|  | --- | 
					
						
						|  | base_model: lerobot/smolvla_base | 
					
						
						|  | datasets: godnpeter/aopoli-lv-libero_combined_no_noops_lerobot_v21 | 
					
						
						|  | library_name: lerobot | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | model_name: smolvla | 
					
						
						|  | pipeline_tag: robotics | 
					
						
						|  | tags: | 
					
						
						|  | - smolvla | 
					
						
						|  | - robotics | 
					
						
						|  | - lerobot | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Model Card for smolvla | 
					
						
						|  |  | 
					
						
						|  | <!-- Provide a quick summary of what the model is/does. --> | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). | 
					
						
						|  | See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). | 
					
						
						|  |  | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | ## How to Get Started with the Model | 
					
						
						|  |  | 
					
						
						|  | For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). | 
					
						
						|  | Below is the short version on how to train and run inference/eval: | 
					
						
						|  |  | 
					
						
						|  | ### Train from scratch | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | lerobot-train \ | 
					
						
						|  | --dataset.repo_id=${HF_USER}/<dataset> \ | 
					
						
						|  | --policy.type=act \ | 
					
						
						|  | --output_dir=outputs/train/<desired_policy_repo_id> \ | 
					
						
						|  | --job_name=lerobot_training \ | 
					
						
						|  | --policy.device=cuda \ | 
					
						
						|  | --policy.repo_id=${HF_USER}/<desired_policy_repo_id> | 
					
						
						|  | --wandb.enable=true | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ | 
					
						
						|  |  | 
					
						
						|  | ### Evaluate the policy/run inference | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | lerobot-record \ | 
					
						
						|  | --robot.type=so100_follower \ | 
					
						
						|  | --dataset.repo_id=<hf_user>/eval_<dataset> \ | 
					
						
						|  | --policy.path=<hf_user>/<desired_policy_repo_id> \ | 
					
						
						|  | --episodes=10 | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. | 
					
						
						|  |  | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | ## Model Details | 
					
						
						|  |  | 
					
						
						|  | - **License:** apache-2.0 |