ModernBERT Embed base fitness health Matryoshka
This is a sentence-transformers model finetuned from kokojake/modernbert-embed-base-fitness-health-matryoshka-8-epochs on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("kokojake/modernbert-embed-base-fitness-health-matryoshka-8-epochs-25k")
sentences = [
'Low back pain is \nthe leading cause of \ndisability globally across \nall ages and in both \nsexes, representing 8% \nof all YLDs in 2020 (10).',
'prevalence of low back pain by age and sex',
'BMI calculation in postpartum studies',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.54 |
cosine_accuracy@3 |
0.5435 |
cosine_accuracy@5 |
0.5573 |
cosine_accuracy@10 |
0.6335 |
cosine_precision@1 |
0.54 |
cosine_precision@3 |
0.5399 |
cosine_precision@5 |
0.5347 |
cosine_precision@10 |
0.4633 |
cosine_recall@1 |
0.0375 |
cosine_recall@3 |
0.1121 |
cosine_recall@5 |
0.1837 |
cosine_recall@10 |
0.307 |
cosine_ndcg@10 |
0.4894 |
cosine_mrr@10 |
0.5542 |
cosine_map@100 |
0.3353 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5262 |
cosine_accuracy@3 |
0.5292 |
cosine_accuracy@5 |
0.5418 |
cosine_accuracy@10 |
0.6248 |
cosine_precision@1 |
0.5262 |
cosine_precision@3 |
0.5259 |
cosine_precision@5 |
0.52 |
cosine_precision@10 |
0.4515 |
cosine_recall@1 |
0.0366 |
cosine_recall@3 |
0.1097 |
cosine_recall@5 |
0.1793 |
cosine_recall@10 |
0.3001 |
cosine_ndcg@10 |
0.4769 |
cosine_mrr@10 |
0.5405 |
cosine_map@100 |
0.33 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5249 |
cosine_accuracy@3 |
0.5283 |
cosine_accuracy@5 |
0.5383 |
cosine_accuracy@10 |
0.6248 |
cosine_precision@1 |
0.5249 |
cosine_precision@3 |
0.5247 |
cosine_precision@5 |
0.5186 |
cosine_precision@10 |
0.452 |
cosine_recall@1 |
0.0365 |
cosine_recall@3 |
0.1093 |
cosine_recall@5 |
0.1786 |
cosine_recall@10 |
0.3003 |
cosine_ndcg@10 |
0.4768 |
cosine_mrr@10 |
0.5393 |
cosine_map@100 |
0.3291 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4963 |
cosine_accuracy@3 |
0.4989 |
cosine_accuracy@5 |
0.5054 |
cosine_accuracy@10 |
0.579 |
cosine_precision@1 |
0.4963 |
cosine_precision@3 |
0.4959 |
cosine_precision@5 |
0.4886 |
cosine_precision@10 |
0.4225 |
cosine_recall@1 |
0.0344 |
cosine_recall@3 |
0.103 |
cosine_recall@5 |
0.1678 |
cosine_recall@10 |
0.2805 |
cosine_ndcg@10 |
0.4474 |
cosine_mrr@10 |
0.5081 |
cosine_map@100 |
0.3124 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4215 |
cosine_accuracy@3 |
0.4236 |
cosine_accuracy@5 |
0.4349 |
cosine_accuracy@10 |
0.5145 |
cosine_precision@1 |
0.4215 |
cosine_precision@3 |
0.4209 |
cosine_precision@5 |
0.4162 |
cosine_precision@10 |
0.3711 |
cosine_recall@1 |
0.0291 |
cosine_recall@3 |
0.0871 |
cosine_recall@5 |
0.1422 |
cosine_recall@10 |
0.2458 |
cosine_ndcg@10 |
0.3886 |
cosine_mrr@10 |
0.4353 |
cosine_map@100 |
0.2758 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 20,792 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 11 tokens
- mean: 229.18 tokens
- max: 412 tokens
|
- min: 5 tokens
- mean: 11.11 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
A total of 5,697 postmenopausal women were included in the meta-analysis. The mean age of participants was ranged from 51 to ~89 yrs., and the mean BMI was ranged from 21 to 34 kg.m2. Sample size of individual studies was ranged from 14 to 320 participants. To increase the generalizability of our meta-analysis results, postmenopausal women regardless of their health status, comprised a wide range of health (absence of disease) and chronic disease characteristics (metabolic diseases, cardiovascular diseases, cancer, and osteoporosis) were included. Full details of participant characteristics are summarized in Supplementary Table 1. Intervention characteristics Exercise training characteristics are summarized in Supplementary Table 1. All included studies compared the effects of exercise training versus a control group using random allocation. Intervention durations of included studies was ranged from 4 weeks to 18 months, while frequency of exercise sessions was ranged from 1 to 7 per w... |
effects of exercise training on postmenopausal women with chronic diseases |
inform care planning, including the need for a referral or follow-up. Assessment of nutritional status Nutritional status describes the state of the body in relation to the consumption and utilization of nutrients, and can be classified as well-nourished or malnourished (under- or over-nourished). The assessment of nutritional status uses anthropometric measures to assess body composition (measurement of weight, height, body mass index, body circumferences and skinfold thickness), laboratory tests to assess biochemical parameters, clinical assessment of comorbid conditions, and interviewing to assess dietary practices. Assessment aims to ascertain the impact of the nutritional status on health and functioning, and inform care planning, including the need for referral or follow-up. Assessment of oedema Oedema (e.g. peripheral or lymphoedema) describes an abnormal fluid volume in the circulatory system or in the interstitial space. The assessment of oedema (including initial scr... |
nutritional status impact on health and functioning |
required • Patient sitting or lying (if under anaesthesia) • Tubular bandage (if needed) Ø 10 cm • Padding bandage 1 roll • POP 3 rolls of 15 cm • Elastic bandage 2 rolls of 15 cm, 1 roll of 10 cm • Adhesive tape 2.5 cm • Triangular bandage Edge A. Senet/ICRC Table 3.7: Long arm slabs at a glance Method of application Refer to the general procedure for slabs (p. 45) for the first steps. Mark the proximal and distal landmarks. P. Ley/ICRC SLABS 77 Prepare six to eight layers of POP bandages of the required length. Place the wet slab on the limb and mould it. Secure the slab with elastic bandages. P. Ley/ICRC P. Ley/ICRC P. Ley/ICRC 78 PLASTER OF PARIS AND OTHER FRACTURE IMMOBILIZATION METHODS When the POP slab is bent around the elbow, pay special attention to avoid wrinkles, which can cause pain. Make sure the ulnar nerve is not compressed by asking the patient if the inside of their elbow is comfortable. After bandaging, maintain the elbow and wrist in the proper posi... |
long arm slab application procedure |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
0.2462 |
10 |
13.2182 |
- |
- |
- |
- |
- |
0.4923 |
20 |
12.361 |
- |
- |
- |
- |
- |
0.7385 |
30 |
10.9108 |
- |
- |
- |
- |
- |
0.9846 |
40 |
10.1159 |
0.4810 |
0.4740 |
0.4704 |
0.4424 |
0.3798 |
1.2462 |
50 |
9.145 |
- |
- |
- |
- |
- |
1.4923 |
60 |
7.7837 |
- |
- |
- |
- |
- |
1.7385 |
70 |
7.6298 |
- |
- |
- |
- |
- |
1.9846 |
80 |
7.9102 |
0.4889 |
0.4786 |
0.4790 |
0.4453 |
0.3867 |
2.2462 |
90 |
7.5969 |
- |
- |
- |
- |
- |
2.4923 |
100 |
6.8696 |
- |
- |
- |
- |
- |
2.7385 |
110 |
7.2096 |
- |
- |
- |
- |
- |
2.9846 |
120 |
7.2675 |
0.4894 |
0.4769 |
0.4768 |
0.4474 |
0.3886 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}