jpacifico's picture
Adding Evaluation Results (#1)
1abd43d verified
metadata
language:
  - fr
  - en
license: apache-2.0
library_name: transformers
tags:
  - lucie
  - lucie-boosted
  - llama
datasets:
  - jpacifico/french-orca-dpo-pairs-revised
model-index:
  - name: Lucie-Boosted-7B-Instruct
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 25.66
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 10.26
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0.76
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 2.24
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.4
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 7
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
          name: Open LLM Leaderboard

Lucie-Boosted-7B-Instruct

Post-training optimization of the foundation model OpenLLM-France/Lucie-7B-Instruct
DPO fine-tuning using the jpacifico/french-orca-dpo-pairs-revised RLHF dataset.
Training in French also enhances the model's overall performance.
Lucie-7B has a context size of 32K tokens

OpenLLM Leaderboard

coming soon

MT-Bench

coming soon

Usage

You can run this model using this Colab notebook

You can also run Lucie-Boosted using the following code:

import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])

Limitations

The Lucie-Boosted model is a quick demonstration that the Lucie foundation model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.

  • Developed by: Jonathan Pacifico, 2025
  • Model type: LLM
  • Language(s) (NLP): French, English
  • License: Apache-2.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 8.22
IFEval (0-Shot) 25.66
BBH (3-Shot) 10.26
MATH Lvl 5 (4-Shot) 0.76
GPQA (0-shot) 2.24
MuSR (0-shot) 3.40
MMLU-PRO (5-shot) 7.00