|
--- |
|
library_name: transformers |
|
base_model: openai/gpt-oss-20b |
|
language: [en, ja] |
|
pipeline_tag: text-generation |
|
tags: [] |
|
--- |
|
|
|
# thinker-mini-v1 |
|
|
|
**Overview** |
|
|
|
This is a test model. |
|
|
|
**Technical notes** |
|
|
|
- Base: `openai/gpt-oss-20b` (bf16) |
|
- Steering: rank-1 delta on Q/K/V across 24 layers (RMSNorm-aware) |
|
- Concept vector: `concept_vec_v15k.pt`, shape [24, 6, 2880], gain=0.5 |
|
- Checkpoint: single baked weights (no LoRA/adapters; knowledge ≈ base) |
|
- Data used: neutral_examples=86376, pairs_used=14394 |
|
- Source files: `narukijima/thinker` → `T_instruction_pairs_en.jsonl`, `T_instruction_pairs_ja.jsonl` |
|
- Inference: use base tokenizer & chat template |
|
|
|
**Quick inference** |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
M = "narukijima/thinker-mini-v1" |
|
tok = AutoTokenizer.from_pretrained(M, trust_remote_code=True) |
|
mdl = AutoModelForCausalLM.from_pretrained( |
|
M, torch_dtype=torch.bfloat16, device_map='auto', trust_remote_code=True |
|
) |
|
msgs = [{"role":"user","content":"test"}] |
|
p = tok.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True) |
|
out = mdl.generate(**tok(p, return_tensors='pt').to(mdl.device), |
|
max_new_tokens=64, do_sample=True, temperature=0.7) |
|
print(tok.decode(out[0], skip_special_tokens=True)) |
|
``` |
|
|