metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:20792
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: kokojake/modernbert-embed-base-fitness-health-matryoshka-8-epochs-25k
widget:
- source_sentence: >-
caregiver, or family member after receiving training in the appropriate
technique.
Vestibular training
Vestibular functions are specific sensory functions of the inner ear
related to position, balance and movement. Vestibular therapy includes
exercises and techniques
to address symptoms of vestibular dysfunction, such as dizziness, visual
or gaze
disturbances and balance disorders. The exercises and techniques are
practised
sentences:
- STZ-induced diabetes model for DCM research
- vestibular training for family caregivers
- duration and frequency of acupuncture sessions for back pain
- source_sentence: >-
Favours Control
FIGURE 8
Forest plot of the effects of exercise training versus control on visceral
fat. Data are reported as SMD (95% confidence limits). SMD, standardized
mean difference.
sentences:
- chronic symptoms and quality of life after traumatic brain injury
- supported education intervention in school and university settings
- exercise vs control on visceral fat SMD
- source_sentence: >-
tions that do not appear to have a relationship with exercise.
Consider the following case: a 30-year-old female at ABC fit-
ness center would like guidance on setting up an aerobic exercise program
of moderate intensity. She has a heart rate monitor
and is interested in using heart rate to gauge her intensity. Hav-
ing completed the health screening questionnaire and other nec- essary
documents, she meets with an exercise professional to de-
termine what heart rate range would be appropriate. Based on
the ACSM Guidelines, 64% to 76% of heart rate max is suggested for
moderate intensity (1). An estimated maximal heart rate is
calculated based on her age (for simplicity in this example,
220 −age is used; for more information on estimation of maxi- mal heart
rate see “Estimating Maximal Heart Rate” (23)). This re-
sults in an estimated maximal heart rate of 190 (calculated as 220–30 =
190) and a suggested range of 122–144 beats per minute
TABLE: Select Physiologic Responses and Examples of
Medication Class Effects (12)
Areas of Potential
Impact
Medication Class
sentences:
- IBS and mental health disorders research
- ACSM Guidelines for moderate intensity aerobic exercise heart rate range
- >-
ginger extract and omega-3 fatty acids supplementation for diabetic
cardiomyopathy
- source_sentence: |-
● Overall assessment and training in
abilities of self-care, managing the
changing environment, returning to
roles in the family and community.
© Handicap International
sentences:
- difference between exogenous and endogenous ketones
- Bisphosphonates for heterotopic ossification
- self-care and community reintegration training
- source_sentence: "Kasperczyk A, Kasperczyk S, Vendemiale G. An open-label, single-center \npilot study to test the effects of an amino acid mixture in older patients admitted to internal medicine wards. Nutrition. 2020;69:110588.\n\t38.\t Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. \n2009;12(1):86–90. 39.\t MacKenzie-Shalders KL, King NA, Byrne NM, Slater GJ. Increasing Protein \nDistribution Has No Effect on Changes in Lean Mass During a Rugby Preseason. Int J Sport Nutr Exerc Metab. 2016;26(1):1–7. 40.\t Zanini B, Simonetto A, Zubani M, Castellano M, Gilioli G: The Effects of \nCow-Milk Protein Supplementation in Elderly Population: Systematic Review and Narrative Synthesis. Nutrients. 2020, 12(9)."
sentences:
- effect of sitting time on obesity and diabetes
- dietary protein recommendations for sarcopenia prevention
- alternative treatments for chronic lower back pain in older adults
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base fitness health Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5577672003461704
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5633924707918649
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5768065772392903
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6572912159238425
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5577672003461704
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5587768642723208
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.5546516659454782
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.488749459108611
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07671206122845729
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22954893017730485
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.37230530075054374
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.607515754908188
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5889008778621518
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5732042405884898
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6480888290704816
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5508437905668542
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5573344872349633
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5703158805711813
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6512332323669408
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5508437905668542
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.552141929900476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.548334054521852
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4848117697966249
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07565244485079678
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22624747899614794
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3669823430843505
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6015669568225397
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5828389278226814
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5666920799763724
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6430351850654122
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5499783643444396
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5543054954565123
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5707485936823886
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6538295110341843
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5499783643444396
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5505553151593826
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.5471224578104718
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4856771960190394
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07515575798786531
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22481099241159822
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.36529494112791383
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6017858069285081
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5820878299131311
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5658907021628786
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6428043114206009
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.5196884465599307
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5222847252271744
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5348334054521852
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6205106014712246
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5196884465599307
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5196884465599307
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.5151882302033751
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.45867589787970575
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07059233617000817
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21080992904878668
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.34166460612804184
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.564437701406452
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5472355538402842
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5342628079646684
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6136096665025225
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.45261791432280396
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4552141929900476
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.475118996105582
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5551709216789269
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.45261791432280396
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4527621520265397
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.45114668974469935
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4054954565123324
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06187471238315029
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.18494725021120523
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3014507909034088
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5026563777104669
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4836333347992592
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.46809753903003604
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5520511526692713
name: Cosine Map@100
ModernBERT Embed base fitness health Matryoshka
This is a sentence-transformers model finetuned from kokojake/modernbert-embed-base-fitness-health-matryoshka-8-epochs-25k on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("kokojake/modernbert-embed-base-fitness-health-matryoshka-epoch-15")
sentences = [
'Kasperczyk A, Kasperczyk S, Vendemiale G. An open-label, single-center \npilot study to test the effects of an amino acid mixture in older patients admitted to internal medicine wards. Nutrition. 2020;69:110588.\n\t38.\t Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. \n2009;12(1):86–90. 39.\t MacKenzie-Shalders KL, King NA, Byrne NM, Slater GJ. Increasing Protein \nDistribution Has No Effect on Changes in Lean Mass During a Rugby Preseason. Int J Sport Nutr Exerc Metab. 2016;26(1):1–7. 40.\t Zanini B, Simonetto A, Zubani M, Castellano M, Gilioli G: The Effects of \nCow-Milk Protein Supplementation in Elderly Population: Systematic Review and Narrative Synthesis. Nutrients. 2020, 12(9).',
'dietary protein recommendations for sarcopenia prevention',
'effect of sitting time on obesity and diabetes',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5578 |
cosine_accuracy@3 |
0.5634 |
cosine_accuracy@5 |
0.5768 |
cosine_accuracy@10 |
0.6573 |
cosine_precision@1 |
0.5578 |
cosine_precision@3 |
0.5588 |
cosine_precision@5 |
0.5547 |
cosine_precision@10 |
0.4887 |
cosine_recall@1 |
0.0767 |
cosine_recall@3 |
0.2295 |
cosine_recall@5 |
0.3723 |
cosine_recall@10 |
0.6075 |
cosine_ndcg@10 |
0.5889 |
cosine_mrr@10 |
0.5732 |
cosine_map@100 |
0.6481 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5508 |
cosine_accuracy@3 |
0.5573 |
cosine_accuracy@5 |
0.5703 |
cosine_accuracy@10 |
0.6512 |
cosine_precision@1 |
0.5508 |
cosine_precision@3 |
0.5521 |
cosine_precision@5 |
0.5483 |
cosine_precision@10 |
0.4848 |
cosine_recall@1 |
0.0757 |
cosine_recall@3 |
0.2262 |
cosine_recall@5 |
0.367 |
cosine_recall@10 |
0.6016 |
cosine_ndcg@10 |
0.5828 |
cosine_mrr@10 |
0.5667 |
cosine_map@100 |
0.643 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.55 |
cosine_accuracy@3 |
0.5543 |
cosine_accuracy@5 |
0.5707 |
cosine_accuracy@10 |
0.6538 |
cosine_precision@1 |
0.55 |
cosine_precision@3 |
0.5506 |
cosine_precision@5 |
0.5471 |
cosine_precision@10 |
0.4857 |
cosine_recall@1 |
0.0752 |
cosine_recall@3 |
0.2248 |
cosine_recall@5 |
0.3653 |
cosine_recall@10 |
0.6018 |
cosine_ndcg@10 |
0.5821 |
cosine_mrr@10 |
0.5659 |
cosine_map@100 |
0.6428 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5197 |
cosine_accuracy@3 |
0.5223 |
cosine_accuracy@5 |
0.5348 |
cosine_accuracy@10 |
0.6205 |
cosine_precision@1 |
0.5197 |
cosine_precision@3 |
0.5197 |
cosine_precision@5 |
0.5152 |
cosine_precision@10 |
0.4587 |
cosine_recall@1 |
0.0706 |
cosine_recall@3 |
0.2108 |
cosine_recall@5 |
0.3417 |
cosine_recall@10 |
0.5644 |
cosine_ndcg@10 |
0.5472 |
cosine_mrr@10 |
0.5343 |
cosine_map@100 |
0.6136 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4526 |
cosine_accuracy@3 |
0.4552 |
cosine_accuracy@5 |
0.4751 |
cosine_accuracy@10 |
0.5552 |
cosine_precision@1 |
0.4526 |
cosine_precision@3 |
0.4528 |
cosine_precision@5 |
0.4511 |
cosine_precision@10 |
0.4055 |
cosine_recall@1 |
0.0619 |
cosine_recall@3 |
0.1849 |
cosine_recall@5 |
0.3015 |
cosine_recall@10 |
0.5027 |
cosine_ndcg@10 |
0.4836 |
cosine_mrr@10 |
0.4681 |
cosine_map@100 |
0.5521 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 20,792 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 4 tokens
- mean: 220.24 tokens
- max: 415 tokens
|
- min: 5 tokens
- mean: 11.15 tokens
- max: 41 tokens
|
- Samples:
positive |
anchor |
interpretations, if a common framework like the ICF is used”23, the unit recommends using the ICF for communications outside the association, particularly in research contexts. Health conditions (disorder or disease) Activities © WHO, International Classification of Functioning, Disability and Health, 2001 Participation Body Functions and Structures Environmental Factors Personal Factors |
ICF usage in research communications for health disorders |
Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R767–R779. [CrossRef] 39. Laurentino, G.C.; Ugrinowitsch, C.; Roschel, H.; Aoki, M.S.; Soares, A.G.; Neves, M.; Aihara, A.Y.; Fernandes |
Laurentino et al. research on integrative physiology |
Telling your client to “push through your heels” when performing a squat or “explode through your hips or push through your feet” when performing jumping and sprinting movements are examples of internal cues. You also may utilize external cues to enhance motor learning and performance in all populations. External cues—or external focus of attention—direct a client’s attention toward the effect the movement will have on the surrounding environment and the movement outcome, as it relates to the exercise being performed (Winkelman et al., 2017; |
effect of external focus of attention on motor learning |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
0.2462 |
10 |
7.2777 |
- |
- |
- |
- |
- |
0.4923 |
20 |
7.6341 |
- |
- |
- |
- |
- |
0.7385 |
30 |
7.1497 |
- |
- |
- |
- |
- |
0.9846 |
40 |
6.8322 |
0.5820 |
0.5741 |
0.5679 |
0.5308 |
0.4724 |
1.2462 |
50 |
6.779 |
- |
- |
- |
- |
- |
1.4923 |
60 |
5.5133 |
- |
- |
- |
- |
- |
1.7385 |
70 |
6.1867 |
- |
- |
- |
- |
- |
1.9846 |
80 |
6.0276 |
0.5829 |
0.5798 |
0.5769 |
0.5409 |
0.4897 |
2.2462 |
90 |
4.971 |
- |
- |
- |
- |
- |
2.4923 |
100 |
5.0184 |
- |
- |
- |
- |
- |
2.7385 |
110 |
5.1473 |
- |
- |
- |
- |
- |
2.9846 |
120 |
5.6456 |
0.5880 |
0.5830 |
0.5780 |
0.5472 |
0.4872 |
3.2462 |
130 |
5.0487 |
- |
- |
- |
- |
- |
3.4923 |
140 |
4.7154 |
- |
- |
- |
- |
- |
3.7385 |
150 |
5.1362 |
- |
- |
- |
- |
- |
3.9846 |
160 |
4.931 |
0.5889 |
0.5828 |
0.5821 |
0.5472 |
0.4836 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}