYkBlQGopIFrgNsAhOUZmZE8FHVsUNoZlT1TEyCDAogF+ASJugeVHcwMmNTic7gZmBkYGRSYGLOYGJmSWBhzWBiZVNgY9dgYuNg4OBk4ORi4OJm4ObRYOLmVeDlY+DjZ+AXYOAVZBAUYhASZuAUYRARzWASFUsQE89gEpdQkJBkEJdKkJIGGiOTICObwSTLlCAtkuAECm42JlkZVhZmNlExcSlpEfEiRqAbGWDRoD1F4ODWGyv2gzhanL8PMB7iOwCW2H7uwJNTl8Hidi0nDhw31t4HYhsZzTkwzeuiHYjNo5ZzwH8jA1jNl0bhA/ns02xBbBMZ9gOPjhy3B7HN2vv2r5kaBlbzirnb7r5bG9icNba77Vltp4HF3zmZOZxhlwSz165wcuA6mAzWu9ih0cFY/yBYfMOktQ5ab/LA7DsbLzskKb6B2MvI4OicsQjM7pAuczh/0h7s/g86Cx3K5KvAbMFfsxyurVgDZj8xfGe35dIcsPkrr7yxv9T9DMwWucDkIF8R5ABiv3GLsn+U1gZmf3nXav/3/1Ywe9JsaQfXvBNgdoknx36zj+lgduEDy/0M+znA7NPdFQeE9/4Du+fj9BUHJKxVwPaKAQD1vJPIb8NPagAAArd6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VVtuGzEM/PcpdAEL4lPkZxIHRVHEBtq0dyjQz94fJeUmqxREVxYhaWcpiTOkTy2fr5cvP3+39wcvp1Nr4z8/d28/aIxxemk5aI/Pnz5f29Prw+PbytPt+/X1W4sRQXwT7SP24fX28rYC7amdvQ9SmNzO0AkcgNroYz3Ht9hu7Ty7MZt6O2NHGuJQICl9amdxE0qfKqzoBZLvSFQFDuTooBN8FEhJJHczAJzxnofNiQVQE0hdzQ0xXcrAObRAzkRip8E20uWYhFIBLW+OHQCGa4MuOtQroKdHCCDJgNzbKA5RhQiCpVjGCQKcSFREqUIEyRD0CKDhWN4nRauQGEgMgqaRrJv7nFMqJMWNqA8G4Xxv5qpcAbldG4c6HHhtLsNRKnVAEiSdMXxqbu5EWKoDkiHtGnsrpM9Q1NTy6sHQr2a5znMmFNX+cvUv1MIphSvhmAVZHjfySh/g66Ah+EmaSvFhMCvJRbhj+9BcuMSASicXhRIKi05WQeRgK7gEK4G42LQQZQQ0BgOAq2MiLTIHx56RUR3NxEogr61NUINL7hhvSyGhBOkQHpVEIgJqk70E6tqaCSjiktlJyVQBXBkUOiOkCXFIjUt5RQ/aHTlRI9rhHEhVrEL6PX8tNEyYnLsP4ErFWemSlRCFsCXpEnWklMfz9fKh6t3r4OPtejnqYDY8il1MGh0VjbMfZSubHLUpJk2PCgTR51FmMLodxQRi6kfJgOx7YYBlYCsAsAxuiY5pgLaEhrXCW+bCMrJlKCyjWybCMnPLuPtXtiUWLONbAkEa3BNlnRlhywdOg7gJn9MgbQrnNMiblCENyqZZSIO6iZMXZm4qzGlobFMbBwPom6g4De3a4fUH+b6wTmzbHVIzu0Jy/vYvG+PTH6kabw3ggzXPAAABanpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCVRSW7EMAz7So8zgEfQLhlFT7l3HpFrn9DHl3IDZDFDSSR1vW+57/txPb7ez+t6XOfjG+/r53ket87/9/W8b8UtH7+P1ya2lFovIZMtsj5fRe3egJTUODagJI/dMawMTzuQZoqvF5NkybCcukVsMTl3lQIyyt6twwrW4gSmZOwtoHGZRvrBBNcSiuTCWXC2mLK2VoUsJi2J/4GaqqNLyFOnO+hlhUYK7dWHFLuqYn0asUsExnXvnGkOz3s6YRxvBSfI1SWnbJvpxrykFFgdEuIoiGpihvBBNOF0WreH2yS10XpPI8QJITC+uZErhrUbgxNkO/I48QxVh1vYkB4fjXQGaBY5NtjBXkbaHT01HZoey0mhIqeGsYhYgYTHppKbWK3Zi/nkjAhMrQRdEu4OUpqQtRC3ZeZZULeFjam9WdAIQmEPgcFVYMWynr9/Y5V7MxQx8pQAAAAASUVORK5CYII=</base64_image>
452.378
4.7567
[ { "content": "What is the molecule visualization for the compound represented by 'COc1ccc(C(=O)CC(CC(=O)N(CCCl)CCCl)c2ccc(OC)cc2)cc1'?", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deUBU5foH8GeGAQEVUEFBQHAXU3BBMQ0XIhHDtVDSsFvG4FJ0uyWjZhftWs21uqH3pg5m/ZBuCuSClhsu3ExFATdSEJAdBMEFRhmGYeb9/fHqNJkhy5zzcpjn85fAMO+j8uU95z3nPK+IEAIIIXbErAtAyNRhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRK1HCElOTv70009ZFyJsIkII6xqQ8NTW1u7atWvTpk1Xr14Vi8V5eXl9+/ZlXZRQSVgXgATm4sWLmzdv/v777+vq6gDAzc0tPDzczs6OdV0ChjMhapaGhoakpKSYmJhjx44BgEgkev7556VS6Zw5cyQS/FXeJhhC9DTl5RATU5GY2Cc3V6PR2Nrazp8//5133hk6dCjryjoIDCH6EzodJCfD5s3w00+g1QLAhyEh7v7+r7zyirW1NeviOhQMocmrr4dbt8DZGczMHn6mpgbi42HjRrh2DQDAwgJmzQKpFPz9GZbZgeHRvGlbsQJ++QUGD4YLF+DDD2HaNPjrX2HnTlCpAADc3WHJEnjjDXBwYF1oR4YhNGH79kFuLpw5AyIR3L0LY8aAry+cPg1qNfj7g1QKc+YALrpwD/+JTdixYxASAiIRAEC3bjB5Mpw7BzEx4OwM/fuzLs6EYAhNmFIJnTv/9mGXLlBbC7NmsSvIROFtayZs8GC4cuW3Dy9dAg8PdtWYLpwJTVh4OPj6wsCBMHw4/PADdO4M3t6sazJFeInCtFVWwvbtUFoKXl7wxhtgbs66IFOEh6Om7c4duH4dRo6E8HBMICsYQtOWmQk7dsChQ6zrMGkYQtNWUAAAgE8hMYUhNG0YwnYAQ2jaaAj79WNdh0nDEJq2/HwAnAkZw0sUJkynA2traGiA+/cBn05iB2dCE1ZWBmo1ODpiAtnCEJowPBZtHzCEputeWZm2Vy9clWEOQ2i6vrx+XVJZ+aG7O+tCTB2G0HQVFBQAQD+cCVnDEJqu/Px8AMCmvcxhCE0XzoTtBF4nNFH19fXW1tYSiUSlUpnp+6whFnAmNFGFhYWEEDc3N0wgcxhCE4UnhO0HhtBE0RNCDGF7gCE0RRqN5siRIwDQs2dP1rUgXJgxMRUVFbGxsZs3by4uLnZyctJqtXv27JkwYQLrukwahtBUnDx5cvPmzUlJSRqNBgA8PDwAICsry9zcXC6Xv/vuuyLaBRjxj6AOrba2VqFQDB8+nP53m5mZBQUFJScn63Q6jUYTFRUlFosBYObMmXfv3mVdrInCEHZY2dnZMplMv4euk5OTTCYrLi7WvyA3N5cQsn///m7dugHAgAEDLl26xK5e04Uh7GjUanVCQoK/v7/+8HLChAkJCQkNDQ2GLzt58qREIpFKpWq1uqioaOzYsQBgaWkZHR3NqnKThSHsOMrLy+VyuaurK82ejY2NVCrNzMx84ou//vprc3NzGtHS0tL6+vqIiAj6jaGhoQ8ePOC5eFOGIewITp06FRwcbP6oe++QIUOio6OVSmXT35WWlubu7g4A9vb2hw8fJoTExcV17twZADw8PK5evcpL7QhDKGQ1NTUKhWLYsGE0exYWFsHBwXTRpZnvUF1dPW3aNAAQiUQymUyr1WZlZT3zzDMA0LVr1/j4eE7rRxSGUJCqq6snTZqkn/pcXV3Xr19fUVHRirfS6XRyuZzeQern51dRUaFUKkNCQug705NGo9ePDGEIBWnDhg00JOPGjUtISNBoNG18wxMnTjg6OgKAi4vL6dOnCSEKhcLCwgIAvL29CwoKjFA0+hMYQkGSyWQA4OPjY8T3LC0tpbfOSCQSuVyu0+nS09PpzaX29vaHDh0y4ljIEN47KkhqtRoAXnrppcbGxrS0tOrq6ra/p7Ozc0pKCj0zXLly5dy5c/v375+WlhYYGFhdXT19+vSVK1dqtdq2D4Qex/q3AGqNWbNmAUBiYmJOTg4AuLu7G/HNk5KS6CX+gQMHXr582fCkccqUKa0780RNwBAKkqenJwBkZGTQhyH8/PyM+/65ubleXl4AYGlpuW3bNkLIsWPH6CMXXbp0+fbbb407nInDw1FB0j8NyNGzuQMGDEhNTY2IiKivrw8LC1u0aNGzzz574cKFgQMH3r9/f9myZcYdzsRhCIWnurpaqVTa2tp269aNu2dzLS0tN27c+M0331hZWcXFxX3wwQfOzs4bN24EAOyIYVwYQuGhsx/tksZ1x7TXX389NTXV399/zZo1AFBfXw8AkydP5mg40yRhXQBqMcPZj4cuFZ6ensnJyYZDY5dE48KZUHgMk8BzvybsTMMFDKHw6JOgVCrv3LljbW3NW6sY7NHGBQyh8OiTcOPGDfoH3jpT4EzIBQyh8OiTwPMZGiGkqKgIMITGhiEUGK1WW1JSIhKJ3N3deT44rKioqKurs7e379q1Kz8jmggMocCUlpY2NDQ4OTlZWlryfHCIS6McwRAKjGESeA4hrspwBEMoMIZJ4HlqwlUZjmAIBUafBP0yiTtf+11jCDmCIRQYfRLoMomDgwNvyyR4TsgRDKHA6JPA/xkanhNyBEMoMPok8HxwqNFoysrKzMzM9H1NkbFgCIVEpVJVVlZaWFj07t27vLwceAxhUVGRVqt1cXGh3Z+QEeFTFEJC+6DZ2dmZmZlFRkYuWbKEt6YvuCrDHZwJhaSkpAQAqqqqfvjhBwCwsbGhe7nwAFdluIMhFJLZs2f36dOHEDJ//vwPP/yQz95nOBNyB0MoJLSfxZdffmlmZrZ+/Xp/f/+KigruhktPTz9//jz9My6NcgdDKDBisfivf/3rsWPHnJycUlJSvLy8jh8/btwh1Gp1YmLiCy+8MGbMmJUrV9JP4uEoh9g2e0OtVllZ6e/vDwASiSQqKkqr1bb9PW/cuLFixYoePXrQn40ePXpERkY2NjYSQugtAWVlZW0fBT0GQyhgjY2N+v2uZ8yYcefOnda9j1arTU5ODg4O1rdRGz16tEKhoLsUpqenP//88wAgEomMEnX0GAwhj3bvJvPnkzlzyFdfEeP9NB84cKB79+4A4Obmdu7cuRZ97927d6Ojo/Vnep06dQoODv7ll18IIUqlcuvWrbTLMDV//nxj1YwMYQj5EhtLAgNJaSm5c4eEh5PISCO+d1FRkY+PD7Rkv+v09HSpVGptbU0D1r9/f7lcXlVVRQi5fv26TCajwQaAXr16yWSyK1euGLFgZAhDyJfRo8n16w//rFKRXr2MOBkSQgz3u3711Vfv37//Zy9LSEgYP348faVYLPb3909ISGhsbNRqtfv37zfc7H706NGxsbGPbXaPjA5DyBcHB9LY+NuHQ4eSmzeNPsh3331H97seMmTIr7/+avilgoKCv/3tb/qL+w4ODitXrqQbD968eVMul/fp04d+qWvXrlKp9NKlS0YvDz0RhpAvHh5Ev5+RTkecnAg3M0xWVhbdQLtr1667du3Sf37fvn2Giy51dXWEkPT09NDQUP2Ov4MGDZLL5a1e4EGtgyHky+rVZPXqh3/+7jsyezZ3QymVyldeeYXmSr/fdWNj43vvvXfhwgVCSG1trUKh0C+6mJmZBQUFtWize2REGEK+PHhAwsLIc8+RyZPJ7NlcHIs+xnC/6/z8fPpJuuiiPyh1dHSUyWRFRUVcF4OaICKEtO4qP2qBoiLYswdGjIApU0ClAisrfobNyMgIDg4uKCjo0aNHeHj4mTNnUlJS6JcmT568bNmy2bNn649FETOsfwuYhoQEAvDwEHTsWGJvT/ha9qA7XQMAnf3oogteb2hX8HlCXhQUAADQGy/z86G6Gnr14mfkHj16/Pjjj/369SssLIyMjFyzZg227m1v8AZuXtAQ9u0LSiVUV4OVFW8hBACRSFRTUwMA7733Ht8JLCuDU6egtJTXQYUGZ0Je5OcDAPTt+1sa+drCBQBqamru3r3buXNnBwcH3gYFAFi5EtLS4Lnn4JdfYORI+PxzXkcXDgwhL/TZy8l5+Ace6R8F5G3zJgCAM2fg7FlISQGRCAiBKVPg1Cnw9eWvAOHAw1Hu6XRQXAwiEbi7/5ZGHrF5FPD0aZg+/eGELxLBiy/C6dO8FiAcGELulZWBWg2OjmBtzTCEfD8Ur9GAxOA4y8IC1GpeCxAODCH39CeE8PtlUr6wCaGnJ5w799uHqang5cVrAcKBIeSe4exnGEi+sGkPM3063LsHq1fDkSOwZg1UVcHMmbwWIBwYQs6l3b17zde3ks4DN28CAPC1hQvF5pyQEDh4EEaNgrQ08PKCw4dBjD9sT4b/Lpz798WLz5w6ddDevrKy0rymJmDoULC15W10wvvmTQ8NGwbu7uDtDYGBcPUq/O9/vI4uKBhCzumPBvPz8xt1ujuPHmbnx82bN1UqVc+ePbt06cLfqIRAYSGUlYG9PZw6BevWwd69/I0uNCYUwtra2i+++EJ/BzNv9OsiTA4L2azKlJVBfT306gVdujBZEBYWkwhheXn52rVrnZ2d33///SlTprz//vu8DV1fX19RUWFubu7i4sJkgYTNqoxh8FgsCAtLR75jRqfTHT16dPPmzQcPHqQd483NzTUazRdffFFaWrpt2zYebqQsLCzU6XR9+/Y1MzNjMimxWZWhi8D6G9YBZ8KmdMyZsKamJiYmZvjw4YGBgQcOHJBIJMHBwcnJyQ0NDXv37rWzs4uPj/f29s7MzOS6EsMMmNDhqOFMWFQEwPeCsLB0tBBmZGSEh4c7OzuHh4dfu3bN2dk5KiqqpKQkISHB399frVYHBQWdP3/e09MzJyfHx8dn+/btnNZjeDRoioejlZVw/z507w52drwWICysH2g0DtrJj7aFB4NOfhqNxvBlYWFhEydOLCsrU6lUYWFh9MWhoaG01TQX3nvvPQBYs2ZNdna2mZmZmZkZ7fjCG7qx7o0bN/gclPj6EgBy4gQ5e5YAkNGjeR1daAQfwtLS0qioKHt7e5ooW1tbqVR67dq1P77y1q1bvXv3BgBHR8eTJ08SQmJjY2n325EjR+bl5XFRnp+fHwCIRCKJRAIAdGMz3qjVapp8vnuHOjsTAFJQQL7/ngCQ4GBeRxcaoYaw6e0T/kxVVdXUqVMBwMzMjG6icvHixQEDBgCAjY1NYmKiscpTqVTffvvtmDFjHjvu6N27d319vbFGeaqcnBwAcHd3521EQoiuvp5IJMTcnGg05OOPCYBx2413PMILId0+Qb+8Ybh9QnPodDq5XE43UXnxxRdv375dU1MTHBxM56uIiIg2Tho3btyQyWT6mdnOzi4iIiIzM3Pjxo1WVlYAMGrUKN4ODo8cOQIAfn5+/AxHZWdnd7GwWDB+PCHkyOrVZydNKvu//+OzAMERUghTU1MHDBjQqVMn+vPdv3//zz777Pbt2614q+PHj/fq1QsAXF1dz549q9PpoqOjad8xX1/fVmwA1pyZ+cKFC/3796fHzLt3725F2S21ZcsWAFi8eDEPY+kdOnQIAPz9/cmjo/HDhw/zWYDgCCmE9CdYJBLpt09oy7uVlJQ8++yzdC6lm6icP3/ezc0NABwcHI4ePdrM92nRzFxTU/Pyyy8ba9Z9qsjISABYv349p6M85quvvgKAsLAwQghdlc3JyeGzAMERUgjpLgvffPONsd5Qo9HIZDIangULFiiVyj+eNDbx7U1sbNQEw1l34sSJ5eXlxvrrGNJqtQcOHHBxcQGASH5PyegNSZ988olGozE3NxeLxXyeBguRYEKoUqlEIpG5uXljYyPdR8FY9u7da2trCwCDBw/OzMz840njY69vYmOj5g/6888/06Xanj17JicnG/Gv89iWg5aWlmKx+MMPP2zjgUPzvfTSSwCwc+dOeonSxcWFn3GFSzAhzMrKAoABAwYQQhYvXmxpablz505jvfn169eHDx8OAFZWVtu3byd/OGmkL8vLy/vjoou+w3xL3bp164UXXmjmrNscf5yZP/30048//pjOupMnT77Jfe99QsioUaMA4Ny5c8ePH6ezPQ+DCppgQvjTTz8BwAsvvEAImTJlCgA0/7StOVQq1Ztvvqm/fF9XV2d40iiVSgMCAsSPHksdN27cjh072n6UZbjfdVBQUOsWmZ46M6ekpDg5OQGAs7Nz85eRW422+r5169a2bdsA4LXXXuN6RKETTAj/85//AIBUKiWE0OWT3Nxco4+iv3xPLyToTxrp7EcXXc6cOWPcQX/88Ue6LW6fPn1SU1Ob/425ubkymaxHjx5PnZkrKyvpvvMSiUQul3O3+9K9e/cAoHPnzoSQ1atXA8DatWs5GqvDEEwI6f1fn376qUajkUgk3J3uZ2Rk0KXObt260WsVvr6+ALBw4ULuNu4rLi4eN26c4VJtE/7sckjTp8oajUY/686cOZOjv8uFCxfoP924cePo5BwbG8vFQB2JYEI4d+5cAIiPj8/LywOO7/+iFxKWLl1KPxw7diwAcH0gZ7jf9cKFC5+433VlZaVcLtc3qrC0tAwNDaVbDjbT/v376eGim5vb+fPnjVc+IYTk5ubSVRk65dJewz///LNxR+l4BBPCESNGAMD58+eTk5MBYNKkSZwOp9Pp9BfxaPd4jq4lPGbPnj10qXbIkCGZmZn6z9NFF6tHe6oNGDBALpdXV1e3YoiioiIfHx+a4afOus3R2Ni4b9++gIAAfYfvIUOGjB49mn44c+bM2trato/SgQkmhHZ2dgBQXV0dExMDAK+//jo/4yqVSvrzytsuttnZ2XSptkuXLqtWrfrXv/5FfwHpF13279/fxmIMZ93Q0NAnzrrN0fTMnJSURP/XBg4cePny5bYU3LEJI4S3b98GgK5duxJCVq1aBQAfffQRP0NfuXIFADw8PPgZjrp///7ChQvBQK9evT744IPi4mIjjhIXF0fvf/Dw8Lh69WqLvreZM3Nubq6XlxfN57Zt24xXe4cijBCmp6cDgJeXFyFk/vz5ABAXF8fP0ElJSQAwffp0foYztHDhQolEYmtrGxcXx9FTiFlZWc888wz9Bbdr166nvl6lUsXGxrZoZlapVIazLnePbhJCiouLV6xYcerUKe6G4IIwQpiYmAgAs2fPJnwtk+h9+eWXALB8+XJ+hnvMvXv3uB5CqVSGhITQkEil0j9Le05Ojkwmo5dS6Mwsk8kKCgqaOco333xDp82QkP9y8eSmfma2srISiUT//ve/jT8GZ4QRwn/+858A8O677xJ+l0kIIfS3+Oeff87PcKwoFAoLCwsA8Pb2NowWvRwSFBSkX3RpzuWQJ7p8+fLzz79jbU1sbcmePcYp+/79+wqFwuvRLhcSicTuUR+NJUuWCOWeVWGEcMmSJQCwadMm/pdJZsyYAQB7jPVT046lp6fTO07t7e13795dVlYml8vpfRH6RZdLly61ZYjaWjJvHgEgIhGJiCBteYbkiTNzYWEh4aVhwmMadY0na0/uvLMzrz6PEDIrb1aLvl0YIQwICACAH3/8kf9lEnrKdPHiRd5GZKi6ujowMJD+WBteb9i0aZMRD4wVCmJhQQDImDGksLBl36vRkN27yYIFy/Xl+fr67ty587GjaMOGCT/88IOxKn8itU7te903rChsY+XGidcnXqm70u/Xfi16B2GEcNCgQQBw9erVffv28bxMQrvH3717l7cR2dLpdPPmzaM/4uPHj2/75ZAnSksj7u4EgNjbkyNHmvUtFRVELidubgSA+PoqnjozG7dhQhO2VW17o/AN+mct0RJCuA0hd/dtNUGr1Xbq1EkkEj148IDnZZKKigoA6N69Oz/DtR9nz57NysridIiqKjJt2sNDU5mMNPEMyc8/k5CQh5MnAPHwIJs31zVnZn7s0c1WNExojmXFy+Ju/26tnsMQ3r59293dvYkFNI4UFxcDgKOjI+F9meTs2bN0KYKf4UyNVkuioohYTDp1Ip9/TubMIfTBj9OnySefEKWSKBTEy+th9sRiEhREkpNJSyfmU6dO0Uc3W9Qw4anKG8o/Kv/oaM3R5cXLY2//7v7YloawBc1/T58+ffPmzZiYmEmTJtFg8MOwhzTPTazZ9JA3GWIxrF0Lhw6BQgESCWRkwNatAAA1NVBcDOPGQXg4XL4MTk7w979DcTEcOAD+/vDoZLC5nnvuucuXL0+dOrWqqiowMHDt2rU6na4tZWfUZSwqXOT2q9vfb/7981ufj7QeeVJ5si1v2IIQzpgx48yZM/369UtNTR01ahTt58MDwyTw3E+aTftqEzN1Krz2GgDA8uWgUEBZ2cPPh4TA6NEQGwtFRbBuHTg7t34Ie3v7w4cPy+VyQsi6devoQyQtfROlVrmlasvwrOHe2d5xd+IIkJftXl7Va1Vo99B8df6bRW9uq962vGR5jjqnxfW1dBa+d+/enDlzAEAkEslkMh6aJkRFRQHAmjVrCO/LJIsXLwaALVu28DOcKYuOJps2kcREEhJCDh4kS5Y0dZbYak9smPBU1+uvy0pl3S51gwyADHC84igrlRWpi/QvaNQ1pihT4m7Hpd5PJYQcrWnZQW9rVkcNz3d5aJqwYMECAKBdJ65evXrw4EFOhzOEHft4Q0NICAkIICtXkiVLuBroj132/kxjY+P+/fv9/f1HnB9B4zc6a3Ts7dgGnZEXWlt/ieLEiRP0l0rImDGEm7v1srOzIyIiOnXq1K1bt4ULF7a9C0tLYcc+3uhDmJND7Ow4DCH5fZe9uXPn/nGhtaysLCoqii7nAMCkqEnLipf9qvqVo3radJ2wvLw8yN+/zsODSCQkKqrF61Z/Qq1W79y5kz7PTo976fPgAQEBT20oaERcP8KPDO3cSfQ3kH/2GfnkE85HNOyyd+XKFfrJ9PT00NBQepRHvySXy7m+Mtfmi/UazcNlZgAycyZpW7nl5eVyuZxuJAQANjY2Uqk0MzPz5MmTjo6OAODi4nL69Om21twk/eNwdFXG1dWV0+GQ3v/+R7ZsIU/ay4cr2dnZw4YNAwArK6uJEycOHTqU/uCZm5vPmzcvJSWFnzKMdMfMgQOkWzcCQNzcSCuaJuh02uPH5wUH062LAMDT03Pr1q1KpVL/ktLS0gkTJgBnrYroQzr0VuCMjAxCyLFjxwA79vFo+XICQIzxrH8LqFSqRYsWAQC9f93JyUkmkxn3uc2nMt5ta0VFxMeHABBLyxb8Q9bUEIWCDBtGAOaOG2dhYUG31H1ixuihPL2jatasWcZaI7127dpbb71lY2ND8+/k5LR//35CyIYNGwDg1VdfNcoo6KkCAwkASUpiMPRbb701atSoXbt2PbahJT+Meu9ofT2JiHh4g0NoKGm6acKlS0QqJZ07P3y9q2tedHRFRcVTB0lKSqKtitrYNEGr1dK1L8OHdGJjYxsaGuhm9/RO/MmTJ7d6CNQiQ4YQAPLo7MyEcHAD944dpHNn0qMHKSoiDQ3k229JZCTZtInQNSi1miQkEH//h9kDIBMmkIQE0pLfQIWFhXTrP0tLy5iYmJYWePPmTblc3qdPH5q9rl27SqVSmmfaQ37w4MH0S2KxOD4+vqXvj1pBpyNWVgSAGJyCmApunqLIzCQnThCdjkydStauJampZMsWMmwYqa0lzz77MHt2duSdd0h2dutGaF3ThMfWvgYNGqRf+7p27VpERATtuQIAvXv3Xrp0qYk8wdQelJURAOLgwLoOFrh8lCklhUyb9tuHdD7csIF4eJDo6KccrDbPjh076EHjiBEjmmjIXVtbq1AoPD09acDMzMyCgoLomadarTbc7B4AJkyY8MfN7hHXfvmFABAfH9Z1sMBlCLduJatW/fbhrl1k6dIWHXY2x7Vr1+jKso2NTUJCwmNfzc7Olslk9BwSABwdHWUyWVFRESGEPjnu/OiWRHo55Ndfubogi5q2YwcBICEhrOtggcsQ/ve/JCLitw+//pqjvctra2tpC7bHHt/U6XT6fUWnTJmSmJhIF11oD3n95ZCRI0cqFIpW995ERrFuHQH43S9t08FlCAsLyZAhhHYE0unItGnNfYi6VfStisaMGVP4qGvCV199tXz5ctpU8969ewqFQn9BVn85hLuSUPP95S8EgLR8la0j4Li9xbZtZNQo8vbbxNeXrFjB7ViEpKWl0W7Q9vb2RwwCn5GRIZVK9Ysuzs7OUVFRt27d4roe1HyBgTMGDfJKSTHFRt0iQghwqq4ObtwAV1d41IuOU9XV1aGhoYcPHxaJRPPmzfPx8Tl48CC990UsFvv5+Uml0jlz5uiPRVE70adPn5KSkhs3bpjgI9Tch5B3Op3uH//4x7p16/R/te7du7/++utLliyhHbhQe6PRaGhrYJVKpb+AZDo64IQgFoujoqIsLS3Xr18vEok++uij8PBw/a4JqB0qLCzUarXu7u4mmEDokDOhXl1dnX4Dd9SeHT16NCAgwM/Pj25zb2pa0GNGcDCBQmHivXw6cgiRUBg21DNBGELEHoYQIcZMvL8rhhCxV1JSIhaLo6OjWRfCBoYQsefj46PT6eLj40NCQujudyYFQ4jYS0pK+v777+3s7OLj4729vTMzM1lXxCsMIWoXXnnllfPnz3t6eubk5IwdO/brr79mXRF/MISovRg4cOC5c+fCwsLq6+vDwsIWLVpUV1fHuig+dOQ7ZpBA7dixY+nSpXV1dSNHjkxMTKQPhXZgGELUHl26dCk4ODgvL8/Gxmb79u0vv/wy69ZIc5oAAAOWSURBVIo4hIejqD0aMWLEhQsXgoODa2tr582b984772g0GtZFcQVnQtSuxcTEvP322w0NDb6+vrt27dJv0tKRYAhRe5eWlhYcHFxUVOTg4PDdd99NnTqVdUVGhoejqL0bM2ZMeno63ZNr+vTpbd/vur3BmRAJAyFkw4YNq1ev1ul006dPj4uL6969O+uijANDiITkxIkTCxYsqKysdHV1TUhIGDduHOuKjAAPR5GQ+Pn5paenjx8/vqSkxNfX97XXXmNdkRFgCJHAuLi4nDx5MiIiorGxcceOHe+++y7ritoKQ4iEx8LCYuPGjVOmTAGAvLw81uW0FYYQCRXd4WfSpEmsC2krDCESqg7TFANDiISqwzTFwEsUSKhsbGyUSuXdu3fteNlhgTs4EyJBqqqqUiqVtra2Qk8gYAiRQNFj0Y7xqCGGEAlSR2rajSFEgtRhlkahQ+7KhExB3dg63y98hw4ZyroQI8CZEAlSap/UU5NPOT3nxLoQI8AQIkHKb8gHgL4WHeFwFEOIhEdLtCUNJSIQuVm4sa7FCDCESHhKNCUaoult3ttSbMm6FiPAECLhKVAXAEDfTh3hWBQwhEiIChoKAKCfheDvGqUwhEh4cCZEiLGOtDQKGEIkRHQm7NepgxyO4qNMSHhy1bk59Tm+XXwB4OyDswE2AawrahO8bQ0JSb2uflX5qrMPzopBPL7L+Dd7vPnlrS8xhAjxZ0Plhvu6+2cGnxGD+EjtEdblGAeeEyIh2Xtvb2SvSDGIASDAJsBMZMa6IiPAECIhqWqs6inpyboKI8MQIiFxtXDNV+ezrsLIMIRISN60fzOyLPJW4y0t0abXpbMuxzhwYQYJyeIei83A7C+Ff2kgDT6dfZY5LPO29mZdVFvhdUKEGMPDUYQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQYxhChBjDECLEGIYQIcYwhAgxhiFEiDEMIUKMYQgRYgxDiBBjGEKEGMMQIsQYhhAhxjCECDGGIUSIMQwhQoxhCBFiDEOIEGMYQoQYwxAixBiGECHGMIQIMYYhRIgxDCFCjGEIEWIMQ4gQY/8PXG8AgJGQUgwAAAIYelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkANieSBuYGRjSADSjMwcDBpAmpmJzQFMs7A5ZIBoZkYkBlQGopIFrgNsAhOUZmZE8FHVsUNoZlT1TEyCDAogF+ASJugeVHcwMmNTic7gZmBkYGRSYGLOYGJmSWBhzWBiZVNgY9dgYuNg4OBk4ORi4OJm4ObRYOLmVeDlY+DjZ+AXYOAVZBAUYhASZuAUYRARzWASFUsQE89gEpdQkJBkEJdKkJIGGiOTICObwSTLlCAtkuAECm42JlkZVhZmNlExcSlpEfEiRqAbGWDRoD1F4ODWGyv2gzhanL8PMB7iOwCW2H7uwJNTl8Hidi0nDhw31t4HYhsZzTkwzeuiHYjNo5ZzwH8jA1jNl0bhA/ns02xBbBMZ9gOPjhy3B7HN2vv2r5kaBlbzirnb7r5bG9icNba77Vltp4HF3zmZOZxhlwSz165wcuA6mAzWu9ih0cFY/yBYfMOktQ5ab/LA7DsbLzskKb6B2MvI4OicsQjM7pAuczh/0h7s/g86Cx3K5KvAbMFfsxyurVgDZj8xfGe35dIcsPkrr7yxv9T9DMwWucDkIF8R5ABiv3GLsn+U1gZmf3nXav/3/1Ywe9JsaQfXvBNgdoknx36zj+lgduEDy/0M+znA7NPdFQeE9/4Du+fj9BUHJKxVwPaKAQD1vJPIb8NPagAAArd6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VVtuGzEM/PcpdAEL4lPkZxIHRVHEBtq0dyjQz94fJeUmqxREVxYhaWcpiTOkTy2fr5cvP3+39wcvp1Nr4z8/d28/aIxxemk5aI/Pnz5f29Prw+PbytPt+/X1W4sRQXwT7SP24fX28rYC7amdvQ9SmNzO0AkcgNroYz3Ht9hu7Ty7MZt6O2NHGuJQICl9amdxE0qfKqzoBZLvSFQFDuTooBN8FEhJJHczAJzxnofNiQVQE0hdzQ0xXcrAObRAzkRip8E20uWYhFIBLW+OHQCGa4MuOtQroKdHCCDJgNzbKA5RhQiCpVjGCQKcSFREqUIEyRD0CKDhWN4nRauQGEgMgqaRrJv7nFMqJMWNqA8G4Xxv5qpcAbldG4c6HHhtLsNRKnVAEiSdMXxqbu5EWKoDkiHtGnsrpM9Q1NTy6sHQr2a5znMmFNX+cvUv1MIphSvhmAVZHjfySh/g66Ah+EmaSvFhMCvJRbhj+9BcuMSASicXhRIKi05WQeRgK7gEK4G42LQQZQQ0BgOAq2MiLTIHx56RUR3NxEogr61NUINL7hhvSyGhBOkQHpVEIgJqk70E6tqaCSjiktlJyVQBXBkUOiOkCXFIjUt5RQ/aHTlRI9rhHEhVrEL6PX8tNEyYnLsP4ErFWemSlRCFsCXpEnWklMfz9fKh6t3r4OPtejnqYDY8il1MGh0VjbMfZSubHLUpJk2PCgTR51FmMLodxQRi6kfJgOx7YYBlYCsAsAxuiY5pgLaEhrXCW+bCMrJlKCyjWybCMnPLuPtXtiUWLONbAkEa3BNlnRlhywdOg7gJn9MgbQrnNMiblCENyqZZSIO6iZMXZm4qzGlobFMbBwPom6g4De3a4fUH+b6wTmzbHVIzu0Jy/vYvG+PTH6kabw3ggzXPAAABanpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nCVRSW7EMAz7So8zgEfQLhlFT7l3HpFrn9DHl3IDZDFDSSR1vW+57/txPb7ez+t6XOfjG+/r53ket87/9/W8b8UtH7+P1ya2lFovIZMtsj5fRe3egJTUODagJI/dMawMTzuQZoqvF5NkybCcukVsMTl3lQIyyt6twwrW4gSmZOwtoHGZRvrBBNcSiuTCWXC2mLK2VoUsJi2J/4GaqqNLyFOnO+hlhUYK7dWHFLuqYn0asUsExnXvnGkOz3s6YRxvBSfI1SWnbJvpxrykFFgdEuIoiGpihvBBNOF0WreH2yS10XpPI8QJITC+uZErhrUbgxNkO/I48QxVh1vYkB4fjXQGaBY5NtjBXkbaHT01HZoey0mhIqeGsYhYgYTHppKbWK3Zi/nkjAhMrQRdEu4OUpqQtRC3ZeZZULeFjam9WdAIQmEPgcFVYMWynr9/Y5V7MxQx8pQAAAAASUVORK5CYII=</base64_image>", "role": "assistant" } ]
GHS_Pictogram_Identification
O=C(Nc1ccc(Cl)cc1)ON=C1CCN(c2ncc(C(F)(F)F)cc2Cl)CC1
1,477,080
["GHS05", "GHS06", "GHS08", "GHS09"]
447.244
5.6121
[ { "content": "Identify the GHS pictograms that apply to the compound with SMILES 'O=C(Nc1ccc(Cl)cc1)ON=C1CCN(c2ncc(C(F)(F)F)cc2Cl)CC1'.", "role": "user" }, { "content": "[\"GHS05\", \"GHS06\", \"GHS08\", \"GHS09\"]", "role": "assistant" } ]
Reactivity_Prediction
CCOC(=O)C1=C(C)N=c2sc(=Cc3ccc(OC)c(OC)c3OC)c(=O)n2C1c1ccc(N(C)C)cc1
986,851
{"charges": {"C": [{"atom_idx": 1, "charge": 0.089}, {"atom_idx": 3, "charge": 0.338}, {"atom_idx": 5, "charge": 0.086}, {"atom_idx": 6, "charge": 0.053}, {"atom_idx": 9, "charge": 0.194}, {"atom_idx": 11, "charge": 0.097}, {"atom_idx": 16, "charge": 0.164}, {"atom_idx": 18, "charge": 0.078}, {"atom_idx": 19, "charge": 0.203}, {"atom_idx": 21, "charge": 0.078}, {"atom_idx": 22, "charge": 0.171}, {"atom_idx": 24, "charge": 0.078}, {"atom_idx": 25, "charge": 0.271}, {"atom_idx": 28, "charge": 0.099}, {"atom_idx": 30, "charge": -0.055}, {"atom_idx": 37, "charge": -0.055}], "O": [{"atom_idx": 2, "charge": -0.463}, {"atom_idx": 4, "charge": -0.246}, {"atom_idx": 17, "charge": -0.493}, {"atom_idx": 20, "charge": -0.49}, {"atom_idx": 23, "charge": -0.492}, {"atom_idx": 26, "charge": -0.268}], "N": [{"atom_idx": 8, "charge": -0.225}, {"atom_idx": 27, "charge": -0.271}, {"atom_idx": 33, "charge": -0.378}], "S": [{"atom_idx": 10, "charge": -0.093}]}, "dipole": 5.37, "steric_hindrance": 3.95}
537.638
2.8901
[ { "content": "Provide information about Reactivity_Prediction for the molecule with SMILES 'CCOC(=O)C1=C(C)N=c2sc(=Cc3ccc(OC)c(OC)c3OC)c(=O)n2C1c1ccc(N(C)C)cc1'.", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 1, \"charge\": 0.089}, {\"atom_idx\": 3, \"charge\": 0.338}, {\"atom_idx\": 5, \"charge\": 0.086}, {\"atom_idx\": 6, \"charge\": 0.053}, {\"atom_idx\": 9, \"charge\": 0.194}, {\"atom_idx\": 11, \"charge\": 0.097}, {\"atom_idx\": 16, \"charge\": 0.164}, {\"atom_idx\": 18, \"charge\": 0.078}, {\"atom_idx\": 19, \"charge\": 0.203}, {\"atom_idx\": 21, \"charge\": 0.078}, {\"atom_idx\": 22, \"charge\": 0.171}, {\"atom_idx\": 24, \"charge\": 0.078}, {\"atom_idx\": 25, \"charge\": 0.271}, {\"atom_idx\": 28, \"charge\": 0.099}, {\"atom_idx\": 30, \"charge\": -0.055}, {\"atom_idx\": 37, \"charge\": -0.055}], \"O\": [{\"atom_idx\": 2, \"charge\": -0.463}, {\"atom_idx\": 4, \"charge\": -0.246}, {\"atom_idx\": 17, \"charge\": -0.493}, {\"atom_idx\": 20, \"charge\": -0.49}, {\"atom_idx\": 23, \"charge\": -0.492}, {\"atom_idx\": 26, \"charge\": -0.268}], \"N\": [{\"atom_idx\": 8, \"charge\": -0.225}, {\"atom_idx\": 27, \"charge\": -0.271}, {\"atom_idx\": 33, \"charge\": -0.378}], \"S\": [{\"atom_idx\": 10, \"charge\": -0.093}]}, \"dipole\": 5.37, \"steric_hindrance\": 3.95}", "role": "assistant" } ]
Solubility_Prediction
OC(CCN1CC2CCC(CC2)C1)(Cc1ccccc1)c1ccccc1
262,129
{"log_s": -3.71, "solubility_mg_ml": 0.0001, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 349.51800000000003, "logp": 4.63, "oh_groups": 1, "nh_groups": 0, "cooh_groups": 0, "aromatic_rings": 2}}
349.518
4.629
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'OC(CCN1CC2CCC(CC2)C1)(Cc1ccccc1)c1ccccc1'.", "role": "user" }, { "content": "{\"log_s\": -3.71, \"solubility_mg_ml\": 0.0001, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 349.51800000000003, \"logp\": 4.63, \"oh_groups\": 1, \"nh_groups\": 0, \"cooh_groups\": 0, \"aromatic_rings\": 2}}", "role": "assistant" } ]
IUPAC_Name_Generation
COC(=O)c1ccc(NC(=O)c2cccc(NC3=C(Cl)C(=O)N(c4ccc(C)c(Cl)c4)C3=O)c2)cc1
1,673,967
methyl 4-[[3-[[4-chloro-1-(3-chloro-4-methylphenyl)-2,5-dioxopyrrol-3-yl]amino]benzoyl]amino]benzoate
524.36
5.12302
[ { "content": "Generate the IUPAC nomenclature for the chemical with structure 'COC(=O)c1ccc(NC(=O)c2cccc(NC3=C(Cl)C(=O)N(c4ccc(C)c(Cl)c4)C3=O)c2)cc1'.", "role": "user" }, { "content": "methyl 4-[[3-[[4-chloro-1-(3-chloro-4-methylphenyl)-2,5-dioxopyrrol-3-yl]amino]benzoyl]amino]benzoate", "role": "assistant" } ]
Stereochemistry_Analysis
CSc1ncc(-c2ccc[n+](CC(=O)C3CC3)c2)cc1C#N
1,608,195
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
310.402
2.60878
[ { "content": "Determine the stereochemistry analysis of the chemical structure 'CSc1ncc(-c2ccc[n+](CC(=O)C3CC3)c2)cc1C#N'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
COc1ccc(CS(=O)(=O)CC(O)COc2cc(C(F)(F)F)n(C)n2)cc1
1,480,833
408.40
408.398
1.8022
[ { "content": "Provide the molecular weight for 'COc1ccc(CS(=O)(=O)CC(O)COc2cc(C(F)(F)F)n(C)n2)cc1'.", "role": "user" }, { "content": "408.40", "role": "assistant" } ]
Synthetic_Accessibility
COc1ccccc1C(=O)NC(NC(=O)c1ccccc1OC)c1ccc(F)cc1
983,492
{'sa_score': 7.95, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
408.429
3.7015
[ { "content": "What is the synthetic accessibility for the compound represented by 'COc1ccccc1C(=O)NC(NC(=O)c1ccccc1OC)c1ccc(F)cc1'?", "role": "user" }, { "content": "{'sa_score': 7.95, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
GHS_Pictogram_Identification
COc1cc(Br)c(Br)c(C=Nc2ccc3c(c2)OCCO3)c1O
1,513,713
["GHS08", "GHS09"]
443.091
4.4476
[ { "content": "Identify the GHS pictograms that apply to the compound with SMILES 'COc1cc(Br)c(Br)c(C=Nc2ccc3c(c2)OCCO3)c1O'.", "role": "user" }, { "content": "[\"GHS08\", \"GHS09\"]", "role": "assistant" } ]
Molecule_Visualization
CCOc1cc(C2C3=C(CC(C)(C)CC3=O)NC3=C2C(=O)CC(C)(C)C3)cc(Cl)c1O
1,340,584
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVhTZ9o/8DuBsO/uCyB1qSKIYnEXNzouzbRucdqOjN0mvt2w68SO8xtq69umjm+lda52Mu3YC1udKdhNq23FUXEpiOLC4o6iAiqiiCyBhOT+/fFgjCFAgCTPQ7w/l39oTsi5Deeb+5znnJxHgohACOFHyrsAQu53FEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBJbaY3aTTc3GdDAuxBXI0FE3jUQEVUZqlLKU3ZV76rH+hjvmBW9V7hL3Pvn968bWect9eZdnUuhTkis0Bq1085O++7Wdy/2ePH9vu+7S9yVl5S8i3JZ7rwLICLacHPDhYYLF6IuBLkFAcB0/+l61Jc3lvOuyzVRJyRWHKo9JA+UswQyMomMYz2ujUJIrLisv9xP1o93FfcLCiGxIsQtpNJQybuK+wWFkFgxzGvYvpp9RjDyLuS+QCEkVjzV7akSfcny0uV61APALcOtPG0e76JcFoWQWBHmEbZt4LZtVdv8j/k/UPBAaH7od7e+412Uy6KT9aQ1V/VX9ajvLestk8gQsMZQ4+/mz7soV0OdkLTojdI35EXyPG0eOz8hAQkl0BEohKRFxQ3FuXW5WtTyLsTFUQhJi2qNtQDgK/XlXYiLoxCSFtUZ6wDAR+rDuxAXRyEkLaJO6BzOC2FNTU16evqRI0ectkbSSRRC53BeCD/88MNFixZ9+umnTlsj6STaHXUO54Vw/vz5APD99983NjY6baWkM6gTOofzQhgVFfXggw9WVFT8+uuvTlsp6QzqhM7h1IGZxx57DAC++44ugOoCjGCsN9ZLQEI3s3A0p4Zw3rx5APDdd9/RtXLiqzPWIaCP1EcCEt61uDinhnDs2LH9+/e/ePEijZGKr9ZAB4RO4tQQSiSSRx99FGiPtCvQarWx+tgofRTvQlyfs0/Wm/ZInbxe0l41l2qOjDtybck13oW4PmeHcOrUqd27dz9x4sSpU6ecvGrSLnV1dQDg40NDow7n7BC6u7s/8sgjAPD99987edWkXWprawHA15eOCR2Ow7WjtEfaJVAndBoOIfzNb37j6+t76NChy5cvO3/txEbUCZ2GQwi9vb1nzZqFiD/88IPz1y6K48dh82b4+WeoquJdinXUCZ2Gz1eZnLBHWl9fX1pa6rjX77iKCoiPh1mzYMMGWLkSwsJgwwbeNVlBndBp+IRQLpd7eHhkZmZWVFTY/cUbGxtfeeWVoKCgAQMG/Pa3vzUYBJvKS6kEDw84exa2bIGsLPjiC3juOcjP512WJeqETsMnhIGBgdOmTTMYDFu3brXjyxqNxn//+9+RkZEfffRRQ0NDY2Pjjz/+OHbs2KNHj9pxLZ1y6xb88AO8/z74+TU9Mn8+xMfDxo1cy7KCOqHTcPtmvd33SHfu3BkXF/fkk0+ePXt2wIABy5YtW7lyZVhYWG5u7pgxY5YtW1ZTU2OvdbVbYyPU1QEAnDsHiBAdfc/SUaPgzBkudbWCOqHzICdXr151c3Pz9PS8fft2J19q//79U6ZMYf+d0NBQjUaj1+vZotraWpVK5ebmBgARERE//fRTpwtvJ6MR09JwyBB86y1WK7q5YWPjPc9ZsQJnz3Z2YW158cUXAWDdunW8C7Hm11/xkUewb18MDUWFAgsKmh5/4w1cu/aeZ8bE3F0qKm4hRMSJEycCQFpaWodfIScnRy6Xs/h1795drVZrtdrmTzt27FhcXBx7mkKhuHbtWieqbo8tW3DECARAAIyNRYMBy8oQAIuK7nna44/jSy85qSTb6PX6SZMmAcA777zDu5ZmDhxAHx989108exZPnMBlyzAgAE+fRkRctAhVqnue7OaGOTlcyrQdzxCuWbMGAJ544okO/OyJEycUCoVEIgEAf39/lUpVVVXVyvP1en1KSoqfnx8ABAUFaTQao9HY0cJtsH8/xsc3xS80FDUavNOcMSYGX3nl7jMvXkQvL9y2zYHFtIfRaExLSxsyZAgA9OzZ093dPSkpqaamhnddZmbMwKVL73lkzhxcsgSRQth+Fy5cYBGy2r5aUlxcrFQq2R6mj49PUlKS7Z3t/Pnzs2bNYi0xPj7+5MmTHSq8VQcPolzeFL/u3VGtRvP/XWMj5uRgYCA+/jh+/jn+7/9i79749NP2L6NDfvzxx5EjR7L3Z9CgQXPmzJFKpQAwePDg//73v7yruyMoCC0OKz77DKOiEBEXLcIXX8TS0rt/KIRtYr/y7du32/Lk8vJylUrl6ekJADKZTKlUlpWVdWClaWlpPXv2BAAvL6/k5OSGhoYOvIgVJ06gQoESCQKgvz+qVGjenE+eRIUCn30WEbGkBN99FxMT8eWXcetW+6y9cw4cOGA6ru7fv7/puDo3N3f06NGmPfnr169zLrSmBgHw6NF7HvzxRwwMRERctAj9/bFfv7t/ACiEbVi5ciUA/PGPf2z9aTdu3FCpVN7e3gAglUoVCsW5c+c6s97KykqlUsn2ZqOjo7OysjrzalhUhIsXo1SKAOjri8uX482bd5eeP49/+AO6uTWF03yRAPLy8hQKBYtZt27d1Gp1XV2d+RPYnjw7VxESEqLRaHiV2iQgAH/55Z5H1q/HYcMQaXe0Q/Ly8tixR6PFgOEdNTU1arU6KCgIACQSiVwuP378uL3WnpmZOXToUPbKSqWy9aNKq1hz/ueUKQiAMhkqlWjenMvLUaVCL6+7S0tL7VV855kfV/v5+alUqlu3bpk/oba21vT3oqKihx9+mGV16tSpp9lAiDNlZuInnyAiTpyIb7xxz6LHH8fHH0ekEHYUGwPYu3evxeMNDQ0ajaZXr17sF5+QkHDo0CG7r12r1SYnJ3t4eABAnz590tPTbfzBioqKN954gzVnT5nsdlISFhffXXzjBiYno78/AqBUigoFnj1r9+I77OLFi20eVxsMhkmTJsnl8pKSEtODaWlp3bt3BwBvb+/k5GSdTueMcvPyUKFAAPTywkuXcNs29PXFTZtQp0OtFtetQy8vPHIEkULYUW+++SYAvPrqq6ZHdDpdampqREQEi9/48eN37drl0Bry8vLGjRvHVieXyy9dutTKk9tozjU1qFZjUFDT2ExCAh475tDi26X5cXVpC835+PHjbDA5ODj4888/Nw0m37hxQ6lUsvcqJibm4MGDDiy3sBAXLGg6zA4MxJUrkZ1VTk/HBx9EDw90d8fRo9G0eTz1FCYn3/MKISFN+RQY/xCy25CGh4cbjUaDwZCWljZ48GD2O46KiurMWcR2MRqNGo0mICAAAAIDA1NSUgwGg8Vz2mjODQ2o0WDv3nfjJ9Jn8I0bN5KTk/39/U3H1Wfbas6lpaXswiYAmDx58okTJ0yLdu/ezXZhpFKpUqmsrq62c7kXL6JSie7uCICenqhUYvMx8NpabM+4urD4h9BoNPbv3x8APvnkk1GjRrFf+YMPPpiamto8Bo5WVla2cOFCVsOECRMK7lxs0Xpz1uv1n3322fu/+U1T/CZMwD17nFx5K8xbN/vsONae5rxly5Z+/fqxzqlSqerr69njdXV1ycnJMpkMAPr168fuZGkHYh9IOwK3EN64cePQoUNff/31e++9N2zYMNNldOHh4evXrzddd8bFli1bQkND2Wb3pz/9aePGjS01Z4PBsGnTJtPSsgULBDnlwLDW3bt3b1P8cjrUnCsrK5OSkkznDM0/gI4dOzZmzBj7XI0k9oG04zgjhDdv3jx8+HBqaqpKpVIoFKNHjzZ9Kpt4e3v7+Pi0dN2Z8926dcu02TFDhw5NS0szv84mIyMjNjaWLR0wYIBGo2lpjNf52I69qXWPGzeu82fb9+3bxz4uJRJJYmLijRs3TOvSaDSduRqpurr6nXfeyZs5EwFQIsH587GwsJPVdiH2DOGtW7eOHDmyefPmDz74YOnSpQ8//PDAgQPZ7kpz/v7+MTEx8+bNe/3115966ikAeJyNMotk//79kZGRrOBRo0aZRvDNLxk3P7UtAvPrzgBg+PDhFp8dnaHT6dRqNRvX6dOnT2pqqmlRSUnJ3LlzTQeQNl6NpNVq165d26NHDwCI7N69US5HB4yBC66DIWTNLS0tTa1WK5XKhISEBx54wGrYACA4OHj06NEKhUKlUmk0moyMjKKiIvPNQqPRgA2n7LnQ6XTPPvss+4988sknNl4yzotzmvOZM2emTZvG1mIxmGw6gGRXI5kOIJtzRK/uotoRwsrKylmzZg0ZMoSdVWvOx8cnKirq0UcfffXVV9etW7dt27aTJ0+28mswWbt2LQAsW7asE/8Rx2L7zyNGjDA/td2Bk/uO889//jMwMJD9IsLCwj7//HOHNmej0ZiamhoSEgIAvr6+arXalHbzq5GioqJ+/fXX5j/ruF7dFbUjhAaDge2HtNTcOjyYuWrVKgD485//3LEfdwJTe/Hx8Vm+fLnpcEgQxcXFrDxvb29nNucrV64kJiayVcfGxubm5poW7d271+rVSCIfSPPSvt3RjIyMgoICi2sLO+/Pf/4zAKxatcq+L2tH0dHRAPDEE09cuXKFdy1W7NmzBwCkUunVq1edv/atW7eGhYUBgMX3ntjVSKYDyFWrVgl7IM0X//OEiPjKK68AwIcffsi7kBaxI95OXjXuOIcPHwaABx54gFcBNTU1pjsYDBw4MCMjw7QoPz9//PjxbO/JdCBt98/xLo3bPWbMiX9PIcErZDOQs6s6AeCXX3754IMPjh8/7rQC2GFhTk5ObGwsu9R70aJF7FZ6UVFR+/fvnzlzZmVlZUJCwoULF0xfiCGMECFk9xQSdhMH4e96ZFHeN998s3z58pycHCeXERsbm52dvWrVKi8vr/T09KioqKtXrwKAVCplJxjnzJnjZ7rNHLlDiBCyPiPsJg7Ch9CiUXN8P2Uy2YoVKwoKChISEuLj400X6wi+K8GXO+8CAIT/DdXX17ORYXd3Id6u5iw+I7i/nwMHDtyxYwerihH8U4wvITqh4L8hwcuDZqkToWCJRGL+KcD9c0FkQoRQ8N+Q4OVBs4NqAQsW/7CfIyFCKMIndysELw+aHQQKWLD4h/0cCRFCAT+5zQleHoh3TNicgCWJQ4gQCr6vIv4GJOAxoQUBSxKHECEUfF9F/A2IOmGXxj+EjY2NOp2OTQ7DuxbrxN+AqBN2afxDKP4mLv4GZL4/zz7U3N3dhfpQE/+3zBH/EIq/iYu/AZnvzwu4by/+zg5f/EMo/ibetT4mBBzlEv8N5It/CMX/DXWtjwkBO6H4byBf/EMo/m+oa31MCPh+iv8G8sU/hOL/hgTcrC2Yv4cCvp/iv4F88Q+h+L8hATdrC9QJuzQKYdvEr5A6YZfGP4QCbjQWBK8QEbVarUQiMR+YEWqLF/wN5I5/CAXcaCwIXqFWqzUajV5eXuym/QJu8YK/gdzxD6GAG40FAc+8mbN6bwuhqhX8DeSOfwjPnTsHdzYdMQl45s2cxaeYgFu84G8gd/xDeOzYMQBgt68Vk4C9xZw4d3lqieBvIHf8Q8juDFtQUDBz5szLly/zLscKwXeYrXZCoaoVsCSh8A/h2rVrFQqFl5fXjh07oqOj//GPfxiNRt5F3aXVaquqqgCgpWlwuOsqx4QUwpbwD6G7u3taWtr58+cXLlxYVVX1/PPPT548ubCwkHddoNfrN2zYEBkZqdPpvL29p02blpWVxbsoKyw28dWrVxcVFT355JNci7qHgJ8LQuEfQqZPnz7p6elsnupff/111KhRy5cvr6+v51KM0WjcuHHjsGHDlixZUlxcPGjQoB49ehQWFk6aNOmll166ffs2l6paUllZCWaNOiAg4IEHHggICOBVT0VFxRtvvPHRRx+ZHqFO2Abek2FYMp+netCgQTt37nRyARkZGaNGjWJvztChQ1NTUw0Gg8UEQ+np6U6uyiqdTpeamtq3b98BAwZ4e3unpKR0eHY6u6iqqkpOTmb579atm2nWlwULFgCAIG+agIQLIXPgwIHhw4fDnenRKyoqnLDSffv2xcfHs/iFhoY2n7vLNMEQNJuh1skMBsNXX301aNAgVkzPnj3ZX6ZOnXr69Gnn19PQ0KDRaHr16sXKSEhIOHz4sGnp7NmzAWDbtm3OL6xLEDSEeGd6dC8vLwDo1auX+fTodnfw4MGEhAS2ATWfBFun05n+bjQaNRoN+7APDAxMSUlx/hyX5r36wQcfZL3a9nmq7Uun02k0GrZqABg/fvyuXbtMS/V6fWpqanBwcHBw8Ny5c2/fvu2cqroWcUPInD17dsaMGewXPGfOnOLiYvu+fmFhoUKhYHM7+/v7W0yCfeLECYVCsWjRIoufKisrW7hwIatqwoQJBQUF9q2qJa336srKStOevNV5qu2LTTo/ePBgVk9UVFRaWpr50o0bN5qWsmk8wsPDxeyHDQ0NHNcuegjxzvTo3bp1AwAfHx/z6dE7o7i4WKlUsnktfX19VSrVzZs3TUuLiooWL17MNmg/Pz+rM+CyYSQAkMlkKpXKoZNUHzx4UC6Xt9Srze3du5fNQ2YxT7V9ZWRkjBw50uLI2XypqVdHRERoNJqjR4+OGTPGtCdfUlLiiKo6QK/Xr1u3LigoKCwsbM+ePVxq6AIhZK5evWqaHn3kyJGHDh3q8EuVlJQkJSWxURYPDw+lUllWVmZaWl5erlKp2FKZTGax1AIbRrI6Q629tN6rrWJ78qZhJPMG1Xn79u2bPHlyS914//79LfVqg8Gg0Wj8/f0BICgoiPswksFg2LRpE+vV7O318PBYvXq18yfx7jIhZLZt2xYeHg53pkevrq5u149XVFSYpomVSqUKhaKoqMi09MaNGxZLbZwf22IY6fr16+37X7XAvFf7+PhY9Oo2nT59eurUqXYcRsrOzjYdGjTvxjb26pKSknnz5rGnTZ48+cSJE52sqmMyMjJiY2NZGQMGDHj33Xfj4uJYFEeMGHHw4EFnFtPFQoiItbW1punRIyIifv75Z1t+qrq6Wq1WBwYGsqjI5fK8vDzT0pqaGrVaHRQUZFp6/PjxdlVl32Gka9eu2d6NW2E+jBQQENDhYSRbjpzb1atNw0hsT95pw0iIuH///ilTprD49e/f37xX79mzZ8iQIewjWKlUOm0YqeuFkDl69OhDDz3E3kqFQlFeXt7SM1sfPW++tDM7uufOnTONsnZsGKl5r7axG7eirKxMoVB0bBip9SPnzvTqmzdvPvPMMyy6UVFRJY5vPjk5OW326rq6uuTkZHblQ9++fb/99ltHV4VdN4SIqNfrU1JS2BzowcHBGo3GaDSaP8Fi9HzChAm7d+82X5qamhoREcGWWoytdxgbRurevXt7h5Ga9+r2duPWtXcYqfUjZ3v1ajaMFBcZ2ejujomJeONGB16kTea92s/Pr81effz48bFjxzptGKkLh5A5f/78zJkz2fs1ZcqUU6dO4Z3Rc9O57OjoaIvR81bG1u3CYhgpJyenlSe33qvtqKqqypZhpIqKitdee43tWru7uz/zzDMXL140Le3wkXNLtFrt5fffRw8PBMB+/dC+zefiRVQq06ZOZZ+JSUlJ165ds+XnnDmM1OVDyGzYsKFHjx4A4O3tvWTJksjISLZBDxs2bPPmzeYd0uqZbgdV1eYwUutnuh2kzWGkgoICNzc3iUSiUCjYhxrDenVnjpxbc/o0TpuGAAiAcjl2/mqk0lJ8/nmUyRCgsW/fV5OSrly50v7XKJ0/fz777UyaNMlBw0guEkJEvHnzplKplEgkLI1hYWEWo+dtXpXmCC0NIzmhG7eizWGktWvXHjlyxPRPJ/VqoxFTUzEkBAEwIABTUrBjJ4Rv3ECVCn18EAClUlQosHO92tHDSK4TQmbp0qUAMH36dPNrIGw/0+0gR48ejYuLMw0jpaent3Km22nMh5Fmz5594cKF5s9hR84DBgxwXq8uK8PExKaWOH485ue342dralCtxqCgph9PSEA79Wrzq5EGDx5s3zfB1UL4zjvvAMBf/vIX9s/S0tLHHnuMbUDBwcHvvfdeTU0Nl8L0ev3q1avZ13lkMhkAhIeHf/HFF86/9NRcK8NIfHs1btmCoaEIgDIZqlTY5odmQwNqNNi79934dWKUuyX79u0zXY2UmJh4w07DSK4WwuXLlwPAe++9x/5ZU1PTq1ev5mPrvBQVFQUHBwPAW2+9xfd6RXPmw0jR0dFffvnl3//+d6cdObeoqgpffBGlUgTAJ55ARCwvxz/8AQMCUCrFPn3wrbeQvYcaDfbv3xS/SZMwM9NxRZlfjdS7d2+7fK/A1UL48ssvA8BHH31kemTPnj1Wr/zkhe3anT9/nnchlkzDSCbh4eHr16/n26sxNxfHjMGjR7GhAUeOxEcewaIibGzEgwdx6FB86ilExMceQwCMikJn9eozZ85MmzbNdA7DfPS4A1wthM8++ywAfPbZZ7wLaREbN7JxoNzJampqxowZI5FI3NzcnnrqKScfObfhm28wOBhv3br7SHY2SqV48SIWFuLXX+O9Z4kdje3Jh4SEAICvr29nvlfgaiF8/PHHAWDTpk28C2kRu9UKr0NTWxQWFor4xb/kZJw92/LB4GDk+t2oK1eumPbkY2Njc3NzO/Aiotxjxl4Ev50J3pk3gp3sFlNkZCQ7SS2Wq1ehWzfLB3v2hCtXeFTTpHfv3hs2bNi6dWtYWNiRI0fGjh27bNmy9t7J2tVCKPiNvSzmjSDt0L8/XL1q+eCVKxAWxqOae8jl8vz8/JdeesloNH788cejRo06cuSI7T/uapuC4CEUvDyhjR4NWVlw/frdR3btAq0WYmL41XRXQEDAunXrDh06FBsbW1paysbAbeRqIRR8d1Tw8oQ2cyaMHg3z50NuLlRWwi+/wDPPwLJlcOcmVyKIjY3Nzs7evXu36YsBtnB3XEFcCN5qBC9PaFIp/Pgj/PWvMH8+VFZC//7wyiuwbBnvsizJZDLTjTxs5GohFLzVCF6e6Pz9Ye1aWLuWdx125mohjIl5fsiQWz4+gbwLsY46IWnO1UK4c+f/a2wEYTdy6oSkOZcamNHpoLERZDKQyXiX0gLqhKQ5lwohO0cq8hZOISTNuVQI6+oAAETe16PdUdKcS4WQOiHpilwqhNQJSVfkUiEUvxNSCElzLhVC8Tsh7Y6S5lwqhF2lE1IIiTmXCmFX6YS0O0rMuVQIxe+EtDtKmnOpEIrfCWlghjTnUteOzp0LYWEwcCDvOlpGnZA015U64T/+Af/61z2PPP00FBaCwQCLFsH69RAeDvPmwYgRsGkT/P3vnKpsFXVC0lxXCuHhw2Bx547vv4fyckCE9HRISoILF5oeLyiAnBznF9g26oSkua4UwtY9+ii89BLvItpCpyhIc64TwrfegmPHYPNm3nW0ik5RkOa6WAg//xyCgu7+qaq6u8jfHz74AJKS7nlQNEIfExqNcOwY7NwJR4+C0ci7mvtIFxsdXbIE1qy5+897p06AxYth/XpYtUrQL/XW19cbDAZPT093d/He9pMnQaGAW7dgyBA4dw58fCA9HaKjeZd1X+hinVAmg4CAu3+aW7cOPv0Uzp1r+ueZM86srjV1dXV/+9vfvLy83Nzc9uzZw7uce+n18OijMHEiFBfDrl1w4QLMmAGPPgoNDbwruy90sRC2afhweOEF+OYbAICvvoLhw2HZMqip4VmSTqf79NNPBw8e/Ne//rWhoaGurm769OnPPvvszZs3eZZlLjMTrl2DNWuAtWg3N1i9Gm7dgp07eVd2X3C1EALA229DaCgAwIULgAgffwwjRsAvv3CoxGg0pqenDx8+/IUXXigrK4uOjt60aROb3W79+vWRkZEbNmzgUJZJfX3TX06fhsGDwXz+CV9fGDoUTp/mUtd9x97T1DhQZeU9E2MhYlkZNjSg0YhFRWg+//z168imHjt2DOPimmaPVCjQmfORZWRkmM+JnZaWZrwzd5ct81Q7lk6HGg327Ys7diAirl6NEyZYPmfGDFy50tmF3Ze6Ugg7Rq/HlBT080MADA5Gjcbh89hlZGSYZqgPCwvTaDR6808IRGx1nmrHMhgwNRUjIpo+mZ55BhFx82bs18/ymRER+NVXzijpvuf6IWTOn8eZM5s2vPh4PHnSIWvJzs6eMWMGi1+PHj3UarX5PJtZWVnZ2dnmzzefpzomJiYnJ8chZZlkZGBMTNO7MGwYpqU1fSBduYKenrhly91n/vwzymR4+bJj6yGIeP+EkElLw549EQC9vTE5Ge04aXxBQYFCoZBIJAAQEhKSnJxsPs9mYWEhWzp69Ghjs0a8fft2Noe2u7t7UlJSdXW13coyyci4u18eFoYaDVo03o8/Rl9fTE7Gb77BlSvRzw//7//sXwax5v4KISJWVOCSJSiRIAA+9JDx4MHDnXzBCxcuKJVKNzc3APD19VWpVJWVlaalZ8+effLJJ9lshH5+fitWrKivr2/+IrW1tSqVir1IRETETz/91Mmq7srKwunTm+LXoweq1WhewMGDmJCAGzYgIu7di//zPzhvHi5dinv22K0A0pb7LoRMZiYOHYpTp+6SSqVKpbKqqqoDL3L58mWlUsnOvHt4eCiVyitXrpgvTUpK8vT0NC0tKytr/QWPHTtmOphUKBSdnde+oAAViqbPm5AQTE5G80mw8/Lwsceawhkb26kVkc65T0OIiHV1uGLFSplMBgChoaFbzI+I2lJRUaFSqdiU11KpVKFQnD9/vpWlRUVFNr6yXq9PSUnx8/MDgKCgII1G03z3tU2sOZ+Oj0cA9LvO6fUAAAsXSURBVPVFlQrNmjMWF6NSiW5ud5fevNneVRA7un9DyOTl5Y0bN441H7lcfrmtoYjq6mq1Wh0YGAgAEolEoVCcPn26laWnTp3qQFXnz5+fNWsWqyo+Pv6kzeNIly5deu6551hzjo+IwNdew/Lyu4tLSjApCT09EQA9PFCpxLaaM3GC+z2EiGgwGDQaTUBAAAAEBgampKQYDIbmT6utrU1JSel5Z17YhISE3Nxc09KGhgaNRtOrVy/T0sOHO3u0mZaWxlbn5eWVnJzc0Oo4UuvNGSsqUKVCb28EQKkUFQq0uTkTR6MQNikrK1uwYAGL0MSJEwsLC02LdDqdRqPp27evaekes3ELtrRfv35s6YQJE3bv3m2vqiorK5VKJRt0jY6OzsrKav6c1pszVlejWo2BgQiAEgnK5Xj8uL3KI3ZBIbzHli1b+vfvDwAymUylUtXV1aWlpQ0aNIgFLC4uzvzQ0WAwmC+Njo5OS0tzRFWZmZlDhw5lGTMfRmq9ObNLxrPmzGkafZkzB48ccUR5pJMohJYqKyuXLl3Kmk9wcDDbvocPH/7tt9+aj5G0clWaI2i12uTkZA8PDwDo06fPf/7zH/PmPGHCBIvm/Omnn7KloQEBulmzcN8+x9VGOolCaN3+/fv79u0bGhrao0cPjUZjfk3Zvn37Jk+e3PpVaQ5iPoxkas6//PKL6QlOa87EjiiELXr++ecBICUlxfRI61elOYfBYFi3bp2/v79p79Q0jOTk5kzshULYoqeffhoA1q9fz/65e/dutn2HhISo1era2lqOtZWVlUVGRrJ6SkpKODZn0nni3WdBGBY3ZZoyZcrEiRMnTZq0fPnyoKAgrqVBnz59CgsL2YHr73//+8zMTADo0aPH66+/vmzZMi8vL77lkXahELbI4vaEEolk3759bLsXgdFolEgkiJiZmRkSEvKnP/3p5ZdfFvQWUqRVFMIWNb89oTgJBIC6ujpElEqlb775pgjNmXQYhbBFgt8tm5XXvXt3tVrNuxbSKS54jxl7EfoeoXQzbxdCIWxRl+iEwn5GENtRCFskeCcU/DOC2I5C2CLBt3LBPyOI7SiELdJqtSDwVi74ZwSxHYXQOtO8Eey+LwKiTugyKITWid9nxK+Q2IhCaJ34fUb8ComNKITWid9nxK+Q2IhCaJ34fUb8ComNKITWid9nxK+Q2IhCaJ34F4VRJ3QZFELrxL8ojDqhy6AQWkedkDgNhdA66oTEaSiE1om/iYvfq4mNKITWib+zJ36vJjaiEFrXVUJIndAFUAitE38TF/9jgtiIQmid+Ju4+B8TxEYUQuvE38TF/5ggNqIQWif4Jo6IWq1WIpGwCQlJl0YhtK6kpAQAEJF3IdZptVqj0ejl5SXsd46J7SiE1p05cwYAsrOzeRdiHZ0kdCUUQusiIiIAYM2aNcnJyTqdjnc5lqqqqgCA5pxwDRRC677//vvBgwcj4jvvvPPQQw+J1hKzsrIA4Pr167wLIXZAIbQuIiLizJkzbJ7q/Pz8CRMmLF269Pbt27zrgrq6upSUFDZtW+/evXmXQ+yB68RsXYDFPNXp6em8KmloaFi3bp0peMHBwT///DOvYogdUQhtkp+fP378eLb1y+XyS5cuOXPtbBLsgQMHsgLi4uJ++OEHZxZAHIpCaCuj0ajRaAICAgAgMDAwJSXFNE+1Q2VkZMTExLD4DRs2jCbBdj0UwvYpKytbuHAhi8SECRMKCgoct66MjIyHHnqIrSs8PFyj0TQ2NjpudYQXCmFHbNmyJTQ0FABkMplKpdJqtfZ9/aysrOnTp7P49ejRQ61W19fX23cVRBwUwg66detWUlKSVCoFgEGDBu3cudMuL5ufn69QKFj8QkJC1Go1m5GXuDAKYaccOHBg+PDhACCRSBITEysqKjr8UqdOnUpMTGSp9vX1ValUlZWVdiyVCItC2Fk6nU6tVrOLV3r16pWamtreV7h06ZJSqXR3dwcADw8PpVJ59epVR5RKxEQhtI+zZ8/OmDGD7UbOmTOnuLjYlp+6fv26SqViAZbJZImJiefPn3d0qUQ0FEK7MRqNqamp3bp1AwAfHx+1Wt3KYObt27fVajU74SGVShUKxZkzZ5xZLREHhdDOrl69mpiYyFriyJEjDx06ZPGE2tpatVodHBzMnpOQkHDkyBEupRJBUAgdYtu2beHh4QDg7u6elJRUXV2NiDqdTqPR9OnTh8Vv4sSJmZmZvCsl/FEIHaW2tlalUrEv3UZERLz22msslgAwduxYe53SIC5AgqJ+edw1HDt27LnnnsvNzfX396+uro6MjHz77bcXLlwokUh4l0ZEQV9lcqyYmJiRI0cCQHV1tYeHx8aNGxUKBSWQmKMQOtZf/vKXf/3rX97e3nK5XKfTKRQK9qV4QkwohA70ySefvPfeezKZbPPmzenp6aNHjz537lxiYiIdApB78D4odVmbNm2SSqUSieSLL75gjxQXF7OziKtXr+ZaGhELhdAhdu7c6enpCQBr1qwxf3zr1q1SqdTd3X3Pnj28aiOioRDaX05Ojp+fHwAsX768+dK33noLAHr16lVaWur82oiA6BSFnZ09e3bSpEnl5eWLFy/esGFD84FQo9E4e/bsHTt2jB8/PjMzUyaTcamTiIMGZuyptLT04YcfLi8vl8vlX3zxhdVTEVKp9Msvv+zXr19WVtaKFSucXyQRDXVCu6mqqoqPj8/Lyxs3btzOnTtbvz12dnb2lClT9Hp9enr6ggULnFYkERB1QvvQarVyuTwvLy8qKmr79u1t3qB+3LhxarUaEZ9++ulTp045p0giJuqEdqDX6+fOnbt9+/bQ0NADBw6w28/YYtGiRenp6dHR0dnZ2cLOAEUcjTphZyHi0qVLt2/f3r1794yMDNsTCADr16+PjIzMz8//4x//6LgKiei4js26gtdffx0A/P39Dx8+3IEfP3XqlL+/PwBoNBq710a6BAphp6jVagDw8PDozB3p//3vfwOAp6dn828Ak/sBhbDjvvzyS4lEIpVKv/76606+1AsvvAAAYWFh169ft0ttpAuhEHbQ1q1b2f3RUlJSOv9qOp1u4sSJADBnzhzn3F2fiINC2BFZWVnsJERycrK9XvPSpUvdu3cHgHfffdder0m6BAphu+Xn57PbNC1dutS+r7xz5043NzepVEpznt1XKITtc+nSJXYSYu7cuY6YnuXtt98GgJCQkAsXLtj9xYmY6GR9O1RUVEyaNOn06dPTpk376aef2JeV7MtoNMrl8p9++mns2LF79+5lk5MS10Yn621VXV09a9as06dPjxgx4ttvv3VEAgFAKpV+9dVXERERBw8efPPNNx2xCiIaCqFN2O1hcnNzBw4cuGPHjqCgIMetKyQk5Ouvv/b09Pz444+//PJLx62ICIJCaJPGxkZ3d/c+ffpkZGT06tXL0auLi4v78MMPAeCFF144ceKEo1dH+KJjQls1NjZevnw5IiLCaWtcvHjxxo0bR40alZubS3dJdGEUQnHV1tb+7ne/S05OjouL410LcSAKISGc0TEhIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4ez/A6fsT9JWrJqDAAACPXpUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJAHYiUgbmBkY0gA0ozMEJqJiYNBA0gzM7E5gGkWNocMEM3MCBcAKwTyGWB8ZHEmJjYGBSDNgmouwnyYcpg97Axg85mwmIeqkFjz0d0rCFYP53JA7GNk5GZgZGBkYmBiVmBmyWBiYU1gZWNgY2dg59Bg4uBk4ORi4OJm4OJh4OJl4OVj4OMHigooCAgqCAppMAkJKwiLaDAJizKIijGIiTOISTCISTKwSmUwSUknSMswSMtmMMnKKcgyJwixMfCxK0gKMjixAG1lY5aVlmJlYePk4uVj52ATEBRiA1LComKSgkLidYxAVzLA4ieT57nDu5LD+0CcFw37HM7Nv24HYvP8nuxQsaQHLC52P8xByYLdHsSOv8zowLpCGyxe+NHJPnaBElg821Zwf4pMxV4Q205Acb/K9OP7Qeze+b/2S4cIHACxq10YD1jbF4DZj7c67H95YSKYvUVd3a7n8nYw+9vOh/tneGwFs39VCNt7SpaD2We8le019cTB7JC9v+0dva+CzT+Z5neA7fFOMFu0yOuAV7qdLYi9+8yr/TM47MBuC3r8aL9bLr8D2D36j/ed/2oNZq/ucDpw77wTmG14qvtAqLsYmK0Zu/vA5hZOiPrQWQd+HC4Es3uO9B64XBAJNtPlSJC9+WQOsPiJPZwOB6RNwezajbwOBc1dYPbpy1EOmjsZweyD76c7bHTUA7PFAKKRj8GNu9MKAAAC03pUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VW27cMAz831PoAjHEt/TZZIOiKLIB2rR3KNDP3h8dyhvZQYXaMSFrx+RwSDGXkte369dff8q8+Hq5lFL/89d7Lz+l1np5Kbkoj8+fv9zK09unx/edp9cft7fvRaiI4hvcH7Gf3l5f3neoPJXYmCu7lYe6SaMwKnWr4zo+ZQBt6yYsjp+ViXSFk/JadHNW6Z4OOdQ7L4AKh7KJhXg6NG6cP/+DM+B4q9yMh0PycJEF0AGsWzhpDyxcjK0vcAEc/JiHqOSqerXQBbLtSOdOpuWBNrMuS5I9kQR5oncgeWMzWrKkmlAkRL1VSC5bmLQlUaI9fhhHAKqI73hZQXkkT47yRHmwLVTXOZHsVCGitpZQdyNalZJ0OLXw6oNp89qprZA2kC7Rkihv4kzLqpOjPyCUe+Aj8HBHoZbZR7llUGarPNRXY172HI1CyUifhujq2myFvBeqofSRyFAWWoXnetcp2JzRgQhddeWTCSmhTAqXnMgu3mIlE/POs0o3qIMFTonECjmqpNCxqaRPFAvhV8gsEqrY0HAjOmkLXiJt99mYOxofjYeuar5C+o5UgfJZxaagucwoRuEbi9TI4CJ9KTy3cYzJmDSBjXtb644K/U65CSI1jBLByV/qnpMOWSh1ihgjAoNmlY7QmEmhrVICUSW09AL4fLt+GI77uHx8vV2PcZk3H0MRL0WO2YeRW/SYcHnbMcjwUvwYV4QnjqlEeNoxehhPP+YL5XOeIjQMnYYFDTPJEd93Jj+S+86kiCNOw0yWOJWchiZR8j34pErJNc1kS0kXhiZhSsYwfD5QPMykzEPLPBanA0JpeFLmpAzDkzLrfWdSRmPvO5My2kAhLk/K6FNNw5MyGpLS8KSMztPckXOHURkNdGolzZ3JRnjPc0aSobEdlZTB109qZZudmyrf3/9/Y335C6IPfz45puLnAAABdnpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nD1RSW7EMAz7So8TwDGsXULQU+6dR8y1T5jHl/IABQzEZiiRlO77+aLX63HzLd/348Y5cG68nsdPY3w/cP3/IUezf48XPb/ej5jMi32ca0pSGI3LZpmwjjWViRSITmfV5nCoF49LplhIgGOcePNcnCZNIQ8XGdea4aTVHBdjq3Hhr3mIbt7yhRYf1LnIIEDTrFCLS1lUjZMnm1FDkKDKccoMk/RdF8YRNk5FneNytbwwjJ02Q9Vi94IhrYbcjahZFr7culn66kBtMrJ78RRngi94cA9uV+4urSiYlq0NqTFm1FArElIudU3jrZgI2clDWbpXmwg2H8ijtHS7V3CYAZV45u61pDAofFWqSQoziXnBlCacI0NiHl1EmsGbkswgYy6YRW1EZe0FphZSdbpkkRVdJoK5YmFkTAYguT4bZJLyAUVsUnvFSkU5erXeS1GkydXScB0+jvcfB3iAyLEbG4kAAAAASUVORK5CYII=</base64_image>
443.971
5.4175
[ { "content": "Determine the molecule visualization of the chemical structure 'CCOc1cc(C2C3=C(CC(C)(C)CC3=O)NC3=C2C(=O)CC(C)(C)C3)cc(Cl)c1O'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVhTZ9o/8DuBsO/uCyB1qSKIYnEXNzouzbRucdqOjN0mvt2w68SO8xtq69umjm+lda52Mu3YC1udKdhNq23FUXEpiOLC4o6iAiqiiCyBhOT+/fFgjCFAgCTPQ7w/l39oTsi5Deeb+5znnJxHgohACOFHyrsAQu53FEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBJbaY3aTTc3GdDAuxBXI0FE3jUQEVUZqlLKU3ZV76rH+hjvmBW9V7hL3Pvn968bWect9eZdnUuhTkis0Bq1085O++7Wdy/2ePH9vu+7S9yVl5S8i3JZ7rwLICLacHPDhYYLF6IuBLkFAcB0/+l61Jc3lvOuyzVRJyRWHKo9JA+UswQyMomMYz2ujUJIrLisv9xP1o93FfcLCiGxIsQtpNJQybuK+wWFkFgxzGvYvpp9RjDyLuS+QCEkVjzV7akSfcny0uV61APALcOtPG0e76JcFoWQWBHmEbZt4LZtVdv8j/k/UPBAaH7od7e+412Uy6KT9aQ1V/VX9ajvLestk8gQsMZQ4+/mz7soV0OdkLTojdI35EXyPG0eOz8hAQkl0BEohKRFxQ3FuXW5WtTyLsTFUQhJi2qNtQDgK/XlXYiLoxCSFtUZ6wDAR+rDuxAXRyEkLaJO6BzOC2FNTU16evqRI0ectkbSSRRC53BeCD/88MNFixZ9+umnTlsj6STaHXUO54Vw/vz5APD99983NjY6baWkM6gTOofzQhgVFfXggw9WVFT8+uuvTlsp6QzqhM7h1IGZxx57DAC++44ugOoCjGCsN9ZLQEI3s3A0p4Zw3rx5APDdd9/RtXLiqzPWIaCP1EcCEt61uDinhnDs2LH9+/e/ePEijZGKr9ZAB4RO4tQQSiSSRx99FGiPtCvQarWx+tgofRTvQlyfs0/Wm/ZInbxe0l41l2qOjDtybck13oW4PmeHcOrUqd27dz9x4sSpU6ecvGrSLnV1dQDg40NDow7n7BC6u7s/8sgjAPD99987edWkXWprawHA15eOCR2Ow7WjtEfaJVAndBoOIfzNb37j6+t76NChy5cvO3/txEbUCZ2GQwi9vb1nzZqFiD/88IPz1y6K48dh82b4+WeoquJdinXUCZ2Gz1eZnLBHWl9fX1pa6rjX77iKCoiPh1mzYMMGWLkSwsJgwwbeNVlBndBp+IRQLpd7eHhkZmZWVFTY/cUbGxtfeeWVoKCgAQMG/Pa3vzUYBJvKS6kEDw84exa2bIGsLPjiC3juOcjP512WJeqETsMnhIGBgdOmTTMYDFu3brXjyxqNxn//+9+RkZEfffRRQ0NDY2Pjjz/+OHbs2KNHj9pxLZ1y6xb88AO8/z74+TU9Mn8+xMfDxo1cy7KCOqHTcPtmvd33SHfu3BkXF/fkk0+ePXt2wIABy5YtW7lyZVhYWG5u7pgxY5YtW1ZTU2OvdbVbYyPU1QEAnDsHiBAdfc/SUaPgzBkudbWCOqHzICdXr151c3Pz9PS8fft2J19q//79U6ZMYf+d0NBQjUaj1+vZotraWpVK5ebmBgARERE//fRTpwtvJ6MR09JwyBB86y1WK7q5YWPjPc9ZsQJnz3Z2YW158cUXAWDdunW8C7Hm11/xkUewb18MDUWFAgsKmh5/4w1cu/aeZ8bE3F0qKm4hRMSJEycCQFpaWodfIScnRy6Xs/h1795drVZrtdrmTzt27FhcXBx7mkKhuHbtWieqbo8tW3DECARAAIyNRYMBy8oQAIuK7nna44/jSy85qSTb6PX6SZMmAcA777zDu5ZmDhxAHx989108exZPnMBlyzAgAE+fRkRctAhVqnue7OaGOTlcyrQdzxCuWbMGAJ544okO/OyJEycUCoVEIgEAf39/lUpVVVXVyvP1en1KSoqfnx8ABAUFaTQao9HY0cJtsH8/xsc3xS80FDUavNOcMSYGX3nl7jMvXkQvL9y2zYHFtIfRaExLSxsyZAgA9OzZ093dPSkpqaamhnddZmbMwKVL73lkzhxcsgSRQth+Fy5cYBGy2r5aUlxcrFQq2R6mj49PUlKS7Z3t/Pnzs2bNYi0xPj7+5MmTHSq8VQcPolzeFL/u3VGtRvP/XWMj5uRgYCA+/jh+/jn+7/9i79749NP2L6NDfvzxx5EjR7L3Z9CgQXPmzJFKpQAwePDg//73v7yruyMoCC0OKz77DKOiEBEXLcIXX8TS0rt/KIRtYr/y7du32/Lk8vJylUrl6ekJADKZTKlUlpWVdWClaWlpPXv2BAAvL6/k5OSGhoYOvIgVJ06gQoESCQKgvz+qVGjenE+eRIUCn30WEbGkBN99FxMT8eWXcetW+6y9cw4cOGA6ru7fv7/puDo3N3f06NGmPfnr169zLrSmBgHw6NF7HvzxRwwMRERctAj9/bFfv7t/ACiEbVi5ciUA/PGPf2z9aTdu3FCpVN7e3gAglUoVCsW5c+c6s97KykqlUsn2ZqOjo7OysjrzalhUhIsXo1SKAOjri8uX482bd5eeP49/+AO6uTWF03yRAPLy8hQKBYtZt27d1Gp1XV2d+RPYnjw7VxESEqLRaHiV2iQgAH/55Z5H1q/HYcMQaXe0Q/Ly8tixR6PFgOEdNTU1arU6KCgIACQSiVwuP378uL3WnpmZOXToUPbKSqWy9aNKq1hz/ueUKQiAMhkqlWjenMvLUaVCL6+7S0tL7VV855kfV/v5+alUqlu3bpk/oba21vT3oqKihx9+mGV16tSpp9lAiDNlZuInnyAiTpyIb7xxz6LHH8fHH0ekEHYUGwPYu3evxeMNDQ0ajaZXr17sF5+QkHDo0CG7r12r1SYnJ3t4eABAnz590tPTbfzBioqKN954gzVnT5nsdlISFhffXXzjBiYno78/AqBUigoFnj1r9+I77OLFi20eVxsMhkmTJsnl8pKSEtODaWlp3bt3BwBvb+/k5GSdTueMcvPyUKFAAPTywkuXcNs29PXFTZtQp0OtFtetQy8vPHIEkULYUW+++SYAvPrqq6ZHdDpdampqREQEi9/48eN37drl0Bry8vLGjRvHVieXyy9dutTKk9tozjU1qFZjUFDT2ExCAh475tDi26X5cXVpC835+PHjbDA5ODj4888/Nw0m37hxQ6lUsvcqJibm4MGDDiy3sBAXLGg6zA4MxJUrkZ1VTk/HBx9EDw90d8fRo9G0eTz1FCYn3/MKISFN+RQY/xCy25CGh4cbjUaDwZCWljZ48GD2O46KiurMWcR2MRqNGo0mICAAAAIDA1NSUgwGg8Vz2mjODQ2o0WDv3nfjJ9Jn8I0bN5KTk/39/U3H1Wfbas6lpaXswiYAmDx58okTJ0yLdu/ezXZhpFKpUqmsrq62c7kXL6JSie7uCICenqhUYvMx8NpabM+4urD4h9BoNPbv3x8APvnkk1GjRrFf+YMPPpiamto8Bo5WVla2cOFCVsOECRMK7lxs0Xpz1uv1n3322fu/+U1T/CZMwD17nFx5K8xbN/vsONae5rxly5Z+/fqxzqlSqerr69njdXV1ycnJMpkMAPr168fuZGkHYh9IOwK3EN64cePQoUNff/31e++9N2zYMNNldOHh4evXrzddd8bFli1bQkND2Wb3pz/9aePGjS01Z4PBsGnTJtPSsgULBDnlwLDW3bt3b1P8cjrUnCsrK5OSkkznDM0/gI4dOzZmzBj7XI0k9oG04zgjhDdv3jx8+HBqaqpKpVIoFKNHjzZ9Kpt4e3v7+Pi0dN2Z8926dcu02TFDhw5NS0szv84mIyMjNjaWLR0wYIBGo2lpjNf52I69qXWPGzeu82fb9+3bxz4uJRJJYmLijRs3TOvSaDSduRqpurr6nXfeyZs5EwFQIsH587GwsJPVdiH2DOGtW7eOHDmyefPmDz74YOnSpQ8//PDAgQPZ7kpz/v7+MTEx8+bNe/3115966ikAeJyNMotk//79kZGRrOBRo0aZRvDNLxk3P7UtAvPrzgBg+PDhFp8dnaHT6dRqNRvX6dOnT2pqqmlRSUnJ3LlzTQeQNl6NpNVq165d26NHDwCI7N69US5HB4yBC66DIWTNLS0tTa1WK5XKhISEBx54wGrYACA4OHj06NEKhUKlUmk0moyMjKKiIvPNQqPRgA2n7LnQ6XTPPvss+4988sknNl4yzotzmvOZM2emTZvG1mIxmGw6gGRXI5kOIJtzRK/uotoRwsrKylmzZg0ZMoSdVWvOx8cnKirq0UcfffXVV9etW7dt27aTJ0+28mswWbt2LQAsW7asE/8Rx2L7zyNGjDA/td2Bk/uO889//jMwMJD9IsLCwj7//HOHNmej0ZiamhoSEgIAvr6+arXalHbzq5GioqJ+/fXX5j/ruF7dFbUjhAaDge2HtNTcOjyYuWrVKgD485//3LEfdwJTe/Hx8Vm+fLnpcEgQxcXFrDxvb29nNucrV64kJiayVcfGxubm5poW7d271+rVSCIfSPPSvt3RjIyMgoICi2sLO+/Pf/4zAKxatcq+L2tH0dHRAPDEE09cuXKFdy1W7NmzBwCkUunVq1edv/atW7eGhYUBgMX3ntjVSKYDyFWrVgl7IM0X//OEiPjKK68AwIcffsi7kBaxI95OXjXuOIcPHwaABx54gFcBNTU1pjsYDBw4MCMjw7QoPz9//PjxbO/JdCBt98/xLo3bPWbMiX9PIcErZDOQs6s6AeCXX3754IMPjh8/7rQC2GFhTk5ObGwsu9R70aJF7FZ6UVFR+/fvnzlzZmVlZUJCwoULF0xfiCGMECFk9xQSdhMH4e96ZFHeN998s3z58pycHCeXERsbm52dvWrVKi8vr/T09KioqKtXrwKAVCplJxjnzJnjZ7rNHLlDiBCyPiPsJg7Ch9CiUXN8P2Uy2YoVKwoKChISEuLj400X6wi+K8GXO+8CAIT/DdXX17ORYXd3Id6u5iw+I7i/nwMHDtyxYwerihH8U4wvITqh4L8hwcuDZqkToWCJRGL+KcD9c0FkQoRQ8N+Q4OVBs4NqAQsW/7CfIyFCKMIndysELw+aHQQKWLD4h/0cCRFCAT+5zQleHoh3TNicgCWJQ4gQCr6vIv4GJOAxoQUBSxKHECEUfF9F/A2IOmGXxj+EjY2NOp2OTQ7DuxbrxN+AqBN2afxDKP4mLv4GZL4/zz7U3N3dhfpQE/+3zBH/EIq/iYu/AZnvzwu4by/+zg5f/EMo/ibetT4mBBzlEv8N5It/CMX/DXWtjwkBO6H4byBf/EMo/m+oa31MCPh+iv8G8sU/hOL/hgTcrC2Yv4cCvp/iv4F88Q+h+L8hATdrC9QJuzQKYdvEr5A6YZfGP4QCbjQWBK8QEbVarUQiMR+YEWqLF/wN5I5/CAXcaCwIXqFWqzUajV5eXuym/QJu8YK/gdzxD6GAG40FAc+8mbN6bwuhqhX8DeSOfwjPnTsHdzYdMQl45s2cxaeYgFu84G8gd/xDeOzYMQBgt68Vk4C9xZw4d3lqieBvIHf8Q8juDFtQUDBz5szLly/zLscKwXeYrXZCoaoVsCSh8A/h2rVrFQqFl5fXjh07oqOj//GPfxiNRt5F3aXVaquqqgCgpWlwuOsqx4QUwpbwD6G7u3taWtr58+cXLlxYVVX1/PPPT548ubCwkHddoNfrN2zYEBkZqdPpvL29p02blpWVxbsoKyw28dWrVxcVFT355JNci7qHgJ8LQuEfQqZPnz7p6elsnupff/111KhRy5cvr6+v51KM0WjcuHHjsGHDlixZUlxcPGjQoB49ehQWFk6aNOmll166ffs2l6paUllZCWaNOiAg4IEHHggICOBVT0VFxRtvvPHRRx+ZHqFO2Abek2FYMp+netCgQTt37nRyARkZGaNGjWJvztChQ1NTUw0Gg8UEQ+np6U6uyiqdTpeamtq3b98BAwZ4e3unpKR0eHY6u6iqqkpOTmb579atm2nWlwULFgCAIG+agIQLIXPgwIHhw4fDnenRKyoqnLDSffv2xcfHs/iFhoY2n7vLNMEQNJuh1skMBsNXX301aNAgVkzPnj3ZX6ZOnXr69Gnn19PQ0KDRaHr16sXKSEhIOHz4sGnp7NmzAWDbtm3OL6xLEDSEeGd6dC8vLwDo1auX+fTodnfw4MGEhAS2ATWfBFun05n+bjQaNRoN+7APDAxMSUlx/hyX5r36wQcfZL3a9nmq7Uun02k0GrZqABg/fvyuXbtMS/V6fWpqanBwcHBw8Ny5c2/fvu2cqroWcUPInD17dsaMGewXPGfOnOLiYvu+fmFhoUKhYHM7+/v7W0yCfeLECYVCsWjRIoufKisrW7hwIatqwoQJBQUF9q2qJa336srKStOevNV5qu2LTTo/ePBgVk9UVFRaWpr50o0bN5qWsmk8wsPDxeyHDQ0NHNcuegjxzvTo3bp1AwAfHx/z6dE7o7i4WKlUsnktfX19VSrVzZs3TUuLiooWL17MNmg/Pz+rM+CyYSQAkMlkKpXKoZNUHzx4UC6Xt9Srze3du5fNQ2YxT7V9ZWRkjBw50uLI2XypqVdHRERoNJqjR4+OGTPGtCdfUlLiiKo6QK/Xr1u3LigoKCwsbM+ePVxq6AIhZK5evWqaHn3kyJGHDh3q8EuVlJQkJSWxURYPDw+lUllWVmZaWl5erlKp2FKZTGax1AIbRrI6Q629tN6rrWJ78qZhJPMG1Xn79u2bPHlyS914//79LfVqg8Gg0Wj8/f0BICgoiPswksFg2LRpE+vV7O318PBYvXq18yfx7jIhZLZt2xYeHg53pkevrq5u149XVFSYpomVSqUKhaKoqMi09MaNGxZLbZwf22IY6fr16+37X7XAvFf7+PhY9Oo2nT59eurUqXYcRsrOzjYdGjTvxjb26pKSknnz5rGnTZ48+cSJE52sqmMyMjJiY2NZGQMGDHj33Xfj4uJYFEeMGHHw4EFnFtPFQoiItbW1punRIyIifv75Z1t+qrq6Wq1WBwYGsqjI5fK8vDzT0pqaGrVaHRQUZFp6/PjxdlVl32Gka9eu2d6NW2E+jBQQENDhYSRbjpzb1atNw0hsT95pw0iIuH///ilTprD49e/f37xX79mzZ8iQIewjWKlUOm0YqeuFkDl69OhDDz3E3kqFQlFeXt7SM1sfPW++tDM7uufOnTONsnZsGKl5r7axG7eirKxMoVB0bBip9SPnzvTqmzdvPvPMMyy6UVFRJY5vPjk5OW326rq6uuTkZHblQ9++fb/99ltHV4VdN4SIqNfrU1JS2BzowcHBGo3GaDSaP8Fi9HzChAm7d+82X5qamhoREcGWWoytdxgbRurevXt7h5Ga9+r2duPWtXcYqfUjZ3v1ajaMFBcZ2ejujomJeONGB16kTea92s/Pr81effz48bFjxzptGKkLh5A5f/78zJkz2fs1ZcqUU6dO4Z3Rc9O57OjoaIvR81bG1u3CYhgpJyenlSe33qvtqKqqypZhpIqKitdee43tWru7uz/zzDMXL140Le3wkXNLtFrt5fffRw8PBMB+/dC+zefiRVQq06ZOZZ+JSUlJ165ds+XnnDmM1OVDyGzYsKFHjx4A4O3tvWTJksjISLZBDxs2bPPmzeYd0uqZbgdV1eYwUutnuh2kzWGkgoICNzc3iUSiUCjYhxrDenVnjpxbc/o0TpuGAAiAcjl2/mqk0lJ8/nmUyRCgsW/fV5OSrly50v7XKJ0/fz777UyaNMlBw0guEkJEvHnzplKplEgkLI1hYWEWo+dtXpXmCC0NIzmhG7eizWGktWvXHjlyxPRPJ/VqoxFTUzEkBAEwIABTUrBjJ4Rv3ECVCn18EAClUlQosHO92tHDSK4TQmbp0qUAMH36dPNrIGw/0+0gR48ejYuLMw0jpaent3Km22nMh5Fmz5594cKF5s9hR84DBgxwXq8uK8PExKaWOH485ue342dralCtxqCgph9PSEA79Wrzq5EGDx5s3zfB1UL4zjvvAMBf/vIX9s/S0tLHHnuMbUDBwcHvvfdeTU0Nl8L0ev3q1avZ13lkMhkAhIeHf/HFF86/9NRcK8NIfHs1btmCoaEIgDIZqlTY5odmQwNqNNi79934dWKUuyX79u0zXY2UmJh4w07DSK4WwuXLlwPAe++9x/5ZU1PTq1ev5mPrvBQVFQUHBwPAW2+9xfd6RXPmw0jR0dFffvnl3//+d6cdObeoqgpffBGlUgTAJ55ARCwvxz/8AQMCUCrFPn3wrbeQvYcaDfbv3xS/SZMwM9NxRZlfjdS7d2+7fK/A1UL48ssvA8BHH31kemTPnj1Wr/zkhe3anT9/nnchlkzDSCbh4eHr16/n26sxNxfHjMGjR7GhAUeOxEcewaIibGzEgwdx6FB86ilExMceQwCMikJn9eozZ85MmzbNdA7DfPS4A1wthM8++ywAfPbZZ7wLaREbN7JxoNzJampqxowZI5FI3NzcnnrqKScfObfhm28wOBhv3br7SHY2SqV48SIWFuLXX+O9Z4kdje3Jh4SEAICvr29nvlfgaiF8/PHHAWDTpk28C2kRu9UKr0NTWxQWFor4xb/kZJw92/LB4GDk+t2oK1eumPbkY2Njc3NzO/Aiotxjxl4Ev50J3pk3gp3sFlNkZCQ7SS2Wq1ehWzfLB3v2hCtXeFTTpHfv3hs2bNi6dWtYWNiRI0fGjh27bNmy9t7J2tVCKPiNvSzmjSDt0L8/XL1q+eCVKxAWxqOae8jl8vz8/JdeesloNH788cejRo06cuSI7T/uapuC4CEUvDyhjR4NWVlw/frdR3btAq0WYmL41XRXQEDAunXrDh06FBsbW1paysbAbeRqIRR8d1Tw8oQ2cyaMHg3z50NuLlRWwi+/wDPPwLJlcOcmVyKIjY3Nzs7evXu36YsBtnB3XEFcCN5qBC9PaFIp/Pgj/PWvMH8+VFZC//7wyiuwbBnvsizJZDLTjTxs5GohFLzVCF6e6Pz9Ye1aWLuWdx125mohjIl5fsiQWz4+gbwLsY46IWnO1UK4c+f/a2wEYTdy6oSkOZcamNHpoLERZDKQyXiX0gLqhKQ5lwohO0cq8hZOISTNuVQI6+oAAETe16PdUdKcS4WQOiHpilwqhNQJSVfkUiEUvxNSCElzLhVC8Tsh7Y6S5lwqhF2lE1IIiTmXCmFX6YS0O0rMuVQIxe+EtDtKmnOpEIrfCWlghjTnUteOzp0LYWEwcCDvOlpGnZA015U64T/+Af/61z2PPP00FBaCwQCLFsH69RAeDvPmwYgRsGkT/P3vnKpsFXVC0lxXCuHhw2Bx547vv4fyckCE9HRISoILF5oeLyiAnBznF9g26oSkua4UwtY9+ii89BLvItpCpyhIc64TwrfegmPHYPNm3nW0ik5RkOa6WAg//xyCgu7+qaq6u8jfHz74AJKS7nlQNEIfExqNcOwY7NwJR4+C0ci7mvtIFxsdXbIE1qy5+897p06AxYth/XpYtUrQL/XW19cbDAZPT093d/He9pMnQaGAW7dgyBA4dw58fCA9HaKjeZd1X+hinVAmg4CAu3+aW7cOPv0Uzp1r+ueZM86srjV1dXV/+9vfvLy83Nzc9uzZw7uce+n18OijMHEiFBfDrl1w4QLMmAGPPgoNDbwruy90sRC2afhweOEF+OYbAICvvoLhw2HZMqip4VmSTqf79NNPBw8e/Ne//rWhoaGurm769OnPPvvszZs3eZZlLjMTrl2DNWuAtWg3N1i9Gm7dgp07eVd2X3C1EALA229DaCgAwIULgAgffwwjRsAvv3CoxGg0pqenDx8+/IUXXigrK4uOjt60aROb3W79+vWRkZEbNmzgUJZJfX3TX06fhsGDwXz+CV9fGDoUTp/mUtd9x97T1DhQZeU9E2MhYlkZNjSg0YhFRWg+//z168imHjt2DOPimmaPVCjQmfORZWRkmM+JnZaWZrwzd5ct81Q7lk6HGg327Ys7diAirl6NEyZYPmfGDFy50tmF3Ze6Ugg7Rq/HlBT080MADA5Gjcbh89hlZGSYZqgPCwvTaDR6808IRGx1nmrHMhgwNRUjIpo+mZ55BhFx82bs18/ymRER+NVXzijpvuf6IWTOn8eZM5s2vPh4PHnSIWvJzs6eMWMGi1+PHj3UarX5PJtZWVnZ2dnmzzefpzomJiYnJ8chZZlkZGBMTNO7MGwYpqU1fSBduYKenrhly91n/vwzymR4+bJj6yGIeP+EkElLw549EQC9vTE5Ge04aXxBQYFCoZBIJAAQEhKSnJxsPs9mYWEhWzp69Ghjs0a8fft2Noe2u7t7UlJSdXW13coyyci4u18eFoYaDVo03o8/Rl9fTE7Gb77BlSvRzw//7//sXwax5v4KISJWVOCSJSiRIAA+9JDx4MHDnXzBCxcuKJVKNzc3APD19VWpVJWVlaalZ8+effLJJ9lshH5+fitWrKivr2/+IrW1tSqVir1IRETETz/91Mmq7srKwunTm+LXoweq1WhewMGDmJCAGzYgIu7di//zPzhvHi5dinv22K0A0pb7LoRMZiYOHYpTp+6SSqVKpbKqqqoDL3L58mWlUsnOvHt4eCiVyitXrpgvTUpK8vT0NC0tKytr/QWPHTtmOphUKBSdnde+oAAViqbPm5AQTE5G80mw8/Lwsceawhkb26kVkc65T0OIiHV1uGLFSplMBgChoaFbzI+I2lJRUaFSqdiU11KpVKFQnD9/vpWlRUVFNr6yXq9PSUnx8/MDgKCgII1G03z3tU2sOZ+Oj0cA9LvO6fUAAAsXSURBVPVFlQrNmjMWF6NSiW5ud5fevNneVRA7un9DyOTl5Y0bN441H7lcfrmtoYjq6mq1Wh0YGAgAEolEoVCcPn26laWnTp3qQFXnz5+fNWsWqyo+Pv6kzeNIly5deu6551hzjo+IwNdew/Lyu4tLSjApCT09EQA9PFCpxLaaM3GC+z2EiGgwGDQaTUBAAAAEBgampKQYDIbmT6utrU1JSel5Z17YhISE3Nxc09KGhgaNRtOrVy/T0sOHO3u0mZaWxlbn5eWVnJzc0Oo4UuvNGSsqUKVCb28EQKkUFQq0uTkTR6MQNikrK1uwYAGL0MSJEwsLC02LdDqdRqPp27evaekes3ELtrRfv35s6YQJE3bv3m2vqiorK5VKJRt0jY6OzsrKav6c1pszVlejWo2BgQiAEgnK5Xj8uL3KI3ZBIbzHli1b+vfvDwAymUylUtXV1aWlpQ0aNIgFLC4uzvzQ0WAwmC+Njo5OS0tzRFWZmZlDhw5lGTMfRmq9ObNLxrPmzGkafZkzB48ccUR5pJMohJYqKyuXLl3Kmk9wcDDbvocPH/7tt9+aj5G0clWaI2i12uTkZA8PDwDo06fPf/7zH/PmPGHCBIvm/Omnn7KloQEBulmzcN8+x9VGOolCaN3+/fv79u0bGhrao0cPjUZjfk3Zvn37Jk+e3PpVaQ5iPoxkas6//PKL6QlOa87EjiiELXr++ecBICUlxfRI61elOYfBYFi3bp2/v79p79Q0jOTk5kzshULYoqeffhoA1q9fz/65e/dutn2HhISo1era2lqOtZWVlUVGRrJ6SkpKODZn0nni3WdBGBY3ZZoyZcrEiRMnTZq0fPnyoKAgrqVBnz59CgsL2YHr73//+8zMTADo0aPH66+/vmzZMi8vL77lkXahELbI4vaEEolk3759bLsXgdFolEgkiJiZmRkSEvKnP/3p5ZdfFvQWUqRVFMIWNb89oTgJBIC6ujpElEqlb775pgjNmXQYhbBFgt8tm5XXvXt3tVrNuxbSKS54jxl7EfoeoXQzbxdCIWxRl+iEwn5GENtRCFskeCcU/DOC2I5C2CLBt3LBPyOI7SiELdJqtSDwVi74ZwSxHYXQOtO8Eey+LwKiTugyKITWid9nxK+Q2IhCaJ34fUb8ComNKITWid9nxK+Q2IhCaJ34fUb8ComNKITWid9nxK+Q2IhCaJ34F4VRJ3QZFELrxL8ojDqhy6AQWkedkDgNhdA66oTEaSiE1om/iYvfq4mNKITWib+zJ36vJjaiEFrXVUJIndAFUAitE38TF/9jgtiIQmid+Ju4+B8TxEYUQuvE38TF/5ggNqIQWif4Jo6IWq1WIpGwCQlJl0YhtK6kpAQAEJF3IdZptVqj0ejl5SXsd46J7SiE1p05cwYAsrOzeRdiHZ0kdCUUQusiIiIAYM2aNcnJyTqdjnc5lqqqqgCA5pxwDRRC677//vvBgwcj4jvvvPPQQw+J1hKzsrIA4Pr167wLIXZAIbQuIiLizJkzbJ7q/Pz8CRMmLF269Pbt27zrgrq6upSUFDZtW+/evXmXQ+yB68RsXYDFPNXp6em8KmloaFi3bp0peMHBwT///DOvYogdUQhtkp+fP378eLb1y+XyS5cuOXPtbBLsgQMHsgLi4uJ++OEHZxZAHIpCaCuj0ajRaAICAgAgMDAwJSXFNE+1Q2VkZMTExLD4DRs2jCbBdj0UwvYpKytbuHAhi8SECRMKCgoct66MjIyHHnqIrSs8PFyj0TQ2NjpudYQXCmFHbNmyJTQ0FABkMplKpdJqtfZ9/aysrOnTp7P49ejRQ61W19fX23cVRBwUwg66detWUlKSVCoFgEGDBu3cudMuL5ufn69QKFj8QkJC1Go1m5GXuDAKYaccOHBg+PDhACCRSBITEysqKjr8UqdOnUpMTGSp9vX1ValUlZWVdiyVCItC2Fk6nU6tVrOLV3r16pWamtreV7h06ZJSqXR3dwcADw8PpVJ59epVR5RKxEQhtI+zZ8/OmDGD7UbOmTOnuLjYlp+6fv26SqViAZbJZImJiefPn3d0qUQ0FEK7MRqNqamp3bp1AwAfHx+1Wt3KYObt27fVajU74SGVShUKxZkzZ5xZLREHhdDOrl69mpiYyFriyJEjDx06ZPGE2tpatVodHBzMnpOQkHDkyBEupRJBUAgdYtu2beHh4QDg7u6elJRUXV2NiDqdTqPR9OnTh8Vv4sSJmZmZvCsl/FEIHaW2tlalUrEv3UZERLz22msslgAwduxYe53SIC5AgqJ+edw1HDt27LnnnsvNzfX396+uro6MjHz77bcXLlwokUh4l0ZEQV9lcqyYmJiRI0cCQHV1tYeHx8aNGxUKBSWQmKMQOtZf/vKXf/3rX97e3nK5XKfTKRQK9qV4QkwohA70ySefvPfeezKZbPPmzenp6aNHjz537lxiYiIdApB78D4odVmbNm2SSqUSieSLL75gjxQXF7OziKtXr+ZaGhELhdAhdu7c6enpCQBr1qwxf3zr1q1SqdTd3X3Pnj28aiOioRDaX05Ojp+fHwAsX768+dK33noLAHr16lVaWur82oiA6BSFnZ09e3bSpEnl5eWLFy/esGFD84FQo9E4e/bsHTt2jB8/PjMzUyaTcamTiIMGZuyptLT04YcfLi8vl8vlX3zxhdVTEVKp9Msvv+zXr19WVtaKFSucXyQRDXVCu6mqqoqPj8/Lyxs3btzOnTtbvz12dnb2lClT9Hp9enr6ggULnFYkERB1QvvQarVyuTwvLy8qKmr79u1t3qB+3LhxarUaEZ9++ulTp045p0giJuqEdqDX6+fOnbt9+/bQ0NADBw6w28/YYtGiRenp6dHR0dnZ2cLOAEUcjTphZyHi0qVLt2/f3r1794yMDNsTCADr16+PjIzMz8//4x//6LgKiei4js26gtdffx0A/P39Dx8+3IEfP3XqlL+/PwBoNBq710a6BAphp6jVagDw8PDozB3p//3vfwOAp6dn828Ak/sBhbDjvvzyS4lEIpVKv/76606+1AsvvAAAYWFh169ft0ttpAuhEHbQ1q1b2f3RUlJSOv9qOp1u4sSJADBnzhzn3F2fiINC2BFZWVnsJERycrK9XvPSpUvdu3cHgHfffdder0m6BAphu+Xn57PbNC1dutS+r7xz5043NzepVEpznt1XKITtc+nSJXYSYu7cuY6YnuXtt98GgJCQkAsXLtj9xYmY6GR9O1RUVEyaNOn06dPTpk376aef2JeV7MtoNMrl8p9++mns2LF79+5lk5MS10Yn621VXV09a9as06dPjxgx4ttvv3VEAgFAKpV+9dVXERERBw8efPPNNx2xCiIaCqFN2O1hcnNzBw4cuGPHjqCgIMetKyQk5Ouvv/b09Pz444+//PJLx62ICIJCaJPGxkZ3d/c+ffpkZGT06tXL0auLi4v78MMPAeCFF144ceKEo1dH+KJjQls1NjZevnw5IiLCaWtcvHjxxo0bR40alZubS3dJdGEUQnHV1tb+7ne/S05OjouL410LcSAKISGc0TEhIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4ez/A6fsT9JWrJqDAAACPXpUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJAHYiUgbmBkY0gA0ozMEJqJiYNBA0gzM7E5gGkWNocMEM3MCBcAKwTyGWB8ZHEmJjYGBSDNgmouwnyYcpg97Axg85mwmIeqkFjz0d0rCFYP53JA7GNk5GZgZGBkYmBiVmBmyWBiYU1gZWNgY2dg59Bg4uBk4ORi4OJm4OJh4OJl4OVj4OMHigooCAgqCAppMAkJKwiLaDAJizKIijGIiTOISTCISTKwSmUwSUknSMswSMtmMMnKKcgyJwixMfCxK0gKMjixAG1lY5aVlmJlYePk4uVj52ATEBRiA1LComKSgkLidYxAVzLA4ieT57nDu5LD+0CcFw37HM7Nv24HYvP8nuxQsaQHLC52P8xByYLdHsSOv8zowLpCGyxe+NHJPnaBElg821Zwf4pMxV4Q205Acb/K9OP7Qeze+b/2S4cIHACxq10YD1jbF4DZj7c67H95YSKYvUVd3a7n8nYw+9vOh/tneGwFs39VCNt7SpaD2We8le019cTB7JC9v+0dva+CzT+Z5neA7fFOMFu0yOuAV7qdLYi9+8yr/TM47MBuC3r8aL9bLr8D2D36j/ed/2oNZq/ucDpw77wTmG14qvtAqLsYmK0Zu/vA5hZOiPrQWQd+HC4Es3uO9B64XBAJNtPlSJC9+WQOsPiJPZwOB6RNwezajbwOBc1dYPbpy1EOmjsZweyD76c7bHTUA7PFAKKRj8GNu9MKAAAC03pUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nH1VW27cMAz831PoAjHEt/TZZIOiKLIB2rR3KNDP3h8dyhvZQYXaMSFrx+RwSDGXkte369dff8q8+Hq5lFL/89d7Lz+l1np5Kbkoj8+fv9zK09unx/edp9cft7fvRaiI4hvcH7Gf3l5f3neoPJXYmCu7lYe6SaMwKnWr4zo+ZQBt6yYsjp+ViXSFk/JadHNW6Z4OOdQ7L4AKh7KJhXg6NG6cP/+DM+B4q9yMh0PycJEF0AGsWzhpDyxcjK0vcAEc/JiHqOSqerXQBbLtSOdOpuWBNrMuS5I9kQR5oncgeWMzWrKkmlAkRL1VSC5bmLQlUaI9fhhHAKqI73hZQXkkT47yRHmwLVTXOZHsVCGitpZQdyNalZJ0OLXw6oNp89qprZA2kC7Rkihv4kzLqpOjPyCUe+Aj8HBHoZbZR7llUGarPNRXY172HI1CyUifhujq2myFvBeqofSRyFAWWoXnetcp2JzRgQhddeWTCSmhTAqXnMgu3mIlE/POs0o3qIMFTonECjmqpNCxqaRPFAvhV8gsEqrY0HAjOmkLXiJt99mYOxofjYeuar5C+o5UgfJZxaagucwoRuEbi9TI4CJ9KTy3cYzJmDSBjXtb644K/U65CSI1jBLByV/qnpMOWSh1ihgjAoNmlY7QmEmhrVICUSW09AL4fLt+GI77uHx8vV2PcZk3H0MRL0WO2YeRW/SYcHnbMcjwUvwYV4QnjqlEeNoxehhPP+YL5XOeIjQMnYYFDTPJEd93Jj+S+86kiCNOw0yWOJWchiZR8j34pErJNc1kS0kXhiZhSsYwfD5QPMykzEPLPBanA0JpeFLmpAzDkzLrfWdSRmPvO5My2kAhLk/K6FNNw5MyGpLS8KSMztPckXOHURkNdGolzZ3JRnjPc0aSobEdlZTB109qZZudmyrf3/9/Y335C6IPfz45puLnAAABdnpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nD1RSW7EMAz7So8TwDGsXULQU+6dR8y1T5jHl/IABQzEZiiRlO77+aLX63HzLd/348Y5cG68nsdPY3w/cP3/IUezf48XPb/ej5jMi32ca0pSGI3LZpmwjjWViRSITmfV5nCoF49LplhIgGOcePNcnCZNIQ8XGdea4aTVHBdjq3Hhr3mIbt7yhRYf1LnIIEDTrFCLS1lUjZMnm1FDkKDKccoMk/RdF8YRNk5FneNytbwwjJ02Q9Vi94IhrYbcjahZFr7culn66kBtMrJ78RRngi94cA9uV+4urSiYlq0NqTFm1FArElIudU3jrZgI2clDWbpXmwg2H8ijtHS7V3CYAZV45u61pDAofFWqSQoziXnBlCacI0NiHl1EmsGbkswgYy6YRW1EZe0FphZSdbpkkRVdJoK5YmFkTAYguT4bZJLyAUVsUnvFSkU5erXeS1GkydXScB0+jvcfB3iAyLEbG4kAAAAASUVORK5CYII=</base64_image>", "role": "assistant" } ]
Hydrogen_Bond_Properties
CCOC(=O)C(=O)Nc1cccc(C(=O)C[n+]2ccccc2)c1
414,473
{"donors": 1, "acceptors": 4}
313.333
1.3586
[ { "content": "Identify the number of H-bond donors and acceptors in the compound 'CCOC(=O)C(=O)Nc1cccc(C(=O)C[n+]2ccccc2)c1'.", "role": "user" }, { "content": "{\"donors\": 1, \"acceptors\": 4}", "role": "assistant" } ]
GHS_Pictogram_Identification
O=C(O)c1cncc(Br)c1
88,707
["GHS05", "GHS08"]
202.007
1.5423
[ { "content": "What safety pictograms should accompany the chemical 'O=C(O)c1cncc(Br)c1'?", "role": "user" }, { "content": "[\"GHS05\", \"GHS08\"]", "role": "assistant" } ]
Molecule_Visualization
CCN(CC)CCNc1nnc(NCCN(CC)CC)c2cc3ccccc3cc12
353,650
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deViU5foH8O8AArGokCJptiAOCCrmvmCuWO4kmrnnUm6pwMHdn1vuWnbUNOvKTlSeLDxmbmlZlp7U04Ipiw6LkSiLMAQIw8DMe//+eI3MFIF5Z5539P78RSzPfXPll+ddn0dDRGCMieMgugHGHnQcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBnEQ3wO5Mr9ePGzcuKSmpU6dOFg519uzZoKCgDz74wNvbW5HemLI0RCS6B3YH3bt3P3XqlIIDhoaGnjx5UsEBmVI4hGp0+fLlFi1aGI3GwYMHjx492sLR/v3vf3/++efOzs6JiYn+/v6KdMiUREx9hg0bBmD8+PFKDThu3DgAERERSg3IFMQzoep88803vXv3dnNzu3jxYtOmTVNSUoKDg2s9WmJiYvPmza9evRoYGHjjxo1jx46FhYUp2C2zHF8dVRez2RwVFQVg8eLFTZs2BUBEFRaQ/8g2adJkwYIFAKKiokwmk9jfkd2GZ0J12bFjx4wZM5588smkpCRXV1f5k+Xl5bUe0NnZWf7AaDS2bNkyNTV1x44d06ZNU6BXphAOoYoUFBRotdq8vLy4uLiIiAjFx4+LixsxYoS3t7dOp3v44YcVH5/VDh+OqsiKFSvy8vJ69epljQQCGD58eFhYmF6vX7VqlTXGZ7XDM6FaXLx4sXXr1pIk/fTTTyEhIVaqkpiY2KZNGwDnzp2z5HoPUxDPhGoRHR1dUVHx0ksvWS+BAIKDgydPnmwymSIjI61XhdUIz4SqcPDgwcGDB9evX1+n0zVs2NCqtfR6ffPmzfV6/cGDBwcOHGjVWqw6eCYUr7y8PCYmBsCyZcusnUAA3t7eS5YsARAZGWk0Gq1djt0Th1C8LVu2XLp0KTAwcObMmbapOGvWrODg4NTU1G3bttmmIqsCH44Klpubq9VqCwsLDx8+3L9/f5vV/eqrr8LCwjw9PXU6na+vr83qsr/jmVCwJUuWFBYWDhw40JYJBNC3b98BAwYUFxcvW7bMlnXZ3/FMKNK5c+fat2/v4OBw4cKFgIAAG1dPTU1t2bJlRUXF2bNn27dvb+PqrBLPhCJFRkaazebZs2fbPoEA/P39Z86cKUlSZGQk/y0WiGdCYfbs2fPCCy/4+PhcunSpfv36QnooKioKCAjIzs7es2fP888/L6QHxjOhGAaDQX6tYdWqVaISCKBu3borVqwAEBMTU1paKqqNBxyHUIyNGzf++uuvbdq0mTRpkthOpkyZ0q5duytXrrz22mtiO3lg8eGoAD/++GPnzp3NZvOJEyd69Oghuh3897//7d69u0aj+f777y1fV4rVFM+EArzzzjtms9nd3V1O4NGjR8eMGSNJki17kCRpzJgxR48eBdCtWzc3NzdJknbt2mXLHpiMQyhA7969ARiNRp1OV1ZWNmXKlN27d7///vu27OH999/fvXv3lClTysrKdDqd/Pya3BizNTFL2zzw5FPBgQMHEtFHH30EwMfH5/fff7dN9aKiokceeQTA7t27iWjAgAEAJk+ebJvq7DYcQjFycnLq1asH4PDhw5Ikde/eHcD8+fNtU33evHkAunTpIknSl19+CcDT0zMrK8s21dltOITCbNy4EUBgYGB5eflPP/3k4ODg7Ox86dIla9dNTU11cXFxcHA4e/ZsRUWF/Grvpk2brF2X3Q2HUBij0Sg/KLN582YimjhxIoChQ4dau+6QIUMATJo0iYhef/11AP7+/mVlZdauy+6GQyjSgQMHANSvXz83Nzc7O1s+QP3iiy+sV/H48ePywee1a9fy8/Pl3SkOHjxovYrsnjiEgskvT0ybNo2I1q1bByAoKKi8vNwatUwmU6tWrQCsX7+eiKZOnQqgb9++1qjFqo9DKFhycnKdOnUcHR3PnTtnNBqbN28OYOvWrdaotWXLFgB+fn5lZWUJCQlOTk5OTk4JCQnWqMWqj0Mo3pw5cwD06tWLiPbt2wfAy8vr+vXrylbR6/XyWqOfffYZEcmL4cvvTzCxOITi6fX6Bg0aAIiLiyOiZ555BsArr7yibBV57YzevXsT0aeffgrA29s7Ly9P2SqsFjiEqrB9+3YATz75pMFgSExMdHJycnR0PH/+vFLjJyYmyge958+fLysrkzdI27Fjh1LjM0twCFXBZDLJy42uXr2a/jprKeLW2VVefjs4OFjeLoYJxyFUi6+//hqAm5vbb7/9dtv5m4VuPc/MzMz08PAAcOzYMctHZorgEKrIrXuD3nol05Ixb7viyruFqhCHUEXS09NdXV01Gs3Jkydvu6dXa7feezx9+rRGo3FxcUlJSVGqZ2Y5DqG6LFq0CEC7du3MZvOtT7fUbrRbn8KRJEl+YXfx4sXK9swsxCFUl+Li4saNGwOIjY2lP57zXLFiRe1Gk9ePGTJkCBHJ7yv6+voWFhYq2TGzGIdQdW5NS0pKyq5du8xmc+2GMpvNu3btSklJuS3bTFU4hKpjjePGW49ylRqTKYUXelKjM2fOdO3a1dnZ+dChQ48//riFo2VmZvbv399oNH733XehoaGKdMgUxCFUqYEDB544cUKptUDd3Nx69ux56NAhRUZjynIS3QC7A0mSsrKySktLfXx8PD09LRytuLg4Nzc3KytLkiQHB17aS3U4hGr0/vvvx8fHN2nS5NKlS+7u7haOZjAYAgMD4+PjY2NjX3zxRSUaZEriw1HVKS4uDggIyMrK+uijj0aPHq3ImB999NHYsWMbNWqk0+nq1q2ryJhMKXxwojqrV6/Oysrq0qXLqFGjlBpz9OjRoaGhOTk5a9euVWpMphSeCdUlPT09KCiooqLi9OnTHTt2VHDkn3/+uUOHDvKr9PLTpEwleCZUl+joaKPROGHCBGUTCKBt27bjx48vLy+XFx1l6sEzoYp8/fXXffr08fT0vHTpkrxCtrJycnK0Wm1RUdEXX3whv2HI1IBnQrUwm82RkZEAFi9ebI0EAmjUqNHChQsBREdHm0wma5RgtcAhVIsdO3ZcuHDBz89PjqKVREdHN2/ePCkpaefOndarwmqED0dVoaCgQKvV5uXl7du3Lzw83Kq19u3bN2zYMC8vr5SUFPn9fSYWz4SqsHTp0ry8vN69e1s7gQCee+65fv36FRQUyC86MeF4JhQvKSmpTZs2kiTFx8fLb9PboGJISAgR2awiqwLPhOJFR0dXVFRMnz7dZnkICgqaOnVq5aUgJhbPhILt378/PDzcy8tLp9PJSwDbRkFBQfPmzfPz8/fv3y+/v89E4ZlQpMpb5ytXrrRlAgF4eXktW7YMfzweYMvS7DYcQpE2b96s0+latGghb5BkY/IBcFpa2j//+U/bV2eV+HBUmJycnICAgMLCQoHPrxw/frxv377We0aHVQfPhMIsXLiwsLBw6NChAp8g69Onz5AhQ4qLi5csWSKqB8YzoRiV7zRcuHBBq9UK7CQtLU3el0Lx9zZYNfFMKIAkSZMmTZIkKSoqSmwCATRr1mzOnDmSJE2ePFmSJLHNPKAErfL2QFu9ejUAV1dXeR1eSZKEbJebkJAgSRIRFRYWurq64o89oZiN8UwowPXr1wFoNBp3d3ej0dijR48OHTpkZGTYsoeMjIwOHTr06NHDaDS6u7trNJrKxpiNcQgFWL58eYMGDQwGw9tvv+3i4tK0aVODwWDjd23nzp1rMBgee+wxFxeXnTt3GgwGb29v+c4hszXRU/EDKi4uDn9sWJ2ZmSkvqXbixAnbVD916pRGo3nooYcyMjIqN+veu3evbaqz23AIhQkLCwMwZ84c+mPnljZt2phMJmvXNZvN7du3B7By5Uoimj17NoBevXpZuy67Gw6hMAkJCU5OTvJditLS0ieeeALA22+/be268uu8TZs2LSkpSUpKkvey/+WXX6xdl90Nh1CkadOmAejbty8RffzxxwB8fHwKCgqsV7GwsNDX1xfAnj17iOjZZ58FMH36dOtVZPfEIRQpPz9ffrf9wIEDRNSjRw8A//jHP6xXMTo6GkC3bt0kSfr888/xx1721qvI7olDKNjmzZsBNGvWrKysLD4+3tHR0dnZ+eLFi9aolZKS4uLi4uDg8MMPPxiNRvk5gTfeeMMatVj1cQgFq6ioaNmyJYBNmzYR0ZQpUwAMGjTIGrUGDhwI4KWXXiKijRs3AmjRokV5ebk1arHq4xCK9+WXXwLw9PTMysrKycmRd5k/fPiwDaocOXJE2SqsFjiEqvD3OSowMFDBOaqioiI4ONg28y2rKQ6hKlj7bO3WM8+ff/7ZqmeerKY4hGrxj3/8A0DXrl0Vv2552zXYp59+GkBMTIzlIzNFcAjVoqioyEp38O54N/L333+3fGSmCA6hirz99tuKP8tyx+dy3nnnHaV6ZpbjEKpI5VOdK1asIIWe6rz1CdXly5fb7AlVVn0cQnWpfL/h119/tfz9hlvf1bhy5YqN39Vg1cTvE6pLt27dRowYYTAYFi1a5OXltWLFCj8/Pw8Pj9qN5unp6efn9+qrrz788MPz5s0rKSkZOXKk/HAcUw9e6El1rly5EhgYaDAYvv322y5dupjNZhcXl1qPZjQaHR0df/jhh27durm6uiYlJcmnhUw9eCZUnaZNm8rPcEdGRjo4OFiSQADy7cfIyEgimjt3LidQhXgmVKOSkpLAwMDMzMzQ0FA/Pz8LR0tPTz916tSjjz568eJF+bSQqYqT6AbYHbi7u3fu3Pm77747derUqVOnLB/Qx8enc+fOnEB14plQjSpPCxcuXGj5wqSpqamrV6/mE0L1Enptlt3Z888/D2D06NFKDThq1CgAI0eOVGpApiCeCVXn+++/Dw0NdXV1TU5OfvzxxxUZMzMzMzAwsKSk5Ntvv5WfHWXqwVdH1UWSJPnplvnz5yuVQACPPvpoTEwMgMjISLPZrNSwTBE8E6rLO++88/LLL1vjSqbBYGjRokVGRsY777wjv0/IVIJDqCLFxcVarTY7O/vjjz8eOXKk4uN//PHHo0aN8vHx0el08pv1TA34cFRFVqxYkZ2d3bVrV/nCjOJeeOGFp59+Ojc3d9WqVdYYn9UOz4RqUblP4NmzZ+V3KawhPj6+ffv2atgXkVXimVAtIiMjjUbjpEmTrJdAAE899dTEiRPLy8vl6zRMDXgmVIWvvvoqLCzMNnvH5+bmarXawsLCI0eOyO/vM7F4JhTPZDJFRUUBWLp0qbUTCMDHx2fx4sUAoqOjKyoqrF2O3ROHULxt27YlJCQ0a9Zs1qxZtqk4Z84crVabnJy8fft221RkVeDDUcH0er1Wq83Pzz9w4MCgQYNsVvfAgQNDhgzx8vLS6XTy+/tMFJ4JBVuyZEl+fn6fPn1smUAAgwcPfvbZZwsKCnh3XuF4JhQpMTGxTZs2AOLj4+UdKWwpOTk5JCREkqSff/65devWNq7OKvFMKFJUVJTJZJo5c6btEwigRYsW06dPN5vNkZGRtq/OKvFMKMzevXuHDx/u7e2t0+nkFbJtr6CgQKvV5uXl7d27d9iwYUJ6YDwT3m7TJnz88c2Py8rQvTsATJiAuXNvfjIuDmvXWlqlvLx8wYIFAFatWiUqgQDkBd0AxMTElJWVWTja2rUYMgTyX/XEREyYAACdO8NkuvkNH36If/7TwiL3IQ7h7a5fx++/3/xYkpCaCgDZ2fjkE/zvfwBQXAy93tIqmzZtSk1NDQoKeumllywdyzJTp05t3br15cuX5U1jLKHXIz4eu3YBgNGI7GwASE1F5cFWQQGuX7ewyH2I15iprpUrMWMGzpy5+Z8nTyI9/a7f7ORUZjLtudtXi4qK1q5dC2Dz5s1OToL/Fzg6Om7evLlPnz6rVq1yc3OrX7/+3b7TyWm0yVTnbl+V16OKicH69Rg61Bqd3rf4nPB28+fjk0/g4wMAkoTMTGRl4ZlnsGkT3nwTgYGoVw9JSbh2Dbt333WQhg2zr1+v6tmXpk2b1q1bNyEhAcCJEydiY2PfffddjUaj8C9zd0Q0efLk8ePH9+zZE0DLli2LioquXLlSxY80bGi+fv2uh06jR6NxY4SEoKgIP/yAWbOwcCGOHkWDBvDzg/yb5eRg7FjwKxy34ZnwDubPx7RpAFBaimbN/vz8mjXo2BHy8ePTT6OKOczN7aHS0vF3+6perz906JCzs3NqamrTpk3HjBlz7dq1Xr16jRs3TrHf4V4+/PDD99577+jRo+np6VeuXElNTS0vLx80aJC3t/fdfsTNzVRa6ny3r3btevPQfepU/Otffx4yAPjvf1GnDgBs3YqcHOV+h/uGoLVt1GvePNqx4+bHJSXk60tE1K8fnT9PRLRrFzVsSJbv7Tdx4kQAQ4cOJaL3338fgK+vb2FhoaXjVk9xcXHjxo0BxMbGEtGQIUMATJo0ycJhY2Logw+IiP73P/L1pX79iIgefpgqdxzesoUWL7awyH2IL8zUzIsvIihIgXHWrl1br169/fv3Hz16dNy4cZ06dcrOzt6wYYMCQ1ev+rVr19q1azdmzJjjx49//vnnnp6eCr7p26EDnxbWhOi/AqpTWEglJTc/liTKyqIDByg+nozGm5/8/XfKy1Og0Lp16wC0aNGivLz89OnTGo3GxcUlJSVFgaGrlJ6e7urqqtFoTp48WVFR0apVKwDr16+3fOS8PCouvvlxaSnFx9OBA5SV9ec33LhBRUWW17nfcAjvITOT3N3J05OuXlV45Mq96bdu3UpE8glhRESEwmX+Rr4pP378eCLasmUL/tjLXtkqV6+Spye5u1NmprID34c4hPcwdiwBNHy4VQb/7LPP8Mfe9JmZmfIWaMeOHbNKMSIi+vrrrwG4ubn99ttver1efk5g//791qgVEUEAjRtnjbHvKxzCqpw+TRoNubpSerq1SjzzzDMAXnnlFSKSz8p69nzBShvpmkzUs+czAFatWkVEM2fOBNC7d2+rFCPKyCA3N9Jo6ORJK1W4T3AI70qSqGNHAmjJEitWkfeU9/Z+MjGxyGAwhIcfcneXKi/PKmvHDnJ3Lw4PX20wGBITf/f2ftjJySkhIcEqxYiIaPFiAqhdOzKbrVfE7nEI7+q99wigJk3+vNhgJcuXf9mggblvXyKiTz8lgLy9lbn2cyu9nho0IIDi4oiI+valBg1yli//t8Jl/qqkhB57jAD617+sWse+cQjvrLiYGjcm4OaNL6uqjMe+fUREYWEEUGSkwlXmzCGAevUiIvrPfwggLy/lo/53sbEEUKNGZKuboPaHQ3hnCxcSQJ07kyTZotzWrQSQnx+VlVFCAjk5kZMTKXicmJxMdeqQoyOdO0dGIzVvTgBt26bY+FWQJOrWjQBatMgW5ewRh/AO0tJMrq6k0dCZMzaqaDJRq1YE0Lp1RERTpxJA8gGqIvr3J4CmTSMiWruWAAoKoooKxcav2pkzN69vpaVZ54qTneMQ3sGwYcNDQ9+dMaPk3t+qnOPHCSBPT7p2jfLzydubADp4UIGRDxwggOrXp9xcys6munUJoC++UGDk6psxIyc0dOKwYVa/C2qPOIS3k++keXh4XFX89vy9DB1KAE2cSET0+usEkL8/WXgX3WikgAACaPNmIqIXXySAwsMV6LZGsrOz69ata+27oHaKQ/gXJpNJXvJozZo1tq+elkYuLuTgQGfPUnk5BQZSv36Uk2PRmDk51K8fBQZSeTn99BM5OJCzM+l0CnVcE6tXrwYg77choLyKcQj/4s033wTw5JNPGgwGIQ3Mm0cAdelCkkTXrys27PXrJEnUvTsBNH++YsPWSFlZmb+/P4Dt27eL6UCtOIR/0uv18jK4e/fuFdVDYSFptbRhg/JXTSoqaMMG0mpF3iqIi4sD4O3tnWeDeyP2g19l+tPy5cvz8vJ69eolcN2xunWRlITcXPzww83PfPrpX16QrZEzZzBvHiQJABwckJuLpCTUratMq7UQERERFham1+tfffVVYU2okOi/AmqRlJRUp04dR0fHX375RXQv1KgRtW178+WpqCiKja3lOLGx5OZG8tFfRQU1aqRYh7UmP6Ynb5Aouhe1sO/lLfR6/aVLl7y9vd3c3CwcZ9asWRUVFdOnT1fDWtQaDfr3x4YNWLLk5meys1HTDZTkFSXGjsUbb+C556CS/SaCg4OnTJny1ltvTZ06dfv27VWsplEdpaWler0+ICDAwnHEsuOFnkwmk7+/f0ZGhiKjOTo6urm5paenq2F3lEceQUoK2rbFkSN480089RTWr0diYs0GCQ7G/PlISIBWi+PHERuLRx+9uQyhWHl5eX5+fqWlpWazWZEBH3/88dTUVOHr1tWavfYNYOfOnRkZGQ4ODt7e3q6urpYMVVRUpNFoZs+erYYEyjw8sGYN5syBvKf1I4+gsLBmI1TudDhpEnbtwokTyjZYew0aNIiMjNyyZQsR1bXsDLWsrEyv12dkZOzcuVN+M8suiT4erqXKK5mfffaZ6F6UJ68uRUTPPEOtW1t0TjhvHhFRfDw99ZQqzgkVt2/fPgBeXl72e8XVXq+OLl26NC8vr3fv3kPv6xWFtm2DTqfAOG3a4OmnFRhHhcLDw/v161dQUCCv52+XRP8VqI3ExET5SuZ5eR3C+87nn//58cmT9OuvtRzn11+p8lpvYeFfhr2fJCYmOjk52e+/B7sM4a1LQjBG1l+qw6rs7+ro/v37w8PDeZ9ndquCgoLmzZvn5+fv379fXsvYjtjZOWF5efm8efMArFy5khPIKnl5ecn7fkdHRxuNRtHt1IydhXDLljd1Ol1QUNA0ebMIxv4wffr0oKCgtLS0rVvfEt1LzdjT4Wh2Ntq3L/T3f3XRomf69QsT3Q5TnWPHvlyzpiw1deCPPzr4+oruptrsaSZctAhXr9arX38TJ5DdUb9+YfXqDb561WHxYtGt1ITdzITx8WjfHk5OuHDh5kMkjP1dWhqCg1FRgTNn0KGD6G6qxz5mQiLMmQNJQmQkJ5BVpVkzzJ4NScKcObCT+cVOZsLduzFmDHx8oNOhXj3R3TB1Ky5GQACysrB7N0aNEt1NNdjBTGgwYNEiAFi7lhPI7s3TE/I7w/PmoaREdDfVYAchXLcOGRl46im8+KLoVpidmDgRHTogMxMbN4pupRrUfjiamYmAABgM+PZbdO8uuhtmP06fRrducHVFcjIef1x0N1VS+0x46RI8PDByJCeQ1UyXLhg5Ep6eSE0V3cq9qHEm/PJL+PvjyScB4OJF3LiBxx6Dj4/otpi9yc3Fb7+hpAQ9egCAwYBTpxCmvnvMapwJ587FqFE31wj77DOcOMEJZLXh44MTJ9CvHy5cAAC9HnPniu7pTtQYQgBPPIG37OwBQKZS4eGYPv3m33R1UniNmejo6Li4OGdn57t9w6OP9s7MfLuKEeTLWcuXY9AgiFv+k90/OnbE+fN4910MGAAA+/bdYz589NGBmZmX7vbV8vLy4cOHv/766wp2qGQIExMT33jjDY1GI939z45G0zotrapBiooAwNsbCxYgJgYtWyrYIHtAbdiArl3RqRMAFBWh6n+BGs1vaXf/DgcHhzfeeGPy5MnBwcFKtadkCJcvX05ErVu3llc7vyMHB9eqDwwaNcLmzQAwaRLeew83biA0VMEe2YOoUSNER2PZMgAYNgzdulX1zQ4OhyXprm8kRkREnD9/fsWKFZ988oli/Sn1iv7Jkyc1Go2bm1tGRoaFQ4WE3NyKKD6enJxo40YF2mMPpo0badMmIiKTidq1o5AQSwfMzMx0d3cH8M0331jc3U3KXJiRJCkyMpKIFi5c+Nhjj1k4WkQEHnoIANq0wZYtCAmxmydxmaoQISQE8orqjo54+21ERFg6ZpMmTebPnw8gMjJSqcWLlZkJ33rrLQBNmzYtKVF4d9u0NBo6lFauVHZU9kBYuZKGDqW0NIWHNRgMTzzxBICdO3cqMqACISwsLPT19QXwySefWD7abU6dIo2GHnqILD7IZQ+WzExydyeATpxQfvA9e/YAaNiwYUFBgeWjKRDCqKgoAN26dZMkyfLR/m7ECAJozBhrjM3uW6NHE0DPP2+t8Xv06AEgOjra8qEsDWFKSoqzs7ODg8OPP/5oeTd39Ntv5OZGGg19952VKrD7zfff3zyAunzZWiXi4+MdHR3r1Klz8eJFC4eyNIT9+/cHMHXqVAvHqdr//R8B1LYtmc1WrcPuB2YzdexIAC1dat1CL7/8MoABAwZYOI5FITx27BiAunXrZmVlWdhH1UpL6bHHCKD33rNqHXY/2LWLAGrShG7csG6h3Nzc+vXrAzh8+LAl49Q+hOXl5QEBAQBee+01Szqopg8+IIAaNRK55TpTv6IieuQRAujDD21RbtOmTQD8/f2N8r7KtVL7EL722mty+bKysloPUn2SRKGhBNCCBTaoxuzV/PkEUJcuZJ2rhLernIpef/31Wg9SyxBWTsSHDh2qde2aOnuWHByoU6evUlOVvvXD7gupqWmdOn3l4EBnz9qu6MGDBy08KatlCOVT0rCwsNr9eK3NnbsFQHh4uI3rMrsQHh4OYO7cLTaua+HlydqE8Ny5c46Ojk5OTgkJCbWrWmvZ2dnyBstHjx61cWmmcsePHwfg4eFx7do1G5dOTk6uU6dOrW/U1SaEPXv2BBAVFVWLn7XcmjVrAAQFBVVUVAhpgKmQyWRq1aoVgLVr1wppIDIyEkBoaGgtHlmpcQjlNzi8vU3EnzgAAAUsSURBVL3z8/Nr+rOKMBqNzZs3B7Bt2zYhDTAV2rp1KwA/Pz+DwSCkgYKCgoYNGwL49NNPa/qzNQth5aOrb731Vk0rKeg///kPAC8vr7y8PIFtMJXQ6/XyZpX79u0T2MaOHTtq9xpDzUL46quvAggODhZ+KNivXz8As2bNEtsGU4NXXnkFKtgr22QyhYSEAFi1alWNfrAGIczMzPTw8ICirzPWWmJiopOTk5OT0/nz50X3wkRKSkqqU6eOo6OjGv4l1O7V9hqEcMKECQAiIiJq3ptVzJgxA0Dbtm1FN8JEatu2LYAZM2aIbuSmiIgIABMmTKj+j9QghKmpqSNGjEhPT69xX9Yhr2Sj0WiuXr0quhcmxtWrVzUaDYC4uDjRvdyUnp4+YsSI1NTU6v+IGlfgrqYBAwYcOXKkZcuWF+S1XdkDqVWrVgkJCQMGDDh06JDoXmrJXkP41VdfhYWFeXp66nQ6XzvanpwpLTc3V6vVFhYWHjly5NlnnxXdTm2odAXuqplMJvl1/mXLlnECH3A+Pj5LliwBEB0dXVFRIbqd2rDLEG7bti0hIaFZs2bytWn2gJs9e7ZWq01OTt6+fbvoXmrD/g5H9Xq9VqvNz88/cODAoEGDRLfDVOHAgQNDhgzx8vLS6XTyjXs7Yn8z4eLFi/Pz8/v27csJZJUGDx787LPPFhQULF26VHQvNWZnM2FiYmKbNm0AxMfHt+R9KtgtkpOTQ0JCJEn6+eefW8sr/toJO5sJo6KiTCbTzJkzOYHsNi1atJg+fbrZbJZfaLAj9jQT7t27d/jw4d7e3jqd7uGHHxbdDlOdgoICrVabl5e3d+/eYfazsZ7dzIRGo3HBggUAVq1axQlkd+Tl5bVixQoAMTExZWVlotupLrsJ4aZNm1JTU4ODg1966SXRvTD1mjp1auvWrS9fvqzsPp5WZR+Hozk5OVqttqio6NixY2FhYaLbYar2zTff9O7d28PD49KlS40bNxbdzr3Zx0w4b968oqKiYcOGcQLZPfXq1eu55567cePGokWLRPdSLXYwE/70008dO3aU15WSF7ZgrGrp6enBwcFGo/H06dOd5G2yVUztMyERzZkzR5KkmJgYTiCrJj8/P3khMnnvWtHt3IPaZ8LY2NgJEyY0atRIp9PJix0yVh03btwICAi4du1abGzsuHHjRLdTFVXPhKWlpfID8hs2bOAEshrx8PCQV8dcuHDhjRs3RLdTFVWHcM2aNVeuXGnXrt3YsWNF98Lsz/jx4zt27Hj16tX169eL7qUq6j0cvXz5clBQkNFo/O6770JDQ0W3w+zSmTNnunbt6uzsnJCQ4O/vL7qdO1PvTDh37tyysrKxY8dyAlmtde7cecyYMUajceHChaJ7uSuVhpCI2rdv7+vru3btWtG9MPu2bt06X1/fdu3aqfagT72HowCMRqOLi4voLpjdU/k/JFWHkLEHgUoPRxl7cHAIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgT7f3juASwqFsxBAAABcXpUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHicjZG9TsMwEMfPl9ZJm35R0qStG9SRtS9ADDMjI4MlFk+o6sIIYmHlERgrAU8Awu7EzMDKK9AHYMBtmtjiS1g63c9//313lt+f7t/ArI4JhHztmBibuCAUhMnEyzOiv9bL7ddja5MrGxLKd1dQ8fPsFbnUS+O3Cv9oRMo6lK/reOQH4Q/45XIIBAgCeoYBq1ClQH3wg3FQk1iri3ooMWyMG01otqDVhnYHOlvQ7kJ3G8JIRD2JvVjEicSkL/oDiYOhGDKJbCRGqcQ0EGkkWCwOPNOOBmkU1mu0F7NRGtGkPxiyOJkR8zyw/1FZXB2d6ny71MmEbVg7PNfWo/XHw02pH7JrlfPUYa7vjid7G7+yzJXjySzrzPFwy1NuPXOHNbezLR2u7Ns559yZmduZeXY2e8ycvrzQW/ySF/rzy22pn5+8Fqwsa+V4lHNXOTVV0Sv+BPYicjbEGQznAAAB/npUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nI1VW47bMAz89yl0gQgaknp9bpJFsVisA7Rp79D/3h8VndqiAcOVHQ1keUw9OMNMTq/v98/ff9x20X2anAsnv1qr+8UhhOnLacdd3799zO72fLuuI7fHz/n5w7UeU/um3Xvu2/PxtY7A3dyleIotYnAX9pm4huqCD8vVvyVlZh9fwxfyQlIyDpjsZndJ6/AZUzRmHJk9KrPHjD4QVckHzLSPCQ+KhfmAmZXZ5vw/s+iOeBv2yEwhHhCrhsR6SCdEBA0ZRiYHGnWMqTkaml1TNLIfaIaGjgiaoaFjR2qTD8kDmqEhyaE05pCMUXfrPBN8c5Ibkhypi7YMwUsmkqOt0y5B5HMGlaP9ENuI4kMOjMNFio0YPafKsRwRo42YfEqFazoiLgYaYuad2s8mL7uYZ/vZO+jkiLTQmZgnp/4+33c171UFr4/53qug3tRLXXtw3OsZWpNetNBa7JVJ36ZeftBa7jUGrZVeSNBa7eVCWoOtCqIAGPOLAsiYHAuwcTMWEGNbLBCNPbFAMjbEAtnYDQsUY6sXpxr7QIGsTUTXQzB2EAUio3tRIDYCFwUSo2RRoGgkq49NkUabokDZaFAUqBitiQJVoylRYKsdUdgojNdA3wTTvzDbklVGVjT6vP7ttv70Fxg2b4JoiOWpAAAAw3pUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nF2PSw7EIAxDrzLLVioRcYBQzZJ9L8G+J+jhh04/IrBAetjCdinbVMpcylZ53+u0ledhrqhV6nnazfgck8uEuDghhay8fJ1SQ1BAyNow9RAHbxMjeWCNr8jEiFkaN5vlxROrwJ9mbikdeusd0Jr7f4aMoULf3c4aRg+7+ln/KkxBgXA1Aaky8i0F8uoFlxRJ0irplhKllMOz7iVjdPYTZwKcCZ+PH2RJYKnU2jhoAAAAAElFTkSuQmCC</base64_image>
408.594
4.2904
[ { "content": "Provide information about Molecule_Visualization for the molecule with SMILES 'CCN(CC)CCNc1nnc(NCCN(CC)CC)c2cc3ccccc3cc12'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deViU5foH8O8AArGokCJptiAOCCrmvmCuWO4kmrnnUm6pwMHdn1vuWnbUNOvKTlSeLDxmbmlZlp7U04Ipiw6LkSiLMAQIw8DMe//+eI3MFIF5Z5539P78RSzPfXPll+ddn0dDRGCMieMgugHGHnQcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBnEQ3wO5Mr9ePGzcuKSmpU6dOFg519uzZoKCgDz74wNvbW5HemLI0RCS6B3YH3bt3P3XqlIIDhoaGnjx5UsEBmVI4hGp0+fLlFi1aGI3GwYMHjx492sLR/v3vf3/++efOzs6JiYn+/v6KdMiUREx9hg0bBmD8+PFKDThu3DgAERERSg3IFMQzoep88803vXv3dnNzu3jxYtOmTVNSUoKDg2s9WmJiYvPmza9evRoYGHjjxo1jx46FhYUp2C2zHF8dVRez2RwVFQVg8eLFTZs2BUBEFRaQ/8g2adJkwYIFAKKiokwmk9jfkd2GZ0J12bFjx4wZM5588smkpCRXV1f5k+Xl5bUe0NnZWf7AaDS2bNkyNTV1x44d06ZNU6BXphAOoYoUFBRotdq8vLy4uLiIiAjFx4+LixsxYoS3t7dOp3v44YcVH5/VDh+OqsiKFSvy8vJ69epljQQCGD58eFhYmF6vX7VqlTXGZ7XDM6FaXLx4sXXr1pIk/fTTTyEhIVaqkpiY2KZNGwDnzp2z5HoPUxDPhGoRHR1dUVHx0ksvWS+BAIKDgydPnmwymSIjI61XhdUIz4SqcPDgwcGDB9evX1+n0zVs2NCqtfR6ffPmzfV6/cGDBwcOHGjVWqw6eCYUr7y8PCYmBsCyZcusnUAA3t7eS5YsARAZGWk0Gq1djt0Th1C8LVu2XLp0KTAwcObMmbapOGvWrODg4NTU1G3bttmmIqsCH44Klpubq9VqCwsLDx8+3L9/f5vV/eqrr8LCwjw9PXU6na+vr83qsr/jmVCwJUuWFBYWDhw40JYJBNC3b98BAwYUFxcvW7bMlnXZ3/FMKNK5c+fat2/v4OBw4cKFgIAAG1dPTU1t2bJlRUXF2bNn27dvb+PqrBLPhCJFRkaazebZs2fbPoEA/P39Z86cKUlSZGQk/y0WiGdCYfbs2fPCCy/4+PhcunSpfv36QnooKioKCAjIzs7es2fP888/L6QHxjOhGAaDQX6tYdWqVaISCKBu3borVqwAEBMTU1paKqqNBxyHUIyNGzf++uuvbdq0mTRpkthOpkyZ0q5duytXrrz22mtiO3lg8eGoAD/++GPnzp3NZvOJEyd69Oghuh3897//7d69u0aj+f777y1fV4rVFM+EArzzzjtms9nd3V1O4NGjR8eMGSNJki17kCRpzJgxR48eBdCtWzc3NzdJknbt2mXLHpiMQyhA7969ARiNRp1OV1ZWNmXKlN27d7///vu27OH999/fvXv3lClTysrKdDqd/Pya3BizNTFL2zzw5FPBgQMHEtFHH30EwMfH5/fff7dN9aKiokceeQTA7t27iWjAgAEAJk+ebJvq7DYcQjFycnLq1asH4PDhw5Ikde/eHcD8+fNtU33evHkAunTpIknSl19+CcDT0zMrK8s21dltOITCbNy4EUBgYGB5eflPP/3k4ODg7Ox86dIla9dNTU11cXFxcHA4e/ZsRUWF/Grvpk2brF2X3Q2HUBij0Sg/KLN582YimjhxIoChQ4dau+6QIUMATJo0iYhef/11AP7+/mVlZdauy+6GQyjSgQMHANSvXz83Nzc7O1s+QP3iiy+sV/H48ePywee1a9fy8/Pl3SkOHjxovYrsnjiEgskvT0ybNo2I1q1bByAoKKi8vNwatUwmU6tWrQCsX7+eiKZOnQqgb9++1qjFqo9DKFhycnKdOnUcHR3PnTtnNBqbN28OYOvWrdaotWXLFgB+fn5lZWUJCQlOTk5OTk4JCQnWqMWqj0Mo3pw5cwD06tWLiPbt2wfAy8vr+vXrylbR6/XyWqOfffYZEcmL4cvvTzCxOITi6fX6Bg0aAIiLiyOiZ555BsArr7yibBV57YzevXsT0aeffgrA29s7Ly9P2SqsFjiEqrB9+3YATz75pMFgSExMdHJycnR0PH/+vFLjJyYmyge958+fLysrkzdI27Fjh1LjM0twCFXBZDLJy42uXr2a/jprKeLW2VVefjs4OFjeLoYJxyFUi6+//hqAm5vbb7/9dtv5m4VuPc/MzMz08PAAcOzYMctHZorgEKrIrXuD3nol05Ixb7viyruFqhCHUEXS09NdXV01Gs3Jkydvu6dXa7feezx9+rRGo3FxcUlJSVGqZ2Y5DqG6LFq0CEC7du3MZvOtT7fUbrRbn8KRJEl+YXfx4sXK9swsxCFUl+Li4saNGwOIjY2lP57zXLFiRe1Gk9ePGTJkCBHJ7yv6+voWFhYq2TGzGIdQdW5NS0pKyq5du8xmc+2GMpvNu3btSklJuS3bTFU4hKpjjePGW49ylRqTKYUXelKjM2fOdO3a1dnZ+dChQ48//riFo2VmZvbv399oNH733XehoaGKdMgUxCFUqYEDB544cUKptUDd3Nx69ux56NAhRUZjynIS3QC7A0mSsrKySktLfXx8PD09LRytuLg4Nzc3KytLkiQHB17aS3U4hGr0/vvvx8fHN2nS5NKlS+7u7haOZjAYAgMD4+PjY2NjX3zxRSUaZEriw1HVKS4uDggIyMrK+uijj0aPHq3ImB999NHYsWMbNWqk0+nq1q2ryJhMKXxwojqrV6/Oysrq0qXLqFGjlBpz9OjRoaGhOTk5a9euVWpMphSeCdUlPT09KCiooqLi9OnTHTt2VHDkn3/+uUOHDvKr9PLTpEwleCZUl+joaKPROGHCBGUTCKBt27bjx48vLy+XFx1l6sEzoYp8/fXXffr08fT0vHTpkrxCtrJycnK0Wm1RUdEXX3whv2HI1IBnQrUwm82RkZEAFi9ebI0EAmjUqNHChQsBREdHm0wma5RgtcAhVIsdO3ZcuHDBz89PjqKVREdHN2/ePCkpaefOndarwmqED0dVoaCgQKvV5uXl7du3Lzw83Kq19u3bN2zYMC8vr5SUFPn9fSYWz4SqsHTp0ry8vN69e1s7gQCee+65fv36FRQUyC86MeF4JhQvKSmpTZs2kiTFx8fLb9PboGJISAgR2awiqwLPhOJFR0dXVFRMnz7dZnkICgqaOnVq5aUgJhbPhILt378/PDzcy8tLp9PJSwDbRkFBQfPmzfPz8/fv3y+/v89E4ZlQpMpb5ytXrrRlAgF4eXktW7YMfzweYMvS7DYcQpE2b96s0+latGghb5BkY/IBcFpa2j//+U/bV2eV+HBUmJycnICAgMLCQoHPrxw/frxv377We0aHVQfPhMIsXLiwsLBw6NChAp8g69Onz5AhQ4qLi5csWSKqB8YzoRiV7zRcuHBBq9UK7CQtLU3el0Lx9zZYNfFMKIAkSZMmTZIkKSoqSmwCATRr1mzOnDmSJE2ePFmSJLHNPKAErfL2QFu9ejUAV1dXeR1eSZKEbJebkJAgSRIRFRYWurq64o89oZiN8UwowPXr1wFoNBp3d3ej0dijR48OHTpkZGTYsoeMjIwOHTr06NHDaDS6u7trNJrKxpiNcQgFWL58eYMGDQwGw9tvv+3i4tK0aVODwWDjd23nzp1rMBgee+wxFxeXnTt3GgwGb29v+c4hszXRU/EDKi4uDn9sWJ2ZmSkvqXbixAnbVD916pRGo3nooYcyMjIqN+veu3evbaqz23AIhQkLCwMwZ84c+mPnljZt2phMJmvXNZvN7du3B7By5Uoimj17NoBevXpZuy67Gw6hMAkJCU5OTvJditLS0ieeeALA22+/be268uu8TZs2LSkpSUpKkvey/+WXX6xdl90Nh1CkadOmAejbty8RffzxxwB8fHwKCgqsV7GwsNDX1xfAnj17iOjZZ58FMH36dOtVZPfEIRQpPz9ffrf9wIEDRNSjRw8A//jHP6xXMTo6GkC3bt0kSfr888/xx1721qvI7olDKNjmzZsBNGvWrKysLD4+3tHR0dnZ+eLFi9aolZKS4uLi4uDg8MMPPxiNRvk5gTfeeMMatVj1cQgFq6ioaNmyJYBNmzYR0ZQpUwAMGjTIGrUGDhwI4KWXXiKijRs3AmjRokV5ebk1arHq4xCK9+WXXwLw9PTMysrKycmRd5k/fPiwDaocOXJE2SqsFjiEqvD3OSowMFDBOaqioiI4ONg28y2rKQ6hKlj7bO3WM8+ff/7ZqmeerKY4hGrxj3/8A0DXrl0Vv2552zXYp59+GkBMTIzlIzNFcAjVoqioyEp38O54N/L333+3fGSmCA6hirz99tuKP8tyx+dy3nnnHaV6ZpbjEKpI5VOdK1asIIWe6rz1CdXly5fb7AlVVn0cQnWpfL/h119/tfz9hlvf1bhy5YqN39Vg1cTvE6pLt27dRowYYTAYFi1a5OXltWLFCj8/Pw8Pj9qN5unp6efn9+qrrz788MPz5s0rKSkZOXKk/HAcUw9e6El1rly5EhgYaDAYvv322y5dupjNZhcXl1qPZjQaHR0df/jhh27durm6uiYlJcmnhUw9eCZUnaZNm8rPcEdGRjo4OFiSQADy7cfIyEgimjt3LidQhXgmVKOSkpLAwMDMzMzQ0FA/Pz8LR0tPTz916tSjjz568eJF+bSQqYqT6AbYHbi7u3fu3Pm77747derUqVOnLB/Qx8enc+fOnEB14plQjSpPCxcuXGj5wqSpqamrV6/mE0L1Enptlt3Z888/D2D06NFKDThq1CgAI0eOVGpApiCeCVXn+++/Dw0NdXV1TU5OfvzxxxUZMzMzMzAwsKSk5Ntvv5WfHWXqwVdH1UWSJPnplvnz5yuVQACPPvpoTEwMgMjISLPZrNSwTBE8E6rLO++88/LLL1vjSqbBYGjRokVGRsY777wjv0/IVIJDqCLFxcVarTY7O/vjjz8eOXKk4uN//PHHo0aN8vHx0el08pv1TA34cFRFVqxYkZ2d3bVrV/nCjOJeeOGFp59+Ojc3d9WqVdYYn9UOz4RqUblP4NmzZ+V3KawhPj6+ffv2atgXkVXimVAtIiMjjUbjpEmTrJdAAE899dTEiRPLy8vl6zRMDXgmVIWvvvoqLCzMNnvH5+bmarXawsLCI0eOyO/vM7F4JhTPZDJFRUUBWLp0qbUTCMDHx2fx4sUAoqOjKyoqrF2O3ROHULxt27YlJCQ0a9Zs1qxZtqk4Z84crVabnJy8fft221RkVeDDUcH0er1Wq83Pzz9w4MCgQYNsVvfAgQNDhgzx8vLS6XTy+/tMFJ4JBVuyZEl+fn6fPn1smUAAgwcPfvbZZwsKCnh3XuF4JhQpMTGxTZs2AOLj4+UdKWwpOTk5JCREkqSff/65devWNq7OKvFMKFJUVJTJZJo5c6btEwigRYsW06dPN5vNkZGRtq/OKvFMKMzevXuHDx/u7e2t0+nkFbJtr6CgQKvV5uXl7d27d9iwYUJ6YDwT3m7TJnz88c2Py8rQvTsATJiAuXNvfjIuDmvXWlqlvLx8wYIFAFatWiUqgQDkBd0AxMTElJWVWTja2rUYMgTyX/XEREyYAACdO8NkuvkNH36If/7TwiL3IQ7h7a5fx++/3/xYkpCaCgDZ2fjkE/zvfwBQXAy93tIqmzZtSk1NDQoKeumllywdyzJTp05t3br15cuX5U1jLKHXIz4eu3YBgNGI7GwASE1F5cFWQQGuX7ewyH2I15iprpUrMWMGzpy5+Z8nTyI9/a7f7ORUZjLtudtXi4qK1q5dC2Dz5s1OToL/Fzg6Om7evLlPnz6rVq1yc3OrX7/+3b7TyWm0yVTnbl+V16OKicH69Rg61Bqd3rf4nPB28+fjk0/g4wMAkoTMTGRl4ZlnsGkT3nwTgYGoVw9JSbh2Dbt333WQhg2zr1+v6tmXpk2b1q1bNyEhAcCJEydiY2PfffddjUaj8C9zd0Q0efLk8ePH9+zZE0DLli2LioquXLlSxY80bGi+fv2uh06jR6NxY4SEoKgIP/yAWbOwcCGOHkWDBvDzg/yb5eRg7FjwKxy34ZnwDubPx7RpAFBaimbN/vz8mjXo2BHy8ePTT6OKOczN7aHS0vF3+6perz906JCzs3NqamrTpk3HjBlz7dq1Xr16jRs3TrHf4V4+/PDD99577+jRo+np6VeuXElNTS0vLx80aJC3t/fdfsTNzVRa6ny3r3btevPQfepU/Otffx4yAPjvf1GnDgBs3YqcHOV+h/uGoLVt1GvePNqx4+bHJSXk60tE1K8fnT9PRLRrFzVsSJbv7Tdx4kQAQ4cOJaL3338fgK+vb2FhoaXjVk9xcXHjxo0BxMbGEtGQIUMATJo0ycJhY2Logw+IiP73P/L1pX79iIgefpgqdxzesoUWL7awyH2IL8zUzIsvIihIgXHWrl1br169/fv3Hz16dNy4cZ06dcrOzt6wYYMCQ1ev+rVr19q1azdmzJjjx49//vnnnp6eCr7p26EDnxbWhOi/AqpTWEglJTc/liTKyqIDByg+nozGm5/8/XfKy1Og0Lp16wC0aNGivLz89OnTGo3GxcUlJSVFgaGrlJ6e7urqqtFoTp48WVFR0apVKwDr16+3fOS8PCouvvlxaSnFx9OBA5SV9ec33LhBRUWW17nfcAjvITOT3N3J05OuXlV45Mq96bdu3UpE8glhRESEwmX+Rr4pP378eCLasmUL/tjLXtkqV6+Spye5u1NmprID34c4hPcwdiwBNHy4VQb/7LPP8Mfe9JmZmfIWaMeOHbNKMSIi+vrrrwG4ubn99ttver1efk5g//791qgVEUEAjRtnjbHvKxzCqpw+TRoNubpSerq1SjzzzDMAXnnlFSKSz8p69nzBShvpmkzUs+czAFatWkVEM2fOBNC7d2+rFCPKyCA3N9Jo6ORJK1W4T3AI70qSqGNHAmjJEitWkfeU9/Z+MjGxyGAwhIcfcneXKi/PKmvHDnJ3Lw4PX20wGBITf/f2ftjJySkhIcEqxYiIaPFiAqhdOzKbrVfE7nEI7+q99wigJk3+vNhgJcuXf9mggblvXyKiTz8lgLy9lbn2cyu9nho0IIDi4oiI+valBg1yli//t8Jl/qqkhB57jAD617+sWse+cQjvrLiYGjcm4OaNL6uqjMe+fUREYWEEUGSkwlXmzCGAevUiIvrPfwggLy/lo/53sbEEUKNGZKuboPaHQ3hnCxcSQJ07kyTZotzWrQSQnx+VlVFCAjk5kZMTKXicmJxMdeqQoyOdO0dGIzVvTgBt26bY+FWQJOrWjQBatMgW5ewRh/AO0tJMrq6k0dCZMzaqaDJRq1YE0Lp1RERTpxJA8gGqIvr3J4CmTSMiWruWAAoKoooKxcav2pkzN69vpaVZ54qTneMQ3sGwYcNDQ9+dMaPk3t+qnOPHCSBPT7p2jfLzydubADp4UIGRDxwggOrXp9xcys6munUJoC++UGDk6psxIyc0dOKwYVa/C2qPOIS3k++keXh4XFX89vy9DB1KAE2cSET0+usEkL8/WXgX3WikgAACaPNmIqIXXySAwsMV6LZGsrOz69ata+27oHaKQ/gXJpNJXvJozZo1tq+elkYuLuTgQGfPUnk5BQZSv36Uk2PRmDk51K8fBQZSeTn99BM5OJCzM+l0CnVcE6tXrwYg77choLyKcQj/4s033wTw5JNPGgwGIQ3Mm0cAdelCkkTXrys27PXrJEnUvTsBNH++YsPWSFlZmb+/P4Dt27eL6UCtOIR/0uv18jK4e/fuFdVDYSFptbRhg/JXTSoqaMMG0mpF3iqIi4sD4O3tnWeDeyP2g19l+tPy5cvz8vJ69eolcN2xunWRlITcXPzww83PfPrpX16QrZEzZzBvHiQJABwckJuLpCTUratMq7UQERERFham1+tfffVVYU2okOi/AmqRlJRUp04dR0fHX375RXQv1KgRtW178+WpqCiKja3lOLGx5OZG8tFfRQU1aqRYh7UmP6Ynb5Aouhe1sO/lLfR6/aVLl7y9vd3c3CwcZ9asWRUVFdOnT1fDWtQaDfr3x4YNWLLk5meys1HTDZTkFSXGjsUbb+C556CS/SaCg4OnTJny1ltvTZ06dfv27VWsplEdpaWler0+ICDAwnHEsuOFnkwmk7+/f0ZGhiKjOTo6urm5paenq2F3lEceQUoK2rbFkSN480089RTWr0diYs0GCQ7G/PlISIBWi+PHERuLRx+9uQyhWHl5eX5+fqWlpWazWZEBH3/88dTUVOHr1tWavfYNYOfOnRkZGQ4ODt7e3q6urpYMVVRUpNFoZs+erYYEyjw8sGYN5syBvKf1I4+gsLBmI1TudDhpEnbtwokTyjZYew0aNIiMjNyyZQsR1bXsDLWsrEyv12dkZOzcuVN+M8suiT4erqXKK5mfffaZ6F6UJ68uRUTPPEOtW1t0TjhvHhFRfDw99ZQqzgkVt2/fPgBeXl72e8XVXq+OLl26NC8vr3fv3kPv6xWFtm2DTqfAOG3a4OmnFRhHhcLDw/v161dQUCCv52+XRP8VqI3ExET5SuZ5eR3C+87nn//58cmT9OuvtRzn11+p8lpvYeFfhr2fJCYmOjk52e+/B7sM4a1LQjBG1l+qw6rs7+ro/v37w8PDeZ9ndquCgoLmzZvn5+fv379fXsvYjtjZOWF5efm8efMArFy5khPIKnl5ecn7fkdHRxuNRtHt1IydhXDLljd1Ol1QUNA0ebMIxv4wffr0oKCgtLS0rVvfEt1LzdjT4Wh2Ntq3L/T3f3XRomf69QsT3Q5TnWPHvlyzpiw1deCPPzr4+oruptrsaSZctAhXr9arX38TJ5DdUb9+YfXqDb561WHxYtGt1ITdzITx8WjfHk5OuHDh5kMkjP1dWhqCg1FRgTNn0KGD6G6qxz5mQiLMmQNJQmQkJ5BVpVkzzJ4NScKcObCT+cVOZsLduzFmDHx8oNOhXj3R3TB1Ky5GQACysrB7N0aNEt1NNdjBTGgwYNEiAFi7lhPI7s3TE/I7w/PmoaREdDfVYAchXLcOGRl46im8+KLoVpidmDgRHTogMxMbN4pupRrUfjiamYmAABgM+PZbdO8uuhtmP06fRrducHVFcjIef1x0N1VS+0x46RI8PDByJCeQ1UyXLhg5Ep6eSE0V3cq9qHEm/PJL+PvjyScB4OJF3LiBxx6Dj4/otpi9yc3Fb7+hpAQ9egCAwYBTpxCmvnvMapwJ587FqFE31wj77DOcOMEJZLXh44MTJ9CvHy5cAAC9HnPniu7pTtQYQgBPPIG37OwBQKZS4eGYPv3m33R1UniNmejo6Li4OGdn57t9w6OP9s7MfLuKEeTLWcuXY9AgiFv+k90/OnbE+fN4910MGAAA+/bdYz589NGBmZmX7vbV8vLy4cOHv/766wp2qGQIExMT33jjDY1GI939z45G0zotrapBiooAwNsbCxYgJgYtWyrYIHtAbdiArl3RqRMAFBWh6n+BGs1vaXf/DgcHhzfeeGPy5MnBwcFKtadkCJcvX05ErVu3llc7vyMHB9eqDwwaNcLmzQAwaRLeew83biA0VMEe2YOoUSNER2PZMgAYNgzdulX1zQ4OhyXprm8kRkREnD9/fsWKFZ988oli/Sn1iv7Jkyc1Go2bm1tGRoaFQ4WE3NyKKD6enJxo40YF2mMPpo0badMmIiKTidq1o5AQSwfMzMx0d3cH8M0331jc3U3KXJiRJCkyMpKIFi5c+Nhjj1k4WkQEHnoIANq0wZYtCAmxmydxmaoQISQE8orqjo54+21ERFg6ZpMmTebPnw8gMjJSqcWLlZkJ33rrLQBNmzYtKVF4d9u0NBo6lFauVHZU9kBYuZKGDqW0NIWHNRgMTzzxBICdO3cqMqACISwsLPT19QXwySefWD7abU6dIo2GHnqILD7IZQ+WzExydyeATpxQfvA9e/YAaNiwYUFBgeWjKRDCqKgoAN26dZMkyfLR/m7ECAJozBhrjM3uW6NHE0DPP2+t8Xv06AEgOjra8qEsDWFKSoqzs7ODg8OPP/5oeTd39Ntv5OZGGg19952VKrD7zfff3zyAunzZWiXi4+MdHR3r1Klz8eJFC4eyNIT9+/cHMHXqVAvHqdr//R8B1LYtmc1WrcPuB2YzdexIAC1dat1CL7/8MoABAwZYOI5FITx27BiAunXrZmVlWdhH1UpL6bHHCKD33rNqHXY/2LWLAGrShG7csG6h3Nzc+vXrAzh8+LAl49Q+hOXl5QEBAQBee+01Szqopg8+IIAaNRK55TpTv6IieuQRAujDD21RbtOmTQD8/f2N8r7KtVL7EL722mty+bKysloPUn2SRKGhBNCCBTaoxuzV/PkEUJcuZJ2rhLernIpef/31Wg9SyxBWTsSHDh2qde2aOnuWHByoU6evUlOVvvXD7gupqWmdOn3l4EBnz9qu6MGDBy08KatlCOVT0rCwsNr9eK3NnbsFQHh4uI3rMrsQHh4OYO7cLTaua+HlydqE8Ny5c46Ojk5OTgkJCbWrWmvZ2dnyBstHjx61cWmmcsePHwfg4eFx7do1G5dOTk6uU6dOrW/U1SaEPXv2BBAVFVWLn7XcmjVrAAQFBVVUVAhpgKmQyWRq1aoVgLVr1wppIDIyEkBoaGgtHlmpcQjlNzi8vU3EnzgAAAUsSURBVL3z8/Nr+rOKMBqNzZs3B7Bt2zYhDTAV2rp1KwA/Pz+DwSCkgYKCgoYNGwL49NNPa/qzNQth5aOrb731Vk0rKeg///kPAC8vr7y8PIFtMJXQ6/XyZpX79u0T2MaOHTtq9xpDzUL46quvAggODhZ+KNivXz8As2bNEtsGU4NXXnkFKtgr22QyhYSEAFi1alWNfrAGIczMzPTw8ICirzPWWmJiopOTk5OT0/nz50X3wkRKSkqqU6eOo6OjGv4l1O7V9hqEcMKECQAiIiJq3ptVzJgxA0Dbtm1FN8JEatu2LYAZM2aIbuSmiIgIABMmTKj+j9QghKmpqSNGjEhPT69xX9Yhr2Sj0WiuXr0quhcmxtWrVzUaDYC4uDjRvdyUnp4+YsSI1NTU6v+IGlfgrqYBAwYcOXKkZcuWF+S1XdkDqVWrVgkJCQMGDDh06JDoXmrJXkP41VdfhYWFeXp66nQ6XzvanpwpLTc3V6vVFhYWHjly5NlnnxXdTm2odAXuqplMJvl1/mXLlnECH3A+Pj5LliwBEB0dXVFRIbqd2rDLEG7bti0hIaFZs2bytWn2gJs9e7ZWq01OTt6+fbvoXmrD/g5H9Xq9VqvNz88/cODAoEGDRLfDVOHAgQNDhgzx8vLS6XTyjXs7Yn8z4eLFi/Pz8/v27csJZJUGDx787LPPFhQULF26VHQvNWZnM2FiYmKbNm0AxMfHt+R9KtgtkpOTQ0JCJEn6+eefW8sr/toJO5sJo6KiTCbTzJkzOYHsNi1atJg+fbrZbJZfaLAj9jQT7t27d/jw4d7e3jqd7uGHHxbdDlOdgoICrVabl5e3d+/eYfazsZ7dzIRGo3HBggUAVq1axQlkd+Tl5bVixQoAMTExZWVlotupLrsJ4aZNm1JTU4ODg1966SXRvTD1mjp1auvWrS9fvqzsPp5WZR+Hozk5OVqttqio6NixY2FhYaLbYar2zTff9O7d28PD49KlS40bNxbdzr3Zx0w4b968oqKiYcOGcQLZPfXq1eu55567cePGokWLRPdSLXYwE/70008dO3aU15WSF7ZgrGrp6enBwcFGo/H06dOd5G2yVUztMyERzZkzR5KkmJgYTiCrJj8/P3khMnnvWtHt3IPaZ8LY2NgJEyY0atRIp9PJix0yVh03btwICAi4du1abGzsuHHjRLdTFVXPhKWlpfID8hs2bOAEshrx8PCQV8dcuHDhjRs3RLdTFVWHcM2aNVeuXGnXrt3YsWNF98Lsz/jx4zt27Hj16tX169eL7qUq6j0cvXz5clBQkNFo/O6770JDQ0W3w+zSmTNnunbt6uzsnJCQ4O/vL7qdO1PvTDh37tyysrKxY8dyAlmtde7cecyYMUajceHChaJ7uSuVhpCI2rdv7+vru3btWtG9MPu2bt06X1/fdu3aqfagT72HowCMRqOLi4voLpjdU/k/JFWHkLEHgUoPRxl7cHAIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgTjEDImGIeQMcE4hIwJxiFkTDAOIWOCcQgZE4xDyJhgHELGBOMQMiYYh5AxwTiEjAnGIWRMMA4hY4JxCBkTjEPImGAcQsYE4xAyJhiHkDHBOISMCcYhZEwwDiFjgnEIGROMQ8iYYBxCxgT7f3juASwqFsxBAAABcXpUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHicjZG9TsMwEMfPl9ZJm35R0qStG9SRtS9ADDMjI4MlFk+o6sIIYmHlERgrAU8Awu7EzMDKK9AHYMBtmtjiS1g63c9//313lt+f7t/ArI4JhHztmBibuCAUhMnEyzOiv9bL7ddja5MrGxLKd1dQ8fPsFbnUS+O3Cv9oRMo6lK/reOQH4Q/45XIIBAgCeoYBq1ClQH3wg3FQk1iri3ooMWyMG01otqDVhnYHOlvQ7kJ3G8JIRD2JvVjEicSkL/oDiYOhGDKJbCRGqcQ0EGkkWCwOPNOOBmkU1mu0F7NRGtGkPxiyOJkR8zyw/1FZXB2d6ny71MmEbVg7PNfWo/XHw02pH7JrlfPUYa7vjid7G7+yzJXjySzrzPFwy1NuPXOHNbezLR2u7Ns559yZmduZeXY2e8ycvrzQW/ySF/rzy22pn5+8Fqwsa+V4lHNXOTVV0Sv+BPYicjbEGQznAAAB/npUWHRNT0wgcmRraXQgMjAyNS4wMy4zAAB4nI1VW47bMAz89yl0gQgaknp9bpJFsVisA7Rp79D/3h8VndqiAcOVHQ1keUw9OMNMTq/v98/ff9x20X2anAsnv1qr+8UhhOnLacdd3799zO72fLuuI7fHz/n5w7UeU/um3Xvu2/PxtY7A3dyleIotYnAX9pm4huqCD8vVvyVlZh9fwxfyQlIyDpjsZndJ6/AZUzRmHJk9KrPHjD4QVckHzLSPCQ+KhfmAmZXZ5vw/s+iOeBv2yEwhHhCrhsR6SCdEBA0ZRiYHGnWMqTkaml1TNLIfaIaGjgiaoaFjR2qTD8kDmqEhyaE05pCMUXfrPBN8c5Ibkhypi7YMwUsmkqOt0y5B5HMGlaP9ENuI4kMOjMNFio0YPafKsRwRo42YfEqFazoiLgYaYuad2s8mL7uYZ/vZO+jkiLTQmZgnp/4+33c171UFr4/53qug3tRLXXtw3OsZWpNetNBa7JVJ36ZeftBa7jUGrZVeSNBa7eVCWoOtCqIAGPOLAsiYHAuwcTMWEGNbLBCNPbFAMjbEAtnYDQsUY6sXpxr7QIGsTUTXQzB2EAUio3tRIDYCFwUSo2RRoGgkq49NkUabokDZaFAUqBitiQJVoylRYKsdUdgojNdA3wTTvzDbklVGVjT6vP7ttv70Fxg2b4JoiOWpAAAAw3pUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nF2PSw7EIAxDrzLLVioRcYBQzZJ9L8G+J+jhh04/IrBAetjCdinbVMpcylZ53+u0ledhrqhV6nnazfgck8uEuDghhay8fJ1SQ1BAyNow9RAHbxMjeWCNr8jEiFkaN5vlxROrwJ9mbikdeusd0Jr7f4aMoULf3c4aRg+7+ln/KkxBgXA1Aaky8i0F8uoFlxRJ0irplhKllMOz7iVjdPYTZwKcCZ+PH2RJYKnU2jhoAAAAAElFTkSuQmCC</base64_image>", "role": "assistant" } ]
Functional_Group_Identification
COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1
1,196,382
{"ester": 1, "ether": 1, "halogen": 2, "phenyl": 1}
414.289
4.8482
[ { "content": "What is the functional group identification for the compound represented by 'COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1'?", "role": "user" }, { "content": "{\"ester\": 1, \"ether\": 1, \"halogen\": 2, \"phenyl\": 1}", "role": "assistant" } ]
Molecular_Weight_Calculation
CC(O)CN1CCN(CCOC(c2ccccc2)c2ccc(Cl)cc2)CC1
90,825
388.94
388.939
3.4444
[ { "content": "Determine the molecular weight (in g/mol) of the chemical with structure 'CC(O)CN1CCN(CCOC(c2ccccc2)c2ccc(Cl)cc2)CC1'.", "role": "user" }, { "content": "388.94", "role": "assistant" } ]
Molecular_Weight_Calculation
CON=C1CC2C(CCC3(C)C(OC(C)=O)CCC23)c2ccc(OC(C)=O)cc21
632,127
399.49
399.487
4.2077
[ { "content": "What is the molar mass of the substance with SMILES 'CON=C1CC2C(CCC3(C)C(OC(C)=O)CCC23)c2ccc(OC(C)=O)cc21'?", "role": "user" }, { "content": "399.49", "role": "assistant" } ]
Drug_Likeness_Assessment
CC(C)c1ccc(NC2=C(Sc3ccccc3)C(=O)N(c3ccccc3Cl)C2=O)cc1
1,676,636
{"molecular_weight": 448.98, "logp": 6.45, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 4, "rotatable_bonds": 6, "topological_polar_surface_area": 49.41, "lipinski_violations": ["LogP>5"], "violation_count": 1, "drug_like": true, "assessment": "Drug-like"}
448.975
6.4526
[ { "content": "Provide information about Drug_Likeness_Assessment for the molecule with SMILES 'CC(C)c1ccc(NC2=C(Sc3ccccc3)C(=O)N(c3ccccc3Cl)C2=O)cc1'.", "role": "user" }, { "content": "{\"molecular_weight\": 448.98, \"logp\": 6.45, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 4, \"rotatable_bonds\": 6, \"topological_polar_surface_area\": 49.41, \"lipinski_violations\": [\"LogP>5\"], \"violation_count\": 1, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Bioactivity_Prediction
COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1
1,196,382
{"predicted_classes": ["enzyme_inhibitor"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 1, "enzyme_inhibitor": 3, "ion_channel_modulator": 0}, "bioactivity_likelihood": "High", "drug_like_properties": {"molecular_weight": 414.29, "logp": 4.85, "hbd": 1, "hba": 5}, "structural_complexity": "Medium"}
414.289
4.8482
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"enzyme_inhibitor\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 1, \"enzyme_inhibitor\": 3, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"High\", \"drug_like_properties\": {\"molecular_weight\": 414.29, \"logp\": 4.85, \"hbd\": 1, \"hba\": 5}, \"structural_complexity\": \"Medium\"}", "role": "assistant" } ]
Solubility_Prediction
Cc1cc(C)cc(Oc2c(C(F)(F)F)oc3cc(OCC(=O)Nc4cccc5ccccc45)ccc3c2=O)c1
1,681,320
{"log_s": -7.73, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 533.5020000000002, "logp": 7.39, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 5}}
533.502
7.39164
[ { "content": "Determine the solubility prediction of the chemical structure 'Cc1cc(C)cc(Oc2c(C(F)(F)F)oc3cc(OCC(=O)Nc4cccc5ccccc45)ccc3c2=O)c1'.", "role": "user" }, { "content": "{\"log_s\": -7.73, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 533.5020000000002, \"logp\": 7.39, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 5}}", "role": "assistant" } ]
Reactivity_Prediction
OOC(O)c1ccccc1
286,896
{"charges": {"O": [{"atom_idx": 0, "charge": -0.249}, {"atom_idx": 1, "charge": -0.202}, {"atom_idx": 3, "charge": -0.362}], "C": [{"atom_idx": 2, "charge": 0.214}, {"atom_idx": 5, "charge": -0.054}, {"atom_idx": 6, "charge": -0.062}, {"atom_idx": 7, "charge": -0.062}, {"atom_idx": 8, "charge": -0.062}, {"atom_idx": 9, "charge": -0.054}]}, "dipole": 1.4, "steric_hindrance": 2.0}
140.138
1.1671
[ { "content": "Determine the reactivity prediction of the chemical structure 'OOC(O)c1ccccc1'.", "role": "user" }, { "content": "{\"charges\": {\"O\": [{\"atom_idx\": 0, \"charge\": -0.249}, {\"atom_idx\": 1, \"charge\": -0.202}, {\"atom_idx\": 3, \"charge\": -0.362}], \"C\": [{\"atom_idx\": 2, \"charge\": 0.214}, {\"atom_idx\": 5, \"charge\": -0.054}, {\"atom_idx\": 6, \"charge\": -0.062}, {\"atom_idx\": 7, \"charge\": -0.062}, {\"atom_idx\": 8, \"charge\": -0.062}, {\"atom_idx\": 9, \"charge\": -0.054}]}, \"dipole\": 1.4, \"steric_hindrance\": 2.0}", "role": "assistant" } ]
IUPAC_Name_Generation
O=C(O)CN(CC(=O)O)CC(=O)Nc1ccc(Br)cc1
450,142
2-[[2-(4-bromoanilino)-2-oxoethyl]-(carboxymethyl)amino]acetic acid
345.149
0.8588
[ { "content": "Provide the systematic IUPAC name for the compound 'O=C(O)CN(CC(=O)O)CC(=O)Nc1ccc(Br)cc1'.", "role": "user" }, { "content": "2-[[2-(4-bromoanilino)-2-oxoethyl]-(carboxymethyl)amino]acetic acid", "role": "assistant" } ]
Hydrogen_Bond_Properties
CN1CCN(C2=Cc3ccc(Cl)cc3Nc3cc(Cl)ccc32)CC1
551,166
{"donors": 1, "acceptors": 3}
360.288
4.7959
[ { "content": "How many hydrogen bond donors and acceptors are in the molecule with SMILES 'CN1CCN(C2=Cc3ccc(Cl)cc3Nc3cc(Cl)ccc32)CC1'?", "role": "user" }, { "content": "{\"donors\": 1, \"acceptors\": 3}", "role": "assistant" } ]
IUPAC_Name_Generation
Cc1ccc(CN(Cc2ccc(F)cc2)C(=O)CN(C(=O)c2cccc(Cl)c2)C2CC2)o1
1,058,352
3-chloro-N-cyclopropyl-N-[2-[(4-fluorophenyl)methyl-[(5-methylfuran-2-yl)methyl]amino]-2-oxoethyl]benzamide
454.929
5.21412
[ { "content": "Give the IUPAC-compliant name for the molecule 'Cc1ccc(CN(Cc2ccc(F)cc2)C(=O)CN(C(=O)c2cccc(Cl)c2)C2CC2)o1'.", "role": "user" }, { "content": "3-chloro-N-cyclopropyl-N-[2-[(4-fluorophenyl)methyl-[(5-methylfuran-2-yl)methyl]amino]-2-oxoethyl]benzamide", "role": "assistant" } ]
GHS_Hazard_Statement_Identification
Cc1ccc(C(O)=C2C(=O)C(=O)N(c3nc(C)c(C)s3)C2c2ccc(F)cc2)cc1
1,547,476
["H225", "H301", "H350", "H410"]
422.481
4.83376
[ { "content": "What are the GHS H-codes for the molecule with SMILES 'Cc1ccc(C(O)=C2C(=O)C(=O)N(c3nc(C)c(C)s3)C2c2ccc(F)cc2)cc1'?", "role": "user" }, { "content": "[\"H225\", \"H301\", \"H350\", \"H410\"]", "role": "assistant" } ]