Alperitoo's picture
End of training
6238ff0 verified
metadata
library_name: peft
language:
  - tr
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - asr
  - whisper
  - lora
  - Turkish
  - tr
  - generated_from_trainer
datasets:
  - dcl-ai-team/Cagri-kayitlar-relabeled-06s-200ms-padded
metrics:
  - wer
model-index:
  - name: v3-turbo-low-lora-8805-qkvo
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Cagri-kayitlar-relabeled-06s-200ms-padded
          type: dcl-ai-team/Cagri-kayitlar-relabeled-06s-200ms-padded
        metrics:
          - type: wer
            value: 28.762686244871517
            name: Wer

v3-turbo-low-lora-8805-qkvo

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Cagri-kayitlar-relabeled-06s-200ms-padded dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3629
  • Wer: 28.7627

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1764 1.0482 500 0.4268 32.1961
0.3681 2.0964 1000 0.3905 31.4835
0.3222 3.1447 1500 0.3774 30.5981
0.3158 4.1929 2000 0.3698 29.2377
0.2983 5.2411 2500 0.3670 28.9786
0.283 6.2893 3000 0.3649 28.8059
0.2714 7.3375 3500 0.3628 28.4172
0.263 8.3857 4000 0.3629 28.5468
0.2656 9.4340 4500 0.3629 28.7627
0.2607 10.4822 5000 0.3629 28.7627

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0