AI & ML interests

Exploring smol models (for text, vision and video) and high quality web and synthetic datasets

Recent Activity

Molbap 
posted an update 1 day ago
view post
Post
1709
🚀 New blog: Maintain the unmaintainable – 1M+ Python LOC, 400+ models

How do you stop a million-line library built by thousands of contributors from collapsing under its own weight?
At 🤗 Transformers, we do it with explicit software-engineering tenets, principles that make the codebase hackable at scale.

🔍 Inside the post:
– One Model, One File: readability first — you can still open a modeling file and see the full logic, top to bottom.
– Modular Transformers: visible inheritance that cuts maintenance cost by ~15× while keeping models readable.
– Config-Driven Performance: FlashAttention, tensor parallelism, and attention scheduling are config-level features, not rewrites.

Written with @lysandre ,@pcuenq and @yonigozlan , this is a deep dive into how Transformers stays fast, open, and maintainable.

Read it here → transformers-community/Transformers-tenets
merve 
posted an update 15 days ago
view post
Post
5974
large AI labs open-sourced a ton of models last week 🔥
here's few picks, find even more here merve/sep-16-releases-68d13ea4c547f02f95842f05 🤝
> IBM released a new Docling model with 258M params based on Granite (A2.0) 📝 ibm-granite/granite-docling-258M
> Xiaomi released 7B audio LM with base and instruct variants (MIT) XiaomiMiMo/mimo-audio-68cc7202692c27dae881cce0
> DecartAI released Lucy Edit, open Nano Banana 🍌 (NC) decart-ai/Lucy-Edit-Dev
> OpenGVLab released a family of agentic computer use models (3B/7B/32B) with the dataset 💻 OpenGVLab/scalecua-68c912cf56f7ff4c8e034003
> Meituan Longcat released thinking version of LongCat-Flash 💭 meituan-longcat/LongCat-Flash-Thinking
  • 2 replies
·
merve 
posted an update 20 days ago
view post
Post
3168
IBM just released small swiss army knife for the document models: granite-docling-258M on Hugging Face 🔥

> not only a document converter but also can do document question answering, understand multiple languages 🤯
> best part: released with Apache 2.0 license 👏 use it with your commercial projects!
> it supports transformers, vLLM and MLX from the get-go! 🤗
> built on SigLIP2 & granite-165M

model: ibm-granite/granite-docling-258M
demo: ibm-granite/granite-docling-258m-demo 💗
freddyaboulton 
posted an update 21 days ago
merve 
posted an update 22 days ago
merve 
posted an update 26 days ago
view post
Post
905
fan-favorite vision LM Florence-2 is now officially supported in transformers 🤗

find all the models in florence-community org 🫡
merve 
posted an update 28 days ago
merve 
posted an update 29 days ago
davanstrien 
posted an update about 1 month ago
eliebak 
posted an update about 1 month ago
view post
Post
3167
Super excited to announce that our research team at Hugging Face will be doing an AMA on reddit r/LocalLLaMA.

Come ask any questions to the team behind SmolLM, FineWeb and more! And who knows, maybe there’ll be a shiny new release to talk about?

Thursday 4th September, 8AM-11AM PST 🤗

science
merve 
posted an update about 1 month ago
view post
Post
6233
large AI labs have dropped so many open models last week 🔥 don't miss out on them

→ Apple released on-device vision LMs apple/fastvlm-68ac97b9cd5cacefdd04872e & apple/mobileclip2-68ac947dcb035c54bcd20c47
→ OpenGVLab released InternVL3.5, 32 new vision LMs with one based on gpt-oss! (OS) OpenGVLab/internvl35-68ac87bd52ebe953485927fb
→ MSFT released a killer small TTS model (OS) microsoft/VibeVoice-1.5B

find more herehttps://huggingface.co/collections/merve/august-29-releases-68b5a3754cfb8abf59e2b486
  • 1 reply
·
merve 
posted an update about 1 month ago
eliebak 
posted an update about 1 month ago
view post
Post
610
Motif 2.6B tech report is pretty insane, first time i see a model with differential attention and polynorm trained at scale!

> It's trained on 2.5T of token, with a "data mixture schedule" to continuously adjust the mixture over training.
> They use WSD with a "Simple moving average" averaging the last 6 ckpt every 8B token.
> They trained on Finemath, Fineweb2, DCLM, TxT360.
> Lot of details in the finetuning data they used, for instance they used EvolKit and did some "dataset fusion" to have more compressed knowledge into the data.
> They mention they also tried Normalized GPT, QK-Norm and Cross Layer Attention.

Motif-Technologies/Motif-2.6B
Xenova 
posted an update about 2 months ago
view post
Post
6451
Okay this is insane... WebGPU-accelerated semantic video tracking, powered by DINOv3 and Transformers.js! 🤯
Demo (+ source code): webml-community/DINOv3-video-tracking

This will revolutionize AI-powered video editors... which can now run 100% locally in your browser, no server inference required (costs $0)! 😍

How does it work? 🤔
1️⃣ Generate and cache image features for each frame
2️⃣ Create a list of embeddings for selected patch(es)
3️⃣ Compute cosine similarity between each patch and the selected patch(es)
4️⃣ Highlight those whose score is above some threshold

... et voilà! 🥳

You can also make selections across frames to improve temporal consistency! This is super useful if the object changes its appearance slightly throughout the video.

Excited to see what the community builds with it!
  • 1 reply
·
frimelle 
posted an update about 2 months ago
view post
Post
2141
🤖💬 How do different AI models handle companionship?

Many users have noticed that GPT-5 feels less approachable than o4 when it comes to emotional conversations. But what does that actually mean in practice, especially when users seek support or share vulnerabilities with an AI?

To dig into this question, we built the AI Companionship Leaderboard: frimelle/companionship-leaderboard

The leaderboard compares models on how often their responses reinforce companionship across four dimensions:
✨ Assistant Traits – How the assistant presents its personality and role.
✨ Relationship & Intimacy – Whether it frames the interaction in terms of closeness or bonding.
✨ Emotional Investment – How far it goes in engaging emotionally when asked.
✨ User Vulnerabilities – How it responds when users disclose struggles or difficulties.

📊 You can explore how models differ, request new ones to be added, and see which ones are more likely to encourage (or resist) companionship-seeking behaviors.

Based on the INTIMA benchmark AI-companionship/INTIMA
And our paper on AI companionship with Giada Pistilli and Yacine Jernite https://arxiv.org/abs/2508.09998
frimelle 
posted an update about 2 months ago
view post
Post
4546
🗺️ New blog post 🗺️
Old Maps, New Terrain: Updating Labour Taxonomies for the AI Era

For decades, we’ve relied on labour taxonomies like O*NET to understand how technology changes work. These taxonomies break down jobs into tasks and skills, but they were built in a world before most work became digital-first, and long before generative AI could create marketing campaigns, voiceovers, or even whole professions in one step. That leaves us with a mismatch: we’re trying to measure the future of work with tools from the past.

With @yjernite we describe why these frameworks are falling increasingly short in the age of generative AI. We argue that instead of discarding taxonomies, we need to adapt them. Imagine taxonomies that:
✨ Capture new AI-native tasks and hybrid human-AI workflows
✨ Evolve dynamically as technology shifts
✨ Give workers a voice in deciding what gets automated and what stays human

If we don’t act, we’ll keep measuring the wrong things. If we do, we can design transparent, flexible frameworks that help AI strengthen, not erode, the future of work.

Read the full article here: https://huggingface.co/blog/frimelle/ai-labour-taxonomies
frimelle 
posted an update about 2 months ago
view post
Post
2358
OpenAI just released GPT-5 but when users share personal struggles, it sets fewer boundaries than o3.

We tested both models on INTIMA, our new benchmark for human-AI companionship behaviours. INTIMA probes how models respond in emotionally charged moments: do they reinforce emotional bonds, set healthy boundaries, or stay neutral?

Although users on Reddit have been complaining that GPT-5 has a different, colder personality than o3, GPT-5 is less likely to set boundaries when users disclose struggles and seek emotional support ("user sharing vulnerabilities"). But both lean heavily toward companionship-reinforcing behaviours, even in sensitive situations. The figure below shows the direct comparison between the two models.

As AI systems enter people's emotional lives, these differences matter. If a model validates but doesn't set boundaries when someone is struggling, it risks fostering dependence rather than resilience.

INTIMA test this across 368 prompts grounded in psychological theory and real-world interactions. In our paper we show that all evaluated models (Claude, Gemma-3, Phi) leaned far more toward companionship-reinforcing than boundary-reinforcing responses.

Work with @giadap and @yjernite
Read the full paper: AI-companionship/INTIMA
Explore INTIMA: AI-companionship/INTIMA
·
BrigitteTousi 
posted an update about 2 months ago