filippo-baglini's picture
Training finished
f206959 verified
---
library_name: transformers
base_model: dmis-lab/biobert-base-cased-v1.1
tags:
- generated_from_trainer
datasets:
- ncbi_disease
metrics:
- f1
model-index:
- name: biobert_finetuned_ncbi_disease
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ncbi_disease
type: ncbi_disease
config: ncbi_disease
split: validation
args: ncbi_disease
metrics:
- name: F1
type: f1
value: 0.8376383763837638
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobert_finetuned_ncbi_disease
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the ncbi_disease dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0892
- F1: 0.8376
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.9562 | 1.0 | 170 | 0.5053 | 0.0 |
| 0.3057 | 2.0 | 340 | 0.1515 | 0.4819 |
| 0.14 | 3.0 | 510 | 0.0960 | 0.6639 |
| 0.0865 | 4.0 | 680 | 0.0761 | 0.7515 |
| 0.0575 | 5.0 | 850 | 0.0725 | 0.7722 |
| 0.0418 | 6.0 | 1020 | 0.0730 | 0.7808 |
| 0.0297 | 7.0 | 1190 | 0.0741 | 0.8132 |
| 0.0211 | 8.0 | 1360 | 0.0745 | 0.8211 |
| 0.014 | 9.0 | 1530 | 0.0881 | 0.8285 |
| 0.0111 | 10.0 | 1700 | 0.0892 | 0.8376 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1