|
--- |
|
base_model: google/t5-v1_1-xxl |
|
base_model_relation: quantized |
|
datasets: |
|
- mit-han-lab/svdquant-datasets |
|
language: |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
tags: |
|
- text-generation |
|
- AWQ |
|
- Quantization |
|
|
|
--- |
|
**This repository has been migrated to https://huggingface.co/nunchaku-tech/nunchaku-t5 and will be hidden in December 2025.** |
|
|
|
<p align="center" style="border-radius: 10px"> |
|
<img src="https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/nunchaku.svg" width="30%" alt="Nunchaku Logo"/> |
|
</p> |
|
|
|
# Model Card for nunchaku-t5 |
|
|
|
This repository contains Nunchaku-quantized versions of [T5-XXL](https://huggingface.co/google/t5-v1_1-xxl), used to encode text prompt to the embeddings. It is used to reduce the memory footprint of the model. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Developed by:** Nunchaku Team |
|
- **Model type:** text-generation |
|
- **License:** apache-2.0 |
|
- **Quantized from model:** [t5_v1_1_xxl](https://huggingface.co/google/t5-v1_1-xxl) |
|
|
|
### Model Files |
|
|
|
- [`awq-int4-flux.1-t5xxl.safetensors`](./awq-int4-flux.1-t5xxl.safetensors): AWQ quantized W4A16 T5-XXL model for FLUX.1. |
|
|
|
|
|
### Model Sources |
|
|
|
- **Inference Engine:** [nunchaku](https://github.com/nunchaku-tech/nunchaku) |
|
- **Quantization Library:** [deepcompressor](https://github.com/nunchaku-tech/deepcompressor) |
|
- **Paper:** [SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models](http://arxiv.org/abs/2411.05007) |
|
- **Demo:** [svdquant.mit.edu](https://svdquant.mit.edu) |
|
|
|
## Usage |
|
|
|
- Diffusers Usage: See [flux.1-dev-qencoder.py](https://github.com/nunchaku-tech/nunchaku/blob/main/examples/flux.1-dev-qencoder.py). Check our [tutorial](https://nunchaku.tech/docs/nunchaku/usage/qencoder.html) for more advanced usage. |
|
- ComfyUI Usage: See [nunchaku-flux.1-dev-qencoder.json](https://nunchaku.tech/docs/ComfyUI-nunchaku/workflows/t2i.html#nunchaku-flux-1-dev-qencoder-json). |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@inproceedings{ |
|
li2024svdquant, |
|
title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models}, |
|
author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song}, |
|
booktitle={The Thirteenth International Conference on Learning Representations}, |
|
year={2025} |
|
} |
|
@inproceedings{ |
|
lin2023awq, |
|
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, |
|
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Chen, Wei-Ming and Wang, Wei-Chen and Xiao, Guangxuan and Dang, Xingyu and Gan, Chuang and Han, Song}, |
|
booktitle={MLSys}, |
|
year={2024} |
|
} |
|
``` |