Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
SmolVLA: A vision-language-action model for affordable and efficient robotics
|
| 2 |
+
|
| 3 |
+
[Paper]()
|
| 4 |
+
|
| 5 |
+
Designed by Hugging Face.
|
| 6 |
+
|
| 7 |
+
This model has 450M parameters in total.
|
| 8 |
+
You can use inside the [LeRobot library](https://github.com/huggingface/lerobot).
|
| 9 |
+
|
| 10 |
+
Install smolvla extra dependencies:
|
| 11 |
+
```bash
|
| 12 |
+
pip install -e ".[smolvla]"
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
Example of finetuning the smolvla pretrained model (`smolvla_base`):
|
| 16 |
+
```bash
|
| 17 |
+
python lerobot/scripts/train.py \
|
| 18 |
+
--policy.path=lerobot/smolvla_base \
|
| 19 |
+
--dataset.repo_id=danaaubakirova/svla_so100_task1_v3 \
|
| 20 |
+
--batch_size=64 \
|
| 21 |
+
--steps=200000
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
Example of finetuning the smolvla neural network with pretrained VLM and action expert
|
| 25 |
+
intialized from scratch:
|
| 26 |
+
```bash
|
| 27 |
+
python lerobot/scripts/train.py \
|
| 28 |
+
--policy.type=smolvla \
|
| 29 |
+
--dataset.repo_id=danaaubakirova/svla_so100_task1_v3 \
|
| 30 |
+
--batch_size=64 \
|
| 31 |
+
--steps=200000
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
Example of using the smolvla pretrained model outside LeRobot training framework:
|
| 35 |
+
```python
|
| 36 |
+
policy = SmolVLAPolicy.from_pretrained("lerobot/smolvla_base")
|
| 37 |
+
```
|