masab321's picture
End of training
ca87a4f verified
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-bengali-colab-CV17.0-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: bn
split: test
args: bn
metrics:
- name: Wer
type: wer
value: 1.001531728665208
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-bengali-colab-CV17.0-v2
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9399
- Wer: 1.0015
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 0.16 | 50 | 8.6700 | 1.3648 |
| 7.4868 | 0.32 | 100 | 6.2568 | 2.1074 |
| 7.4868 | 0.48 | 150 | 4.6350 | 1.0779 |
| 4.3743 | 0.64 | 200 | 3.6517 | 1.0015 |
| 4.3743 | 0.8 | 250 | 3.4099 | 1.0002 |
| 3.3984 | 0.96 | 300 | 3.3160 | 1.0004 |
| 3.3984 | 1.1184 | 350 | 3.2545 | 1.0004 |
| 3.2053 | 1.2784 | 400 | 3.2081 | 1.0004 |
| 3.2053 | 1.4384 | 450 | 3.1663 | 1.0007 |
| 3.1315 | 1.5984 | 500 | 3.1441 | 1.0004 |
| 3.1315 | 1.7584 | 550 | 3.1187 | 1.0004 |
| 3.071 | 1.9184 | 600 | 3.1005 | 1.0004 |
| 3.071 | 2.0768 | 650 | 3.0800 | 1.0009 |
| 3.0241 | 2.2368 | 700 | 3.0587 | 1.0007 |
| 3.0241 | 2.3968 | 750 | 3.0362 | 1.0007 |
| 2.9979 | 2.5568 | 800 | 3.0259 | 1.0007 |
| 2.9979 | 2.7168 | 850 | 3.0151 | 1.0009 |
| 2.9738 | 2.8768 | 900 | 3.0034 | 1.0009 |
| 2.9738 | 3.0352 | 950 | 2.9906 | 1.0007 |
| 2.9602 | 3.1952 | 1000 | 2.9799 | 1.0002 |
| 2.9602 | 3.3552 | 1050 | 2.9766 | 1.0007 |
| 2.9325 | 3.5152 | 1100 | 2.9698 | 1.0004 |
| 2.9325 | 3.6752 | 1150 | 2.9635 | 1.0004 |
| 2.8989 | 3.8352 | 1200 | 2.9588 | 1.0009 |
| 2.8989 | 3.9952 | 1250 | 2.9507 | 1.0007 |
| 2.9026 | 4.1536 | 1300 | 2.9501 | 1.0011 |
| 2.9026 | 4.3136 | 1350 | 2.9466 | 1.0007 |
| 2.8872 | 4.4736 | 1400 | 2.9435 | 1.0011 |
| 2.8872 | 4.6336 | 1450 | 2.9413 | 1.0009 |
| 2.9015 | 4.7936 | 1500 | 2.9405 | 1.0011 |
| 2.9015 | 4.9536 | 1550 | 2.9399 | 1.0015 |
### Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1