|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- chn_senti_corp |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: kt_punc |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: chn_senti_corp |
|
type: chn_senti_corp |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7078651685393258 |
|
- name: Recall |
|
type: recall |
|
value: 0.7313662547821116 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7194238380517767 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.957316742326961 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# kt_punc |
|
|
|
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the chn_senti_corp dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1703 |
|
- Precision: 0.7079 |
|
- Recall: 0.7314 |
|
- F1: 0.7194 |
|
- Accuracy: 0.9573 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1661 | 1.0 | 600 | 0.1351 | 0.6566 | 0.6833 | 0.6697 | 0.9498 | |
|
| 0.1246 | 2.0 | 1200 | 0.1330 | 0.6854 | 0.6665 | 0.6758 | 0.9521 | |
|
| 0.1121 | 3.0 | 1800 | 0.1303 | 0.6885 | 0.6994 | 0.6939 | 0.9537 | |
|
| 0.1008 | 4.0 | 2400 | 0.1359 | 0.6836 | 0.7248 | 0.7036 | 0.9543 | |
|
| 0.0809 | 5.0 | 3000 | 0.1404 | 0.7035 | 0.7082 | 0.7059 | 0.9559 | |
|
| 0.0696 | 6.0 | 3600 | 0.1449 | 0.6986 | 0.7224 | 0.7103 | 0.9560 | |
|
| 0.0628 | 7.0 | 4200 | 0.1563 | 0.7063 | 0.7214 | 0.7138 | 0.9567 | |
|
| 0.0561 | 8.0 | 4800 | 0.1618 | 0.7024 | 0.7333 | 0.7175 | 0.9568 | |
|
| 0.0525 | 9.0 | 5400 | 0.1669 | 0.7083 | 0.7335 | 0.7207 | 0.9574 | |
|
| 0.0453 | 10.0 | 6000 | 0.1703 | 0.7079 | 0.7314 | 0.7194 | 0.9573 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.1 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.1 |
|
- Tokenizers 0.12.1 |
|
|