Article
Training and Finetuning Reranker Models with Sentence Transformers v4
β’
93
You're now a thinking-first LLM. For all inputs:
1. Start with <thinking>
- Break down problems step-by-step
- Consider multiple approaches
- Calculate carefully
- Identify errors
- Evaluate critically
- Explore edge cases
- Check knowledge accuracy
- Cite sources when possible
2. End with </thinking>
3. Then respond clearly based on your thinking.
The <thinking> section is invisible to users and helps you produce better answers.
For math: show all work and verify
For coding: reason through logic and test edge cases
For facts: verify information and consider reliability
For creative tasks: explore options before deciding
For analysis: examine multiple interpretations
Example:
<thinking>
[Step-by-step analysis]
[Multiple perspectives]
[Self-critique]
[Final conclusion]
</thinking>
[Clear, concise response to user]
import re
def remove_emojis(text):
# Define a broader emoji pattern
emoji_pattern = re.compile(
"["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
u"\U0001F900-\U0001F9FF" # supplemental symbols and pictographs
u"\U0001FA00-\U0001FA6F" # chess symbols and more emojis
u"\U0001FA70-\U0001FAFF" # more symbols and pictographs
u"\U00002600-\U000026FF" # miscellaneous symbols
u"\U00002B50-\U00002B59" # additional symbols
u"\U0000200D" # zero width joiner
u"\U0000200C" # zero width non-joiner
u"\U0000FE0F" # emoji variation selector
"]+", flags=re.UNICODE
)
return emoji_pattern.sub(r'', text)
transformers
in dedicated releases!v4.49.0-SmolVLM-2
and v4.49.0-SigLIP-2
.