filippo-baglini's picture
Training finished
f206959 verified
metadata
library_name: transformers
base_model: dmis-lab/biobert-base-cased-v1.1
tags:
  - generated_from_trainer
datasets:
  - ncbi_disease
metrics:
  - f1
model-index:
  - name: biobert_finetuned_ncbi_disease
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ncbi_disease
          type: ncbi_disease
          config: ncbi_disease
          split: validation
          args: ncbi_disease
        metrics:
          - name: F1
            type: f1
            value: 0.8376383763837638

biobert_finetuned_ncbi_disease

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the ncbi_disease dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0892
  • F1: 0.8376

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1
0.9562 1.0 170 0.5053 0.0
0.3057 2.0 340 0.1515 0.4819
0.14 3.0 510 0.0960 0.6639
0.0865 4.0 680 0.0761 0.7515
0.0575 5.0 850 0.0725 0.7722
0.0418 6.0 1020 0.0730 0.7808
0.0297 7.0 1190 0.0741 0.8132
0.0211 8.0 1360 0.0745 0.8211
0.014 9.0 1530 0.0881 0.8285
0.0111 10.0 1700 0.0892 0.8376

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1