File size: 4,251 Bytes
cc745d8 f0f9f57 3ba0f7f f0f9f57 3ba0f7f f0f9f57 3ba0f7f f0f9f57 a52ff6f cc745d8 a52ff6f cc745d8 caedcc7 cc745d8 a52ff6f cc745d8 f0f9f57 a52ff6f f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 a52ff6f cc745d8 f0f9f57 cc745d8 f0f9f57 a52ff6f f0f9f57 cc745d8 f0f9f57 a52ff6f cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 a52ff6f cc745d8 f0f9f57 cc745d8 a52ff6f f0f9f57 cc745d8 f0f9f57 cc745d8 f0f9f57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
library_name: transformers
tags:
- tengeop
- SAR
- EO
- regression
- sentinel-1
- ocean
- wave-height
- earth-observation
- remote-sensing
- satellite-imagery
- synthetic-aperture-radar
- foundation-model
- linear-probing
- oceanography
- marine-forecasting
- open-source
- ocean-wind
license: apache-2.0
pipeline_tag: image-classification
base_model:
- galeio-research/OceanSAR-1
---
# Model Card for OceanSAR-1-TenGeoP
## Model Details
<img src="OceanSAR-1-logo.png" width=400>
### Model Description
OceanSAR-1-TenGeoP is a linear probing head for classifying ocean geophysical phenomena, built on top of the OceanSAR-1 foundation model. It leverages the powerful features extracted by OceanSAR-1 to accurately identify 10 different geophysical phenomena in Synthetic Aperture Radar (SAR) imagery.
- **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
- **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
- **Model type:** Linear Classification Head on Vision Foundation Model
- **License:** Apache License 2.0
- **Base model:** OceanSAR-1 (ResNet50/ViT variants)
- **Training data:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
## Uses
### Direct Use
This model is designed for automated classification of geophysical phenomena in SAR imagery over ocean surfaces. It can be used for:
- Rapid identification of ocean features in SAR data
- Monitoring of maritime environments
- Automated analysis of large SAR datasets
- Ocean science and research applications
### Performance Results
The model achieves state-of-the-art performance on TenGeoP classification, with performance varying by backbone architecture:
| Backbone | TenGeoP Accuracy (%) |
|----------|---------------------|
| ResNet50 | 75.5 |
| ViT-S/16 | 78.6 |
| ViT-S/8 | 82.1 |
| ViT-B/8 | 83.6 |
## How to Use
```python
import torch
from transformers import AutoModelForImageClassification
# Load the foundation model and classification head
oceansar = AutoModelForImageClassification.from_pretrained("galeio-research/OceanSAR-1-tengeop")
# Prepare your SAR image (should be single-channel VV polarization)
dummy_image = torch.randn(1, 1, 256, 256) # (B, C, H, W)
# Extract features and classify geophysical phenomena
with torch.no_grad():
outputs = oceansar(dummy_image)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
```
## Training Details
### Training Data
- **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
- **Labels:** 10 classes of ocean geophysical phenomena
- **Size:** Balanced dataset across all classes
- **Preprocessing:** Same as base OceanSAR-1 model
## Evaluation
### Metrics
TenGeoP classification performance is evaluated using accuracy (%), achieving:
- 75.5% accuracy with ResNet50 backbone
- 78.6% accuracy with ViT-S/16 backbone
- 82.1% accuracy with ViT-S/8 backbone
- 83.6% accuracy with ViT-B/8 backbone
### Comparison to Other Backbones
The model outperforms existing approaches:
- CROMA (ViT-B/8): 65.4% accuracy
- MoCo (ResNet50): 60.9% accuracy
- DeCUR (ResNet50): 58.3% accuracy
- DOFA (ViT-B/16): 58.4% accuracy
- DOFA (ViT-L/16): 63.4% accuracy
- SoftCon (ViT-S/14): 73.2% accuracy
- SoftCon (ViT-B/14): 74.8% accuracy
## Technical Specifications
### Hardware Requirements
- Same as base model
- Minimal additional computational cost for inference
### Dependencies
- PyTorch >= 1.8.0
- Transformers >= 4.30.0
- Base OceanSAR-1 model
### Input Specifications
- Same as base OceanSAR-1 model
- Single channel (VV polarization) SAR images
- 256x256 pixel resolution
## Citation
**BibTeX:**
```bibtex
@article{kerdreux2025efficientselfsupervisedlearningearth,
title={Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation},
author={Kerdreux, Thomas and Tuel, Alexandre and Febvre, Quentin and Mouche, Alexis and Chapron, Bertrand},
journal={arXiv preprint arXiv:2504.06962},
year={2025},
eprint={2504.06962},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.06962},
}
```
## Acknowledgements
This work was granted access to the HPC resources of IDRIS and TGCC under the allocation 2025-[A0171015666] made by GENCI. |