Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
datasets: | |
- sentiment-analysis-dataset | |
language: | |
- en | |
task_categories: | |
- text-classification | |
task_ids: | |
- sentiment-classification | |
tags: | |
- sentiment-analysis | |
- text-classification | |
- balanced-dataset | |
- oversampling | |
- csv | |
pretty_name: Sentiment Analysis Dataset (Imbalanced) | |
dataset_info: | |
features: | |
- name: text | |
dtype: string | |
- name: label | |
dtype: int64 | |
splits: | |
- name: train | |
num_examples: 83989 | |
- name: validation | |
num_examples: 10499 | |
- name: test | |
num_examples: 10499 | |
format: csv | |
# Sentiment Analysis Dataset | |
## Overview | |
This dataset is designed for sentiment analysis tasks, providing labeled examples across three sentiment categories: | |
- **0**: Negative | |
- **1**: Neutral | |
- **2**: Positive | |
It is suitable for training, validating, and testing text classification models in tasks such as social media sentiment analysis, customer feedback evaluation, and opinion mining. | |
--- | |
## Dataset Details | |
### Key Features | |
- **Type**: CSV | |
- **Language**: English | |
- **Labels**: | |
- `0`: Negative | |
- `1`: Neutral | |
- `2`: Positive | |
- **Pre-processing**: | |
- Duplicates removed | |
- Null values removed | |
- Cleaned for consistency | |
### Dataset Split | |
| Split | Rows | | |
|--------------|--------| | |
| **Train** | 83,989 | | |
| **Validation** | 10,499 | | |
| **Test** | 10,499 | | |
### Format | |
Each row in the dataset consists of the following columns: | |
- `text`: The input text data (e.g., sentences, comments, or tweets). | |
- `label`: The corresponding sentiment label (`0`, `1`, or `2`). | |
--- | |
## Usage | |
### Installation | |
Download the dataset from the [Hugging Face Hub](https://huggingface.co/datasets/your-dataset-path) or your preferred storage location. | |
### Loading the Dataset | |
#### Using Pandas | |
```python | |
import pandas as pd | |
# Load the train dataset | |
train_df = pd.read_csv("path_to_train.csv") | |
print(train_df.head()) | |
# Columns: text, label | |
``` | |
#### Using Hugging Face's `datasets` Library | |
```python | |
from datasets import load_dataset | |
# Load the dataset | |
dataset = load_dataset("your-dataset-path") | |
# Access splits | |
train_data = dataset["train"] | |
validation_data = dataset["validation"] | |
test_data = dataset["test"] | |
# Example: Printing a sample | |
print(train_data[0]) | |
``` | |
--- | |
## Example Usage | |
Here’s an example of using the dataset to fine-tune a sentiment analysis model with the [Hugging Face Transformers](https://huggingface.co/transformers) library: | |
```python | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments | |
from datasets import load_dataset | |
# Load dataset | |
dataset = load_dataset("your-dataset-path") | |
# Load model and tokenizer | |
model_name = "bert-base-uncased" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) | |
# Tokenize dataset | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], padding="max_length", truncation=True) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Prepare training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
save_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=16, | |
num_train_epochs=3, | |
weight_decay=0.01, | |
load_best_model_at_end=True, | |
) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"], | |
eval_dataset=tokenized_datasets["validation"], | |
) | |
# Train model | |
trainer.train() | |
``` | |
--- | |
## Applications | |
This dataset can be used for: | |
1. **Social Media Sentiment Analysis**: Understand the sentiment of posts or tweets. | |
2. **Customer Feedback Analysis**: Evaluate reviews or feedback. | |
3. **Product Sentiment Trends**: Monitor public sentiment about products or services. | |
--- | |
## License | |
This dataset is released under the **[Insert Your Chosen License Here]**. Ensure proper attribution if used in academic or commercial projects. | |
--- | |
## Citation | |
If you use this dataset, please cite it as follows: | |
``` | |
@dataset{your_name_2024, | |
title = {Sentiment Analysis Dataset}, | |
author = {Syed Khalid Hussain}, | |
year = {2024}, | |
url = {https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis} | |
} | |
``` | |
--- | |
## Acknowledgments | |
This dataset was curated and processed by **Syed Khalid Hussain**. The author takes care to ensure high-quality data, enabling better model performance and reproducibility. | |
--- | |
**Author**: Syed Khalid Hussain |