File size: 4,251 Bytes
cc745d8
 
f0f9f57
3ba0f7f
f0f9f57
 
3ba0f7f
f0f9f57
 
3ba0f7f
 
 
 
 
 
 
 
 
 
 
f0f9f57
 
 
a52ff6f
cc745d8
 
a52ff6f
cc745d8
 
 
caedcc7
 
cc745d8
 
a52ff6f
cc745d8
f0f9f57
 
 
 
a52ff6f
f0f9f57
cc745d8
 
 
 
 
f0f9f57
cc745d8
f0f9f57
 
 
 
cc745d8
f0f9f57
cc745d8
f0f9f57
cc745d8
f0f9f57
 
 
 
 
 
cc745d8
f0f9f57
cc745d8
f0f9f57
 
 
cc745d8
f0f9f57
a52ff6f
cc745d8
f0f9f57
 
cc745d8
f0f9f57
 
a52ff6f
f0f9f57
 
cc745d8
 
 
 
 
f0f9f57
 
 
a52ff6f
cc745d8
 
 
f0f9f57
cc745d8
f0f9f57
 
 
 
 
cc745d8
f0f9f57
cc745d8
f0f9f57
 
 
 
 
 
 
 
cc745d8
f0f9f57
cc745d8
f0f9f57
cc745d8
f0f9f57
 
cc745d8
f0f9f57
cc745d8
f0f9f57
 
a52ff6f
cc745d8
f0f9f57
cc745d8
a52ff6f
f0f9f57
 
cc745d8
f0f9f57
cc745d8
 
f0f9f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
library_name: transformers
tags:
- tengeop
- SAR
- EO
- regression
- sentinel-1
- ocean
- wave-height
- earth-observation
- remote-sensing
- satellite-imagery
- synthetic-aperture-radar
- foundation-model
- linear-probing
- oceanography
- marine-forecasting
- open-source
- ocean-wind
license: apache-2.0
pipeline_tag: image-classification
base_model:
- galeio-research/OceanSAR-1
---

# Model Card for OceanSAR-1-TenGeoP

## Model Details

<img src="OceanSAR-1-logo.png" width=400>

### Model Description

OceanSAR-1-TenGeoP is a linear probing head for classifying ocean geophysical phenomena, built on top of the OceanSAR-1 foundation model. It leverages the powerful features extracted by OceanSAR-1 to accurately identify 10 different geophysical phenomena in Synthetic Aperture Radar (SAR) imagery.

- **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
- **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
- **Model type:** Linear Classification Head on Vision Foundation Model
- **License:** Apache License 2.0
- **Base model:** OceanSAR-1 (ResNet50/ViT variants)
- **Training data:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena

## Uses

### Direct Use

This model is designed for automated classification of geophysical phenomena in SAR imagery over ocean surfaces. It can be used for:

- Rapid identification of ocean features in SAR data
- Monitoring of maritime environments
- Automated analysis of large SAR datasets
- Ocean science and research applications

### Performance Results

The model achieves state-of-the-art performance on TenGeoP classification, with performance varying by backbone architecture:

| Backbone | TenGeoP Accuracy (%) |
|----------|---------------------|
| ResNet50 | 75.5 |
| ViT-S/16 | 78.6 |
| ViT-S/8  | 82.1 |
| ViT-B/8  | 83.6 |

## How to Use

```python
import torch
from transformers import AutoModelForImageClassification

# Load the foundation model and classification head
oceansar = AutoModelForImageClassification.from_pretrained("galeio-research/OceanSAR-1-tengeop")

# Prepare your SAR image (should be single-channel VV polarization)
dummy_image = torch.randn(1, 1, 256, 256)  # (B, C, H, W)

# Extract features and classify geophysical phenomena
with torch.no_grad():
    outputs = oceansar(dummy_image)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
```

## Training Details

### Training Data

- **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
- **Labels:** 10 classes of ocean geophysical phenomena
- **Size:** Balanced dataset across all classes
- **Preprocessing:** Same as base OceanSAR-1 model

## Evaluation

### Metrics

TenGeoP classification performance is evaluated using accuracy (%), achieving:
- 75.5% accuracy with ResNet50 backbone
- 78.6% accuracy with ViT-S/16 backbone
- 82.1% accuracy with ViT-S/8 backbone
- 83.6% accuracy with ViT-B/8 backbone

### Comparison to Other Backbones

The model outperforms existing approaches:
- CROMA (ViT-B/8): 65.4% accuracy
- MoCo (ResNet50): 60.9% accuracy
- DeCUR (ResNet50): 58.3% accuracy
- DOFA (ViT-B/16): 58.4% accuracy
- DOFA (ViT-L/16): 63.4% accuracy
- SoftCon (ViT-S/14): 73.2% accuracy
- SoftCon (ViT-B/14): 74.8% accuracy

## Technical Specifications

### Hardware Requirements

- Same as base model
- Minimal additional computational cost for inference

### Dependencies

- PyTorch >= 1.8.0
- Transformers >= 4.30.0
- Base OceanSAR-1 model

### Input Specifications

- Same as base OceanSAR-1 model
- Single channel (VV polarization) SAR images
- 256x256 pixel resolution

## Citation

**BibTeX:**
```bibtex
@article{kerdreux2025efficientselfsupervisedlearningearth,
  title={Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation},
  author={Kerdreux, Thomas and Tuel, Alexandre and Febvre, Quentin and Mouche, Alexis and Chapron, Bertrand},
  journal={arXiv preprint arXiv:2504.06962},
  year={2025},
  eprint={2504.06962},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2504.06962},
}
```

## Acknowledgements

This work was granted access to the HPC resources of IDRIS and TGCC under the allocation 2025-[A0171015666] made by GENCI.