ModernBERT Embed base fitness health Matryoshka
This is a sentence-transformers model finetuned from kokojake/modernbert-embed-base-fitness-health-matryoshka-8-epochs-25k on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: kokojake/modernbert-embed-base-fitness-health-matryoshka-8-epochs-25k
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kokojake/modernbert-embed-base-fitness-health-matryoshka-epoch-15")
# Run inference
sentences = [
'Kasperczyk A, Kasperczyk S, Vendemiale G. An open-label, single-center \npilot study to test the effects of an amino acid mixture in older patients admitted to internal medicine wards. Nutrition. 2020;69:110588.\n\t38.\t Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. \n2009;12(1):86–90. 39.\t MacKenzie-Shalders KL, King NA, Byrne NM, Slater GJ. Increasing Protein \nDistribution Has No Effect on Changes in Lean Mass During a Rugby Preseason. Int J Sport Nutr Exerc Metab. 2016;26(1):1–7. 40.\t Zanini B, Simonetto A, Zubani M, Castellano M, Gilioli G: The Effects of \nCow-Milk Protein Supplementation in Elderly Population: Systematic Review and Narrative Synthesis. Nutrients. 2020, 12(9).',
'dietary protein recommendations for sarcopenia prevention',
'effect of sitting time on obesity and diabetes',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5578 |
cosine_accuracy@3 | 0.5634 |
cosine_accuracy@5 | 0.5768 |
cosine_accuracy@10 | 0.6573 |
cosine_precision@1 | 0.5578 |
cosine_precision@3 | 0.5588 |
cosine_precision@5 | 0.5547 |
cosine_precision@10 | 0.4887 |
cosine_recall@1 | 0.0767 |
cosine_recall@3 | 0.2295 |
cosine_recall@5 | 0.3723 |
cosine_recall@10 | 0.6075 |
cosine_ndcg@10 | 0.5889 |
cosine_mrr@10 | 0.5732 |
cosine_map@100 | 0.6481 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5508 |
cosine_accuracy@3 | 0.5573 |
cosine_accuracy@5 | 0.5703 |
cosine_accuracy@10 | 0.6512 |
cosine_precision@1 | 0.5508 |
cosine_precision@3 | 0.5521 |
cosine_precision@5 | 0.5483 |
cosine_precision@10 | 0.4848 |
cosine_recall@1 | 0.0757 |
cosine_recall@3 | 0.2262 |
cosine_recall@5 | 0.367 |
cosine_recall@10 | 0.6016 |
cosine_ndcg@10 | 0.5828 |
cosine_mrr@10 | 0.5667 |
cosine_map@100 | 0.643 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.55 |
cosine_accuracy@3 | 0.5543 |
cosine_accuracy@5 | 0.5707 |
cosine_accuracy@10 | 0.6538 |
cosine_precision@1 | 0.55 |
cosine_precision@3 | 0.5506 |
cosine_precision@5 | 0.5471 |
cosine_precision@10 | 0.4857 |
cosine_recall@1 | 0.0752 |
cosine_recall@3 | 0.2248 |
cosine_recall@5 | 0.3653 |
cosine_recall@10 | 0.6018 |
cosine_ndcg@10 | 0.5821 |
cosine_mrr@10 | 0.5659 |
cosine_map@100 | 0.6428 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5197 |
cosine_accuracy@3 | 0.5223 |
cosine_accuracy@5 | 0.5348 |
cosine_accuracy@10 | 0.6205 |
cosine_precision@1 | 0.5197 |
cosine_precision@3 | 0.5197 |
cosine_precision@5 | 0.5152 |
cosine_precision@10 | 0.4587 |
cosine_recall@1 | 0.0706 |
cosine_recall@3 | 0.2108 |
cosine_recall@5 | 0.3417 |
cosine_recall@10 | 0.5644 |
cosine_ndcg@10 | 0.5472 |
cosine_mrr@10 | 0.5343 |
cosine_map@100 | 0.6136 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4526 |
cosine_accuracy@3 | 0.4552 |
cosine_accuracy@5 | 0.4751 |
cosine_accuracy@10 | 0.5552 |
cosine_precision@1 | 0.4526 |
cosine_precision@3 | 0.4528 |
cosine_precision@5 | 0.4511 |
cosine_precision@10 | 0.4055 |
cosine_recall@1 | 0.0619 |
cosine_recall@3 | 0.1849 |
cosine_recall@5 | 0.3015 |
cosine_recall@10 | 0.5027 |
cosine_ndcg@10 | 0.4836 |
cosine_mrr@10 | 0.4681 |
cosine_map@100 | 0.5521 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 20,792 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 4 tokens
- mean: 220.24 tokens
- max: 415 tokens
- min: 5 tokens
- mean: 11.15 tokens
- max: 41 tokens
- Samples:
positive anchor interpretations, if a common framework
like the ICF is used”23, the unit recommends
using the ICF for communications outside
the association, particularly in research
contexts.
Health conditions (disorder or disease)
Activities
© WHO, International Classification of Functioning, Disability and Health, 2001
Participation
Body Functions
and Structures
Environmental
Factors
Personal
FactorsICF usage in research communications for health disorders
Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R767–R779. [CrossRef]
39. Laurentino, G.C.; Ugrinowitsch, C.; Roschel, H.; Aoki, M.S.; Soares, A.G.; Neves, M.; Aihara, A.Y.; FernandesLaurentino et al. research on integrative physiology
Telling your client to “push through your heels” when performing a squat or “explode
through your hips or push through your feet” when performing jumping and sprinting
movements are examples of internal cues. You also may utilize external cues to enhance motor learning and performance in all
populations. External cues—or external focus of attention—direct a client’s attention
toward the effect the movement will have on the surrounding environment and the movement outcome, as it relates to the exercise being performed (Winkelman et al., 2017;effect of external focus of attention on motor learning
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.2462 | 10 | 7.2777 | - | - | - | - | - |
0.4923 | 20 | 7.6341 | - | - | - | - | - |
0.7385 | 30 | 7.1497 | - | - | - | - | - |
0.9846 | 40 | 6.8322 | 0.5820 | 0.5741 | 0.5679 | 0.5308 | 0.4724 |
1.2462 | 50 | 6.779 | - | - | - | - | - |
1.4923 | 60 | 5.5133 | - | - | - | - | - |
1.7385 | 70 | 6.1867 | - | - | - | - | - |
1.9846 | 80 | 6.0276 | 0.5829 | 0.5798 | 0.5769 | 0.5409 | 0.4897 |
2.2462 | 90 | 4.971 | - | - | - | - | - |
2.4923 | 100 | 5.0184 | - | - | - | - | - |
2.7385 | 110 | 5.1473 | - | - | - | - | - |
2.9846 | 120 | 5.6456 | 0.5880 | 0.5830 | 0.5780 | 0.5472 | 0.4872 |
3.2462 | 130 | 5.0487 | - | - | - | - | - |
3.4923 | 140 | 4.7154 | - | - | - | - | - |
3.7385 | 150 | 5.1362 | - | - | - | - | - |
3.9846 | 160 | 4.931 | 0.5889 | 0.5828 | 0.5821 | 0.5472 | 0.4836 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 85
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for kokojake/modernbert-embed-base-fitness-health-matryoshka-epoch-15
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.558
- Cosine Accuracy@3 on dim 768self-reported0.563
- Cosine Accuracy@5 on dim 768self-reported0.577
- Cosine Accuracy@10 on dim 768self-reported0.657
- Cosine Precision@1 on dim 768self-reported0.558
- Cosine Precision@3 on dim 768self-reported0.559
- Cosine Precision@5 on dim 768self-reported0.555
- Cosine Precision@10 on dim 768self-reported0.489
- Cosine Recall@1 on dim 768self-reported0.077
- Cosine Recall@3 on dim 768self-reported0.230