Sentiment-Analysis / README.md
syedkhalid076's picture
Update README.md
0227f47 verified
---
datasets:
- sentiment-analysis-dataset
language:
- en
task_categories:
- text-classification
task_ids:
- sentiment-classification
tags:
- sentiment-analysis
- text-classification
- balanced-dataset
- oversampling
- csv
pretty_name: Sentiment Analysis Dataset (Imbalanced)
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_examples: 83989
- name: validation
num_examples: 10499
- name: test
num_examples: 10499
format: csv
---
# Sentiment Analysis Dataset
## Overview
This dataset is designed for sentiment analysis tasks, providing labeled examples across three sentiment categories:
- **0**: Negative
- **1**: Neutral
- **2**: Positive
It is suitable for training, validating, and testing text classification models in tasks such as social media sentiment analysis, customer feedback evaluation, and opinion mining.
---
## Dataset Details
### Key Features
- **Type**: CSV
- **Language**: English
- **Labels**:
- `0`: Negative
- `1`: Neutral
- `2`: Positive
- **Pre-processing**:
- Duplicates removed
- Null values removed
- Cleaned for consistency
### Dataset Split
| Split | Rows |
|--------------|--------|
| **Train** | 83,989 |
| **Validation** | 10,499 |
| **Test** | 10,499 |
### Format
Each row in the dataset consists of the following columns:
- `text`: The input text data (e.g., sentences, comments, or tweets).
- `label`: The corresponding sentiment label (`0`, `1`, or `2`).
---
## Usage
### Installation
Download the dataset from the [Hugging Face Hub](https://huggingface.co/datasets/your-dataset-path) or your preferred storage location.
### Loading the Dataset
#### Using Pandas
```python
import pandas as pd
# Load the train dataset
train_df = pd.read_csv("path_to_train.csv")
print(train_df.head())
# Columns: text, label
```
#### Using Hugging Face's `datasets` Library
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-dataset-path")
# Access splits
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
# Example: Printing a sample
print(train_data[0])
```
---
## Example Usage
Here’s an example of using the dataset to fine-tune a sentiment analysis model with the [Hugging Face Transformers](https://huggingface.co/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# Load dataset
dataset = load_dataset("your-dataset-path")
# Load model and tokenizer
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
# Tokenize dataset
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Prepare training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
load_best_model_at_end=True,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
)
# Train model
trainer.train()
```
---
## Applications
This dataset can be used for:
1. **Social Media Sentiment Analysis**: Understand the sentiment of posts or tweets.
2. **Customer Feedback Analysis**: Evaluate reviews or feedback.
3. **Product Sentiment Trends**: Monitor public sentiment about products or services.
---
## License
This dataset is released under the **[Insert Your Chosen License Here]**. Ensure proper attribution if used in academic or commercial projects.
---
## Citation
If you use this dataset, please cite it as follows:
```
@dataset{your_name_2024,
title = {Sentiment Analysis Dataset},
author = {Syed Khalid Hussain},
year = {2024},
url = {https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis}
}
```
---
## Acknowledgments
This dataset was curated and processed by **Syed Khalid Hussain**. The author takes care to ensure high-quality data, enabling better model performance and reproducibility.
---
**Author**: Syed Khalid Hussain