nezamisafa's picture
End of training
fe6b383 verified
metadata
library_name: transformers
language:
  - fa
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: 'whisper-large-v3-turbo-fa-c17-avs '
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: fa
          split: None
          args: 'config: fa, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 27.209121534076186

whisper-large-v3-turbo-fa-c17-avs

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2583
  • Wer: 27.2091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2293 0.4055 1000 0.4008 40.3172
0.167 0.8110 2000 0.3385 34.0503
0.0948 1.2165 3000 0.3067 31.7494
0.0669 1.6221 4000 0.2878 29.7909
0.0458 2.0276 5000 0.2583 27.2091

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1