masab321's picture
End of training
ca87a4f verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-bengali-colab-CV17.0-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: bn
          split: test
          args: bn
        metrics:
          - name: Wer
            type: wer
            value: 1.001531728665208

w2v-bert-2.0-bengali-colab-CV17.0-v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9399
  • Wer: 1.0015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.16 50 8.6700 1.3648
7.4868 0.32 100 6.2568 2.1074
7.4868 0.48 150 4.6350 1.0779
4.3743 0.64 200 3.6517 1.0015
4.3743 0.8 250 3.4099 1.0002
3.3984 0.96 300 3.3160 1.0004
3.3984 1.1184 350 3.2545 1.0004
3.2053 1.2784 400 3.2081 1.0004
3.2053 1.4384 450 3.1663 1.0007
3.1315 1.5984 500 3.1441 1.0004
3.1315 1.7584 550 3.1187 1.0004
3.071 1.9184 600 3.1005 1.0004
3.071 2.0768 650 3.0800 1.0009
3.0241 2.2368 700 3.0587 1.0007
3.0241 2.3968 750 3.0362 1.0007
2.9979 2.5568 800 3.0259 1.0007
2.9979 2.7168 850 3.0151 1.0009
2.9738 2.8768 900 3.0034 1.0009
2.9738 3.0352 950 2.9906 1.0007
2.9602 3.1952 1000 2.9799 1.0002
2.9602 3.3552 1050 2.9766 1.0007
2.9325 3.5152 1100 2.9698 1.0004
2.9325 3.6752 1150 2.9635 1.0004
2.8989 3.8352 1200 2.9588 1.0009
2.8989 3.9952 1250 2.9507 1.0007
2.9026 4.1536 1300 2.9501 1.0011
2.9026 4.3136 1350 2.9466 1.0007
2.8872 4.4736 1400 2.9435 1.0011
2.8872 4.6336 1450 2.9413 1.0009
2.9015 4.7936 1500 2.9405 1.0011
2.9015 4.9536 1550 2.9399 1.0015

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.1