drepic's picture
Update README.md
e05c9e5 verified
metadata
license: apache-2.0
language:
  - ja
metrics:
  - cer
  - wer
base_model:
  - openai/whisper-medium
tags:
  - ctranslate2
  - faster-whisper
  - whisper
model-index:
  - name: whisper-medium-jp-ct2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_17_0 (ja)
          type: mozilla-foundation/common_voice_17_0
          config: ja
          split: test
          args:
            language: ja
        metrics:
          - name: CER
            type: cer
            value: 0.18572446886192148

This repository contains the CTranslate2 export of the fine-tuned model.

• Base Transformers model: drepic/whisper-medium-jp
• Use with faster-whisper:

from faster_whisper import WhisperModel
model = WhisperModel("drepic/whisper-medium-jp-ct2", device="cuda", compute_type="float16")

OTHER FINETUNES

whisper-medium-jp

This model is a fine-tuned version of openai/whisper-medium on an Japanese youtube based dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4828
  • Wer: 0.2254
  • Cer: 0.2254

Model description

Better suited for transcribing japanese youtube content.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.5341 1.0 7155 0.5321 0.2416 0.2416
0.5023 2.0 14310 0.5143 0.2369 0.2369
0.499 3.0 21465 0.5063 0.2337 0.2337
0.4773 4.0 28620 0.5010 0.2310 0.2310
0.4775 5.0 35775 0.4944 0.2289 0.2289
0.4709 6.0 42930 0.4886 0.2288 0.2288
0.4907 7.0 50085 0.4870 0.2271 0.2271
0.4855 8.0 57240 0.4868 0.2261 0.2261
0.4487 9.0 64395 0.4828 0.2254 0.2254

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0